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ABSTRACT  

 

The National Oceanic and Atmospheric Administration (NOAA)’s National 

Water Model (NWM) will provide the next generation of operational streamflow 

forecasts at different lead times across United States using the Weather Research and 

Forecasting (WRF)-Hydro hydrologic system. These forecasts are crucial for flood 

protection agencies and water utilities, including the Salt River Project (SRP). The main 

goal of this study is to calibrate WRF-Hydro in the Oak Creek Basin (OCB; ~820 km2), 

an unregulated mountain sub-watershed of the Salt and Verde River basins in Central 

Arizona, whose water resources are managed by SRP and crucial for the Phoenix 

Metropolitan area. As in the NWM, WRF-Hydro was set up at 1-km (250-m) resolution 

for the computation of the rainfall-runoff (routing) processes. Model forcings were 

obtained by bias correcting meteorological data from the North American Land Data 

Assimilation System-2 (NLDAS-2). A manual calibration approach was designed that 

targets, in sequence, the sets of model parameters controlling four main processes 

responsible for streamflow and flood generation in the OCB. After a first calibration 

effort, it was found that WRF-Hydro is able to simulate runoff generated after snowmelt 

and baseflow, as well as magnitude and timing of flood peaks due to winter storms. 

However, the model underestimates the magnitude of flood peaks caused by summer 

thunderstorms, likely because these storms are not captured by NLDAS-2. To circumvent 

this, a seasonal modification of soil parameters was adopted. When doing so, acceptable 

model performances were obtained during calibration (2008-2011) and validation (2012-

2017) periods (NSE > 0.62 and RMSE = ~2.5 m3/s at the daily time scale).  
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The process-based calibration strategy utilized in this work provides a new approach to 

identify areas of structural improvement for WRF-Hydro and the NWM. 
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CHAPTER 1 

INTRODUCTION 

Streamflow predictions are crucial for water resources management (Yeh et al. 

1982) and civil protection from flooding (Anghileri et al. 2016), which are two 

fundamental tasks to support economic prosperity while protecting lives and property. 

The need of accurate streamflow predictions has become more pressing in light of the 

increasing occurrence and magnitude of hydrologic extremes, including floods and 

droughts (Endicott 2013). For example, from 1980 to 2019, extreme flood events 

experienced throughout the continental United States have led to more than 13,000 

fatalities and damages for ~$1.75 trillion to properties, infrastructure, and crops  (NOAA 

2020). These damages have increased over the last decades, making floods one of the 

deadliest disasters in the world (Wijayarathne and Coulibaly 2020). Prolonged drought 

events have also caused significant damages to agriculture. This coupled with projected 

future climate change concerns have caused and continue to cause significant tension 

between water managers and users (Gautam et al. 2018). In Arizona, to reduce the effects 

of such prolonged droughts and floods, extensive system of reservoirs, dams, and 

aqueducts have been built for water distribution and storage purposes. In addition to 

surface water resources management, underground storage facilities have been developed 

to store excess water during wet years so that the stored groundwater can be pumped for 

use during dry years. 

To support water managers and reduce the effects of hydrologic extreme events, a 

number of streamflow forecasting techniques have been developed over the past decades 

based on statistical approaches and hydrological models. Statistical methods use past 
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streamflow records and climate observations, indices, and simulations to predict 

streamflow over different time periods and lead times. For example, (Slater et al. 2019) 

presents dynamic statistical method, where statistical model is fitted based on seasonal 

precipitation observations, crop acreage, and other indices to dynamically improve 

probabilistic streamflow forecast by improving predictand and predictors interrelation 

annually. Historically, the National Weather Service (NWS) also conduct streamflow 

forecast based on observations from various agencies such as U.S. Geological Survey 

(USGS), the U.S. Army Corps of Engineers, and other local agencies and uses it as the 

basis for forecasting the potential damages of future floods (Williams 1975; Zalenski et 

al. 2017). An alternative strategy is based on the application of hydrologic models. 

Currently, the NWS River Forecasting Centers use conceptual, lumped hydrologic 

models to issue flood predictions. To do this, precipitation observations and or rainfall 

forecast is used to drive lumped rainfall-runoff model and the amount of runoff generated 

for each contributing sub-basin is used to determine the magnitude and time of the peak 

at basin outlet (Hydrologist and NOAA 2010). Previous studies such as (Zalenski et al. 

2017) have explored forecasting errors that results from application of river stage 

forecasting models used by NWS and their findings points towards the need to use more 

sophisticated models for operational flood forecasting. 

The next generation of operational streamflow forecasts issued by the NWS will 

be provided by the National Water Model (NWM), which is currently under development 

and testing by the Office of Water Prediction (OWP) National Water Center (NWC). The 

basis for NWM is community-based, distributed WRF-Hydro model. The model utilizes 

mathematical models to represent physical processes such as infiltration, water 
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movement through soil layers, and snow formation and ablation and can be used to 

forecast streamflow at different lead times across Continental United States (CONUS). 

Unlike currently operational forecasting model, NWM forecast all hydrologic processes 

which define energy and water balance, therefore, uncertainties in streamflow forecast is 

was found to reduce (Yucel et al. 2015; Senatore et al. 2015).  Also, the model can 

expand streamflow forecast to locations where none previously existed. The forecast lead 

times include: short range forecast which is an 18-hour deterministic forecast used largely 

for forecasting flash floods, medium range forecast which is approximately 10-day 

forecast used to for flood control and long range forecast which is typically 30-day 

forecast used for reservoir management. Currently, the default mode of NWM provides 

adequate streamflow forecast only in certain regions of CONUS. For example, in humid 

southeastern regions, and eastern and north-eastern regions, the model provides high 

correlation between observation and forecasted simulation but with a positive volumetric 

bias (Dugger et al 2017). In northern plains and southwestern US, the model is subject to 

substantial streamflow forecast errors (i.e., very low correlation  and negative bias) 

(Dugger et al 2017), therefore, calibration of the model of the model is needed in these 

regions. 

One of the tasks currently undertaken by the NWC is to calibrate the NWM across 

the country using distributed streamflow observations of the United States Geological 

Survey (USGS). In addition, efforts have been devoted to by the international research 

community to calibrate WRF-Hydro in different basins of the world and in United States 

(US) e.g., Yucel et al. (2015) in Turkey, Kerandi et al. (2018) in Kenya, Senatore et al. 

(2015); Verri et al. (2017) in Italy, Silver et al. (2017) in Israel, Naabil et al. (2017) in 
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Ghana, and Lahmers et al. (2019); Somos-Valenzuela and Palmer (2018); Xue et al. 

(2018) in US. 

A recent study by (Lahmers et al. 2015, 2019) has calibrated WRF-Hydro in two 

basins (Gila River and Babocomari River basins) in southern Arizona, finding that 

although the model presents structural limitations, it can be used for streamflow forecasts. 

No study has yet been conducted to apply the model in the central and northern parts of 

the state. These regions, which are mainly part of the Salt and Verde River basins, are 

located in a transition zone from arid and semiarid climate of the Sonoran Desert to 

alpine climate of the Rockies. As such, the hydrologic regime includes a large variety of 

processes including snow, North American Monsoon (NAM), rain-on-snow, and 

continuous springs. Calibrating a hydrologic model under these conditions is a 

challenging task and very little research has been devoted to this effort. A notable 

exception is the work of (Hawkins et al. 2015), who applied a physically-based 

distributed hydrologic model in the Beaver Creek watershed (area of ~1100 km2) in 

central Arizona to investigate the impact of climate change on its hydrologic response 

during the summer monsoon. Research is needed to (1) assess the ability of existing 

hydrologic models to simulate the variety of hydrologic processes occurring in this 

region, including snowmelt and winter floods; (2) suggest areas where existing models 

need structural improvements; and (3) improve operational streamflow predictions. 

Currently, operational streamflow predictions and forecasts in the Salt and Verde 

Rivers are issued by the Salt River Project (SRP), the largest water provider for Phoenix 

metropolitan area. This metropolitan region is the fifth most populous in US, with more 

than 4.5 million people, and is experiencing one the fastest population growths according 
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to 2019 US Census Bureau. SRP delivers ~984 million m3 of water per year through a 

system of seven reservoirs in the basins with a total capacity of ~2.8 billion cubic meters 

or ~2.3 million acre-foot and canals. To support its water management operations and 

decisions, SRP started generating seasonal streamflow forecasts in 1998 using the 

Entropy Limited precipitation model described in (Christensen, R. A., and Eilbert 1985). 

This statistical model utilizes historical records of air temperature and precipitation data 

at many global sites to produce seasonal probabilistic estimates of precipitation and 

runoff (Christensen, R. A., and Eilbert 1985). The simplistic nature of this model is 

reflected in the low accuracy of its streamflow forecast (55%) (Christensen, R. A., and 

Eilbert 1985) and is prone to misinterpretation which may lead to bad forecast. To further 

improve streamflow forecast, in 1999, SRP developed a multilinear regression model to 

convert the probabilistic forecast of Entropy Limited precipitation model into a 

deterministic forecast. The accuracy of statistical approach of forecasting streamflow 

depends on (1) the quality of original probabilistic estimates, (2) user’s interpretation, and 

(3) goodness of fit of the regression model. Due to climate changes, the use of non-

physical based model to forecast streamflow is erroneous. In areas such as Phoenix, 

where water management policies are centered around the accuracy of streamflow 

forecast, operation of reservoirs requires accurate deterministic forecast that is simulated 

by physically based hydrologic model. Given the shortcomings of the existing statistical 

model utilized by SRP, it is important to use hydrological model to forecast soil moisture 

conditions, snow depth, and runoff for better reservoir operations and preparedness of the 

occurrence of flash floods. One of such hydrological model is WRF-Hydro model which 
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has been shown to adequately forecast streamflow and floods at small spatial resolution 

(Yucel et al. 2015; Senatore et al. 2015). 

In this study, WRF-Hydro model was calibrated in Oak Creek basin. This study 

aims to provide a basis for process-based approach to calibrate WRF-Hydro model. This 

approach identifies the hydrological processes of the study site, and aggregates model 

parameters based on parameter effect on hydrological processes, thus adding a new 

dimension of simplifying typical trial and error model calibration technique while 

reducing uncertainty in model parameter estimates described in (Yatheendradas et al. 

2008). To do this, the observed streamflow at the basin outlet is characterized into four 

main runoff and flood generation mechanisms, i.e., winter and summer floods, snow 

melt, and baseflow. The analysis of the model outputs focuses on the model’s ability to 

simulate the hydrological processes that controls the four runoff generation mechanisms. 

Before calibration, the forcing dataset was evaluated for its application in the study site. 

Precipitation bias-correction was performed based on elevation as in (Liston and Elder 

2006). The bias-corrected forcing was used to calibrate the model. To capture volume 

and time of the peak of the floods, metrices was used to determine the parameter 

estimates that results in acceptable hydrological response. Spatially distributed physical 

model parameters are calibrated by applying multipliers which ensures that spatial 

distribution of such parameters is preserved. The sets of the parameters selected for 

calibration and the methodology adopted here is consistent with (Dugger et al. 2017). 

Specifically, the aim of this study is to (1) provide sets of parameters that can be 

incorporated in the NWM to improve streamflow forecasts for SRP, (2) evaluate whether 

WRF-Hydro is able to simulate the four main runoff and flood generating mechanisms in 
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the Oak Creek basin, and (3) suggest areas of improvements for the WRF-Hydro model 

structure. The goal of this thesis is to meet these objectives. Besides individual process, 

other metrics to assess hydrologic models was utilized to quantify the model performance 

through calibration and validation periods. 

It is important to note that work and financial investments are needed to increase 

the utility of the NWM in southwestern and other regions of the country. This primarily 

involve model calibration, enhancement of model structure, and improvement of model 

forcings. This work presents calibration strategy, suggestions for model structure 

improvements, and bias-correction methodology that can be applied in other regions 

where the model is currently not performing well. To improve operational limitations of 

the default mode of NMW, SRP funded this work so that the calibrated model can be 

utilized for accurate streamflow forecast. 

The characteristics of study and datasets used are described in chapter 2. The 

methodology of flood characterization and adopted calibration strategy are presented in 

chapter 3. The results of process-based model calibration through sensitivity analysis are 

in chapter 4. The main findings of the study and model limitations are discussed in 

chapter 5, and the study is summarized in chapter 6. 
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1.1 LITERATURE REVIEW 

 Calibration of physically based distributed hydrological models requires 

optimization of model parameters for better simulation of the different physical 

processes. In addition to manual optimization technique, different parameter optimization 

methods such as Shuffled Complex Evolution method developed at University of Arizona 

(SCE-UA) (Duan et al. 1994) , Particle Swarm Optimization (PSO) method (Chen et al. 

2016) , and parameter estimation (PEST) method (Gallagher and Doherty 2007) have 

been developed to automatically determine optimal parameter values. Although the 

algorithms of these automatic methods are inherently different, they generally tend to 

optimize model parameters by (1) generating sets of parameters, and (2) allowing the 

parameter values to move through the surface/domain until optimal value is determined. 

Manual calibration technique involves selection of sets of parameters to be calibrated, 

running of simulations, comparing simulations and observations both qualitatively and 

quantitively through metrices, and selection of model parameter value that results in best 

possible match between observation and simulation. Automatic calibration techniques 

require excessive computational time to optimize parameters and may result in poor 

representation of model physical processes. Manual calibration technique also requires 

significant amount of time to optimize parameter value through repetitive trial and error 

method and its effectiveness depend on the skill of the modeler. (Boyle et al. 2000) 

proposed multicriteria formulation method of combining manual and automatic 

calibration techniques to take advantage of the strengths of each method and reduce 

overall weakness of each method.  
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Since the emphasis of this work is better representation of physical processes in 

the study basin, manual calibration approach was used. However, this work goes beyond 

the typical, unguided trial and error method by characterizing and targeting the different 

physical processes, hence, solving the difficulties associated with manually calibrating 

multi-parameter model described in (Yucel et al. 2015). The “guided” calibration 

approach proposed in this study reduces complexity of manual calibration and increases 

computational efficiency. 
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CHAPTER 2 

STUDY AREA AND DATASETS 

2.1 STUDY AREA AND ITS CHARACTERISTICS 

The Oak Creek basin (OCB) is a sub-watershed of the Verde River basin located 

in north central Arizona between the longitudes of 111.4°W and 112.0°W and the 

latitudes of 34.7°N to 35.2°N (Figs. 1a, b). The OCB has an area of approximately 820 

km2, which includes an upper portion with mountainous ridges and a downstream flatter 

region. The basin elevation ranges from 1059 m above sea level (asl). at the outlet to 

2581 m asl. at the peak of Mormon mountain, the average height is 1844 m asl. The basin 

is drained by Oak Creek River (OCR). The OCR is a perennial river that receives the 

contribution of several ephemeral streams. In the upper portion of the basin, it flows at 

the bottom of the Oak Creek Canyon until it reaches the city of Sedona; downstream of 

Sedona, the river flows in a more open region until it eventually drains into the Verde 

River. Together with the Salt River, the Verde River is a key water source for the 

Phoenix metropolitan region (Fig. 1b; Guan et al. 2019). The basin is fairly instrumented; 

there are National Centers for Environmental Information (NCEI) rain gages, SNOpack 

TELemetry (SNOTEL) stations and United States Geological Survey (USGS) gages (Fig. 

1c). OCB was chosen for this study because (1) the water resources in the basin is 

relatively less regulated and (2) the characteristics of the basin is such that it encompasses 

a wide range of different geographical and climatological features in central Arizona 

(Mascaro 2017) thus the basin is a good representative of other sub-watersheds in Salt 

and Verde River Basins.  
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     Figure 1: (a) Salt and Verde basins within the state of Arizona. (b) Digital elevation 

model (DEM) of the Salt and Verde basins draining to the Phoenix Metro region, 

along with boundaries of the Oak Creek sub-basin. (c) 250-m DEM and boundaries of 

the Oak Creek watershed drained at the USGS stream gage near Cornville, along with 

stream network, rain gages, SNOTEL stations, and USGS stream gages. 
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Climate in this region is characterized by two seasons with distinct storm types 

that lead to a bimodal precipitation distribution (Fig. 2a). From November to March, cold 

fronts mainly originated in the Pacific cause snowstorms that, combined with cold 

temperatures (averages approaching 0 ºC; Fig. 2a), sustain the existence of a snowpack at 

high elevations. Records at the SNOTEL stations indicate that the snowpack is present, 

on average, from mid-December to late April in this basin. The summer season from July 

to September is dominated by the North American monsoon that leads to diurnally 

modulated convective thunderstorms (Mascaro 2017). As a result, the rainfall is highly 

localized and characterized by high intensity and short rainfall duration. The mean annual 

temperature and precipitation are 8.2 °C and 565 mm, respectively. The seasonal 

precipitation regime impacts differently the river flow seasonality and flood regimes at 

the outlet of the basin. The mean monthly river flow is unimodal, with higher values in 

late winter and spring, due to snowmelt and rain-on-snow, and lower values throughout 

the rest of the year (Fig. 2a). The runoff continuously increases from late winter and 

peaks in early March, as a result of snowmelt occurring in the upper part of the basin 

(Fig. 2a). OCR is, therefore, a perennial river with a constant baseflow >~0.5 m3/s (or > 

2.5 mm). Note that summer convective storms do not impact significantly the mean flow 

because of high evapotranspiration rates and short storm events in this season (Fig 2a).  

The flood regime is also bimodal, as revealed by the annual maxima recorded at 

the outlet of the basin from 1941 to 2019, with (1) larger peaks in winter originated by 

rain-on-snow and saturation-excess runoff generated by storms with mean duration of 10 

hours based on NLDAS-2 forcing dataset, and (2) relatively smaller peaks in summer 

caused by high-intensity and short-duration of less than or one hour thunderstorms that 
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promote fast runoff generation, likely due to infiltration excess (Fig. 2b). The 

climatological means of the annual flood peaks for winter and summer seasons are 255 

m3/s and 100 m3/, respectively. 

 

 

 

 

     Figure 2: (a) Climatological mean monthly precipitation (P), temperature (T), and 

runoff (Q) in the OCB. The monthly P and T means were calculated by averaging the 

climatological means of observations of all gages and SNOTEL stations. The monthly 

Q means were derived from the instantaneous discharge at the Cornville gage and 

converted to depth (mm). (b) Month and day of occurrence of the annual peak 

discharges at Cornville stream gage recorded from 1941 to 2019 showing bimodal 

distribution of flood peaks. 
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Fig. 3 presents the maps of the dominant soil texture and land cover classes in 1-km 

pixels adopted for the hydrologic simulations derived from the Digital General Soil Map 

of the United States or STATSGO2 (Survey 1998), and the USGS National Land Cover 

(NLCD; Homer et al. 2015) database, respectively. The predominant soil type is loam, 

which accounts for approximately 60% of all soil types and is mainly found in the upper 

and lower parts of the basin (Fig. 3a). The second dominant soil type is bedrock, which 

accounts for ~21% of the soil type and is located in the middle part of the basin. The 

spatial distribution of these soil types indicates that physical characteristics of the 

spatially varying soil need to be preserved when modifying WRF-Hydro model soil 

parameters such as soil hydraulic conductivity. Turning the attention to land cover, the 

large majority (~85%) of the OCB is covered with evergreen needleleaf forest or pine 

trees, that occupy the northern and central parts of the basin (Fig. 3b). The lower parts of 

the basin are largely covered by shrubs accounting for 11% of all vegetation types. Other 

less prominent land cover types include grassland, irrigated cropland and urban 

vegetation, located in the southwestern lowland regions, mainly in and around city of 

Sedona. Unlike soil, the vegetation types in the basin are characterized by lower spatial 

heterogeneity.  
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     Figure 3: Maps of dominant (a) soil texture and (b) land cover types in 1-km pixels in 

the Oak Creek basin used for the hydrologic simulations.  
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2.2. DATASETS 

2.2.1 GEOSPATIAL DATASETS  

WRF-Hydro model was setup in OCB using the geospatial datasets adopted for 

the National Water Model (NWM). Terrain data were obtained from Hydrological data 

and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) 

(Lehner et al., 2008), which is derived from digital elevation model (DEM) data of the 

Shuttle Radar Topography Mission (SRTM) with multiple resolutions including 250-m 

and 1 km (30 arc seconds). As mentioned, soil texture was obtained from STATSGO2 

and land cover from NLCD. These datasets were compared with other sources such as 

Global Land One-kilometer Base Elevation (GLOBE) for terrain data and local soil 

survey from Soil Survey Geographical database (SSURGO) for soil texture and was 

determined to be appropriate data for the study. For the application WRF-Hydro: (1) 1-

km grids were generated for terrain, soil texture, and land cover to apply Noah MP; and 

(2) a 250-m terrain grid was created to apply routing schemes. 

2.2.2 MODEL FORCINGS 

Spatially-distributed hydrometeorological forcings from 2008 to 2017 were 

obtained from the North American Land Data Assimilation System (NLDAS-2) (Mitchell 

et al. 2004; Kumar et al. 2014). NLDAS-2 data is generated from best available 

observations and model outputs. The data has a spatial and temporal resolution of 0.125-

degree (~12-km) and 1 hour, respectively, and is available from 1979 to present in 

NetCDF format. Each file contains 16 different fields. Noah-MP LSM model coupled to 

WRF-Hydro model uses 8 out of the 16 fields. These fields include air temperature at 2 

m, near surface (10-m) wind speed (horizontal and vertical components), incoming 
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longwave and shortwave radiation (bias corrected), specific humidity, surface pressure, 

and precipitation. As explained in (Mitchell et al. 2004), precipitation is derived from 

temporal disaggregation of gauge-only Climate Prediction Center (CPC) analysis of daily 

rainfall observations performed directly on the NLDAS grid (12 km by 12 km domain), 

adjusted for different orography based on the widely applied Parameter elevation 

Regression on Independent Slopes Model (PRISM) climatology. In this study, the 

NLDAS-2 meteorological data used to drive the model were spatially downscaled at 1 

km resolution using techniques accounting for elevation effects (ADD REFERNCE TO 

WEBSITE WITH R SCRIPTS). In addition, as explained in section 3.4, precipitation 

data were further bias corrected using station observations.   

2.2.3 GROUND OBSERVATIONS  

Observations is necessary for calibration and validation of model simulations. 

Validation and bias-correction of the NLDAS-2 precipitation forcings was done using 

ground observations from: (1) two rain gages at daily resolution from the NOAA 

National Centers for Environmental Information (NCEI) database, including Mund’s 

Park, available from 1986 to 2012, and Sedona, available from 1960 to 2012; and (2) 

three SNOTEL stations, including Fry (available from 1978 to present), Mormon Mt. 

(available from 1978 to present), and Mormon Mt. Summit (available from 2008 to 

present). In addition to precipitation, the SNOTEL stations report temperature, snow 

water equivalent (SWE), and snow depth. The locations of gages and stations are 

reported in Fig. 1c. The SNOTEL stations are designed such that it remains functional 

without maintenance for a year or more. Each SNOTEL sites are equipped with sensors 

measuring temperature, wind, solar radiation, snow depth and snow pillow which tracks 
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the amount of water in the snowpack, i.e., Snow Water Equivalent (SWE). Precipitation 

gages at SNOTEL stations are either tipping bucket or standard storage gages. The gages 

record all form of precipitation (both liquid and solid precipitation in form of snowfall) 

throughout the year. The tipping bucket gages are fitted with heating device to melt 

snowfall into liquid water and total precipitation is then recorded. Precipitation records 

during winter seasons are usually prone to error such as underestimation of snowfall 

caused by wind. However, during bias-correction, precipitation records at SNOTEL 

stations from 2008-2017 was compared against historical record. It was found that the 

distribution of subset data (2008-2017) is similar to historical data for all the 3 stations 

and therefore, the data is reliable for bias-correction. The NCEI rain gages are also 

tipping bucket gages. The procedure adopted to bias correct the NLDAS-2 precipitation 

forcings is described in section 3.4. Finally, to calibrate and validate the hydrologic 

simulations, the discharge records at 15-min resolution from two USGS stream gages 

were used. These are located at the basin outlet and close to the city of Sedona (Fig. 1c) 

and are available from 1987 and 1986 to present, respectively.  
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CHAPTER 3 

METHODOLOGY 

3.1 FLOOD CHARACTERIZATION 

The methodology designed for model calibration targets the four main 

mechanisms of runoff and flood generation. In particular, two main flood regimes were 

considered, including (1) winter floods caused by rainfall, and (2) summer peaks caused 

by monsoonal convective thunderstorms. The third mechanism considered is runoff 

generated as a result of snowmelt in spring. The fourth mechanism accounts instead for 

the processes leading to baseflow. As an example, Fig. 4a presents the time series of 

observed discharge at the outlet of OCB in 2008 with the identification of the peaks that 

corresponds to three mechanisms: snow melt, summer monsoon, and winter rain. 

Baseflow is low flows with discharge value less than 1 m3/s and the flow values 

correspond to percent exceedance > ~40% (Fig. 4c).  

Flood peaks are characterized into the four categories based on (1) presence or 

absence of antecedent rainfall, (2) temperature, and (3) local maxima. Initially, local 

maximum peaks were identified based on 5% largest peaks. This threshold was chosen as 

it represents flows greater than 10 m3/s. The identified peaks were further classified into 

winter and summer seasons based on the months. The summer months are July, August, 

September, and October while winter months are November to April. There were no 

peaks identified in May and June. This is historically true as there was no annual 

maximum peak recorded at basin outlet from 1941 to 2019 in May and June (Fig. 2b) due 

to very small rainfall (Fig. 2a). Since monsoon convective thunderstorms occur from July 



  20 

to October, the identified peaks within these months are classified as monsoon peaks and 

are shown by red squares in Fig. 4a.   

The identified peaks during winter months are further into (1) winter rain and (2) 

snow melt depending on absence or presence of antecedent rainfall and temperature. The 

time of an identified peak is used to determine the duration of antecedent rainfall with 

rainfall hiatus threshold of 2 hours. If the hiatus threshold is exceeded, it is deemed that 

only precipitation before hiatus threshold exceedance contributed to the flood peak. The 

total precipitation contributing to the flood peak is calculated as the product of rainfall 

intensity and duration (sum of hours from time of the peak to the start time of the 

contributing precipitation). If total precipitation is greater than 0 mm, the corresponding 

peak is as a result of winter rain. For instance, in Fig. 4a winter flood peaks are shown by 

red crosses. It is clear from Fig. 4a, that the winter flood peaks are all preceded by 

precipitation and hence were accurately classified. To further confirm that the peak is due 

to rainfall in winter, mean temperature 6 hours before the time of the peak was 

calculated. 6-hour duration was chosen because of daylight during winter is short. If the 

mean temperature is below 0 oC, snow melt is not occurring, and the peak is mainly due 

to winter rain. Note that the melting of snow due to rainfall is not accounted as the 

contribution of snow melt is assumed to be insignificant compared to runoff generated 

due to rain.  

Run-off generated during late spring (late February to April) is mainly due to 

melting of snow as temperature increases (Fig. 2a). Similar analysis of winter rain peak 

was done for snow melt peaks. If precipitation is ~0 mm and mean temperature exceeds 0 

oC, the peak is due to melting of snow. Fig. 4b shows a zoom on snow melt season. An 



  21 

example of snow melt peaks is shown by blue circle in Fig. 4a. The classification of 

peaks due to snow melt is accurate because (1) there is no antecedent rainfall for the 

peaks (Fig. 4b), (2) snow depth corresponding to the identified peaks is decreasing (Fig. 

4d), and (3) The discharge is characterized by fluctuations due to snow melt during the 

day and refreezing at night. This diurnal variation of discharge is shown in Fig. 4b.   

Computation of metrics related to winter rain and summer monsoon floods is 

explained in section 3.6. The discharge values modelled with default WRF-Hydro model 

parameters shows significant time delay in snow melt (Fig. 7a). Therefore, the 

computation of bias during snowmelt seasons needs to be accurately computed. To do 

this, the same time window for observed and simulated discharge must be compared. 

This was done by determining the time lag that results in maximum correlation 

coefficient between observed and simulated discharge during snow melt seasons. The 

time lag is then used to correct the differential lag between observed and simulated 

discharge. Subsequently, bias is computed. The calibration technique adopted in this 

study, therefore, focuses on accurate representation of the aforementioned four flood 

generation mechanisms.  
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     Figure 4: Characterization of streamflow and flood regimes. (a) Time series of 

observed discharge showing three distinct streamflow and flood regimes, i.e., peaks 

due to winter rain, summer monsoons, and snow melt. There is also constant baseflow 

of >0.48 m3/s. (b) Zoom on snowmelt season showing diurnal variation of discharge 

due to effect of temperature on snow. Note that the high peaks are not preceded by 

rainfall showing that the peaks are due to snow melt. (c) Mean snow depth associated 

with the streamflow and flood regimes. Note that the depth of snow decreases during 

late spring due to snow melt. 
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3.2. OVERVIEW OF WRF-HYDRO 

WRF-Hydro is a community-based, distributed hydrometeorological modeling 

system that couples the WRF atmospheric model with modules simulating lateral water 

movement and aquifer processes (Gochis et al. 2015). In WRF, land surface processes are 

simulated by a one-dimensional land surface model (LSM) that represents water and 

energy fluxes along the vertical direction. While multiple LSMs are available as an 

option in WRF, at the time of this writing, only Noah and its multi-parameterization 

extension Noah-MP (Niu et al. 2011a) could be selected in WRH-Hydro. Here, Noah-MP 

was adopted as in the NWM. The switch-activated modules available in WRF-Hydro 

allow its use in (1) “uncoupled” or “offline” mode as a stand-alone LSM with forcings 

provided externally, or (2) “fully-coupled” mode where WRF-Hydro model is coupled to 

weather and climate models. Given the goal of this work, the uncoupled or stand-alone 

option was used here.  

In the following, the critical processes of Noah-MP LSM are first described, 

including: surface energy balance; runoff generation and infiltration; aquifer recharge; 

and snowmelt and accumulation. Next, an overview of the enhancements introduced by 

WRF-Hydro to simulate baseflow, lateral surface and subsurface flow routing, and 

channel routing is provided. In doing so, a number of governing equations that are useful 

to explain the calibration strategy adopted in this study were reported. Table 1 presents 

the physics options selected for the application of Noah-MP. 
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     Table 1: Noah-MP selected physics options for this study. The ID numbers refer to the 

values that can be specified in the model input file. 

Processes Option ID in  

WRF-Hydro 

Description References 

Dynamic vegetation 4 Monthly LAI from 

MPTABLE.TBL  

(Niu et al. 2011a) 

Canopy stomatal 

resistance 

1 Ball-Berry (Ball et al. 1987) 

Soil moisture factor 1 Original Noah (Chen and Dudhia 

2001) 

Runoff and 

groundwater 

3 Free drainage  - 

Supercooled liquid 

water 

1 No iteration (Niu and Yang 

2006) 

Frozen soil 

permeability 

1 Hydraulic properties 

form total soil water 

& ice 

(Niu and Yang 

2006) 

Surface drag 

coefficient 

1 Original Noah 

model 

(Chen et al. 1997) 

Radiation transfer 3 Two-stream applied 

to vegetated fraction 

(Yang and Friedl 

2003) 

Snow surface 

albedo 

2 CLASS (Verseghy et al. 

1993) 

Precipitation 

partition into 

rainfall and 

snowfall 

2 BATS scheme  

Lower boundary 

condition for soil 

temperature 

2 Lowest soil 

temperature from 

model inputs 

- 

Temperature time 

scheme 

1 Semi-implicit  
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3.2.1. SURFACE ENERGY BALANCE 

Noah-MP uses a mosaicked sub-grid scheme to represent surface bare soil and 

vegetated areas, whose fraction can be dynamically updated based on remote-sensing 

observations. The surface energy balance is calculated separately for each part through a 

two-stream approximation scheme (Niu and Yang 2004). Canopy transpiration and 

evaporation from bare soil and canopy leaves are then estimated from the resulting latent 

heat fluxes. In this study, the dynamic vegetation option with properties derived from 

climatological monthly means of leaf area index (LAI) provided as lookup tables was 

used (Table 1).  

3.2.2. RUNOFF AND INFILTRATION 

The soil column is represented through four layers of different thickness 

extending up to 2 meters (0.1 m, 0.3 m, 0.6 m, and 1 m thickness for 1st, 2nd, 3rd, and 4th 

layers, respectively). Depending on soil moisture state and precipitation intensities, 

runoff can be generated and/or water can infiltrate through the soil layers and percolate to 

an underlying unconfined aquifer. Four options are available to simulate runoff 

generation and groundwater. Here, the infiltration‐excess‐based surface runoff scheme 

proposed by Schaake et al. (1996) and Chen and Dudhia (2001) was used. In this scheme, 

the control volume is the soil surface, and therefore, surface runoff, R, is equal to the 

difference between precipitation, P, and maximum infiltration, Imax: 

𝑅 = 𝑃 − 𝐼max.        (1) 

Imax, in turn, is given by: 

𝐼𝑚𝑎𝑥 = 𝑃𝑥 ∙ {
𝐷𝑡𝑜𝑡𝑎𝑙[1−exp(−

𝐷𝐾𝑆𝐴𝑇∙𝑅𝐸𝐹𝐾𝐷𝑇∙𝛥𝑡1
𝑅𝐸𝐹𝐷𝐾

)]

𝑃𝑥+𝐷𝑡𝑜𝑡𝑎𝑙[1−exp(−
𝐷𝐾𝑆𝐴𝑇∙𝑅𝐸𝐹𝐾𝐷𝑇∙𝛥𝑡1

𝑅𝐸𝐹𝐷𝐾
)]
},    (2) 
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where 𝛥t1 is the model time step in days; DKSAT is the saturated hydraulic soil 

conductivity, depending on soil texture; REFDK is a reference saturated hydraulic 

conductivity of silty clay loam, assumed spatially constant and equal to 2×10-6 m/s; and 

REFKDT is the surface runoff parameter. Note that if silty clay loam soil type exists 

within a study area and during calibration, DKSAT value is changed for the soil classes, 

REFDK must be changed accordingly. Since there is no silty clay loam soil type within 

this study basin, default value of REFDK is appropriate. Being function of precipitation 

inputs and soil properties (see equation (2)), Imax is spatially varying. 𝑃𝑥 is excess 

precipitation or throughfall from canopy and is given by: 

𝑃𝑥 = max(0, 𝑄𝑤𝑎𝑡 ∙ Δ𝑡),      (3) 

where Qwat is the water input to the soil surface, and Δt is the model time step in hours 

(i.e., Δt = Δt1·86400). Qwat is calculated differently depending on the existence of a snow 

layer (see below) and it accounts for rainwater, melting water from the bottom of the 

snowpack, soil surface dew rate adjusted for frost. Finally, the term Dtotal in equation (2) 

is the total soil moisture content that can potentially infiltrate, which depends on soil 

properties: 

𝐷𝑡𝑜𝑡𝑎𝑙 = ∑ Δ𝑧𝑘 ⋅ (𝑆𝑀𝐶𝑀𝐴𝑋 − 𝑆𝑀𝐶𝑘)
𝑁
𝑘=1 ,    (4) 

where Δ𝑧𝑘 and SMCk are the thickness and volumetric soil moisture content of the k-th 

soil layer (k = 1, …, N = 4), respectively; and SMCMAX is the saturated volumetric soil 

moisture content dependent on soil type. Equation (4) is modified to account for the 

presence of ice in the soil. 
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From equations (1)-(4), surface runoff, Rs, is computed as the maximum between 

zero and the difference between the available water rate and the maximum infiltration 

corrected for soil impermeability to frozen conditions: 

𝑅𝑠 = max(0, (𝑄𝑤𝑎𝑡 − 𝐸) − 𝐼𝑚𝑎𝑥 ⋅ 𝐹𝑐𝑟)   (5) 

where E is the total evaporation rate (sum of evaporation from bare soil and canopy 

leaves, canopy transpiration, and snow sublimation); Fcr is the impermeable fraction due 

to frozen soil; and Imax and Qwat have been previously defined.  

3.2.3. AQUIFER RECHARGE 

The infiltration into the soil column recharges the underlying unconfined aquifer 

with a flow given by: 

𝑄𝑏𝑜𝑡 = 𝑆𝐿𝑂𝑃𝐸 ⋅ 𝐷𝐾𝑆𝐴𝑇 ⋅ [max (0.01,
𝑆𝑀𝐶4

𝑆𝑀𝐶𝑀𝐴𝑋
)]

2⋅𝐵𝐸𝑋𝑃+3

⋅ (1 − 𝐹𝑐𝑟) (6) 

where BEXP is the Clapp-Hornberger exponent, SMC4 is the soil moisture content in the 

bottom soil layer (4th layer), and SLOPE is the gravitational slope coefficient. The 

dynamics of water storage in the aquifer is the difference between aquifer recharge 

(equation (6)) and baseflow (equation (8)). Equation (6) combines the aquifer recharge 

and subsurface runoff; therefore, it governs the interflow processes between soil column 

and underlying aquifer.  

3.2.4. SNOW DYNAMICS 

On top of the soil, up to three layers of snowpack can accumulate. Noah-MP 

computes snow and soil skin temperatures based on mass and energy balance in the 

snowpack and uses them to determine the amount of snow melting or freezing in each 

snow layer. In doing so, an important variable affecting runoff generation is the snow 
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cover fraction, SCF, which is empirically computed based on snow depth, hsnow, ground 

roughness length, z0, and snow density, rsnow:  

𝑆𝐶𝐹 = tanh(
ℎ𝑠𝑛𝑜𝑤

2.5𝑧𝑜(
𝜌𝑠𝑛𝑜𝑤
𝜌𝑛𝑒𝑤

)
𝑀𝐹𝑆𝑁𝑂


),     (7) 

where MFSNO is the snow melting factor parameter, rnew is the density of new snow 

(~100
𝑘𝑔

𝑚3). To calculate the liquid water from the snowpack bottom to soil, SWE and 

snow ice content are computed in each snowpack layer. Finally, snow canopy 

interception and subsequent throughfall, melting and sublimation are simulated as a 

function of meteorological forcings and vegetation properties, including the Leaf Area 

Index (LAI). 

3.2.5. TERRESTRIAL HYDROLOGIC ROUTING  

The main improvements introduced by WRF-Hydro are multiple physics options 

for subsurface, surface overland flow, channel, and lake/reservoir routing (Yucel et al. 

2015; Gochis et al. 2018). To implement these new capabilities, WRF-Hydro operates on 

a multiresolution, gridded nested domain. A coarser grid (here, 1-km resolution) is used 

to simulate land surface fluxes with Noah-MP. Moisture fluxes (runoff and infiltrated 

water) are then routed laterally in a higher-resolution terrain grid (here, 250-m resolution) 

that allows capturing changes in elevation responsible for gravitational water 

redistribution. In WRF-Hydro, the subsurface flow module computes water table changes 

using Dupuit-Forcheimer assumptions, which calculates hydraulic gradient as the 

differences in groundwater table depth along the steepest direction in eight possible 

directions (D8) around each routing grid (Gochis et al. 2015). Routing is first computed 

for the subsurface saturated flow using a quasi-three-dimensional flow representation that 
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accounts for the effects of topography, saturated soil depth, and saturated hydraulic 

conductivity. Depending on local conditions (e.g., if subsurface flow causes a grid to 

become saturated), exfiltration may occur in soil columns and is added to infiltration 

excess runoff, if present. Overland flow is calculated utilizing a diffusive wave 

formulation similar to Julien et al. (1995) and Ogden (1997), which can be optionally 

applied in one or two dimensions; here, the one-dimensional option is chosen. Finally, 

routing in the channel network can be computed via a suite of possible algorithms that 

operate either on the high-resolution grid or on a vectorized network of channel reaches. 

In this study, an explicit, one-dimensional diffusive wave solution of the St. Venant 

equation applied on the gridded channel network was used. 

3.2.6. BASEFLOW 

Another enhancement available in WRF-Hydro is a conceptual groundwater 

model for the simulation of baseflow (Gochis et al. 2018). The scheme assigns a bucket 

to each sub-basin (defined by the user). Water percolating from the soil column recharges 

the bucket and the following equations control the outflow released to the channel at the 

sub-basin outlet (i.e., the baseflow), Qout: 

𝑄𝑜𝑢𝑡 = {
𝐶𝑜 ∙ exp(𝛼

𝑧

𝑧𝑚𝑎𝑥
− 1), 𝑧 ≤  𝑧𝑚𝑎𝑥

𝑧−𝑧𝑚𝑎𝑥

𝐴∙Δ𝑡
, 𝑧 >  𝑧𝑚𝑎𝑥

,    (8) 

where Co and a are the bucket parameters, z is the water depth in the bucket at a given 

time step, zmax is the maximum depth of the bucket before water is spilled, A is the sub-

basin area, and Dt is the model time step.  
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3.3. MODEL SETUP IN THE OAK CREEK BASIN 

The WRF-Hydro domain was set up by defining a rectangular region that entirely 

includes the OCB. For this region, the maps of elevation, soil properties and land cover 

classes were derived at 1-km spatial resolution. These are shown in Fig. 1c and Fig. 3a, b, 

while the sources of the geospatial data are described in section 2.2.1. A set of grids used 

by LSM with land surface properties such as soil and vegetation types, green vegetation 

fraction/LAI, latitude and longitude were created and stored in a NetCDF file named 

“geo_em.nc”. A grid with spatially distributed land surface model parameters (with 

hardcoded name “soil_properties.nc”) was also created and modified during the 

calibration process. This allows for modification of LSM parameters efficiently instead of 

changing parameters for each class in the corresponding look-up table. To apply the 

routing schemes, 250-m terrain grids with elevation, stream order, channel grid, and flow 

direction were obtained and stored in NetCDF file named “fulldom.nc”. In addition, grids 

defining the groundwater sub-basins and associated properties (see section 3.1.6) were 

derived.  

The model code is provided with a set of several text files and look-up tables 

containing model parameters with their default values; all these files have hardcoded 

names, as described in detail by (Gochis et al. 2018). Hydrometeorological forcings 

included 1-km grids matching the coarse-resolution domain where Noah-MP is applied of 

incoming long and short-wave radiation, specific humidity air temperature at 2 m, surface 

pressure, near-surface (10-m) wind speed, and precipitation (Senatore et al. 2015; Gochis 

et al. 2015). As mentioned in Section 2.2, forcings were obtained from downscaled 
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NLDAS-2 data, with precipitation bias corrected through rain gage observations. All 

these grids are stored in NetCDF files. 

3.4. PRECIPITATION BIAS CORRECTION 

Precipitation records observed at two rain gages and three SNOTEL stations (Fig. 

1c) were used to bias correct the NLDAS forcings. For each station, the climatological 

monthly means were computed using the entire available record; in doing so, a monthly 

observation was included if at least 27 days were non-missing. This resulted in records of 

at least 10 years for each station. The existence of a linear relationship between 

climatological monthly precipitation means and elevation for the selected stations was 

then investigated. It was found that the slope of the trendline is (1) positive in all months, 

and (2) statistically significantly larger than zero (p-value<0.05) in all months except for 

March, April, June and September. The p-value of those four months are 0.33, 0.36,0.93, 

and 0.26 respectively and the slope of regression line in these months is flat compared to 

months with statistically significant p-value (Fig. C1). Results for these four months are 

conditioned by (1) the fact that they are relatively drier (Fig. 2a); and (2) the 

climatological means at the highest gage (in terms of elevation) at Mormon Mt. Summit 

are based on the shortest record length (10 years) relative to other stations. Based on 

these considerations, the existence of a linear trend between precipitation and elevation 

was assumed in all months.  

As a next step, the same analyses were performed for the NLDAS pixels 

containing the five stations for the period 2008-2017. It was found that the slope of the 

trend line is positive in all months and statistically significantly different from zero, but 

the magnitude is much smaller than the values found for the gages. As an example, Figs. 
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5a,b present these relations for the months of January and July respectively, which are 

representative months for the two distinct storm types shown in Fig. 2a. 

Based on these results, the monthly NLDAS precipitation forcings was bias 

corrected through two multiplicative factors, accounting for (1) the difference between 

gage observations and co-located NLDAS estimates, and (2) the effect of elevation 

throughout the basin. If Po,y,m(z) is the original NLDAS precipitation for month m of year 

y in a pixel at elevation z, then the bias corrected value, Py,m(z), was calculated as: 

𝑃𝑦,𝑚(𝑧) = 𝑃𝑜,𝑦,𝑚(𝑧) ∙ 𝜔𝑦,𝑚 ∙ 𝜆𝑚(𝑧).    (9) 

In equation 9, 𝜔𝑦,𝑚 is defined as:  

𝜔𝑦,𝑚 =
1

𝑆
∑

𝑃𝑔,𝑖,𝑦,𝑚

𝑃𝑁𝐿𝐷𝐴𝑆,𝑖,𝑦,𝑚

𝑆
𝑖=1 ,      (10) 

where Pg,i,y,m is the monthly precipitation observed at the i-th station, PNLDAS,i,y,m is the 

monthly precipitation provided by NLDAS in the co-located pixel, and S is the number of 

available stations on month m of year y. The factor 𝜆𝑚 in equation (9) is defined as: 

𝜆𝑚(𝑧) =
𝑎𝑚+𝑏𝑚𝑧

𝑎𝑚+𝑏𝑚�̅�
,      (11) 

where am and bm are the parameters of the linear regression between the climatological 

means of monthly precipitation observed at the stations and elevation for month m (m = 

1, …, 12), and 𝑧̅ is the mean basin elevation as provided by NLDAS. The values of am 

and bm vary across the months and are reported in Table 2. As an example, the original 

and bias corrected mean areal precipitation values for all months of 2008 are presented in 

Fig. 5c. Our methodology provides a monthly adjustment factor for elevation of about 

0.25 km-1, which is included in the ranges reported in literature (see, e.g., Liston and 
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Elder, 2006). After computing Py,m(z), the bias corrected precipitation for a given day, d, 

and hour, h, Py,m,d,h(z), was calculated as: 

𝑃𝑦,𝑚,𝑑,ℎ(𝑧) = 𝑃0,𝑦,𝑚,𝑑,ℎ +
𝑃𝑦,𝑚(𝑧)−𝑃0,𝑦,𝑚(𝑧)

𝑁ℎ,𝑦,𝑚
,    (12) 

where Nh,y,m is the number of hours with nonzero precipitation occurred during that 

month. 

 

     Table 2: Slope and intercept of the regression line between monthly precipitation and 

elevation. Note that these regressions should be applied only in the range of elevation 

from ~1100 to ~2500 m a.s.l. that was used to estimate the coefficients.  

Month, 

m 

am (mm) bm (10-3 mm/m) 

Jan -0.973 40.484 

Feb 1.021 39.190 

Mar 37.235 15.216 

Apr 21.701 6.333 

May 3.124 7.594 

Jun 8.858 -0.198 

Jul 12.933 23.060 

Aug 5.899 35.008 

Sep 42.331 6.387 

Oct 21.709 12.329 

Nov 7.804 20.302 

Dec -40.038 56.893 
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     Figure 5: (a)-(b) Mean monthly precipitation for (a) January and (b) July 2008 from 

gages and NLDAS pixels. (c) Monthly mean areal precipitation for 2008 before and 

after bias correction. 
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3.5. MODEL CALIBRATION TARGETING DISTINCT HYDROLOGICAL 

PROCESSES  

WRF-Hydro model was calibrated against discharge observations at the basin 

outlet during the period 2008-2011. The validation was conducted against multiple 

datasets, including: (1) discharge observations at the outlet from 2012 to 2017; (2) 

discharge observations at the interior stream gage in Sedona from 2008 to 2017; and (3) 

mean basin snow depth and SWE derived from the NOAA Snow Data Assimilation 

System (SNODAS) products (NOHRSC, 2004). To perform the calibration, a stepwise 

approach targeting the winter and summer floods, snow melt, and baseflow was 

implemented. This approach focuses on the key processes governing the hydrologic 

response of the study basin identified in section 3.1. Sensitivity tests was conducted and 

the results of previous studies (Cuntz et al. 2016a; Kerandi et al. 2018; Li et al. 2018; 

Lahmers et al. 2019a) was used to identify  the model parameters that exert the major 

control on those processes. The parameters that were initially considered are listed in 

Table 3, where they are grouped into those related to soil, vegetation, groundwater, 

surface routing, and snow. For each parameter, the table presents the name used in WRF-

Hydro, the description, the main hydrologic processes affected by the parameter, a 

representative equation where the parameter is used, and the range of values. The 

sensitivity tests were conducted by varying each parameter within a range that is 

physically plausible or has been proposed in previous studies. Depending on the 

corresponding changes in simulated discharge, the sensitivities of each parameter on the 

streamflow and flood generation mechanisms was quantified using the metrics described 
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in section 3.4. In this study, default values of the hard-corded parameters who 

sensitivities was described in (Cuntz et al. 2016b) were used. Some of the model 

parameters such as soil hydraulic conductivity (DKSAT) and porosity (SMCMAX) control 

more than one flood generation mechanisms (e.g., aquifer recharge and rainfall-runoff 

generation) and therefore, such parameters require special consideration during 

calibration. Vegetation parameters also affects water and energy balance hence requires 

close analysis. The calibration was focused on parameters with high and moderate 

sensitivities based on (1) effect of the parameter on hydrograph volume, and (2) effect of 

the parameter on the timing of the peaks. This is quantified through metrics such as mean 

relative error (MRE) and time lag (tlag) of the largest winter and summer peaks. For those 

parameters with low sensitivity, default or calibrated values were used. 

Once the dominant parameters were identified, calibration of their values through 

an approach based on five steps, described in the schematic diagram of Fig. 6 was 

performed. In order, the four steps target the calibration of parameters affecting: (1) 

winter and summer flood peaks; (2) baseflow component; (3) hydrograph shape; and (4) 

snow dynamics. The fifth step consists of a final minor tuning to further improve the 

performance metrics. The calibrated values of the parameters were then used to validate 

the model from 2012 to 2017. These sequential steps presented in Fig. 6 were chosen 

primarily based (1) the severity of the shortcomings of default model parameters 

described in section 4.2, and (2) the fact that soil parameters such as DKSAT and 

SMCMAX exerts control on various processes of energy and water fluxes.  
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The WRF-Hydro source code is distributed with input files that contain default 

values for each parameter (Gochis et al. 2018). These include a text file presenting global 

parameters of Noah-MP (GENPARM.TBL); look-up tables reporting soil and vegetation 

parameters for each class (SOILPARM.TBL and VEGPARM.TBL); and text files listing 

parameters controlling overland flow routing (HYDRO.TBL), channel routing 

(CHANPARM.TBL), and the groundwater bucket models (GWBUCKPARM.TBL). 

Parameters of Fig. 6 were modified changing their values in the corresponding input files. 

If their value is constant for the entire basin, their value is replaced with calibrated value 

and multipliers are applied to the default value stored in the NetCDF file 

“soil_properties.nc”, if the parameter values are spatially distributed. The schematic 

diagram that summarizes the calibration steps is shown in Fig. 6. 

 

 

     Figure 6: Schematic of calibration steps showing the runoff generation processes and 

parameters that control each process. Note that vegetation parameters such as HVT, 

MP, CWPVT, and VCMX25 also affects winter and summer peaks beside snow melt.  
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     Table 3: WRF-Hydro parameters considered for calibration for this study with the 

corresponding ranges based on previous publications. For some of the parameters, the 

governing equation reported in Section 3.1 has been indicated. The main hydrological 

processes controlled by each parameter is also indicated. Based on these, calibration of 

parameter can be tailored for each flood generation mechanisms.  

Parameters 

(units) 

Description Main control on 

hydrologic 

response 

Equation Range 

Soil parameters 

BEXP  

(unitless) 

Clapp-Hornberger B 

exponent 

Soil water 

diffusivity 

(6) Dependent 

on soil 

texture 

SMCMAX  

(m3/m3) 

Saturated soil moisture Infiltration (4)-(5) Dependent 

on soil 

texture 

DKSAT  

(m/s) 

Saturated soil hydraulic 

conductivity 

Infiltration  (2) Dependent 

on soil 

texture 

Runoff parameters 

REFKDT  

(unitless) 

Parameter in surface 

run-off  

Partitioning of 

total runoff into 

surface and 

subsurface runoff 

(2) 0.1-10 

LKSATFAC 

(unitless) 

Multiplier on Saturated 

soil lateral conductivity 

Routing/Interflow 

process 

- 10-10,000 

RETDEPRT

FAC 

(unitless) 

Maximum retention 

depth 

Routing/Interflow 

process 

- 0.1-10 

SLOPE  

(unitless) 

Slope index Aquifer recharge (6) 0.1-1 

Continue on next page 
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Vegetation parameters 

MP  

(unitless) 

Slope of conductance to 

photosynthesis relationship 

Transpiration - 3-16 

CWPVT 

(m-1) 

Canopy wind parameter for 

canopy wind profile 

formulation 

Snow/precipitati

on interception 

-  

HVT  

(m) 

Height of top vegetation 

canopy 

Snow 

interception  

- 0.25-1.5 

VCMX25 

 (
𝜇𝑚𝑜𝑙𝐶𝑂2

𝑚2/𝑠
) 

Maximum rate of 

carboxylation at 25℃ 

Transpiration  10-100 

Groundwater parameters 

a 

(unitless) 

Parameters of the GW 

model 

Baseflow (8) 1-8 

zmax 

(mm) 

(8) Varies 

depending of 

depth of water 

table 

C0 

(m3/s) 

(8) varies 

Routing parameters 

OVROUG

HRTFAC 

(unitless) 

Manning’s roughness 

coefficient 

Routing/Interflo

w process 

- 0-1 

Snow parameters 

MFSNO  

(unitless) 

Snowmelt parameter Snow ablation (7) 0.5-4 

Table 3 continued 
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3.6 METRICS 

Model performances during the calibration and validation periods were visualized 

by comparing simulated and observed hydrographs and flow duration curves (FDCs). In 

addition, metrics were computed from the simulated and observed hydrographs at daily 

resolution, including Nash-Sutcliffe Efficiency coefficient (NSE), Root Mean Square 

Error (RMSE), bias, percentage bias, and correlation coefficient (CC). These metrics, 

which are widely used to assess hydrologic models (Biondi et al. 2012), are defined as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠,𝑡−𝑄𝑜,𝑡)

2𝑁
𝑡=1

∑ (𝑄𝑜,𝑡−𝑄𝑜̅̅ ̅̅ )
2𝑁

𝑡=1

     (13) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∙ ∑ (𝑄𝑠,𝑡 − 𝑄𝑜,𝑡)

2𝑁
𝑡=1     (14) 

𝑏𝑖𝑎𝑠 = 𝑄𝑠̅̅ ̅ − 𝑄𝑜̅̅̅̅       (15) 

𝐶𝐶 =
1

𝑁−1
∙∑ [(𝑄𝑠,𝑡−𝑄𝑠̅̅̅̅ )∙(𝑄𝑜,𝑡−𝑄𝑜̅̅ ̅̅ )]
𝑁
𝑡=1

[
1

𝑁−1
∙∑ (𝑄𝑜,𝑡−𝑄𝑜̅̅ ̅̅ )

2𝑁
𝑡=1 ]

0.5
∙[

1

𝑁−1
∙∑ (𝑄𝑠,𝑡−𝑄𝑠̅̅̅̅ )

2𝑁
𝑡=1 ]

0.5  (16) 

where N is the sample size; Qs,t and Qo,t are the simulated and observed discharge at a 

given time t; and 𝑄𝑠̅̅ ̅ = ∑ 𝑄𝑠,𝑡
𝑁
𝑡=1  and 𝑄𝑜̅̅̅̅ = ∑ 𝑄𝑜,𝑡

𝑁
𝑡=1  are the corresponding time 

averages.  

To further quantify the model performance in the simulation of winter and 

summer flood peaks, the Mean Relative Error (MRE) and Time Lag (tlag) between 

observed and simulated peaks were calculated.  
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These are defined as: 

𝑀𝑅𝐸 =
1

𝑀
∑ (

𝑄𝑠,𝑖−𝑄𝑜,𝑖

𝑄𝑜,𝑖
) × 100𝑀

𝑖=0     (17) 

𝑇𝑙𝑎𝑔 =
1

𝑀
∑ (𝑡𝑠𝑖𝑚,𝑖 − 𝑡𝑜𝑏𝑠,𝑖)
𝑀
𝑖=0 ,    (18) 

where 𝑄𝑠,𝑖 is the simulated i-th peak, 𝑄𝑜,𝑖 is the corresponding i-th peak, 𝑡𝑠𝑖𝑚,𝑖 is the peak 

time of simulated i-th peak, and , 𝑡𝑜𝑏𝑠,𝑖 is the peak time of observed i-th peak.  
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CHAPTER 4 

RESULTS 

4.1 MODEL SPIN -UP 

Prior to performing the calibration, a spin-up simulation of 10 years was 

conducted to achieve the numerical stability of the model outputs. A “restart” NetCDF 

files containing appropriate values of the state variables was generated after the spin-up 

and utilized to initialize the simulations on 1 January 2008 (Fig. A1). The state variables 

for snow related parameters such as SCF, SWE, and snow depth both with and without 

spin-up is shown in Fig A2. For the spin-up simulation, the default parameter values were 

used; since these are not the final parameters, the spin-up experiment was repeated with 

the calibrated parameters and it was found that the use of restart files based on the default 

parameters did not significantly affect the final results. 

4.2. HYDROLOGIC SIMULATION WITH DEFAULT PARAMETER VALUES 

Fig. 7a presents the time series of observed discharge at the basin outlet and the 

flow values simulated with the default parameters (labelled as Run 1). The corresponding 

FDC is reported in Figs. 7b, c; specifically, Fig. 7b emphasizes low and intermediate flow 

occurring in the dry and wet seasons, respectively, while Fig. 7c visualizes the portion of 

FDC accounting for the flood peaks. The use of default values for the model parameters 

leads to an underestimation of low flow values (flow values with percent exceedance > 

~40%) , overestimation of intermediate flow values, poor simulation of winter rain and 

summer monsoon peaks (significantly underestimated, Table 5), and significant delay in 

snow melt (Figs. 6 a-c). As reported in Table 4, this is quantified by a very large positive 

bias (+2.52 Mm3 or ~68 %), very low correlation coefficient (0.34), and low NSE (-0.64) 
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on the 4-year simulation. To improve these results, the first step of the calibration was 

aimed at calibrating the parameters that control surface runoff so as to improve 

simulation of winter rain and summer monsoon peaks. 

 

 
     Figure 7: (a) Time series of observed discharge and simulated discharge using the 

default parameters for the period 2008-2011. Simulated discharge using default 

parameters shows significant time lag during snow melt seasons, poor simulation of 

winter rain and summer monsoon peaks, and under-simulation of baseflow. (b) Flow 

duration curve (FDC) of observed and simulated discharge for the entire time series. 

(c) Zoom on the portion of FDC accounting for the flood peaks. 
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4.3. STEP 1: CALIBRATION OF WINTER AND SUMMER FLOODS 

The first step of the physics-based, manual calibration was focused on modifying 

the parameters affecting flood generation, timing and peaks due to winter and summer 

storms. This effort is described in the following sub-sections. 

4.3.1 EFFECT OF DKSAT AND REFKDT 

As shown by section 3.1.2, two key parameters affecting surface runoff 

generation are DKSAT and REFKDT. In particular, both parameters control the maximum 

infiltration and, in turn, surface runoff (see equations (1)-(2)): lower values for both 

parameters lead to decrease in infiltration capacity of the soil column, which in turn 

increases surface runoff. A sensitivity analysis for DKSAT and REFKDT was performed. 

DKSAT is spatially variable and multiplicative factors in the range from 0.3 to 2 (1 is the 

value used for the default case) were tested. This range of values was chosen based on 

physical range for the dominant soil type (loam) with the basin as reported in (Latorre 

and Moret-Fernández 2019; Rawls et al. 1983). REFKDT was assumed spatially constant 

as in previous applications, with a default value of 1.0 and a suggested range from 0.1 to 

10 (Kerandi et al. 2018). Here, the calibration was performed with REFKDT ranging 

from 0.1 to 5 with 0.2 increment. Values above 5 were not tested, since they led to the 

negligible runoff generation.  

Results of the combinations of DKSAT and REFKDT are summarized in Fig. 8, 

which shows time series and FDCs of observed and simulated discharge for the best and 

worst combinations of REFKDT and DKSAT values. DKSAT and REFKDT values of 0.3 

results in: (1) improved representation of winter peaks (Figs. 8a,b, blue line) with MRE 

changing from changing from -83.1% in default (Run 1) to 23.2% and tlag changing from 
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8.4 hours in default (Run 1) to 4.6 hours (Table 5; Run 2 best); and (2) slightly improved 

simulation of summer peaks (Figs. 8a,c, blue line) with MRE changing from -97.6% to -

89.8% and tlag changing from -10.4 hours to 3 hours (Table 5). Higher values of REFKDT 

and DKSAT of 5 and 2 respectively lead to significant underestimation of both summer 

and winter peaks, as also shown through the FDCs of Figs. 8d, e and the worse values of 

MRE and tlag (Table 5; Run 2 worst). The optimal value of 0.3 was adopted for REFKDT 

and the multiplicative factor of DKSAT (henceforth labelled as Run 2). The metrics 

applied to the entire time series for this run are presented in Table 4. It is worth noting 

that this preliminary value of DKSAT will be further tuned for better model performance 

in case of over-simulation of flood peaks. 
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     Figure 8. (a) Time series of observed discharge and simulated discharge for the 

calibration period. (b)-(c) Zoom on two winter rain peaks in (b) January and (c) July 

2008. (d) FDCs of observed and simulated discharge for the entire time series. (e) 

Zoom on the portion of FDC accounting for floods. 
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     Table 4. Metrics quantifying model performance during calibration and validation 

periods. All results except for the validation at Sedona are referred to the discharge at 

the basin outlet at Cornville. The metrics are computed at daily resolution. The 

asterisk (*) shows the simulations where calibration worsened the metrics  

Runs 

 

Description NSE RMSE 

[m3/s] 

Bias 

[Mm3] 

(%) 

CC Reference 

Run 1 Default -0.64 6.06 2.52 

(67.53) 

0.34 Fig. 7 

Run 2 REFKDT = 0.3; DKSAT 

= 0.3; rest default 

-0.26 5.92 1.08 

(23.27) 

0.62 Fig. 8 

black 

line 

Run 3 REFKDT = 0.3, DKSAT 

= 0.3,  

SMCMAX = 0.75; rest 

Default 

-2.03* 7.78* 2.39* 

(73.36) 

0.65 Fig. 9  

red line 

Run 4 As Run 3; BEXP = 1.89; 

RETDEPRTFAC = 0, 

SLOPE = 0.75; Original 

baseflow parameters; rest 

default  

-0.18 4.52 3.15* 

(96.74) 

0.66 Fig. 10 

black 

line 

Run 5 As Run 3; Co = 1.30,  

𝛼 = 3.18, zmax = 2000 

mm, rest Default  

0.21 4.46 0.56 

(16.68) 

0.67 Fig. 10  

red line 

Run 6 As Run 5; MFSNO = 3.5 0.41 2.54 0.54 

(11.52) 

0.70 Fig. 11 

Blue line 

Run 7 As Run 5; DKSAT = 

0.48; OVROUGHRTFAC 

= 0.9, 

0.56 2.36 0.35 

(8.10) 

0.75 Fig. 13 

Run 8 As Run 7 for winter 

seasons; DKSAT = 0.3; 

REFKDT = 0.1 for 

summer seasons, 

0.62 2.28 0.27 

(7.29) 

0.86 Fig 14  

       

 Validation steps      

Run 9 Validation at the outlet 0.62 2.55 0.86 

(9.82) 

0.77 Fig. 15 

Run 9 Validation at Sedona 0.46 3.17 1.02 

(15.97) 

0.64 Fig 16 
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     Table 5: Metrics quantifying the model performance in the simulation of winter and 

summer flood, as well as of runoff due to snow melt. (*) indicates a simulation where 

the metric worsened when compared to the previous Run. Note that the simulation 

runs that does not significantly impact MRE, tlag, and snow melt bias are not shown in 

this table.  

  Winter peaks Summer 

peaks 

Snow 

melt 

Runs Parameters MRE 

[%] 

tlag 

[hrs] 

MRE 

[%] 

tlag 

[hrs] 

Bias 

[103m3] 

Run 1 All default -83.1 8.4 -97.6 -10.4 9.3 

Run2 

(best) 

REFKDT = 0.3, DKSAT = 

0.3, rest default 

23.2 4.6 -89.8 3.0 3.4 

Run 2 

(worst) 

REFKDT = 5, DKSAT =2, 

rest default 

-93.0 7.5 -98.0 -12 14.3 

Run 3 

(best) 

As of Run 2 (best), 

SMCMAX = 0.75 

18.3 3.0 -83.8 2.4 11.6* 

Run 3 

(worst) 

As of Run 2 (best), 

SMCMAX = 1.5 

-93.0 4.4 -96.9 -1.3 7.8 

Run 7 REFKDT = 0.3, DKSAT = 

0.48 for both summer and 

winter  

12.2 2.6 -84.0 2.4 0.86 

Run 8 As of Run 7 for winter; 

REFKDT = 0.1, DKSAT 

= 0.3 for summer 

12.2 2.6 -12.0 1.8 0.86 

Run 9 

(outlet) 

As of Run 8 (2012-2017) 12.3 3.0 -13.4 2.9 1.02 
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4.3.2. EFFECT OF SMCMAX 

As a next step, a sensitivity analysis on SMCMAX (soil porosity) was performed. 

By regulating the volume of water that can be stored in the soil, this parameter influences 

Dtotal in equation (4), and, in turn, the soil infiltration capacity and the generated runoff 

(equations (1) and (2)). The sensitivity simulations were conducted using optimal 

multiplicative values of DKSAT and REFKDT from Run 2. Fig. 9a shows observed and 

simulated discharge for three representative multipliers applied to SMCMAX. A smaller 

(higher) value of SMCMAX of 0.75 (1.5) results in better (worse) simulation of summer 

and winter peaks, as showed by the red (blue) lines in Figs 9a-c). Using SMCMAX of 

0.75 (hereafter, Run 3), both MRE and tlag of winter and summer peaks slightly improved 

(i.e., their absolve value slightly decreased, as reported in Table 5). The improvement in 

MRE and tlag due to the decrease in SMCMAX can be explained considering that runoff is 

generated and routed quickly because of the decrease in the “wetness” capacity of the soil 

required to generate runoff. 

Despite a better simulation of flood peaks, the bias during snow melt increased 

from 3.4 × 103 to 11.6 × 103 m3 (Table 5). Time lag also improved (Table 5). This result 

can be explained considering that a lower SMCMAX reduces infiltration of water from the 

snowpack; this, in turn, results in larger runoff volume.  
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    Figure 9: (a) Time series of observed discharge and simulated discharge for the 

calibration period. (b) Zoom on two winter rain peaks in January of 2008, shows better 

simulation of peaks using small multiplicative values of SMCMAX = 0.75 (red line) 

while higher values of SMCMAX = 1.5 results in relatively poor simulation of the 

peaks (blue line) (c) Zoom on a summer monsoon peak in August of 2008, simulation 

of peaks using small multiplicative values of SMCMAX = 0.75 (red line) while higher 

values of SMCMAX = 1.5 results in relatively poor simulation of the peaks (blue line) 

(d) FDC of observed and simulated discharge for the entire time series. (e) Zoom on 

the portion of FDC accounting for the floods. 
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4.4 STEP 2: CALIBRATION OF BASEFLOW  

Results presented so far indicate a significant underestimation of the baseflow 

contribution. The next calibration step was to modify the parameters affecting this 

process. The attention was initially focused on BEXP and SLOPE, which influence 

percolation from the 4th layer of soil to the underlying aquifer, as shown in equation (6). 

SLOPE parameter is assumed spatially constant – a SLOPE value of 0 indicates no 

aquifer recharge, while higher values up to 1 (Niu et al. 2011b) increase the recharge into 

the aquifer and, ultimately, the baseflow contribution. Similarly, higher values of BEXP 

lead to higher drainage. Sensitivity tests were conducted for both parameters, finding the 

value of 0.75 and 1.89 to be optimal for SLOPE and BEXP, respectively. The higher 

calibrated value of BEXP compared to default value is justifiable because the basin is 

characterized by continuous baseflow > 0.48 m3/s.  

The time series and FDC of simulated discharge with the chosen parameter values 

of REFKDT, DKSAT, SMCMAX, SLOPE, and BEXP (hereafter, Run 4) are presented in 

Fig. 10 (black lines). Fig. 10b shows a zoom on a snow melt period in spring of 2008. 

The distorted shape of the hydrograph (Fig. 10b) implies that the parameters controlling 

the shape hydrograph must be calibrated and all the routing schemes be turned on. The 

corresponding FDC reported in Fig. 10c black line; shows significant an underestimation 

of baseflow. This can be quantified by very large negative bias value of 9852 m3 when 

bias is computed for flows less than or equal to 1 m3/s. Note that BEXP and SLOPE 

parameters control aquifer recharge and baseflow parameters control the amount of water 

in the aquifer that can be returned to stream network as baseflow. Therefore, the 

calibrated value of BEXP and SLOPE is the optimal values of groundwater drainage.  
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To improve simulation of baseflow, the baseflow/bucket model parameters were 

refined. By inspecting the observed FDC, the flow values remain fairly constant (~1 

m3/s) for percent exceedances ≥ 40. Since the bucket model of equation (8) provides a 

constant outflow even when z = 0, i.e. 𝑄𝑜𝑢𝑡= 𝐶0 ⋅ exp(−1). This relation was used with 

Qout = 1 m3/s to derive the value of C0 which was set equal to 1.30. Subsequently, 

different values of zmax, and a value of 2000 mm was found to be optimal for zmax. The 

drainage parameter a of the bucket model of equation (8) was found to be the most 

crucial parameter for the calibration of this process. In general, the higher a, the larger the 

groundwater contribution to the streamflow in the channel and vice versa. After proper 

tests, a value of 3.18 was found to be optimal for a. The resulting simulated hydrograph 

and FDC for calibrated baseflow parameters is shown in Fig. 10 (red line) (hereafter, Run 

5). These changes results in significant improvements of the performance metrics applied 

to the entire time series (Table 4). The bias and CC considering the low flow values (i.e., 

discharge below the 40% exceedance) was also computed and found that the bias reduced 

to only +488 m3 and the CC increases to 0.95 (calibrated baseflow parameters).  
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     Figure 10: (a) Time series of observed and simulated discharge using the default and 

calibrated parameters of the groundwater (GW) module, parameters that affect 

groundwater recharge such as SLOPE, BEXP and SMCMAX for the calibration period. 

(b) Zoom on a snow melt period showing significant delay in snow melt during late 

spring. (c) Flow duration curve (FDC) of observed and simulated discharge showing 

significant under simulation of baseflow with original groundwater parameters and 

very small bias in baseflow simulation with calibrated baseflow parameters. (c) Zoom 

on the portion of FDC accounting for the highest peaks. 
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4.5 STEP 3: SHAPE OF HYDROGRAPH 

To improve the shape of the hydrographs for both winter and summer peaks, we 

focused on parameters that control overland and subsurface flow, including LKSATFAC, 

RETDEPRTFAC, and OVROUGHRTFAC. The default values of these parameters are 

1000, 1, and 1 respectively.  LKSATFACT affects lateral redistribution of infiltrated 

water. Based on the sensitivity test, the default value of LKSATFAC was determined to be 

optimal. RETDEPRTFAC is a multiplier to the maximum retention depth before flow is 

routed as overland flow, whose default values are in turn assigned based on soil classes. 

The range of RETDEPRTFAC used in previous study is 0–10 (Yucel et al. 2015). 

Sensitivity analysis of three different values of RETDEPRTFAC (0, 1, 5) was done and 

RETDEPRTFAC = 0 was determined to be optimal. This result is consistent with (Yucel 

et al. 2015), who found that RETDEPRTFAC = 0 is optimal for steep surface slopes. 

RETDEPRTFAC = 0 means that runoff generated in each pixel is immediately routed 

downstream and there is less chance of local infiltration. This, in turn, leads to a steeper 

rise of the hydrograph and an increase in the hydrograph volume.  

OVROUGHRTFAC is the multiplier on Manning’s roughness for overland flow, 

whose default values are, again, assigned based on soil classes. (Yucel et al. 2015) 

suggests a range of OVROUGHRTFAC between 0 to 1. Higher values of 

OVROUGHRTFAC increase the flow resistance in the routing grids and, in turn, tend to 

delay the simulated peak in the channel. Based on sensitivity analysis of 

OVROUGHRTFAC, an optimal value of 0.9 is adequate for this parameter. 
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4.6. STEP 4: SNOW MELT  

4.6.1 EFFECT OF MFSNO 

The results of the calibration obtained so far are shown with red line in Fig. 10. In 

particular, Fig. 10b shows a zoom on the time series of observed and simulated discharge 

during the snowmelt season in 2008. The result clearly indicates a significant lag between 

observed and simulated hydrographs due to delayed in simulated snowmelt. MFSNO is 

the main parameter that controls this process. To understand the role of MFSNO and how 

its value was identified, it is worth to provide some explanations on snow accumulation 

and melt processes: 

• During snowfall in early winter, the height of the snow increases (see, e.g., Fig. 4d) 

and so does snow cover fraction (SCF), i.e., the fraction of the grid cell covered by 

the snow. Since temperatures of snow and soil layers are below freezing temperature 

(< 0oC) in early winter (Fig. 2a), snow accumulation occurs. As snow accumulates, 

the bulk density of the snowpack and snow depth increases.  

• In Noah-MP, snow depth is modelled from snow depth increasing rate, which is 

calculated as the ratio of snowfall on the ground surface and bulk density of the snow 

fall. Snow fall on the ground surface is the sum of through snow fall and snow drip 

rate. Snow layers is then created from snow depth based on the thresholds described 

in (Niu et al. 2011) 

• When temperature increases, snowmelt occurs. This process is energy dependent and 

controlled by air, soil, and snow temperature. If the temperature of the i-th layer of 

snowpack or soil skin temperature exceeds 0 oC, especially during midday hours, 

snow melting occurs; in contrast, if the temperature falls below 0 oC during night, 
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snow refreezing occurs. This cyclical change is evident in increase and decrease of 

the observed (and simulated) discharge throughout the snow melt season (see Fig. 4b 

and Fig 11b). 

• During snow accumulation and snowmelt, SCF is modeled in Noah-MP based on 

equation (7), where MFSNO is one of the parameters. The effect of MFSNO is 

negligible in early winter, because the ratio of bulk density of snowpack and density 

of fresh snow is ~1 as the snow mass is relatively new. During the snowmelt season, 

occurring after snow has accumulated and its density increased, the role of MFSNO 

becomes important. The higher MFSNO, the lower SCF, thus, speeding up the 

transition of snow accumulation and ablation processes (Niu and Yang 2007a).  

The simulations presented so far used MFNSO = 1. To fix the delay in simulated 

snowmelt, MFSNO was increased to an optimal value of 3.5 (hereafter, Run 6). Results 

are presented in Fig. 11. This change allowed decreasing the lag time between observed 

and simulated discharge from ~300 h to ~1 h, with a resulting in CC of 0.84 during 

snowmelt. Snow melt is also affected by topography and land cover. The effect of 

vegetation parameters on snow melt was investigated.  
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     Figure 11: (a) Time series of observed and simulated discharge for simulation period 

(2008-2011). (b) Zoom on snow melt season in Spring of 2008 showing improved lag 

time during snow melt season by increasing MFSNO from default value of 1 to 3.5. (c) 

Flow Duration Curve of observed and simulated streamflow. (d) Zoom on the portion 

of FDC accounting for the highest peaks. 
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4.6.2 VEGETATION PARAMETERS 

To further improve the simulation of snowmelt the effect of one of the vegetation 

parameters, canopy top height (HVT) was investigated. This is multiplicative parameter 

of the spatially variable vegetation height whose default values are determined by the 

land cover map. The other vegetation parameters reported in Table 3 (MP, CWPVT, 

VCMX25) were found not to have a significant effect. Figure 12 presents results of the 

simulations for HVT = 0.75, 1, 2. The range of analysis was selected based on the 

physical height of a pine tree (the dominant land cover type in OCB). Increase in 

vegetation height slightly increases streamflow volume during the snowmelt season and 

slightly decreases winter rain peaks (Fig. 12b). This is because of (1) melting of extra 

intercepted snow on vegetation leaves and trunk, (2) the extra intercepted precipitation 

causes the melting of intercepted snow, and (3) the extra intercepted precipitation 

decreases water input on the soil surface, which decreases surface runoff, hence decrease 

in winter rain peaks. In contrast, changes in HVT do not have an appreciable effect on 

summer peaks (Fig. 12c). This may be due to combined effects of increased interception 

of rain and evaporation from the canopy. Overall, the effect of HVT on the physical 

processes controlling runoff generation is minimal. This is reflected in the metrics as 

none of the metrics registered notable improvement or deterioration except for bias in 

snow melt which worsened by ~1.2%. Therefore, default values of HVT and all other 

vegetation parameters was determined to be optimal. 
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     Figure 12: (a) Time series of observed and simulated discharge for simulation period 

(2008-2011). (b) Zoom on snow melt season in spring of 2008 showing slight 

increases in discharge for HVT = 2 (red line) (c) Zoom on summer season in August of 

2008 showing no effect of increase in HVT on summer peaks with (red line). FDC of 

observed and simulated streamflow. (d) Zoom on the portion of FDC accounting for 

the highest peaks. 
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4.7 STEP 5: FINAL TUNING 

The results of the calibration obtained so far are shown with black line in Figure 

12. Fig. 12e shows over simulation of 2% of the largest peaks (Table 5, Run 3 best). This, 

therefore, requires tuning of parameters such as DKSAT. Over-simulation of largest peaks 

can be improved by increasing the preliminary value of DKSAT incrementally from 0.3 to 

an optimal value. As explained in section 4.2.1, increase in DKSAT leads to an increase in 

infiltration capacity of soil thus less run-off is generated, hence decreasing flood peaks. It 

was found that DKSAT value of 0.48 is optimal. Further increase of DKSAT value above 

0.48 results in improved high peaks (Q > 50 m3/s) but under simulate mid-to-high peaks 

(Q > 25 m3/s). This may be due to further re-infiltration of water in the channel grid 

networks (channel losses). The calibrated model registered an acceptable result for all the 

metrics on daily scale with NSE = 0.56, RMSE = 2.36 m3/s, and CC = 0.75. The total 

bias computed at the outlet of the basin is 0.35 Mm3 (~8 % overestimation). However, the 

summer peaks are still under-simulated. This is reflected in MRE of summer peaks of -84 

(significant under-simulation of summer peaks). This is perhaps due to the limitation of 

precipitation forcing as explained in section 5.1.  
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     Figure 13: (a) Time series of observed and simulated discharge for calibration period 

(2008-2011) simulated using tuned value of DKSAT and OVROUGHRTFAC to 

improve shape of hydrograph. Note that winter rain peaks are simulated well while 

summer monsoon peaks are under-simulated (b) FDC of observed and simulated 

streamflow. (c) Zoom on the portion of FDC accounting for the highest peaks. 
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To improve under-simulation of summer peaks, different values of DKSAT and 

REFKDT was used for winter and summer seasons. These two parameters were selected 

because as they significantly impact surface infiltration and hence runoff compared to 

other parameters. To do this, the model was run with DKSAT and REFKDT multiplicative 

values of 0.48 and 0.3 respectively and other calibrated parameters for winter seasons and 

different values of REFKDT and DKSAT for summer seasons. It was found that REFKDT 

and DKSAT multiplicative values of 0.1 and 0.3 were optimal. Fig 14a shows the result of 

using dynamic values of DKSAT and REFKDT for winter and summer seasons. Fig 14b 

shows a zoom on 5 summer peaks in August of 2008 showing improved simulation of 

summer peaks. Average volumetric bias in summer peaks decreased from -15,428 m3 

(under-simulation) to -356 m3 (under-simulation) while MRE and time lag improved by 

~86 % and ~25% respectively from -84.0 % to -12% for MRE and from 2.4 hours to 1.8 

hours for time lag. The calibrated model with dynamic parameters registered an improved 

result of NSE (0.62) and CC (0.86) for the entire 4-year simulation period at daily scale. 

The value of NSE is within acceptable range of 0 and 1 (Moriasi et al. 2007) . The RMSE 

value also improved slightly from 2.36 m3/s to 2.28 m3/s. The final value of RMSE is 

considered acceptable as per (Singh et al. 2004) who suggested that RMSE values less 

than half of the standard deviation of the observations may be considered low.  

Overall, the result of the simulation with final calibrated parameters shows better 

correlation with observations at both interior and outlet gages in comparison with other 

similar studies such as (Lahmers et al. 2019a; Kerandi et al. 2018; Yucel et al. 2015; 

Silver et al. 2017).  
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     Figure 14: (a) Time series of observed and simulated discharge for calibration period 

(2008-2011) simulated using dynamic values of DKSAT and REFKDT to improve 

simulation of summer peaks. Note that smaller values of DKSAT = 0.3 and REFKDT 

= 0.1 improves summer monsoon peaks (b) Zoom on few peaks in August of 2008 

showing marked improvement in simulation of summer peaks when seasonal dynamic 

values of parameters that control infiltration is used. (c) FDC of observed and 

simulated streamflow. (d) Zoom on the portion of FDC accounting for the highest 

peaks. 
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4.8 STEP 6: VALIDATION 

The model calibration was validated from 2012 to 2017. The observed discharge 

at interior gage and outlet gage was used to validate the simulated discharge modelled by 

calibrated WRF-Hydro model. Similar to calibration, different values of DKSAT and 

REFKDT was used for winter and summer seasons. The validation result of the simulated 

discharge and observations at the basin outlet from 2012 to 2017 is shown in Figs. 15. 

The model performance during validation period is summarized in Table 4.  The FDC of 

the time series of the validation period at basin outlet (Fig. 15c) shows an overestimation 

in simulated discharge, especially for high peaks. The validation of simulated discharge 

at the interior gage in Sedona from 2008 to 2017 is shown in Figs. 16. The result also 

shows an overestimation in simulated discharge for flood peaks. The model performance 

at the two gage locations are comparatively similar for most of the metrics as summarized 

in Table 4. The bias at the interior gage is +1.02 Mm3 (~16% overestimation) while at 

outlet is 0.86 Mm3 (~10% overestimation). The net reduction in bias between interior 

gage and outlet gage of 0.16 m3 can be attributed to channel losses in ephemeral streams 

contributing to Oak Creek River. Channel losses is a significant component of water 

balance especially in this study basin which WRF-Hydro model does not take into 

account. The drainage area of the interior gage is significantly smaller than that of outlet 

gage, therefore, the total effect of channel/transmission loss is more significant at outlet 

gage than interior gage.  

It is important to note that over-simulation of flood peaks noted at both interior 

and outlet gages can be attributed to model limitations, forcing limitation, and limitation 

of manual calibration. These limitations are reflected in overall model performance 
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although the metrics results for both calibration and validation periods are within 

acceptable range.  

The quality of calibrated WRF-hydro model in OCB was also tested by the 

model’s ability to simulate snow depth and SWE. To this goal, mean basin snow depth 

and SWE simulated by WRF-Hydro model was compared against mean SWE and snow 

depth derived from the NOAA Snow Data Assimilation System (SNODAS) products 

(NOHRSC (National Operational Hydrologic Remote Sensing Center) 2004). Although 

observations of snow depth and SWE at the SNOTEL stations exist, they were not used 

to validate the model because (1) possible localized accumulation of snow due to snow 

drifts caused by wind that may be recorded at the stations, and (2) unfair comparison of 

point-scale measurement to 1 km2 domain. SNODAS data was used to validate the model 

because (1) grids have same spatial resolution (2) physically based, spatially distributed 

energy and mass balance snow model forced with similar meteorological forcing to 

WRF-hydro model is used to simulate snow. SNODAS dataset was downloaded and 

clipped to the study basin. The procedure followed in projecting the clipped data to basin 

grids is described in (Barrett 2003). 

Fig 17 shows the comparison of SWE and snow depth simulated by calibrated 

WRF-Hydro model and SNODAS from 2008 to 2017. The model simulation exhibits 

high correlation of 0.85 and 0.89 for snow depth and SWE respectively with SNODAS. 

However, WRF-Hydro model under-simulates both SWE and snow depth compared to 

SNODAS. This may be due to the fact that SNODAS manually adjust their values daily 

based on observations (Carroll et al. 2001), and hence short duration snowfall can be 

captured. Close inspection of the time series of snow depth shows faster ablation of snow 
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during snow melt season in most of the years. This may be attributed to (1) high value of 

snow melt factor, MFSNO used to bridge the lag time during snow melt season, (2) 

external factors such as loss of vegetation cover due wild fire that exposes snowpack to 

excessive sunlight causing faster ablation of snow, and (3) temperature changes in which 

some years snow melt quickly compared others.  

Observed snow depth and SWE recorded at the three SNOTEL stations were used 

to further validate the effectiveness of the model in simulating snow dynamics at point 

scale. To this goal, co-located snow depth and SWE values for both SNODAS and 

calibrated WRF-Hydro model were extracted and compared to the observations. The 

result shows appreciable correlation between observation and simulations for both SWE 

and snow depth (Fig. B1). However, the model under simulate both SWE and snow depth 

compared to observations due to possible localized accumulation of snow due to snow 

drifts caused by wind that may be recorded at the stations. Note that for Mormon 

Mountain Summit station, the records of both SWE and snow depth starts late in 2008, 

therefore, the values of snow depth and SWE in early winter season of 2008 is missing.  
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     Figure 15: Time series of validation period (2012-2017). (a) Time series showing 

simulated and observed discharge at basin outlet. (b) FDC of observed and simulated 

streamflow at the outlet of the basin. (c) Zoom on the portion of FDC accounting for 

the highest peaks 

  



  68 

 
     Figure 16: Validation at Sedona gage (2008-2017). (a) Time series showing simulated 

and observed discharge evaluated at Oak Creek near Sedona gage.  (b) FDC of 

observed and simulated streamflow at interior gage. (c) Zoom on the portion of FDC 

accounting for the highest peaks 
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     Figure 17: Comparison of snow simulation obtained through calibrated WRF-Hydro 

model with SNODAS model. (a) Simulated Snow Water Equivalent (SWE) (b) 

Simulated Snow depth. 
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     Table 6: Metrics quantifying model performance in simulating snow during 

calibration and validation periods 

SNODAS - WRF-

Hydro comparison 

NSE RMSE 

[mm] 

Bias [mm] CC Reference 

SWE 0.65 2.74 76 0.89 Fig 17a 

Snow depth 0.69 2.69 120 0.85 Fig 17b 
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CHAPTER 5 

DISCUSSION 

5.1 FORCING LIMITATIONS 

The original NLDAS-2 forcing was downscaled and regridded to 1 km by 1 km 

pixels from coarse ~12 km resolution which spatially spreads precipitation over a large 

domain. The bias-corrected NLDAS-2 precipitation forcings that was used to drive the 

model does not account for the existence of highly localized and intense summer 

monsoon events. The climatological monthly mean precipitation for summer seasons 

recorded at SNOTEL stations and NCEI gages during calibration and validation periods 

was compared against co-located bias-corrected NLDAS-2 forcings pixels. It was found 

that forcings values are less than observations for all the 5 gages. This is because of the 

localized nature of summer monsoon events. Rain gages records precipitation at point 

scale and, therefore, localized precipitation can be captured while NLDAS-2 forcings 

spreads precipitation over 1 km2 domain. The forcing limitation is evident in poor model 

response during summer seasons (Fig. 13a). The dominant runoff generation mechanisms 

during summer seasons in the study area is infiltration excess. From eqn. 2, surface 

runoff is generated when precipitation exceeds maximum infiltration capacity of the soil. 

Therefore, the spread of precipitation forcings over large domain reduces simulated 

surface runoff during summer months. To compensate for the limitations of the forcings, 

different multiplicative values of REFKDT and DKSAT was used for winter and summer 

seasons. The reduced values of REFKDT and DKSAT during summer seasons decreases 

infiltration and increases surface runoff, which results in better model response (Fig. 

14b). Summer rainfall events are also in time (i.e., short duration). To reduce streamflow 
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simulation errors during summer seasons for southwestern United States, different 

precipitation forcing dataset need to be utilized. For instance, precipitation records of 

finely spaced gages in a square kilometer domain should be used to force the model. 

5.2 SUMMARY OF PARAMETER SENSITIVTIES 

In this study, sensitivity analysis of various parameters (both hard-corded and 

standard parameters) controlling different runoff generation mechanisms was performed. 

The hard-corded parameters tested in this study are roughness length of snow surface, 

Z0SNO or z0 in eqn. 7, liquid water holding capacity of snowpack, SSI, and surface 

resistance for snow, RSURF_SNOW which are all listed in look-up table called 

“MPTABLE.TBL”. These parameters affect turbulent energy exchanges (sublimation and 

energy flux to the snowpack). Since MFSNO have significant effect on snow sublimation 

rates, the global default value of Z0SNO (0.002 mm), SSI (0.03 m3/m3), and 

RSURF_SNOW (50 s/m) was determined to be adequate for the study site. The significant 

findings of the study are that:  

(1) The soil parameters are more sensitive to all runoff generation mechanisms than 

vegetation parameters. 

(2) Snow melt factor, MFSNO has significant effect on snow melt 

(3) Forcing limitations, as explained in section 5.1, greatly impacts model’s ability to 

simulate land surface processes such as rainfall-runoff generation. 

Sensitivity analysis of soil parameters such as DKSAT, BEXP, and SMCMAX was 

performed. These parameters mainly affect winter rain and summer monsoon floods, and 

baseflow. In this study, sensitivity of a parameter is determined by the parameter effect 

on (1) volume of the hydrograph peak, and (2) timing of the peak. This is quantified 
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through metrices such as MRE, tlag, and average bias. Of the soil parameters, it was found 

that DKSAT is the most sensitive parameter to runoff generation for winter rain and 

summer monsoon peaks, followed by SMCMAX. Both of these parameters control 

infiltration rate and thus affects surface runoff (eqn. 1-2). BEXP parameter mainly 

controls deep drainage and, therefore, its effect on winter rain and summer monsoon 

peaks is minimal. REFKDT is the most sensitive parameter of all runoff parameters solely 

based on its effect on hydrograph volume of the flood peaks. Higher REFKDT value (>1) 

reduces the simulated hydrograph volume as more water is partitioned as underground 

runoff instead of surface runoff. HVT is the most sensitive parameter of all vegetation 

parameters, followed by CWPVT. HVT parameter mainly affects winter rain floods and 

snow melt. This is because height of the canopy influences snow and rainfall 

interceptions, and transpiration and limits below-canopy evaporation. HVT determines 

the height of wind and humidity measurements which are used to calculate aerodynamic 

resistance, an important parameter of Penman-Monteith equation. Note that the effect of 

HVT on summer floods may be masked by forcing limitation. CWPVT is canopy wind 

parameter used for formulation of wind speed. CWPVT mainly affects unloading rate of 

snowfall from canopy leaves which further impacts the amount of snow mass on the 

ground surface (i.e., high CWPVT leads to an increase in snow depth, which further 

increases snow melt discharge) (Niu et al. 2011). The four runoff generation mechanisms 

are least sensitive to vegetation parameters such as MP and VCMX25. The diminished 

effect of vegetation parameters on the runoff generation mechanisms may be due to lack 

of vegetation heterogeneity in the study area compared to more heterogenous soil texture 

(Figs. 3a, b).  
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The second finding of the study was obtained through improvement of lag time 

during snow melt. As explained in section 4.6.1, increase in MFSNO increases snow 

ablation rates. The high optimal value of MFSNO is consistent with (Niu and Yang 2007) 

who found that MFSNO is larger for mountainous basins compared to plain river basins.  

The third finding of the study was obtained through lack of improvement of 

simulated summer peaks as winter rain peaks are greatly improved. Both processes are 

controlled by same model parameters, therefore, if one process is improving while the 

other is not, it means that parameter optimization is adequate, and the issue may be 

limitations of forcing or model structural errors. As explained in section 5.1, the forcing 

limitations significantly affects simulations of summer floods.   

5.3 COMPARISON WITH EXISTING LITERATURE 

The maximum surface slope of the study basin is 42o and the basin is dominated 

by steep slope especially in mountainous upstream areas, hence calibrated zero value of 

RETDEPRTFAC was determined to be adequate. This is consistent with (Yucel et al. 

2015; Kerandi et al. 2018) who suggested that in areas with surface slopes higher than 

30-45o, retention depth shows little to no accumulation. (Verri et al. 2017) noted that 

there is seasonality associated with soil physics and assumed different values of soil 

parameters for different seasons to achieve more appreciable model performance, a result 

which consisted with the findings presented in section 4.7. The soil parameters such as 

DKSAT and SMCMAX were found to be critical parameters for surface water fluxes for 

all the hydrological processes, finding which is consistent (Cuntz et al. 2016). However, 

Contrary to (Cuntz et al. 2016), vegetation parameters such as MP and VCMX25 exhibits 

least sensitivities to runoff generation mechanisms. This perhaps might be due to 
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vegetation characteristics, as the dominant vegetation type (~85%, Fig. 3b) is non-

deciduous plant, hence transpiration is relatively constant throughout the year. In terms of 

metrics, the model performance is better or similar to all studies that used same 

precipitation forcing such as (Lahmers et al. 2019).  

5.4 MODEL LIMITATIONS  

During calibration of the model in OCB, the following model limitations were noted: 

• Baseflow model is highly conceptualized and requires longer simulation period to 

effectively simulate underground runoff. As described in other studies such as (Niu et 

al. 2007; Gochis et al. 2018), long simulation period is required for the model 

parameters to reach equilibrium. Indeed, (Niu et al. 2007) noted that it might take 

more 250 years of model spin-up for baseflow model to equilbriate in semi-arid 

environemnts. In semi-arid region, such as the study area, the simple “bucket” 

function is inadequate. This is due to (1) the water table being too deep, and (2) the 

assumption of baseflow model that there is only one-way connection between soil 

column and underlying aquifer is not physically true. This is because the water from 

aquifer can rise up due to capillary action and contribute to the soil moisture, hence 

the “bucket” model should be modified to account for two-way connection especially 

in semi-arid areas such as the study area. The impact of added moisture due to 

capillary action will induce errors in simulated soil moisture, which further leads to 

poor representation of processes such as evapotranspiration (ET) (as groundwater 

provides water for ET through root uptake), and discharge simulations. The 

importance of groundwater dynamics in modulation of energy and water fluxes 

cannot be overstated. The conceptual bucket model can be improved by developing a 
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more detailed conceptual baseflow model that can simulate the specific characteristics 

of regional aquifer. Model such as MODFLOW groundwater model can be used in 

this region because surface-subsurface water coupling is not very strong in northern 

and central Arizona because the aquifers are very deep (Pool et al 2011) . Studies 

such as (Aghlmand and Abbasi 2019), though at local scale, have also used 

MODFOW groundwater model to improve baseflow simulations. In areas of 

southwestern US where baseflow is not always present, the bucket model should be 

turned off to prevent unrealistic simulations of baseflow.   

• Most the peaks are characterized by sudden recession as opposed to expected long 

recession limb. This perhaps is due to slow movement of water in soil column, which 

decreases the contribution of infiltrated water to total runoff.  

• Some physical processes that are important in semi-arid regions such as Arizona are 

not represented in the model. One of these processes is transmission losses in 

ephemeral channels. As discussed in (Lahmers et al. 2019), accounting for channel 

infiltration will result in reduced streamflow errors.  

• Uniform 2m deep soil column to bedrock everywhere is assumed to be representative 

of soil structure. The model does not account for the complexity of variance in soil 

thickness due to terrain. 

5.5 TERRESTRIAL WATER BALANCE MODEL 

The output of calibrated WRF-Hydro model was used to verify whether the water 

balance model closes out to zero or not. The water balance was evaluated on an annual 

scale. The terrestrial water balance components derived from model outputs are 
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precipitation (P), evapotranspiration (ET), and run-off (Q). The mean annual P, ET, and 

Q are computed for each year during calibration and validation. The storage term of 

water balance is computed as the difference between P and sum of ET and Q (both 

observed and simulated). ET is high throughout calibration and validation period because 

(1) high average temperature throughout the year (Fig. 2a), and (2) The dominant land 

cover type is evergreen and hence high rate of transpiration. The result of water balance 

during calibration and validation period is shown in Table 7. Note that the storage term is 

negative in some years and positive in other years corresponding to dry and wet years.  
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     Table 7: Annual values of the water balance components; i.e, P, ET, and R computed 

from outputs of calibrated WRF-Hydro model for 2008-2016. The storage term is 

given by dS/dt1 = P – (Robs+ET) while dS/dt2 = P – (Rsim+ET). The storage term shows 

both negative and positive values indicating wet and dry years. The terrestrial water 

balance does not zero-out for all the years because of model limitations and or 

limitations of manual inadequate calibration.  

Year P  

(mm) 

ET  

(mm) 

Robs 

(mm) 

Rsim 

(mm) 

dS/dt1 

(mm) 

dS/dt2 

(mm) 

2008 641 504 134 140 3 -3 

2009 388 314 79 75 -5 -1 

2010 857 668 182 187 7 2 

2011 515 438 73 77 4 0 

2012 422 367 58 59 -3 -4 

2013 555 454 97 99 4 2 

2014 366 312 60 57 -6 -3 

2015 707 581 121 123 5 3 

2016 511 414 101 98 -4 -1 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

This work presents characterization of streamflow and floods into four runoff 

generation mechanisms: the winter and summer floods, snow melt, and baseflow. A 

stepwise approach targeting each mechanism was implemented to calibrate WRF-Hydro 

model in Oak Creek basin, a sub-basin of Verde River basin, in central Arizona. This 

study provides initial implementation of WRF-Hydro model in the study basin. 

Meteorological forcings obtained from NLDAS-2 was used to drive the model. The 

uncoupled mode of the model was used to analyze the model’s ability to represent the 

physical processes of runoff generation.   

The novelty of this study is the identification of key hydrological processes and 

model parameters that exert control on representation of those processes. This process-

based manual calibration approach allows for (1) increased computational efficiency 

compared to automatic calibration techniques (i.e., scale-up to a larger basin is 

computationally expensive); and (2) identification of physically plausible values of the 

model parameters. The calibration approach presented in this work can support the 

calibration of the NWM in other basins. As result, this work can potentially reduce 

financial investments needed for the implementation of the operational NWM to forecast 

seasonal streamflow by water agencies such as SRP.  

The model parameters were calibrated sequentially using streamflow observation 

data at the outlet of the basin, first by targeting winter and summer flood peaks, then 

baseflow component, hydrograph shape, and finally, snow dynamics. Sensitivity analysis 

was performed for each parameter and the range of analysis is constrained by either 
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plausible physical limits or limits specified in other studies. The discharge simulated by 

calibrated model was validated from 2012 to 2017 against two streamflow observations 

(at interior and outlet of the basin) and simulated mean snow depth and SWE was 

compared against those derived from SNODAS. The model performance during 

calibration and validation period presents promising results both quantitively and 

qualitatively. The main conclusions of this study are: 

• NLDAS-2 precipitation forcings presents considerable limitations for local scale 

application. Prior to calibration, the precipitation forcing was compared against 

observations recorded at NCEI and SNOTEL gages. The result shows the existence of 

a linear relationship between climatological monthly precipitation means and 

elevation for the gages and no linear trend for NLDAS-2 forcings. Precipitation 

forcings was bias corrected for elevation. The bias-corrected forcings also presents 

errors especially during summer seasons, the findings that is consistent with (Lahmers 

et al. 2019). 

• The soil, groundwater module, and snow parameters exert major control on 

hydrological processes presented in this work compared to vegetation parameters.  

• Also as noted in (Senatore et al. 2015), model structural errors such as highly 

conceptualized exponential model results in sudden recession of peaks.  

The results summarized in Tables 4, 5 and shown in figs. 14, 15, and 17 indicate that 

WRF-Hydro model is capable of simulating the four runoff generation mechanisms. 

Despite the limitations of the forcings and model’s structural errors, the model 

performance for final calibration step and validation is acceptable. Therefore, this 

calibration effort at local scale will provide a basis for further evaluating the model’s 
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capability to forecast streamflow. However, as noted in (Moreno et al. 2013), the 

accuracy of the model in forecasting streamflow at local scale will depends on the quality 

of precipitation input, especially during summer seasons.  

The city of Sedona covers ~1.7% of the study basin. During calibration, the built 

environment of the basin was not treated in any special way in regard to (1) consideration 

of the imperviousness of city infrastructure, (2) urban land cover, and (3) possibility of 

withdrawal of surface water from Oak Creek River and injection of treated waste water 

into groundwater aquifer. As the population of the city is expected to grow, proper 

consideration of this built environment in a natural watershed is necessary. This is an 

important area of future model improvement.  
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APPENDIX A 

SUPPLEMENTAL FIGURES FOR MODEL SPIN-UP 
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Figure A1: Model spin-up for generation of restart files. (Top) Effect of spin up on 

discharge in 2008 and (bottom) the relative bias between consecutive simulation. Note 

that the numerical stability of the model increases with every simulation till the 

stability is reach in the 10th year of simulation.  
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     Figure A2: Effect of spin up on snow state variables. Note that both SWE and snow 

depth is severely under simulated without the spin-up (dashed black line).  
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APPENDIX B 

SNOW DYNAMICS AT POINT SCALE  
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     Figure B1: Time series of observed snow depth and SWE for the three SNOTEL 

stations, corresponding co-located SNODAS values, and simulated snow depth and 

SWE for the period 2008-2011. Note that WRF-Hydro model under-simulates snow 

depth and SWE at point scale compared to SNODAS and SNOTEL observations.  
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APPENDIX C 

SUPPLEMENTAL FIGURES FOR BIAS-CORRECTION 
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     Figure C1: Climatological monthly mean precipitation for all stations showing the 

existence of linearity with elevation in all months except June. Statistically significant 

p-value was found April, May, June, and September. The climatological monthly 

mean precipitation values in all these months is comparatively small compared to 

other values showing that the rainfall is less in these months.  
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