
Simultaneous Material Microstructure Classification and Discovery

using Acoustic Emission Signals

by

Huifeng Sun

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved May 2020 by the
Graduate Supervisory Committee:

Hao Yan, Co-Chair
John Fricks, Co-Chair

Dan Cheng

ARIZONA STATE UNIVERSITY

May 2020



©2020 Huifeng Sun

All Rights Reserved



ABSTRACT

Acoustic emission (AE) signals have been widely employed for tracking material

properties and structural characteristics. In this study, the aim is to analyze the

AE signals gathered during a scanning probe lithography process to classify the

known microstructure types and discover unknown surface microstructures/anomalies.

To achieve this, a Hidden Markov Model is developed to consider the temporal

dependency of the high-resolution AE data. Furthermore, the posterior classification

probability and the negative likelihood score for microstructure classification and

discovery are computed. Subsequently, a diagnostic procedure to identify the dominant

AE frequencies that were used to track the microstructural characteristics is presented.

In addition, machine learning methods such as KNN, Naive Bayes, and Logistic

Regression classifiers are applied. Finally, the proposed approach applied to identify

the surface microstructures of additively manufactured Ti-6Al-4V and show that it not

only achieved a high classification accuracy (e.g., more than 90%) but also correctly

identified the microstructural anomalies that may be subjected to further investigation

to discover new material phases/properties.
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PREFACE

This thesis is a try to explore a new approach to classify the known microstructure

types and discover unknown surface microstructures. The data is collected from an

experiment of nanolithography process by creating scratches on the surface of a given

material via a diamond indenter. The data is of temporal dependency, and a hidden

Markov model is applied to the data. After transforming the original data using fast

fourier transformation into frequency domain, the data is splitted into 50 features,

each feature representing 0-5 kHz frequency range.

The goal of our experiment is to distinguish the two surface micro-structures

of Ti-6AL-4V, a titanium alloy fabricated via electron beam melting (EBM), by

analyzing the acoustic emission(AE) signals collected during a nanolithography process.

Furthermore, we can develop a new approach to discern intrinsic properties of materials

faster, compared to conventional techniques.

I have mainly contributed to the case study part of this paper and also tried using

other machine learning classification methods such as Naive Bayes, KNN, and Logistic

classifiers. In addition, I am responsible for reading output from python and making

some explanations of graphs. After fitting these machine learning models, we use a

confusion matrix to represent the prediction ability by calculating accuracy, recall

and precision. Furthermore, we evaluate the anomaly detection procedure for both

generative and discriminative models and evaluate its performance.

viii



Chapter 1

INTRODUCTION

1.1 Background of Discovery of Novel Materials

Throughout history, the process of discovering new materials has been slow,

largely due to the combinatorial nature of identifying the “correct” material com-

bination/composition as well as the time-consuming characterization tests (such as

X-ray diffraction, electron microscopy) to ensure the quality and integrity of the

materials. Recent breakthroughs in additive and hybrid manufacturing technologies

have accelerated the fabrication of geometrically complex as well as functionally graded

components Chen et al. 2015; Sames et al. 2016. However, the process of characterizing

the material properties and microstructure is still slow, creating a bottleneck in the

discovery of novel materials Aspuru-Guzik and Persson 2018; Alberi et al. 2018.

In recent years a major thrust has been towards developing novel approaches

to enable rapid, in-situ characterization of material structure and property Pablo

et al. 2014. For instance, authors in Min et al. 2005 developed a novel approach to

track the deformation mechanism while performing the tensile testing by recording

the ultrasonic vibrations. Such an approach allowed rapid materials characterization,

potentially eliminating the need for costly experimentation such as X-ray diffraction.

Along a similar direction, Iquebal, Pandagare, and Bukkapatnam 2019 utilized the

capability of high-resolution acoustic emission sensing (with sampling rates exceeding

1000 kHz) and nanolithography together with machine learning to identify the mi-

crostructural fingerprint of Ti-6Al-4V. A nanolithography process essentially involves
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creating scratches on the surface of a given material via the controlled motion of

a diamond indenter Botcha et al. 2018. The methodology harnessed the capability

of a nanoindenter to selectively probe the surface microstructures as the indenter

scans through the surface. The corresponding AE response—originating from various

physical transformation mechanisms such as plastic deformation, shear localization,

etc.—captures the microstructural fingerprint of the material. More specifically, Ique-

bal, Pandagare, and Bukkapatnam 2019 showed that the AE spectrum in the range

of 0.3-1 kHz and 30-50 kHz was able to distinguish different microstructure types in

additively manufactured Ti-6Al-4V. AE sensing has been extensively employed in

previous works. For instance, De Bono et al. 2017; Karimi, Heidary, and Ahmadi 2012

employed AE to study the strength of materials, Baccar and Söffker 2015 used AE to

analyze the wear characteristics and Wisner et al. 2019; Sause et al. 2012 studied the

crack propagation using AE sensing.

This cheap deployment of the AE sensors with the nanolithography process offers

a great possibility for fast mapping of the microstructures with relatively lower costs

and efforts. However, AE sensors produce very high-resolution time-series data with

complex temporal dependency, which requires advanced data science techniques to

handle. Recently, a few works have focused on analyzing the AE data. For example,

classification models were developed in Iquebal, Pandagare, and Bukkapatnam 2019;

Wei et al. 2018 to classify the microstructure types of the underlying material. However,

despite the ability to classify known microstructures, these works failed to detect new

or unknown types of materials.

2



Figure 1: The Ti-6Al-4V workpiece sample is mounted inside the Hysitron TI 950
nanoindentation setup. The AE sensor was attached to the workpiece surface by using
dental cement.

1.2 Objective

The objective of this work is to assess how to utilize the AE sensor data to accurately

discern the microstructure types by using AE sensing of a nanolithography process

while simultaneously allowing the discovery of unknown materials microstructure. To

3



Figure 2: (a) A representative SEM image of the microstructure as observed in the
as-fabricated workpiece. The microstructure comprises of α+β colony with α lamellar
interspersed with rod-shaped β phase. (b) A representative microstructure obtained
after the polishing was performed on the workpiece. The image shows evidence of
extreme coarsening of the β phase at scattered locations. These are marked as βW .

achieve this goal, we present a hidden Markov model (HMM) approach, which is a

generative classification model considering the temporal structure of the AE signal. We

further develop techniques to classify the known material microstructures and detect

new material microstructures simultaneously. Here, the detected new microstructure

can either be a defect on the surfaces or new types of material produced by the

manufacturing processes, which require further material characterization such as SEM

or XRD.

1.3 Contribution

In conclusion, the major contribution of the paper is 1) to build an HMM model

for the AE signals considering the temporal consistency. 2) to classify known material

microstructures using the posterior distribution of the material microstructure types

given the AE signals. 3) to quantify how likely the region is “new material” by the

4



negative likelihood score and provide a diagnostics tool on which feature is the leading

factor for this behavior.

1.4 Further Work

To validate the proposed methodology, we first present our experimental setup

consisting of a nanoindentation setup to collect AE signals during the lithography

process on the Ti-6Al-4V sample surface fabricated via additive manufacturing. Then,

we will present the proposed modeling framework to discriminate different material

microstructures as well as detecting if any particular region belongs to any known

microstructure by the negative likelihood score. Further diagnostics tools are proposed

to understand which feature is the leading factor of such behavior. We will give

a case study on how the proposed framework is used to discover a potential “new

material region” in our real experiments. Finally, we will conclude the paper with the

conclusions and future works.

5



Chapter 2

EXPERIMENT DETAILS

Scanning probe lithography referred to as lithography in the rest of the manuscript

employs a nanoindentation tool for texturing patterns on the surface of a given

material. As a result of selectively probing the surface, the lithography process offers

an approach to rapidly track the microstructural fingerprint of the material under

investigation Chang and Bukkapatnam 2004 by recording the micro-elastic pulses

generated as the indenter scans the surface. In this section, we present the description

of sample fabrication and preparation, microstructure details, lithography experiments,

and data collection.

2.1 Sample Preparation

In the present work, we perform the lithography on Ti-6Al-4V workpiece samples

fabricated using an electron beam melting (EBM) process. The as-fabricated workpiece

was subsequently subjected to a multi-step finishing process on a hand-held Buehler

Metaserv grinder-polisher (model 95-C2348-160). The finishing process employed

Silicon Carbide (SiC) polishing pads with progressively reducing abrasive sizes (600

grits to 1200 grits). To impart a specular finish (Sa ≤ 25 nm), the surface was finally

polished using alumina abrasives of size 0.05 µm suspended in an aqueous solution

with abrasive concentration at 20% by weight and pH ≈ 7.5. Throughout the polishing

process, a nominal down pressure of 0.5kPa was maintained. The polisher was set

to 500 revolutions per minute while ensuring a quasi-random motion. To observe

6



Figure 3: A representative SEM image of the (a) diffused and (b) standard microstruc-
ture regions showing the five distinct scratches generated during the lithography
process.

the microstructures, the polished surface was etched with Kroll’s reagent (5 − 7%

nitric acid, 2 − 4% hydrofluoric acid, and rest distilled water) for 10 seconds and

rinsed thoroughly with distilled water. The microstructure was then observed under a

scanning electron microscope (SEM) under high vacuum conditions.

2.2 Microstructure Analysis

The polished surface comprised of standard α and β microstructures organized

in colonies as well as basket-weave morphology. A representative SEM image of the

microstructure is shown in Figure 2(a) with lamellar α phase in gray and the rod-

7



shaped β phase in white. For modeling purposes, we refer to this α+β microstructure

as the “standard microstructure”. From a quantitative standpoint, the standard

microstructure is primarily comprised of ∼90% α phase with ∼10% β phase.

A recent study has shown that mechanical polishing of as-fabricated Ti-6Al-4V

workpiece under dry conditions result in the dilation of the β phase due to high

temperatures (in the range of 700-1000 K) at the asperity-abrasive contacts during

polishing Iquebal, Sagapuram, and Bukkapatnam 2019. We refer to this microstructure

type, with widened β phase, as the diffused microstructure. This is labelled as βW

in Figure 2(b) and is composed of roughly 60% α and 40% β. Such non-equilibrium

microstructures offer a unique potential to tailor the mechanical behavior of the

workpiece such as the hardness and tensile strength of additively manufactured

components for specific applications Wang, Palmer, and Beese 2016.

2.3 Lithography Studies

In this work, lithography studies were performed on a sensor integrated nanoin-

dentation setup consisting of a Hysitron TI 950 Triboindenter carrying a Berkovich

indenter with a diamond tip with tip specification as: included angle – 142.3◦, tool

tip radius – 100 nm, and maximum allowable downforce - 10,000 µN. The effect

of external disturbances is attenuated by installing a vibration isolating platform

underneath. To perform lithography experiments, three locations on the surface were

identified via SEM. Each of these three locations consisted of standard and diffused

microstructure types. Five parallel scratches were created at each of the standard

and diffused microstructure regions and representative SEM images are shown in

Figures 3(c & d). The scratches are marked as (i), (ii), (iii), (iv), and (v) and are

8



each of length 15 µm. The length of the scratch was selected to 15 µm to ensure that

most of the primary microstructural features were scanned by each of the scratches

such as the widths of the rod-shaped β and the diffused βW phases. The indenter

speed was set to 0.5 µm/sec, such that each scratch lasted for 30 sec. The AE released

during the process was collected using a S9225 AE sensor from Physical Acoustic Corp

with a sampling frequency of 300-1800 kHz. The aforementioned lithography process

was repeated at three random locations, each containing predetermined diffused and

standard microstructures, as depicted in Figure 3(a).

9



Chapter 3

METHODLOGY

In this work, we propose a framework to classify the known underlying microstruc-

ture of the material and identifying defects or unknown microstructure based on

signals from AE sensors. To achieve this, we evaluate Naive Bayes, KNN, logistic

regression, and hidden Markov model (HMM) to achieve both goals. We will first give

a brief introduction of the these machine learning models and then discuss how to use

each model for both known microstructure classification and unknown microstructure

detection.

3.1 Naive Bayes

3.1.1 Overview

Naive Bayes is a generative classification model, which is widely used in classification

based on Bayes’ Rule. Recall the definition of Bayes’ Rule:

P (y|x) =
P (x|y)P (y)

P (x)

The assumption of this model is that each feature is independent, the present existing

feature does not have any effect on the other. Thus, the Bayes’ Rule becomes

P (y|x) =
P (x|y)P (y)

P (x)
=
P (y)

P (x)

d∏
i=1

P (xi|y).

The two-way table where the columns represent predicted Y and rows represent

observed Y is called a confusion matrix.

10



Figure 4: Confusion Matrix

Accuracy, recall, precision and F-score can be calculated from the confusion matrix.

The mathematical definitions are as following:

Accuracy

Accuracy =
TP + TN

Total

Recall

Recall =
TP

TP + FN

Precision

Precision =
TP

TP + FP

F-score

F − score =
2 ∗Recall ∗ Precision
Recall + Precision

Recall shows the ability to find all relevant instances; Precision shows the proportion

of data points our model says was relevant actually were relevant. We expect both

high recall and high precision, but it is not the case usually. So we use F-score to

trade-off which measures Recall and Precision at the same time.

3.1.2 Microstructure Classification

To meet the assumptions of Naive Bayes classifier, we assume each feature in our

data are conditionally independent given each classification and do not have any effect

11



Figure 5: Confusion Matrix for Naive Bayes

to each other. In addition, data given each classification are assumed to be generated

from Gaussian process and thus are normally distributed.

After fitting the Naive Bayes model to our data, we plot the confusion matrix and

further calculate precision, accuracy, recall, etc to evaluate our model.

From the confusion matrix, we can conclude the probability of predicting diffused

microstructures when they are actually diffused is 0.95 and the probability of predicting

standard microstructures when they are actually standard is 0.74.

From the results of the Naive Bayes model, the precision of predicting diffused

microstructures is 0.78 and of predicting standard microstructures is 0.94. The recalls

are 0.95 and 0.74 and f1-scores are 0.86 and 0.83 accordingly. Though some differences

between the precisions and the recalls, f1-scores look well.

12



The accuracy score in this case is 0.85 which is not a concern. Thus, our Naive

Bayes model fits nicely on our dataset and has good prediction probability.

Table 1: Overall Review of Naive Bayes

precision recall f1-score
Diffused 0.78 0.95 0.86
Standard 0.94 0.74 0.83

3.1.3 Material Discovery

The likelihood of X is defined as

P (X) = 1/2 ∗ P (X|Y = 0) + 1/2 ∗ P (X|Y = 1).

The likelihood reflects how well the model can explain our data and detect anomalies.

In our data, two classifications are known: diffused microstructures and standard

microstructures. However, some points are predicted with low likelihood and imply

undefined structures existing. This helps us to detect new material characterization

and discover new material.

The likelihood of the Naive Bayes model shows data samples from 900-1100,

originally standard V phrase, are predicted with low probability to be either diffused

or standard microstructures and thus are assumed to be new materials.

13



Figure 6: Likelihood of Naive Bayes Classifier

3.2 K-Nearest Neighbors(KNN)

3.2.1 Overview

K-Nearest Neighbors is a discriminative classifier in machine learning models and

can be used for both classification and regression. The KNN algorithm assumes things

with similar features are near each other and thus captures similarities by measuring

distance among points.

14



Figure 7: Testing Accuracy for KNN

3.2.2 Microstructure Classification

First, we fit the KNN models to our data and calculate the accuracy scores with

different ks. From the line chart and accuracy scores results, we safely choose k equals

to 30 with about 96% accuracy.

The confusion matrix of KNN gives us an initial intuition about the prediction

ability. Besides, the precision is 0.97 and the recall is 0.94 for diffused microstructures.

The precision is 0.95 and the recall is 0.97 for standard microstructures. The difference

between precision and recall is very small, and f1-score is 0.96, so we expect the

prediction ability quite well. The ROC curve looks nearly perfect with the AUC score

equals to 0.99.

The accuracy score in KNN model is 0.96 which means the predicted classifications
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Figure 8: Confusion Matrix for KNN

are quite reliable and accurate. All these metrics prove that KNN is a good model to

do classification in our data.

Table 2: Overall Review of KNN

precision recall f1-score
Diffused 0.97 0.94 0.96
Standard 0.95 0.97 0.96
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Figure 9: ROC Curve for KNN

3.2.3 Material Discovery

Entropy is a measurement of uncertainty used in discriminative classifiers. Entropy

H is mathematically defined as:

H = −p ∗ logp− (1− p)log(1− p).

P is the probability when diffused microstructures occur.

To find unknown classification, the entropy of KNN shows the points from 360 to

700,where is diffused III located, and 1100 to 1200, where is standard V located, are

anomalies. These points are predicted neither diffused nor standard and are assumed

to be new materials that never appear in our training data.
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Figure 10: Entropy for KNN

3.3 Logistic Regression

3.3.1 Overview

Logistic Regression is another discriminative classifier in machine learning models.

It is a method used in the situation when response variable is categorical. Logistic

function, known as sigmoid function, is a monotonic, continuous function bound

between 0 and 1 with S shape. The function is defined as

y =
exp(βX)

1 + exp(βX)
.

y is 0 if the microstructure is diffused and is 1 if microstructure is standard in our

model.
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Figure 11: Confusion Matrix for Logistic

3.3.2 Microstructure Classification

The accuracy of logistic prediction is 0.95 which is pretty high so we can trust the

prediction results to large extent. The precision and recall for diffused microstructures

are 0.95 and 0.96 separately, and are 0.96 and 0.95 for standard microstructures

separately. The f1-score is 0.95 for both classifications.

The ROC curve looks similar to the previous two which has nearly perfect look

with very high AUC score equaling to 0.99. So out logistic regression model is very

good at distinguishing two difference microstructures.
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Figure 12: ROC Curve for Logistic

Table 3: Overall Review of Logistic

precision recall f1-score
Diffused 0.95 0.96 0.95
Standard 0.96 0.95 0.95

3.3.3 Material Discovery

The entropy of logistic classifier shows that the data points from 500 to 700,diffused
IV, and 1100 to 1200,standard V, have large uncertainty. So these points are assumed
to be unknown materials.
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Figure 13: Entropy for Logistic

3.4 Hidden Markov Model

3.4.1 Overview

HMM is a probabilistic model that describes the transitions of a finite number

of states over time. These states characterize two stochastic processes: the hidden

state transition in the discrete-time and observed process. In addition, three sets of

probability distributions are utilized to characterize the system dynamics: the initial

probabilities for all the hidden states; the transition probabilities between two hidden

states, and the emission probabilities of an observation from a hidden state. The

elements of an HMM are defined as follows:

• 1) Let Q = {1, · · ·K} denote the set of hidden states, with the total number
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of states to be K. We denote Si,t ∈ Q as the system state at time t for unit

i ∈ {1, · · · , n}. Furthermore, we denote Sk
i,t as a binary variable according to

whether the system for unit i at state k in time t.

• 2) A transition probability matrix is defined as A = {pkk′}, in which pkk′ is the

transition probability that the system state is changed from state k to state k′,

k, k′ ∈ {1, . . . , K} at time t,

pkk′ = P (Si,t+1 = k|Si,t = k′), 1 ≤ k, k′ ≤ K. (3.1)

• An emission probability is defined on multi-variate response Oi,t by two sets of

matrix B = {µk,Σk}, in which µk is the mean of multiple sensors in state k,

and Σk denote the covariance matrix of multiple sensing measurement. In other

words,

(Oi,t|Si,t = k) ∼N(µk,Σk),

i = 1, · · · , n, k = 1, · · · , K.
(3.2)

• An initial state vector Πi = {πi,k} is defined to express the distribution of the

system states for unit i at state k at t = 1.

Latent S1 S2 S3 St

Observed
O1 O2 O3 Ot

. . .. . .

Figure 14: Illustrative picture of HMM, the Si’s are the hidden or latent state variable
and Oi’s are the observed variables

With the descriptions shown above, for the simplicity and clarification, the full

HMM model is given by Λ = {Q,A,B,Πi}. Figure 14 shows the logical dependencies
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among different random variables of an HMM. Furthermore, three major problems

can be solved by the HMM Rabiner 1989:

• 1) Evaluation problem- Given an HMM Λ and an observation sequence

{Oi,t}Tt=1 = (Oi,1,Oi,2, . . . ,Oi,T ), find the probability that the sequence

{Oi,t}Tt=1 is accrued, or P ({Oi,t}Tt=1|Λ), using the HMM modeling. The evalua-

tion problem an be used to evaluate both the sequence likelihood P ({Oi,t}Tt=1|Λ)

and the individual point likelihood P ({Oi,t}|Λ)

• 2) Decoding problem- Given an HMM Λ and an observation sequence {Oi,t}Tt=1,

identify the system state at each time t or estimate P (Si,t|{Oi,t}Tt=1). The

decoding problem will be related to the microstructure identification process.

• 3) Learning problem- Find the parameters in the model Λ (the A,B,Πi) that

maximize the probability P ({Oi,t}Tt=1|A,B,Πi).

For more details of using the Expectation-Maximization algorithms and the forward-

backward algorithms to solve these three problems, please refer to Rabiner 1989. We

will then review how to use the three problems to solve the problems of microstructure

classification and new material discovery. First, the parameters of the HMM models

need to be learned by solving the learning problem. Then we propose to use the

decoding problem and evaluation problem to solve the problem of microstructure

classification and material discovery.
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3.4.2 Microstructure Classification

We propose to differentiate known underlying material microstructures by solving

the decoding problem in HMM. With model parameters determined, we are able to

classify the observation by solving a decoding problem to find the probability P (St =

k|{Ot}Tt=1). The decoding problem is used solved through the Forward-backward

algorithm by decomposing the equation into two terms P (O1, ..., Ot, St = k,Ot+1)

and P (Ot+1, ..., OT |St = k), and solve both terms using the dynamic programming.

Here, we will classify the microstructure according to the largest posterior distribution

k̂t = arg maxk P (St = k|{Ot}Tt=1)

3.4.3 Material Discovery

Given the trained HMM Λ, we denote the sequence with low likelihood

P (O1, O2, ..., Ot|Λ) as the sequence with potential new material. We can also calcu-

late the likelihood for a single point P ({Oi,t}|Λ) by summing up all possible states∑K
j=1 P (Ot|St = j). In this way, the problem of material discovery can be solved by

the evaluation problem in HMM.

3.4.4 Diagnostics for Material Discovery

We further analyze which feature is the leading factor that the HMM quantifies

the sequence as the “new material” sequence. To achieve this, we find that under

the assumption that the covariance matrix of the emission is a diagonal matrix, the

likelihood score can be decoupled into the likelihood of each individual feature. For
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example, if we know that all features Otj of observation at time t are independent,

the log-likelihood can be decoupled as following:

logP (Ot|Λ) =
∑
j

logP (Otj|Λ) (3.3)

Otj represents the jth feature of observation Ot. With this decoupled likelihood, we

are able to calculate the likelihood of each feature seperately.

3.5 Case Study

3.5.1 Problem Overview and Data Preprocessing

Finally, we will apply the proposed methodology to the real case study. The

acoustic emission (AE) signals are collected from a nanolithography process, described

in the experimental setup. We have collected five parallel scratches from the three

locations. For each scratch, it is divided into segments with 0.25s. with 125000

(= 0.25× 500, 000) data points. Each of these segments is labeled as either diffused

and standard microstructure. Therefore, we have in total 600 (= 30sec×(1/0.25sec)×5.

) samples from each class of microstructure.

We further preprocess the AE sensor signal in the following data processing pipeline:

• 1) Each time slice was transferred into the Fourier domain with 62500 data

points for each set. As the sampling rate of the AE data was 500 kHz, the

frequency range of 0-250 kHz could only be observed.

• 2) The entire frequency band is further divided into 50 non-overlapping intervals

(each representing a frequency range of 5 kHz.
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Figure 15: AE sensor signal from frequency domain. Ten different colors represent
the diffused microstructures and standard microstructures from left to right.

• 3) The root mean square values of the power in each of these intervals are

calculated as features.

After the preprocessing, the dataset comprises 600 sample observations and 50

features for each class (Standard/ Diffused) on each location. Fig. 15 shows several

selected frequency bands (e.g. F1, F33-F50) of AE sensor signal. The different color

shows the samples from different scratches. The first five scratches are diffused phase,

and the last five are standard phases.

From Fig. 15, it seems that F1 is very sample-dependent since all ten scratches

share very different F1 features. Furthermore, standard V (e.g., shown in the light

blue color) has very different F44 and F45 values.
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3.5.2 Results

3.5.3 Microstructure classification

For the microstructure classification, Table. xxx shows the classification results

(precision, recall, F1-score, AUC) from RF, NB, and HMM. From the results, we can

see that we are able to classify most of the sequences except Diffused V. We further

calculate the likelihood of each sequence and present the results as Fig. 3.16(b). We

can find that Diffused V got the wrong prediction, which is due to that this Diffused

V gets a very low likelihood score compared to others. In order to understand the

reason for it, we did a diagnostic process by decomposing the likelihood score of

a sequence into the likelihood score of the features of the sequence. To report the

accuracy, we can conclude that all standard structures are predicted correctly and

diffused structures are predicted correctly except diffused V.

3.5.4 Material Discovery

Fig. 3.16(b) shows the sequence of negative likelihood among ten observed locations.

From this figure, we see that diffused V, standard IV, and standard V locations will

have a lower likelihood than other locations. Among these, diffused V has the lowest

likelihood score. The lower likelihood score shows that the model is not very confident

in modeling these scratches, partially due to that these scratches are different from

others.

Both Fig. 3.17(a) and Fig. 3.17(b) are identified as the “new material”, the likelihood
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score of diffused phase is much smaller than that of the standard phase of feature

‘F1’, so feature ‘F1’ is a quite important factor which influences the prediction results.

These two plots are consistent with the results showed from the sequence likelihood

in Fig. 3.16(b). Furthermore, the overall likelihood score for diffused and standard

are smaller, which contributes to the decision of “new material”. For Diffused V,

this finding is consistent with the SEM images reported as shown in Fig. 3.18(a),

where Diffused V seems to be in a slightly darker region and the ‘F1’ frequency is

much closer to the standard material. For Standard V, ‘F45’ shows as the second

important feature contributing to the low overall likelihood score. This can be seen

from Fig. 3.18(b), where both ‘F43’ and ‘F45’ have very different frequency features

from the rest and SEM images show a slightly darker region on the Standard V. For

Diffused IV and Standard II are both detected as the “normal material” and classified

correctly. Interesting, we can see that despite that ‘F1’ is still the leading factor for the

classification. F32-F45 are also important factors that contribute to the classification

and material discovery decision. These findings are in alignment with the findings in

Iquebal, Pandagare, and Bukkapatnam 2019.
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Figure 16: Results of Material Microstructure Classification and Material Discovery.
(a) shows the prediction accuracy compared the prediction labels (shown in red) with
the true labels (shown in black). (b) shows the negative likelihood score to identify
each sample being new material/anomaly.
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(a) Diagnostic for Diffused V (b) Diagnostic for Standard V

(c) Diagnostic for Diffused IV (d) Diagnostic for Standard II

Figure 17: (a) and (b) are the scratches that have been identified as ’new material’. (c)
and (d) are identified as normal samples. As can be seen from all figures, F1 is always
associated the low-likelihood score due to the large sample-to-sample variations.
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(a) Diffused V

(b) Standard V

Figure 18: Diagnostics plot for Diffused V and Standard V
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Chapter 4

CONCLUSION

In this work, we analyzed the acoustic emission signals generated from a lithography

process for material microstructure classification and new materials discovery. In

order to achieve these two objectives we propose a pipeline to extract the important

frequency features from the raw signals and model the sequential data with Hidden

Markov Model. We also discussed three possible applications of Hidden Markov

Model. Firstly, we are able to differentiate different microstructure by solving an

evaluation problem in HMM. Our results show that we can capture all sequences

except one sequence. We further discover that this sequence is potentially a new

material microstructure/phase due to the low likelihood score. We further confirmed

this finding with the SEM images. Finally, we conduct a diagnosis process on all

sequences by decomposing the log-likelihood of HMM. Through the process, we find

that the root cause of diffused V being identified as the new material is due to the F1

feature.

While the proposed method is not supposed to replace the traditional high-fidelity

measurements such SEM or XRD, it offers an approach to rapid gather low-fidelity

information about the material microstructure that can be used as a guide to search

for novel materials, therefore, significantly reducing the experimental efforts. In the

future work, we will study how to combine both AE signals (low-fidelity) and SEM

images or XRD (high-fidelity) for efficient material discovery.

The results of each classifier are shown in the Table: 4. KNN and logistic classifiers

have a better accuracy score and f1-score compared to other two models. The
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Figure 19: Discriminative vs Generative

uncertainty range of Naive Bayes and HMM, two generative classifiers, is dispersed but

concentrates in the middle. A discriminative model focuses on the decision boundary,

the difference between each class, whereas the generative model models the actual

distribution of each class. The accuracy of detecting anomalies is low due to the

inability to consider the data distribution in a discriminative model. In addition, the

accuracy scores of both KNN and logistic classifiers are higher than the other two

classifiers, which verifies that discriminative classifiers are usually better when applied

to classification problems.

Table 4: Comparison among Different Classifiers

Accuracy F1-score Anomaly
Naive Bayes 0.85 0.86 Standard V

KNN 0.96 0.96 Diffused III, Standard V
Logistic 0.95 0.95 Diffused IV, standard V
HMM 0.90 0.90 Diffused V, Standard IV, Standard V
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CONCLUSION OF PROJECT

After working on this project, I have realized that to fully understand the whole

process of the experiment, tons of papers and research related to background of an

industrial field should be done before building a model.

The data wrangling step is crucial to the whole process and without understandable

and clean data, the model will do nothing but only ’Garbage in, garbage out’. I have

learned many statistical theories and acquired basic knowledge of different statistical

models. In the project, I have the chance to put my knowledge in practice and think

about how to coherently handle a project. The project is a good start for me for

future research. I have thought about how to choose the right model for different

situations based on my past study.

In the future, more classifiers such as Decision Tree, Random Forest, and Neural

Networks may be applied to compare the accuracy and more anomalies detection

methods can be used. Finally, how to integrate multi-scale information such as SEM

images will be studied in the future.
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