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ABSTRACT  

   

The operating temperature of photovoltaic (PV) modules has a strong impact on 

the expected performance of said modules in photovoltaic arrays. As the install capacity 

of PV arrays grows throughout the world, improved accuracy in modeling of the expected 

module temperature, particularly at finer time scales, requires improvements in the 

existing photovoltaic temperature models. This thesis work details the investigation, 

motivation, development, validation, and implementation of a transient photovoltaic 

module temperature model based on a weighted moving-average of steady-state 

temperature predictions. 

This thesis work first details the literature review of steady-state and transient 

models that are commonly used by PV investigators in performance modeling. Attempts 

to develop models capable of accounting for the inherent transient thermal behavior of 

PV modules are shown to improve on the accuracy of the steady-state models while also 

significantly increasing the computational complexity and the number of input 

parameters needed to perform the model calculations.  

The transient thermal model development presented in this thesis begins with an 

investigation of module thermal behavior performed through finite-element analysis 

(FEA) in a computer-aided design (CAD) software package. This FEA was used to 

discover trends in transient thermal behavior for a representative PV module in a timely 

manner. The FEA simulations were based on heat transfer principles and were validated 

against steady-state temperature model predictions. The dynamic thermal behavior of PV 

modules was determined to be exponential, with the shape of the exponential being 

dependent on the wind speed and mass per unit area of the module.  
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The results and subsequent discussion provided in this thesis link the thermal 

behavior observed in the FEA simulations to existing steady-state temperature models in 

order to create an exponential weighting function. This function can perform a weighted 

average of steady-state temperature predictions within 20 minutes of the time in question 

to generate a module temperature prediction that accounts for the inherent thermal mass 

of the module while requiring only simple input parameters. Validation of the modeling 

method presented here shows performance modeling accuracy improvement of 0.58%, or 

1.45°C, over performance models relying on steady-state models at narrow data intervals.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The performance of PV modules is dependent on many factors that must each be 

accounted for when modeling the expected performance of said modules over a given 

period. Accurate prediction of the operating temperature of PV modules is second only to 

irradiance in terms of importance to accurate PV performance modeling [1]. The power 

performance of PV modules can be expected to decrease by a factor of 0.3 - 0.5 %/°C 

increase in temperature above the rated module temperature as a result of decreased cell 

voltage output [1]. The module temperature varies over time as a function of irradiance 

hitting the module’s front and rear surfaces, convection due to wind flow and still air, 

heat radiation to the module’s surroundings and the atmosphere, heat conduction through 

the different layers of the module, and power production in the form of electrical energy 

that reduces the amount of energy within the module that is dissipated as heat. As such, 

accurately predicting the temperature that a photovoltaic module operates at in a given 

moment requires accounting for many environmental parameters, material properties, and 

electrical considerations.  

The impact that module temperature has on PV performance makes accurate modeling of 

PV temperature essential to understanding the expected performance of the modules. 

Predicting the expected performance of a PV array is an essential part of the planning 

phase that investors and project managers go through when developing new PV projects. 

While this predictive modeling is currently done on a predominately hourly basis, 

budding interest in different inverter technologies and energy storage capabilities make 
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temperature modeling at sub-hourly timesteps a point of interest within the industry [2], 

[3]. Accuracy in module temperature forecasting also plays an essential role in 

troubleshooting incorrect temperature readings from the PV array field or unsafe module 

operating conditions resulting from overheating.  

The current best practices in PV temperature modeling involve the use of validated 

steady-state temperature models based on the irradiance, wind speed, and ambient 

temperature data for a given PV array site [4]–[9]. Additionally, steady-state models 

based on rated module temperatures found from test procedures described in international 

test standards are used as a basis for steady-state modeling of back-surface temperature 

[10]. Attempts at transient models designed to account for a module’s inherent thermal 

mass due to the module materials’ thermal properties have offered increased accuracy at 

the expense of increased computational complexity that leads to resistance from industry 

[11]–[14]. The accuracy improvements of these published transient thermal models are 

significant enough to warrant consideration from the PV modeling industry, but the 

numerous input parameters that must be found to effectively run the model for a given 

site cause resistance from industry in applying the model into their performance modeling 

practices. There is an industry-wide need for an accurate temperature model that accounts 

for the material considerations affecting heat transfer and is based on only a few input 

parameters.  

1.2 Problem Statement 

As the interest in accurate modeling of PV performance at finer time scales increases, the 

need for more accurate modeling of module temperature on a transient basis also 

increases. The model developed to meet this industry-wide need must account for the 
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inherent transient thermal behavior of thermal modules without requiring numerous input 

parameters that are either difficult to find or require empirical optimization. This need is 

addressed in this thesis through a transient thermal model that predicts module 

temperature by performing a weighted average of steady-state temperature predictions 

within a 20-minute lookback window of the current time step. The weights of each term 

in the averaging window are based on trends in module thermal behavior that were 

discovered to vary with wind speed and module unit mass, or module mass per unit of 

front surface area. These trends were found using finite element analysis (FEA) of a 

simulated PV module. The moving-average temperature prediction model aims to 

improve upon the accuracy of steady-state temperature modeling while only adding the 

module mass and surface area as inputs to the environmental inputs of irradiance, wind 

speed, and ambient temperature that are already used in many of the established steady-

state models. This thesis investigates the need for the model before detailing the 

development of the FEA method used to develop a dataset of transient module thermal 

behavior, the use of the FEA results in optimization problems aimed at generating a 

moving-average model, and the validation of the resulting model as it pertains to 

accuracy against measured temperature data for different climates and module types.  

1.3 Scope of the Work 

The scope of this work includes the following: 

• Background research into the importance of PV temperature modeling and current 

best practices 

• Identification of the gap the industry has for an accessible transient thermal model 

to improve upon the accuracy of steady-state models for sub-hourly time steps 
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• Examination of the expected thermal behavior for a generalized construction of a 

PV module under a variety of different environmental operating conditions 

through finite element analysis (FEA) methods 

• Fitting of the steady-state temperature predictions for the environmental 

conditions applied in the FEA simulations to the FEA simulated temperatures 

through an exponentially weighted moving-average of the steady-state predictions 

within a fixed time lookback window  

• Development of the final moving-average model equation based on bilinear 

interpolation of the optimized weighting function coefficients with the wind speed 

and unit mass conditions that resulted in said coefficients 

• Example use of the module for real PV array data to demonstrate the model 

calculations for a given time step 

• Validation of the moving-average model in terms of the accuracy improvements 

over the steady-state model and previously published transient models 

• Validation of the moving-average model in terms of the reduced variability in 

temperature prediction for sub-hourly time intervals in comparison to steady-state 

models 

• Reflections on the validation results and what they mean to the PV industry at-

large 

• Recommendations on future work to further improve the PV temperature 

modeling practices used in industrial and research laboratory settings 
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CHAPTER 2 

LITERATURE REVIEW 

The dependence of PV performance on module temperature has led to a vast amount of 

peer-reviewed publications on the modeling and monitoring of PV module temperatures. 

The majority of this research has been based on steady-state calculations of the module 

temperature that use the plane-of-array (POA) irradiance, wind speed, and ambient 

temperature of the array site in the calculation. Some of these models have been used in 

PV modeling practices for decades, as they have been proven accurate for the hourly time 

steps that are often used in PV modeling. Despite the large amount of research in PV 

temperature modeling that is present, there has not been much research into transient 

thermal modeling of PV modules to model the thermal behavior at more narrow data 

intervals. The transient models that have been published have not been readily accepted 

into the thermal modeling practices of the majority of the PV industry. Industry resistance 

can be attributed to the fact that these transient models require many input parameters 

that are difficult to obtain or measure. The large number of variables has also led these 

models to be complex in computation, which has also led to industry resistance.  

2.1 Temperature dependence of PV performance 

There have been numerous studies showing that the power output of PV arrays decreases 

for increases in temperature beyond the rated temperature of the modules. The degree to 

which the PV performance is expected to decrease ranges between 0.3-0.5%/°C of the 

rated maximum power point depending on the module materials and manufacturing 

methods [1]. The decrease in power from the PV modules for increasing temperature is 

based on decreased voltage from the cells due to a reduced band gap [15]. Compared to 
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the voltage, the current produced in the photovoltaic conversion process has a negligible 

relationship with operating temperature, increasing only slightly for increasing 

temperature [15]. As the maximum power point of a module is dependent on the open-

circuit voltage and short-circuit current, the power decreases as a result of increasing 

temperature beyond the rated temperature [15], [16]. This relationship shows that 

accurate prediction of the temperature is essential to accurately predicting PV 

performance, and that the area of PV temperature modeling must be researched and 

improved upon as PV technologies increase in global capacity.  

2.2 Steady-state Temperature modeling 

Temperature models used to predict the operating temperature of PV modules have been 

mostly based on steady-state approximations that take environmental parameters as 

inputs. These steady-state models are based on measured variables such as the solar 

irradiance incident on the module, the surrounding ambient temperature at the site in 

which the PV array is installed, the wind speed at the site, and in some cases the wind 

direction relative to the module [4]–[9], [17]. Evaluating the temperature of the module 

based on these parameters allows for reasonably accurate hourly temperature predictions 

without requiring knowledge of the PV array power performance. These temperature 

models are often deployed as part of an overall PV performance evaluation to evaluate 

the annual energy performance of a PV array.  

One commonly used steady-state model is the one put forth in the Sandia Array 

Performance Model [4]. This model was developed through empirical optimization of 

measured module temperature data and was proven to be accurate to within 5°C of 

measured data [4]. The model equation is shown below [4]:  
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𝑇𝑚 = 𝐼 ∙ 𝑒𝑎+𝑊𝑆∗𝑏 + 𝑇𝑎                                                   (1) 

Where 𝑇𝑚 is the module back-surface temperature prediction in °C, 𝐼 is the effective 

irradiance incident on the plane of the module in W/m2, 𝑊𝑆 is the measured wind speed 

at a height of 10 meters in m/s, 𝑇𝑎 is the ambient temperature at the array site in °C, 𝑎 is 

an empirical coefficient for the heat transfer between the module and environment, and 𝑏 

is an empirical coefficient that quantifies the cooling effects of the wind on the module 

[4]. The values of the 𝑎 and 𝑏 coefficients in this model are based on the material 

compositions and mounting conditions of the module being evaluated, with the 

coefficients for a variety of different module constructions and mounting conditions 

being shown in Table 1 [4].  

Table 1. Sandia Array Performance Model Coefficients 

 

Many other steady-state models that are commonly used have the same calculation 

principles as the Sandia steady-state temperature model. For example, the temperature 

model used as part of the modeling equation in PVSyst, a commonly used PV 

performance modeling package, is an application of the Faiman module temperature 

model [5], [18]. This temperature model is shown in the following equation [5], [18]:  

 𝑇𝑚 =  𝑇𝑎 +  
𝐸𝑃𝑂𝐴

𝑈0+𝑈1∗𝑊𝑆
                                                     (2) 
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Where 𝑇𝑚 is the module temperature in °C, 𝑇𝑎 is the ambient temperature in °C, 𝐸𝑃𝑂𝐴 is 

the incident irradiance in W/m2, 𝑈0 and 𝑈1 are empirical heat transfer coefficients, and 

𝑊𝑆 is the wind speed in m/s. Simple derivations would show that this model is of the 

same form as the Sandia steady-state model [5], [18], [19].  

The steady-state models shown in (1) and (2) are used to predict the temperature of the 

module’s back surface rather than the temperature of the actual PV cells contained within 

the glass, encapsulant, and backsheet layers of the module. The back-surface temperature 

is often calculated instead of the cell temperature in order to relate the temperature to the 

site’s wind speed, as the wind is directly hitting the exposed surfaces of the module and is 

not directly interfacing with the PV cells. Additionally, measuring the back-surface 

temperature in the PV array field is a much less invasive practice than measuring the cell 

temperature directly, as doing so requires adhering a temperature measurement device to 

the cell during module construction. It is often necessary to convert these back-surface 

temperature calculations to the cell temperature, as the temperature of the cell is what 

ultimately determines the electrical output of the cells based on the previously defined 

temperature dependence. To correlate the back-surface temperature predictions to cell 

temperature predictions, the Sandia Array Performance Model uses a linear relation in 

which the ratio of the incident irradiance to an assumed reference irradiance value of 

1000 W/m2 is multiplied by an temperature differential constant that was determined 

empirically for different module constructions and mounting conditions [4]. The product 

of this calculation is added to the back-surface temperature prediction to determine the 

cell temperature. The calculation of the cell temperature based on the Sandia steady-state 

model module temperature is shown below [4]: 
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𝑇𝑐 =  𝑇𝑚 +  
𝐸𝑃𝑂𝐴

𝐸0
Δ𝑇                                                    (3) 

Where 𝑇𝑐 is the cell temperature in °C, 𝐸0 is the reference irradiance of 1000 W/m2 and 

Δ𝑇 is the empirical temperature differential constant. The temperature differential 

constants Δ𝑇 are shown in the rightmost column of Table 1 [4].  

The PVSyst method of converting Faiman model module temperature predictions to cell 

temperature predictions involves adjusting irradiance as a function of the cell efficiency 

and the optical properties of the glass and cells [5], [18]. The PVSyst cell temperature 

model is described by the following equation [18]:  

𝑇𝑐 =  𝑇𝑎 +  𝐸𝑃𝑂𝐴
𝛼(1−𝑒𝑡𝑎𝑚)

𝑈0+𝑈1∗𝑊𝑆
                                                (4) 

Where 𝑇𝑐 is the cell temperature in °C, 𝛼 is the absorptance of the cells, and 𝑒𝑡𝑎𝑚 is the 

solar cell efficiency [18].  

Other methods of calculating PV cell temperatures make use of the Nominal Operating 

Cell Temperature (NOCT) or Nominal Module Operating Temperature (NMOT), which 

are reference operating temperatures for modules that are found through test procedures 

and modeling defined by the International Electrotechnical Commission (IEC) 61215 

standard [20]. NMOT is an updated version of the NOCT, and many PV manufacturers 

perform or outsource the test as specified in the standard to then report one of these 

nominal temperature values in their module spec sheets. The NMOT defines the expected 

temperature of the module at reference conditions of 800 W/m2, 1 m/s wind speed, and 

20°C ambient temperature over a data measurement period spanning several days [20], 

[21]. Finding the module temperature at these exact ambient conditions requires 

collecting large amounts of data in stable environmental conditions before fitting the 
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dataset linearly in order to then interpolate to the standard conditions set in the standard. 

Once this NMOT or NOCT is found, the temperature predictions for the module can be 

found from equations such as the following proposed in Duffie and Beckman [10]: 

𝑇𝐶 − 𝑇𝑎

𝑇𝑁𝑂𝐶𝑇− 𝑇𝑎,𝑁𝑂𝐶𝑇 
=  

𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
∗  

9.5

(5.7+3.8∗𝑉)
(1 −

𝜂𝐶

𝜏𝛼
)                              (5) 

Where 𝑇𝐶 is the cell temperature, 𝑇𝑎 is the ambient temperature, 𝑇𝑁𝑂𝐶𝑇 is the rated NOCT 

of the module, 𝑇𝑎,𝑁𝑂𝐶𝑇 is the ambient temperature of the NOCT which is set constant at 

20°C, 𝐺𝑇 is the irradiance incident on the module, 𝐺𝑁𝑂𝐶𝑇 is the irradiance of the NOCT 

test of 800 W/m2, 𝑉 is the wind speed, 𝜂𝐶  is the cell electrical conversion efficiency, and 

𝜏𝛼 is the product of the transmittance of the glass and absorptance of the cells [10].  

Steady-state models such as the Sandia steady-state thermal model described in preceding 

paragraphs have been proven to be accurate within 5°C for most stable climate conditions 

considered over large data intervals such as hourly data [4]. However, as previous work 

has shown that PV performance modeling errors can be reduced by evaluating 

performance at narrower data intervals [22], there is an interest in accurately modeling 

PV module temperature based on more instantaneous changes in incident irradiance or 

other environmental variables. Under such conditions, the direct relationship between 

module temperature and irradiance in these steady-state models can lead to large spikes 

in module temperature for step changes in incident irradiance. This predicted thermal 

behavior is not always an accurate depiction of module thermal behavior, as PV modules 

have thermal mass that slows the rate of temperature change to changes in the 

environment. As these models do not account for the inherent thermal mass of the 

module materials, some research into modeling the dynamic, or transient, thermal 

response of PV modules for environmental changes has been performed and published.  
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2.3 RC Circuit dynamic thermal models 

One commonly used approach to modeling the dynamic thermal response of PV modules 

is to use a resistance-capacitance (RC) circuit as an analogy to calculate said thermal 

behavior. The RC circuit analogy allows for consideration of the thermal resistance and 

capacitance of each individual module layer [23], [24]. The thermal resistances of each 

layer are treated as resistive elements operating in series, with each element’s thermal 

resistance being based on the material thickness and thermal conductivity of the material. 

The thermal capacitances operate in parallel and are based on material density, thickness, 

and heat capacity [23], [24]. An example of such an RC circuit is shown in Figure 1 [23]. 

Treating the model thermal behavior as a circuit allows for the calculation of thermal 

time constants that signify the amount of time needed for a module to heat or cool to a 

given temperature or percentage of thermal stabilization [23], [24]. Implementing this 

circuit analogy for transient thermal analysis of PV modules requires that all the thermal 

properties of each module layer be accurately measured. As these material properties can 

be difficult to measure and may change in response to changing temperatures or 

degradation, there is resistance in the PV industry to apply these practices in performance 

modeling software packages. 

 

Figure 1. RC Circuit Representation of the Thermal Resistance and Capacitance of PV 

Module Layers 
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2.4 Transient Thermal Models 

There have been a few transient models presented in literature as a means of more 

accurately predicting the instantaneous temperature of PV modules. Jones and 

Underwood developed a model that performed a full energy balance of the convection, 

short-wave radiation, long-wave radiation, and power generation affecting PV modules 

during operation [11]. The final equations used to calculate the module temperature in 

this approach are [11]:  

𝐶𝑚𝑜𝑑𝑢𝑙𝑒
𝑑𝑇𝑚𝑜𝑑𝑢𝑙𝑒

𝑑𝑡
=  𝜎 ∗ 𝐴 ∗ (𝜀𝑠𝑘𝑦(𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 − 𝜕𝑇)4 − 𝜀𝑚𝑜𝑑𝑢𝑙𝑒𝑇𝑚𝑜𝑑𝑢𝑙𝑒

4) + 𝛼 ∗ Φ ∗ 𝐴 −

𝐶𝐹𝐹∗𝐸∗ln(𝑘1𝐸)

𝑇𝑚𝑜𝑑𝑢𝑙𝑒
− (ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 + ℎ𝑐,𝑓𝑟𝑒𝑒) ∗ 𝐴 ∗ (𝑇𝑚𝑜𝑑𝑢𝑙𝑒 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)                 (6)                                                               

𝑇𝑚𝑜𝑑𝑢𝑙𝑒(𝑡 + 1) =  𝑇𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) = 𝑠𝑡𝑒𝑝 ∗ (
𝑑𝑇𝑚𝑜𝑑𝑢𝑙𝑒

𝑑𝑡
)                             (7) 

Where 𝐶𝑚𝑜𝑑𝑢𝑙𝑒 is the overall capacitance of the module, 
𝑑𝑇𝑚𝑜𝑑𝑢𝑙𝑒

𝑑𝑡
 is the change in module 

temperature with respect to time 𝑡, 𝜎 is the Stefan Boltzmann constant, 𝐴 is the surface 

area of the module in square meters, 𝜀𝑠𝑘𝑦 is the emissivity of the sky, 𝜕𝑇 is a temperature 

differential constant used to determine the sky temperature from the ambient temperature, 

𝜀𝑚𝑜𝑑𝑢𝑙𝑒 is the emissivity of the module front surface, 𝛼 is the absorptivity of the module, 

Φ is the total incident irradiance on the module front surface in W/m2, 𝐶𝐹𝐹 is the fill 

factor of the module that relates the module performance to the maximum theoretical 

performance, E is incident irradiance in W/m2, k1 is an empirical constant, ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 is the 

convection coefficient due to wind in W/m2K, and ℎ𝑐,𝑓𝑟𝑒𝑒 is the convection coefficient 

due to natural convection to the surrounding air in W/m2K. This model accounts for the 

total inherent thermal mass through the capacitance term on the left side of (5) and 

defines the heat transfer state between the module and surrounding environment on the 
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right-hand side of the equation. The energy balance in (5) can be used to determine the 

change in temperature over a given time interval, which can then be used in (6) to find 

the temperature at the next time step based on the temperature at the previous time step.  

When optimizing the input parameters of this model to a particular PV array site, the 

predicted transient temperature predictions for 1-minute data are found to be within 2.3 K 

for clear sky conditions [11]. Further analysis of the Jones and Underwood model was 

done by Stein and Luketa-Hanlin, who optimized the model for a specific PV site in 

Hawaii based on sensitivity studies performed on the unknown input parameters [13]. 

Analysis of the optimized model against measured temperature data reveals substantial 

accuracy improvements over steady-state modeling for 1-second temperature data as 

shown in Figure 2 [13]. Accounting for the thermal mass of the module decreases the 

variability in temperature prediction and allows for more accuracy against measured 

temperature data. 

 

 

Figure 2. Optimized Transient Thermal Model Accuracy Improvements over Steady-

State Model 
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A model similar to that proposed by Jones and Underwood was proposed by Hayes and 

Ngan and tested across numerous PV arrays in different climates [14]. Comparing the 

residuals between measured and predicted temperatures from both the transient and 

steady-state models showed error reductions between 0.2 – 2°C. The thermal modeling 

accuracy improvements provided by the Hayes and Ngan model for both hot and 

temperature climates are compared to the accuracy of the PVSyst steady-state model for 

5-minute data in Figure 3 [14]. This Figure shows that transient thermal modeling can 

offer up to 2°C improvement in the mean absolute error over steady-state models [14]. 

 

 

Figure 3. Transient Thermal Model Accuracy Improvement over Steady-State Model for 

Different Climates 

 

The issue with these transient models lies not in the accuracy of the prediction, but rather 

in the difficulty in implementing the models for a PV array site. Obtaining the parameters 

needed to run the transient models requires measurement of material, optical, and thermal 

properties, empirical optimization of convection and radiative effects, and calculation of 
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values for those parameters that cannot be measured accurately. The difficulty in 

accurately parametrizing these models leads to industry pushback on the adoption of 

transient thermal models in their modeling practices as they relate to overall PV 

performance modeling. There remains a gap in the PV industry for a thermal model that 

matches or exceeds the modeling accuracy of those transient thermal models while using 

a small number of easily definable input parameters. These input parameters should be 

easy to measure or readily available in reported module spec sheet data.  

2.5 Importance of Transient Thermal Modeling 

Dynamic modeling of PV module temperature plays an important role in several different 

aspects of PV performance modeling and monitoring. Failing to account for the thermal 

mass of the module on a minute-to-minute basis can lead to overestimation of PV 

performance at low irradiance conditions [25]. Steady-state models predict low 

temperatures during times of low irradiance as they do not account for the thermal mass 

of the module that slows the rate of temperature change in modules for instantaneous 

changes in the incident irradiance. Similarly, using hourly average data in performance 

models can lead to inaccuracies in inverter clipping models. As inverters have a 

maximum voltage limit, DC voltage production of modules beyond the limit is cut off 

[2], [25]. Hourly averages have been shown to underestimate the amount of module 

clipping for a variety of inverter types and amounts of power output  when compared to 

the same analysis performed for 1-minute data [2]. These issues show that there is a need 

for PV performance modeling at finer time scale. As steady-state models can provide 

inaccurate predictions of module temperature at this time scale, transient thermal models 

that can be easily implemented are needed.  
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Finer time steps in PV performance modeling are also needed to accurately model energy 

storage systems used to make renewable energy systems dispatchable. As solar energy is 

an intermittent resource that does not allow for energy production during nighttime or 

cloudy conditions, the energy that is produced during times of high irradiance must often 

be stored using technologies such as batteries or thermal storage in order to conserve 

electrical energy produced by PV arrays to meet energy demands during periods of low 

solar resource. Attempts at modeling battery storage to make PV energy production more 

dispatchable have been shown to require modeling intervals no larger than 15 seconds to 

provide the accuracy needed to accurately model this battery storage [3]. This again 

exemplifies the need for finer temporal resolution in PV performance modeling, which 

necessitates dynamic thermal modeling.  

Accuracy in thermal modeling is not only crucial to performance modeling. It can also 

play an integral role in the performance rating of modules before they are put on the 

market. Currently, modules are rated for their temperature performance based on NMOT. 

The methods used to determine these modules’ NMOT values are outlined in the IEC 

61215-2 standard [20]. However, work done at the National Renewable Energy 

Laboratory (NREL) has shown the data collection practices used to determine this 

reported temperature value offer highly variable results for the same types of modules in 

different climate conditions [21]. The NOCT values in this study were found to vary by 

as much as 7°C for the same module [21]. More accuracy in thermal modeling without 

increased complexity could benefit efforts to refine this standard for more accuracy and 

reduced variability in module temperature rating practices. A transient model with a 
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small amount of input parameters would address this need and lead to more efficiency 

and repeatability in module temperature rating.  
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CHAPTER 3 

METHODOLOGY 

3.1 FEA Modeling Approach 

The development of the FEA simulations of module thermal behavior was aimed at 

discovering trends in this behavior to aid in the development of a transient thermal model 

based on only a few accessible input parameters. Using FEA for this model development 

was based on the idea of modeling practices that would be accessible to the PV industry. 

While heat transfer definition used in the simulations were developed without outside 

influence, the idea behind using FEA as a PV thermal analysis tool has been previously 

shown in [26].  

The need for simulations designed to develop a dataset of module transient thermal 

behavior was determined through simple module shading tests. These shading tests were 

part of initial research designed to determine simpler methods of modeling transient 

module thermal behavior that was performed in the summer of 2018 at the Photovoltaic 

Systems Evaluation Laboratory of Sandia National Laboratories in Albuquerque, NM. A 

white foam core board was used to shade a 60-cell PV module with a polymer backsheet 

and aluminum frame that was operating under open-circuit condition (e.g. no electrical 

load). While the foam core could not be assumed to block out 100% of the incident 

irradiance, a reference cell irradiance measurement device was also shaded with the 

module in order to have a measurement of the amount of irradiance being transmitted 

through the foam core shade. The shade was also applied with a small air gap between 

the shade and module front surface to allow for air flow cooling across the front surface. 

The module temperature was allowed to stabilize during days in which there was little 
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cloud shading before being shaded for an amount of time that allowed for sufficient 

module temperature stabilization for negligible incident irradiance. An example of this 

experiment is shown by the temperature data in Figure 4.  

 

Figure 4. Shading Test with Measured and Modeled Module Temperatures 

 

This Figure reveals that the temperature decrease corresponding to the large 

instantaneous change in incident irradiance was much more gradual in nature than that 

predicted by the steady-state model. The large instantaneous change in incident irradiance 

resulted in a steady-state prediction of a step change in module temperature, which was 

not indicative of the actual module thermal behavior. The actual measured temperature 

decrease was exponential in nature. The initial spike in the steady-state temperature 

predictions at the beginning of this shading test was due to erroneous irradiance 

measurements caused by bumping of the reference cell irradiance sensor. While this 

method of monitoring transient thermal behavior was eventually determined to be too 

rudimentary and time-consuming to be used extensively, the initial results found from 
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this experiment led to brainstorming future research through computer simulation 

methods such as FEA.  

FEA software was chosen for the analysis of thermal trends instead of indoor simulations, 

outdoor measurements, and computational flow dynamics (CFD). Indoor simulators offer 

a truly controlled environment in which the irradiance and ambient conditions are known 

more exactly, but such simulators are expensive, would require special considerations for 

the incorporation of air flow into the experiment,  and are not accessible to the majority 

of the PV industry that would be interested in these thermal modeling efforts. Outdoor 

simulations with measurements of the environmental and module temperature conditions, 

such as the shading test shown in Figure 4, offer more accessibility, but less control over 

the ambient temperature, wind speed, and irradiance conditions that the model is 

experiencing over a given time period. This lack of control increases the measurement 

time needed to develop a database of module temperature predictions encompassing a 

wide range of irradiance and ambient conditions over extended time periods. CFD 

analysis offers the control of indoor simulations, the data quantity of outdoor 

measurements, and more increased computational complexity than FEA analysis, but was 

deemed too computationally expensive and inaccessible to industry to be helpful in the 

advancement of PV thermal modeling. The added information regarding the wind flow 

over the modules that would be provided by CFD analysis was deemed excess to 

requirements for this analysis. This choice of FEA over CFD analysis could be further 

investigated in future PV thermal modeling efforts.  

The FEA simulations were designed using the Solidworks Simulation FEA package of 

thermal analysis tools. This software allows for the definition of thermal analyses based 
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on both steady-state and transient simulations in which thermal loads are defined by the 

user as time-dependent or temperature-dependent values [27]. These software capabilities 

were utilized through initial validation of the thermal modeling approach against 

validated module temperature predictions in steady-state convergence simulations. Once 

these steady-state convergence tests were validated against steady-state temperature 

predictions, hour-long time series tests were evaluated at 30-second intervals to observe 

thermal trends in module temperature for different environmental conditions. The 

workflow of the FEA simulation process is shown in Figure 5.  

 

 

Figure 5. FEA Simulation Process Diagram 
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3.2 Heat Transfer Definitions 

The thermal modeling of PV modules applied in the FEA simulations must be 

sufficiently robust to eliminate the need for parameterization of each of the heat transfer 

components in the eventual transient thermal model. This need for a robust model led to 

FEA investigation of the heat transfer due to irradiance, wind convection, still air 

convection, conduction, long-wave radiation, and thermal losses from the module due to 

electricity generation. These heat transfer components were modeled based on how they 

impacted a sheet of solid glass, which was assumed to make up most of the module 

thickness for cases in which there is no metallic frame. This simplifying assumption was 

made to reduce the complexity of the FEA model in order to make it more accessible to 

the PV industry. The representative glass sheet was oriented at an angle of 37° relative to 

the horizontal ground that was given the material properties of concrete. The bottom of 

the module was set at a height of 0.6 meter above the concrete surface. The heat transfer 

definitions used in the FEA simulations for the PV modules are described in the 

following subsections. A diagram of the various heat transfer elements that must be 

considered in the FEA simulations of the PV module is shown in Figure 6.  
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Figure 6. Simulation Heat Transfer Diagram 

 

3.2.1 Convection 

The convective cooling load provided by wind flowing across the surface of PV modules 

is often the largest cooling load that is experienced by the module. The speed of the wind 

and its direction relative to the module orientation can play a role in determining the 

effect the wind has on module temperature over time. The amount of heat transfer from a 

surface as a result of fluid is flow is controlled by the forced convection heat transfer 

coefficient, a factor that describes the change in heat per unit area for the difference in 

surface and ambient temperature in units of W/m2K [28], [29]. Most models do not 

attempt to account for the wind direction when evaluating the forced convection due to 

air, as this parameter can experience high variance and uncertainty when measured at 

finer time intervals. In the FEA simulations, the wind direction was assumed such that the 

wind was flowing across the long dimension the front surface of the module in portrait 

orientation for each simulation. The wind flow was considered turbulent based on 

observed variability of wind speed measured at 1-minute or 30-second data intervals. For 
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the FEA model, the flat plate nature of the PV module allowed for the calculation of the 

heat transfer coefficient based on equations presented in Holman [29]:  

𝑁𝑢 = 0.0308 𝑅𝑒
4

5 𝑃𝑟
1

3                                                (8) 

 

ℎ =
𝑁𝑢(𝑘)

𝐿
                                                           (9) 

Where 𝑁𝑢 is the dimensionless Nusselt number, 𝑅𝑒 is the Reynolds number, 𝑃𝑟 is the 

Prandtl number,  ℎ is the convective heat transfer coefficient in W/m2K,  𝑘 is the thermal 

conductivity of the air surrounding the module in W/m*K, and 𝐿 is the characteristic 

length of the module in meters [29]. The Reynolds number 𝑅𝑒 is a function of the wind 

speed and kinematic viscosity of the air, which was found from thermodynamic property 

tables for atmospheric air along with the thermal conductivity of the air at an initial 

temperature found from Sandia steady-state temperature model calculations [4], [28]. The 

Reynolds number calculation is shown below:  

𝑅𝑒 =  
𝑊𝑆∗𝐿

𝑣(𝑇)
                                                          (10) 

Where 𝑊𝑆 is the wind speed in m/s, and 𝑣(𝑇) is the kinematic viscosity of air  in m2/s at 

the initial temperature prediction 𝑇 (°C) [28], [29].   

The forced convection due to wind is assumed to dominate the cooling load on the front 

surface of the module. The convection on the rear side of the module that does not 

receive direct sunlight is assumed to be dominated by still air convection by the module 

surface to the surrounding environment. This assumption is based on considerations of 

the many different framing conditions for PV modules that often limit the amount of 

wind flow that reaches the rear side of the module. Just as with the forced convection, 
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this simplifying assumption is aimed at making the modeling approach more accessible to 

the PV industry. The heat transfer coefficient due to natural convection on the back 

surface of the module was found from the following empirical heat transfer equations 

[28], [29]:  

𝑁𝑢 = 
0.17((9.8 𝑐𝑜𝑠(90−𝜃)⋅(1∕𝑇𝑓))𝐼𝐿4)

(𝑘𝑣2𝑃𝑟2)
                                           (11) 

ℎ =
𝑁𝑢(𝑘)

𝐿
                                                             (12) 

Where 𝜃 is the angle of the module relative to the ground in degrees, 𝑇𝑓 is the film 

temperature of the module back surface in Kelvin, 𝐼 is the irradiance incident on the front 

side of the module in W/m2, and 𝑣 is the kinematic viscosity of the air in m2/s. The film 

temperature 𝑇𝑓 is found from the average of the expected back surface temperature and 

the ambient temperature. Calculations for module tilt angles 𝜃 ± 30° showed module 

back-surface temperature coefficients within 6% of the convection heat transfer 

coefficient calculated for the 37°C tilt angle chosen for this analysis.  

3.2.2 Radiation 

Another key factor in module temperature calculation is the long wave radiation that 

occurs between the module and its surroundings. The module in this simulation 

exchanges radiative heat with both the simulated concrete ground surface and the 

surrounding sky, which has been treated as a blackbody in this analysis due to its infinite 

surface area. To calculate the amount of radiation between each of these surfaces, a view 

factor approach was used. View factors quantify the radiation from one surface that is 

absorbed by another surface, or the percentage of the surface that can “view” another 

surface. The FEA software used in this analysis automatically calculates the view factors 
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of each surface relative to the other based on the geometry of the objects in the scene. 

The calculations performed by the software are of the following form [27], [29]:  

𝐹𝑖𝑗 =  
1

𝐴𝑗
∬

cos(𝜃𝑖) cos(𝜃𝑗)

𝜋𝑅𝑖𝑗
2 ⅆ𝐴𝑖 ⅆ𝐴𝑗

𝑖

𝐴1 𝐴2
                                     (13) 

𝐴𝑖𝐹𝑖𝑗 =  𝐴𝑗𝐹𝑗𝑖                                                        (14) 

Where 𝐹𝑖𝑗 is the view factor for surface 𝑖 onto surface 𝑗, 𝐴𝑗 is the surface area of surface j 

in square meters, and  𝜃𝑖 is the angle between the surface normal and the line 𝑅𝑖𝑗 between 

the two surfaces. Steady-state simulations of module temperature for module tilt angle 𝜃 

± 30° showed module back-surface temperature conditions within 1°C of the temperature 

simulated for the 37°C tilt angle chosen for this analysis. (14) shows that there is 

reciprocity between view factors for corresponding surfaces. This means that the sum of 

the view factors for a surface 𝑖 onto all other surfaces considered in the scene must be 

equal to one [27], [29]. These view factors impact the amount of net radiation exchange 

between two surfaces based on the following equation [27], [29]: 

𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝜎(𝑇𝑖

4−𝑇𝑗
4)

(1−
𝜀𝑖

𝐴𝑖𝜀𝑖
)+

1

𝐴𝑖𝐹𝑖𝑗
+(1−

𝜀𝑗

𝐴𝑖𝜀𝑖
)
                                            (15) 

Where 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 is the net radiation exchange between surfaces in in Watts, 𝜎 is the 

Stefan Boltzmann constant of 5.67e-8 W/m2*K4, 𝑇𝑖   is the temperature of surface 𝑖 in K, 

and 𝜀𝑖 is the emissivity of surface 𝑖 [27]–[29].  

The surrounding environment of the PV module in the simulations is assumed to be a 

blackbody at a constant sky temperature. The sky temperature is found from the 

following equation from Duffie and Beckman [10]: 

𝑇𝑠 = 𝑇𝑎 ∗ (0.711 + 0.0056𝑇𝑑𝑝 + 0. 000073𝑇𝑑𝑝
2 + 0.013 cos(15𝑡))

1

4            (16) 
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Where 𝑇𝑠 is the sky temperature in °C, 𝑇𝑑𝑝 is the dew point temperature in °C, and 𝑡 is 

the hour of the day. 𝑡 was assumed to be 12 to represent solar noon testing for these 

simulations [10]. The sky temperature calculation accounts for the humidity contents of 

the air in the radiative heat transfer balance [10].  

3.2.3 Conduction 

In addition to the convection and radiation exchanges between the module and the 

environment, the FEA simulations also calculate the conductive heat transfer through the 

thickness of the module surface based on the thermodynamic properties of the glass. 

There is typically a small temperature difference between the module’s front and back 

surface. The heat exchange between through the thickness of the glass is found through 

the following equation [28]:  

𝑄𝑐𝑜𝑛𝑑 =
𝐴∗𝑘∗∆𝑇

𝑡
                                                            (17) 

Where 𝑄𝑐𝑜𝑛𝑑 is the heat due to conduction in Watts, 𝐴 is the surface area of the module 

in square meters, 𝑘 is the thermal conductivity of the glass in W/m*K, ∆𝑇 is the 

temperature difference between the surfaces in °C, and 𝑡 is the glass thickness [28]. This 

calculation is performed within the simulation automatically and thus does not require 

manual definition. The thermal conductivity of the glass used in this analysis was 0.75 

W/m*K [27].  

3.2.4 Irradiance 

Any incident irradiance on PV modules leads to changes in the thermal state of the 

module as a result of increased temperature from the photovoltaic effect of the solar cells 

that generates electricity. The literature review of steady-state models showed that most 

models are primarily based on the incident irradiance. As such, the irradiance incident on 
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the module must be considered in the FEA analysis for its impact on module temperature. 

This is done through the application of a uniform surface heat flux across the front 

surface of the PV module. The amount of irradiance present on the module front surface 

is decreased by 18% of the nominal value being tested to account for the electrical 

efficiency of a PV module operating at maximum power point conditions. This 

simplifying assumption is made to analyze a general case of PV operation without doing 

complex electrical modeling of the PV module within the FEA software environment. 

The electrical efficiency was also assumed to not vary with module temperature as it 

normally would in outdoor module operation [1]. The assumption was based on an 

observed temperature difference of less than 2°C from temperature-dependent electrical 

efficiencies in the same time series calculations.  

3.2.5 Transient Considerations 

When performing transient FEA simulations, the change in module temperature over time 

must be considered and not assumed to be zero as it done in steady-state calculations. The 

transient simulations results in an overall heat transfer similar to the model developed by 

Jones and Underwood that was discussed in the previous section [11]. These calculations 

were performed in the FEA simulations for glass having a constant specific heat of 0.835 

kJ/kg*K  [27].  

3.3 FEA Model Validation 

Validation of the previously mentioned heat transfer principles and simplifying 

assumptions as they are applied to the simulation of PV module temperature was 

achieved through steady-state convergence testing for a range of different environmental 

conditions. This means that the temperature needed to solve the energy balance provided 
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by the convective and radiative loads applied to the PV module was determined for 

different irradiance, ambient temperature, wind speed, and module unit mass values. A 

constant irradiance load of 1000 W/m2, or 817 W/m2 after accounting for the cell 

efficiency, was applied to the front-surface of the glass module for each of these 

simulations. Three different ambient temperature conditions for the simulation 

environment were tested in the FEA validation: -6.7°C (20°F) for typical winter 

conditions, 15.6°C (60°F) for spring conditions, and 32.2°C (90°F) for summer 

conditions. For each seasonal ambient temperature, constant wind speeds ranging from 1 

m/s to 10 m/s were applied as part of the forced convection cooling load on the front 

surface of the module. The minimum mesh element size used in these simulations was 

0.08 meters. The resulting convergence temperature for each steady-state FEA simulation 

was compared to the Sandia steady-state model temperature calculated from the 

irradiance, wind speed, and ambient temperature considerations used in the simulation for 

the coefficients a=-3.56 and b=-0.075 for a glass/cell/polymer sheet module configuration 

in an open rack mount [4].  

The results of the steady-state FEA simulations, along with the Sandia steady-state model 

temperature predictions that the results were compared against, are shown in Table 2. 

Analysis of these results shows that all of the simulated results are with the 5 degree 

uncertainty of the steady-state model [4]. The FEA simulations are particularly accurate 

for the warmer ambient temperatures of the spring and summer seasons. The decrease in 

modeling accuracy for colder ambient temperatures could be attributed to inaccuracies 

inherent to the steady-state model or to a lack of accuracy in the heat transfer definitions 

in the FEA simulations. The accuracy of these simulations, particularly at higher ambient 
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temperature conditions, validates the heat transfer principles used for definition of the 

heat transfer loads in the preceding sections.  

Table 2. Steady-state FEA Simulated Module Back-Surface Temperature Residual 

Comparison to Steady-State Model 

 

 

3.4 Transient FEA Simulation Methodology and Results 

Following successful validation, the FEA simulation approach was used to investigate 

transient thermal behavior. This was done by performing simulations over 3600 second 

(1 hour) testing periods in which the temperature at the center of the module’s rear 

surface was evaluated every 30 seconds. The three different ambient temperature 

conditions (-6.7°C, 15.6°C, 32.2°C) were used to simulate module temperature at the 

constant wind speed values of 2, 5, and 10 m/s. The key difference between the steady-

state and transient FEA simulations was in the application of the irradiance incident on 

the front surface of the module. The irradiance in these transient simulations was entered 

into the software as a function of the time series the simulation was performed over. The 

 

-6.7°C Ambient    
  

Wind speed (m/s) 1 3 5 10  

Steady-state model (°C) 19.7 16.0 12.8 6.7  

FEA Temperature (°C) 23.9 18.3 14.9 8.2  

FEA - Steady (°C) 4.2 2.3 2.1 1.5  

15.6°C Ambient    
  

Wind speed (m/s) 1 3 5 10  

Steady-state model (°C) 42.0 38.3 35.1 29.0  

FEA Temperature (°C) 40.7 38.2 34.1 28.7  

FEA - Steady (°C) -1.3 -0.2 -1.1 -0.3  

32.2°C Ambient    
 

Wind speed (m/s) 1 3 5 10 

Steady-state model (°C) 58.6 54.9 51.7 45.6 

FEA Temperature (°C) 57.9 54.3 50.6 45.5 

FEA - Steady (°C) -0.7 -0.6 -1.1 -0.1 
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irradiance was set to one constant value for the first half of the simulation, then a step 

change was introduced at 1800 seconds to have the irradiance either increase or decrease 

to a new value that remained constant for the rest of the simulation. This step change in 

irradiance allowed for analysis of the actual transient thermal behavior for large changes 

in irradiance and correlation of said thermal behavior to different simulation parameters. 

The initial irradiance in each test was calculated from a reference value of 1000 W/m2 

that was adjusted to value of 817 W/m2 to account for the assumed cell efficiency of 

18.3%. The step decrease in the irradiance was then calculated as a percentage of this 817 

W/m2 initial value, with a ∆E of 600 W/m2 resulting in a final irradiance value that is 

40% of the original or 326.8 W/m2. Irradiance step changes of 200, 400, and 600 W/m2 

were tested for each wind speed and ambient temperature condition for a total of 18 

unique FEA simulations. The irradiance step changes for these decreasing irradiance 

simulations are shown graphically in Figure 7.  

 

Figure 7. Irradiance Step Change Sizes for FEA Simulations 
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The results of the FEA transient simulations for three differently sized step decreases in 

incident irradiance across three different ambient temperature conditions and three 

different wind speed conditions are shown in Figures 8-10.  

 

Figure 8. FEA Decreasing Temperature Simulations for Spring 
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Figure 9. FEA Decreasing Temperature Simulations for Summer 
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Figure 10. FEA Decreasing Temperature Simulations for Winter 
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module back-surface temperatures for constant wind speed and ambient temperature 

conditions.  

Further analysis of the individual FEA simulations shows that for increasing wind speed, 

the slope of the exponential temperature curve is flattened across all ambient temperature 

conditions due to the increased wind cooling load reducing the amount of time needed for 

temperature stabilization. Visual comparisons across the different ambient temperature 

conditions in each Figure reveal that the ambient temperature changes the initial 

stabilization temperature but does not dramatically impact the rate of temperature 

decrease for identical wind speed conditions. These observations reveal that wind speed 

is an important parameter when considering the transient thermal behavior in PV modules 

as it changes the slope of the exponential thermal decay. It also shows that ambient 

temperature, a primary input to existing steady-state thermal models, is not particularly 

useful in determining the transient thermal behavior of the modules as it relates to the rate 

at which module temperature is changing over narrow time increments.  

The FEA simulations discussed and shown in the previous Figures were all performed on 

a glass module with a thickness of 6 mm, which corresponds to a module weight per unit 

surface area of 15.7 kg/m2. The surface area used for these calculations includes only the 

front surface of the module. These simulations were repeated for glass modules with unit 

masses of 12.3 kg/m2 (5 mm glass thickness) and 9.8 kg/m2 (4 mm glass thickness). This 

created a dataset of 54 FEA simulations from which to better understand trends in 

transient module thermal behavior. This range of module unit masses covers the majority 

of glass-backsheet modules that are available in the PV market today. The impact that the 

unit mass has on module temperature can be seen in Figure 11, which shows FEA 
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simulation data for the temperature decrease in the module under identical environmental 

conditions and varying module unit masses.  

 

Figure 11. FEA Simulated Temperatures for Different Unit Masses 
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the range of temperatures from the introduction of the irradiance step decrease to the final 

simulated time step can be shown to be negligible. The stabilization of the module 

temperature to the overall temperature range of the simulated module is evaluated using 

the equation shown below: 

%𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒ⅆ =
|𝑇𝑖−𝑇𝑠𝑡𝑎𝑟𝑡|

|𝑇𝑠𝑡𝑎𝑟𝑡−𝑇𝑓𝑖𝑛𝑎𝑙|
                                            (18) 

Where 𝑇𝑖 is the temperature at a given time step, 𝑇𝑓𝑖𝑛𝑎𝑙 is the temperature at the final time 

step of the simulation, and 𝑇𝑠𝑡𝑎𝑟𝑡 is the initial temperature that the module stabilized to 

under the initial irradiance conditions before the step decrease in irradiance was 

introduced. The time step at which each FEA simulation’s stabilization values reach 0.1, 

or the time needed for the module to reach 90% thermal stabilization, from the 

calculation in (17) for different simulation parameters in the summer and spring ambient 

temperature conditions are shown in Figure 12. The winter temperatures were neglected 

in the analysis as these simulations were found to be less accurate in the steady-state 

convergence validation and the ambient temperature was previously determined to have 

negligible effects on the shape of the exponential thermal decay.  
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Figure 12. Temperature Stabilization Time for Wind Speed and Unit Mass 

 

These results show that even though the step changes in irradiance cause differences in 

the final stabilization temperature, the rate at which the temperature decreases is not 

dependent on the size of the irradiance step change. The time required for thermal 

stabilization is shown to decrease for increasing wind speed due to the increased cooling 

load. The time also increases for higher unit masses due to the higher thermal capacitance 

of the module. The small distribution of repeated data points in small clusters in Figure 

12 stem from 30 second differences in the required stabilization time for simulations at 

the same wind speed and unit mass conditions. These differences could also potentially 

be attributed to the different irradiance step change sizes or the different ambient 

temperature conditions of the different simulations, but these differences most likely stem 
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from inaccuracies due to the 30 second evaluation intervals within the software. 

Regardless of the reason for this small distribution of stabilization times, the temperature 

stabilization is far more dependent on wind speed and unit mass than it is on irradiance. 

These results are important for the development of the transient temperature prediction 

model, as it reveals that the irradiance should not be treated as the primary variable when 

accounting for the transient thermal behavior of the module.  

The FEA transient simulation method was also used to determine if the trends in module 

thermal behavior noted in the analysis of irradiance step decreases could also be applied 

to large step increases in irradiance. Performing this analysis required flipping the 

irradiance step changes that were used in the decreasing temperature studies in order to 

begin the thermal study with a stabilized temperature at low irradiance before introducing 

a large step increase in irradiance. The size of the step increases in irradiance are shown 

in Figure 13. A sample of these increasing temperature curves is shown in Figures 14 

through 16.  

 

Figure 13. Irradiance Step Change Sizes for Increasing Temperature Simulations 

0

500

1000

1500

0 900 1800 2700 3600

In
ci

d
en

t 
Ir

ra
d

ia
n
ce

  
(W

/m
²)

Time (seconds)

∆E = 600 W/m²

∆E = 400 W/m²

∆E = 200 W/m²

∆E = 600 W/m² 

(Open Circuit)



  40 

 

Figure 14. FEA Increasing Temperature Simulations for Spring 
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Figure 15. FEA Increasing Temperature Simulations for Summer 
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Figure 16. FEA Increasing Temperature Simulations for Winter 
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does in the decreasing temperature studies. Increasing the wind speed incident on the 

module front surface flattens the temperature profile of the module, as the increased 

cooling load from the wind causes the module temperature to stabilize more quickly.  

Evaluating the amount of time needed for the FEA simulated temperature increases to 

reach 90% thermal stabilization reveals similar behavior to that found in the decreasing 

temperature simulations. The amount of time needed for stabilization is shown as a 

function of wind speed and unit mass in Figure 17. Comparing the trends in this Figure 

reveal identical behavior to that in Figure 12, with increasing wind speed corresponding 

to decreased temperature stabilization time and increased mass per unit area 

corresponding to increased stabilization time. The separation in stabilization times for the 

same wind speed and unit mass conditions can be attributed to the 60-second data 

intervals that were used for these simulations in order to reduce computation time. The 

exhibited thermal behavior reveals that the exponential nature of the model applies for 

both rapid increases and decreases in temperature, and that the trends in thermal behavior 

are shown to be identically dependent on wind speed and unit mass for each direction of 

temperature change.  
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Figure 17. Temperature Stabilization Time for Increasing Temperature Simulations 

 

Both the increasing and decreasing FEA module temperature simulation datasets show 

that the relative temperature change is dependent on the wind speed and unit mass of the 

module rather than the size of the irradiance step change. These trends in module thermal 

behavior can be trusted to be reasonably accurate within the inherent accuracy constraints 

of the Sandia steady-state module as shown in the steady-state convergence simulations 

[4]. This FEA approach ultimately serves as a means of formulating the transient thermal 

model that will be discussed in the following sections and is not intended to serve as the 

main deliverable of these research efforts. This detailed approach does however offer a 

platform for future growth in PV thermal modeling through more detailed finite-element 

methods or different computational simulation methods of deriving module transient 
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thermal behavior. Such research efforts may include more detailed computational 

simulations of each individual PV module layer’s effect on the thermal mass of modules.  

3.5 Moving-Average Model Development 

Once the FEA simulations were performed and analyzed, the trends discovered in these 

simulations were used to develop a transient thermal model that is based on a few simple 

input parameters outside of those easily accessible environmental parameters already 

relied on for steady-state modeling. The FEA simulations revealed that the wind speed 

and unit mass have a visible and quantifiable effect on the shape of the exponential 

temperature decay for the FEA simulated module temperatures. They also showed that 

the time needed for the temperature to stabilize to a certain percentage of the overall 

thermal gradient is not a function of the irradiance or ambient temperature, which are two 

key variables in most steady-state temperature prediction models. This insight into the 

dynamic temperature dependence of PV modules can be used to develop a model that can 

account for the thermal mass of the module without being over-reliant on the incident 

irradiance as an input variable.  

The first step in developing the model was to plot the steady-state temperature 

predictions made using the Sandia steady-state temperature model [4] to match the FEA 

simulated temperatures at the step-change time and the 90% stabilization time. This was 

done by first calculating the ambient temperature needed for the steady-state prediction to 

match the FEA predicted temperature at the step change point. The irradiance needed for 

the steady-state prediction to match the FEA simulated temperature at the 90% thermal 

stabilization time was found based on the assumed wind speed and previously calculated 

ambient temperatures applied in the Sandia steady-state model to further verify the 
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accuracy of the FEA simulations. The calculated ambient temperature and irradiance 

values were determined to be within an acceptable error range to the FEA simulated 

curve at these points. This analysis was performed to better understand the difference in 

steady-state predicted behavior and expected thermal behavior for modules at narrow 

time intervals. An example of this plotting, shown in Figure 18, reveals that the transient 

FEA simulations show a reduced temperature ramp rate that is more accurate to how PV 

modules would typically be expected to behave in the field for large changes in 

irradiance. The steady-state approximations in this Figure are shown to be reasonably 

accurate during the beginning and end of the time series when the module is in thermal 

equilibrium but show large inaccuracies to the expected module temperature in the 

minutes immediately following the step decrease in incident irradiance. The linear 

relationship between the irradiance and steady-state temperature predictions leads to step 

changes in predicted temperature for step changes in irradiance. As such, these steady-

state modules do not account for the inherent thermal mass of the module. This thermal 

mass, treated as a simple function of module weight per unit area in the FEA simulations, 

must be accounted for when attempting to accurately predict the module temperature 

dynamically.  
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Figure 18. Steady-state Temperature Prediction Inaccuracy as Compared to FEA 

Transient Simulation Module Temperatures 

 

With the knowledge that steady-state models such as the Sandia steady-state temperature 

model [4] are accurate when the environmental conditions have stabilized to steady-state 

operating conditions, there is a benefit to using these accurate steady-state predictions at 

past time steps to more accurately predict the temperature for times of intermittent 

conditions. This concept resulted in a transient thermal model in which the steady-state 

predictions from previous time steps are weighted and averaged in order to predict 

module back-surface temperature change with respect to time. The weights attributed to 

the steady-state model predictions in this new model are based on the relationship 

between module thermal behavior, wind speed, and unit mass that was previously 

identified in the FEA. These weights are transient in nature as they take the time of the 
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predicted temperatures relative to the current time step into account. This moving-

average model serves to reduce the ramp rate of the temperature change for intermittent 

irradiance. Developing a model based on a moving-average of previous steady-state 

predictions reduces model complexity over previously developed transient thermal 

models and only requires the additional unit mass input to determine how to best weight 

the steady-state temperature predictions at previous time steps to accurately predict the 

temperatures at the given time step.  

Determining the best way to weight steady-state predictions from previous time steps 

required fitting an exponential moving average of the steady-state predictions to the FEA 

simulations and optimizing for the window size of the lookback period and the 

exponential weighting function. This means that the steady-state predictions for the 

parameters set in the given FEA simulation were used in a weighted average to match the 

fit of the exponential curves from the FEA simulations. As a visual example, the steady-

state temperatures in Figure 19 were fit to the FEA simulated temperatures, and this 

procedure was repeated for the entire set of FEA decreasing temperature simulations. The 

moving-average optimization of the weighted steady-state temperature predictions was 

performed using the following equation:  

𝑇𝑀𝐴,𝑗 =
∑ (𝑇𝑆𝑆,𝑖∗𝑒−𝑃∗𝑖)𝑁

𝑖

∑ (𝑒−𝑃∗𝑖)𝑁
𝑖

                                                    (19) 

Where 𝑇𝑀𝐴,𝑗 is the moving-average temperature prediction at the current time index 𝑗, 𝑖 is 

the index back from the current time step beginning with the index immediately behind 

the time step being calculated, 𝑁 is the window size based on the time needed for 90% 

stabilization time for each FEA simulation, 𝑇𝑆𝑆,𝑖 is the steady-state temperature prediction 
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at index 𝑖, and 𝑃 is the exponential weighting parameter that was optimized for the 

weighted moving average. This initial calculation was performed in terms of indices 

rather than time in seconds to allow for the use of different data intervals.  

 

Figure 19. Fit of Exponentially Weighted Steady-State Temperature Predictions to FEA 

Simulated Temperatures 

 

Weighting the steady-state temperature predictions allows for the generation of a 

temperature curve with a slower ramp rate than the step change in temperature predicted 

by steady-state models. This reduction of the temperature ramp rate is illustrated in 

Figure 20. Increasing the magnitude of the exponential weighting factor 𝑃 increases the 

ramp rate of the module temperature. Optimizing this ramp rate as a function of wind 

speed, unit mass, and time allows for the best model fit to the expected transient thermal 

behavior of PV modules. The legend entries in this Figure refer to the pairing of the 

power parameter followed by the number of 30-second indices included in the averaging 

window.  
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Figure 20. Illustration of Exponential Thermal Ramp Rate of PV Module Temperature 

 

Initial attempts at this analysis began with determining the amount of time needed for 

each FEA simulation to become 90% stabilized as discussed in the previous section. The 

amount of time from the beginning of the irradiance step change to the 90% stabilization 

time was taken as the lookback window size N as measured in seconds. Once this 

window size was determined, the exponential weighting parameter 𝑃 that optimized the 

Root Mean Square Error (RMSE) between the moving-average fit and the FEA 

simulation dataset were found through a minimum boundary fit calculation performed 

with a Matlab function. The moving-average fit of the steady-state model was calculated 

as a convolution of the window size N and the weights for each index as shown in (19). 

The relative weights were found by calculating the weight of each index based on the 𝑃 

value for the given simulation. The 𝑃 that allowed for the smallest RMSE was solved 

iteratively in Matlab for each FEA simulation dataset for a total of 52 unique simulations. 
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2 simulations were found to have inconsistencies in the application of the thermal loads 

during the FEA simulations and were thus removed from the original set of 54 

simulations of decreasing module temperature.  

The resulting weighting function 𝑃 values as they relate to the constant wind speed and 

unit mass of the simulated module temperatures are shown in Figure 21. The 𝑃 parameter 

was found to increase for increasing wind speed and decrease for increasing unit mass. 

The small scatter of the data points in this Figure can again be attributed to the 30 second 

data intervals of the FEA simulations and uncertainty in the heat transfer calculations.  

 

 

Figure 21. Power Parameter as a Function of Wind Speed and Unit Mass 

 

Initial development of the moving-average model was based on the optimization of the 

weighting function based on both the window size 𝑁 needed for temperature stabilization 

and the weighting function 𝑃 that optimized the fit for the given wind speed and unit 
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mass conditions. Upon further analysis of this initial model optimization, it was 

determined that optimizing for two variables in the model equation was overly complex. 

As a result, the window size for subsequent analysis was held as a constant of 20 minutes 

(1200 seconds) back from the current time step. This assumption was considered 

sufficient for the model as the exponential weighting function assigned to the previous 

steady-state temperature predictions assigns less weight to those predictions further away 

from the current time step, making the predictions furthest away in time negligible in 

some cases. 20 minutes was chosen as the constant time based on Figure 12, which shows 

that 20 minutes, or 1200 seconds, is more than enough time for each simulation evaluated 

to reach temperature stabilization. Increasing this window size beyond 20 minutes did not 

show significant accuracy improvements in the optimization. Reducing the window size 

risks failure to account for steady-state temperature predictions that are still relevant to 

the current module temperature during times of intermittency in the environmental 

variables.  

With the constant window size determined, the steady-state moving-average fit to the 

FEA simulation temperatures could be based solely on the power parameter 𝑃 for the 

decreasing temperature studies.  The results of the optimization based solely on 𝑃 are 

shown in Figure 22 as a 3D plot that relates the wind speed and unit mass to the optimal 

power parameter for each simulation. The results show an approximately planar fit 

between 𝑃, the wind speed, and the unit mass, with each variable having an 

approximately equal importance to the determination of the 𝑃 parameter.  
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Figure 22. Planar Fit of Exponential Weighting Factor to Wind Speed and Module Unit 

Mass 

 

The planar relationship shown in Figure 22 is important as it allows for the use of bilinear 

interpolation to develop an equation for determining the 𝑃 parameter based on the wind 

speed and unit mass at any given time stamp. Bilinear interpolation is a statistical 

approach in which the edge cases of a planar surface are interpolated against to correlate 

the parameters into an equation that represents the behavior of the plane [30]. The 

interpolation equation is of the form shown by the following [30]:  

[

    1 𝑊𝑆1

    1  𝑊𝑆1
       

𝑚𝑢1 (𝑊𝑆1𝑚𝑢1)
𝑚𝑢2  (𝑊𝑆1𝑚𝑢2)

  1 𝑊𝑆2

  1 𝑊𝑆2 
     

 𝑚𝑢1 (𝑊𝑆2𝑚𝑢1)
 𝑚𝑢2 (𝑊𝑆2𝑚𝑢2)

] [

𝑎0

𝑎1

𝑎2

𝑎3

] = [

𝑃11

𝑃12

𝑃21

𝑃22

]                               (20) 

Where 𝑊𝑆1 and 𝑊𝑆2 are the lowest and highest wind speeds simulated during the FEA 

simulations, respectively, with the same syntax applying to the unit mass mu values as 
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well. The 𝑃ij values represent the 𝑃 value calculated to fit the model to the FEA 

simulation performed with wind speed i and unit mass j. The resulting coefficients a0-a3 

can be used to calculate the weight parameter P at any wind speed and unit mass through 

the following [30]: 

P = a0 + a1*WS + a2*mu + a3*WS*mu                                                           (21) 

Performing bilinear interpolation for the edge cases of the planar fit shown in Figure 22 

led to the following bilinear interpolation coefficients shown in Table 3. Reapplying the 

coefficients to the test conditions of the entire decreasing temperature FEA dataset led to 

P prediction accuracy of 1e-4 for those simulations contained within the edge cases used 

for the analysis. With the model weighting factor now able to be determined at any given 

time step, the final model was implemented in a manner that would be easily accessible 

to industry and relevant software packages.  

 

Table 3. Bilinear Interpolation Coefficients for Exponential Weighting Factor 

 

 

3.6 Model Implementation 

The optimization and resulting bilinear interpolation of the weighting parameter for the 

weighted moving-average of steady-state temperatures allows for the calculation of the 

dynamic module back-surface temperatures for any planar module. The final model 

 

Coefficient Value 

a0 0.0046 

a1 0.00046 

a2 -0.00023 

a3 -1.6E-05 
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equation that was formed as a result of the optimized fit between the weighted moving-

average of steady-state temperature predictions and the FEA simulated module back-

surface temperatures is shown below:  

𝑇𝑀𝐴,𝑖 =
∑ (𝑇𝑆𝑆,𝑖∗𝑒−𝑃∗𝑡𝑖)

𝑡𝑖≤1200

𝑖=2

∑ (𝑒−𝑃∗𝑡𝑖)
𝑡𝑖≤1200

𝑖=2

                                                (22) 

Where  𝑖 is the index of the time step relative to index 𝑖 = 1 of the current time step being 

evaluated, 𝑇𝑀𝐴,𝑖 is the moving-average model module back-surface temperature 

prediction (°C) at index 𝑖,  𝑡𝑖 is the time in seconds that the indexed time step is from the 

current time step, and 𝑃 is the weighting factor calculated for the wind speed and unit 

mass at the current index. This final model equation contains an exponentially weighted 

average that is of the same form as the optimization model used to define the exponential 

weighting factor  𝑃.  

The final equation is based on the time in seconds rather than an index location relative to 

the given time step in order to allow for the use of the model for data on any time interval 

and to account for missing time steps in a dataset. In this equation, the summation terms 

included in the averaging window start at index 𝑖 = 2, which is the index immediately 

behind the point in time being considered. This notation helps to more clearly 

demonstrate the fact that the model is based on a moving-average of steady-state 

temperatures behind the time in questions and does not include the steady-state 

temperature prediction for the given instant in the calculation. The steady-state 

predictions used in this model are assumed to describe the temperature conditions of the 

PV module in the time interval following the index in question rather than the preceding 

time interval. For the scenario where the steady-state calculations described the thermal 
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conditions forward in time, the steady-state temperature prediction at the index being 

considered would describe temperature conditions for a time that has not yet occurred, 

and thus this steady-state prediction cannot be used in the calculation. The moving-

average model equation is the main deliverable of the thesis work, as it the ultimate 

model equation that was developed in order to address the gap in transient thermal 

modeling of PV modules.  

The use of unit mass (mass per unit area) as a primary input to the model allows for this 

model to be applied to thermal analysis of any planar PV module regardless of the 

materials used in module construction and the type of solar cells being used. The unit 

mass serves as a substitute for the thermal capacitance of the numerous layers contained 

within any planar PV modules by linking the transient thermal behavior to total weight 

per unit rather than specific material thermal properties that can be difficult to define for 

each layer. Applying the model to a given module first requires the calculation of the 

mass per unit area by dividing the overall mass of the module in kilograms by the surface 

area in square meters as listed in the module’s spec sheet.  

Applying the moving-average model next requires the calculation of steady-state 

temperature predictions for every timestamp in the dataset being analyzed. These steady-

state predictions can be performed using any validated steady-state temperature model. 

Empirically optimizing these models based on previous temperature data for the module 

at the desired array site can offer improved modeling accuracy for both the steady-state 

and moving-average models.  If such optimization cannot be performed, the moving-

average model should still offer improved modeling accuracy over steady-state models 

using default or generalized coefficients.  
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The other primary input to the moving-average model is the wind speed at the array site. 

This wind speed should ideally be measured at approximately the same height as the 

module to have a true measure of the wind incident on the modules. If the wind is 

measured at a height significantly different from that of the module height, the wind 

speed measurements can be adjusted to the desired height. The following conversion 

must be made to convert wind speeds at various heights to the correct measurement 

height [31]:  

 𝑣(𝑧) = 𝑣(𝑧𝑟)
ln(

𝑧

𝑧0
)

ln(
𝑧𝑟
𝑧0

)
                                                      (23) 

Where  𝑣(𝑧) is the wind speed vector at the desired measurement height 𝑧 (meters) in 

m/s, 𝑣(𝑧𝑟) is the wind speed vector at the reference height 𝑧𝑟 (meters), and 𝑧0 is the 

roughness length of the PV array site in meters [31]. The roughness length is the 

theoretical height in meters at which the wind speed could be expected to be zero [31]. 

The wind roughness length in this analysis was assumed to be 0.25 meters, which is 

analogous with an environment with scattered large buildings or obtrusions [31].  

An example of the moving-average model calculations is shown in Table 4. This example 

data is based on measurements taken on a 2-minute interval. The module being analyzed 

was a rectangular module with a glass front and polymer backsheet that was found to 

have a total weight of 18.2 kg and dimensions of 1.650 meters by 0.992 meters. These 

values result in a unit mass of 11. 1 kg/m2.  
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Table 4. Moving-Average Model Example Calculation 

 

The rows of the table indicate the index of each data point relative to index 1, which is 

the time index for which the module temperature is being calculated. The data between 

t = 480s and t = 840s is intentionally excluded in this example to show that the model still 

works for nonuniformly sampled data or data with missing time stamps. The numerator 

of the moving-average model equation in (22) is found from the steady-state temperature 

predictions in Table 4 for each index outside of the first index, the time values for each 

index outside of the first index, and the 𝑃 value calculated for the unit mass of the 

module and the wind speed at the first index. The denominator in (22) is calculated 

similarly except the steady-state temperatures are not included. These calculations, shown 

in the equation below, led to the moving-average temperature prediction in °C for the 

first index in Table 4: 

𝑇𝑀𝐴 =
[22.5𝑒−𝑃∗120]+[26.2𝑒−𝑃∗240]+[28.7𝑒−𝑃∗480]+⋯[19.0𝑒−𝑃∗1200]

[𝑒−𝑃∗120]+[𝑒−𝑃∗240]+[𝑒−𝑃∗480]+⋯[𝑒−𝑃∗1200]
                       (24) 

This procedure is used for each timestep in a given dataset to calculate the moving-

average temperature predictions of any given module over a time period.  

One useful implementation of this model is to apply it to an annual dataset from either 

measured or historically averaged environmental data in order to model the expected PV 

 

TABLE III 
MOVING-AVERAGE MODEL EXAMPLE CALCULATION 

Time 

index, i 

SECONDS 

BEFORE 

t=0, ti 

Steady State 

Temp. TSS,i 

(°C) 

2-meter 

Wind 

Speed 

(m/s) 

Pi 
TMA, i  

(°C) 

 

Pi 

       

1 0 32.5 5.0 0.0032 22.5  0.0035        

2 120 22.5 N/A N/A N/A  N/A        

3 240 26.2 N/A N/A N/A  N/A        

4 480 28.7 N/A N/A N/A  N/A        

5 840 19.0 N/A N/A N/A  N/A        

6 960 18.2 N/A N/A N/A  N/A        

7 1080 18.3 N/A N/A N/A  N/A        

8 1200 19.0 N/A N/A N/A          
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array output for a given site. Applying the model in this way first requires calculating the 

input parameters of steady-state temperature, wind speed, and unit mass as described in 

the example shown in Table 4. The model runs by first calculating the 𝑃 parameters for 

each time stamp in the dataset by using the bilinear interpolation coefficients in Table 3, 

converted wind speed values, and the unit mass. The first-time stamp in the dataset is 

automatically set to the steady-state predicted temperature value as there are no previous 

time stamps to perform a moving-average across. Because of this, the dataset being 

evaluated should start during a time of stable module temperature. For an annual dataset, 

the dataset typically starts from midnight of January 1st, which would be characterized by 

a prolonged period of zero incident irradiance and stable module temperatures that can be 

accurately predicted through steady-state models. For the remainder of the dataset, the 

model function is designed to loop through each index in the dataset, find all steady-state 

temperature predictions within the 20-minute (1200 seconds) window preceding the time 

stamp at said index, and perform a weighted moving-average on all predictions that are 

found using the 𝑃 value calculated for the wind speed of that index.  

The indexing for the moving-average model is done by using front and back index 

markers on the dataset. Each iteration of the loop places the front index at the time stamp 

immediately prior to that of the current index and places the rear index at the furthest 

possible index that has a time stamp within 20 minutes of the current index’s timestamp. 

This indexing system eliminates the need for searching through the entire dataset for data 

to include in the moving-average at each index based on the time stamp data by 

essentially creating a subset of values within. The indices generate a subset of the dataset 

at each loop containing all possible previous time stamps for consideration, then allows 
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the steady-state predictions within the index to be averaged. This system saves processing 

time when modeling and allows for predictions of module back-surface temperature for 

annual datasets to be generated within seconds.  

The original model implementation was performed in Matlab as a function that could be 

called for input parameters including timestamps, steady-state temperature predictions, 

wind speed values, unit mass conditions, and optional alternatives to the previously 

determined bilinear interpolation coefficients. As this is a transient temperature model, 

the time stamps of the data being evaluated must be formatted such that they can be used 

in the calculations. The Matlab formatting of the time stamps matched that of the 

software package PVLIB, a package of PV performance modeling equations [32]. The 

time stamps that must be input into the moving-average model function must be 

formatted as time structs, which are Matlab variables consisting of classes containing the 

year, month, day, hour, minute, and second data for each time step in the dataset along 

with a UTC offset to set the time zone of the data.  

The moving-average temperature model was also written to be used in Python as part of 

the PVLIB distribution on that platform. The Python version of the model relies on the 

Pandas package of statistical tools. Pandas allows for the model inputs to be converted 

into a Pandas DataFrame, a table that is indexable by time stamp or by index location 

[33]. The remainder of the code functions in the same way as the Matlab function, with 

the mathematical operations required in the Python version being handled by the NumPy 

package of mathematical functions [34].  
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

The transient moving-average thermal model must be validated against measured module 

temperature data to prove that the model is accurate enough to be implemented into PV 

performance modeling practices in the future. This validation quantifies the accuracy of 

the transient model temperature predictions against module back-surface temperatures 

measured at PV sites with different climate conditions and module types. The validation 

also shows how the use of the moving-average filter in the model provides a much 

smoother and accurate temperature prediction curve for narrow data intervals than the 

steady-state models commonly used in performance modeling. Improvements in the 

thermal modeling accuracy are also linked back to performance, with calculations 

showing what effect the accuracy improvements have on the expected accuracy of overall 

PV performance calculations. The following subsections will discuss the various 

statistical and graphical analyses performed for the transient thermal model along with 

conclusions that can be drawn based on the results of said analyses.  

4.1 Data Handling 

A large portion of the moving-average model validation is based on PV and 

environmental data collected and maintained at Sandia National Laboratories’ 

Photovoltaic System Evaluation Laboratory (PSEL) in Albuquerque, NM. Data from four 

PV sites with unique climate conditions were evaluated in order to inspect the 

performance of the model for differing degrees of solar intermittency, ambient 

temperature conditions, and wind conditions. The four sites were as follows: 

Albuquerque, NM, Orlando, FL, Las Vegas, NV, and Williston VT. The PV arrays that 
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the data from these sites was taken from were of the same size and module construction 

type in order to ensure proper comparison of the experimental analyses. The modules 

chosen for each of these sites each consisted of a glass front surface and polymer 

backsheet. Each module was set at a tilt angle equal to the respective site’s latitude and 

an azimuth angle of 180° from due North that caused the modules to be pointed due 

South. The data for each site was measured in 1-minute intervals using standard 

datalogger equipment and technologies. The datasets covered a full calendar year of data, 

with some sites having periods of maintenance or downtime in which the data was 

missing and not considered in the analysis. Further data filtering methods aimed at 

ensuring a true representation of the benefits of the moving-average model are described 

below.  

4.2 Data Filtering 

The moving-average nature of the model requires the use of an existing steady-state 

model in order to eventually arrive at the desired transient thermal predictions for the 

given time steps. In this analysis, the previously mentioned Sandia steady-state 

temperature model is used for the moving-average model calculations [4]. The steady-

state model coefficients were optimized for each site in order to form an optimal 

comparison of the steady-state and moving-average model based on steady-state 

modeling that is a true fit to the expected module thermal behavior of the given climate. 

Using the default steady-state coefficients provided in [4] for the moving-average model 

calculations would still show improvements in the modeling accuracy. The optimization 

was based on a minimum boundary fit for the steady-state model coefficients that 

minimized the Root Mean Square Error (RMSE) for the difference between the measured 
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and steady-state modeled temperature data. This optimization was performed for annual 

temperature datasets for each location that were filtered to only include daytime time 

stamps in which there were clear sky conditions with low intermittency in incident 

irradiance. The clear sky filtering was performed using a function within PVLIB that uses 

solar position algorithms and changes in the measured global horizontal irradiance (GHI) 

over time to find the time stamps within a dataset that can be considered to have clear sky 

conditions [32], [35]. The function compares measured GHI data over a sliding time 

window to values predicted by the Ineichen clear sky model, which predicts the GHI of a 

given site using the following system of equations [35], [36]: 

𝐺𝐻𝐼 = 𝑐𝑔1 ∗ 𝐼0 ∗ cos(𝑧) ∗ exp (−𝑐𝑔2 ∗ 𝐴𝑀 ∗ (𝑓ℎ1 + 𝑓ℎ2(𝑇𝐿 − 1))) ∗ exp (0.01 ∗ 𝐴𝑀1.8)     (25) 

𝑓ℎ1 = exp (−
ℎ

8000
)                                                        (26) 

𝑓ℎ2 = exp (−
ℎ

1250
)                                                         (27) 

𝑐𝑔1 = 5.09 ∗ 10−5 ∗ ℎ + 0.868                                               (28) 

𝑐𝑔2 = 3.92 ∗ 10−5 ∗ ℎ + 0.0387                                             (29) 

Where 𝐼0 is the extraterrestrial irradiance constant, 𝑧 is the solar zenith angle in radians, 

𝐴𝑀 is the air mass, 𝑇𝐿 is the Linke turbidity factor, and ℎ is the elevation of the site in 

meters. The coefficients in (25)-(28) were determined empirically based on elevation 

[35], [36]. The turbidity factor 𝑇𝐿 is a measure of the scattering and absorption of light 

by water particles and aerosols that Ineichen calculates independently of the air mass 

[36], [37].   

Optimizing for only clear sky conditions ensures that the steady-state model temperature 

is optimized for module temperatures that are stable in nature and not affected by 
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intermittent irradiance, as these are the conditions under which the model has been 

proven accurate [4], [22]. The final optimized coefficients for each dataset were then 

used for the steady-state modeling across the full year of data, which was subjected to 

numerous data filters but was not limited to only clear sky conditions.  

For a true understanding of the benefits of the moving-average model, each dataset was 

filtered to include only those time stamps with logical values for the variables of 

importance in the calculation. These variables included the POA irradiance, ambient 

temperature, wind speed, GHI, and measured module temperature for comparison 

purposes. The dataset was first filtered to eliminate time steps where any of these 

variables were missing due to datalogger communication errors or nonfunctioning data 

sensors. Next, each of the relevant values were filtered to eliminate any values that were 

outside of the expected range of expected behavior. For example, module temperatures 

would typically be expected to reach as high as 30°C above the ambient temperature 

based on steady-state predictions, so any reported temperatures exceeding that value 

would indicate an issue with the sensor or data collection methods. In the case of module 

temperature, this could be the result of the measurement apparatus losing contact with the 

module or being in open circuit condition due to a disconnected lead. Measurements of 

the wind speed magnitude were filtered to exclude any negative values that are physically 

impossible. The irradiance values were filtered to exclude values less than 0 W/m2 or 

greater than 1500 W/m2. The ambient temperature measurements were filtered to remove 

impossible or unrealistic values based on the expected ranges of ambient temperatures.  

After filtering for both missing and impossible data, the times at which the measured 

environmental data is relevant to PV performance were also considered. As PV energy 
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production at the module level can only occur when there is irradiance hitting the PV 

cells, times after the sun has set each day and before it has risen in the morning are not 

relevant when considering the accuracy of PV temperature modeling. In order to generate 

statistics showcasing the accuracy of the model solely for times of production, the data 

was filtered to eliminate the irrelevant nighttime data from the dataset. Rather than 

filtering based on arbitrary constant start and stop times each day that would have to be 

changed for the different time zones in each climate, the data was filtered based on solar 

position calculations of the angle of incidence (AOI) between the sun and the module 

surface plane. The AOI is the angle at which light hits the module front surface. This 

value changes for modules at a fixed tilt angle as the sun’s position relative to the module 

changes throughout the day [10]. The AOI for each site was calculated at each time step 

using equations from PVLIB that were based on the following equations for planar 

modules [10], [32]: 

𝐴𝑂𝐼 = 𝑐𝑜𝑠−1[cos(𝜃𝑍) cos(𝜃𝑇) +  sin (𝜃𝑍) sin (𝜃𝑇)cos (𝜃𝐴 − 𝜃𝐴,𝑎𝑟𝑟𝑎𝑦)]         (30) 

Where 𝐴𝑂𝐼 is the angle of incidence, 𝜃𝑍 is the solar zenith angle, 𝜃𝑇 is the tilt angle of 

the PV array, 𝜃𝐴 is the solar azimuth angle, and 𝜃𝐴,𝑎𝑟𝑟𝑎𝑦 is the azimuth angle of the array.  

 To exclude times when the sun is rising and setting and there is not yet a huge amount of 

irradiance falling on the module, AOI values greater than 75° were excluded from the 

analysis. Additionally, the elevation angle of the sun, a parameter signifying the height of 

the sun relative to the horizontal [10], was considered for the analysis for the 

Albuquerque, NM dataset. This was done by only including data with elevation angles 

greater than 10° to eliminate data for times in which the sun has not yet crested the 

mountains near the PV array site stationed at Sandia National Laboratories from which 
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the data was collected. This additional filter was not applied to the other datasets as there 

was no evidence of large obstructions near the PV installations that required additional 

considerations into the solar positioning.  

Once all the data filters were applied, the steady-state temperature approximations for the 

remaining dataset were calculated with the optimized coefficients determined in the clear 

sky analysis. The wind speed measurements were corrected to a height of 2 meters and 

the module unit mass was calculated from the module spec sheets to be approximately 11 

kg/m2 [38]. These wind and unit mass values, along with the time struct containing the 

time step data and the steady-state temperature predictions, were entered into the moving-

average model function to generate an array of transient module back-surface 

temperature predictions. This model output array could then be evaluated based on its 

performance relative to measured module temperatures and to the model residuals 

expected from steady-state temperature models.  

4.3 Cumulative Distribution Function Analysis  

Empirical Cumulative Distribution Function (CDF) analysis is used to show how likely a 

variable is to be under a given threshold value [39]. In the case of the moving-average 

model, the CDF analysis can be used to see how likely the absolute residuals between the 

transient thermal model and module back-surface temperature measurements are to be 

within 2°C, 5°C, or any arbitrary temperature residual value that would be representative 

of the accuracy desired for the given PV performance modeling efforts. An issue with 

steady-state temperature models, particularly at frequent data intervals such as 1-minute, 

is that they vary widely with changing irradiance, which leads to more instances of large 

model residuals to measured data. Smoothing out the temperature prediction curve 
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through a moving-average of the predictions from previous time steps can eliminate the 

spiking exhibited in these steady-state models at narrow time scales. 

The CDF analysis was used to show how the moving-average model could improve upon 

the variability of the steady-state model for data ranging in frequency from 1-minute to 

10-minute data. These different data intervals were generated from Albuquerque, NM 

annual dataset of 1-minute data. The data was resampled into intervals of 2 minutes, 3 

minutes, 4 minutes, 5 minutes, 7 minutes, and 10 minutes using Matlab’s timetable 

functionality to resample the relevant variables through averaging of data points within 

the new data sampling interval. The transient thermal model was run for each data 

interval, and the results were compared against the similarly resampled module 

temperature data measurements by taking the absolute value of the difference between 

measured and modeled temperatures for each test case. CDF analysis was performed on 

each set of absolute residuals, with the results plotted in Figure 23.  
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Figure 23. Empirical CDF Analysis of Moving-Average Model Fit to Albuquerque Data 

 

Analysis of this Figure reveals that approximately 95% of the moving-average model 

residuals for 1-minute data can be expected to be under 5°C, with the subsequent data 

intervals having a gradual decrease in accuracy. The 10-minute dataset is found to have 

approximately the same residual probability curve as a purely steady-state temperature 

model, which aligns with the expectations of the 20-minute averaging window of the 

model. The 20 minute-window leads to a maximum of 2 data points being included in the 

averaging window, which results in a model that is very similar to that of the steady-state 

model. Extending the averaging window poses the risk of basing the temperature 

prediction at the current time step on temperatures at time steps that are not relevant to 

the current time based on the transient thermal behavior observed in the FEA analysis. 

This CDF plot shows that the moving-average model offers significantly reduced 



  69 

modeling variability for more narrow data intervals ranging from less than a minute to 10 

minutes.  

4.4 Moving-Average Model Fit to Measured Data 

The four different PV array sites were evaluated based on how the temperature 

predictions calculated using the moving-average model compared to measured 

temperature data from each site. The statistical analysis of this fit between modeled and 

measured temperatures was based on the comparison of numerous fit statistics 

quantifying the accuracy of both the moving-average model and steady-state temperature 

model. These fit statistics included Root Mean Square Error (RMSE), which is a measure 

of the average deviation of the predicted temperatures to the measured temperatures 

across the annual dataset. The RMSE values in °C found in this analysis were based on 

the following equation [40]:  

𝑅𝑀𝑆𝐸 =  √
∑(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑇𝑚𝑜𝑑𝑒𝑙)2

𝑛
                                         (31) 

Where 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured module back-surface temperatures for the site in °C, 

𝑇𝑚𝑜𝑑𝑒𝑙 is either the steady-state or moving-average modeled temperatures in °C, and 𝑛 is 

the number of samples in the dataset for the given site [40]. The statistical analysis also 

includes Mean Bias Error (MBE), an overall average of the residuals across the full 

dataset that reveals underprediction or overprediction bias for the model through the sign 

of the value. The MBE values for both the steady-state and moving-average models were 

found using the following equation [40]: 

𝑀𝐵𝐸 =  
∑(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑇𝑚𝑜𝑑𝑒𝑙)

𝑛
                                             (32) 
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Negative MBE values indicate that the temperature model tends to predict module 

temperatures higher than the actual measured values. Alternatively, large positive values 

would indicate that the temperature model is predicting temperatures lower than that of 

the measured temperatures [40]. A statistic that is similar to MBE is Mean Absolute Error 

(MAE), which shows the absolute average residuals to give a true value to the inherent 

accuracy of the models [40]: 

𝑀𝐴𝐸 =  
∑|(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑇𝑚𝑜𝑑𝑒𝑙)|

𝑛
                                              (33) 

The MAE differs from the MBE in that it shows the absolute difference in the measured 

and modeled temperatures eliminating any bias from the direction of the temperature 

residuals. The difference between the RMSE and MAE values represent the amount of 

variance in the residuals, with higher amounts of large error in temperature predictions 

causing a greater difference between the statistics due to the square nature of the RMSE 

calculation [40]. The R2 fit of the data also reveals how good of a fit each temperature 

model is to the known temperature models. The R2 calculations for the model validation 

were performed using the following equation [40]:  

𝑅2 = 1 − 
∑(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 𝑇𝑚𝑜𝑑𝑒𝑙)2

∑(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑− 
∑ 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑛
)2

                                         (34) 

The calculated values of these different fit statistics for each of the four PV sites are 

shown in Table 5.  
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Table 5. Fit statistics for Moving-Average Model and Steady-State Models for Different 

Climates 

 

Analysis of this table shows that the implementation of the moving-average model 

improves the statistical fit of the predicted temperatures to the measured data for each of 

the four unique climate conditions. The improvements show that the moving-average 

model improvements are greatest for the temperate climate of Orlando, which is 

characterized by frequent times of solar intermittency that would lead to high variance 

and inaccuracy when using purely steady-state models to predict module temperatures. 

The benefits of the moving-average model appear to be the smallest for areas with 

weather conditions like Las Vegas, which is characterized by large amounts of irradiance 

and fewer times of intermittency caused by cloud cover or storms. In each climate, the 

 

Albuquerque   

  Optimized SS Moving-Average 

RMSE (°C) 3.79 2.69 

MAE (°C) 2.86 2.14 

MBE (°C) -0.442 -0.341 

R-Squared 0.936 0.967 

Orlando 
  

  Optimized SS Moving-Average 

RMSE (°C) 4.41 2.03 

MAE (°C) 3.02 1.57 

MBE (°C) 0.326 0.318 

R-Squared 0.880 .975 

Vermont 
  

  Optimized SS Moving-Average 

RMSE (°C) 3.92 2.90 

MAE (°C) 2.86 2.20 

MBE (°C) -0.86 -0.83 

R-Squared 0.9596 0.977 

Las Vegas   

  Optimized SS Moving-Average 

RMSE (°C) 2.86 2.22 

MAE (°C) 2.20 1.80 

MBE (°C) -0.380 -0.296 

R-Squared 0.968 0.981 
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implementation of the moving-average model decreases the difference between RMSE 

and MAE to a value less than 1°C, which shows reduced prediction variability for the 

transient model as compared to the steady-state model variance.  

Studying the trends in the MBE reveals that there is a general trend for the model to 

predict module back-surface temperatures greater than the measured temperatures for 

most of the climates when evaluating over the full year. The MBE for Orlando shows a 

slightly positive value that is very close to zero. Overall, the fact that the MBE for each 

location is within 1°C of zero and the MAE is within 2°C shows that the moving-average 

model accurately predicts module temperature across a wide range of climate conditions.  

Seasonal examples of the effect the moving-average model has on days that are 

characterized by solar intermittency are shown in Figures 24 and 25. Figure 24 shows a 

summer day in Albuquerque where the module temperature varies throughout the day as 

a function of prolonged periods of decreased irradiance. Looking at the steady-state fit to 

the measured data for these days, the predicted temperatures spike from low to high 

based on minute-to-minute changes in the plane-of-array irradiance measurements. Using 

the moving-average model as a smoothing filter over these steady-state predictions serves 

to reduce the variability of these predictions while also much more accurately matching 

the measured temperature curve. Visual inspection of this plot shows that the moving-

average modeled temperatures closely follows the shape of the measured module 

temperatures. While there are times during this summer day in which there is a noticeable 

offset between the moving-average model predictions and the measured temperatures, the 

shape of the predicted module temperatures is still nearly the same as that of the 

measured temperature.  
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Figure 24. Summer Example of Moving-Average Model Fit to Measured Data 

(Albuquerque) 

 

Figure 25 shows the same model comparison for a winter day. Just as in Figure 24, the 

moving-average model follows the shape of the measured module back-surface 

temperatures curve more closely than the steady-state model. While the shape of the 

moving-average curve closely follows the measured temperatures, there is an offset that 

shows moving-average model predicts temperatures higher than the measured 

temperatures early in the morning. This offset can again be attributed to inherent 

inaccuracies in the steady-state thermal model.  
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Figure 25. Winter Example of Moving-Average Model Fit to Measured Data 

(Albuquerque) 

 

The benefits of the moving-average model can also be shown for steady-state calculations 

performed with default coefficients. The degree to which the steady-state model is 

optimized to a given array site only effects the starting point of the model error relative to 

the measured temperatures and should not change the degree to which the moving-

average filter improves the modeling accuracy. This is shown in Table 6, which shows 

the moving-average and steady-state model fits for the default Sandia steady-state 

coefficients of a = -3.56 and b = -.075.  
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Table 6. Fit Statistics for Moving-Average and Default Steady-State Model for Different 

Climates 

 

These results show decreased improvement in the modeling accuracy provided by the 

moving average model, as the steady-state model is much less accurate during times of 

stable environmental conditions. This means that the moving-average model is often 

basing its temperature predictions on a weighted average of inaccurate temperature 

measurements. The positive MBE values for each dataset show that the default steady-

state model underpredicts module temperature consistently, which may be due to the 

increased b coefficient value which increases the effect of the wind speed on the 

temperature calculation.  

 

Albuquerque   

  Default SS Moving-Average 

RMSE (°C) 5.26 4.79 

MAE (°C) 4.09 3.81 

MBE (°C) 2.90 3.00 

R-Squared 0.876 0.897 

Orlando 
  

  Default SS Moving-Average 

RMSE (°C) 6.42 5.65 

MAE (°C) 5.08 4.79 

MBE (°C) 4.61 4.61 

R-Squared 0.746 0.803 

Vermont 
  

  Default SS Moving-Average 

RMSE (°C) 5.36 4.90 

MAE (°C) 3.97 3.71 

MBE (°C) 2.29 2.32 

R-Squared 0.922 0.936 

Las Vegas   

  Default SS Moving-Average 

RMSE (°C) 4.49 4.19 

MAE (°C) 3.56 3.42 

MBE (°C) 2.62 2.71 

R-Squared 0.921 0.932 
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While the annual results for the moving-average model using default steady-state 

coefficients show decreased accuracy improvements, seasonal examples of days with 

high solar intermittency show that the moving-average model is still smoothing the 

steady-state predictions to match the shape of the measured temperature curve. Figures 

26 and 27 show moving-average model temperatures, steady-state predictions, and 

measured temperature data for summer and winter days, respectively, that are 

characterized by solar intermittency.  

 

Figure 26. Default Steady-State Moving-Average Model Implementation for a Summer 

Day 
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Figure 27. Default Steady-State Moving-Average Model Implementation for a Winter 

Day 

 

These Figures show that the moving-average model is still able to match the shape of the 

temperature curve for default steady-state model predictions. The shape of the predicted 

curve is at an offset due to the inherent inaccuracy of the steady-state predictions, but the 

rate of temperature change matches that of the measured temperature data. The winter 

day in particular shows large temperature prediction offsets for certain times of the day 

which may be due to wind direction effects that are not considered in the steady-state or 

transient thermal models.  

In addition to investigating the improved modeling accuracy of the moving-average 

model on an annual basis, the monthly performance of the model was also analyzed to 

gain a better understanding of how the model has specific seasonal benefits for each of 

the climates being evaluated. The monthly RMSE between measured and modeled 

temperatures for both the moving-average and optimized steady-state models are shown 
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in Figures 28 - 31, with each Figure showing the results for the different PV array sites as 

discussed in for the optimized steady-state and moving-average model results in Table 5. 

  

Figure 28. Monthly RMSE for Moving-Average and Steady-State Models (Albuquerque) 

 

Analysis of Figure 28 for the Albuquerque array shows that introducing the moving-

average model has increased benefits on modeling accuracy for the spring and summer 

months. The absence of August model performance stems from the lack of data for that 

month due to system maintenance. The moving-average model is shown to have the 

smallest effect in the colder months such as November and January that are characterized 

by less available irradiance.   

 



  79 

  

Figure 29. Monthly RMSE for Moving-Average and Steady-State Models (Orlando) 

 

Analysis of the data for the Orlando, Florida site shown in Figure 29 shows large RMSE 

improvements in the range of 3°C for summer conditions. There are also significant 

modeling accuracy improvements across the year for this type of climate. The frequent 

solar intermittency present in the temperature conditions of Orlando provides a clear 

example of the need to account for transient thermal behavior in PV modules over narrow 

data intervals.  
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 Figure 30. Monthly RMSE for Moving-Average and Steady-State Models (Las Vegas) 

 

The RMSE results for the Las Vegas Nevada array site shown in Figure 30 reflect 

similarly to the results shown in Table 5 in that this site shows the least model accuracy 

improvements with the introduction of the moving-average model. In climates such as 

Nevada’s that are characterized by consistent sunshine and small amounts of annual 

rainfall, steady-state models have proven to be sufficiently accurate in most cases. Visual 

inspection of this Figure reveals RMSE improvements in the range of 0.5 – 1.0°C, but the 

RMSE for the steady-state model already does not exceed far beyond 3°C for any month 

in the year.  
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Figure 31. Monthly RMSE for Moving-Average and Steady-State Models (Vermont) 

 

The Vermont monthly RMSE data shown in Figure 31 reveals small accuracy 

improvements for the implementation of the moving-average model. These 

improvements are greatest for the months in the middle of the year where there are likely 

higher irradiance values characterized by intermittency due to cloud cover or module 

shading. The winter months show very little improvement in the modeling accuracy as 

these months are typically characterized by snowy conditions and a lack of times with 

prolonged incident irradiance. Such weather conditions lead to module temperature 

stabilization around the ambient temperature of the area, which the steady-state models 

are already equipped to accurately predict without accounting for inherent thermal mass.  

4.5 Comparison of Different Module Types 

The preceding paragraphs show the benefits of applying the moving-average temperature 

prediction model in analysis of modules consisting of a glass front surface and polymer 
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backsheet rear surface. As the FEA simulations that the model was developed from 

assumed that glass makes up the majority of the weight of PV modules, analysis of 

modules with different material compositions and weights must be performed to show the 

accuracy of the model for different module weights. Many different types of PV modules 

are currently in production throughout the world based on different back-surface 

compositions and PV cell types. Many PV cell technologies are encased within two 

sheets of glass in a module construction that does not include a polymer backsheet. 

Bifacial modules that allow for increased cell efficiency through the absorption of 

ground-reflected light hitting the cells on the rear face of the module also require glass-

glass construction. As previously stated, the model treats unit mass as a primary input 

that serves as a substitute for a complete thermal capacitance analysis for each individual 

module. The accuracy of the moving-average model in predicting temperatures of PV 

modules of different weights must be evaluated in order to show that this simplifying 

assumption can be applied across the range of PV unit masses seen in industry today. A 

comparison of the moving-average fits for a glass-backsheet module and glass-glass 

bifacial module is shown in Table 7. Both modules were installed at the PSEL in 

Albuquerque, NM.  
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Table 7. Comparison of Glass-Backsheet and glass-Glass Module Temperatures Fit to 

Moving-Average Model 

Albuquerque Glass-backsheet  

  Optimized SS Moving-Average Difference 

RMSE (°C) 3.79 2.69 1.10 

MAE (°C) 2.86 2.14 0.72 

MBE (°C) -0.442 -0.341 -0.101 

R-Squared 0.936 0.967 - 

Albuquerque Glass-glass  

  Optimized SS Moving-Average Difference 

RMSE (°C) 3.72 2.56 1.16 

MAE (°C) 2.77 1.98 0.79 

MBE (°C) -0.138 -0.010 -.128 

R-Squared 0.930 0.967 - 

 

Analysis of this Table shows that the moving-average model improves upon the modeling 

accuracy of the optimized steady-state coefficients for both modules. The magnitude of 

this improvement is found to be marginally greater for the glass-glass module than for the 

glass-backsheet module. This small difference in modeling accuracy could be partially 

attributed to the lack of consideration for the backsheet material and metal frame that are 

part of the glass-backsheet module in the FEA simulations. Despite these small 

differences, the improvements in modeling accuracy for these different types of models 

reveal that using the unit mass as a substitute for thermal capacitance in the moving-

average model works for different module constructions outside of the glass assumption 

used in the FEA simulations. Further simulations in which each individual material in the 
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module is accounted for could potentially improve the moving-average model fit to the 

measured data, but any improvements would come at the expense of increased modeling 

complexity.  

The glass-glass module was also used to evaluate the moving-average model’s sensitivity 

to different unit mass conditions. As the FEA simulations showed, the model’s weighting 

function is equally dependent on the wind speed and unit mass. To confirm this 

relationship in the actual model application, the model was evaluated for both the correct 

unit mass of 17.3 kg/m2 and for the incorrect 11.1 kg/m2 unit mass of the glass-backsheet 

module. The results showed that using the incorrect unit mass can have a significant 

effect on the model performance during days with solar intermittency. The MAE values 

for the correct unit mass were found to be 1.02°C for the summer day and 1.09°C for the 

winter days in Albuquerque that were analyzed in the preceding sections. When 

performing the same calculations for the incorrect unit mass, the values increased to 

1.69°C for the summer day and 1.44°C for the winter day. The incorrect unit mass 

temperature curves for the summer day are shown in Figure 32, and the corresponding 

correct unit mass calculations are shown in Figure 33.  
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Figure 32. Glass-Glass Module Behavior for Incorrect Unit Mass in Summer 

 

Figure 33. Glass-Glass Module Behavior for Correct Unit Mass in Summer 
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The incorrect unit mass calculations show clear examples of the model not matching the 

shape of the measured temperature curve as a result of incorrect weighting calculations 

from the incorrect unit mass value. Comparing the two Figures reveals that using accurate 

unit mass calculations allows for more accurate prediction of the module temperature 

peaks and thermal ramp rates for intermittent conditions. This shows that the unit mass is 

truly an important parameter for the moving-average model and that it is crucial to 

calculating the correct ramp rate of module temperature during times of intermittency.  

4.6 Histogram Analysis 

In addition to analyzing representative days in order to analyze the benefits of the 

moving-average temperature model, histogram analysis was performed to identify trends 

in the modeling residuals for the different climate conditions of the measured module 

temperatures. These histograms were formed by taking the residuals from annual datasets 

for each PV array location and binning the residuals (measured temperature – modeled 

temperature) into 0.1°C bins that were then plotted as a histogram plot, with each residual 

bin being plotted as a bar whose height represents the number of instances in which the 

residual was within said temperature bin. This histogram analysis is shown for the 

moving-average model residuals of the glass-backsheet modules for each of the four PV 

array site in Figures 34 - 37.  
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Figure 34. Histogram Analysis for Albuquerque Model Fit 

 

Figure 35. Histogram Analysis for Orlando Model Fit 

 

Figure 36. Histogram Analysis for Las Vegas Model Fit 
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Figure 37. Histogram Analysis for Vermont Model Fit 

 

Analysis of these Figures shows the temperature residual bin that occurs most often is 

closest to 0°C for the Orlando and Williston, VT datasets. For each PV array site, the 

histograms show that the moving-average temperature predictions are most often within 

2°C of the measured temperatures. Visual inspection of each histogram reveals that there 

is a degree of over-prediction bias across the model residuals for most of the different 

climates, which is also shown by the negative MBE values in Table 5 for most of the PV 

array sites. This inherent overprediction bias may be a result of the limiting nature of the 

model’s reliance on the steady-state temperature predictions.  

4.7 Significance of the Work 

The future acceptance of the moving-average model into overall PV performance models 

used throughout the industry will be dependent on its ability to improve the overall 

modeling accuracy of the power generation. Evaluating how the improvements in 

temperature accuracy impact the ability to accurately predict PV performance on a utility 

scale requires consideration of the temperature coefficients that are reported on PV 

module spec sheets and used in PV performance modeling equations [4], [18]. For an 
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assumed PV power temperature coefficient of -0.4%/°C, the expected improvements in 

accuracy for each of the different PV array sites are shown in Table 8 as a percentage of 

the actual annual performance found from measured PV array data. The values in this 

Table are found from a simple product of the constant temperature coefficient and the 

differences in model MAE between the moving-average model and steady-state model 

residuals. The results in Table 8 show power performance improvements similar to that 

reported for the Hayes and Ngan transient thermal model, which would show accuracy 

improvement in the range of 0.08%-0.8%  [14]. This shows that the moving-average 

model can improve PV performance modeling accuracy to the same degree as previous 

transient thermal models without adding much modeling complexity to the module 

temperature calculations.  

 

Table 8. Improvement in PV Performance Modeling Accuracy for thermal Accuracy 

Improvements of Moving-Average Model 

  Albuquerque Orlando Vermont Las Vegas 

MAE (Moving Average 

- Steady-state) 0.72 1.45 0.66 0.4 

Energy Accuracy 

Improvement 0.29% 0.58% 0.26% 0.16% 
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CHAPTER 5 

CONCLUSIONS 

This thesis work has detailed the development and validation of a new approach to the 

transient thermal modeling of PV module back-surface temperature. The importance of 

accounting for dynamic thermal behavior of PV modules at fine temporal resolution 

increases as the need for consideration of factors such as energy storage and inverter 

clipping models increases. Previous attempts at these types of transient thermal models 

have required numerous input parameters that are not easy to obtain for a given PV array 

site. The moving-average models presented here differs from these models in that it 

requires only the module mass and surface area as additional input parameters to those 

environmental variables used in most steady-state temperature prediction models. This 

model simplicity is achieved through development based on FEA heat transfer 

simulations that revealed exponential temperature changes for the PV module that were 

functions of the wind speed and unit mass of the module.  

The ultimate transient thermal model resulting from this work is an exponentially 

weighted moving-average of steady-state model temperature predictions within 20 

minutes back in time from the time step in question. Applying the moving-average filter 

to steady-state models shows decreased variability in the temperature predictions, 

especially during times of rapidly changing irradiance. The model also improves upon the 

accuracy of the Sandia steady-state thermal model, with improvement in the Mean 

Absolute Error for 1-minute annual datasets range between 0.4°C for areas with little 

solar intermittency to 1.45°C for more tropical locations characterized by intermittency in 

irradiance. These improvements can lead to performance modeling accuracy 
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improvements between 0.16% to 0.58%. The moving-average model ultimately offers a 

new technique for transient thermal modeling that is easier to include in PV industry 

modeling practices while also being far less computationally complex than previous 

attempts at transient thermal modeling.  

5.1 Future Work 

The moving-average model described in this thesis offers a new approach to transient 

thermal modeling of PV back-surface temperatures. As the model was based on the 

proven accuracy of existing steady-state models during times of low solar intermittency, 

the optimum fit of the moving-average model predictions to measured temperature data is 

dependent on the accuracy of these steady-state models. This means that improving the 

moving-average model accuracy beyond that presented in this thesis may require 

improvement of the steady-state models used in the calculation. Improving upon the 

current state of steady-state thermal modeling requires investigation into inherent bias 

due to environmental variables that are not currently being considered as part of the 

steady-state approximations. As most steady-state models do not account for the long 

wave radiation between the module and its environment, consideration of variables such 

as the atmospheric sky temperature, wind direction, or humidity content of the air may 

reveal trends in modeling inaccuracy. Additional considerations of the spectral content of 

the irradiance may also need to be considered to gain a better understanding of the 

fluctuation of module temperature as a function of the wavelength of incident light rays. 

Preliminary investigation into bias error due to these variables did not reveal any clear 

trends in the modeling accuracy, but further research into these models could result in 

more accurate steady-state representations of module back-surface temperature.  
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Further additional work that would advance the moving-average model as it is currently 

constructed would require more detailed FEA analysis or even more advanced simulation 

techniques to better inform the weighting parameter of the model. Currently, the FEA 

used in the model development is based on a glass sheet of varying thickness to simulate 

a simplified version of the PV module’s thermal mass. Modeling the individual layers of 

different types of PV modules would theoretically allow for more accuracy in the 

simulated module back-surface temperatures as compared to measured module 

temperatures. This would require research into the expected thermal properties for 

module materials that make up components such as the solar glass, encapsulant material, 

solar cells, and backsheet. There has been research into the thermal properties of these 

materials [41], [42], and further development of the FEA modeling based on this research 

may lead to a more conclusive understanding of different PV module types. The benefits 

of such analysis and how they should be weighed against the additional modeling 

complexity and specifications of each material for a variety of different module 

configurations would have to be evaluated to determine the extent to which further 

analysis would benefit the PV industry.   
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APPENDIX A 

MOVING-AVERAGE MODEL OPEN-SOURCE CODE 
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function [T_MA_module] = pvl_ma_temp(Time, Tmodule, windspeed, m_u, varargin) 

% PVL_MA_TEMP Estimate module temperature from WIND SPEED, MODULE UNIT 

% MASS, PVL_SAPMCELLTEMP 

% 

% Syntax 

%   T_MA_module = pvl_ma_temp(Time, Tmodule, windspeed, m_u, deltaT, varargin) 

% 

% Description 

%   Estimate module temperatures per the transient moving-average 

%   temperature model (IEEE JPV, 2020), when given the 2-meter wind speed, 

%   module mass per unit area, SAPM temperature predictions, and bilinear 

%   interpolation coefficients (optional) 

% 

% Inputs 

%   Time is a struct with the following elements, note that all elements 

%     can be column vectors, but they must all be the same length. Time is 

%     entered as a struct which must include a value for the offset from 

%     UTC. Time is absolutely specified by the date, time, and the number 

%     of hours of offset from that date and time to UTC. For example, if 

%     you live in Boston, USA, and your data is timestamped in local standard 

%     time, your UTC offset should be -5. 

% 

%   Time.year = The year in the gregorian calendar 

%   Time.month = the month of the year (January = 1 to December = 12) 

%   Time.day = the day of the month 

%   Time.hour = the hour of the day 

%   Time.minute = the minute of the hour 

%   Time.second = the second of the minute 

%   Time.UTCOffset = the UTC offset code, using the convention 

%     that a positive UTC offset is for time zones east of the prime meridian 

%     (e.g. EST = -5) 

%   Tmodule -  A column vector of module back temperature in degrees C. 

%   windspeed - Wind speed in m/s measured at a height of 2 meters. windspeed 

must 

%     be a scalar or a vector of the same size as E and Tamb. Must be >=0; 

%   m_u - a scalar unit mass value of the module being analyzed in kg/m^2. 

%     Must be >= 0; 

%   a - optional parameter that is used as bilinear interpolation 

%     coefficients to determine the moving-averge weighting function for 

%     windspeed and m_u; Default values from publication used if left blank 

%      

%   

% Outputs 

%   T_MA_module - A column vector of module back temperature in degrees C. 

% 

% References 

%   [1] Prilliman, M. et al, 2020, "Transient Weighted Moving Average Model  

%       of Photovoltaic Module Back-Surface Temperature". Publication pending 

% 

% See also PVL_SAPMCELLTEMP 

% 

  

  

p = inputParser; 

p.addRequired('Time',@isstruct); 

p.addRequired('Tmodule',@isnumeric); 

p.addRequired('windspeed',@(x) all(isnumeric(x) & isvector(x) & x>=0)); 

p.addRequired('m_u',@(x) all(isvector(x) & x>=0)); 

p.addOptional('a',[.0046; 4.5537e-4; -2.2586e-4; -1.5661e-5],@(x) 

all(isnumeric(x) & numel(x)==4 & isvector(x))); 

p.parse(Time,Tmodule,windspeed,m_u,varargin{:}); 
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Y = Time.year; %datenum year data  

M = Time.month; %datenum month data  

D = Time.day; %datenum day data  

h = Time.hour; %datenum hour data  

m = Time.minute; %datenum minute data  

s = Time.second; %datenum second data  

Time = datenum(Y,M,D,h,m,s)*86400; %Time struct conveted to datenum format 

  

a = p.Results.a; % load up values for a that were approved by the parser 

  

%Check for monotonically incorrect datenums 

if any(Time(2:end) - Time(1:end-1) < 0) 

    error('Times are not monotonically increasing. Exiting function') 

end 

  

a0 = a(1); %coefficients used to calculate P based on bilinear interpolation 

a1 = a(2); 

a2 = a(3); 

a3 = a(4); 

  

% Calculate the P values for each time step. Since the unit mass of modules 

% is unlikely to change over time, we expect P to only vary due to wind 

% speed changes. 

P = a0+a1*windspeed+a2*m_u+a3*windspeed*m_u; %Power parameter used to determine 

weights 

  

T_MA_module = nan(size(Tmodule)); %Preallocate size of moving average model for 

speed 

  

WindowLength = 20 * 60; %Assumed window size of 1200 seconds (20 minutes) 

  

I_B = 1; %Initialize Back Indice variable to 1 

  

T_MA_module(1) = Tmodule(1); %First entry of moving average model always the 

same as steady state model 

  

for cntr1 = 2:length(Time) 

    I_F = cntr1-1; % move the front index up to the  

    deltaT_I_F = Time(cntr1) - Time(I_F); 

     

    % If the time difference between the current time and the most recent 

    % time is larger than the window length, then set the model temperature 

    % to the steady state temperature.  

    if deltaT_I_F > WindowLength 

        T_MA_module(cntr1) = SS(cntr1); 

         

    % If the time difference between the current time and the most recent 

    % time is smaller than or equal to the window length... 

    else  

        % Increment the back index until the time of the back index is less 

        % than or equal to the window length, as long as the back index is 

        % less than the front index. 

        while((Time(cntr1) - Time(I_B)) > (WindowLength) && (I_B<I_F)) 

            I_B = I_B+1; 

        end 

         

        % Find a vector of the number of seconds backward for each 

        % measurement within the Window 

        TimeBack = (Time(cntr1) - Time(I_B:I_F)); 

         

        % Find a vector of the steady state temperature predictions for 

        % each measurement within the window 
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        TempsInWindow = Tmodule(I_B:I_F); 

         

        % Determine the weights and relative weights for each time step 

        % within the window 

        Weight = exp(-P(cntr1).*TimeBack); 

        Rel_weight = Weight./sum(Weight); 

  

        % Find the moving-average temperature prediction for the current 

        % time step. 

        T_MA_module(cntr1) = (TempsInWindow.') * Rel_weight; 

    end 

end 

     

    

     

  

end 
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APPENDIX B 

MODEL VALIDATION SOURCE CODE 
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%% Moving Average model validation with plots and analysis of sky temperature, 

wind direction, etc. bias 

% -Load in field data from specified site, filter out missing or incorrect 

% data, filter out for high AOI or low elevation angle,  

% -Calculate input parameters such as steady-state model approximations for 

% input to MA model 

% -Run MA model for remaining data 

% -Evaluate improvements in modeling accuracy numerically (RMSE) 

% -Plot results of moving-average, SS models to evaluate model fit to 

% measured data 

% -Plot hourly, daily dependenices on wind direction, sky temperature, 

% other neglected environmental parameters 

clear all 

% close all 

  

%% Load in measured data from listed systems 

% Canadian-Hanwha system (ABQ)%  

load('Canadian_system_full.mat'); %1 year dataset (2018-5-27:2019-5-27) 

GridData = Canadian_system_full; 

load('Can_system_coeff_final.mat'); %Canadian Solar module optimized SS coeff 

m_u = 18.2/(1.650*.992); %Canadian 275P spec sheet (CP strings) 

a_new = -3.4432; 

b_new = -.0462; 

UTC = -7; 

% or 

% % load('Han_system_coeff_final.mat'); %Hanwha module optimized SS coeff 

Location.latitude = 35.054; 

Location.longitude = -106.539; 

Location.altitude = 1609; 

% Panasonic-LG system(ABQ) 

% load('Pan_system_full.mat'); %1 year dataset (2018-5-27:2019-5-27) 

% GridData = Pan_system_full; 

% % % % %GridData = QueryPVGrid('','2018-05-27','2019-05-27'); 

% load('Pan_system_coeff_final.mat'); %Panasonic module optimized SS coeff 

% % % % or 

% load('LG_system_coeff.mat'); %LG module optimized SS coeff 

% m_u = 18/(1.686*1.016); %LG module 

  

%Prism systems 

% load('Prism_system_full.mat'); % 1 year dataset (2018-5-27:2019-5-27) 

% GridData = Prism_system_full; 

% load('Prism_system_coeff_final.mat'); %Prism module optimized SS coeff 

% a_new = -3.5893; 

% b_new = -.0364; 

% m_u = 28.9/(1.695*.984); %kg/m2 Prism Bi-60 343 

  

% %Stion systems 

% load('Stion_system_full.mat'); % 1 year dataset (2018-5-27:2019-5-27) 

% GridData = Stion_system_full; 

% load('Stion_opt_coeff.mat'); % Stion module optimized SS coeff 

% m_u = 15/(1.650*.650); %frameless STL-140 (thin-film) 

% % 

csvwrite('Stion_system_full.csv',table2array(GridData(:,[25,34,35,61,62,63]))); 

% %or 

% m_u = 16.8/(1.656*.656); %framed STO-140 (thin-film) 

  

%Canadian system data interval test 

% load('Can_system_datainterval_test.mat'); 

% GridData_2min = Can_system_full_2min; 

% GridData_3min = Can_system_full_3min; 

% GridData_4min = Can_system_full_4min; 

% GridData_5min = Can_system_full_5min; 
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% GridData_7min = Can_system_full_7min; 

% GridData_10min = Can_system_full_10min; 

% load('Can_system_coeff_final.mat'); %Canadian Solar module optimized SS coeff 

  

%Florida Baseline System 

% load('FSEC_system.mat'); 

% GridData = FSEC_system_data; 

% load('FSEC_system_coeff.mat'); 

% a_new = -3.4064; 

% b_new = -.0313; 

% Location.latitude = 28.3875; 

% Location.longitude = -80.7560; 

% Location.altitude = 25; 

% UTC = -5; 

  

%Vermont Baseline System 

% load('IBMW_system.mat'); 

% GridData = IBMW_system_data; 

% load('Vermont_system_coeff.mat'); 

% a_new = -3.4474; 

% b_new = -.0333; 

% m_u = 11.0; %Suniva OPT270 

% Location.latitude = 44.4454; 

% Location.longitude = -73.0992; 

% Location.altitude = 184; 

% UTC = -5; 

  

  

%Las Vegas Baseline System 

% load('LVRM_system.mat'); 

% GridData = LVRM_system_data; 

% load('LVRM_system_coeff_final.mat'); 

% a_new = -3.5297; 

% b_new = -.0416; 

% Location.latitude = 36.1699; 

% Location.longitude = -115.1398; 

% Location.altitude = 610; 

% UTC = -8; 

  

  

  

%% Filter for missing or impossible data 

GridData = 

timetable(GridData.('Time'),GridData.('POACleanRC_E_Avg'),GridData.('AmbientTem

p_Avg'),GridData.('CP1_RTD_Avg'),GridData.('Wind_Speed_Avg'),GridData.('Wind_Di

rection_Avg'),GridData.('GHI_Avg'));%,GridData.('Sys1String1I_Avg'),GridData.('

System1Vdc_Avg')); 

GridData.Properties.VariableNames = 

{'POACleanRC_E_Avg','AmbientTemp_Avg','CP1_RTD_Avg','Wind_Speed_Avg','Wind_Dire

ction_Avg','GHI_Avg'};%,'Sys1String1I_Avg','System1Vdc_Avg'}; 

GridData = rmmissing(GridData); %Removing missing data (NaNs) 

  

POACleanRC_E_Avg_test = GridData.('POACleanRC_E_Avg'); %find missing 

POACleanRC_E_Avg data 

POACleanRC_E_Avg_test2 = POACleanRC_E_Avg_test(2:end);  

POACleanRC_E_Avg_test = POACleanRC_E_Avg_test(1:end-1); %take off last entry to 

match length 

df = ((POACleanRC_E_Avg_test2 - POACleanRC_E_Avg_test) & POACleanRC_E_Avg_test 

~= 0); %Identify frozen data 

f = find(df==0); %find points where df = 0, POACleanRC_E_Avg ~= 0 

GridData(f+1,:) = []; %Remove points where data is frozen at value of  



  104 

AmbientTemp_Avg_test = GridData.('AmbientTemp_Avg'); %find missing 

POACleanRC_E_Avg data 

AmbientTemp_Avg_test2 = AmbientTemp_Avg_test(2:end);  

AmbientTemp_Avg_test = AmbientTemp_Avg_test(1:end-1); %take off last entry to 

match length 

df = ((AmbientTemp_Avg_test2 - AmbientTemp_Avg_test)); %Identify frozen data 

f = find(df==0); %find points where df = 0, POACleanRC_E_Avg ~= 0 

GridData(f+1,:) = []; %Remove points where data is frozen at value of last 

working measurement (logger communication error) 

CP1_RTD_Avg_test = GridData.('CP1_RTD_Avg'); %find missing POACleanRC_E_Avg 

data 

CP1_RTD_Avg_test2 = CP1_RTD_Avg_test(2:end);  

CP1_RTD_Avg_test = CP1_RTD_Avg_test(1:end-1); %take off last entry to match 

length 

df = ((CP1_RTD_Avg_test2 - CP1_RTD_Avg_test)); %Identify frozen data 

f = find(df==0); %find points where df = 0, POACleanRC_E_Avg ~= 0 

GridData(f+1,:) = []; %Remove points where data is frozen at value of last 

working measurement (logger communication error) 

Wind_Speed_Avg_test = GridData.('Wind_Speed_Avg'); %find missing 

POACleanRC_E_Avg data 

Wind_Speed_Avg_test2 = Wind_Speed_Avg_test(2:end);  

Wind_Speed_Avg_test = Wind_Speed_Avg_test(1:end-1); %take off last entry to 

match length 

df = ((Wind_Speed_Avg_test2 - Wind_Speed_Avg_test)); %Identify frozen data 

f = find(df==0); %find points where df = 0, POACleanRC_E_Avg ~= 0 

GridData(f+1,:) = []; %Remov 

  

f1 = (GridData.('AmbientTemp_Avg')<(-15)) | (GridData.('AmbientTemp_Avg')>80); 

%Ambient temperature filter 

GridData(f1,:) = []; 

f2 = (GridData.('CP1_RTD_Avg')< (GridData.('AmbientTemp_Avg')-10)) | 

(GridData.('CP1_RTD_Avg') > (GridData.('AmbientTemp_Avg')+70)); 

GridData(f2,:) = []; %Measured module temperature filter 

f3 = (GridData.('POACleanRC_E_Avg')<0) | (GridData.('POACleanRC_E_Avg')>1500); 

%measured POACleanRC_E_Avg irradiance filter 

GridData(f3,:) = []; 

f4 = (GridData.('Wind_Speed_Avg')<0) ; %wind speed filter 

GridData(f4,:) = []; 

  

  

  

%% Filter for solar position 

%AOI > 75 excluded (most of irradiance hitting back of module) 

%SunEl < 10 deg excluded (sun not over mountains in ABQ) 

  

Time = datenum(GridData.('Time')); %convert datetime to datenum 

% UTC = -8; %UTC offset (MDT) 

TmStamp = pvl_maketimestruct(Time, UTC); %make time struct for conformity with 

pvlib matlab 

  

%Calculate solar position parameters to find angle of incidence 

%Perform dual filter on GHI data found in clear sky detection 

%Only take data with AOI < 75 and solar elevation angle > 10 (to see over 

%mountains)  

[SunAz, SunEl, ApparentSunEl, SolarTime]=pvl_ephemeris(TmStamp, Location); 

%ephemeris function from pvlib matlab 

SunZen = 90-ApparentSunEl; %Solar zenith angle is complementary to apparent 

solar elevation angle 

SurfTilt = Location.latitude; %Systems are at latitude tilt  

SurfAz = 180; %System azimuth set to face due south (North = 0°) 

AOI = pvl_getaoi(SurfTilt,SurfAz,SunZen,SunAz); %Angle of incidence between sun 

and module 
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crit = find(AOI<75 & ApparentSunEl>10); %filtering criteria (measurements to 

include) 

% crit = find(AOI<75); 

  

GridData = GridData(crit,:); %filter data based on criteria 

  

Time = datenum(GridData.('Time')); %convert datetime to datenum 

UTC = -7; %UTC offset (MDT) 

TmStamp = pvl_maketimestruct(Time, UTC); %make time struct for conformity with 

pvlib matlab 

  

  

%% Parameter calculations 

  

a_ss = -3.56; %upper limit coefficient glass/cell/polymer sheet (SAPM) 

b_ss = -0.075; %wind coefficient glass/cell/polymer sheet (SAPM) 

  

delta_T = 3; %difference between cell and back surface temperature (SAPM) degC 

  

POACleanRC_E_Avg = GridData.('POACleanRC_E_Avg'); %separate POACleanRC_E_Avg 

into single for calculation 

  

E_0 = 1000; %correction irradiance value for different between cell and module 

temperature 

  

V_w = GridData.('Wind_Speed_Avg'); %wind speed measured at height of 2 meters 

(separated into single for calculation) 

wind_height = 2; %wind measured at a height of 2 m 

Module_height = 10; %desired wind measurement height of 10 meters based on SS 

model design 

Z_0 = 0.25; %roughness length based on  

WS = V_w*log(Module_height/Z_0)/log(wind_height/Z_0); %wind speed at 10 meters 

for input into Sandia steady-state model 

  

T_a = GridData.('AmbientTemp_Avg'); %ambient temperature separated into single 

for calculation 

%Sandia steady-state model calculation 

[SNL_old_Tc, SNL_old_Tm] = pvl_sapmcelltemp(POACleanRC_E_Avg, E_0, a_ss, b_ss, 

WS, T_a, delta_T); %pvlib matlab function of SAPM steady-state model 

[SNL_new_Tc, SNL_new_Tm] = pvl_sapmcelltemp(POACleanRC_E_Avg, E_0, a_new, 

b_new, WS, T_a, delta_T); %pvlib matlab function of SAPM steady-state model 

SNL = SNL_old_Tm; %module temperature SS calculation 

  

T_meas = (GridData.('CP1_RTD_Avg')); %Measured module temperature separated for 

calculation, comparison 

  

  

%% Run Moving Average Model for given unit mass, bilinear interpolation 

coefficients 

  

%bilinear interpolation coefficients 

a = [.0046; 4.5537e-4; -2.2586e-4; -1.5661e-5]; 

% load('new_bilinearinterp.mat'); 

  

% P = a(1)+a(2)*V_w+a(3)*m_u+a(4)*V_w*m_u; %P calculated in pvl_MAmodel 

%coefficient a0,a1,a2,a3 from bilinear interpolation 

  

%%Run MA model for given inputs 

T_MA = pvl_MAmodel_index(TmStamp, SNL, V_w, m_u, a); %MA model based on Sandia 

SS model 

%% Numerical Evaluation of Moving Average Model fit 
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RMSE_MA = sqrt(mean((T_MA(:)-T_meas(:)).^2)); %root mean square of moving 

average model output to measured data 

RMSE_SNL = sqrt(mean((SNL-T_meas(:)).^2)); %root mean square of steady-state 

model output to measured data 

RMSE_test = sqrt(mean((T_meas(:) - T_MA(:)).^2)); 

%mean bias (mean(Tma-Tmeas)) MA-moving average SS-steady-state 

Mean_BIAS_MA= mean(T_meas - T_MA); %bias error of moving average model output 

to measured data 

Mean_BIAS_SNL = mean(T_meas - SNL); %bias error of steady-state model output to 

measured data 

  

%mean absolute (mean(abs(T_ma - T_meas)) MA-moving average SS-steady-state 

Mean_Abs_MA = mean(abs(T_MA-T_meas)); %absolute bias error of moving average 

model output to measured data 

Mean_Abs_SNL = mean(abs(SNL-T_meas)); %absolute bias error of moving average 

model output to measured data 

  

R_squared_MA = 1 - sum((T_MA-T_meas).^2)/sum((T_meas - mean(T_meas)).^2); %R-

squared fit of moving average model output to measured data 

R_squared_SNL = 1 - sum((SNL - T_meas).^2)/sum((T_meas - mean(T_meas)).^2); %R-

squared fit of steady-state model output to measured data 

  

figure 

h = histogram(T_meas - T_MA) 

grid on 

xlim([-20 20]) 

xlabel('Residual (Measured - Modeled) (°C)') 

ylabel('Number of instances') 

  

%% DOE Report Calendar Plot 

close all 

[Year Month Day] = ymd(GridData.('Time')); 

  

 

Time_calendar = GridData.('Time'); 

hyperlink_Temp = cell(max(Month),max(Day)); 

hyperlink_POACleanRC_E_Avg = cell(max(Month),max(Day)); 

for j = 1:1:12 

    Month_check = Month==j; 

    figure 

    if isempty(Day(Month_check)) 

        Day_iter = 1; 

    else 

        Day_iter = max(Day(Month_check)); 

    end 

    for i = 1:1:Day_iter 

        if any(Day(Month_check)) 

            subplot(6,6,i) 

            x = Time_calendar(Month_check & Day==i); 

            y1 = T_MA(Month_check & Day==i); 

            y2 = T_meas(Month_check & Day==i); 

            y3 = SNL(Month_check & Day==i); 

            plot(x,[y1 y2 y3]) 

            ylim([0 75]) 

            Disp = ['<a href="matlab:figure;plot(x,[y1 y2 y3]);ylim([0 

75]);legend(''MA'',''Meas'',''SS'');">Plot Month',num2str(j),'Day',num2str(i),' 

Temps</a>']; 

%             disp(Disp) 

            hyperlink_Temp(j,i) = cellstr(Disp); 

        else 

            subplot(6,6,i) 

            plot(0,0,  0,0,  0,0,  0,0) 
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        end 

     

    end 

    subplot(6,6,i+1) 

    plot(0,0,  0,0,  0,0,  0,0) 

    axis off 

    lgd2 = legend('MA','Meas','SNL'); 

    lgd2.FontSize = 24; 

end 

  

  

  

% for i = 1:1:max(max(Day(August)),1) 

%     if any(Day(August))   

%         subplot(6,6,i) 

%         x = Time_calendar(August & Day==i); 

%         y4 = POACleanRC_E_Avg(August & Day==i); 

%         plot(x,y4) 

%         ylim([0 1500]) 

%     else 

%     end 

% end 

  

Time_calendar = GridData.('Time'); 

for j = 1:1:12 

    Month_check = Month==j; 

    figure 

    if isempty(Day(Month_check)) 

        Day_iter = 1; 

    else 

        Day_iter = max(Day(Month_check)); 

    end 

    for i = 1:1:Day_iter 

        if any(Day(Month_check)) 

            subplot(6,6,i) 

            x = Time_calendar(Month_check & Day==i); 

            y1 = T_MA(Month_check & Day==i); 

            y2 = T_meas(Month_check & Day==i); 

            y3 = SNL(Month_check & Day==i); 

            y4 = POACleanRC_E_Avg(Month_check & Day==i); 

            plot(x,y4) 

            ylim([0 1500]) 

            Disp = ['<a href="matlab:figure;plot(x,y4);ylim([0 

1500]);legend(''POACleanRC_E_Avg'');">Plot 

Month',num2str(j),'Day',num2str(i),'POACleanRC_E_Avg Irradiance</a>']; 

%             disp(Disp) 

            Disp2 = ['<a href="matlab:figure;plot(x,[y1 y2 y3]);ylim([0 

75]);legend(''MA'',''Meas'',''SS'');">Plot Month',num2str(j),'Day',num2str(i),' 

Temps</a>']; 

  

            hyperlink_POACleanRC_E_Avg(j,i) = cellstr(Disp); 

            hyperlink_Temp(j,i) = cellstr(Disp2); 

        else 

            subplot(6,6,i) 

            plot(0,0,  0,0,  0,0,  0,0) 

        end 

     

    end 

    subplot(6,6,i+1) 

    plot(0,0,  0,0,  0,0,  0,0) 

    axis off 

    lgd = legend('POACleanRC_E_Avg'); 
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    lgd.FontSize = 24; 

end 

hyper_POACleanRC_E_Avg = cell2table(hyperlink_POACleanRC_E_Avg); 

hyper_Temp = cell2table(hyperlink_Temp); 

hyper_POACleanRC_E_Avg.Properties.RowNames = 

{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'}; 

hyper_Temp.Properties.RowNames = hyper_POACleanRC_E_Avg.Properties.RowNames; 

  

  

%% Separate days found from POACleanRC_E_Avg calendar plots 

% Temperatures from Canadian Hanwha solar module for DOE Report 

  

[Year Month Day] = ymd(GridData.('Time')); 

Time = GridData.('Time'); 

Wind_Dir = GridData.('Wind_Direction_Avg'); 

Wind_Speed = GridData.('Wind_Speed_Avg'); 

%None in January 

  

%February 

Feb_Temp = [(Month==2 & Day==10), (Month==2 & Day==18), (Month==2 & Day==28)]; 

Feb10 = [T_MA(Feb_Temp(:,1)), T_meas(Feb_Temp(:,1)), SNL(Feb_Temp(:,1))]; 

%February 18 Temperatures 

Feb18 = [T_MA(Feb_Temp(:,2)), T_meas(Feb_Temp(:,2)), SNL(Feb_Temp(:,2))]; 

%February 20 Temperatures 

Feb28 = [T_MA(Feb_Temp(:,3)), T_meas(Feb_Temp(:,3)), SNL(Feb_Temp(:,3))]; 

%February 28 Temperatures 

figure 

Mean_Abs_MA_Feb18 = mean(abs(Feb18(:,2) - Feb18(:,1))); 

Mean_Abs_SNL_Feb18 = mean(abs(Feb18(:,2) - Feb18(:,3))); 

RMSE_MA_Feb18 = sqrt(mean((Feb18(:,2)-Feb18(:,1)).^2)); %root mean square of 

moving average model output to measured data 

RMSE_SNL_Feb18 = sqrt(mean((Feb18(:,2)-Feb18(:,3)).^2));  

figure 

plot(Time(Feb_Temp(:,2)),Feb18(:,1),'-r') 

hold on 

plot(Time(Feb_Temp(:,2)),Feb18(:,2),'--k') 

plot(Time(Feb_Temp(:,2)),Feb18(:,3),'ob') 

xlabel('Time') 

ylabel({'Module back-surface'; 'temperature (°C)'}) 

legend('Moving Average','Measured','Steady-state','Location','Northeast'); 

  

  

%July 

Jul_Temp = [(Month==7 & Day==5), (Month==7 & Day==6), (Month==7 & Day==8)]; 

Jul5 = [T_MA(Jul_Temp(:,1)), T_meas(Jul_Temp(:,1)), SNL(Jul_Temp(:,1))]; %July 

5 Temperatures 

Jul6 = [T_MA(Jul_Temp(:,2)), T_meas(Jul_Temp(:,2)), SNL(Jul_Temp(:,2))]; %July 

6 Temperatures 

Jul8 = [T_MA(Jul_Temp(:,3)), T_meas(Jul_Temp(:,3)), SNL(Jul_Temp(:,3))]; %July 

8 Temperatures 

Mean_Abs_MA_Jul6 = mean(abs(Jul6(:,2) - Jul6(:,1))); 

Mean_Abs_SNL_Jul6 = mean(abs(Jul6(:,2) - Jul6(:,3))); 

RMSE_MA_Jul6 = sqrt(mean((Jul6(:,2)-Jul6(:,1)).^2)); %root mean square of 

moving average model output to measured data 

RMSE_SNL_Jul6 = sqrt(mean((Jul6(:,2)-Jul6(:,3)).^2));  

figure 

plot(Time(Jul_Temp(:,2)),Jul6(:,1),'-r') 

hold on 

plot(Time(Jul_Temp(:,2)),Jul6(:,2),'--k') 

plot(Time(Jul_Temp(:,2)),Jul6(:,3),'ob') 

xlabel('Time') 

ylabel({'Module back-surface'; 'temperature (°C)'}) 
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legend('Moving Average','Measured','Steady-state','Location','Northeast'); 

  

%% RMSE for whole year 

close all 

[Year Month Day] = ymd(GridData.('Time')); 

% Power = GridData.('System1Vdc_Avg').*GridData.('Sys1String1I_Avg'); 

% Power = Power*60/(1000*3600); 

% Power_t = timetable(GridData.('Time'),Power); 

Time = GridData.('Time'); 

RMSE_MA_month = zeros(12,1); 

RMSE_SS_month = zeros(12,1); 

POA_avg_month = zeros(12,1); 

Power_month = zeros(12,1); 

for m = 1:1:12 

    month_iter = [Month == m]; 

    month_Time = Time(month_iter); 

    T_MA_month = T_MA(month_iter); 

    T_SS_month = SNL(month_iter); 

    T_meas_month = T_meas(month_iter); 

    RMSE_MA_month(m) = sqrt(mean((T_MA_month(:)-T_meas_month(:)).^2)); %root 

mean square of moving average model output to measured data 

    RMSE_SS_month(m) = sqrt(mean((T_SS_month(:)-T_meas_month(:)).^2)); % 

    POA_avg_month(m) = mean(POACleanRC_E_Avg(month_iter)); 

%     Power_iter = Power_t(month_iter,1); 

%     Power_month(m) = sum(table2array(Power_iter)); 

end 

  

figure 

RMSE_bar = [RMSE_MA_month RMSE_SS_month]; 

RMSE_bar = double(RMSE_bar); 

X = 

categorical({'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov',

'Dec'}); 

X = 

reordercats(X,{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov

','Dec'}); 

b = bar(X,RMSE_bar,'FaceColor','flat') 

b(1).CData = [ones(12,1) zeros(12,1) zeros(12,1)]; 

b(2).CData = [zeros(12,1) zeros(12,1) ones(12,1)]; 

xlabel('Month') 

ylabel('Average RMSE between measured and modeled data (°C)') 

legend('Moving Average','Steady-state') 

  

 

 

   


