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ABSTRACT

Languages, specially gestural and sign languages, are best learned in immersive

environments with rich feedback. Computer-Aided Language Learning (CALL) solu-

tions for spoken languages have successfully incorporated some feedback mechanisms,

but no such solution exists for signed languages. Computer Aided Sign Language

Learning (CASLL) is a recent and promising field of research which is made feasible

by advances in Computer Vision and Sign Language Recognition(SLR). Leveraging

existing SLR systems for feedback based learning is not feasible because their decision

processes are not human interpretable and do not facilitate conceptual feedback to

learners. Thus, fundamental research is needed towards designing systems that are

modular and explainable. The explanations from these systems can then be used to

produce feedback to aid in the learning process.

In this work, I present novel approaches for the recognition of location, movement

and handshape that are components of American Sign Language (ASL) using both

wrist-worn sensors as well as webcams. Finally, I present Learn2Sign(L2S), a chat-

bot based AI tutor that can provide fine-grained conceptual feedback to learners of

ASL using the modular recognition approaches. L2S is designed to provide feedback

directly relating to the fundamental concepts of ASL using an explainable AI. I present

the system performance results in terms of Precision, Recall and F-1 scores as well

as validation results towards the learning outcomes of users. Both retention and

execution tests for 26 participants for 14 different ASL words learned using learn2sign

is presented. Finally, I also present the results of a post-usage usability survey for

all the participants. In this work, I found that learners who received live feedback

on their executions improved their execution as well as retention performances. The

average increase in execution performance was 28% points and that for retention was

4% points.
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Chapter 1

INTRODUCTION

1.1 Background

Non-verbal communication is a big part of day-to-day interactions. Body move-

ments can be a powerful medium for non-verbal communication, which is done most

effectively through gestures. However, the human-computer interaction (HCI) inter-

faces today are dominated by text-based inputs and are increasingly moving towards

voice-based control. Although speech is a very natural way to communicate with

other people and computers, it can be inappropriate in certain circumstances that

require silence, or impossible in the case of deaf people. Researches in sign language

recognition (SLR) aim to bridge this gap by allowing computers to recognize gestures

to facilitate HCI applications as well as to allow communication between the deaf and

hearing people by recognizing and translating sign language gestures such as those of

American Sign Language (ASL) Paudyal et al. (2016).

The aforementioned communication gap can also be bridged if the hearing pop-

ulation were to acquire sign languages. Learning a sign language like learning any

other language is a difficult process. World Health Organization(WHO) estimates

that around 466 million people worldwide have disabling hearing loss. This number

is estimated to rise to 900 million by 2050 Organization (2018). Signed language are

natural languages for deaf or hard of hearing people since only a fraction of the pop-

ulation with disabling hearing loss can benefit from cochlear implants. Other means

of communication like lip-reading or writing are not natural for daily life conversa-

tions. Many family and friends of deaf or hard of hearing people also benefit from
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Figure 1.1: Learn2Sign System Design for Feedback.

being able to sign. Learning Sign Language is also a very popular choice to fulfill

additional language requirements for colleges or high-schools. The Modern Language

Association Association (2016) reports that the enrollment in American Sign Lan-

guage (ASL) courses in the U.S. has increased nearly 6,000 percent since 1990 while

that for other languages has been relatively constant as seen in Figure 1.2. This shows

that the demand for sign language learning is increasing.

People may want to learn a sign language for various reasons including being

born deaf in a hearing household or having friends/family who use a sign language.

The process of learning can be aided by the use of technology that provides intel-

ligent and effective feedback as exists for almost all major spoken languages, how-

ever, no such technology exists for learning signed languages. The ability to provide

correct/incorrect decisions and ultimately feedback to learners depends first on the

presence of an accurate SLR technique and then secondly on that technique being

explainable enough to be able to give finer-grained feedback. Additionally, the tech-

niques have to support a growing set of vocabulary and should function in ubiquitous

environments. In this work, I propose novel ways to recognize various components of
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Figure 1.2: Enrollment Statistics for Various Languages from 1990 to 2016

signed languages. Then, I propose Learn2Sign(L2S) which is a feedback-driven way

to learn American Sign Language using any Smartphone or any PC with webcam. I

propose a novel three-tier feedback system and provide analysis on the design choices

and their effectiveness as seen in Figure 1.1.

1.1.1 Gestural Languages

Some human communities communicate in entirely using gestures or have devel-

oped gestural systems of communication for occasions where speech is impossible or

for some reason not permitted. Examples include religious communities sworn to

silence, people working in noisy environments such as airplane traffic ground control,
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military personnel in covert operations or drills and most of all, deaf people. The

multitude of sign languages invented and used by deaf people all over the world, is

evidence that most of what is needed for human communication can be performed us-

ing gestures Corballis and Corballis (2002). Many of the signs that are used in signed

languages throughout the world are iconic in nature i.e. they mimic the objects of the

phenomenon they represent Valli and Lucas (2000). Even spoken languages retain

manual gestures as an additional channel to emphasize or clarify meaning to vary-

ing extents throughout various cultures and languages Lieberman (2003). Thus, the

ability to correctly perceive and understand gestural languages is of paramount im-

portance for HCI interfaces of the future as well as for human-machine collaboration

systems such as a sign-language tutor system.

1.1.2 American Sign Language

American Sign Language (ASL) is a natural language used primarily by members

of the North American Deaf community Valli and Lucas (2000). It is one of the most

widely used and well studied of the sign languages in the world. ASL is utilized for

all instructions at Gallaudet University. While there is no universal sign language,

for this work, ASL is chosen as a test-bed. This is primarily because of its wide-

spread adoption and availability of literature, data and other resources for extensive

study. ASL is also growing rapidly in popularity in many U.S. States as can be seen in

Figure 1.2. ASL has a very distinct language structure and the Deaf culture associated

with it, has qualified it to be a valid foreign language for college credits Compton

(2016). For the scope of this work, the challenges for the recognition and tutoring of

ASL words and phrases are considered.
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1.1.3 Sign Language Recognition

Sign Language Recognition (SLR) can be understood as the usage of technology

to interpret, translate or to identify sign language words, phrases or sentences. SLR

systems vary with the complexities of supported vocabulary, the language(s) sup-

ported, with whether the system is meant to identify individual gestures or signs

in isolation or if continuously signed words, phrases, and sentences are supported.

Accordingly, the output of SLR systems may be in the form of isolated identified ges-

tures which are equivalent to words or some phrases in the sign language supported,

or a translation to another language: either a spoken language such as English or

another sign language. SLR systems can be divided into several modules as seen in

Figure 4.1. According to the techniques used for recognition, SLR systems can either

be i) classification based where parameters of a model are learned by utilizing existing

labeled data or ii) similarity-based techniques where no such model is learned, and

the recognition is done by a comparison with known examples.

1.1.4 Sign Language Tutoring

The ideal environment for language learning is immersion with rich feedback Ske-

han (1998) and this is especially true for sign languages Emmorey (2001). Extended

studies have shown that providing item-based feedback in CALL systems is very im-

portant Van der Kleij et al. (2015). Towards this goal, language learning software

for spoken languages such as Rosetta Stone or Duolingo support some form of assess-

ments and automatic feedback Stone (2016). Although there are numerous instructive

books Rosen (2010), video tutorials or smartphone applications for learning popular

sign languages, there hasn’t yet been much work towards providing automatic feed-

back as seen in Table 1.2. We conducted a survey Lab (2018) of 52 first-time ASL
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Table 1.1: Survey Results from 52 Users of the Application.

Category Response

Importance

of Feedback
Yes: 96.2% No: 3.8%

Movement

Feedback

Correctness: 9.6%

Colored Bones: 1.9%

Sentence: 15.4%

Correctness+Sentence: 9.6%

All: 65.3

Handshape

Feedback

Circle around handshape: 63.5%

Actual handshape: 36.5%

Self-Assessment

Not helpful: 1.9%

Somewhat: 5.8%

Very helpful: 93.3%

Expandability

Not helpful: 5.8%

Somewhat: 7.7%

Very helpful: 86.5%

users (29M, 23F) in 2018 and 96.2 % said that reasonable feedback is important but

lacking in solutions for sign language learning (Table 1.1).

For this work, I have implemented Learn2Sign (L2S), an interactive Artificially

Intelligent(AI) tutor that uses feedback to teach sign language words and phrases to

learners. The effectiveness of this approach is tested towards learning outcomes for

American Sign Language (ASL) by using some commonly used words and phrases

in ASL classroom instructions. Many research works point out to the positive rela-
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tionship between feedback given through interaction and the learning performance of

second-language learners Lightbown and Spada (1990); Mackey (2006). The ability

to practice and receive feedback is also a positive aspect of immersive environments

for second language learning such as study abroad programs and even classroom en-

vironment to some extent Magnan and Back (2007). Many software applications for

spoken languages incorporate some form of feedback to help improve the pronunci-

ation of learners Stone (2016). Applications like DuoLingo also provide interactive

chat-bot like environments with feedback to increase immersion Vesselinov and Grego

(2012). However, such applications are not available for learners of sign languages.

Although the very recent SignAll System for Education has a system designed to aid

classroom instruction for ASL, it requires a custom setup with multiple specialized

cameras that require manual calibration as well as the use of colored gloves which

make its usage limited and expensive for self-paced learning SignAll (2020). This is in

part due to the inherent technical difficulties for providing feedback to sign language

learners as discussed in Section 5.3.

Table 1.2: Some Applications for Learning ASL on Smartphones.

Application Can Increase Vocab Feedback

ASL Coach No None

The ASL App No None

ASL Fingerspelling No None

Marlee Signs Yes None

SL for Beginners No None

WeSign No None

The important role of practice and feedback for learners of sign language is also
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well-established Emmorey et al. (2009). However, currently to the best of our knowl-

edge, there are no educational tools that exist that provide automatic analysis and

feedback for sign language learners for self-paced learning. Huenerfauth et al. per-

formed a Wizard of Oz. study and determined that displaying videos to students of

their signing, augmented with corrective feedback messages results in better perfor-

mances Huenerfauth et al. (2015). Other research points out to the fact that second

language learners of sign languages usually made mistakes on the location, move-

ment, handshape and/or facial expressions of the signs Rosen (2004). These also

correspond to the phonetic components that make up signs in most sign languages

including ASL Stokoe (2005). Of these, the location, movement, and handshape are

generally acquired first Mayberry (2007), thus we choose these three as the concepts

to give feedback on.

In theory, state-of-the-art video recognition systems Feichtenhofer et al. (2016),

or sign language recognition systems Cihan Camgoz et al. (2018) could be utilized for

recognition and towards providing feedback to sign language learners. However, the

algorithms that these techniques use are designed to automatically extract low-level

features and attributes and classify a given input among a variety of previously known

classes. Although the features and attributes these systems extract are useful for the

classification problem itself, they are rarely semantically meaningful for providing an

explanation or feedback as to why a given input belonged to a certain class i.e. why a

given execution was correct or not. Also, these classification techniques do not scale

well to unseen vocabularies which would be very important for tutoring purposes

where the vocabulary is constantly updated with the progress made by the learner.
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1.1.5 Concept Learning

To provide the most benefit towards the learning outcome, Learn2Sign is designed

to give feedback for the concepts of location, movement, and handshape of the signs.

For instance if a signer performs the sign in the correct location, and with the right

movement for both hands, but the shape of her right hand was not correct, Learn2Sign

will send a feedback highlighting this so that the learner can focus on the incorrect

aspects when she tries again as seen in Figure 5.5. This is achieved by using a

recognition module that is a combination of several modular sub-modules each of

which is designed to recognize a specific aspect of the signing. In our case, these

concepts are the concepts of ASL in terms of location, movement, and handshape.

Feedback based learning is a richly studied topic, both in the field of Educa-

tion Fukkink et al. (2011) and also in the field of computer-aided learning Hudson

(2004). The effect of feedback can be directly measured by relating it to the learning

outcomes. To measure the effectiveness of feedback on learning outcomes we designed

a test and enrolled 26 University students with little to no prior ASL exposure. The

participants used the interface to watch videos for 14 different ASL signs, and then

performed a multiple-choice retention test as well as an execution test where their

videos were collected and analyzed for correctness. These experiments show that

providing automatic and interactive feedback had a notable benefit on the execution

performance of the signers. Their overall retention of the signs also went slightly up

with feedback. This follows intuition since the feedback that Learn2Sign provides is

geared towards correct execution of the signs.

Additionally, there is also evidence that AI systems that provide feedback and

interactivity tend to increase trust and subsequently adherence and usage Doran

et al. (2017). Although a longitudinal study would need to be done to test adherence
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directly, the results of the post-usage survey we conducted on all the participants

(summarized in Table 5.2) shows that the majority of participants (88.4%) preferred

to use Learn2Sign over just watching videos for self-paced learning.

1.1.6 Explainable AI

According to the Oxford English Dictionary, the word explanation is A statement

or account that makes something clear; a reason or justification for an action or be-

lief. With the success of machine learning, many critical decisions are being derived

using AI systems, there is an increasing need for trust, accountability, and clarity

behind the decision making. At the same time, machine learning systems have be-

come more and more complex and difficult to interpret. While the simpler machine

learning algorithms like logistic regression can be interpreted using the weights as

feature importance, more complex decision systems such as random forests or deep

learning have no such interpretability. However, such systems can be designed in a

way to be more comprehensible by humans if they provide some reasonings for their

decisions Doran et al. (2017). Another technique of making decisions from AI systems

explainable is to make or interpret the decision using human-understandable features

of the input data. This can be achieved by breaking the overall decision problem

into sub-problems that are themselves more human-understandable. In this way, a

reasoning for the decision can be derived using the sub-modules that were utilized

in the decision process. There is understood to be a trade-off between explainability

and performance, perhaps because the simpler or modular explainable models are

typically not as powerful as some of the more complex but less explainable models.
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Figure 1.3: System Model for Feedback.

1.2 Significance

Recognizing sign language signs correctly is a required step for building tutoring

systems. Sign language recognition systems by themselves are already very useful for

accessibility. In this section, I discuss the significance of sign language recognition

systems as well as those of sign language tutoring systems.

1.2.1 Sign Language Recognition

Sign Language Recognition systems can have a big impact on providing accessi-

bility for the deaf and hard-of-hearing. Even without the realization of a full-blown

machine-translation system, even a system that recognizes signs within a small spe-

cialized domain like medical emergencies, classrooms, airports etc. can be very bene-

ficial Banerjee and Gupta (2015). Different approaches to SLR such as using cameras,

specialized gloves, 3-D cameras, multiple-cameras or body sensors will have trade-offs

11



in performance, usability, and functionality. However, pursuing all these avenues of

research is critical to making progress in this field.

1.2.2 Sign Language Tutoring

Studies show that elaborated feedback such as providing meaningful explanations

and examples produce a larger effect on learning outcomes than just feedback regard-

ing the correctness Van der Kleij et al. (2015). The simplest feedback that can be

given to a learner is whether their execution of a particular sign was correct. State-

of-the-art SLR and activity recognition systems can be easily trained to accomplish

this. However, to truly help a learner identify mistakes and learn from them, the

feedback and explanations generated must be more fine-grained.

The various ways in which a signer can make mistakes during the execution of a

sign can be directly linked to how minimum pairs are formed in the phonetics of that

language. The work of Stokoe postulates that the manual portion of an ASL sign

is composed of 1) location, 2) movement and 3) hand-shape and orientation Stokoe

(2005). A black box recognition system cannot provide this level of feedback, thus

there is the need for an explainable AI system because feedback from the system is

analogous to explanations for its final decision. Non-manual markers such as facial

expressions and body gaits also change the meaning of signs to some extent but they

are less important for beginner-level language acquisition, so these will be considered

for future work.

Studies have also shown that the effect of feedback is highest if provided imme-

diately Van der Kleij et al. (2015), thus feedback systems should be real-time. The

requirement for immediate feedback also restricts the usage of complicated learn-

ing algorithms that require heavy computing Cihan Camgoz et al. (2018); Lee et al.

(2017) and extensive training. The usability and usefulness of applications is en-

12



hanced if learning is self-paced, learners are allowed to use their own devices, and

the learning vocabulary can be easily extended. However, current solutions for SLR

require retraining to support unseen words and large datasets initially. To solve these

challenges, we designed Learn2Sign(L2S), a smartphone application that utilizes ex-

plainable AI to provide fine-grained feedback on location, movement, orientation and

hand-shape for ASL learners. L2S is built using a waterfall combination of three

non-parametric models as seen in Figure1.3 to ensure extendibility to new vocabu-

lary. Learners can use L2S with any smartphone or computer with a front-facing

camera. L2S utilizes a bone localization technique proposed by Papandreou et al.

(2017) and various carefully chosen similarity measures for movement and location-

based feedback and a light-weight pre-trained Convolutional Neural Network (CNN)

as a feature extractor for hand-shape feedback.

Having an automated system for new students to learn, practice and obtain feed-

back in a self-paced manner using their own devices will be paramount to scaling the

beginner level classes as well as speeding up learning.

1.3 Components

There is a benefit to breaking down the task of sign language recognition into

conceptual modules. In this study, we consider the location, movement, and hand-

shape modules separately. This not only helps recognition by allowing the usage of

specialized recognition modules, but also allows for the recognition algorithm to be

modular and explainable. For instance, for the tutoring application, an ability to

provide detailed feedback is desired. This feedback does not make the learning ex-

perience immersive, but also allows focussed repetition and thus enhances learning.

The scope of the feedback considered in this study is limited to solving the technical

challenges for facilitating feedback-driven language learning for beginner level sign
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languages. This is equivalent to what a second-language learner would encounter in a

single semester where obtaining the necessary vocabulary is the primary goal. Even

for this somewhat narrow scope, there are many unsolved technical challenges. Some

of these are how to ensure support for growing vocabulary, how to ensure accurate

and real-time recognition and feedback, and how to test for appropriate feedback

mechanisms. While similar feedback mechanisms can be adapted to aid other gestu-

ral language learning or even advanced aspects of sign language learning this is out of

the scope of this work. The results of Mayberry et. al. suggest that the concepts of

correct location, movement, and handshape are acquired first Mayberry (2007) at the

beginner level and other more advanced correctness concepts such as facial expres-

sions and body gaits are acquired as the learner begins to develop fluency. Thus, the

feedback provided by Learn2Sign for this work is limited to textual feedback provided

as brief sentences for the location, movement, and handshape of the signer.

1.3.1 Recognition of Location

The goal of the recognition module for location is to isolate the primary position

of articulation of the sign. This position has to be determined relative to the body of

the signer due to variance in frame-size, sitting/standing posture and distance to the

camera. Another challenge is to isolate the primary location of each of the articulators

in the presence of movement since many sign language signs incorporate some kind

of movement The correct location of a sign can either be hard-coded by querying a

list of ‘supported’ signs which is equivalent to learning a model that identifies certain

signs, or this can be done during recognition time by comparison to a certain gold

standard. The latter approach is employed in this work. After recognition of the

correct location, the goal of the tutoring module would be to provide feedback if the

location of either of the hands is incorrect. The usage of the signers’ own body as a
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frame of reference rather than the field of visibility of the camera helps to mitigate

some of the challenges towards this. The signer’s shoulders are taken to be fairly

stable for the duration of the execution of a sign and correctness of the location of

each hand is based on its relative position of each of the hands to each of the shoulders.

This is explained in more detail in Chapter 2. If the location module detects that

either of the hands’ location was not correct for the duration of the signing, corrective

feedback for location can be given. The feedback can be in the form of a text or a

color highlight of the part of the screen. If the correctness of the location of the hand

can be known, then various types of feedback can be given to the learner based on

further usability studies. In this work, we give a detailed treatment for recognition of

the location of the signing using a video-feed in Chapter 2. Recognition of location

using body-worn sensors can be done accurately using an initial calibration and thus

is not discussed in much detail in this work.

1.3.2 Recognition of Movement

Hands are the primary articulators for signed languages. The Movement module

is responsible for checking that the movement executed by each hand of the learner

is sufficiently close to that of a teacher or a known model of a sign. Training a model

of all known signs suffers from the inability to scale to unseen vocabulary. Thus, for

scalability reasons and to support a tutor application a similarity-based measure is

chosen.

This measure of similarity has to be sufficiently robust to delays in starting and

the speed of signing. It also has to account for the variance in distance between

the signer and the camera being used as well as the distortions introduced by the

difference in frame-size and resolutions of the camera. The use of a 2D camera that

is available in most devices today instead of a 3D camera or multiple cameras for
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depth inference further complicates the comparison of movement trajectories. Thus,

a distance estimation technique that is reasonably robust to these conditions is used

along with a smoothing and normalization procedure that will be discussed in Chap-

ter 3. In addition to the requirement of an appropriate similarity measure, detailed

feedback also requires the computation of an alignment between the movement tra-

jectories. This additionally allows us to reasonably estimate which frames to utilize

for handshape comparisons. The distance measure can be used as a threshold for

deciding if the learner’s trajectory was close enough to that of the teacher. The algo-

rithm for comparison results also in a point-by-point optimal alignment for the two

trajectories. This can be used to provide much more detailed feedback to the learner

if desired.

In this work, I present a body-worn armband based approach as well as a webcam-

based approach to recognize signs that differ in movement. Details on the approach,

methodology and results can be found in Chapter 3.

1.3.3 Recognition of Hand-Shape

Signs in sign languages can differ in meaning due to variation in the shape of the

hand. Indeed other forms of gesturing, dances and body language also use handshapes

to convey meaning. In this work, I present a novel algorithm to identify handshape

based on Electromyogram (EMG) sensors coupled with Inertial Measurement Unit

(IMU) sensors that are included in a wireless armband. I also present a fast and

efficient technique of comparing handshapes between videos by using deep feature

extraction. Details on both of these approaches as well as evaluation results are

presented in Chapter 4. To provide handshape based feedback, the shape that the

learner’s hands assume must be compared to that of the teachers. This comparison

must be done at several stages of a sign since a single ASL sign can have various
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handshapes that transition from one to another. Also, the execution of the teacher

and that of the student cannot be assumed to be in perfectly aligned in time. This

misalignment can be caused by several factors such as delayed start, or difference

in speed of signing. After correct alignment, a well-measured crop of the hands be-

ing compared is also required to avoid noisy comparisons and to increase accuracy.

Additionally, the handshape comparison should be robust to changes in brightness

conditions, skin-tone, orientation differences etc. After all this information is avail-

able, a detailed feedback based on which frame the handshape was not correct for can

be used in the feedback provided. Many other types of feedback mechanisms can be

designed. For the user study, to avoid any confounding factors, a simple text message

of whether the handshape was correct or not is provided for each hand. Then the

replay of the correct handshape as executed by the teacher is shown.

1.3.4 Learner Feedback

The various recognition modules can be combined to determine if a particular sign

execution was correct or incorrect. Appropriate comparison techniques and threshold-

ing mechanisms can be used to determine the correctness of an execution compared to

a gold-standard. At this point, these results can be either used to compose a recogni-

tion algorithm that simply outputs correct if all of the modules’ results were positive

or outputs negative if either one of the modules were not correct. Since recognition

on all the modules is dependent on a threshold that can be tuned during training,

the amount of False negatives can be balanced with False positives to provide a de-

sired level of ‘Feedback Sensitivity’. An appropriate level of feedback to be given to

the learner can thus be determined. A waterfall approach can be taken as seen in

Figure 1.3 where only Location Feedback is provided first, then if the location of the

execution is correct, a movement feedback can be provided. Finally, the handshape
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feedback is provided if and only if both the location and the movement were already

correct. Conversely, all the possible feedback types can also be shown concurrently

as seen in Figure 1.1. This feedback mechanism can also be personalized to cater to

different learning patterns of learners.
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Chapter 2

RECOGNITION OF CORRECT LOCATION

2.1 Introduction

For SLRs, it is important to keep track of the location of both the hands as they

are the primary articulators in most sign languages. For isolated sign recognition, the

user‘s body remains relatively stationary throughout the video. Thus, the location

of the primary articulators can be computed relative to the signer‘s own body. This

type of relative localization is preferrable to absolute localization with respect to pixel

coordinates in the frame, because no assumptions on the size of the frames or the

position of the learner in the frame have to be made. In other words, using a location

relative to the signer’s body abstracts away the need to account for differences due

to camera resolutions or the distance of the learner from the camera. This technique

works well for one-handed signs as well as for two-handed signs. However, for this

to work, other parts of the learner’s body have to be localized as well. This is done

effectively by using landmark detection algorithms for body pose which are also known

as pose detection algorithms. After the relative location of each of the hands is known

for each of the frames, a comparison between the positionings for different executions

can be performed using vector comparison methods like cosine similarity to get a

measure of execution similarity with respect to the location.

2.2 Problem Statement

The problem of determination of the correct location of a sign is that of 1) localiz-

ing the primary articulators i.e. the hands 2) tracking them throughout the duration
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of the signing video and 3) determining the primary location of signing. During the

duration of the execution of a sign language word, the position of one or both of the

hands can be stationary or mobile. The movement during a sign can be part of the

sign or it may be the setup process of moving the hands to the correct positions.

2.3 Significance

The signs in sign languages are composed of a finite number of discrete, meaning-

less and contrastive sub-units: 1) Location 2) Movement and c) Handshape Stokoe

et al. (1970). Morphemes, or units of meaning, are formed by a combination, of

such sub-units and any substitution may result in a different morpheme. What this

means practically is that if the only the location of a particular word was modified,

while keeping the movement and handshape the same, it can result in the change

of meaning. This is exemplified in the case of the pairs MOTHER vs. FATHER or

STOMACH-ACHE vs. HEAD-ACHE in ASL. In sign languages, each free morpheme

is restricted to a single major body area- such as the head, torso, or the dominant and

non-dominant hands Battison (1978). In signs that have a movement component to

them, a sign may consist of up to two settings for a single sign. For some signs such as

DEAF, both times the contact is in the head area, first near the ear and then near the

mouth. For other signs, that do not involve contact, researchers are divided whether

there are two distinct major locations or only one Sandler (2012). Nonetheless, the

location of signing plays an important role in distinguishing otherwise similar signs.

Thus, the identification of the correct location is paramount to correctly recognizing

a sign.
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2.4 Related Work

Identifying the position of hands at any given instance can be achieved by various

techniques. In this section I review two such approaches and some important related

work for them.

2.4.1 Hand Tracking

Traditionally, Hand tracking has been done via the usage of wrist-worn sen-

sors Paudyal et al. (2016), data-gloves Dipietro et al. (2008), 3D cameras or wrist-

worn cameras Kim et al. (2012). Hand tracking using either 3D or 2D videos can be

done using a hand kinematic model approach or a model-free approach Oikonomidis

et al. (2011); Frati and Prattichizzo (2011). The advantage of a hand-model based

approach is the increase in accuracy due to the inclusion of body joint constraints,

while model-free approaches are robust are more useful for reinitialization. If ease of

usage is considered, smaller smartwatch-like sensors or pervasive webcam like devices

are preferrable Paudyal et al. (2019c).

2.4.2 Pose Estimation

For this work, we require an estimation of human pose, specifically the estimates

on the location of various joints throughout a video, known as keypoints. There

have been several works towards this goal Tome et al. (2017); Chen and Ramanan

(2017); Bogo et al. (2016); Sarafianos et al. (2016); Tompson et al. (2014); Chen and

Yuille (2014). Some of these works first detect the keypoints in 2D and then attempt

to ‘lift’ that set to 3D space while others return the 2D coordinates of the various

keypoints relative to the image. To fulfill the requirement to use pervasive cameras,

we did not focus on the approaches that utilize depth information such as Microsoft
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Kinect Pedersoli et al. (2014). Thus, we utilized the pose estimates from a Tensorflow

JS implementation of a model proposed by Papandreou et al. Papandreou et al. (2017)

which can run on devices with or without GPUs (Graphical Processing Units).

2.5 Technical Challenges

While utilizing existing work on Hand Tracking or Pose Detection is straight-

forward, creating a robust and usable system to account for all the variations possible

in real-world usage is challenging. In this section, I outline the technical challenges

associated with determining the correctness for the location of signing with the end-

goal to develop systems that are scalable, real-time, and robust to variations in the

real world.

2.5.1 Challenge 1: Determination of Frame of Reference

Due to differences in the size of the frame, the distance from the camera, resolution

of the camera feed etc, it is difficult to determine how to compare a location in one

video to that of the other. Unless environmental restrictions are in effect, the only

way to mitigate these issues is to determine the location of the articulators relative to

other body parts. In camera-based approaches, this means localizing other joints or

keypoints in the body. For sensor-based approaches, in the absence of other markers

either an initialization phase is required or a rigid position for the sensor relative to

the body part has to be assumed.

2.5.2 Challenge 2: Granularity of Identification

The phonetic realization of signs is often affected by co-articulation among other

factors. Even in a teacher-student scenario, a perfect replication is not expected.

Thus, the division of the signing space around the body has to be done in a way to
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allow some variation for the correct location, without accepting an altered morphol-

ogy.

2.5.3 Challenge 3: Determination of Similarity Measure

Traditional distance measures like Euclidean distance assume proximity in scale.

However, for practical applications where the length of signing may differ due to the

speed of the signer as well as the frame-rate of the captured signals, this proximity

is often violated. Thus an appropriate distance measure should be utilized that can

take this into consideration.

2.5.4 Challenge 4: Movement in Signs

Signs in most sign languages consist of movement within a sign. This becomes

even more paramount when continuous signing is considered. Thus, determining the

primary location(s) for a sign in the presence of movement is challenging.

2.6 Approach and Methodology

Based on the key-point coordinates of both the left and right shoulders, six location

buckets are established. This is indicated by the two vertical lines passing through

both the shoulder points in Figure 2.3. These lines along with a horizontal line

connecting both the points separating the upper and lower buckets serve as bucket

boundaries. For every recorded frame in the video, the location of both the left and

right hands are tracked and the count for the corresponding bucket is incremented.

Finally, we obtain a 1x6 vector for both the hands. A similar process is followed

for the tutor‘s videos and the correctness of location for each hand is determined by

thresholding on a cosine similarity score.
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(a) TIGER mostly in Bucket 1 for Left

Hand.

(b) DECIDE in Buckets 3 and 6 for

Right Hand.

Figure 2.1: Automatic Bucketing for Location Identification for Varying Distances

from the Camera. Left Wrist(Yellow), Right Wrist(Red), Eyes(White), Shoul-

ders(Green).

2.6.1 Keypoint Estimation

Pose estimation is generally done through estimating the location of various salient

points in the body such as the hands, the shoulders, or the torso as seen in Table 2.1.

These salient body parts that are tracked frame-by-frame throughout a video are

generally referred to as keypoints. Robust estimation of keypoint is a necessary step

for localizing a sign relative to a signers‘ body and determining the type of move-

ment. The keypoint locations and the confidence levels for them are also used for

initial calibration, starting the countdown for recording and for determination of

handshape crops as will be discussed in Chapter 4. We utilize a variant of Residual
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Neural Network Tai et al. (2017) from Tensorflow.js Smilkov et al. (2019) called

PoseNet Papandreou et al. (2017). PoseNet can be used for single as well as multiple

pose detection, which means that it can detect many people in the same frame. How-

ever, for our purposes, the single pose detection module was sufficient. The ResNet50

powered model was configured with optimum default values considering the perfor-

mance speed for Output stride(32), image input resolution(257) and enough quant

bytes(2) to perform weight quantization. For each frame in a video or continuous

stream, PoseNet returns 17 different keypoints throughout the body. A sample of

this is presented in Table 2.1. Among these, the keypoints for eyes, nose, shoulder,

elbows, and wrists were utilized. The eyes and the nose keypoints along with those

for the wrists are used initially before the learner begins to record their execution.

Along with the ‘x’ and ‘y’ coordinates, PoseNet also returns a confidence score be-

tween 0 and 1 for each keypoint for every frame. A threshold of 0.6 was utilized to

calibrate the webcam positioning and to verify the learner was in range and visible.

After verification of about 60 frames, a 3 s timer to begin recording is triggered. As

a learner is recording their execution the keypoints for every frame are recorded to

be used for a comparison to the tutor for that sign. The keypoints estimated for 5

different body parts throughout the videos for signs ‘Spanish’ and ‘Nice to meet you’

are plotted in Figures 2.3 and 2.2 respectively.

2.6.2 Bucketing

Based on the key point coordinates of both the left and right shoulders, six location

buckets are established. This is indicated by the two vertical lines passing through

both the shoulder points in Figure 2.3. These lines along with a horizontal line

connecting both the points separating the upper and lower buckets serve as bucket

boundaries. For every recorded frame in the video, the location of both the left and
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Table 2.1: Confidence Score and Frame (x,y) Coordinates for some Keypoints

Part Score x y

Nose 0.9907 138.7879 147.7989

Left Eye 0.9958 142.4354 136.857

Right Eye 0.9991 126.7588 135.5591

Left Shoulder 0.8325 180.0198 196.2646

Right Shoulder 0.7876 138.7879 195.5847

Left Wrist 0.6844 198.9818197 223.4856

Right Wrist 0.1564 1.9084 211.0473

right hands are tracked and the count for the corresponding bucket is incremented.

Finally, we obtain a 1x6 vector for both the hands. A similar process is followed

for the tutor‘s videos and the correctness of location for each hand is determined by

thresholding on a cosine similarity score. Here a cosine similarity measure is preferred

over other measures like euclidean distance since we do not make any assumptions

on the number of frames recorded for the tutor as well as the learner. A value of 0.6

was determined to be an appropriate threshold by experimentation.

2.6.3 Similarity Measure

The cosine similarity measure was selected for location-based similarity compar-

ison of two videos. Cosine similarity is preferable to other common measures such

as manhattan similarity or euclidean similarity since a relative count in the differ-

ent buckets has meaning rather than absolute counts. In other words, if two videos

had a different number of frames due to differences in signing speed or frame-rate of
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Figure 2.2: The Right Wrist stays in Bucket 5 for Sign ‘Nice to meet you’.

Figure 2.3: The Right Wrist goes between Buckets 1 and 5 for Sign ‘Spanish’.

the capturing camera, but both videos had the right-hand location in bucket 3, the

counts for bucket 3 would still be relatively high. This case is handled well by the

cosine similarity measure. In other words, a cosine similarity measure is preferred

over other measures like euclidean distance since we do not make any assumptions

on the number of frames recorded for the tutor as well as the learner. A value of 0.7

was determined to be an appropriate threshold by experimentation.
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2.7 Results and Evaluation

After preprocessing for normalization and outlier removal, the location-based iden-

tification was executed. The precision and recall rates for each of the 25 signs in the

dataset are shown in Table 4.5. An average true positive rate of 91.40 % across all

users was achieved.

To obtain the results, data collected from one learner was selected at random

and served as the ’tutorial’ dataset. Then for each sign for each user in the test

dataset, we compared against the corresponding sign in the tutorial dataset. The

ideal behavior of the application when provided with a sign that is correct in the

location modality to a tutorial video, should be accepted. The high recall rate for

location-based identification reflects this.

A subset of signs will have considerable overlap in the locations where the signs

were executed. For instance in Figure 2.4 the signs for ‘AND’ and ‘HERE’ share much

of the location space while they will differ in other modalities like movement and

handshape. Thus, the evaluation is done jointly with the handshape and movement

components discussed in Chapters 3 and 4.

The combined results are summarized in Table 4.5. To obtain the results, data

collected from one learner was selected at random and served as the ’tutorial’ dataset.

Then for each sign for each user in the test dataset, we make comparisons against

the corresponding sign in the tutorial dataset. The location module had an overall

recall of 96.4% and a precision of 24.3%. The lower precision is because many signs

in the test dataset had similar locations. We performed a test comparing only the

signs ’LARGE’ to the sign ’FATHER’ and both the precision and recall were 100 %.

Another experiment was done for signs that differ considerably in the location

where the signs are executed as seen in Figure 2.1. The Table 2.2 shows that the
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(a) AND (b) HERE

Figure 2.4: Eyes(White), Shoulders(Green), Left Wrist(Yellow) and Right Wrist(Red)

Locations.

location-based identification of disparate signs is indeed effective when the two signs

being compared vary on location. The high precision rate shows that when a sign

executed in the incorrect location the location model identifies it as being incorrect

by the location model.
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Table 2.2: Signs Differentiable by Location

Sign1 Sign2 Precision%

Here Tiger 100.0

And Large 90.70

About Here 83.33

Hospital Father 100.0
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Chapter 3

RECOGNITION OF CORRECT MOVEMENT

3.1 Introduction

Similar to location, ASL Signs are also differentiated by their movement. Cap-

turing the movement of the hands with respect to time is required for making com-

parisons. It is not meaningful to utilize euclidean distance between frame by frame

keypoint locations as a measure of similarity because no assumptions are made on the

size of the frames or on the speed of execution by the signer. A frame-by-frame dis-

tance would also not account for a delayed start or an early finish. Thus, a technique

called dynamic time warping is utilized to account for issues with synchronization,

difference in speed and delayed start/stop Berndt and Clifford (1994). The perfor-

mance of dynamic time warping is boosted by the usage of z-normalization on the

time-series Ratanamahatana and Keogh (2004) as seen in Eq 3.1. Z-normalization

also accounts for the difference in the size of the frame, the distance of the learner

from the camera and the size of the learner relative to the tutor to some extent. DTW

tries to get an optimal match for every data point in the sequence with any data point

of the corresponding sequence. A data point may have more than one match as long

as the index mapping between elements of both the sequences must be monotoni-

cally increasing. For ensuring real-time performance Learn2Sign uses an alternate

version of DTW called Fast DTW Salvador and Chan (2007). In this approach,

the traditional brute force dynamic programming approach is avoided. In place, the

sequence is sampled down to a much lower resolution and a warp path is decided.

After this, the warp path is projected to higher resolution time-series incrementally
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Table 3.1: Summary of ASL Users’ Survey on a Continuum from Very-unlikely (0) to

Very-likely (5).

Question 1 2 3 4 5

Interest in trying solutions for gesture based HCI 0 0 1 3 9

Interest in using ASL for gesture based HCI 0 0 3 4 6

Likeliness to use a system that requires 3 trainings instances 0 0 3 1 9

Importance of non-invasivenss 0 1 3 2 7

Likeliness to use if wait time 0-3 s 0 1 2 4 6

Likeliness to use if wait time 3-7 s 1 1 4 5 2

Likeliness to use if wait time 7-10 s 4 4 5 0 0

Likeliness to try a prototype 0 1 3 4 5

Likeliness of the use of this system by a native speaker for

communication

0 1 1 5 6

until it reaches the full resolution. Finally, a distance measure is computed based on

this optimal warp path. There is a trade-off between accuracy and performance time

when selecting the warping window size. For our purposes, a warping window size

of 5 was selected for the user-studies. This selection also has other implications such

as how much lag or differences in signing speed is tolerated and thus must be chosen

carefully Chen et al. (2012).

z − normalized =
x−mean(X)

sd(X)
(3.1)

3.2 Significance

3.3 Related Work

Most existing work on sign language recognition utilize image/video-based recog-

nition techniques while some other utilize data gloves Liang and Ouhyoung (1998),

Kuroda et al. (2004), Fang et al. (2004), Kim et al. (2015), Praveen et al. (2014).
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Although a high accuracy is achieved in the aforementioned data-glove based ap-

proaches, one major drawback is that the system is wired and invasive as it interferes

with the day-to-day activities of the user. According to Fang et al. Fang et al. (2004),

commercially existing data-gloves are also too expensive for large scale deployment.

The system that we propose, utilizes Bluetooth enabled sensors that appear in wear-

ables such as smart-watches, and are thus pervasive and non-invasive. They can also

be easily worn underneath a shirt to make them less conspicuous.

The image and video-based recognition systems Starner et al. (1998); Mitra and

Acharya (2007); Kelly et al. (2009); Koller et al. (2015); Bilal et al. (2013) use either

annotated fingers, color bands etc, or just plain raw images and video from users to

translate gesture-based communication. Some studies also utilized multiple cameras

Vogler and Metaxas (1998) to enhance the accuracy by some margin. However,

image and video-based systems are dependent on the presence of cameras in the

right positions and are affected by background colors. Another drawback to these

systems is that image and video processing is computationally expensive which makes

the recognition system’s response time slower. Also, heavy dependence on Hidden

Markov Model (HMM) based methods makes training the system cumbersome and

data-intensive. Unlike these approaches, using portable wrist-watch like sensors to

detect gestures is far less invasive and a template-based recognition approach does

not require many training data-sets. The computational complexity also decreases as

there is no need to deal with data-intensive images and videos, this allows the system

to be real-time as well as environment independent.

Li et al. Li et al. (2010) has done a study on combining accelerometer and EMG

sensors to recognize sub-word level gestures for Chinese Sign Language and Chen

et al. Chen et al. (2007); Zhang et al. (2011) show that combination of multiple

sensors helps to increase the recognition accuracy. Following this path, we add the
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EMG measurements from eight built-in pods in the Myo device to get information

that can be leveraged to detect subtle finger movements and configurations which

are essential for detecting certain signs and distinguishing them from others. The

orientation sensors help to distinguish between signs that have a similar movement

and muscle patterns but different rotational primitives. Accelerometer sensors detect

movement and position of the hands. The combination of all these sensors into one

commercial-grade, wireless sensor has given the ability to deploy gesture and sign-

language recognition abilities in a far more practical and user-friendly way. Bluetooth

technology for the transfer of data makes the system wireless and easy to use. The

overall accuracy is also increased due to the use of all three types of signals.

Thus by coupling pervasive technologies with simple algorithms, we achieve high

accuracy rates and great mobility. Starner et al. propose a solution that might be

user and language-independent as possibilities, however, an implementation is not

provided Starner et al. (1998).

3.4 Problem Statement

The main challenge of movement recognition for this purpose is to develop a

method to store, retrieve and most importantly match gestures effectively, conclu-

sively and in real-time.

There are various known methods for gesture recognition and time-series analysis,

such as Support Vector Machines, Linear Correlation, Hidden Markov Models, and

Dynamic Time Warping Morency et al. (2007), Huang et al. (2009), Chen et al. (2003),

Corradini (2001). Two classes of methods are usually used for time-series analysis

and data-matching: One is the learning-based, in which models are developed and

stored and the other one is the template-based, in which the new time-series data

is compared to a saved template. Although learning-based models were tried, the
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Figure 3.1: User Trained Gestures.

template-based models were preferred to allow user-driven training with the least

number of repetitions and to make sure the system is usable in real-time. A very

compelling advantage of utilizing a user-trained approach is that the gesture space

can start small and can gradually grow as it is being used. This will also give the

users an ability to discover a pattern of expression, train their system and use that to

communicate seamlessly even with users of other systems or languages. Due to the

flexibility of the system, a user who is well versed in a particular gesture-based system

such as ASL, can choose to train the system according to the specifications of that

language. She can then add custom gestures or shortcuts such as seen in Table 3.1

to that system if desired.

Dynamic Time Warping Morency et al. (2007), Huang et al. (2009), Chen et al.

(2003), Corradini (2001), Paudyal et al. (2018). Two classes of methods are usually

used for time-series analysis and data-matching: One is the learning-based, in which

models are developed and stored and the other one is the template-based, in which
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Figure 3.2: Gesture for ‘Mom’ Vs. ‘Eat’.

the new time-series data is compared to a saved template. Although learning-based

models were tried, the template-based models were preferred to allow user-driven

training with the least number of repetitions and to make sure the system is usable in

real-time. A very compelling advantage of utilizing a user-trained approach is that the

gesture space can start small and can gradually grow as it is being used. This will also

give the users an ability to discover a pattern of expression, train their system and use

that to communicate seamlessly even with users of other systems or languages. Due

to the flexibility of the system, a user who is well versed in a particular gesture-based

system such as ASL, can choose to train the system according to the specifications of

that language. She can then add custom gestures or shortcuts to add to that system

if desired.

3.4.1 American Sign Language Specifics

Signs in ASL are composed of several components: the shape the hands assume,

the orientation of the hands, the movement they perform and their location relative

to other parts of the body. One or both hands may be used to perform a sign, and

facial expressions and body tilts also contribute to the meaning. Changing any one of
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these may change the meaning of a sign Johnston and Schembri (2007), Bahan (1996),

Stokoe et al. (1970), Costello (2008b). This is what gives sign-language the immense

power of expressibility, however this also means that multi-modal information has to

be processed for sign-language recognition.

Orientation is the degree of rotation of a hand when signing. This can appear in a

sign with or without movement. The gyroscope sensors provide rotation data in three

axes, which is utilized in recognizing orientation Lee et al. (????). Data from EMG

sensors is utilized in detecting muscle tensions to distinguish hand-shapes, which is

another very important feature of the signs.

Location, or tab, refers to specific places that the hands occupy as they are used

to form words. ASL is known to use 12 locations excluding the hands Tennant and

Brown (1998). They are concentrated around different parts of the body. The use

of a passive hand and different shapes of the passive hand is also considered valid

locations. Movement or sig, refers to some form of hand action to form words. ASL

is known to use about twenty movements, which include lateral, twist, flex, opening

or closing Stokoe et al. (1976). A combination of accelerometer and gyroscope data

is instrumental in distinguishing signs based on movement and signing space.

Sign language is a very visual medium of communication, the system that this pa-

per proposes however tries to capture this visual information, in a non-visual manner

to ensure pervasiveness. Thus, multi-modal signals are considered to get as close of

an estimate as possible.

3.4.2 Problem Description

The primary task of the system is to match gestures. Since multi-modal signals

are being considered, they are compared individually to the signals stored in the

database and the results are combined. The form of the input data consists of an
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Algorithm 1 Problem Description.

1: procedure Match Gestures(test)

2: for (i in 1 to database size) do

3: template← next template

4: for (j in 1 to number of sensors) do

5: distance[j]← dist(test[j], template[j])

6: end for

7: Overall dist = combine(distance)

8: end for

9: Output = min(Overall dist)

10: end procedure

array of time-series data. The gesture database has pre-processed iterations of the

same gesture along with other gesture data. The problem that the system is solving

is comparing this test gesture data to each of the existing sample data using DTW

and Energy based techniques as appropriate and then combining the results at the

end to give a distance score. Then, at the very end, the task is to recognize the

gesture based on the least distance. Algorithm 1 provides a high-level overview of

this approach.

3.5 Technical Challenges

The need/demand for sign language recognition software for accessibility has been

previously established, but accessing if there is a need or demand for systems that can

utilize an established natural language as a human-computer-interface has not been

studied (to our knowledge). As part of this research, a survey was taken where 13

users of ASL expressed their opinions on these topics that included their willingness
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Figure 3.3: Myo Devices and Android Smartphone with the Sceptre App running.

to use a gesture-based system, the perceived practicality of using ASL for HCI, the

acceptable time constraints for user to user and user to computer communications,

etc. The results of the survey are summarized in Table 3.1.

3.5.1 Extendability

With more and more systems with voice command interfaces, it only seems plau-

sible that a system that understands sign language will be desirable. To the question

2 in the survey, more than 75% of the ASL users agreed that they were very likely

to use ASL for HCI, and the rest would be somewhat likely to use such a system.
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Figure 3.4: Gesture Comparison and Ranking: New Data is Collected, Processed and

Compared With Existing Gesture Data to get a Ranked-list.

More than 75% people also responded that it was very important that the system be

easily trainable, and another 15% thought it was somewhat important. This follows

from the knowledge Johnston and Schembri (2007) that ASL (and sign language in

general) varies a lot over geographical, racial and cultural bounds. Thus, the ability

to add unrecognized signs or new signs easily is very important. When ASL users

were asked if they were likely to use the system if it could be trained using 3 training

instances, more than 76% said very likely and the rest responded they were some-

what likely to spend the time training. This requirement puts the constraint on the

system that it has to be relatively easy to train. This system can be trained using
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only three instances of training per sign. The relationship between training instances

and accuracy is summarized in Section 3.7.

3.5.2 Time Constraints

Communication is a real-time activity and the need for fast response times in both

person-to-person communication as well as HCI is well established. A timing delay

of 0.1 s is considered ’instantaneous’ while a delay of 0.2 s to 1 s is noticeable to the

user, but generally acceptable. If a system takes more than 1 s, then some indication

needs to be given to the user about the ’processing’ aspect Miller (1968). The survey

question regarding timing backs this up: while more than 76% of ASL users said

they were very likely and an additional 15% said they were somewhat likely to use

the system if the response time was under 3 s, this number falls to 53% and 0% very

likely responses when the response times were 3-7 s, and more than 7 s respectively.

This establishes a strict constraint for recognition time for the system. To meet these

standards the system has to be light-weight and should not rely on computationally

expensive methods. Also, if the processing is delayed due to unpredictable issues like

client network sluggishness, a proper indication has to be given to the user of the

wait.

3.5.3 Non-Invasiveness

Historically there has been a certain stigma associated with signing. It was only

in 2013 that the White House published a statement in support of using sign language

as an official medium of instruction for children, although it has been known to be a

developmentally important for deaf children for years Aaron J. Newman (2002). Given

this stigma, and due to other more obvious reasons like usability, an interpretation

system should be as non-invasive as possible. The survey results confirm this, as
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more than 90% thought that it is important or very important for the system to be

non-invasive.

3.5.4 Pervasiveness

The other disadvantage of using more invasive technology like data-gloves or

multiple-cameras is that it makes the system either tethered to a certain lab-based

environment settings or it requires bulky equipment that discourages its use in an ev-

eryday setting Liang and Ouhyoung (1998); Kuroda et al. (2004); Fang et al. (2004).

This makes the use of smart-watch like wireless equipment that can work on the

streets as well as it works in a lab more desirable.

3.6 Approach and Methodology

Recognition of body movement is commonly achieved by computer vision tech-

niques such as object detection or by directly tracking the movement of one or more

body-worn sensors. Since I am presenting separate but related work for recognizing

movement using both of these approaches, I will present the approach used separately.

3.6.1 Sensor based Approaches

The system consists of two Myo Devices connected via Bluetooth to an Android

device which acts as a hub as shown in Figures 3.3 and 3.5. For the EMG part,

a Bluetooth enabled computer is used to obtain the data since the Myo framework

does not yet facilitate streaming EMG data to smartphones. For tests that do not use

EMG data, Android device collects and does some pre-processing on the data of the

gesture performed and stores this as time-series data. All this is sent to the server for

processing. Three to four instances for each gesture data are collected, processed and

stored. A high-level overview of the pre-processing that is done to the data before it
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Figure 3.5: Deployment: A User with Wrist-band Devices on Each Hand Performing

a Gesture.

is stored in the database is summarized in Figure 3.6.

At test time when a gesture is performed, the system similarly processes the

gesture-data as described above. In the Architecture Figure 3.4, this is encapsulated

in the ’Preprocessing’ block. After this is done, the system compares this data with

the other gesture data stored in the database using a specialized comparison method.

The comparison method comprises testing accelerometer data, orientation data, and

EMG data by different methods and later combining the results before calculating a

’nearness’ score for each pair. After this step, a ranking algorithm is employed in the

server to compute a list of stored gestures that are closest to the test gesture and the
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best one is returned.

A smart ranking architecture is used when the size of the database grows to ensure

that the results come back in an acceptable time to be a real-time application. This

is discussed in more detail in Subsection 3.6.6. The system also periodically uploads

all recognized gesture data and other meta-data like user-specific accuracy, new signs

trained etc. to the server. This information can be used to make future predictive

methods more efficient which is not part of this work. The overall methodology of

gesture recognition consists of the following steps as shown in Figure 3.4.

Figure 3.6: Pre-processing: Data is collected from the Myo devices, processed and

then stored in Database.
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3.6.2 Pre-processing

Data is collected from two Myo devices while the gesture is being performed

(Figure 3.6). As soon as the end is detected or signaled, the pre-processing begins.

The data collected from two hands is aggregated into one data-table then stored into

a file as an array of time-series data. At 50 Hz. of sampling rate a 5 s. gesture data

will consist of: 6 accelerometer Vectors of length 250 each, 6 gyroscope Vectors of

Length 250 each, 6 orientation Vectors of Length 250 each, 16 EMG Vectors, Length

250 each. We combine all this for simplicity into a 34× 250 matrix. Each time-series

is transformed to make sure the initial value is 0, by subtracting this value from all

values in the time-series. This will help prevent errors when the user performs the

sign in different starting positions. Normalization is then done by representing all

values as floats between 0 and 1 by a min-max method.

Orientation values are received in the form of three time-series in terms of unit

quaternions. The pitch, yaw and roll values are obtained from the quaternion values

w, x, y and z by using the following equations:

roll = tan−1(2(wx+yz)
−x2y2 ) (3.2)

pitch = sin−1(max(−1,min(1, 2(wy − zx))))

yaw = tan−1(2(wz+xy)
−y2z2 ).

3.6.3 EMG Energy

After correctly identifying the location of each of the individual pods of the two

Myo devices, data is stored and shuffled in such a way that the final stored data is

aligned from EMG pod-1 to EMG pod-8. This gives flexibility to the end-user as

she no longer has to remember ’how’ to put on the devices, and can thus randomly

put either Myo device on either hand and expect good results. This is a great leap
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Figure 3.7: Variation in EMG signals between two users.

towards the pervasiveness and ease of use of this technology.

While we found that the DTW based testing worked very well for accelerometer

and orientation comparisons, the EMG comparison numbers were not satisfactory.

This is because EMG activations seem to be much more stochastic and a ’shape’

based comparison did not yield good results. The shapes formed by performing the

same gesture for two different people are drastically different as seen in Figure 3.7,

but they also differ in shape significantly enough between two repetitions by the same

person to not give a small DTW distance. However, it was found by experimentation

that gestures tend to activate the same EMG pods when repeated. Thus an energy-

based comparison was tried:

EMG energy ’E’ on each pod is calculated as the sum of squares of x[n] , the value
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of the time-series at point ’n’ .

E = sum(x[n]2). (3.3)

3.6.4 Dynamic Time Warping

We used four different approaches for comparing accelerometer and orientation

data: a. Euclidian distance b. Regression c. Principal Component Analysis (PCA)

and d. DTW. Euclidian distance simply compares the two time-series using mean-

squared error. Regression analysis fits a model to the time-series and uses this model

to compare the best fit for the test gesture. Given a set of features from the time-series

for a gesture, PCA derives the optimal set of features for comparison. According to

Müller (2007), DTW is a well-known technique to find an optimal alignment between

two given (time-dependent) sequences under certain restrictions. It was found that

DTW based methods gave the best results. DTW based approached proved ideal

in our use-case since it could gracefully handle the situations when the sign was

performed slower or faster than the stored training data, or performed with a small

lag. Traditionally, DTW has been used extensively for speech recognition, and it

is finding increasing use in the fields of gesture recognition as well Rabiner (1989);

Lee et al. (2019), especially when combined with Hidden Markov Models Wilson and

Bobick (1999). SCEPTRE takes a simpler approach by randomly re-sampling the

training and test datasets based on the least number of points in either one, then doing

a DTW based distance analysis on them. First, a DTW analysis of Accelerometer

Data is run and a ranked list of ’probable’ signs is passed on for DTW based analysis

of orientation Data which in turn creates an even shorter ranked list to be processed

by the final EMG algorithm.

On another approach, the normalized distances from each of the outputs are taken

and the sum of squares of the final output is taken as an indication of ’closeness’ of
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Figure 3.8: Database Size vs. Recognition Time.

a test sign to a training sign. This is the approach that was chosen due to its

computational simplicity and speed.

3.6.5 Combination

The overall ’nearness’ of two signs is computed to be the total distance between

those signs which is obtained by adding up the scaled distances for accelerometer,

orientation and EMG as discussed above. An extra step of scaling the distance values

between (0,1) is performed to give equal weight to each of the features. Also, since we

have 8 EMG pods and only 3 each of accelerometer and orientation sensors, we use the

following formula for the combination. The formula is for combining the accelerometer
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Algorithm 2 Overall Gesture recognition method.
1: procedure GestureRecognition

2: t← elapsed time from start of the experiment

3: test gesture← get gesture data from the user

4: SG ← query list of recognized gestures from database

5: normalized accl← accel values− first accl value

6: normalized orient ← orientation− first orientation

7: normalized emg ← emg values− first emg value

8: for each trained gesture TG ∈ SG do

9: dtw accl← dtw(training accl, normalized accl)

10: dtw orient← dtw(training orient, normalized orient)

11: TE
G ← calculated energy of each pod for the training gesture

12: emg energy diff ← TE
G - test emg energy

13: scal lim← {0, 1}

14: scaled emg diff ← scale(emg energy diff,scal lim)

15: scaled accl dist← scale(dtw accl, scal lim)

16: scaled orient dist← scale(dtw orient, scal lim)

17: combined nearness← compute nearness from Eq. 3.4

18: end for

19: Sort TG with respect to combined nearness.

20: recognized gesture← top TG in the sorted list

21: end procedure

sum of distances and EMG sum of distances. Similar techniques were applied for the

other combinations. An algorithmic summary can be found in Equation 3.4.

dist = (8cs(sc accl comb) + 3cs(sc emg comb))/24. (3.4)

where cs() is a function that returns the sum of columns, sc accl comb is a data

frame that holds the combined accelerometer DTW distances for both hands for all

trained signs, and sc emg comb is a data frame that holds the combined EMG energy

distances for both hands for all trained signs. The overall algorithm that is employed

for recognition is summarized in Algorithm 2.
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Algorithm 3 Optimization to meet time constraints.
1: databasesize← sizeofgesturedatabaseforuser

2: time to compute← estimatedtimefrompreviousiterations

3: if time to compute < time contraint then

4: Compute Similarity Score with one template per gesture

5: top gestures← list(top gestures, time to compute, time constrant)

6: Utilize Algorithm 2

7: END

8: end if

3.6.6 Ranking and Optimization

Timing constraints due to the real-time nature of the application requires us to

optimize the recognition algorithm to be efficient, especially as the gesture space

increases. As the number of gestures in the database increases to beyond 60, as we

can see in Figure 3.8, the recognition time for identifying one gesture goes beyond

the .5 s mark, which we have chosen to represent a real-time timing constraint. Thus,

to deal with this situation, we modify our comparison algorithm to first compare

to one stored instance of each gesture, then choose the top ’n’ number of gestures

which when compared to ’k’ of each, still allowing the time-constraint to be fulfilled.

We then, proceed with the normal gesture comparison routine on only these gesture

instances and thus keep the recognition time within our constraints. All the variables

for this method viz. the ’n’, ’k’ are calculated dynamically by what is allowed by the

timing constraint ’tc’, thus making this approach fluid and adaptable to more vigorous

time constraints if required. The overall optimization algorithm is summarized in

Algorithm 3.

3.6.7 Video based Approaches

We utilize a variant of Residual Neural Network Tai et al. (2017) from Tensorflow.js

Smilkov et al. (2019) called PoseNet Papandreou et al. (2017). PoseNet can be used for
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single as well as multiple pose detection, which means that it can detect many people

in the same frame. However, for our purposes, the single pose detection module was

sufficient. The ResNet50 powered model was configured with optimum default values

considering the performance speed for Output stride(32), image input resolution(257)

and enough quant bytes(2) to perform weight quantization. For each frame in a video

or continuous stream, PoseNet returns 17 different keypoints throughout the body.

Among these, the keypoints for eyes, nose, shoulder, elbows, and wrists were utilized.

The eyes and the nose keypoints along with those for the wrists are used initially before

the learner begins to record their execution. Along with the ‘x’ and ‘y’ coordinates,

PoseNet also returns a confidence score between 0 and 1 for each keypoint for every

frame. A threshold of 0.6 was utilized to calibrate the webcam positioning and to

verify the learner was in range and clearly visible. After verification of about 60

frames, a 3 s timer to begin recording is triggered. As a learner is recording their

execution the keypoints for every frame are recorded to be used for a comparison to

the tutor for that sign. The keypoints estimated for 5 different body parts throughout

the videos for signs ‘Spanish’ and ‘Nice to meet you’ are plotted in Figures 2.3 and

2.2 respectively.

3.7 Results and Evaluation

The choice of performance metrics and the test set heavily influences the per-

formance results. In this section, I provide details on how the experiements were

designed and executed as well as the results obtained.

3.7.1 Design of experiments

Experiments were designed to test the application with scalability in mind. The

system begins on an ”empty slate” and the gestures are trained interactively. Since
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a template-based comparison is being utilized, we store the entire data set plus some

features. After all the data is collected, the system is ready to be trained for another

gesture. A sample application screen can be found in Figure 3.3. It is advised to

provide 3-4 training instances of the same gesture to improve accuracy of recognition

but that is not required. We test the system with 1, 2, 3, and 4 instances of each

gesture to determine the correlation between the number of instances saved and the

recognition accuracy rate. That is all that is needed at the training phase. During

the testing phase, we evaluate our system based on the time it takes for recognition

and on the combination of features that produce the best results. Then we evaluate

how recognition time increases with the increase in the number of gestures.

The way gestures are performed by the same person are generally similar but

they tend to vary slightly over time. Although, considering signals generated by a

portable device that the user can put on and off by herself, provides the system a lot

of portability and pervasiveness, it comes with a drawback that the signals we receive

might not always be the same. To account for this experiments were performed that

allowed users to put on the devices themselves, they were allowed to face any direction,

and perform the gesture as long as they stayed in the Bluetooth range of the hub.

Also, samples were collected over multiple sessions to account for variability in signing

over time. The test subjects were 10 University students between the ages of 20 and

32 who performed the gestures in multiple sessions while also varying direction they

were facing and if they were standing up/sitting down. The subjects viewed a video

recording of the gestures being performed by ASL instructors before performing them

with the system.
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3.7.2 Prototyping and Choice of Gestures

20 ASL signs were chosen to prototype the system. They were carefully chosen

such that a. A good mix of the various ASL components as discussed in Section 3.4.1

and b. To include signs that are very close in some components but different in others.

The choice of signs and the break-down of components for 10 of the 20 chosen signs is

summarized in Table 3.2. The other 10 signs that were chosen are hurt, horse, pizza,

large, happy, home, mom, goodnight, wash. Detailed analysis of system performance

is given in Section 3.7.

3.7.3 Performance Metrics

The system is evaluated on each of the requirements discussed in Section 3.5.

Pervasiveness of the system is justified since it is wireless and can work in Bluetooth

range of the hub device which can either do the processing itself or offload it to a cloud

server. Invasiveness is a harder metric to evaluate, as this seems to be more subjective.

However, with wearable devices like smartwatches, wristbands such as FitBit, Myo

becoming increasingly compact, wireless and even stylish Gupta et al. (2013), the

proposed system is much less invasive then any of the alternatives. Accuracy is

undoubtedly one of the fundamental performance metrics for any recognition system.

This basic function of the system is to facilitate real-life conversations, thus the system

has to be able to function in real-time. Another aspect of the system is that it is

extendable, thus the ease in scalability to a larger number of signs is very important.

With the increase in the gesture space, the recognition time will also increase, the

system should be able to scale up with a reasonable recognition time. Although there

is a slight dip in recognition rate, the potential for scalability showcases the system’s

flexibility. Thus the experiments focus on these three metrics to evaluate the system:
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Table 3.2: Component Breakdown of 10 of the Chosen Signs.

# Sign Location(Tab) Movement Orientation Hands

1 Blue Around the Face Wrist-Twist Away from signer 1

2 Cat Around the face Outward and closing Towards center 2

3 Cost Trunk Wrist-Flex One towards signer one

towards center

2

4 Dollar Trunk Two Wrist-Flexes One towards signer one

towards center

2

5 Gold Side of the head Away from center,

change handshape

twist

Towards the signer 1

6 Orange Mouth Open and close twice Towards user 1

7 Bird Mouth Pinch with Two fingers Away from signer 1

8 Shirt Shoulder Twice Wrist Flex Facing down 2

9 Large Trunk Both Hands Away from

Center

Facing away from signer 2

10 Please Trunk/Chest Form a circle Both facing towards

signer

1

1. Recognition time

2. Extensibility

3. Recognition rate (Accuracy)

It was determined through experiments that three is a good choice for the number

of training instances for each gesture. This formed a good compromise between

usability and results as shown in Figure 3.10. Thus, each gesture was performed

three times at varying times in the day. Then all data was aggregated, and annotated

according to the gesture performed. The testing comprised of taking one dataset and

comparing it with all other data sets and then estimating the correct gesture. With
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Figure 3.9: Gesture Recognition vs. Features Used.

the ’guided mode’ turned on, a recognition rate of 100% was achieved as expected.

Then 20 randomly selected ASL Signs were used. The best accuracy was obtained

by a tiered-combination method of all three features. The relative accuracy of other

methods can be seen in Figure 3.11. This helps confirm that the combination of all

three features produces the highest results.

Figure 3.8 shows how the recognition time increases with the increase in the

number of gestures that are stored in the system. With 65 gestures in the database,

a recognition time of 0.552 s was achieved. (processed on a 3.06 GHz Intel Core i3

8 GB RAM Mac). This fast response time means that the system qualifies for use

for real-time communications. This time can be further improved upon by utilizing

a more powerful server and optimizing the data queries, which will be part of future

work.
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Figure 3.10: Training Data vs. Accuracy.

Figure 3.11: Features vs. Accuracy.
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Figure 3.9 shows the performance of the system based on recognition results for

a combination of the features. The gestures tested were ’day’, ’enjoy’, ’eat’, ’happy’,

’home’, ’hot’, ’large’, ’mom’, ’pizza’, ’shirt’, ’still’, ’wash’ and ’wave’. The different

sub-figures show that although comparing solely based on accelerometer performs

good for some gestures like ’happy’, it is ineffective in distinguishing between others

like ’day’. This can be explained because the nature of performing this gesture is very

similar to other gestures in overall hand movements, but are different when it comes

to finger configurations. Thus the performance gets better as shown in Figure 3.9c

when EMG sensors are brought into the equation. Like we discussed earlier, the least

number of recognition errors overall occur when all three of the sensor data are fused

as seen in Figure 3.9d. This gives an insight into where the system is error-prone and

thus can be optimized. Server level Optimization based on such input will be part

of future work. We envision a server that continuously monitors success-failure data

and becomes better by implementing machine learning algorithms to give weights to

the different features.

These results can be understood better in context with the breakdown information

given for each gesture in Table 3.2. For instance, Figure 3.2 shows screenshots of a

person performing the gesture ’mom’ and another one performing ’eat’. These two

gestures are very similar in ’Location’ and ’Movement’ but are distinctive when it

comes to ’HandShape’ and ’Orientation of Hand’. Thus, while the system isn’t able

to distinguish between these two gestures based on Accelerometer information only

as seen in Figure 3.9a, the system does well when EMG information is included as

seen in Figure 3.9c.

The results in Figure 3.11 show an accuracy of 97.72% for 20 ASL signs when all

accelerometer, orientation, and EMG are used. The database consisted of signs from

10 different people, and each person performed each sign 3 times. This table also
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lists the accuracy of other variations in the combination of these three input signals.

The accuracy varied when individual databases were separated, however, it stayed in

the (97-100)% bracket when all signals were used on a dataset consisting of template

gestures from the test user.

3.8 Discussion

Continuous Processing: The gestures that were recognized in this test were iso-

lated in nature. A start and stop button, or a timer was utilized to gather data.

This was done to test the algorithms in isolation first. However, when the system is

deployed to the public, a continuous monitoring algorithm has to be utilized. This

can be done by using windowing methods and optimizing based on the best results.

However, we expect that the system will require a lot more training.

Dictionary Size: Another thing that can be improved upon is the dictionary size

and the support for Signed Alphabet. Signed alphabet gives an ASL user the ability to

use the English Language Alphabet to visually spell out a word. This is an important

aspect of sign language communication since not all English words or ideas have sign

language counterparts. The dictionary size used is currently 20 ASL words and 10

users invented gestures. The video-based sign language dictionary website signasl.org

currently has over 30,000 videos for sign languages in use, so there is a lot of room to

grow into.

Framework Limitations: Currently due to limitations of the Myo framework for

Android, final tests involving EMG data signals had to be done using laptop comput-

ers. Two Mac computers were used to gather the data simultaneously via Bluetooth

channels and then combine them and store them to a cloud-based data storage sys-

tem. A separate script was triggered to process the stored data at test time. With the

anticipated release of the new framework for Myo Devices, this computation can be
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done at the mobile phone level and data can be sent to the server only at designated

intervals.

User Independence: EMG data fluctuates a lot between people. This is apparent

from Figure 3.7. More research can be done on data gathering and feature selection of

the EMG data pods to come up with a ’unifying’ framework that works for everyone.

This will be a definitive direction in attaining user-independence while using EMG

signals.

Search Algorithm: The search algorithm that is implemented can be improved

upon to decrease the recognition time. Hierarchal searching can be done, in which

training gestures are clustered according to the energies in each time-series data, and

only those gestures are compared which have comparable energies.

SCEPTRE in collaboration with other HCI techniques such as brain-driven control

Oskooyee et al. (2015); Pore et al. (2015); Sohankar et al. (2015) can revolutionize the

way people interact with computers. In addition to the uses of HCI or Sign Language

Communication, this technology can also be extended to uses in the domains of

activity recognition, food intake estimation or even physiotherapy.

3.9 Conclusion

DTW and energy-based comparison methods are fast and highly effective. Template-

based comparison techniques have a great advantage of lossless information storing.

Comparing accelerometer and orientation data between gestures is best done by us-

ing Dynamic Time Warping methods in which muscle movement (EMG) data is best

compared by comparing total energies in each pod. The structure present in Sign

Languages like ASL can be divided into components that explain the success of cer-

tain signals in recognizing them. The overall accuracy of the system is increased by

a smart combination of these signals without compromising on speed, recognition
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rate, or usability. The sensors that are used are non-invasive and versatile thus allow-

ing people to effectively utilize them in day-to-day situations without drawing much

attention. The future direction of this research is in incorporating continuous sign

processing, user independence in the system and increasing the dictionary size.
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Chapter 4

RECOGNITION OF CORRECT HANDSHAPE

4.1 Introduction

Handshape is also one of the most important attributes of American Sign Lan-

guage. ASL signs which are otherwise similar may differ semantically only by the

shape or orientation of the hands. Similar to location or movement recognition, hand-

shape recognition can be performed using cameras or body-sensors. In this chapter,

I will present the work I have done towards performing handshape recognition using

both of these approaches.

For video-based techniques, the first step for handshape based recognition is to

obtain a tight crop of each of the hands. This helps to ensure that the comparison

being done is focused on the shape of the hand and not on external factors such as

background objects. Many techniques exist in the literature that attempt to localize

known objects in an image or video. In this case, the known object are the hands.

Classification techniques that output the presence or absence of a particular category

of images can be utilized to detect if an image or a frame in a video has hands.

However, to obtain a crop of the handshape for comparison each of the hands must also

be localized within the frame. Also, the localization for the right and left hands should

be separable since they have distinct semantic significance. However, the apparent

similarity between the two hands of a user as it appears to a camera makes the

usage of object detection and tracking algorithms infeasible. Also, the crops obtained

for the hands must be tight enough for image comparison algorithms to have good

performance. This means that in addition to using landmark detection algorithms
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that track salient points in the body, a bounding box that includes the signers’ hands

must be obtained. Further, this tracking and localization algorithm must perform

well in real-world conditions that might have variance in lighting, distance, resolution

conditions. Finally, after a crop of the hand has been isolated, comparing all of the

crops from a video to those from another video for similarity-based comparison is

also challenging. Firstly, there is the problem of alignment, since both videos may

have varying frame rates, sign execution speeds, delays in start-stop, differences in

frame-sizes or other such challenges. Then, there are issues related to differences in

size, skin-tone, resolution that make the one-to-one comparison part challenging, even

after proper alignment has been achieved. If a model-based classification technique

for video recognition is used instead of a similarity-based approach, then the model

has to be re-trained to support new vocabulary. Also, for a model-based recognition

algorithm to be effective, the alignment and classification have to be learned jointly

as the shape of the hand can change during the execution of a sign. Thus, for video-

based handshape recognition part, first, a landmark detection algorithm is utilized

to detect key body points including the wrists of the signer Pugeault and Bowden

(2011). Then, the position for the crops for the handshapes can be estimated roughly

by using the location of the wrist as reference Paudyal et al. (2019c,b). However,

when handshape crops were done using the wrist position for different videos two

issues were encountered: 1) Depending upon the orientation of the hands, the crops

did not always contain the entire hand unless the size of the crop was made very

large relative to the signer‘s body and 2) The distance of the signer from the camera

impacted the quality of the crop as signers that were closer to the camera needed

bigger crops. The first issue was accounted for by translating the crop position using

a straight-line projection between the location of the elbow keypoint and that of

the wrist seen in Figure 4.2. The second issue was mitigated by using the distance
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between the shoulders’ of the signer to compute a relative size of the crop rather than

an absolute one. After a reasonably accurate crop of the handshape was derived,

the next step is to compare this to that of a tutor. For this, a cosine distance-based

comparison was used on the penultimate activation output of a convolutional neural

network. An inception-v3 model pre-trained on Imagenet was retrained using an open

dataset for ASL fingerspelling recognition Pugeault and Bowden (2011). In addition

to account for differences in orientations, several techniques for data augmentation

such as random cropping, rotations, and hue-translations were applied Wu et al.

(2015). This process is called transfer learning and is instrumental when training

examples are scarse Kornblith et al. (2019). The intuition here is that the CNN

utilized is trained to recognize shapes of hands and activation values for the final

layers are representative of how close they are to certain shapes of hands present

in the finger-spelling dataset. This process is summarized in Figure 4.3. After each

cropped image was run through the pre-trained CNN a vector of length 26 is obtained

corresponding to the classes in the fingerspelling dataset. Then, each of these vectors

obtained for a learner was concatenated and was compared to the concatenated vector

obtained for the tutor using cosine similarity. The correctness of the handshape is

determined by thresholding on the final score. For the user-studies, a score of 0.75

was chosen by experimentation. This threshold like the thresholds for movement

and location should be chosen experimentally depending on the domain and the

verboseness of feedback desired.

The advent of wearable electronics has opened up a new era of pervasive human-

centered computing which when applied to disability research results in technology

of significant impact. Sign language recognition (SLR) systems is such an example,

where wearable technology can be used to drastically improve communication between

the sign language cognizant deaf and hard of hearing and the agnostic mass. These
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SLRs collect data from wearables to recognize gestures, which can be then converted

into text or speech. Wearable sensors such as Myo Paudyal et al. (2017); Lee et al.

(2018) contain electromyogram (EMG) sensors that allow measurements of muscle

tension as well as Intertial Measurement Units (IMU). These sensors can be utilized

to recognize the shape of a learner’s hands. The advantage of using wearable sensors

for handshape and sign language recognition is the freedom of movement for the

signer since they are no longer restricted to having to be in front of a camera or

other specialized setup. The problem of finger-spelling detection is analogous to the

detection of handshape since letters in the singed alphabet are differentiated by the

shape of the hands. Thus, effective solutions for handshape recognition are not only

useful for sign recognition but are also useful for finger-spelling recognition.

American Sign Language (ASL) (potentially true for many other SLs) has four

important aspects (Figure 4.1): a) word gestures for commonly used words, b) finger-

spelling, through which unique hand gestures are associated to a letter in the English

(or another language) alphabet Stokoe (2005), c) emotion or expression, through

which abstract concepts such as intensity and finer expressions are depicted, and d)

individual or customized variations. Gesture recognition research so far has mostly

focused on the first two aspects of ASL. Although there are several non-invasive wear-

able systems available for word recognition, accurate finger-spelling recognition is still

a challenge. This is because ASL signs for words use significant arm movements that

can be easily captured using sensors such as accelerometers, or gyroscope available in

state-of-the-art wearables. However in finger-spelling, arm movements are restricted,

rather relative positioning of the fingers are important distinguishing factors amongst

gestures for different words. Such nuances are difficult to capture using wearables

and may require other infrastructure such as video monitoring Bossard et al. (2003).

Electromyogram (EMG) signals, which measure the tension in muscles are available
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in state-of-the-art wristbands, which can be potentially used for recognizing relative

finger positioning. However, EMG sensors have very low signal to noise ratio, and

vary not only from one individual to others but also during different attempts by the

same individual. I proposed DyFAV (Dynamic Feature Selection and Voting) that

exploits the fact that fingerspelling has a finite corpus (26 letters for ASL) and uses

an independent multiple agent voting approach to identify letters with high accuracy.

The custom approach is shown to perform better than standard machine learning

approaches of Support Vector Machines, Naive Bayes and Multiple Layer Perceptron.

4.2 Significance

An ASL user would use the American Fingerspelled Alphabet (AFA), (also called

the American Manual Alphabet). The AFA consists of 22 handshapes (4.1) that when

held in certain positions and/or are produced with certain movements represent the 26

letters of the American alphabet Lifeprint (2016). There has been some work recently

Paudyal et al. (2016); Zhang et al. (2011); Kim et al. (2008) that use armbands or

other sensors on the arm to get information about sign language gestures, however,

there is not any work that aims to incorporate fingerspelling along with it.

The use of fingerspelling in ASL has been studied extensively and researchers agree

that fingerspelling is integrated into ASL in very systematic ways Brennan (2001);

Padden and Perlmutter (1987). The most obvious usage is primarily for representing

proper nouns or for English words without equivalents in sign language called neutral

fingerspelling Battison (1978); Wilcox (1992); Padden (2006). Besides that, Lexical-

ized fingerspelling, abbreviations for longer signs, two-word compounds, initialized

signs and singed-fingerspelled compounds Baker (2010) all utilize fingerspelling. Fin-

gerspelling also helps to bridge the gap created due to the variation of ASL lexicon

across geography and cultures Brentari and Padden (2001). This tight integration
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Figure 4.1: Modules of American Sign Language Recognition

with ASL means that an ASLR system that aims to translate conversations in ASL

to English must incorporate fingerspelling recognition as an integral part as seen in

Figure 4.1.

Incorporation of fingerspelling in ASLR may also result in a more convenient and

user-friendly system. For instance, during the course of a translated communication

session in a critical scenario such as a medical emergency room, an ASL user may

want to communicate a specialized medical condition, history of drug use or operative

procedures to a caregiver, which do not have ASL word equivalents. This is very much

a possibility as Random House Sign Language Dictionary has 4500-word listings in

it, while any ordinary English Language Dictionary has 200,000 words in it Costello

(2008a). In such a case, if the SLR system being used does not support fingerspelling

recognition, the user must stop the system and change modalities to a pen/paper or

other mediums to convey that word/idea which will hamper the overall usability. In

the case of using such a system for HCI, the system will not be truly independent of

other input modalities unless it can support fingerspelling.

The same techniques used for fingerspelling can be modified to be used for hand-
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shape recognition. Signs in ASL are composed of several components: the shape the

hands assume, the orientation of the hands, the movement they perform and their

location relative to other parts of the body. A variation in any one of these compo-

nents can alter the meaning of the word. Thus accurate recognition of handshape is

needed for sign language recognition.

4.3 Related Work

There are numerous ways to recognize the movement of a hand being tracked.

Approaches vary according to the devices used, the dimensions being tracked as well

as the precision required. Hands can be localized in space either by having body

sensors attached to them, or by cameras monitoring the scene of action. In this

section, I provide details on some influential work that is related to this work.

Data glove based approaches

Data glove based approaches have been used extensively to recognize sign language

alphabet as well as words Fels and Hinton (1993, 1998); Khan and Ibraheem (2012);

Sole and Tsoeu (2011); Liang and Ouhyoung (1998); El Hayek et al. (2014). Due to the

presence of finger joint information, it becomes relatively easy to classify the various

finger configurations. Contrasting to the image and video-based approaches, the data

glove based approaches don’t suffer from problems of occlusion, lighting changes, and

background variations. However, these approaches are invasive as wearing a data glove

prevents the user from participating in day-to-day activities as well as singles the sign

language user out. The proposed work in this paper attempts to solve this problem

by providing an alternative that uses inconspicuous armbands (Myo) to gather the

information.
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Table 4.1: ASL symbols and their hand configurations

Name Symbol Description

Fist A, S , T The hand clasped with thumb

Flat hand B The open or spread hand, thumb out or in

Curved hand C, O Fingers connected with thumb or not

Retracted hand E The fingers clenched to palm

F-hand F Thumb and forefinger touch, other fingers spread

Index G Allocheric forms: g, d, l

H-hand H First two fingers extended and joined

Pinkie or I-hand I The little finger projects from the closed hand

K-hand K The index, second and thumb make k

L-hand L The thumb and index make right angle

Bent-hand M The hand makes a dihedral angle

R-hand R The first two fingers crossed; r

V-hand V The index and second extended and spread

W-hand W The first three fingers extended and spread

Y-hand Y The thumb and little finger are spread out from fist

Image, video and depth based approaches

Fingerspelling forms distinct shapes thus it is very intuitive to utilize image and

video-based approaches to classify the various hand configurations that relate to the

various letters (and numbers). Image and Video-based approaches have achieved high

accuracy rates Singha and Das (2013); Pugeault and Bowden (2011); Paulino da Silva

et al. (2014); Starner et al. (1998). There have been some approaches to classifying
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continuous gestures using video with high accuracy Tubaiz et al. (2015). Furthermore,

there have been approaches that use the depth information provided by the Kinect

sensor to improve classification accuracy. Image and video-based approaches need

special equipment setup before usage which is a major limitation. Also, they face

the unavoidable problems of occlusion, sensitivity to ambiance light and background

changes. Furthermore, classification between visually similar letters like S, M or N

is difficult with images. To get around this problem, some researchers have evalu-

ated their systems on subsets of the alphabet Pugeault and Bowden (2011). These

limitations prevent image, video, and depth-based systems from being practical for

day-to-day usage.

Sensors on the arm based approaches

Using armband or sensors on the arm is a relatively new and promising approach

to SLR that utilizes various combinations of sensors like accelerometer, gyroscope,

and EMG Paudyal et al. (2016); Savur (2015); Yun et al. (2012). Some other works

have focused on providing algorithms for gesture recognition for control of devices Lu

et al. (2014). The accelerometer and gyroscope sensors provide location and move-

ment information while the EMG sensors help to classify the finger configurations.

Recognizing fingerspelling, however, provides a unique challenge since there is little

or no movement involved in most of the letters in ASL and EMG signals can be

noisy. Savur et al. have proposed a real-time and offline system to translate ASL

fingerspelling to letters. The authors report an accuracy of 82.3% on a real-time

system and a 91.1% on an offline system using all 26 letters repeated 20 times each

for training Savur (2015). The approach we discuss in this paper achieves a higher

real-time average accuracy of 95.36%. Also, only 5 training instances are required

which is much smaller than other works Savur and Sahin (2015); Pugeault and Bow-
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Figure 4.2: Using Elbow(dotted pink) and Wrist(dashed orange) Location to obtain

a Handshape Crop(Solid Yellow)

den (2011). Further, we use commodity wireless sensors in place of the medical-grade

sensors, and perform all testing and training using a smartphone app (to be avail-

able in play store). To increase accuracy we utilize accelerometer, orientation and

gyroscope sensors in addition to the EMG sensors.
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Figure 4.3: Using a CNN as a Feature Extractor to measure Handshape Similarity.

4.4 Problem Statement

4.4.1 Sensor Based

Input: Discrete signals for accelerometer, gyroscope, orientation and EMG from Myo Devices.

Output: Recognized alphabet.

Challenges:

1. Low SNR signal: The signals, especially the EMG has a very low signal to noise ratio. Thus, it makes it

difficult to design an algorithm that performs consistently.

2. Difference between people: The signals, especially the EMG varies considerably between people even when

performing the same alphabet

3. Diversity of significant features: A different combination of significant features appears that helps to identify

different alphabets.

4. Lack of significant movement: Fingerspelling as opposed to other ASL gestures do not involved much arm

movement

Constraints:

1. Real-time constraint: To facilitate recognition in real-time, the recognition algorithm must be light-weight.

2. Limited processing: Recognition is done in the smartphone to remove network dependence and lag. Smart-

phones don’t have as much processing power as servers.

3. Limited Training Data: To make the usability of the system high, training sessions are repeated only 5

times per letter per person. This puts a constraint on the amount of data available for training.
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The core problem we solve in this research is a fixed-class classification problem of

identifying a letter performed using just the signals captured by a wearable armband.

The signals captured are noisy and fluctuate between people. Some of the features

extracted are critical in helping for some classes, but not so much for others. For

instance, features from gyroscope and orientation sensors are critical for letters ‘J’

and ‘Z’ but they are not so useful for other letters.

Also, the recognition has to be done under many constraints. The system requires

a very small number of training instances(5) which contributes to high usability. How-

ever, this also means that we only have limited instances of data to learn from with

510 features each. Thus, using out of the box machine learning techniques becomes

less feasible. For the same reasons, common dimensionality reduction techniques like

Principal Component Analysis (PCA) are not very helpful. Careful selection of fea-

tures has to be done by relying heavily on the differences among the various signs

and how people use them.

The aim of facilitating real-time usage puts a constraint on the complexity of the

recognition algorithm and justifies the design choices for parallelization. Although an

end-to-end system with server-side recognition is provided, the system’s usability will

increase if it is pervasive and ubiquitous. Thus, a lightweight recognition algorithm

that can run on a smartphone is desirable. However, processing powers of regular

smartphones are limited and thus recognition is much slower than on a server (Figure

4.10). Consequently, a smart and flexible architecture has to be implemented that can

still perform in real-time by making appropriate trade-offs between network lag and

processing power. This constraint also means that features that are computationally

complex to extract, like frequency domain features, could be used.
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4.4.2 Video Based

Input: Video from a web cam or smartphone camera

Output: Deep feature extraction output for each hand for each frame.

Challenges:

1. Localization: Each of the hands have be to correctly localized for each frame

in the video despite differences in frame size, camera resolution, etc..

2. Comparison: These images have to be compared to compared efficiently with

another image with emphasis on handshape.

3. Alignment: Due to differences in signing speed, delays in start or stop times,

a correct alignment is needed before the actual comparison.

Constraints:

1. Real-time constraint: To facilitate recognition in real-time, the recognition

algorithm must be light-weight.

2. Lack of datasets: Extensive Datasets that account for all possible handshapes

in a sign language are not avaialble.

3. Phonetic Realization: The practical realization of handshapes can be some-

what different than the phonetic description of handshape.

Depending on the type of camera system utilized there are different technical

challenges associated with the recognition of handshapes. While a computer vision

classification algorithm can be trained for each of the possible handshapes in partic-

ular sign language, this necessitates the presence of a labeled dataset of all possible

handshapes for that sign language. Besides, the phonetic handshapes may not be

fully realized in practical usage. For recognition of fingerspelling, the handshape
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recognition can be confined to the fingerspelling alphabet. In the case of the sign

recognition, a dynamic model is needed to account for the changing handshape dur-

ing the execution of a sign.

4.5 Usage and System Architecture

4.5.1 Sensor Based

Training

Figure 4.4: System Architecture: Training.

Figure 4.5: System Architecture: Testing.

During training time, the user performs each of the 26 alphabets a total of 5 times
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while wearing a Myo armband as shown in Figure 4.6. The average total training time

for the entire corpus across 9 users was about 10 minutes. While the entire training

session could easily be completed in a single session without much fatigue, for best

results training should be done in multiple sessions to capture some variations. The

training screen (Figure 4.8) has an indicator of connection to the sensor, a progress

bar, and a dropdown to select the letter and a guidance animation to assist in training.

All data collected during training is stored in the smartphone and sent to the

server via a socket connection. The server performs preprocessing, segmentation,

feature extraction, feature engineering and assigns weights to features based on how

useful they were in classifying the letters in the training set. Each letter receives a

different set of features and each feature, in turn, receives a different weight for each

letter. Details on the algorithm are explained in Section 4.7.1. A single file with all

relevant information for all of the alphabet agents is sent back to the phone to be

used during recognition as seen in Figure 4.4. This is the trained model for the user.

The training was done with 9 users(5 females and 4 males) between the ages of 20

and 35 who were taught to sign the letters as part of the experiments.

Recognition

During usage, the test module of the app is brought up to begin translation. Data is

collected for 5 s. for each letter and recognition is done on the phone. The trained

model that is obtained from the server is saved locally and used by the 26 alphabet

agents to get votes from the various top features as explained in Section 4.6.1. These

votes are added up to compose the total score and the alphabet with the maximum

score is shown as the correct alphabet. This is summarized in Figure 4.5. A simple

wave out option is provided for the user. The recognized alphabet is then shown on

the screen and spoken out (Figure 4.6). In case of misclassification, the user can offer
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a correction. This feedback data is recorded and sent to the server for improvements.

This correction and feedback feature is optional and can be turned off. For a user

who is learning to sign this module can be used as practice.

An end-to-end architecture for offloading the decision is also provided as suggested

by Pore et al. (2015). The recognition on the server is very fast as can be seen in

Figure 4.10. However, there is the added time due to network latency. The decision to

offload the computation to the server depends on the availability of network, speed of

network, processing power of the smartphone, battery level as well as user preferences.

After recognition, a text-to-speech library is utilized to speak out the letter to

facilitate conversation with hearing users. The recognized letter can also be utilized

by an application that supports input by dictation.

4.5.2 Video Based

For video-based handshape recognition, a similarity-based technique was used with

a pre-trained convolutional neural network as a feature extractor. This technique

was utilized jointly with the other recognition modules in the sign language tutor

application which is discussed in detail in Chapter 5.

4.6 Technical Challenges

I have discussed the two major approaches to recognizing the shape of the hand:

a) Body Sensor-based approaches and b) Camera-based approaches. Attempting to

evaluate each of these techniques in real-world systems presents its own set of chal-

lenges. Thus, in this section, I outline the technical challenges for the two approaches

separately.
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Figure 4.6: Left: Recognition for ‘P’; Right: Testing for ‘Y’.

4.6.1 Sensor based

High accuracy in identifying fingerspelled words has been demonstrated in various

systems as outlined in section 4.3, however, most of these systems utilize video, series

of still photos or depth cameras Kuznetsova et al. (2013). Savur et al. use surface

EMG signals to classify letters but the Bio Radio 150 system they utilize has many

wires and is not usable in daily use Savur and Sahin (2015). In this work, we propose

a novel algorithm that can recognize fingerspelled words using just a smartphone

and commercially available wearable armband in real-time and with high accuracy.

We envision that contributions from this work will be directly applicable in existing

armband based SLR systems that wish to integrate fingerspelling.

An ASLR system should be real-time, non-invasive and pervasive. Fingerspelling

has been mostly tackled using image, video, depth camera, data gloves. Some work
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(summarized in Table 4.2) do use sensors on the arm and armbands as discussed in

Section 4.3, however, their accuracy is around 75%. Two inferences can be made from

Table 4.2: 1. Fingerspelling recognition has been restricted mostly to image/video or

data-glove based approaches 2. The approaches that do use armbands or sensors on

the arm either do not support all the letters, are not real-time or are too invasive for

daily usage. This work functions to bridge this gap.

Fingerspelling recognition is a very different problem than word recognition and

has the following challenges:

Diversity of significant features: Each sign in the AFA utilizes a unique hand

configuration. While letters like ‘J’ and ‘Z’ show considerable hand movements and

others like ‘Q’ and ‘R’ have some amount of orientation changes, this is not true for

all letters of the alphabet. This means that there usually isn’t enough information

that can be collected from the accelerometer and gyroscope sensors alone that can

help classify between the 26 classes. Hence, a recognition algorithm that focuses only

on one modality such as accelerometer, gyroscope, orientation or EMG will have low

accuracy Abreu et al. (2016). Although the overall structure for signing a letter is

specified (Table 4.1), each person has subtle nuances incorrectly executing the sign.

Hence, an AFA recognition system should not only be able to fuse multiple modalities

but also learn the unique signing patterns of an individual much like handwriting

recognition does.

In this paper, we propose Dynamic Feature selection And Voting (DyFAV) al-

gorithm that extracts significant features from accelerometer, gyroscope, orientation

and EMG signals and assigns a weight for each of these features such that it is fine-

tuned not to the specific patterns that help distinguish between letters, but also to

specific nuances in how an individual signs them.

Lack of significant arm movement:
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There is a considerable lack of arm movement while performing most of the AFA

signs. Thus, classification has to depend on hand configurations, which can be cap-

tured using EMG data Abreu et al. (2016) Some letters of the ASL alphabet are

very closely related to others and differ only very slightly in finger placement. For

instance, the letters ‘M’ and ‘N’ only differ from each other by whether the thumb is

in between the first and second or the second and third fingers (Figure 4.7).

Further, EMG data can vary a lot between people Kortelainen et al. (2012) and

feature-selection on this data is a difficult problem since different hand configurations

activate different portions of muscles in varying ways. Hence, an AFA recognition sys-

tem should be able to pick up fine differences at the different portions of the arm to

distinguish between these closely related signs. To account for this, the voting mech-

anism of DyFAV ranks the features such that the ones that were most instrumental

in distinguishing a particular sign during training get the highest weights.

A notable difference between recognizing words versus letters is that fingerspelling

has a finite corpus i.e. for ASL we have only 26 possible classes. DyFAV takes

advantage of this to select a dynamic list of salient features for each letter and lets

each of those salient features vote. These votes are adjusted by a dynamic weight for

each feature that is learned during training. Details on the DyFAV algorithm can be

found in Section 4.7.1 and the recognition accuracy and time analysis can be found

in Section 4.8.3.

A study that was performed using traditional machine learning approaches of

Adaboost, Multi-Layer Perceptron, Naive Bayes, Random Forest, Support Vector

Machine (SVM) with polynomial kernels and Radial Basis Function Kernels gave

respective average accuracies of 7.41 %, 85.95%, 80.56%, 91.83 %, 88.47 %, and

18.70. DyFAV on the other hand gave us an average accuracy of 95.36 %.

The contributions of this study can be summarized as the following: (1) DyFAV
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Figure 4.7: Left: ASL sign for ‘M’. Right: ASL sign for ‘N’.

algorithm which uses dynamic feature selection and voting to solve a fixed class

classification problem (2) Highly efficient recognition algorithm capable of real-time

recognition of fingerspelling using a smartphone (3) A mobile app user-interface that

allows training, testing, user-driven correction and collection of user feedback (4)

Evaluation of the accuracy and execution time on 9 users using a computer and

different types of smartphones.

4.7 Approach and Methodology

In the Section 4.6 I outlined the technical challenges separately for body-sensor

and camera based approaches separately. In this section, I present my approach to

solving these challenges using a wrist-worn body sensor and then using web-cams.

4.7.1 Sensor based Approach

There are various types of body-sensors that can be used to identify handshape.

The choice of a particular sensor usually results in a trade-off between precison and

usability. In this work, I provide solutions to technical challenges of trying to recognize

a handshape using the Myo sensor which is an armband sensor worn slightly above
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Figure 4.8: Left: Training for ‘A’; Right: Training for ‘O’.

the wrist.

Data Collection

Myo device provides four types of raw data: 1. EMG 2. Accelerometer 3. Gyroscope

and 4. Orientation.

The raw data for all signals is is obtained by using the ‘Myolib’ Library by darken

Darken (2015). Orientation values are received in the form of unit quaternions. The

pitch, yaw and roll values are obtained from the quaternion values w, x, y and z by
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using the following equations:

roll = tan−1(2(wx+yz)
−x2y2 ) (4.1)

pitch = sin−1(max(−1,min(1, 2(wy − zx))))

yaw = tan−1(2(wz+xy)
−y2z2 ).

Zeroing and Normalization

To account for different starting positions, orientations and rest-level activations of

EMG sensors, all sensor readings are zeroed at initialization point. This is done by

differencing the average of the first three sensor readings from the rest of the signal.

Three readings are used in place of one to minimize noise. In addition, normalization

is performed across the entire alphabet corpus and abnormal sensor readings are

smoothed. Normalization does not play a role in increasing the accuracy for an

individual but does have an impact if it is used with data from other people.

Feature Selection

For each one of the channels, we select five features: 1. Max 2. Min 3. Mean 4.

Standard Deviation and 5. Total Energy. Features were chosen to incorporate the

variation in data while keeping computation to obtain the features minimal. The

EMG has 8 channels and each of the other signals have 3 channels. This gives us a

total of 85 features. We then compute the same features, but after segmenting the

data into 5 segments. We do this to preserve some time-domain information after

feature selection as suggested by Venkateswara et al. (2013). Thus, we end up with

a total of 510 features for each instance.
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Algorithm 4 Feature Engineering

1: procedure Sort by Features(F D)

2: for (i in 1 to 26) do

3: for (j in 1 to number of features) do

4: sort(F D, feature[j])

5: range[j]← range(letters[i], feature data)

6: thres lower[j]← range[0]

7: thres upper[j]← range[1]

8: weight[j]← abs(ln(dif(range)− 4)/(130− 4))

9: end for

10: n min← min(weight)

11: n max← max(weight)

12: norm weight← (weight− n min)/(n max− n min)

13: write feature file(feature, range, norm weight)

14: end for

15: end procedure

Feature Engineering

Feature data from all instances in the previous step is loaded in a matrix. This gives

us a 130 X 510 matrix F D . This matrix is sorted in ascending order based on

the values of each of the 510 features. Each feature then receives a weight based

on how well it can perform in sorting each letter in the vicinity of other instances

of the same letter. This process is performed iteratively for each feature to get a

different weight wieght[j] for each feature for each letter. After completing the entire

process, all the weights are normalized. These normalized weights are used during

recognition as voting factors (Algorithm 4). After this step, the lower and upper
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Figure 4.9: Feedback Sensitivity vs. Performance.

thresholds corresponding to each feature is expanded so that values that test features

that lie sufficiently close to the actual threshold are still counted towards final voting.

This is done to prevent over-fitting to training data. The output of this step is the

‘Feature Model’ as seen in Table 4.6. It can be seen that the mean standard deviation

across the training instance for EMG pod 2 (EMG2 STD0) was the most instrumental

feature that could contain all five training instances within a range of 10, thus this

particular feature has one of the highest voting weights.

adj thres l = thres lower − (thres range)/range.
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Algorithm 5 Test Agent

1: procedure isAlphabet A(test features)

2: sum← 0

3: Model A← read model A from training

4: this feature←Model A[feature]

5: A lower ←Model A[thres lower adj]

6: A upper ←Model A[thres upper adj]

7: norm weight←Model A[norm weight]

8: for (this feature in trained model A) do

9: if this feature in range(A lower, A upper) then

10: sum← sum + norm weight

11: end if

12: end forreturn sum

13: end procedure

4.7.2 Video based Approach

Most signs in ASL have 1-2 distinct handshapes during the duration of the sign.

The left and right hands may assume related or independent handshapes. Thus, the

recognition of the correct handshape during the execution of a sign has to be done

dynamically throughout the sign. Either a dynamic handshape model must be learned

for every sign, or an effective way for frame-wise comparison to a gold-standard must

be established. In this work, the later is preferred due to its advantages of scalability

in vocabulary. The approach is comprised of first localizing various ‘keypoints’ of

the body by using a landmark detection algorithm, then utilizing these landmarks to

obtain a crop for each hand for every frame.
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4.7.3 Keypoint Estimation

Pose estimation is generally done using estimating the location of various salient

points in the body such as the hands, the shoulders, or the torso. These salient

body parts that are tracked frame-by-frame throughout a video are generally referred

to as keypoints. Robust estimation of keypoint is a necessary step for localizing a

sign relative to a signer’s body and determining the type of movement. L2S also

utilizes the keypoint locations and the confidence level for initial calibration, starting

the countdown for recording and determination of handshape crops. We utilize a

variant of Residual Neural Network Tai et al. (2017) from Tensorflow.js Smilkov

et al. (2019) called PoseNet Papandreou et al. (2017). PoseNet can be used for single

as well as multiple pose detection, which means that it can detect many people in

the same frame. However, for our purposes, the single pose detection module was

sufficient. The ResNet50 powered model was configured with optimum default values

considering the performance speed for Output stride(32), image input resolution(257)

and enough quant bytes(2) to perform weight quantization. For each frame in a video

or continuous stream, PoseNet returns 17 different keypoints throughout the body.

Among these, the keypoints for eyes, nose, shoulder, elbows, and wrists were utilized.

The eyes and the nose keypoints along with those for the wrists are used initially before

the learner begins to record their execution. Along with the ‘x’ and ‘y’ coordinates,

PoseNet also returns a confidence score between 0 and 1 for each keypoint for every

frame. A threshold of 0.6 was utilized to calibrate the webcam positioning and to

verify the learner was in range and clearly visible. After verification of about 60

frames, a 3 s timer to begin recording is triggered. As a learner is recording their

execution the keypoints for every frame are recorded to be used for a comparison to

the tutor for that sign. The keypoints estimated for 5 different body parts throughout
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the videos for signs ‘Spanish’ and ‘Nice to meet you’ are plotted in Figures 2.3 and

2.2 respectively.

Hand Localization and Cropping

The frame-by-frame landmark detection algorithm returns 17 landmarks or keypoints

for each frame of the video. The keypoint location for the wrist for each hand is

utilized to help obtain a crop for the hands. Due to the differences in alignment of

the hand, it is not always possible to use a crop around the wrist location. Thus,

a trajectory is calculated that joins the elbow and wrist and the final crop is made

along this trajectory as seen in Figure 4.2. Other object localization such as YOLO

could also be utilized for that purpose Redmon et al. (2016). YOLO is a joint object

localization and classification approach which could be trained to find the position

of hands and get a bounding box around it jointly. However, the simpler approach

of inferring the handshape crop using the localized landmarks of elbow and wrist is

preferable since this computation has already been performed. The other reason is

that this approach does not require a separate object detection and localization model

to be trained which would require manual labeling.

Although there are techniques like Intersection of Union scores that evaluate the

performance of object localization algorithms, a separate evaluation for the quality

of handshape crops was not performed in this work. This is because algorithms like

IOU require a hand-labeled test set for comparisons. Instead, a sample of the training

videos was run through the handshape cropping algorithm and the resulting crops

were visually inspected.
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Alignment

After crops of handshape have been obtained, the next step is to compare the crops

to corresponding crops in the other videos. In the case of learner vs. tutor for sign

language learning, this would be comparing the student’s handshape crops to those of

the teacher. For each hand, the dynamic time warping algorithm used for movement

comparisons using the wrist bones produces not only an alignment score, but also

an alignment path. This algorithm is described in more detail in Section 3.6.1. This

alignment path is utilized to align the handshape crops that should be compared to

each other.

Transfer Learning

The intuition behind transfer learning is that the lower-level representations that are

learned for one computer vision task can be useful to aid the training in another task.

It is generally well known that computer vision neural network architectures need a

lot of data to train. These approaches are generally not suitable for problems in the

absence of a large amount of data. However, the lower to mid-level features which

such as edges, shapes, etc. that help recognize classes for a problem that has a lot

of training examples can be reused for another classification problem. In the video-

based handshape classification approach, I utilize this by first obtaining an Inception-

v3 CNN that is trained on the million images in the Imagenet database. Then, I

retrained this network on a custom ASL fingerspelling dataset keeping all but the

last inception block and all of the fully connected blocks trainable. This means that

all of the shallower layer weights were frozen from the Imagenet training. The ASL

fingerspelling dataset used for retraining has about 1000 images per class Pugeault

and Bowden (2011).
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Data Augmentation

Many kinds of data augmentation strategies are proposed in the computer vision

community. There has even been some work on automating data augmentation for

maximal efficiency Ho et al. (2019). For this application, data augmentation in terms

of skin-tone variation and random-cropping were applicable, however techniques for

horizontal, or vertical flip and random rotations would hurt performance. After the

application of gray-scaling, skin-tone variation and random-cropping, about 3000 ad-

ditional images were obtained per class. This added to the 1000 images gave us a

total of 4000 images per class for training the inception model with transfer learning.

Deep Feature Extraction

Computational Image comparison is challenging. The purpose of this step is to get a

reasonable approximation of the similarities and differences in the shape of the hand

between the two videos by comparing each of the aligned frames. For each of these

images, a convolutional neural network(CNN) is used as a feature extractor as seen

in Figure 4.3. The CNN utilized here is trained to be able to differentiate between

the various handshapes that are found in the ASL vocabulary and is trained on the

ASL fingerspelling dataset with a classification accuracy of 96% on that dataset. The

output layer of this algorithm is chopped off to obtain a 26-dimensional feature vector

for each of these images.

Similarity Measure

Then these feature vectors are compared to each other using a cosine similarity metric

and final output is thresholded to determine a match. Although the entire videos

could be used, in practice some salient frames are selected from the beginning, middle

and end of the videos to extract the crop to compare with the corresponding aligned
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crop with the second video for a similarity matching. For instance, if we utilized 10

frames for comparison, then we would run a cosine similarity on a 260-dimensional

feature vector.

4.8 Results and Evaluation

Figure 4.10: Number of features vs. Time: Blue line for Computer and Green Trian-

gles for Android phone.

For the video-based approach is evaluated together with the location and move-

ment to differentiate between the various sign language words and phrases considered.

The results are summarized in Table 4.5. To obtain the results, data collected from
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Figure 4.11: Importance of Different Kinds of features for Classifying Various Letters.

one learner was selected at random and served as the ’tutorial’ dataset. Then for each

sign for each user in the test dataset, we make comparisons against the corresponding

sign in the tutorial dataset. The location module had an overall recall of 96.4% and

a precision of 24.3%. The lower precision is because many signs in the test dataset

had similar locations. We performed a test comparing only the signs ’LARGE’ to the

sign ’FATHER’ and both the precision and recall were 100 %. The movement module

had an overall recall of 93.2 % and a precision of 52.4%. The handshape module had

a recall of 89 % and a precision of 74 %. The results for only the handshape part

is summarized in Table 4.4. The choice of the optimal decision threshold is done to

balance the Precision and Recall as seen in Figure 4.9.

For the body sensor based approach, the most important metrics that the system

is tested against are recognition speed, usability and accuracy. Experiments were

designed with these metrics in mind. The following sections outline the details:

91



4.8.1 Design of Experiments

Training data was collected in 3 sessions. In each session, the users performed the

entire alphabet corpus (A-Z) twice. All training was done in a lab setting using a

smartphone app. Users were seated in a chair and were free to rotate or move their

hands. The training was done using the first five samples when the remaining one

was used for testing. Results were computed using cross-validation. The smartphone

app played a GIF image of the alphabet being signed during training to help keep the

signs consistent among the users. Video data was collected and later analyzed to make

sure the users were using the signs correctly. The device specifications are as follows:

Smartphone 1: Nexus 5: 2.26 GHz quad-core Snapdragon 800 processor Smartphone

2: Qualcomm MSM8974AC Snapdragon 801 One Plus One: Quad-core 2.5 GHz Krait

400 Smartphone 3: Samsung Galaxy Note 5: Exynos 7420 Octa: Quad-core 1.5 GHz

Cortex-A53 & Quad-core 2.1 GHz Cortex-A57 Computer Specifications(Server): Intel

i7, 32 GB RAM

4.8.2 Evaluation

To evaluate the effectiveness of the feature ranking algorithms we performed a test

on data collected for all 26 letters for 9 people. Figure 4.17 shows how the accuracy

changes as more features are used. The average accuracy across all people is shown

in blue. The highest maximum of 100% accuracy across all people is reached using

241 features, the highest average accuracy of 95.36 % is reached using 327 features.

It can be seen that the maximum accuracy stalls after a certain number of features

and sometimes even reduces. This is because some of the lesser important features

that aren’t good classifiers slowly contribute to decrease the accuracy. The optimal

number of features to be used based on these experiments is determined to be around
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327 across users as the accuracy at this number stays the highest.

Figure 4.12: Comparison of Feature Selection Best vs. Random vs. Worst.

Figure 4.10 shows how the recognition time varies with the increasing number of

features. The blue line represents the average recognition time across users on the

server, which has an i7 processor. Three different Android smartphones as specified

in Section 4.8.1 were tested with the algorithm for increments of 10 features. The

average total execution time on the server for all 510 features was still under 100 ms.

and that for 327 features (optimal number) is 67 ms. However, on the smartphone

the execution time for 510 features was over 3 s. for Nexus 5 and One Plus while

it was just over 2 s. for a Galaxy Note 5. The Note 5 could reach the optimal

average accuracy using 327 features in just under 1 s. while it required close to 2 s.
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Figure 4.13: Number of Features vs. Accuracy for New Users.

for the Nexus 5 and One Plus phone. Thus, a different optimal number of features

should be computed and used for different smartphones based on their computational

capabilities while ensuring execution time remains acceptable.

Another way to increase the usability of the system when there are strict timing

constraints was to offer close matches in ranked order to the user. She can then do a

wave out gesture in the 1 s. window between gestures to select the next one in line

instead. The next in line alphabet would appear from the right of the smartphone in

gray color before being brought into focus. To test whether such an approach would

increase accuracy we tested the probability of the correct letter being returned in a

set of 1, 2, 3, 4 and 5. The maximum average accuracies that were achieved were
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95.19 %, 98.82%, 99.41 %, 99.84 % and 99.92% respectively. This is summarized

in Figure 4.15. The biggest jump in accuracy between the return set of 1 vs. 2

justifies to have this feature present even in a very capable smartphone to ensure the

highest performance. This feature will be especially important in smartphones with

lower processing speeds. Using just 100 features, the accuracy at a return set of 2 is

over 96 % while it is only 87 % for a return set of 1. Also, it should be noted that

the accuracy for a return set of 4 quickly converges to practically 100 % when the

number of features is 170. Thus, the return set of 5 is not needed. An aggregated

confusion matrix across the 9 users is shown in Figure 4.16. It can been seen from

this confusion matrix that letters like ‘J’ and ‘Z’ have done extremely well due to

the inclusion of hand rotation and movement while letters like ‘S’, ‘T’ or ‘N’ are not

affected. Intuitively, this makes sense because the letters ‘A’, ‘S’ and ‘O’ are very

similar to each other and are thus frequently misclassified.

Figure 4.11 shows how important the different signals were in classifying the let-

ters. The y-axis lists the number of times features related to each of the four signals

of accelerometer, EMG, gyroscope, and Orientation appeared in the top 20 features

for each of the letters shown. It can be seen that orientation signals are high across

the board and accelerometer related features are consistent across all letters but EMG

related signals and Gyroscope related signals have more variation. Gyroscope related

features are effective to help classify the letters ‘J’ and ‘Z’ which is expected due to

the high amount of movement that is required for them. On the other hand, letters

‘M’, ‘N, and ‘E’ or ‘A’ have few top features that are gyroscope related, but many

more that are EMG related. This again makes intuitive sense since these should be

classified more by hand configuration rather than rotation information.

95



Figure 4.14: Accuracies of different ML techniques on the test dataset.

4.8.3 Algorithm Comparison with other Machine Learning Methods

Figure 4.14 shows the results obtained when comparing the classification accura-

cies of various machine learning techniques. It is seen that Adaboost does the worst

with the average classification accuracy of 7.41% while DyFAV performs the best with

the total average accuracy of 95.36%. Among other algorithms compared, Random

Forest outperforms other algorithms with a total average accuracy of 91.83 %. The

different accuracies across the various test users are also summarized in Table 4.6. It

can be seen here that DyFAV performs better than all other algorithms considered

except in the case of User 4 and User 6. In the case of User 4, the accuracy is almost

the same while in the case of User 6 there is a 4 point difference. A detailed discussion

of these results can be found in Section 5.10
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4.8.4 Results on New Data

As part of work for this paper, 6 new users were added and similar experiments

were designed to acquire training and test data for them. Then following the same

algorithms the classification accuracy was computed. Accuracy for the top-5 recall

for this dataset across the new users using DyFAV algorithm is summarized in Figure

4.13 it can be seen that the best accuracy is achieved for this users when 330 of the

top features are used. The various cross marks on the Figure indicate the individual

accuracy of the different test users while the line denotes the average accuracy. The

different number of features that were considered were 510, 420, 330, 240, 150 and

60. These features were selected by the DyFAV algorithm to be best suited for

classification. It can be noted that similar to results on the prior dataset, the accuracy

seems to increase until a certain number of features and then starts to decrease. This

is most likely because when too many features are considered that are not important

for classification, the model overfits and the test accuracy starts

4.8.5 Feature Engineering Comparison

To evaluate the effectiveness of only the feature selection portion of DyFAV we

used the feature engineering part of DyFAV and built n number of linear SVMs to

perform a multi-class SVM classification using k number of ’top-features’ as deter-

mined using DyFAV. A similar experiment was performed using the worst k features

as determined by DyFAV. Another experiment was performed using a random subset

of k features. The results are summarized in Figure 4.12. It can be seen that the

DyFAV feature selection does significantly better than the worst ’k’ features as well

as does better than the random features up to a certain point. It can also be noted

that the overall accuracy increases as more features are included up to a certain point,
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Figure 4.15: Number of Features vs. Accuracy for Different Numbers of Return-sets.

after which it starts to decrease. A sample of the selected features for DyFAV selected

features for ‘Q’ is listed in Table 4.3.

Although EMG data varies a lot between people, the voting mechanism of DyFAV

ranked the features such that the features that were most instrumental in distinguish-

ing a particular sign during training get the highest weights which helped increase

recognition. DyFAV algorithm extracts significant features from the accelerometer,

gyroscope, orientation and EMG signals and assigns a weight for each of these features

such that it is fine-tuned not only on the specific ways an individual signs the letters,

but also takes into account the specific patterns that help identify one alphabet from

the other. Although this work contributes a fast and efficient algorithm to recognize

fingerspelling, the need for individualized training although very little, is still a hin-

drance. The data collection is collected in isolation for letters and is thus not very

close to suggested levels of fluent ASL signing speeds Quinto-Pozos (2010). The uses

of fingerspelling in isolation might not be very significant as it could be replaced by
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a smartphone notebook or pen/paper, however, in the context of an SLR system as

well as a system for ASL based dictation or HCI control, the research becomes highly

relevant. Not all features were equally relevant in doing the recognition for all people,

thus, custom wearables of the future should focus on the creation of wearables that

assist most in SLR if they are to be used for that purpose. DyFAV based gesture

recognition algorithm can be utilized in other applications such as diet monitoring

application Lee et al. (2016) for identifying eating action recognition.

4.8.6 Comparison with other machine learning techniques

Comparison results with other very common machine learning techniques were

summarized in the 4.8.3. The machine learning techniques that were chosen to be

compared with DyFAV were selected to provide an overview of comparison with other

common techniques in the literature as well as to provide insight into the working of

DyFAV and why it is successful in this case. Following is a brief overview of each of

the techniques that were evaluated and how they compare to DyFAV.

Adaboost

Adaboost short for ”Adaptive Boosting” is a machine learning algorithm that has

solved many of the practical difficulties of earlier boosting algorithms. It calls a

series of given weak or base learning algorithms repeatedly in a series of rounds to

give higher weights to misclassified instances to increase the overall accuracy. Freund

et al. (1999)

Out of all the different machine learning techniques used, Adaboost seems to per-

form the worst in our dataset. We attribute this to the fact that the training set does

not contain enough examples for Adaboost to successfully create many weak classi-

fiers and iterate over them with variable weightage to improve the overall accuracy.
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Figure 4.16: Combined Confusion matrix for Alphabet Recognition for 9 Users.

The accuracy that was obtained by Adaboost was just 3.5 % points above that what

would have been obtained by random chance.

Multi Layer Perceptron

Multilayer Perceptron (MLP) is a feed-forward artificial neural network that maps a

set of input data into a set of output results. An MLP consists of an input layer, an

output layer, and at least one hidden layer. For simplicity and to avoid overfitting, we
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Figure 4.17: Features vs. Accuracy: Green is Maximum; Blue is Average and Red is

Minimum.

used an MLP implementation with only 1 hidden layer and 25 neurons. When larger

or wider MLPs were tried, the test accuracy suffered most likely due to overfitting.

The accuracy obtained by MLP was 85.96 % which is a very good result.
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Naive Bayes

Naive Bayes is one of the most widely used machine learning classification algorithms

perhaps due to its simplicity. This classification technique uses a framework that is

provided by a simple theorem of probability known as the Bayes’ rule. Lewis (1998)

When we utilized Naive Bayes to our dataset the accuracy was just over 80 %.

The dataset that we deal with consists of multiple time series data from various

sensors and not all of the data is truly independent of each other. For example,

there is a very high correlation between neighboring data-points in a time series and

sensor information like gyroscope and orientation are inherently inter-related. We

postulate that this might be a reason that the NB algorithm does not give us very

good performance in our dataset.

Random Forest

Random Forests or random decision forests is a type of ensemble learning method

for classification or regression. It operates by constructing multiple decision trees

during training and outputting the mode of the output of the various decision trees.

Random forests put an additional layer of randomness to traditional methods like

bagging because, in addition to the construction of the various trees using different

subsamples of the training data, random forests also vary the construction of the

classification or regression trees. Liaw and Wiener (2002)

The results we got using Random Forest was the best among all of the other

machine learning techniques considered. The ensemble nature of Random Forest

ensures that if some features are not optimal as might be the case, some of the trees

will ignore those features and the mode of the results still ends up being good. In

DyFAV however, we can identify the features that are not instrumental in increasing
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accuracy and give them lower weights at training time.

SVM Poly and SVM RBF

Support Vector machines are based on the Structural Risk Minimization principle

from computational learning theory. Joachims (1998) The goal of Support Vector

Machines is to find a hypothesis h for which we can guarantee the lowest true error.

The first type of polynomial kernels tried was the polynomial kernel SVM which rep-

resents the similarity of vectors (training data) in a feature space that is a polynomial

function of the original feature values. Thus, this method not only looks at the values

of the features but also the some polynomial combination of these. The second type of

kernel considered for the SVM implementation was the RBF kernel which stands for

the Radial Basis Function. The RBF kernel has a nice interpretation as a similarity

measure and the feature space has an infinite number of dimensions Alpaydin (2014)

The results we obtained for the two different types of kernels for SVM point that

the RBF kernel SVM was significantly outperformed by the Poly Kernel. In theory,

the accuracy of the SVM RBF kernel could be improved by searching for the correct

’c’ and ’gamma’ parameters. However, in our experiments, we could not find values

that converged for higher accuracy. Nonetheless, both of these methods didn’t do as

well as Random Forest or DyFAV.

4.8.7 Feature Engineering Comparison

Feature engineering(selection) is an important aspect of any Machine Learning

Algorithm. Many algorithms provide feature selection as part of the algorithm and

others can be used for feature selection. Learning can be subdivided into two subtasks:

deciding which features to use in the presence of irrelevant and extraneous features

and deciding how to combine the relevant features to create a model Blum and Langley
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(1997). In the experiments that we performed to evaluate the efficacy of the feature

engineering part of DyFAV, we decoupled the classification portion of DyFAV from the

Feature Selection part. We built 26 different models for the dataset of the 26 different

classes. Then from the model, we looked that the top k features and built multiple

ploy SVM models for them. Then we plotted them against the number of features

selected. We got results for using 60, 150, 240, 330 and 420 features. The average

results for the smaller feature subsets for DyFAV-selected features vs. worst features

according to DyFAV and a random subset selection of features indicate that DyFAV

feature selection does significantly better than the two other scenarios. This shows

that the DyFAV algorithm can be used as a feature selector when it is desirable to use

only a subset of the available features. This may happen due to concerns regarding

execution time or to reduce the burden of data collection and preprocessing.

Fingerspelling is an intrinsic part of sign language and thus systems that aim to

be usable in day to day communication must support it. For systems with a lim-

ited dictionary of supported words and phrases, fingerspelling recognition can bridge

the expressibility gap. Fingerspelling recognition using wearables is a difficult and a

unique problem that can benefit from specialized algorithms. We used the proposed

algorithm to classify all 26 letters with high accuracy and provide analysis on fea-

tures used and recognition. The algorithm suggested worked well for this application

and we foresee that this can be applied to any other classification problem as well.

In the general case, static fingerspelling recognition is equivalent to approaches for

handshape recognition, although some specifics will vary. In this work, I presented

two very different approaches to recognizing the shape of the hand: one a model-

based approach that utilizes armband sensors and the second a model-free approach

that utilizes transfer learning, landmark detection, deep feature extraction, and co-

sine similarity. The utility of each of these approaches will depend on the particular
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circumstance and the specifics of the application and the intelligent system that the

approach is part of.
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Table 4.3: Top 10 Features in Model for Alphabet ‘Q’.

Features Range lower Range Upper θ (Lower) θ (Upper) Norm Weight

EMG5 min3 91 95 -6 -6 1

EMG7 energy5 125 131 1834.8 6883.2 0.7030

EMG0 stdev0 121 129 19.5608 10474.5 0.4435

EMG7 stdev5 124 128 13.2574 63 0.4435

EMG7 energy3 122 131 17.3286 110 0.4435

EMG7 stdev0 120 129 18938.4 121000 0.4435

EMG0 energy0 122 131 14070.2 110 0.4435

EMG7 energy0 114 123 25.2 110 0.4435

EMG0 max2 0 9 -46.4 121000 0.4435

EMG7 min5 116 126 16.2523 23934.5 0.4212
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Sign Recall % Precision% Sign Recall% Precision%

About 98.03 21.78 After 100.0 20.60

And 94.19 22.70 Goodnight 100.0 17.40

Can 98.82 12.33 Hearing 98.22 13.12

Cop 95.60 06.21 Hello 100.0 07.39

Cost 94.32 15.51 Help 100.0 17.17

Cat 100.0 08.97 Here 100.0 13.63

Day 98.86 11.31 Hospital 98.30 07.89

Deaf 95.51 15.29 Hurt 96.56 15.22

Decide 100.0 28.73 If 98.28 08.10

Father 93.75 07.99 Large 92.86 20.26

Find 95.06 15.67 Sorry 89.29 24.46

Go Out 97.40 14.20 Tiger 100.0 18.30

Gold 100.0 28.27 Average 97.40 15.70

Table 4.4: True Positive and False Negative Rates for Handshape and Orientation

Identification
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Table 4.6: Comparison of DyFAV and Various Machine Learning Techniques Across

Users

User Adaboost MLP NB Random Forest SVM Poly SVM DyFAV

1 7.58 68.94 68.94 90.9 84.09 8.33 96.43

2 6.87 92.37 85.5 95.41 91.6 18.32 98.34

3 7.69 90.77 87.69 94.61 93.85 63.07 99.25

4 7.52 90.23 90.98 95.49 88.72 10.52 95.41

5 6.87 79.39 65.65 80.92 80.91 20.61 89.56

6 7.46 88.05 81.34 91.05 91.05 12.69 86.41

7 9.02 83.46 77.44 88.72 84.21 7.52 91.23

8 6.82 91.67 81.06 94.7 92.42 10.61 96.15

9 6.82 88.64 86.36 94.7 89.39 16.67 95.42

Average 7.41 85.95 80.55 90.9 84.09 18.70 95.36
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Chapter 5

SIGN LANGAUAGE TUTOR

5.1 Introduction

In this work, I have implemented an interactive Artificially Intelligent(AI) tutor

that uses feedback to teach sign language words and phrases to learners. Pre-recorded

videos from ASL instructors are used as instructions. The application is built to

replicate a typical beginner sign language curriculum. Research postulates that it is

generally possible to learn sign languages from videos, or even noisy examples Single-

ton and Newport (2004). However, most learners that use only video resources are

rarely successful. First-time learners of any visual language tend to face issues related

to correctly replicating signs using perception alone. First, there is natural variation

in hand dominance in the population which might lead to noisy inputs. Secondly,

signs in most sign languages including ASL are specified for not for the right and

left hand, but dominant and non-dominant hands. In addition to these, practicing,

making mistakes, and getting feedback helps to cement the muscle memory, coordina-

tion, and linguistic concept to better learn a sign langauge Shield and Meier (2018).

Video-based instructions were found to be much more successful if coupled with some

feedback mechanism Huenerfauth et al. (2015). Many research works point out to

the positive relationship between feedback given through interaction and the learn-

ing performance of second-language learners Lightbown and Spada (1990); Mackey

(2006); Banerjee et al. (2019). The ability to practice and receive feedback is also a

positive aspect of immersive environments for second language learning such as study

abroad programs and even classroom environment to some extent Magnan and Back
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(2007). Many software applications for spoken languages incorporate some form of

feedback to help improve the pronunciation of learners Stone (2016). Applications

like DuoLingo also provide interactive chat-bot like environments with feedback to

increase immersion Vesselinov and Grego (2012). However, such applications are not

available for learners of sign languages. This is in part due to the inherent technical

difficulties for providing feedback to sign language learners as discussed in Section 5.3.

The important role of practice and feedback for learners of sign language is also well-

established Emmorey et al. (2009). However, currently to the best of our knowledge,

there are no educational tools that exist that provide automatic analysis and feedback

for sign language learners. Huenerfauth et al. performed a Wizard of Oz. study and

determined that displaying videos to students of their signing, augmented with cor-

rective feedback messages results in better performances Huenerfauth et al. (2015).

Other research points out to the fact that second language learners of sign languages

usually made mistakes on the location, movement, handshape, and/or facial expres-

sions of the signs Rosen (2004). These also correspond to the phonetic components

that make up signs in most sign languages including ASL Stokoe (2005). Of these the

location, movement, and handshape are generally acquired first Mayberry (2007), thus

we choose these three as the concepts to give feedback on. In theory, state-of-the-art

video recognition systems Feichtenhofer et al. (2016), or sign language recognition

systems Cihan Camgoz et al. (2018) could be utilized for recognition and towards

providing feedback to sign language learners. However, the algorithms that these

techniques use are designed to automatically extract low-level features and attributes

and classify a given input among a variety of previously known classes. Although the

features and attributes these systems extract are useful for the classification problem

itself, they are rarely semantically meaningful for providing an explanation or feed-

back as to why a given input belonged to a certain class i.e. why a given execution
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Figure 5.1: Audio feedback for Pronunciation in Rosetta Stone.

was correct or not. Also, these classification techniques do not scale well to unseen

vocabularies which would be very important for tutoring applications.

5.2 Significance

World Health Organization estimates that around 466 million people worldwide

have disabling hearing loss. This number is estimated to rise to 900 million by 2050

Organization (2018). Signed language are natural languages for deaf or hard of hear-

ing people since only a fraction of the population with disabling hearing loss can

benefit from cochlear implants. Other means of communication like lip-reading or

writing are not natural for daily life conversations. Many family and friends of deaf

or hard of hearing people also benefit from being able to sign. Learning Sign Language

is also a very popular choice to fulfill additional language requirements for colleges

or high-schools. The Modern Language Association Association (2016) reports that

the enrollment in American Sign Language (ASL) courses in the U.S. has increased

113



nearly 6,000 percent since 1990 while that for other languages has been relatively

constant as seen in Figure 1.2.

Juan Pablo de Bonet is credited for publishing the first instructional book on sign

language in 1620. Since then there have been various books that help people learn

Sign Languages Rosen (2010). Unlike spoken languages that have a robust written

counterpart, resources on written sign languages are more sparse since learning a

visual language from text is not intuitive or practical. For these reasons, most in-

structional books on sign languages have numerous picture illustrations. Nowadays,

most textbooks are also accompanied by video demonstrations as sign languages are

best learned through videos or in-person instructions. However, not everybody who

wants to learn signed languages has access to a college or in-person classes, thus more

and more potential signers are turning to video resources.

There are also numerous tutorials on video-sharing-platforms or websites for learn-

ing sign language, especially popular languages like American Sign Language(ASL).

Many free or paid smartphone applications provide sign language instructions just

like there are for many other languages. However, none of them provide any feedback

to the learner as seen in Table 1.2.

One of the essential elements that is missing from video tutorials is feedback. We

surveyed 52 learners of American Sign Language and found that 96.2% think that

reasonable feedback is important for sign language learning. Thus, meaningful and

accurate feedback seems to be a major hurdle for self-learners of sign languages. The

age breakdown of the participants is in Table 5.1.

Extended studies show that providing item-based feedback in a computer-based

learning environment is very important, especially for language learning Van der

Kleij et al. (2015). This is the reason that the ideal setting for language learning is

immersion in an environment where the primary language is the one being learned,
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as there is constant positive and negative feedback from the environment Skehan

(1998); Paudyal et al. (2019a). Classroom settings also offer good environments since

feedback can be readily received from the instructor or peers Sheen (2004). This

is the reason that extensive language learning applications such as Rosetta Stone or

Duolingo support some form of assessment where the learner is allowed to either speak

out or write a word or a sentence in the new language, and automatic feedback is

provided to them Stone (2016). Both, DuoLingo and Rosetta Stone language learning

platforms offer ’Speaking’ modules where a learner can record themselves pronouncing

various words or sentences in the new language, and they are graded based on them

and some feedback is provided as well with some demonstration of how the correct

solution looks like as seen in Figure 5.1. These types of feedback if accurate can

be important to steer the user to correct their mistakes while making the language

learning process more immersive. Studies show that elaborated feedback such as

providing meaningful explanations and examples produces a larger effect on learning

outcomes than just feedback regarding the correctness of the answer Van der Kleij

et al. (2015). Sign language learners would also benefit from this type of feedback,

however to the best of our knowledge, no such software exists that provides such

feedback.

5.3 Technical Challenges

Designing a feedback-driven intelligent tutor has many technical challenges that

this work attempts to solve. In this section, I provide these challenges concerning the

various aspects of the desired system. These challenges are very much related to the

requirements of explainability, ubiquitousness, ability to provide appropriate types of

feedback, and the ability to scale to new vocabulary.
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5.3.1 Challenge 1: Explainable Systems

A simple notion of the correctness of a sign execution as seen in Figure 5.2 can

be computed using existing sign language recognition systems that are discussed in

Section 5.4. However, for providing more fine-grained feedback, more details are

desirable. This is especially so because sign languages, unlike spoken languages, are

multi-modal. Thus, if an error is present in execution, feedback should be given

that ties the feedback back to the erroneous articulator(s). For instance, if a student

executes the movement part of a sign correctly, and performs the sign in the right

position relative to her body, but she fails to articulate the right shape of the hand,

then feedback should be given regarding the incorrect handshape. Thus, BlackBox

recognition systems are not very useful for feedback, and explainable systems that

can recognize the conceptual elements of the language must be developed Lim et al.

(2019).

5.3.2 Challenge 2: Ubiquitous Recognition

The growing usage of self-paced learning solutions can be attributed to the effect of

the economy of scale as well as to their flexibility in schedule. To achieve these desired

advantages, the barrier to access must be reduced as much as possible. This implies

that requiring the usage of specialized sensors such as 3-D cameras will hinder the

utility. Thus, a proposed solution that can truly scale and have the maximum impact

as a learning tool must be accessible without the need to purchase special sensors or to

attend in special environments. This is challenging because there is a huge variance in

the type, quality, and feed of smartphone-based cameras and webcams. Furthermore,

assumptions on adequate lighting conditions, orientations, camera facing directions,

and other specific configurations cannot be made, and have to either be verified by
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quality control or accounted for by the recognition and feedback algorithms.

5.3.3 Challenge 3: Determination of Appropriate Feedback

Feedback mechanisms for spoken and sign language differ significantly. The dif-

ferences arise primarily due to the articulators used for speech vs. the ones used for

signing. Apart from some research for feedback in rehabilitation for physical therapy,

which is conceptually very dissimilar to sign language learning, there are no existing

systems in this domain Zhao (2016). Thus, the types of feedback to be given to learn-

ers must be determined by referring to the linguistics of sign languages, close work

with ASL instructors, and referring to academic studies. Codifying and automating

the suggested feedback into a usable system is a challenging process and a worthy

research undertaking.

5.3.4 Challenge 4: Multiple channels and Extension to Unseen Vocabulary

Sign Language recognition differs from speech recognition in one crucial aspect:

the number of articulatory channels. This is partially an artifact of the medium used

for recognition, i.e. audio vs video. Audio is usually represented as two-dimensional

signals in amplitude and time, while colored videos are four-dimensional signals: three

spatial dimensions, one channel dimension for color, and one-time dimension. The

consequence of this for Speech CALL systems for spoken language learning such as

Rosetta Stone Stone (2016) offers some feedback to a learner based on comparisons

between their utterances and those of a native speaker. This one to one comparison to

a gold standard is a desirable way for learning systems where the learner is attempting

to get close in performance to a tutor. A tutoring system needs to readily extend to

new vocabulary as the learner progresses. To extend the capability of a recognition

system that is based on a classifier, the entire system will need to be retrained to
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account for new signs.

5.4 Related Work

There have been many works on providing meaningful feedback for spoken lan-

guage learners Ehsani and Knodt (1998); Robertson et al. (2018); Pennington and

Rogerson-Revell (2019). On the practical side, Rosetta Stone provides both waveform

and spectrograph feedback for pronunciation mistakes by comparing acoustic waves

of a learner to that of a native speaker Stone (2016). There has also been some recent

work on design principles for using Automatic Speech Recognition (ASR) techniques

to provide feedback for language learners Yu et al. (2016). Sign Language Recognition

(SLR) is a research field that closely mirrors ASR and can potentially be utilized by

systems for sign language learning. However, to the best of our knowledge, no such

system exists. This can be explained by the inherent difficulties in SLR as well as

the lack of detailed studies on design principles for such systems. In this work, we

propose some design principles and an explainable smart system to meet this goal.

5.4.1 Sign Language Recognition

Continuously translating a video recording of a signed language to a spoken lan-

guage is a very challenging problem and has been tackled recently by various re-

searchers with some success Cihan Camgoz et al. (2018). For this application, such

complex measures are not desirable, as they mandate extensive datasets for training

and large models for translation which decreases their usability. Isolated Sign Lan-

guage Recognition has the goal of classifying various sign tokens that represent some

spoken language words Grobel and Assan (1997); Starner et al. (1998); Paudyal et al.

(2016); Kumar et al. (2017). Some researchers have utilized videos Lim et al. (2016)

while some others have attempted to use wearable sensors Paudyal et al. (2016, 2017)
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with varying performances. In this work, we utilize the insights and advances from

such systems to help a new learner acquire the sign language words. To our knowl-

edge, this work is the first attempt at such a practical and much-needed application.

Stokoe proposed that a sign in ASL consists of three parts which combine simul-

taneously: the tab (location of the sign), the Dez (hand-shape) and the sig (move-

ment) Stokoe (2005). Signs like ‘HEADACHE’ and ‘STOMACH ACHE’ that are

similar in hand-shape and movement may differ only by the signing location. Simi-

larly, there will be other minimal pairs of signs that differ only by the movement or

hand-shape. Following this understanding, L2S is composed of three corresponding

recognition and feedback modules.

5.4.2 Explainable Systems

Isolated Sign Language Recognition differs from continuous sign translation Ci-

han Camgoz et al. (2018) in that the latter is meant to recognize and translate con-

tinuous sentences. For a sign language tutor for elementary words and phrases, the

complexities of continuous translation is not required or desirable. For isolated sign

recognition, some researchers have utilized videos Lim et al. (2016) while others use

wearable sensors Paudyal et al. (2016, 2017). These systems, however, are meant to

identify particular signs and thus are not appropriate to provide more granular feed-

back than an overall ‘correct’ or ‘incorrect’. Explainable AI methodologies such as

modular composition and explanation interfaces are desirable to provide the kind of

finer-grained feedback necessary for an AI tutoring application Paudyal et al. (2019c,

2020); Adadi and Berrada (2018); Pieters (2011); Kamzin et al. (????). In the case

of Learn2Sign, the level of modularity is determined by the concepts of the domain

and thus the model explanations can be used directly as feedback to the learner. In

this case, the interaction interface for learning is also the explanation interface Pu
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and Chen (2007) for the underlying model.

5.4.3 Ubiquitous Recognition

Learn2Sign is designed to work across all possible devices. The user studies were

performed using multiple laptops without restrictions on lighting or environmental

conditions. The application has also been tested to work on smartphone devices or

any device with a decent front-facing camera. This requires a robust pose-estimation

algorithm that works well across devices. Out of many human pose estimation tech-

niques surveyed Tome et al. (2017); Sarafianos et al. (2016); Tompson et al. (2014),

the Tensorflow JS implementation by Papandreou et al Papandreou et al. (2017) was

selected because it met all these criteria. The recognition in Learn2Sign is a com-

posite outcome of smaller similarity-based comparisons which also contributes to the

robustness to changing environmental conditions. For instance, for a system based on

a classification model, a stark domain shift such as changes in lighting or background

coloration will hurt performance Tzeng et al. (2017). However, the performance of

Learn2Sign will remain relatively unaffected as long as the confidence levels for pose

estimation is maintained. If the pose estimation itself is not confident, Learn2Sign

can notify the learner rather than give unwanted results.

5.4.4 Unseen Vocabulary

Sign languages can have thousands of words and even more can be formed to

account for special circumstances Paudyal et al. (2016). In addition, there are many

sign languages in the world. Thus, a system powered by a fixed-class classifier will

not scale well and hence will not be very practical. Spoken language learning tools

such as Rosetta Stone Stone (2016) utilize a comparative approach to recognition

and the feedback is in the form of a visual comparison of the spectrograph. In
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our prior work Sceptre Paudyal et al. (2016), we utilize a similar approach of one-

to-one comparison for recognition using dynamically alignment of time series. The

movement trajectories of a learner for a particular sign should also be compared to

that of a teacher to ensure there is a match. A comparison of movement trajectories

is an important research area in object detection and human action understanding.

The work by Paudyal et al. deals with comparing movement patterns in ASL and

achieves an overall recognition accuracy of 96 % for 20 isolated ASL signs Paudyal

et al. (2016). While a comparison and path-alignment approach works very well

for comparing movement which is comprised of 2D spatial signals, it is generally

not applicable for comparing images. Existing object detection techniques could be

utilized for frame-by-frame localization of a leaner’s hands and this information can

be aggregated and compared with that of a teacher. For image to image comparison

for similarity, a convolution neural network is utilized as a feature extractor which

facilitates a one-to-one comparison as suggested by Chen et al. (2016).

5.4.5 Instruments for Assessments

There are many instruments to assess sign language acquisition that have been

proposed. These instruments vary manifestly due to the difference in the language

being assessed, its specific linguistics, and the level of proficiency. We found that

the ASL-PA and the Signed Language Development Checklist can serve as important

guidelines for assessments. Some of the other common ones are 1. American Sign

Language-Proficiency Assessment (ASL-PA) Maller et al. (1999) 2. British Sign Lan-

guage Receptive Skills Test Haug (2005); Strong and Rudser (1985) 3. Australian

Sign Language Receptive Skills TestNiederberger (2008) 4. Signed Language Devel-

opment Checklist Schembri et al. (2002) 5. Assessment for Sign Language of the

Netherlands Hermans et al. (2009) 6. The Developmental Assessment Checklist for
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Sign Language of the Netherlands Marschark and Spencer (2010) 7. Aachen Test for

Basic German Sign Language Competence. Haug (2005). Learn2Sign is designed to

help new learners of Sign Language acquire vocabulary more efficiently. Currently,

Learn2Sign offers the ability to learn and practice individual signs which are anal-

ogous to words in spoken languages, whereas, the aforementioned assessment tools

go well beyond. Learn2Sign does not currently offer feedback on syntax, semantics,

or prosody. Thus the assessments have to be limited to the usage (execution) and

retention for the vocabulary items learned. A major takeaway from the survey of

the assessment techniques is that production measures and comprehension measures

should be tested separately.

Feedback Mechanisms

There are many practical applications as well as academic works Yu et al. (2016) on

providing meaningful feedback for spoken language learners Robertson et al. (2018);

Pennington and Rogerson-Revell (2019). Applications like DuoLingo and Rosetta

Stone use comparisons with a native speaker to provide waveform and spectrograph

feedback for pronunciation Stone (2016). Although, feedback-driven learning appli-

cations have been proposed for sign language learning Huenerfauth et al. (2015);

Paudyal et al. (2019c), these systems have not been implemented or tested. The vir-

tual learning environment was proposed by Kelly et. al Kelly et al. (2008) is limited

in scope since deals only with nine individual letters and requires a colored glove.

Our proposed system can give feedback on location, movement, and handshape for

any ASL sign for which a tutorial video is available.
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5.5 Approach and Methodology

The approach described in this section is to meet the four challenges that were

discussed in Section 5.3.

1) Explanation Systems and Interface: A concept level explainable AI is pro-

posed that ties the explanations generated to the feedback that is desired to improve

learning outcomes. The value from an intelligent tutor application that provides feed-

back should ultimately be measured by evaluating the impact on learning outcomes.

The feedback provided by the learning system is analogous to the model explanations

for recognition.

2) Ubiquitous Recognition and Real-time feedback: Self-paced learning

algorithms should be easily accessible. Learn2Sign is designed to work in mobile or

web browsers using only web-cams. One of the implications of this is that only light-

weight models are utilized. In addition, the machine learning models are run on the

client-side when possible to improve responsiveness and immediate feedback.

3) Explanation Interface to evaluate feedback mechanisms: A user-friendly

explanation interface is implemented to properly assess good ways of providing feed-

back while avoiding cognitive overload. The interface is designed as a chatbot for

maximum control over interactivity as well as to allow the learner ease in reviewing

previously learned material, and tracking their progress as they receive feedback.

4) Comparative feedback to a tutor to support Unseen Vocabulary: This

addresses Challenge 4 discussed in Section 5.3 The goals of an intelligent tutor system

differs from that of a recognition system. The need for feedback necessitates the need

to apply explainable modeling techniques. The other consequence is the underlying

approach should not be to classify signs, but to compare them to a ‘gold standard’ that

the student is trying to replicate. This ‘gold standard’ is taken to be the execution of
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the particular sign by the tutor. This approach has the added benefit of supporting

a potentially unlimited vocabulary as the application only compares a student’s sign

to the video they were learning from.

5.6 System Design

Learn2Sign is designed as an interactive chatbot web application. The server-side

is written in python programming language and uses Django as the server framework.

The client-side interactions are handled using React which is a Javascript framework.

The state of the system is tracked using session variables and a finite-state-machine

architecture (FSM) on the server-side as shown in Figure 5.6. The FSM provides a

method to gracefully manage state changes, handle exceptions and automatically run

the assessments for every available curriculum. A new user begins interacting with

the system by signing up for an account using her email address or signs in to her

existing account. After this Learn2Sign gives a brief introduction and eventually lists

all the curriculum available for learning. Since Learn2Sign is developed to be scalable

- a new curriculum can be added by simply uploading new sign videos to the server.

All interactions from here on happen either through confirmatory chat messages or

via direct clicks on provided buttons as seen in Figure 5.5b.

The first step after introductions is for the learner to select a particular curriculum,

from the list of the available curriculum. Any videos that have been pre-processed by

extracting PoseNet like keypoints can be made available as a potential curriculum.

After the learner selects a curriculum, the system transitions to the next state and

waits for the learner to make a selection for the first video she wishes to learn. After

that selection is made, the video is sent to the learner and is played on repeat until

the learner is satisfied and proceeds either to practice the newly learned sign or to

continue learning other signs. The video could be paused, repeated, and viewed in
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(a) Correct. (b) Incorrect.

Figure 5.2: Visual Feedback for Correctness.

full-screen. The learner can also scroll up the chat window to view previous activity

including rewatching previous videos. If the learner chooses to practice, after each

practice session she receives feedback on her execution and is then given the options

to either continue with other signs or to retry the same sign. If the learner chooses to

retry, the tutor video is for that sign is shown again. This process repeats until the

learner is ready to move to the optional assessments section to further cement her

understanding as outlined in Figure 5.8.

5.6.1 User Interface

For initial data collection and for testing the UI, we developed an android appli-

cation called L2S. We preloaded the application with 25 tutorial videos from Signing

Savvy corresponding to 25 ASL signs Saavy (2018). The application has three main

components: a) Learning Module b) Practice Module, and c) Extension.
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Learning Module

The learning module of the L2S application is where all the tutorial videos are acces-

sible. A learner selects an ASL word/phrase to learn and can then view the tutorial

videos. The learner can pause, play, and repeat the tutorials as many times as needed.

In this module, the learner can also record executions of their signs for self-assessment.

Practice Module

The practice module is designed to give automatic feedback to the learners. A learner

selects a sign to practice and sets up their device to record their execution. After this,

L2S determines if the learner performed the sign correctly. The result is correct if

the sign meets the thresholds for movement, location, and hand-shape and a ‘correct’

feedback is given. If the system determines that the learner did not execute the sign

correctly, appropriate feedback is provided as seen in Figure 1.3. Details about the

recognition and feedback mechanisms are discussed in Section 5.7.

Extension Module

To extend the supported vocabulary of L2S, a learner can upload one or more tutorial

videos from a source of their choosing. The application processes them for usability

before they appear in the Learning Module as a new tutorial sign(s).

5.6.2 Data Collection

We collected signing videos from 100 learners, for 25 ASL signs with three repe-

titions each in real-world settings using L2S app. Learners used their own devices,

with no restrictions on lighting conditions, distance to the camera or recording pose

(sitting or standing up). After reviewing a tutorial video, a learner was given a 5 s

setup time before recording a 3 s video using a front-facing camera. Both the tutorial
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and the newly recorded video were then displayed on the same screen for the user to

accept or reject. This self-assessment served not only as a review but it also helped

prune incorrect data due to device or timing errors as suggested by the new learner

survey in Table 1.1.

5.7 Feedback Mechanisms

A variety of feedback could be constructed using the information available from

the results of the location, movement, and handshape modules described above. In

addition to separate feedback for each of the hands, feedback could also be presented

in forms of annotated images or by using animations. For location feedback, the

correct and the incorrect locations for each of the hands could be highlighted in

different colors. For the handshape feedback, the image of the hand that resulted

in the highest difference in similarity could be presented. Each of these types of

possible feedback can be easily derived from the information available. However,

they should be individually tested for usability, and care should be taken to not

cognitively overload the learner with too much feedback at once. To keep the user

interface simple and to better isolate testable components, the feedback given to the

learner was kept simple. The feedback that Learn2Sign gave consisted of whether

the location, the movement, and the handshape were correct for each of the hands.

To draw the learners attention to the feedback she had to pay attention to improve,

the negative feedback was sent in red and the positive feedback was sent in green. In

contrast, all other chat messages from the system were in gray as seen in Figure 5.5.

L2S is designed to give incremental feedback to learners for the various modalities

in sign language: a) Location b) Movement and c) Hand-shape. The various models

are arranged in a waterfall architecture as seen in Figure 1.3. If the location of signing

was not correct, then immediate feedback is provided and the learner is prompted to
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(a) Sentence Feedback. (b) All Feedback

Figure 5.3: Feedback based on Movement (Best viewed in Color).

try again. Similarly, if the movement of the elbows or the wrists for either hand was

incorrect, the learner is prompted to try again. Finally, if the shape and orientation

of either of the hands does not appear to be correct, a hand-shape based feedback

is provided. Consequently, the learner can move on to a practice a new sign, only if

all these modalities were sufficiently correct. A waterfall architecture was chosen in

the final application over a linear weighted combination to make learning progressive

and to decrease the cognitive load on the learner due to the potential of mistakes in

multiple modalities. This architecture also helps to reduce the time taken for recog-

nition and feedback since the models are stacked in an increasing order of execution

time. Each of the feedback screens shown to the user also has a link to the tutorial

video. Users can also manually tune the amount of feedback by altering the value

of ‘feedback sensitivity’ in the application settings. Increasing this value alters the

thresholds for each of the sub-modules so that the overall rate of feedback is increased.
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This involves a trade-off in performance which is summarized in Figure 4.9.

5.7.1 Location

To correctly and efficiently determine the location for signing, we first assume

the shoulders stay fairly stationary throughout the execution of a sign. This is a

fair assumption for ASL since there are no minimal pairs exclusively associated with

a signer’s shoulders. Then we divide the video canvas into 6 different sub-sections

called buckets as seen in Figure 2.1. Then, as the learner executes any given sign,

the location of both the wrist joints is tracked for each bucket resulting in a vector of

length 6. With this mechanism, the feedback sensitivity is limited by the number of

sub-sections we divide the original canvas in. The granularity was chosen to be both

computationally accurate as well as linguistically meaningful. A finer level of location

feedback would result in many false negatives during recognition and would require

many more comparisons with allowed videos. This is because the phonetic definition

of a sign does not always correspond fully to the phonemic realization of the sign-in

practice. For instance, a sign that is described to be done in front of the stomach

could be still correct if performed slightly higher or lower. Another consideration for

choosing 6 divisions of the original video frame was that it is more feasible to track

key locations of the human body such as the shoulder joints, but this tracking and

partitioning becomes much more nuanced and noisy if body parts such as stomach or

cheek are tracked.

This same procedure is followed for the tutorials, and a cosine-based comparison

between is done between the two vectors. A heuristic threshold that is determined

during training is utilized as a cut-off point. If the resulting cosine similarity is lower

than a threshold, some feedback is shown to the learner as seen in Figure 5.4. For

each hand, the user’s video is replayed in Graphics Interchange Format (GIF) with a
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red highlight on the location section that was incorrect and a green highlight on the

section of the frame where the sign should have been executed. A text feedback with

details and a link to the tutorial is also provided and the learner is prompted to try

again.

5.7.2 Movement

Determination of correct movement is perhaps the single most important feedback

we can provide to a learner. We compute a segmental DTW distance between a learner

and the tutorial using keypoints for the wrists, elbows, and shoulders as suggested

in Anguera et al. (2010). Normalization as discussed in Section 5.8.2 was found to

be very important. Experimental results showed that segmental DTW outperformed

DTW or Global Alignment Kernel (GAK). The granularity of movement feedback,

or its sensitivity is determined by two factors: 1) decision threshold is chosen and

2) precision of the tracking mechanism. The decision threshold for movement was

chosen by hyperparameter tuning to maximize the F-1 score of the model and the

other hyper-parameters of the model are chosen to maximize the skill (as measured by

area under the ROC curve) of the decision model. For comparing movement the wrist

joint of the learner is tracked and is compared to the trajectory taken by the wrist bone

of the tutor. The wrist-joint is a very common key-point that is tracked for human

action recognition. However, there is also some lack of precision in this case due to the

inability to track palm movement that happens independently of the arm movement.

To obtain a more granular level of movement tracking and feedback, hand-glove based

techniques can be used. However, this would result in a more invasive system with

additional device requirements. The dataset had a wide variation in the number of

frames per video. It was found that this affected the distance scores adversely. Thus,

as an additional step of preprocessing, the video with the higher number of frames
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was down-sampled before comparison and the segmental DTW is utilized to find the

best sub-sample matching. Thresholds for the signs were determined experimentally

using 10 training videos for each sign. If segmental DTW distance between a learner’s

recording and a tutorial was higher than the threshold for each arm section, then a

movement-based feedback is provided as seen in Figure 1.3. A GIF is replayed to the

user with the section(s) of the arm for which the movement was incorrect in red as

seen in Figure 5.7b. A textual feedback is also generated with an explanation after

which the user is prompted to watch the tutorial and try again.

5.7.3 Hand Shape and Orientation

ASL signs which are otherwise similar, may differ only by the shape or orientation

of the hands. Since, CNNs have state-of-the-art image recognition results, we utilized

Inception v3 or Mobilenet CNN depending on the device being used. A model that

(a) Hand-shape feedback

for AFTER.

(b) Movement Feedback for

ABOUT.

Figure 5.4: Feedback Given by the App.
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was pre-trained on ImageNet is retrained using hand-shape images from the training

users. The wrist location obtained during pre-processing was used as a guide to auto-

crop these hand-shape images. During recognition time, hand-shape images from each

hand are extracted automatically in a similar way from a learner’s recording. Then 6

images for each hand are passed separately through the CNN and the softmax layer

is obtained and is concatenated together as seen in Figure 1.3. Similar processing

is done on the tutorial video to obtain a vector of the same length. Then a cosine

similarity is calculated on the resultant vector. If the similarity between a learner’s

sign and that of a tutorial is above a set threshold for a sign, then the execution

is determined to be correct, otherwise the hand-shape based feedback as seen in

Figure 5.7 is provided. The technique used here for recognition and feedback for

handshape is based on a general comparison of the similarities of the shape of a

learner’s hand to that of a tutor at a time-aligned section of a sign video. This strikes

a balance between trying to match the handshape exactly as some geometry-based

models try to do vs. only comparing more coarse features like movement trajectories

and the location of signing. This also follows from the fact that a phonemic realization

of a handshape may not exactly reflect a phonetic definition of it for a particular

sign. In addition, there is also a need to balance the sensitivity and specificity of

the handshape model. In other words, a model that accepts only a very precise

realization of a handshape will suffer from a high false-negative rate and will reject

variations caused due to incomplete realizations of a handshape, movement artifacts,

or slight differences in anatomy. Indeed for other applications where exact matches of

handshapes are desired, geometry-based models could be employed Priyal and Bora

(2013). Although the retrained CNN could theoretically be used as a classifier, we

use it only as a feature extractor for cosine similarity to ensure that the system can

extend to unseen classes. A new tutorial can then be effectively added to the system
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without the need for retraining. An analysis of the effectiveness of hand-shape and

orientation recognizer is provided in Section 3.7.Similar to location and movement,

feedback for handshape and orientation is also provided in the form of a replay GIF

and text. A zoomed-in image of the incorrect hand shape is shown side by side with

the correct image from a tutorial as seen in Figure 5.7(a).

5.7.4 Combination and Thresholding

Different machine learning models for the same task can be compared to each

other using the AUROC (Area Under the Receiver Operating Characteristics). AU-

ROC is a measure of the performance of a classification model at various threshold

settings Bradley (1997). While the AUROC metric can be used to choose a particular

classifier over another one, the nature of the ROC curve itself helps us decide a thresh-

old value. The ROC curve characterizes a classifier by plotting the True-Positive-Rate

(y-axis) against the False-Positive-Rate (x-axis). The goal of a classifier would be to

maximize the True-Positive-Rate while minimizing the False-Positive-Rate. In other

words, if a learner performed a sign with the correct location, movement and hand-

shape (orientation), the application should simply output correct (True Positive) and

on the contrary, if either of the location, movement or hand-shape was incorrect, the

learner should be alerted and given appropriate feedback (True Negative). The sys-

tem can make two types of errors: 1) When the execution was correct, but the learner

received feedback (False Negative) and 2) When the execution was incorrect, but the

learner did not receive any feedback. The thresholds were chosen to maximize the

F-1 Scores as shown in the Table 4.5. However, the value of the threshold may also be

altered to trade-off one kind of possible error for another depending on the preference

of the tutor or to better fit the needs of the learner. For instance, a higher threshold

could be selected for applications or a curriculum where it is of critical importance
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for the learner’s execution to be as close as possible to that of the tutor. If on the

other hand if false-negative results hampers the user-experience too much, a lower

threshold can be selected.

In the case of L2S, feedback is also given for each one of the modalities that

the learner was incorrect in. However, as discussed in Section 5.6.1, the feedback

should also not cause cognitive overload. Thus, in the process for determination

of whether a sign is incorrect, we perform the detection incrementally. First, the

location is verified to be correct, then the movement is analyzed, after which the

hand-shapes are analyzed. If the location was incorrect, only the location feedback is

provided until the learner can correct that, after which movement feedback if needed

is provided. This is explained by Figure 1.3. This incremental process helps lower the

cognitive load as well as provides the learner a progressive learning model. This is

applicable specifically in educational systems since the cost of a false negative, which

potentially leads to an additional round of practice, is not that very adverse while

the cost of accepting a faulty execution may be higher since a learner might learn a

sign incorrectly.

5.8 Design of Experiments

For this work, the user studies were designed to test a single hypothesis that

interactive learning with feedback improves learning outcomes. A within-subject

study was chosen and 26 University students (10 F, 16 M) with no prior formal

experience with sign languages were recruited. 14 ASL signs were chosen from the

available vocabulary to represent a good distribution for signs with varied locations,

movements, and handshapes. The signs were chosen from the beginner vocabulary of

the Signing Naturally textbook Smith et al. (2001). Almost all of the words chosen

as listed in Table 4.5 were single words. Two words, ‘go out’ and ‘good night’ were
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(a) Sign Selection prompt.

(b) Automatic feedback.

Figure 5.5: Learn2Sign interactive chat-bot interface. Right: In this case, the move-

ment of both the hands were correct (green), but the location and handshape of

the right hand were not correct. Feedback is supressed for the correct location and

handshape for the left hand to prevent cognitive overload.
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Age Bracket Percent

18-21 26.9

21-25 42.3

26-30 15.4

31-40 15.4

>40 0

Table 5.1: Age Breakdown of Survey Participants

composite words. However, the instructional videos utilized for them did not have

a perceivable pause between the words, and were thus treated as single words for

learning and practice purposes. Testing with more composite words and accounting

for the effects of co-articulation as well as pauses in movement is left for future work.

All of the learners were asked to interact freely with the Learn2Sign application and a

researcher was on standby to answer any questions. The participants were reminded

that they would be assessed on the signs learned at the end of the study and given

some instructions. After this, the user study followed the same state transitions as

outlined in Section 5.6 and summarized in Figures 5.6 and 5.8 except for two crucial

changes: 1) For every test subject, half of the 14 signs were randomly chosen to

be practiced at least once and the other half were chosen to be continued without

practice. The learners were free to practice and receive feedback as many times as they

wished by clicking ‘retry’ after they received the feedback. 2) The assessments at the

end of completing the curriculum were mandatory and consisted of 6 randomly chosen

retention tests and the remaining 8 as execution tests. All user study participants

were also required to fill a post-usage survey.

Some of the learners chose to replay to video multiple times and mimic the signs
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Figure 5.6: System Design as a Finite-State-Machine

before proceeding. For half of the signs a ’practice now’ button appeared and the

learner had to send a recording of themselves performing the sign they just learned.

Learners spent between 12 and 25 minutes interacting with the application as seen

in Figure 5.9. After this step, the application provides feedback on the execution.

Details on the feedback are provided in Section 5.7. For the other half of the signs,

no such feedback was provided. The remaining signs are populated again as a list

of buttons. After all of the signs are learned in this manner, the retention tests

begin. Six out of the 14 signs were chosen randomly for retention tests. A video

for the retention test was displayed with four options, one of which was correct.

After the learner picked the answer the next retention test was shown. After all

the retention tests were complete Learn2Sign proceeded to administer the execution

tests. The remaining 8 signs from the curriculum where prompted on the screen

one at a time and the learner recorder her execution before moving on to the next

one until all execution tests were complete. After this, a link was sent for the post-
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completion usage study. The submission of the survey marked the end of the user

studies. During the assessment period, the participants were not given any feedback

on their choices or their execution. The multiple-choice retention tests were auto-

graded by Learn2Sign and results were stored as 0 for every incorrect choice and 1

for every correct choice. The videos for the execution tests were recorded and were

graded offline. The execution tests resulted in a score of 0.5 for each sign if two

of location, movement, and handshape were correct and 1 if all three were correct.

Otherwise, the execution received a score of 0. The grading was done using a blind

review process such that the grader did not know whether the sign being graded was

or was not practiced. The results of the user studies are summarized in Section 5.9.

5.8.1 Data Collection

The methodology and evaluations are provided in Sections 5.5 and 3.7. As part of

the work, we collected video data from 300 users executing 25 ASL signs three times

each. The videos were recorded by L2S users in real-world settings without restrictions

on device-type, lighting conditions, distance to the camera, or recording pose (sitting

or standing up). This was to ensure generalization to real-world conditions, however,

this makes the dataset more challenging. More details about the resulting dataset of

about 15000 instances can be found in Lab (2018)

5.8.2 Preprocessing

Determining joint locations: Since, different devices record in different resolu-

tions, all videos for learning, practice or extension are first converted to a 320*240

resolution. Then, PoseNet Javascript API for single pose estimation Papandreou

et al. (2017) was used to compute the estimated locations and confidence levels for

the various keypoints as seen in Table 2.1. Figure 2.1 shows the estimated eyes,
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(a) HERE: Red box(upper): Detected

Location, Green Box(lower): Correct

Location.

(b) DEAF: Red box(upper): Detected

Location, Green Box(lower): Correct

Location.

Figure 5.7: Feedback for Incorrect Location for Right Hand.

shoulder and wrist locations for the signs TIGER and DECIDE for all the frames in

one video.

Normalization: There is a difference in scale of the bodies relative to the frame-size

corresponding to the distance between the learner and the camera. This scaling factor

can negatively impact recognition since the relative location, movement, and hand-

shape will vary with distance. We perform min-max normalization and zeroing based

on the distance between the average estimated locations for the right and left shoul-

ders throughout the video frame as suggested by Nadil et al. (2016). Normalization

was found to be especially important for correct movement recognition.
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Figure 5.8: Flowchart for Retention and Execution Tests.

5.9 Results and Evaluation

The application built was evaluated first using a hold-out subset of the data col-

lected for training. These evaluations help determine the proper algorithms to utilize

and to determine appropriate thresholds for them. The final utility of the system will

also depend upon design and usability factors which were also evaluated through user

testing.

5.9.1 System Evaluation

An ideal system should give feedback to a learner only if their execution is in-

correct. Giving unnecessary feedback for correct executions will hinder the learning

process and decrease the usability. Conversely, providing sound and timely explana-

tions for incorrect executions helps to improve utility and user trust. Smart systems

such as L2S that use explainable machine learning tend to have a trade-off between

explainability and performance which should be minimized.
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The overall performance of the system was tested for 10 test users for a total of

750 signs. The training of the CNN for hand-shape feature extraction and optimal

threshold determination was done using the remaining users. For each sign, 30 ex-

ecutions from the test dataset were taken as true class while 30 randomly selected

executions from the pool of remaining signs were taken as incorrect class to avoid

class imbalance. A pre-trained model from C3D Tran et al. (2015) was retrained with

the data we collected and was used as the baseline for comparison. This model has

an accuracy of 82.3 % on UCF101 Soomro et al. (2012) and 87.7 % in YUPENN-

Scene Derpanis et al. (2012) datasets. The final recognition accuracy of C3D on L2S

dataset using the same train-test split was 45.38 %. Our approach achieves a higher

accuracy of 87.9 % while still offering explanations about its decisions in the form of

learner feedback.

Determination of Appropriate Thresholds

To obtain the results, data collected from one learner was selected at random and

served as the tutorial dataset. Then each sign for each user in the test dataset was

compared against the corresponding tutorial sign. The location module had an overall

recall of 96.4 % and a precision of 24.3 %. The lower precision is because many signs

in the test dataset had similar locations. We performed a test comparing only the

signs ‘LARGE’ to the sign ‘FATHER’ and both the precision and recall were 100 %.

The movement module had an overall recall of 93.2 % and a precision of 52.4 %. The

hand-shape module had a recall of 89 % and a precision of 74 %. The overall model

is constructed as a waterfall combination of all three models such that the movement

model is executed only when the location was found to be correct, and the hand-

shape model is executed only when both the location and movement were correct.

The overall precision, recall, f-1 score, and accuracies is summarized in Table 4.5.
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Figure 5.9: Learners Spent between 12 and 25 Minutes Interacting with the Applica-

tion.

Since some signs were easier to learn than others, the distribution for the mistakes

across the signs varied as seen in Figure 5.12. This type of information would be very

helpful for instructors as they would be able to focus their attention on signs that

students have more of a difficulty mastering.

5.9.2 Usage Evaluation

Retention Tests

A total of 156 retention tests were performed for 14 of the ASL signs by the 26

learners. Each learner was given 6 randomly selected sings for retention tests. For

each test, the learner was given a video and had to choose among 4 options for the

correct one. Thus, the baseline performance for random guessing would be 25%. The

average performance across all learners on retention tests regardless of if feedback

was received was 87%. The performance on retention tests improved to 90.79% with
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Figure 5.10: Execution Test Results for Users is Notably Better for Signs They Re-

ceived Feedback on.

feedback while the performance for signs without practice and feedback was 83.67%.

Overall we found that practice and feedback did not have significant improvement in

performance for retention tests given in the form of multiple-choice questions. Figure

5.16 shows the relative improvement that practice and feedback had on the level of

individual words. Figure 5.11 shows the improvement across the users. Although

some of the words showed improvement with practice and feedback, a lot of the signs

already had a 100 % retention performance. When performing a one-tail t-test for

testing the difference between the retention results when feedback was given vs. that

when feedback was not given, the p-value obtained was 0.095. Thus we can reject the

null hypothesis that the distributions have the same mean only at a 90 % confidence

level.
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Figure 5.11: Retention Test Results for Users is Slightly Better for Signs They Re-

ceived Feedback on.

Execution Tests

A total of 208 execution tests were performed for 8 of the 14 of the ASL signs. Each

of the 26 learners was given 8 randomly selected sings to execute. After all retention

tests were complete, the learner was given a sign and asked to begin recording its ex-

ecution. Learners found execution tests significantly harder than retention tests and

the average score for execution tests was 54.32 %. The execution tests were scored

offline by the research team. If the learner had any two of location, movement, or

handshape correct on both hands, then she received a score of 0.5 for that sign. If

all three were correct, she received 1. Otherwise, she received 0. It was found that

practicing and receiving feedback helped learners significantly to get better perfor-

mance. Figure 5.14 shows a general improvement in results with increased practice.

It also shows that there is higher uncertainty in the reported numbers for signs that

were practiced 3 or more times because not many learners practiced signs more than
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twice as seen in Figure 5.15. Figure 5.13 shows the distribution shift for execution

tests using a violin chart. The median value without practice was 0.5 while the me-

dian value with practice was 1. The effect of the number of practices was that the

execution performance increased up to two practices, but then decreased slightly, but

remained higher than the average without any practices. This can be seen in Figure

5.15. However, it should be noted that less than 10 % of the signs were practiced 3 or

more times. This is reflected by the wide confidence intervals for 3 and 4 repetitions.

Figure 5.17 shows the relative improvement that practice and feedback had on the

level of individual words. A general improvement in performance is seen across the

board for users as seen in Figure 5.10. When performing a one-tail t-test for testing

the difference between the execution results when feedback was given vs. those when

feedback was not given, the p-value obtained was 4.6e-7. Thus we can reject the null

hypothesis that the mean for the two distributions is the same with at a very high

confidence level.

5.9.3 Post Usage Survey

As part of the study, all of the participants were required to complete a post-usage

survey to evaluate the efficacy of the application. The results of this survey are sum-

marized in Table 5.2. Apart from the questions covered in the table, we received a

lot of positive feedback on how the interactivity helps them to stay motivated and

engaged while using the application. We also received a lot of suggestions for improve-

ments, some of which were User Interface related. Some of the users also expressed

concerns about the fact that the front-facing camera showed a flipped version of the

signs and that was confusing when they saw the tutor‘s execution side-by-side with

their own. However, most users were able to properly understand the effect of mir-

roring and using the correct hand. For this study only right-hand dominant tutors
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Figure 5.12: Distribution of mistakes across the different signs.

and users were present.

5.10 Discussion and Future Work

Due to the nature of random selections, some signs were easier to recall and exe-

cute than others. Some of this can be explained due to the pantomime nature of signs.

This means that in American Sign Language some signs tend to mimic or somehow

represent their semantic meanings. This makes some of the signs easy to retain and

guess. This is especially true in the context of a multiple-choice type question when

a sign such as ’daughter’ which makes a visual reference to the act of carrying a

child. While for other signs such as ‘when’ has a reference to a clock to indicate time,
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Question Category Very Low Low Medium High Very High

Importance of Feedback 0% 3.8% 0% 30.8% 65.4%

Helpfulness of ASL tutor application 0% 0% 15.4% 26.9% 57.4%

Was the feedback useful for learning 0% 3.8% 3.8% 46.2% 46.2%

Helpfulness of location feedback 0% 0% 11.5% 38.5% 50%

Helpfulness of movement feedback 0% 7.7% 11.5% 34.6% 46.2%

Helpfulness of handshape feedback 0% 8% 20% 56% 16%

Preference to use this application over learning with videos 0% 0% 11.5% 26.9% 61.5%

Table 5.2: Results of Post-usage Survey from all 26 Participants. Participants Found

Location Feedback Adequate, but Wanted More Information for Handshape Feed-

backs.

Figure 5.13: Distribution Changes for Retention and Execution Performances with

Practice.
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Figure 5.14: Effect of Number of Attempts. Uncertainty is Higher for Higher practice

numbers

but the reference is much less obvious. Execution tests, on the other hand, were in

general more difficult as they require a learner to memorize the movements, location,

and handshape to be able to perform them. While learners found the execution tests

harder in general, there was also a much clearer benefit to practicing and receiving

feedback to execution performance when compared to retention performance. This

could also be explained in part since the kinds of feedback provided by Learn2Sign

were directly related to the execution of the signs. We hypothesize that if references

to the pantomime of the signs or some other mnemonic tips are shared, the retention
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Figure 5.15: Only Half of the Test Signs were Practiced. Most learners Chose to

Practice Once or Twice.

and perhaps the execution performance of the new learners will be further enhanced.

This is left for future work. After the user studies, learners mentioned that although

the movement and handshape feedback were very useful, some visual forms of feed-

back should be added perhaps in the form of the cropped hand that was the most

incorrect or a gif showing the movement trajectories. We think that this will be an

excellent addition to an application like Learn2Sign. Signs in ASL are not specified

for the right and left hand but according to hand dominance. In addition to this,

due to the mirroring effect of recorded videos, some students were confused about

the correct hand to utilize. Although we did not directly tackle this issue in the

experimental setup, learners were instructed to think of signs in terms of dominant

and non-dominant hands. However, if a left-hand dominant student tried to replicate

a right-hand dominant instructor and did take into account the effect of mirroring in
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Figure 5.16: Practice and Feedback show Slight Improvement for Retention Test

Results across All Signs.

the video, her execution would be deemed incorrect by L2S. In future studies, this

should be handled by allowing the learned to specify their dominant hand before

beginning the tests.

5.11 Conclusions

The increase in demand for learning sign languages will be accompanied by a

corresponding demand for technology-assisted learning techniques. In addition, even

instructor-led classroom sessions will benefit from automated practice and feedback

solutions that increase engagement enhance learning outcomes. There is currently

a vacuum in this space due to the complexities of sign language recognition and

the lack of sufficient research for feedback mechanisms. In this work, I presented
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Figure 5.17: Practice and Feedback show Notable Improvement for Execution Test

Results for Across All Signs.

Learn2Sign, which is a chatbot interface for teaching arbitrary sign language signs to

new learners with a special focus on providing conceptual feedback. Leveraging the

latest techniques of signal processing, computer vision, and explainable AI, I showed

that Learn2Sign can produce improvements towards both the execution and retention

of sign language signs. We showed that the execution performance of 26 new learners

for 14 different ASL increased from an average of 0.4 to 0.68. I also described the

technical details of the various modules involved and how the design of the system

is easily scalable. The code for the Learn2Sign web application will be open-sourced

along with this document.
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Chapter 6

CONCLUSIONS

6.1 Conclusion

There is an increasing need and demand for learning sign language. Feedback is

very important for language learning and intelligent language learning applications

must provide effective and meaningful feedback. There have also been significant

advances in research for recognizing sign languages, however technological solutions

that leverage them to provide intelligent learning environments do not exist. In this

work, we identify different types of potential feedback we can provide to learners

of sign language and address some challenges in doing so. We propose a pipeline of

three non-parametric recognition modules and an incremental feedback mechanism to

facilitate learning. We tested our system on real-world data from a variety of devices

and settings to achieve a final recognition accuracy of 87.9 %. This demonstrates that

using explainable machine learning for gesture learning is desirable and effective. We

also provided different types of feedback mechanisms based on the results of a user

survey and best practices in implementing them. Finally, we collected data from 100

users of L2S with 3 repetitions for each of the 25 signs for a total of 7500 instances Lab

(2018).

The increase in demand for learning sign languages will be accompanied by a

corresponding demand for technology-assisted learning techniques. In addition, even

instructor-led classroom sessions will benefit from automated practice and feedback

solutions that increase engagement enhance learning outcomes. There is currently a

vacuum in this space due to the complexities of sign language recognition and the lack
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of sufficient research for feedback mechanisms. In this work, we presented L2S, which

is a chatbot interface for teaching arbitrary sign language signs to new learners with

a special focus on providing conceptual feedback. Leveraging the latest techniques

of signal processing, computer vision, and explainable AI, we showed that L2S can

produce improvements towards both the execution and retention of sign language

signs. We showed that the execution performance of 26 new learners for 14 different

ASL increased from an average of 0.4 to 0.68. We also described the technical details

of the various modules involved and how the design of the system is easily scalable.

The code for the L2S web application will be open-sourced along with this paper.

The web application will be preloaded with the curriculum we used and be publicly

hosted.

6.2 Discussion and Future Work

Due to the nature of random selections, some signs were easier to recall and execute

than others. Some of this can be explained due to the pantomime nature of signs.

This means that in American Sign Language some signs tend to mimic or somehow

represent their semantic meanings. This makes some of the signs easy to retain and

guess. This is especially true in the context of a multiple-choice type question when

a sign such as ’daughter’ which makes a visual reference to the act of carrying a

child. While for other signs such as ‘when’ has a reference to a clock to indicate time,

but the reference is much less obvious. Execution tests, on the other hand, were in

general more difficult as they require a learner to memorize the movements, location,

and handshape to be able to perform them. While learners found the execution tests

harder in general, there was also a much clearer benefit to practicing and receiving

feedback to execution performance when compared to retention performance. This

could also be explained in part since the kinds of feedback provided by L2S were
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directly related to the execution of the signs. We hypothesize that if references to the

pantomime of the signs or some other mnemonic tips are shared, the retention and

perhaps the execution performance of the new learners will be further enhanced. This

is left for future work. After the user studies, learners mentioned that although the

movement and handshape feedback were very useful, some visual forms of feedback

should be added perhaps in the form of the cropped hand that was the most incorrect

or a gif showing the movement trajectories. We think that this will be an excellent

addition to an application like L2S.

We demonstrated the need for a feedback-based technological solution for sign

language learning and provided an implementation with a modular feedback mech-

anism. The user preference for the desired amount of feedback can be changed by

altering the value for ‘Feedback Sensitivity’. The trade-off between ‘Feedback Sen-

sitivity’ and the amount of feedback received as well as other performance metrics

is summarized in Figure 4.9. Although we designed our feedback mechanism based

on principles from linguistics and user survey, only a large scale usage of such an

application will provide definitive best practices for the most effective feedback. In

such future studies, issues such as the extent of user control for determining types of

feedback and the possibility of peer-to-peer feedback for on-line learning has to be

evaluated as suggested by works such as Fiebrink et al. (2011). This work provides

the foundations and feasibility for interactive and intelligent sign language learning

to pave the path for such future work.

We collect usage and interaction data from 100 new learners as part of this work,

which will be foundational to assist future researchers. Although the focus of this

work was on the manual portion of sign languages, the preprocessing includes location

estimates for the eyes, ears, and the nose. This can be utilized for including facial

expression recognition and feedback in future works. We evaluated only 25 isolated
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words for ASL, but in the future, this work can be extended to more words and phrases

and to include other sign languages since the general principles will remain the same.

In this work, we used sign language as a test application, however, the insights from

this work can be easily applied to other gesture domains such as combat sign training

for military or industrial operator signs.
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