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ABSTRACT

One of the measures to determine the intelligence of a system is through Question

Answering, as it requires a system to comprehend a question and reason using its

knowledge base to accurately answer it. Qualitative word problems are an impor-

tant subset of such problems, as they require a system to recognize and reason with

qualitative knowledge expressed in natural language. Traditional approaches in this

domain include multiple modules to parse a given problem and to perform the required

reasoning. Recent approaches involve using large pre-trained Language models like

the Bidirection Encoder Representations from Transformers for downstream question

answering tasks through supervision. These approaches however either suffer from er-

rors between multiple modules, or are not interpretable with respect to the reasoning

process employed. The proposed solution in this work aims to overcome these draw-

backs through a single end-to-end trainable model that performs both the required

parsing and reasoning. The parsing is achieved through an attention mechanism,

whereas the reasoning is performed in vector space using soft logic operations. The

model also enforces constraints in the form of auxiliary loss terms to increase the

interpretability of the underlying reasoning process. The work achieves state of the

art accuracy on the QuaRel dataset and matches that of the QuaRTz dataset with

additional interpretability.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

The abundance of user data and computing resources in the past two decades has

allowed the field of Artificial Intelligence (AI) to flourish. Popular services like Google

Translate and Speech Transcribing services like Siri and Cortana are powered by AI.

These techniques are classified under the umbrella term - Natural Language Process-

ing (NLP), a branch of AI that enables machines to process and understand spoken

(natural) languages like English and Spanish. The true test of the intelligence of a

system is through Question Answering, which involves checking whether it is capable

of answering a question by effectively utilizing its underlying knowledge base. Qual-

itative word problems are a subset of Question Answering that require recognizing

and reasoning with qualitative relationships (Tafjord et al., 2018). Relationships in

such problems are expressed in a natural language (Eg: If X increases, then so will

Y) (Tafjord et al., 2018). To further the research being done in these domains, The

Allen Institute of Artificial Intelligence has released two datasets - QuaRTz (Quali-

tative Relationship Test Set) (Tafjord et al., 2019) and QuaRel (Tafjord et al., 2018).

Recent approaches to solving Question Answering problems involve a multi stage

process of converting the input to a logical form, and then later reasoning over this

parsed form through a set of logical rules (Mitra et al., 2019). Another approach is to

use fine-tune pretrained language models such as BERT (Devlin et al., 2018). Multi-

stage models are prone to errors in each stage that accumulate and increase the overall

error, whereas approaches such as those that are based on BERT (Devlin et al., 2018)

1



are not interpretable with respect to their reasoning process. This research attempts

to embed an interpretable knowledge reasoning approach in a single end-to-end neural

model. Therefore, the aim is to improve the accuracy over the current state-of-the-art

solutions and to make the approach better interpretable. The approach is applied on

Qualitative word problems, and the next two sections briefly describe the two datasets

that contain Qualitative word problems.

1.2 Quartz Dataset

The QuaRTz dataset (Qualitative Relationship Test Set) is an open-domain dataset

of qualitative relationship questions (Tafjord et al., 2019). An example of an instance

from the dataset is shown below. Each problem i contains a 2-way multiple choice

question Qi grounded in a particular situation, and a knowledge sentence Ki that

contains general qualitative knowledge to answer the question. Each Ki contains the

two concepts being compared and the relationship between them. An example from

the dataset is displayed below. In this example, the concepts present in the knowl-

edge passage are greenhouse gases - which is highlighted in red - and ocean acidity -

highlighted in green. The relationship between these two concepts is expressed quali-

tatively using the words - increase and expand. Such words / sequence of words that

qualitatively convey the intensity (amount) in a qualitative relationship are termed

intensifiers. Each Qi may also contain the concepts and intensifiers with different sur-

face forms. The term surface form refers to the description of a concept / intensifier

that is expressed in natural language. In the question stem - which is Qi without

the answer options - of the example, the concept greenhouse gas is described with

a different intensifier reduced compared to that present in Ki. The answer options

contain the two query intensifiers for the other concept air quality. In addition, each

2



Qi may also be grounded in one or two different contexts (referred to as worlds here).

The example below only contains a single world - ocean. Thus the task involves track-

ing and associating the intensifiers associated with each concept for each of the two

worlds. The dataset is split into three partitions : train, dev and test with 2696, 384

and 784 problems in each respectively.

Example:

K: An increase in greenhouse gases will expand the changes that are already being

seen including in ocean acidity

Q: what will happen to the acidity of ocean if production of greenhouse gas is reduced?

Options: (A) increase (B) decrease [correct]

Logical Intepretation:

Q: [LESS, ”reduced”, ”greenhouse gases”]

−→ (A) [MORE, ”increase”, ”acidity of the ocean”]

(B) [LESS, ”decrease”, ”acidity of the ocean”]

K: [MORE, ”increase”, ”greenhouse gases”]

⇔ [MORE, ”expand”, ”ocean acidity”]

1.3 Quarel Dataset

The QuaRel dataset (Tafjord et al., 2018) is similar to the QuaRTz dataset in that

it comprises of qualitative relationship problems, but from a fixed set of 19 relation-

ships. An example of an problem from this dataset is shown below. However, unlike

the QuaRTz dataset, the QuaRel dataset does not contain annotations for surface

forms of the directions and concepts, but instead contains the question interpretation
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in logical form, and the two different worlds in which the question is grounded. In

the example shown below, the left hand side of the logical form represents the current

belief in the question. In the example, qrel(smoothness, lower, world1) represents

that the smoothness of skin - carpet is higher compared to world2 - carpet. The two

predicates on the right hand side of the logical form describe the queries correspond-

ing to the two answer options. The logical form of option A denotes that heat is

higher, whereas that for option B denotes that heat is lower. The dataset is split into

three partitions : train, dev and test with 1941, 278 and 552 problems respectively.

Example:

Q: Tank the kitten learned from trial and error that carpet is rougher then skin.

when he scratches his claws over carpet it generates than when he scratches his

claws over skin

Options: (A) more heat (B) less heat

Question Interpretation (Logical Form):

qrel(smoothness, lower, world1)

−→ qrel(heat, higher, world1) ; qrel(heat, lower, world1)

1.4 Research Evaluation

The model will be evaluated on a test set of 784 problems present in the QuaRTz

dataset and 552 problems in the QuaRel dataset. As these datasets contain multiple

choice problems, the primary evaluation metric will be the accuracy of the predictions

on the test set. Since interpretability is also an important feature in our approach,

we expect the model to encode different problem-specific attributes based on the

expected surface forms.

4



1.5 Value of the Research

Traditional approaches to solving Question Answering through logical reasoning

are mostly non-neural by design. Whereas, recent neural approaches based on the

BERT architecture (Devlin et al., 2018) achieve state-of-the-art accuracy but are not

interpretable with respect to the reasoning process employed in solving problems. The

aim of this research is to explore whether Question Answering can be accomplished

and whether its reasoning process can be made transparent in terms of interpretability

with the help of constrained learning in a neural setting. Since Qualitative word

problems are mainly solved by reasoning over a fixed set of problem-specific attributes,

the idea is to construct a neural model that learns the correct values for each property

using distributional semantics, and then reasons over these properties to achieve the

desired answer.

1.6 Contributions

This work makes the following two contributions:

1. Create a knowledge reasoning framework within a single end-to-end trainable

neural network using constrained learning.

2. Make the reasoning process of the model interpretable.

1.7 Structure of the Thesis

This work is structured in the following manner:

1. Introduction and Motivation - This chapter contains an overview of the aim

5



and motivation of this work.

2. Background and Related Work - This chapter provides some background

on Question Answering and describes existing works that are related to this

work.

3. Methodology - This chapter outlines the implementation of the various pieces

of the approach proposed in this work.

4. Results - This chapter presents the various results.
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Chapter 2

BACKGROUND AND RELATED WORK

2.1 Question Answering

Question Answering is a branch of Natural Language Processing that involves

creating a system capable of understanding and answering a question posed in natural

language text. Much of the progress towards Question Answering in recent times

is driven by datasets. Different datasets require different methods of reasoning to

accurately answer questions. Qualitative problems are a type of Question Answering

problems that require reasoning over qualitative relationships. Solving such problems

require recognizing the concepts being compared and their intensities (HIGH / LOW,

MORE / LESS). To promote research in this domain, The Allen Institute of Artificial

Intelligence has released two datasets - QuaRel (Tafjord et al., 2018) and QuaRTz

(Qualitative Relationship Test Set) (Tafjord et al., 2019).

Until recently, question answering approaches were categorized to four types (Soares

and Parreiras, 2018):

1. Information Retrieval QA: Query an unstructured indexed knowledge base

by combining the question stem and answer options.

2. Natural Language Processing QA: Use machine learning methods to train

a model which can recognize certain linguistic properties required to answer a

question.
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3. Knowledge Base QA: Use database style queries to search over structured

text.

4. Hyrbid QA: Combine the above three methods.

2.2 Related Work

Qualitative problems require models to parse the concepts and their relationships

and then reason over these problem-specific attributes. The work creates represen-

tations for these attributes through attention mechanisms similar to (Vaswani et al.,

2017).

Many semantic based approaches to question answering rely on parsing a given

question to a semantic representation, usually termed as a logical form. This logical

form is then combined with some form of reasoning either in the form of logical rules,

or executed against a database to answer the given question.

The approach followed in (Tafjord et al., 2018) is based on a Neural semantic parser

from (Krishnamurthy et al., 2017). This model uses a type-constrained encoder-

decoder architecture, where an LSTM is used to encode the question and another

LSTM is used to decode the encoded representation into a logical form. Using these

parsed logical forms and a set of logical rules, a prolog-style inference engine then

determines the correct answer.

Another approach based on semantic parsing for Question Answering is found in

(Mitra et al., 2019), which attempts to answer multiple choice questions formed from

a passage of text on the life cycle of organisms. This approach uses the semantic

parser from (Krishnamurthy et al., 2017) to recognize the question type from a fixed

list of question types and then convert the question into a type specific logical form.

8



Their approach then uses a list of Answer Set Programming rules written in clingo

(Gebser et al., 2014) to compute the truth values of each option. The answer option

with the higher truth value is scored as the correct answer.

Recently, models based on the BERT architecture (Devlin et al., 2018) have

achieved state of the art results on various question answering datasets like SQuAD

(Rajpurkar et al., 2016), SWAG (Zellers et al., 2018) and RACE (Lai et al., 2017).

Such models are based on the transformer architecture (Vaswani et al., 2017), and are

created by pretraining on large corpuses of text. These models can be either be used

as features in the word embedding layer, or as base models that can be fine-tuned to

a specific task.

2.3 Baseline Models

This section outlines the performance of baseline models on the datasets:

2.3.1 Quartz

The authors of this dataset evaluate 4 baseline models on this dataset. The

accuracies of the models are reported in Table 2.1 (Tafjord et al., 2019):

9



Table 2.1: Accuracies of Baseline Models on the Quartz Test Set

Models ↓ Test Acc.

BERT (IR) 64.4

BERT (Upper Bound) 67.7

BERT-PFT (IR) 73.7

BERT-PFT (Upper Bound) 79.8

2.3.2 Quarel

The authors of this dataset evaluate 3 baseline models on this dataset and a cus-

tom model called QUASP+. The accuracies are present in Table 2.2.

Table 2.2: Accuracies of Various Models on the Quarel Test Set

Models ↓ Test Acc.

IR 48.6

PMI 50.5

BiLSTM 53.1

QUASP+ 68.7
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Chapter 3

APPROACH AND METHODOLOGY

3.1 Problem Formulation

Example 1:

K: An increase in greenhouse gases will expand the changes that are already being

seen including in ocean acidity

Q: What will happen to the acidity of the ocean if production of greenhouse gas is

reduced in the ground, compared to the surface rocks, were likely

Options: (A) increase (B) decrease

Example 2:

K: The Southern Hemisphere has less trash buildup in the oceans because less of the

region is continent.

Q: If North America is smaller then Asia, which continent experiences less trash

buildup?

Options: (A) North America (B) Asia

The task of the QuaRTz dataset and QuaRel dataset is to answer a 2-way question

Qi given a knowledge sentence Ki from a knowledge base K (Tafjord et al., 2019). In

the QuaRTz dataset, each Ki contains two concepts - cause and effect being compared

and the qualitative relationship between these concepts expressed in natural language

text. However, in the QuaRel dataset, the knowledge passage for a given problem

is not explicitly described in natural language. But the concepts being compared

and their relationship for a given problem are discernible as explained later in this

chapter. In both datasets, each Qi contains the two concepts of which one concept and
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its intensifier (amount expressed qualitatively) (high / low) is specified as the setup

(given) and the other concept is queried. The concepts mentioned in the question

stem are either the same sequence of words as mentioned in the knowledge passage,

or they are synonyms expressed in natural language. Each Qi may be grounded in

0-2 contexts referred to as worlds. The answer options denote either the two possible

directions (high / low) of the query concept, or the two possible worlds in which

the query concept and its associated intensifier mentioned in Qi is true. Example 1

defined above serves as an example of the former case, and example 2 for the latter.

In the former case, the direction of only the given concept is mentioned, whereas in

the latter, the directions of both the given and query concepts are mentioned, and the

task is to find in which of the 2 worlds the problem is true. Thus, recognizing a total

of 12 attributes is central to solving a qualitative word problem. These attributes are

defined below. The first four attributes are present in the knowledge passage, whereas

the rest are present in the question stem and answer options. These 12 attributes,

and their values for the 2 examples above are listed in Table 3.1.

1. concept1 - The surface form of the concept that causes an effect or reaction in

another concept.

2. concept2 - The surface form of the concept that is caused a result of concept1.

3. concept1 direction - The intensifier and associated surface form of the con-

cept1.

4. concept2 direction - The intensifier and associated surface form of the con-

cept2.

5. given concept - The concept whose direction and world are mentioned in the

question.
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6. query concept - The concept whose direction or world are queried in the

question.

7. given direction - The direction word of the given concept.

8. query a direction - The direction word of the query concept denoted by option

(A).

9. query b direction - The direction word of the query concept denoted by op-

tion (B).

10. given world - The world or context in which the the given concept is specified.

11. query a world - The world denoted by option (A) for the query concept.

12. query b world - The world denoted by option (B) for the query concept.

Based on the two examples seen above, there are two possible logical forms for

problems in the two datasets:

1. (c1, d1, c2, d2) (cgiv, dgiv, wgiv) → (ca, da, wa) ; (cb, db, wb) ; da != db ; wa = wb

= wgiv ; ca = cb

2. (c1, d1, c2, d2) (cgiv, dgiv, wgiv) → (ca, da, wa) ; (cb, db, wb) ; da = db ; wa != wb

; ca = cb

where,

c1 = concept1,

d1 = concept1 direction,

c2 = concept2,

d2 = concept2 direction,
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Table 3.1: Mapping of 12 Attributes for the Two Examples

Attribute ↓ Example 1 Example 2

concept1 greenhouse gases size of continent

concept2 ocean acidity trash buildup

concept1 direction increase (MORE) less (LESS)

concept2 direction expand (MORE) less (LESS)

given concept greenhouse gas size of continent

query concept acidity of ocean trash buildup

given direction reduced (LESS) smaller (LESS)

query a direction increase (MORE) less (LESS)

query b direction decrease (LESS) less (LESS)

given world ocean North America

query a world ocean North America

query b world ocean Asia

cgiv = given concept,

dgiv = given direction,

wgiv = given world,

ca = cb = query concept,

da = query a direction,

wa = query a world,

db = query b direction,

wb = query b world

The first logical form defines the structure of a problem in which the two an-

swer options are two different directions. The query a direction and query b direction
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attributes are different, whereas the query a world and query b world attributes are

the same. Contrastingly, the second logical form expresses that for problems con-

taining two different worlds as answer options, the query a world and query b world

attributes are different, whereas query a direction and query b direction are the same.

The task is to find which among the two queries hold true in the context of the knowl-

edge passage and the given belief from the question for each problem.

3.2 Datasets and Annotations

Each qualitative problem is solved based on the 12 attributes described previously.

The model described in section 3.3 is trained to recognize these attributes from a given

problem. Both datasets contain annotations for some of these attributes, and these

annotations are used to create the required training data. However, the annotations

are present in different formats across the two datasets. This section describes the

pre-processing or annotation extraction step applied to both datasets to extract the

necessary attributes.

3.2.1 Quartz Dataset

As explained earlier, the QuaRTz dataset (Tafjord et al., 2019) contains annota-

tions for both the knowledge passage text and the question stem and options. The

annotations are annotated with respect to the two concept types being compared in a

problem, which are termed as cause and effect. The knowledge passage annotations

consists of 6 annotated properties -

• cause prop - This property contains the surface form of the cause property in

the knowledge passage and corresponds to concept1 from the problem definition.

15



• effect prop - This property contains the surface form of the effect property in

the knowledge passage and corresponds to concept2.

• cause dir str - This property contains the surface form of the direction string

associated with the concept1 in the knowledge passage. It corresponds to con-

cept1 direction in the problem definition.

• effect dir str - This property contains the surface form of the direction string

associated with the concept2 in the knowledge passage and corresponds to con-

cept2 direction.

• cause dir sign - This property denotes the intensifier (”more” / ”higher” or

”less” / ”lower”) of concept1 direction .

• effect dir sign - This property denotes the intensifier (”more” / ”higher” or

”less” / ”lower”) of concept2 direction .

The annotations for the question stem and answer options usually contains any-

where between 0 - 8 properties. The dataset suffers from missing annotations for

several problems as not all problems may contain these properties. These properties

are also annotated with respect to the two concept types - cause and effect.

The annotation fields present in the dataset are:

• more cause prop - This property denotes the surface form of the cause con-

cept in the direction of ”MORE”.

• less cause prop - This property denotes the surface form of the cause concept

in the direction of ”LESS”
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• more effect prop - This property denotes the surface form of the effect concept

in the direction of ”MORE”.

• less effect prop - This property denotes the surface form of the effect concept

in the direction of ”LESS”

• more cause dir - This property denotes the surface form of the direction of

the cause concept in the direction of ”MORE”.

• less cause dir - This property denotes the surface form of the direction of the

cause concept in the direction of ”LESS”

• more effect dir - This property denotes the surface form of the direction of

the effect concept in the direction of ”MORE”.

• less effect dir - This property denotes the surface form of the the direction of

the effect concept in the direction of ”LESS”

3.2.2 Examples of Bad Annotations

Ideally, the reasoning module will reason using the concepts, directions and worlds

attributes while answering problems. However, the annotations of the concept at-

tributes or their surface problems from the question stem are unsuitable for use.

Below is an example from the QuaRTZ dataset exhibiting such bad annotations of

concept attributes from the question stem. The words in red indicate the annotations

present in the dataset, whereas the ones in green indicate the desired annotations for

this example.
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Example:

Q: When someone works out a lot they are than those that never exercise

Options: (A) stronger [correct] (B) weaker

Annotations:

less cause prop: those (amount of exercise)

more effect prop: they (muscle strength)

less effect prop: they (muscle strength)

more cause prop: someone (amount of exercise)

As a result, the approach followed in this work is an end-to-end neural model that

is capable of doing two tasks:

1. Parse the 8 attributes from a given qualitative problem.

2. Perform reasoning with these attributes to answer the problem.

3.2.3 Annotation Extraction for Quartz Dataset

Solving Qualitative word problems requires the model to recognize the 8 attributes

mentioned earlier. The model is trained using supervision to recognize and learn

the patterns of these attributes in a given problem. To enable this supervision, the

annotations of the QuaRTz dataset as explained previously can be used to extract the

required labelled data. The attributes that are extracted from the knowledge passage

are the 2 knowledge passage properties mentioned earlier. In addition, the intensifier

of the direction strings are also extracted. The task of extracting the attributes from
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the question is not as straightforward as it is for the knowledge passage. In order to

extract the required values for training the model, an algorithm is used to extract the

information from each problem.
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Algorithm 1: Annotation Extraction of Question in the QuaRTZ dataset.

1 Function extractAnnotationsHelper(is world diff, question part,

knowledge align):

2 if is world diff then

3 check which direction exists from question part

4 set given direction based on answer key and knowledge align

from options

5 else

6 set query a direction and query b direction based on the

properties they overlap with

7 set given direction from opposite concept type

8 end

9 Procedure extractAnnotations():

10 for each problem do

11 question part = final sentence of question stem

12 get is world diff

13 if options overlap separately with (more effect dir, less effect dir) or

(more cause dir, less cause dir) but not both then

14 extractAnnotationsHelper(is world diff)

15 else

16 set annotations to null

17 end

18 end

19 return

An example of the extracted attributes from the algorithm is present in the exam-

ple below. Since both query A and query B overlap with separately with the more
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effect dir and less effect dir annotations, according to the algorithm, the values of

these attributes query a direction and query b direction are assigned these surface

forms. Both these attributes are comparatives of the effect concept type. According

to the algorithm, the given direction attribute is assigned with reduced as the less

cause dir direction annotation belongs to cause concept type, which is opposite to the

concept type of the query directions. The intensities LESS and MORE are assigned

based on whether there is an overlap with annotations that begin with more or less.

Example:

K: An increase in greenhouse gases will expand the changes that are already

being seen including in ocean acidity

Q: What will happen to the acidity of the ocean if production of greenhouse gas

is reduced in the ground, compared to the surface rocks, were likely

Options: (A) increase (B) decrease

Annotations:

less cause dir: reduced

more effect dir: increase

less effect dir: decrease

Extracted Attributes:

given direction: reduced (LESS )

query a direction: increase (MORE )

query b direction: decrease (LESS )
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Algorithm 1 mentions the parameter is world diff. This variable denotes whether

or not two answer options refer to different worlds. A value of 1 denotes that the

two answer options refer to different worlds whereas a value of 0 denotes that the

both answer options refer to the same world. The is world diff annotation is used to

enforce constraints that are explained later in this chapter. This property is labelled

based on whether the two answer options for each problem contain two different

worlds. A world is determined as any noun phrase that indicates a named entity.

The question part parameter is assigned as the last sentence of the question stem,

as most problems in the training data contain the query direction surface form in the

final sentence of the question stem. The question stem is split based on the period(.)

character to retrieve the final sentence.

3.2.4 Quarel Dataset

Unlike the QuaRTz dataset, the QuaRel dataset does not contain surface forms

of the directions and concepts. Also, there is no Ki present in the dataset. However,

the logical forms contain the intensifiers and the concepts being compared in a given

problem. The logical forms for each question is based on the tuple (setup, option-A,

option-B) (Tafjord et al., 2018). setup here denotes the predicate(s) that describe

the current scenario in the question. option-A denotes the predicate of option A,

and likewise for option-B. The setup predicate is present on the left hand side of the

logical form, whereas the option predicates are on the right hand side. There are two

possible logical forms in the dataset: (Tafjord et al., 2018)

1. qrel(p, d, w) → qrel(p
′
, d

′
, w

′
) ; qrel(p

′′
, d

′′
, w

′′
).

2. qval(p, d, w), qval(p
′
, d

′
, w

′′′
) → qrel(p

′
, d

′
, w

′
) ; qrel(p

′
, d

′
, w

′
).
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The predicate qrel is used to denote relative values of direction intensities, whereas

the qval predicate denotes absolute direction intensities.

The knowledge base used for the QuaRel dataset is present in Table 3.2.

The algorithm used to extract the annotations from the QuaRel dataset are ex-

plained in Algorithm 2:

Algorithm 2: Algorithm to Extract Annotation from QuaRel Dataset.

1 Procedure extractAnnotations():

2 initialize KB of 19 properties

3 for each problem do

4 answer option = problem[answerKey]

5 logical form = problem["logical form"]

6 lhs, rhs = logical form.split(→ )

7 concept1, concept2 = lhs["concept"], rhs["concept"]

8 knowledge align = KB[(concept1, concept2)]

9 query a direction, query b direction = rhs[0]["direction"],

rhs[1]["direction"]

10 if answer option == ”A” then

11 given direction = query a direction

12 else

13 given direction = query b direction

14 end

15 end

16 return
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Table 3.2: The Knowledge Base Used in Constructing Knowledge Sentences for the
Quarel Dataset

Property1 Property2 Relationship

Friction Speed Inverse

Friction Distance Inverse

Friction Smoothness Inverse

Friction Heat Proportional

Speed Distance Proportional

Speed Smoothness Proportional

Speed Heat Inverse

Distance Smoothness Proportional

Distance Heat Inverse

Smoothness heat Inverse

Distance Loudness Inverse

Distance Brightness Inverse

Distance Size Inverse

Loudness Brightness Proportional

Loudness Size Proportional

Brightness Size Proportional

Speed Time Inverse

Time Distance Proportional

Weight Acceleration Inverse

Strength Distance Proportional

Strength Thickness Proportional

Mass Gravity Proportional

Flexibility Breakability Inverse

Exercise Sweat Proportional
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Example:

K: more weight is caused by less acceleration

Q: the empty cement truck weighed less than the full cement truck so it was

when it was accelerating

Options: (A) faster [correct] (B) slower

Logical Form:

qrel(weight, lower, empty cement truck) → qrel(acceleration, higher, empty ce-

ment truck) ; qrel(acceleration, lower, empty cement truck)

Extracted Attributes:

given direction: (LESS )

query a direction: (MORE )

query b direction: (LESS )

In the above example, the concepts are marked in red, the directions are marked

in purple and the world is marked in green. The extracted attributes from the al-

gorithm are also mentioned, from the QuaRel dataset, only intensities (LESS )) and

(MORE )) are extractable. As the answer options are two different directions, the

query a world and query b world attributes have the same value as the given world

attribute. This is described in the logical form for the example.

The following sections outline the various parts of the model definition.
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3.3 Model Definition

This section outlines the specifics of the model developed in this work.

3.3.1 Model Overview

The overview of the model is displayed in Figure 3.1. The various layers of the

model are:

1. Embedding Layer: Retrieve the embeddings for the input sequence of a qual-

itative word problem.

2. Embedded Representation: Construct the embedded representations for the

12 attributes of a qualitative word problem.

3. Answer Computation: Compute the answer for a problem using a differen-

tiable reasoner.

4. Explanation Generation: Generate the explanation regarding how the an-

swer was computed by the previous phase.

The process of computing the correct answer includes computing the representations

of the problem specific attributes based on distributional semantics and then rea-

soning using these representations to compute the final answer. To compute the

representations of the problem attributes, an embedding layer is first used to obtain

the embeddings of the input sequence to the model. The embeddings are obtained

using BERT (Devlin et al., 2018). The representations for the 12 different attributes

are then constructed using these embeddings through 2 vectors -attention vector and

value vector. Constraints are then enforced on the attention vectors of these attributes
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Figure 3.1: Model Overview

based on several task specific conditions. A reasoning layer consists of vector based

operations on the attribute representations to compute the final answer. The expla-

nation generation layer generates the explanation for the generated answer in terms

of the attention vectors of the attributes.

3.3.2 Input Sequence to Retrieve Embeddings

Before performing the required reasoning, the model creates contextual embed-

dings as features for each problem. The embeddings are created using BERT (Devlin

et al., 2018). The code is implemented based on (Wolf et al., 2019). The input se-
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quence fed to the BERT model has the format: [CLS] Ki [SEP] Qi [SEP] Query A

[SEP] Query B [SEP]. Here the CLS and SEP are special tokens denoting the start

token and separator tokens of an input sequence specific to the BERT model (Devlin

et al., 2018), and it changes depending on the variant of the BERT model that is used.

This vector is of length l. Thus, the difference with employing different variations

of the BERT architecture in this approach lies only in this layer. To retrieve the

embeddings, the implementation also expects the input sequence mask and sequence

segment ids. The first part of the sequence [CLS] Ki [SEP] has segment id zero,

whereas the remaining part has segment id of 1.

Input Sequence Sub-Part Masks

Part of the reasoning process involves using different mask vectors to compute

the attribute specific attention vectors. The mask vectors passed to the model are

listed below. All mask vectors have length l, the same length as the input sequence.

These vectors contain a sequence of 1’s in specific positions corresponding to the

subsequence in which a particular attribute is present.

1. Knowledge passage mask : This vector contains a sequence of 1s at positions

corresponding to the tokens that constitute Ki in the input sequence. Let Ki =

K1, K2.. Kj be the sequence of tokens for the Knowledge passage mask of the

length j. For the input sequence vector of length l : [CLS] K1, K2.. Kj [SEP]

Qi [SEP] QueryA [SEP] QueryB [SEP]. The Knowledge passage mask vector

is of the format: 0[CLS] 1K1 , 1K2 , .. 1Kj
0[SEP ] 0Qi

0[SEP ] 0QueryA 0[SEP ] 0QueryB

0[SEP ]
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2. Question stem mask : This vector contains a sequence of 1s corresponding

to the tokens that constitute Qi in the input sequence.

3. Option A mask : This vector contains a sequence of 1s corresponding to the

tokens that constitute QueryA in the input sequence.

4. Option B mask : This vector contains a sequence of 1s corresponding to the

tokens that constitute QueryB in the input sequence.

Direction String Masks

The direction strings of the five different direction attributes that extracted from

the annotations are also passed as input to the model in the form of masks. This vector

has the same length as the input sequence - l. Similar to the direction value boolean

parameters, five additional boolean parameters are used to denote whether direction

strings are extracted from the dataset. A value of 1 denotes that the direction strings

are present, whereas a value of 0 indicates that the string are not present. Below is a

simplified example of a direction string mask vector for the direction word ”reduced”

present in the question stem of a problem.
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Example:

K: AnK1 increaseK2 inK3 greenhouseK4 gasesK5 willK6 expandK7 theK8 changesK9

thatK10 areK11 alreadyK12 beingK13 seenK14 includingK15 inK16 oceanK17 acidityK18

Q: WhatQ1 willQ2 happenQ3 toQ4 theQ5 acidityQ6 ofQ7 oceanQ8 ifQ9 productionQ10

ofQ11 greenhouseQ12 gasQ13 isQ14 reducedQ15

(Query A) increaseQuery A1 (Query B) decreaseQuery B1

Extracted Attributes:

given direction: reduced (LESS )

query a direction: increase (MORE )

query b direction: decrease (LESS )

Input Parameters:

Direction Mask: [0[CLS], 0K1 .. 0K18 , 0[SEP] 0Q1 0Q2 0Q3 0Q4 0Q5 0Q6 0Q7 0Q8 0Q9

0Q10 0Q11 0Q12 0Q13 0Q14 1Q15, 0[SEP], 0Query A1, 0[SEP], 0Query B1, 0[SEP]]

Direction Intensity: -1 (LESS)

World Diff: 0

Direction Intensities

The intensities of the five direction attributes - concept1 direction, concept2 di-

rection, given direction query a direction and query b direction are also passed to

the model. These intensities are termed gold intensitydirX . These vectors are of di-

mension 1. A value of +1 is used to represent direction MORE, and a value of -1

is used to represent direction LESS. If any of these parameters cannot be extracted
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from the annotations in the dataset, a value of 0 is used. Five additional boolean

parameters are used to represent whether or not the five direction value parameters

are present for a given problem. A value of 1 for these parameters denotes that the

direction values are either 1 or -1, a value of 0 denotes that the direction values are

0. In the example, the surface form of the given direction attribute - reduced is

associated with the direction intensity LESS, therefore a value of -1 is passed as

gold intensitygiven direction.

World Diff

This parameter is used to indicate whether a problem has different worlds as the

different options. A value of 1 indicates that the example contains different worlds

as its options or that the attributes query a world and query b world are different,

whereas a value of 0 indicates that the options belong to the same world, or that

query a world and query b world are the same. For the example shown above, the

answer options are different directions, hence a value of 0 is assigned to this parameter.

These parameters constitute the inputs to the model.

3.3.3 Embedding Layer

To construct the embeddings, the input sequence explained previously - inputseq

= [CLS] Ki [SEP] Qi [SEP] QueryAi [SEP] QueryBi [SEP] is passed to a BERT-style

pretrained model. The pretrained model then outputs the embeddings of the entire

input sequence. The dimension of these embeddings is Rl∗h, where l is the sequence

length and h is the hidden size of the pretrained model’s hidden states.
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e = BERT(inputseq)

e ∈ Rl∗h
(3.1)

3.3.4 Embedded Representation

These embeddings are then fed to 8 different one-layer neural networks indepen-

dently to compute the attribute representations of the 8 attributes of a qualitative

word problem. Each attribute is represented using 2 vectors: Attention Vector and

Value Vector. For each token i ∈ 1...l, where l is the sequence length of the input

sequence, each attribute specific network fX accepts an input vector of dimension h

which is the hidden size of a token in the embedding, and outputs a vector of dimen-

sion 1 - tXi , which denotes the raw attention score or importance of the token in the

input sequence with respect to a particular property.

tXi = fX(ei) (3.2)

where fX : Rh → R1 is a linear function of the form WX .e + bX , where WX and

bX are learnable parameters. After obtaining the raw attention scores, the scores are

first normalized using a sigmoid operation. To avoid attending to unnecessary tokens,

the attention is normalized over different sub-sequence masks for different attributes.

The mask parameter that is used for normalizing the scores of each attribute is listed

in Table 3.3.

attentionX = sigmoid([tX1 ..t
X
l ],mask)

attentionX ∈ Rl

(3.3)
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Table 3.3: Normalization Masks for Attributes of a Qualitative Word Problem

Attribute Value

concept1 Ki

concept2 Ki

concept1 direction Ki

concept2 direction Ki

given concept Qi

given direction Qi

given world Qi

query concept Qi

query a direction Qi + Ai

query a world Qi + Ai

query b direction Qi + Bi

query b world Qi + Bi

A weighted sum of the normalized attention scores and the embeddings constitutes

the Value vector for each attribute.

valueX =
∑

(attentionX .e)

valueX ∈ Rh

(3.4)

3.3.5 Constraints

The framework explained so far can also be supplemented with domain and logi-

cal constraints specific to Qualitative Word Problems. The constraints that are used

here are similar to the constraints used in logical paradigms like Answer Set Program-

ming (Lifschitz, 2008) and First Order Logic (Tannen, 2009). These constraints are
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implemented similar to those present in (Stewart and Ermon, 2016) and (Xu et al.,

2017). The constraints are enforced through several auxiliary loss terms. The loss

terms are computed either on the attention vectors or the computed representations

of the problem-specific attributes. The various constraints that are enforced in the

model are described here.

3.3.6 Direction Spans Constraint

Since the reasoning process relies on recognizing appropriate words as direction

words, it makes sense to have the model learn the sequence of words that correspond

to the different direction attributes. As a result, an additional constraint imposes

a penalty if the attentions of the direction attributes do not match the expected

attentions. However, not all problems in the QuaRTz dataset (Tafjord et al., 2019)

are completely annotated for directions. This means that care must be taken to

only consider those problems that have the required annotations. This constrained

is implemented using the binary cross entropy (bce loss) function. For each of the

5 direction attributes present in the problem definition, this function is used in the

following manner as a loss term:

loss dir span = bce loss(attentiondirection,maskdirX) (3.5)

The five individual loss terms are loss concept1 direction span, loss concept2 direc-

tion span, loss given direction span, loss query a direction span, loss query b direction

span. The final loss term total loss dir span is the sum of these five terms. An exam-

ple for the given direction word reduced is present below
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total loss dir span = sum(loss concept1 direction span, loss concept2 direction span,

loss given direction span, loss query a direction span,

loss query b direction span)

(3.6)

Direction Spans Constraint Example:

Q: WhatQ1 willQ2 happenQ3 toQ4 theQ5 acidityQ6 ofQ7 oceanQ8 ifQ9 productionQ10

ofQ11 greenhouseQ12 gasQ13 isQ14 reducedQ15

given direction mask: [0[CLS], .. , 0Q1, 0Q2, 0Q3, 0Q4, 0Q5, 0Q6, 0Q7, 0Q8, 0Q9, 0Q10,

0Q11, 0Q12, 0Q13, 0Q14, 1Q15, .., 0[SEP]]

attentiongiven direction : [0[CLS], .. , 0Q1, 0Q2, 0Q3, 0Q4, 0Q5, 0Q6, 0Q7, 0Q8, 0Q9, 0Q10,

0Q11, 0Q12, 0Q13, 0Q14, 1Q15, .., 0[SEP]]

loss given direction span: 0

3.3.7 Knowledge Passage Directions Disjoint

Since two concepts are always compared with each other in a qualitative word

problem, it is straightforward that the corresponding direction words of the concepts

are either different words or occupy different positions in the the knowledge passage

text if they’re the same word. This constraint is enforced with the following equation:

loss disjoint = attentionconcept1 direction ∗ attentionconcept2 direction (3.7)

The result of this expression is used as a loss term. It returns the measure of

similarity between two attention vectors. The higher the similarity, the higher the
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value returned by the method, and as a result, the higher the value of the loss term

that needs to be minimized.

Knowledge Passage Directions Disjoint Example:

K: AnK1 increaseK2 inK3 greenhouseK4 gasesK5 willK6 expandK7 theK8 changesK9

thatK10 areK11 alreadyK12 beingK13 seenK14 includingK15 inK16 oceanK17 acidityK18

attentionconcept1 direction : [0[CLS], 0K1, 1K2, 0K3, 0K4, 0K5, 0K6, 0K7, 0K8, 0K9,

0K10, 0K11, 0K12, 0K13, 0K14, 0K15, .., 0[SEP]]

attentionconcept2 direction : [0[CLS], 0K1, 0K2, 0K3, 0K4, 0K5, 0K6, 1K7, 0K8, 0K9,

0K10, 0K11, 0K12, 0K13, 0K14, 0K15, .., 0[SEP]]

loss disjoint: 0

3.3.8 Constraint on Structure of Qualitative Word Problems

As mentioned earlier in section 3.1, problems from the dataset have two possible

logical forms. Recognizing which logical form a problem adheres to is important as the

reasoning process depends on whether the given and query directions and worlds are

similar. These logical forms are enforced utilizing the is world diff annotation. The

loss term for this constraint consists of 8 different sub-losses, that together enforce

two conditions:

1. Examples where query a world != query b world should contain the two dif-

ferent worlds in different answer options.

2. Examples where query a world == query b world should contain the two dif-
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ferent directions query a direction and query b direction in different answer

options.

The 8 individual loss terms are explained below. The total loss is the sum of the

8 individual constraints.

1. query a world in option: This term enforces that the attentionquery a world vec-

tor for examples with is world diff value of 1 should attend over the query A

sub-sequence. It is defined as:

query a world in option =
∑

(1− (maskQueryA) ∗ attentionquery a world)

(3.8)

2. query b world in option: This term enforces that the attentionquery b world vec-

tor for examples with is world diff value of 1 should attend over the query B

sub-sequence. It is defined as:

query b world in option =
∑

(1− (maskQueryB) ∗ attentionquery b world)

(3.9)

3. query a world not in option: This term enforces that the attentionquery a world

vector for examples with is world diff value of 0 should not attend over the

query A sub-sequence. It is defined as:

query a world not in option =
∑

(1− (maskstem) ∗ attentionquery a world)

(3.10)

4. query b world not in option: This term enforces that the attentionquery b world

vector for examples with is world diff value of 0 should not attend over the

query B sub-sequence. It is defined as:

query b world not in option =
∑

(1− (maskstem) ∗ attentionquery b world)

(3.11)

37



5. query a direction in option: This term enforces that the attentionquery a direction

vector for examples with is world diff value of 0 should attend over the query

A sub-sequence. It is defined as:

query a direction in option =
∑

(1− (maskQueryA) ∗ attentionquery a direction)

(3.12)

6. query b direction in option: This term enforces that the attentionquery b direction

vector for examples with is world diff value of 0 should attend over the query

B sub-sequence. It is defined as:

query b direction in option =
∑

(1− (maskQueryB) ∗ attentionquery b direction)

(3.13)

7. query a direction not in option: This term enforces that the attentionquery a direction

vector for examples with is world diff value of 1 should not attend over the

query A sub-sequence. It is defined as:

query a direction not in option =
∑

(1− (maskstem) ∗ attentionquery a direction)

(3.14)

8. query b direction not in option: This term enforces that the attentionquery b direction

vector for examples with is world diff value of 1 should not attend over the

query B sub-sequence. It is defined as:

query b direction not in option =
∑

(1− (maskstem) ∗ attentionquery b direction)

(3.15)
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query a direction in option, World Diff = 0

inputseq : [CLS] K1 .. K18 [SEP] WhatQ1 willQ2 happenQ3 toQ4 theQ5 acidityQ6 ofQ7

oceanQ8 ifQ9 productionQ10 ofQ11 greenhouseQ12 gasQ13 isQ14 reducedQ15 [SEP]Q16

increaseQuery A1 [SEP]Query A2 decreaseQuery B1 [SEP]Query B2

maskQueryA : [0[CLS], .. , 0Q1, 0Q2, 0Q3, 0Q4, 0Q5, 0Q6, 0Q7, 0Q8, 0Q9, 0Q10,

0Q11, 0Q12, 0Q13, 0Q14, 0Q15, 0Q16, 1[Query A1], 0[Query A2], 0[Query B1], 0[Query B2]]

attentionquery a direction : [0[CLS], .. , 0Q1, 0Q2, 0Q3, 0Q4, 0Q5, 0Q6, 0Q7, 0Q8,

0Q9, 0Q10, 0Q11, 0Q12, 0Q13, 0Q14, 0Q15, 0Q16, 1[Query A1], 0[Query A2], 0[Query B1],

0[Query B2]]

query a direction in option : 0

query a world not in option, World Diff = 0:

inputseq : [CLS] K1 .. K18 [SEP] WhatQ1 willQ2 happenQ3 toQ4 theQ5 acidityQ6 ofQ7

oceanQ8 ifQ9 productionQ10 ofQ11 greenhouseQ12 gasQ13 isQ14 reducedQ15 [SEP]Q16

increaseQuery A1 [SEP]Query A2 decreaseQuery B1 [SEP]Query B2

maskstem : [0[CLS], .. , 1Q1,1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7, 1Q8, 1Q9, 1Q10,

1Q11, 1Q12, 1Q13, 1Q14, 1Q15, 0Q16, 0[Query A1], 0[Query A2], 0[Query B1], 0[Query B2]]

attentionquery a direction : [0[CLS], .. , 0Q1, 0Q2, 0Q3, 0Q4, 0Q5, 0Q6, 0Q7, 1Q8,

0Q9, 0Q10, 0Q11, 0Q12, 0Q13, 0Q14, 0Q15, 0Q16, 0[Query A1], 0[Query A2], 0[Query B1], 0[Query B2]]

query a world not in option : 0
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Constraint on Query Directions

Another constraint that is helpful in enforcing the logical forms is described here.

For examples with is world diff value of 1, the query a value and query b value vec-

tors should ideally represent the same direction word. In order to enforce this con-

straint through a loss function, the attention equal procedure is used. This function

accepts the attention query a value and attention query b value vectors as input, and

returns a higher loss value if the attentions of the two vectors diverge.

The loss term loss a b equal is defined below:

loss a b equal =
∑

(|attentionquery a direction − attentionquery b direction|) (3.16)

3.3.9 Answer Computation - Reasoning

Once the representations of the 8 properties are computed, the next step is to

compute the scores for both answer options. The answer with the higher computed

score is labeled as the correct answer. The reasoning function calculates the score

by comparing the qualitative relationships present in Ki and Qi. This is done by

computing the alignment of the intensities of the two direction attributes in Ki, the

alignment between given direction and query direction for the two queries, and also

the match between given world and query world for the two queries. These three

different indicators are:

• Knowledge Direction Align : The alignment of intensities between the two

attributes valueconcept1 direction and valueconcept2 direction from the knowledge pas-

sage termed Knowledge Direction Align.

• Given Query Direction Align : The alignment of the intensities between
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valuegiven direction and valuequery a direction for option A, termed Given Query

A Direction Align, and between valuegiven direction and valuequery a direction for

option B termed Given Query B Direction Align.

• Given Query World Match : The alignment between attentiongiven world

and attentionquery a world , termed Given Query A World Match ; and between

attentiongiven world and attentionquery b world termed termed Given Query B World

Match.

The scores for option A and option B are defined as:

Query A Score = Knowledge Direction Align ∗Given Query A Direction Align

∗Given Query A World Match

(3.17)

Query B Score = Knowledge Direction Align ∗Given Query B Direction Align

∗Given Query B World Match

(3.18)

and,

Knowledge Direction Align = intensityconcept1 direction ∗ intensityconcept2 direction

(3.19)

Given Query A Direction Align = intensitygiven direction ∗ intensityquery a direction

(3.20)
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Given Query B Direction Align = intensitygiven direction ∗ intensityquery b direction

(3.21)

and,

Given Query A World Match = 1 (3.22)

Given Query B World Match = 1−
∑

(|attentionquery a world

− attentionquery b world|)
(3.23)

The variable indicatordirX denotes the intensity of a direction attribute dirX. It

is predicted by a classifier called POLARITY DETECTOR, which is defined as:

POLARITY DETECTOR = tanh(W POL.valuedirX + bPOL) (3.24)

POLARITY DETECTOR : Rh → R1 ∈ [−1,+1] is a linear function followed

by a tanh activation. Details of this classifier is present section 3.3.9. The value

and attention vector of given world and query a world are assumed to be the same to

simplify the Given Query World Match indicator variable. As a result the Given

Query A World Match is 1. Given Query B World Match is computed by comparing

the attentions of attentionquery a world and attentionquery a world. If the two attentions

attend to different tokens, then Given Query B World Match will have a value < 0.

This reasoning function is then optimized using cross entropy loss. This constitutes

the end-to-end loss - loss ce.

loss ce = CrossEntropy([Query A Score,Query B Score], answerindex) (3.25)
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Direction Align Computation

The two indicator variables - Knowledge Direction Align and Given Query Di-

rection Align are predicted using the POLARITY DETECTOR classifier. The

range of the output of this classifier, termed predicted intensitydirX , is [-1, +1]. val-

ues < 0 are treated as the intensity LESS, whereas those > 0 are treated as MORE.

Each of the five direction attributes have an associated intensity with their surface

forms that are extracted during the annotation extraction process. This data is used

to train this classifier using an L1 loss function applied to the five different direction

properties - denoted by dirX. The final loss term loss dir align is the sum of the five

individual loss terms. The loss terms for individual directions is defined as:

loss dir align = mean(predicted intensitydirX − gold intensitydirX) (3.26)

The five individual loss terms are loss concept1 direction align, loss concept2 di-

rection align, loss given direction align, loss query a direction align, loss query b di-

rection align. The final loss term total loss dir align is defined as:

total loss dir align = sum(loss concept1 direction align,

loss concept2 direction align, loss given direction align,

loss query a direction align, loss query b direction align)

(3.27)

The reasoning mechanism defined above is based on the truth table of an equiva-

lent symbolic reasoner displayed in Table 3.4.
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Table 3.4: Symbolical Reasoner Truth Table

Knowledge

Direction Align

Given Query

Direction Align

Given Query

World Match

Correct Answer?

F F F F

F F T T

F T F T

F T T F

T F F T

T F T F

T T F F

T F F T

3.3.10 Answer Generation - Explainability of Model

As observed so far, a qualitative word problem can be specified by 12 attributes.

The problem can be solved by reasoning over these attributes. As the attention vectors

of an attribute contain the relevancy scores for each token over the input sequence,

the K highest attention scores and the tokens corresponding to the positions of these

scores can be combined to visualize the relative contribution of each token in creating

the representation of the attribute.

TopKIndicesX = argsort
1..K

attentionX

TopKTokensX = {token|token ∈ inputseq & tokenindex ∈ TopKIndicesX}

TopKScoreX = argmax
1..K

attentionX
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In the above set of expressions, the TopKTokensX contains the tokens in the in-

put sequence that have the top-K attention scores for the attribute X. The indices of

the tokens with top-K attention scores is denoted by the term TopKScoreX , whereas

the scores are denoted by TopKScoreX . In addition, the output of the POLAR-

ITY DETECTOR classifier can be used to interpret the intensity of the direction

attribute as:

IntensitydirX =


> 0 ”MORE”

< 0 ”LESS”

3.4 Training

For the QuaRTz dataset, the loss function that is to be optimized is the sum of

the end-to-end loss and the auxiliary loss terms described till now. However, for the

QuaRel dataset, as the gold direction surface forms are not present, two methods are

explored:

1. Fine-tune the best model of QuaRTz on the QuaRel dataset. This model is al-

ready trained to recognize the direction surface forms from training the QuaRTz

dataset.

2. Augment the training data of the QuaRel dataset with the QuaRTz dataset and

train it similar to the QuaRTz dataset.
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Chapter 4

RESULTS

This chapter outlines the accuracies of the model on the two datasets. As the aim of

this work is to also make the model intepretable, the outputs of the attention vectors

for the various attributes is also displayed here. The model explained so far is referred

to as DEKR (Deep Embedded Knowledge Reasoning).

4.1 Quartz Dataset

Table 4.1 displays the accuracy of the model on 784 problems of the QuaRTz

dataset.

Table 4.1: Accuracies of the Model on the Quartz Test Set

Models ↓ Test Acc.

DEKR (Upper Bound) 79.8%

4.1.1 Example of Interpretability

In order to demonstrate the interpretability of the model, this section displays the

top 5 tokens with the highest attention for each of the attributes of an example from

the test set. The example is described below:
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Example:

K: The Southern Hemisphere has less trash buildup in the oceans because less of the

region is continent.

Q: If North America is smaller then Asia, which continent experiences less trash

buildup?

Options: (A) North America (B) Asia

In the example above, the correct answer is option (A). The attentions of the

value and world attributes are displayed below. Since the answer options are two

different worlds (North America and Asia), we expect query a direction and query

b direction to attend over the same surface forms, whereas query a world and query

b world should attend over North America and Asia respectively. The comparison

of the each the actual and predicated tokens for each of the attributes is described

below:

1. concept1 direction - The expected surface form for this attribute is less,

associated with the concept trash buildup in the knowledge passage. In the

figure below, the token with the highest attention for this attribute is less.

2. concept2 direction - The expected surface form for this attribute is less,

associated with the concept continent in the knowledge passage. In the figure

below, the token with the highest attention for this attribute is less.

3. given direction - The expected surface form for this attribute is smaller. The

token with the highest attention for this attribute is smaller.

4. query a direction - The expected surface form for this attribute is less, which

is associated with the concept trash buildup. In the figure below, the token with

the highest attention for this attribute is less.
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5. query b direction - The expected surface form for this attribute is less, which

is associated with the concept trash buildup. In the figure below, the token with

the highest attention for this attribute is less. Since the answer options compare

two different worlds, the token with top attention for the claim a direction and

claim b direction is the same.

6. given world - Since the question stem describes that North America is smaller

than Asia, the expected surface form for this attribute is North America. In

the figure below, the tokens with the highest attentions for this attribute are

America and North.

7. query a world - As answer option (A) denotes a world, the expected surface

form for this attribute is North America. In the figure below, the tokens with

the highest attentions for this attribute are America and North.

8. query b world - As answer option (B) also denotes a world, the expected

surface form for this attribute is Asia. In the figure below, the token with the

highest attentions for this attribute is Asia.

4.2 Analysis of Flip Questions

One of the characteristics of the QuaRTz dataset is that it contains problems

”flipped” versions of problems. Questions are flipped in a manner so that the correct

answer changes. This section demonstrates the capability of the model to answer

flipped questions.

48



Figure 4.1: QuaRTz Visualization Example
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Example:

K: An increase in greenhouse gases will expand the changes that are already being

seen including in ocean acidity

Q: What will happen to the acidity of the ocean if production of greenhouse gas is

reduced in the ground, compared to the surface rocks, were likely

Options: (A) it will increase (B) it will decrease

Flipped Example:

K: An increase in greenhouse gases will increase the changes that are already being

seen including in ocean acidity

Q: what will happen to the acidity of the ocean if more greenhouse gas gets produced

Options: (A) it will increase (B) it will decrease

The two examples above two examples from the dev set of the QuaRTz dataset.

The two questions have the same knowledge passage, same answer options and similar

question stems. In the first example, the greenhouse gases are reduced in the ground,

whereas they are more in the flipped example. The model can therefore detect and

classify flipped direction words of the dataset. The attentions of the two examples

are listed in Figure ?? and Figure ??.

4.3 Analysis of Negated Comparatives

This section demonstrates the capability of the model to handle negative intensi-

fiers through an example and its flipped version that contains a negative intensifier.
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Figure 4.2: Non-Flipped Example
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Figure 4.3: Flipped Example
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Figure 4.4: Attention of Given Direction for Example

Figure 4.5: Attention of Given Direction for Example with Negative Intensifier

Example:

K: In erosion, the more energy the water has, the larger the particle it can carry

Q: When someone has a lot of energy they can move something

Options: (A) small (B) big

Example of Negated Comparative:

K: In erosion, the more energy the water has, the larger the particle it can carry

Q: When someone has no energy they can move something

Options: (A) small (B) big

The intensifier lot of energy from the first example is replaced by the negative

intensifier no energy. The model is able to recognize this negated intensifier and

appropriately classifies it as ”LESS” as in less energy. The attentions of the Given

Direction attribute for both problems is present in Figure 4.4 and Figure 4.5.
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Figure 4.6: Attention of Qualitative Numeric Comparatives

4.4 Handling Qualitative Numeric Comparatives

The model is also able to recognize and detect qualitative numeric comparatives

like doubled, halved etc. as direction attributes. An example is present below.

Example:

K: Using less nonrenewable resources means that they will last Longer

Q: If we double our use of nonrenewable resources, we will end up having of

them

Options: (A) less (B) more

In the above example, the two concepts that are compared are non renewable

resource usage and non renewable resource availability. The Given Direction attribute

in Qi is the word doubled. This word has an intensity of ”MORE” denoting more usage

of nonrenewable resources. The model is able to recognize both the surface form and

the intensity correctly as seen in Figure 4.6.
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4.5 Options with Different Directions but Containing a World

The model is able to recognize the correct surface forms of the query a direction

and query b direction directions even in the presence of worlds in the answer options.

The example below contains a slight modification from the example found in section

1.2. Both the options contain the world ocean acidity. But the model is able to

recognize the words increases and decreases as the query direction attributes as shown

in Figure 4.7.

Example:

K: An increase in greenhouse gases will increase the changes that are already being

seen including in ocean acidity

Q: What will happen to the acidity of the ocean if production of greenhouse gas is

reduced in the ground, compared to the surface rocks, were likely

Options: (A) ocean acidity increases (B) ocean acidity decreases

4.6 Ablation Analysis on Constraints

This section performs an ablation analysis on the different constraints that are

explained in Chapter 3.

where the loss terms are,

ce = Cross Entropy Loss c1 = Knowledge Passage Directions Disjoint

c dir span = Direction Spans Constraint

c dir align = Direction Align Constraint

loss struct = Constraint on Structure + Constraint on Query Directions
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Table 4.2: Ablation Analysis on Different Loss Terms

test concept1

direction

concept2

direction

given

direction

query a

direction

claim b

direction

ce 50 80 82 50 37 60

ce, loss

struct

50 78 82 49 37 60

ce, c1 50 19 18 50 62 39

ce, c1,

loss

struct

50 80 82 50 62 39

ce, c1,

loss

struct, c

dir align

50 80 88 50 62 39

ce, c1,

loss

struct, c

dir align,

c dir

span

79.48 89 92 80 94 95

ce, dir

span, dir

align

78.18 91 88 78 91 94

ce, dir

span

74.1 16 17 50 50 50
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Figure 4.7: Options With Different Directions But Containing a World

from the constraint definitions in Chapter 3.

4.7 Quarel Dataset

Table 4.3 displays the accuracy of the model on 552 problems of the QuaRel

dataset. The two approaches outlined including using a trained model of the QuaRTz

dataset (Tafjord et al., 2019) as the pretrained model and the bert-large-uncased-

whole-word-masking used as the pretrained model with the training data of the
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QuaRel dataset combined with that of the QuaRTz dataset.

Table 4.3: Accuracies of the Model on QuaRel Test Set

Models ↓ Test Acc.

QuaRTZ PFT 81.15%

BERT Augmented 78.98%

4.7.1 Example of Interpretability in Quarel

In order to demonstrate the interpretability of the model with respect to the

QuaRel dataset, this section displays the top 5 tokens with the highest attention for

each of the attributes of an example from the test set. The example is described

below:

Example:

K: less smoothness is caused by more heat

Q: Tank the kitten learned from trial and error that carpet is rougher then skin.

when he scratches his claws over carpet it generates then when he scratches his

claws over skin

Options: (A) more heat (B) less heat

In the example above, the correct answer is option (A). The attentions of the

value and world attributes are present in the figure below. Since the answer options

are two different worlds (North America and Asia), we expect claim a direction and

claim b direction to attend over the same surface forms, whereas claim a world and

claim b world should attend over North America and Asia respectively. The compari-

son of the each the actual and predicated tokens for each of the attributes is described

below:
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1. concept1 direction - The expected surface form for this attribute is less,

associated with the concept trash buildup in the knowledge passage. In the

figure below, the token with the highest attention for this attribute is less.

2. concept2 direction - The expected surface form for this attribute is less,

associated with the concept continent in the knowledge passage. In the figure

below, the token with the highest attention for this attribute is less.

3. given direction - The expected surface form for this attribute is smaller. The

token with the highest attention for this attribute is smaller.

4. claim a direction - The expected surface form for this attribute is less, which

is associated with the concept trash buildup. In the figure below, the token with

the highest attention for this attribute is less.

5. claim b direction - The expected surface form for this attribute is less, which

is associated with the concept trash buildup. In the figure below, the token with

the highest attention for this attribute is less. Since the answer options compare

two different worlds, the token with top attention for the claim a direction and

claim b direction is the same.

6. given world - Since the question stem describes that North America is smaller

than Asia, the expected surface form for this attribute is North America. In

the figure below, the tokens with the highest attentions for this attribute are

America and North.

7. claim a world - As answer option (A) denotes a world, the expected surface

form for this attribute is North America. In the figure below, the tokens with

the highest attentions for this attribute are America and North.
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8. claim b world - As answer option (B) also denotes a world, the expected

surface form for this attribute is Asia. In the figure below, the token with the

highest attentions for this attribute is Asia.

4.8 Error Analysis

This section outlines categories of errors for the misclassified examples from the

dev set for the QuaRTz dataset (Tafjord et al., 2019). Out of 384 examples in the dev

set, 87 examples were misclassified. The counts of the various categories are present

in Table 4.4

Table 4.4: Counts of Failure Examples from Quartz Dataset

Categroies ↓ Count

Incorrect Value Prediction 35

Wrong Word Detected as the Value 28

Numbers 9

Given World Is Equal to Claim World 6

Dataset Errors 5

Commonsense Reasoning 4

4.8.1 Incorrect Value Prediction

Some direction words like younger, closer, farther etc., can refer to either

MORE or LESS direction intensities based on the concept they are associated with

in a particular problem. This ambiguity in terms of direction intensity is the major

reason for errors in the QuaRTz dataset (Tafjord et al., 2019). Below is an example
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Figure 4.8: QuaRel Example Visualization
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of a problem from the dev set for which the model incorrectly predicted the sign of

the direction word farther.

K: When particles of matter are closer together, they can more quickly pass the

energy of vibrations to nearby particles

Q: If jim moves some particles of matter farther apart, what will happen to the rate

at which they can pass vibrations on to nearby particles

Options: (A) decrease (B) increase

Here, the two concepts being compared are energy of vibrations and how close

particles are. Since the second concept is how close particles are and not the distance

between particles, the word farther in the problem has direction intensity LESS as in

particles are ”less closer to each other”. As the word farther is more often associated

with the direction ”more” in the training data, option B is incorrectly misclassified

as the answer.

4.8.2 Wrong Word Detected as the Value

For some examples, the incorrect word can be detected as one of the direction

attributes, leading to incorrect prediction. This is demonstrated in the below example:

K: When particles of matter are closer together, they can more quickly pass the

energy of vibrations to nearby particles

Q: If mona is removing helium from a balloon and she increases the amount she

is removing, what happens to the amount of energy the helium particles can pass

amongst each other

Options: (A) decreases (B) increases

70



Figure 4.9: Example of a Problem With Incorrect Given Value

In the above example, the concepts being compared are energy of vibrations and

how close particles are. The alignment between these concept is proportional. The

word removing in the question stem should ideally be detected as the given value

attribute and should be used to infer that the amount of helium in the balloon is

less. However, 4.8.2 shows the top 5 attention tokens of the given value attribute.

The token increases has higher attention compared to the required word removing.

As a result, the given value attribute is associated with the direction ”more”, and

option (B) is incorrectly predicted as the answer.

4.8.3 Numbers

The model can also incorrectly answer problems which contains direction at-

tributes in the form of numbers. With numbers as direction words, it is difficult

to identify its absolute magnitude and thereby its direction sign. An example is pre-

sented below.
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Example:

K: Many diseases become more common as people grow older.

Q: If mona is currently 35 years old and she lives her life until the age of 65, what

happens to her chance of contracting a disease as she grows older

Options: (A) increase (B) decrease

In the above problem, the given value attribute is 65 as Mona lives until the age

of 65. It is classified as ”more” by the model, whereas it ought to have been classified

as ”less” in order to correctly answer this problem. Such problems highlight the

difficulty of handling numbers as directions.

4.8.4 Given World Is Equal to Claim World

In order to compute the match score between the given world and claim world

attributes, the given world attribute is set to be the same as the claim a world

attribute. As a result, the model incorrectly predicts the answer for some problems

with the following logical structure:

(cgiv, dgiv, wgiv) → (ca, da, wa) ; (cb, db, wb) ; da = db ; wa != wb ; wgiv = wb.

If the question stem describes the given direction and given world attributes from

the perspective of claim b world, then the world match is incorrectly computed, as

one of the assumptions of the model is to set given world as claim a world. This is

demonstrated in the example below:

Example:

K: As blood volume in the body increases, blood pressure increases.

Q: If an elephant has more blood in its body then a wren, which animal has higher

blood pressure?

Options: (A) Wren (B) Elephant
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Figure 4.10: Example of a Problem With Incorrect Given World

In the above problem, the given direction attribute attends to the token more

corresponding to the concept - blood volume. The claim a world and claim b world

attributes attend to Wren and Elephant respectively, and given world attends to

Wren as its representation is computed as the same as claim a world. However, since

Elephant has more blood and not Wren in the given problem, the world match scores

are incorrectly computed, and option (A) is predicted as the answer incorrectly. The

attentions of the three world attributes are shown in 4.8.4.
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4.8.5 Dataset Errors

The last category of errors of the model are the inescapable dataset errors. One

example of a problem that was inaccurately predicted because of an error in the label

of the correct answer is presented below.

Example:

K: The greater the mass of an object, the more matter it contains

Q: Steve knows that the mass of joe’s car is greater than the mass of flo’s car. he

concludes that contains more matter than the other

Options: (A) Joe’s car (B) Flo’s car

In the above example, the concepts being compared are the the mass of an

object and the amount of matter. The relationship between these concepts is

proportional. In the question stem, Joe’s car is known to possess more mass than

Flo’s car. Therefore, Joe’s car should contain more matter than Flo’s car, and the

correct answer should be option (A). But option (B) was marked as the correct answer

by the labelers of the dataset.

4.8.6 Commonsense Reasoning

Another category of problems the model sometimes fails is when the problem

requires commonsense reasoning to accurately predict the answer. An example of

such kind of problems is presented below.

Example:

K: Objects that are closer together have a stronger force of gravity.

Q: Which planet has the most gravity exerted on it from the sun?

Options: (A) Mercury (B) Mars
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Figure 4.11: Example of a Problem That Requires Commonsense Reasoning

In the above problem, the model requires commonsense that the distance between

the Sun and Mercury is less than the distance between the Sun and Mars. As there

is no explicit mention of which object is closer to the Sun in the question stem, the

token gravity is incorrectly detected as the given value attribute. 4.8.6 shows the top

5 attentions tokens for this attribute.

4.9 Analysis of Earlier Approaches

Details of an alternate approach that did not yield satisfactory accuracy is de-

tailed in Appendix A. The reasoning engine in this alternate approach was based on

approximations of the AND, OR and NOT logical gates in vector space. However,

this approach did not perform better than random accuracy, but the results improved

once the truth value computation was made differentiable through the use of the PO-

LARITY DETECTOR classifier. The conjecture is that the poor results of the

alternate approach is because of the absence of a differentiable reasoning function.
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Chapter 5

CONCLUSION

5.1 Summary

There is a paradigm shift in the field of deep learning towards developing models

and approaches that are interpretable from the perspective of the reasoning process

employed. This thesis makes an attempt towards this direction. It mainly focused on

creating a new paradigm to solve qualitative question-answering datasets by working

on the QuaRTz (Tafjord et al., 2019) and QuaRel (Tafjord et al., 2018) datasets. The

model developed here is based on current state-of-the-art deep learning approaches

such as BERT (Devlin et al., 2018). In addition to making the approach trainable

end-to-end through neural networks, the model constructed here is also interpretable

in terms of the reasoning process. Chapter 3 outlined how the model achieves this by

defining the specification of the model with respect to problem specific attributes and

by performing the required reasoning using these attributes in vector space to compute

the correct answer. The model also enforces a set of domain constraints through

auxiliary loss functions to achieve interpretability. Chapter 4 outlined the accuracies

of the approach formulated here. The model acheives comparable accuracy as the

baseline for the QuaRTz dataset, whereas it achieves an improvement in accuracy

for the QuaRel dataset. Chapter 4 also exhibited the explainability of the model in

terms of the attention vectors of the attributes. It also displayed how the model is

capable of variants of qualitative word problems with the directions words flipped

with antonyms and negative comparatives.
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5.2 Limitations and Future Work

An important point to note in this work is that a problem Qi is solved using Ki as

context. Although some statements like ”Reduction in greenhouse gases decreases the

levels of ocean acidity” might not necessarily be true in reality, this work infers this

statement to be true based on the qualitative knowledge - An increase in greenhouse

gases will increase the changes that are already being seen including in ocean acidity,

as the task of solving problems in the two datasets mainly involves inferring the effect

on one concept on another in a qualitative manner.

Since the system developed in this work is modeled based on the two datasets used,

there are many assumptions made in the modeling with respect to the structure of

problems in the datasets. Some of them are:

• The number of answer options are always 2.

• For problems with different directions as answer options, one option always

denotes MORE of the query concept, whereas the other option denotes LESS

of the query concept. Consequently, neither of the answer options can be neutral

for such problems.

Some of the ways this work can be extended to answer a broader class of question

answering problems are:

• Be able to handle a varying number of answer options.

• Be able to handle problems with higher, lower and neutral intensities.

This work can be extended to address the error cases present in the Results chapter.

The reasoning process employed is specifically to reason using qualitative intensifier
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words like more, closer, farther. It does not deal specifically with problems that

contain numbers as intensifiers, or problems that require commonsense to predict the

correct answer.

In addition, most of the error cases presented are mainly due to qualitative inten-

sifiers that are ambiguous. This can be resolved by reasoning using a combination

of concepts and their intensifiers. The concepts were not used in this work due to

lack of reliable annotations. This can be resolved with correct annotations or other

techniques like using phrasal embeddings from sources like ConceptNet (Speer et al.,

2016) to ground natural language representations of concepts to perform reasoning.
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APPENDIX A

EARLIER APPROACHES
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This appendix outlines some of the approaches that were attempted and did not

yield satisfactory results in terms of test accuracy and interpretability.

One of the earlier methods that were attempted in this work included reasoning

based on soft logic operators. The embedded representations of the given world,

claim a world and claim b world attributes were computed based on the individual

attention vectors and a masked vectors of noun phrases from the question stem.

This computation was based on the assumption that the 3 world attributes are often

noun phrases in the question stem and/or answer options. A 2d vector NPp of

dimension number of noun phrases * sequence length of 0s and 1s represents the

noun phrases for a given problem P. Each element of the vector represents a noun

phrase and contains 1s at the positions corresponding to the tokens that represent

that noun phrase. The representations of all the other attributes were similar to those

described in Chapter 3 of this document.

The predicted answer was computed based on the truth value for a each answer

option, which was computed based on alignment between the two value attributes

from the knowledge passage (value1, value2), the alignment between the given value

and the value of the option (claim a value or claim b value), and lastly between

given world and the worlds of the option (claim a world and claim b world). The

formula used to compute the truth value is specified below.

truthclaim = OR(

AND(isProportional,matchedWorld(given,claim),matchedV alue(given,claim)),

AND(isProportional, not matchedWorld(given,claim), not matchedV alue(given,claim)),

AND(not isProportional, not matchedWorld(given,claim),matchedV alue(given,claim)),

AND(not isProportional,matchedWorld(given,claim), not matchedV alue(given,claim)))
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where,

iSProportional = dotSimilarity(value1, value2) denotes the alignment between the

two values from the knowledge passage.

The AND, OR and NOT operations were approximated using the *, max and

1-p respectively, where p denotes a vector.

The intuition behind this definition of the truth value was to compute the an-

swer of a problem based on the logical structure that it adhered to. The first two

AND gates consider the cases where the two values of the knowledge passage are

proportional. If these two values are proportional, the expectation is that both the

claim value and claim world attributes either match given value and given world

as in the first expression, or both claim value and claim world are opposite to their

given counterparts. Whereas, the third and fourth AND gates consider the cases

where the two knowledge passage values are inversely proportional. In these two

cases, either claim value or claim world match their given counterparts, but both

do not. Ultimately, the OR gate picks the maximum score of these four possibilities

as the truth value for a given answer choice.

With this as the model definition, the model did not converge during training.

It was observed that using parameter-less soft logical operations did not allow the

model to learn this particular end-to-end loss operation.
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