
Automated Design of Graded Material Transitions for Educational Robotics

Applications

by

Cole Brauer

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved April 2020 by the
Graduate Supervisory Committee:

Daniel Aukes, Chair
Xiangfan Chen
Thomas Sugar

ARIZONA STATE UNIVERSITY

May 2020

ABSTRACT

Multi-material fabrication allows for the creation of individual parts composed of sev-

eral materials with distinct properties, providing opportunities for integrating mech-

anisms into monolithic components. Components produced in this manner will have

material boundaries which may be points of failure. However, the unique capabilities

of multi-material fabrication allow for the use of graded material transitions at these

boundaries to mitigate the impact of abrupt material property changes.

The goal of this work is to identify methods of creating graded material transitions

that can improve the ultimate tensile strength of a multi-material component while

maintaining other model properties. Particular focus is given towards transitions

that can be produced using low cost manufacturing equipment. This work presents

a series of methods for creating graded material transitions which include previously

established transition types as well as several novel techniques. Test samples of each

transition type were produced using additive manufacturing and their performance

was measured. It is shown that some types of transitions can increase the ultimate

strength of a part, while others may introduce new stress concentrations that reduce

performance. This work then presents a method for adjusting the elastic modulus

of a component to which graded material transitions have been added to allow the

original design properties to be met.

i

ACKNOWLEDGMENTS

This research was supported by IDEAlab and the MORE program at Arizona State

University. Continued development on the VoxelFuse platform to facilitate this work

is supported by Jude Brauer and Charles Jeffries.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 3

3 VOXELFUSE FRAMEWORK . 6

Model Representation . 6

Dithering . 7

Model Generation Functions . 8

Primitive Solids . 9

Periodic Structures . 10

4 TRANSITION TYPES . 12

Blur . 12

Dither . 14

Lattice Structure . 16

Triply Periodic Minimal Surface . 17

Fibers . 19

5 EXPERIMENTAL SETUP . 21

Test Coupon Design . 21

Transition Generation . 22

Equipment Setup . 24

3D Printer . 24

Tensile Testing System . 25

Testing Configurations . 25

iii

CHAPTER Page

Stage 1: Centered Material Transitions . 26

Stage 2: Normalized Modulus of Elasticity . 26

Future Testing . 27

6 RESULTS AND ANALYSIS . 29

Data Filtering Process . 29

Stage 1 Results . 29

Stage 2 Results . 31

Transition Surface Area . 33

Flexible Material Volume Percentage . 36

Discussion . 36

7 CONCLUSION . 39

Future Work . 40

REFERENCES . 41

APPENDIX

A 3D DITHERING CODE . 43

B TRANSITION GENERATION CODE . 48

C CONTACT SURFACE MEASUREMENT CODE . 56

iv

LIST OF TABLES

Table Page

5.1 Tensile Test Coupon Types . 23

6.1 Effective Length Multiplier for Each Transition Design. 32

6.2 Effective Length Multiplier for Each Transition Design After Normal-

ization . 34

v

LIST OF FIGURES

Figure Page

3.1 3D Stucki Error Diffusion Filter . 8

3.2 Results Created by Primitive Generation Functions 10

3.3 Gyroid Structure Generated Over a 30x30x15 Voxel Region 11

4.1 Sample Model with No Transition Applied . 13

4.2 Blurring Process . 13

4.3 Sample Model with Gaussian Blurring Applied . 14

4.4 Sample Model with 3D Dithering Applied . 14

4.5 Sample Model with 2D Dithering Applied to Maintain Support Along

the Z-Axis . 15

4.6 Process for Generating a Graded Transition Using a Lattice Structure . 16

4.7 Lattice Structure Transitions Using (a) a Plus-Shaped Lattice Element

and (b) an X-Shaped Lattice Element . 17

4.8 Graded Transitions Defined Using (a) a Gyroid Surface, (b) a P-Surface,

and (c) a D-Surface . 19

4.9 Fiber Transitions Using (a) Small and (b) Large Template Elements . . . 20

5.1 Input Model (Top) and Output Model After Applying a Material Tran-

sition (Bottom) . 22

5.2 Test Sample Mounted in Tensile Testing Machine . 25

5.3 3D Printed Test Samples with Centered Transition Regions 26

5.4 3D Printed Test Samples with Adjusted Transition Region Positions . . . 27

6.1 Tensile Testing Data for Samples with Centered Transition Regions 30

6.2 Failure Points for Samples with Centered Transition Regions 31

6.3 Tensile Testing Data for Samples with Adjusted Transition Region Po-

sitions. 32

vi

Figure Page

6.4 Failure Points for Samples with Adjusted Transition Region Positions . . 33

6.5 Comparison of L0 Multipliers Measured in Each Stage of Testing 34

6.6 Methods for Calculating the Contact Surface Area of a Transition 35

6.7 Contact Surface Area for Each Transition Type . 35

6.8 Change in the Volume of Flexible Material Present in Each Transition

Type . 36

vii

Chapter 1

INTRODUCTION

Multi-material fabrication describes a family of fabrication methods that can be

used to produce individual parts that can be made up of several different materials.

It provides a way to create single components that can take the place of assemblies

of components produced using conventional techniques. This allows for robot designs

that are both robust and low cost, making it a particularly attractive method for

education or research. Example applications in robotics include integrated flexible

joints between rigid materials, soft grip surfaces built into parts, or embedded rein-

forcing materials in components. Multi-material fabrication can be directly realized

through some additive manufacturing techniques. Examples include resin-based 3D

printing processes that can achieve materials with varying hardness, or Fused Deposi-

tion Modeling (FDM) processes on multi-head 3D printers that can deposit 2 or more

discrete materials. Multi-material fabrication can also be accomplished by combining

multiple fabrication techniques. One example is producing rigid regions using 3D

printing then adding flexible regions using a resin casting process.

Using multi-material fabrication introduces material boundaries into a part that

may be points of failure. This is typically addressed through the use of ”dog bone”

joints which provide a mechanical connection to supplement adhesion between ma-

terials. While effective, this method requires a relatively large volume of material

around the joint to be dedicated to the connecting structure and does not generalize

well to work with any boundary surface. It also leaves a distinct change in material

properties which may be a stress concentration. Another method that can enhance

material transitions is the use of functionally graded materials. These use a gradient

1

in the distribution of materials throughout a part to provide a smooth transition in

mechanical properties between different regions of the part. This method is easily

generalized to any boundary surface, but it can greatly limit the types of materials

and processes that can be used.

The goal of this work is to identify methods of creating graded material transitions

that can improve the ultimate tensile strength of a multi-material component while

maintaining other model properties. Particular focus is given towards transitions that

can be produced using low cost manufacturing equipment. Chapter 2 describes the

state of the art in functionally graded material transitions and introduces the soft-

ware framework used for processing multi-material models. Chapter 3 describes the

further development of this framework that was performed to support the generation

of graded material transitions. Chapter 4 presents a series of methods for translating

a true graded material transition into different structures that can be made using

two discrete materials to approximate the target material distribution. These include

previously established transition methods as well as several novel techniques. Chap-

ter 5 describes the procedures used to generate, fabricate, and test these structures.

Chapter 6 presents the results of this testing and compares them to other model

properties. Chapter 7 summarizes the contributions of this work and discusses areas

for further research. The transition generation code has also been provided to allow

it to be easily applied in future work.

2

Chapter 2

BACKGROUND

Previous work has explored the use of embedded flexible materials in robotics

applications. Examples include shock-absorbing joints in robot legs (Cham et al.,

2002), joints and grips for robotic hands (Ma et al., 2013), and structures with a

specific deformation profile (Hiller and Lipson, 2012). These projects show that multi-

material structures can provide versatile, robust, and low cost methods for robot

construction.

Previous work illustrates two methods for producing strong joints between mate-

rials. The robotic hand presented by Ma et al. uses dog bone joints to connect 3D

printed plastic components and cast rubber components. This type of connection is

easily produced, but it is relatively large and limits the geometry of the joint. Another

method is embedding fiber reinforcement into linkages made with hard and soft cast

resins (Hatanaka and Cutkosky, 2003). This method is strong and compact, but it

requires a manual insertion step that does not translate well to non-casting processes

and that is difficult to automate. Both techniques still leave a distinct change in

material properties.

One approach that has been explored for improving the performance of material

transitions is applying a blur to the boundary between two materials (Kaweesa and

Meisel, 2018b). This method was shown to provide opportunities for increasing the

fatigue life of test specimens. To create the test specimens with a blur between mate-

rials, the researchers used a multi-material 3D printer and produced approximations

of a blur using both a series of discrete materials and a fine dithering algorithm.

These methods are limited to printers with multi-material capabilities and fine print

3

resolution.

The impact of voxel size on the tensile strength of dithered test samples has been

previously researched (Kaweesa and Meisel, 2018a). The researchers found that in-

creasing voxel size will reduce tensile strength and shift elongation properties towards

the dominant material, but that it also provides a way to reduce computation time.

It demonstrates that when using voxel-based structures, the trade off between com-

putation time and material property accuracy must be considered.

Another method that has been proposed for creating functionally graded material

transitions is the use of triply periodic minimal surfaces to create two-material parts

that are mechanically interlocked (Stoner et al., 2018). Graded properties in the

transition were achieved by varying the thickness or period of the structure. This

approach was tested as an interface between two parts of the same material and was

found to significantly improve the tensile strength of the test specimen compared to

a specimen with a binary material interface. This approach can be easily adapted to

apply to parts containing two materials with distinct properties.

One method for creating single material structures with graded properties that is

not material-specific is the use of lattice structures with varying member thickness

(Aremu et al., 2017). Depending on the lattice element design used, these structures

can be easily produced with many different additive manufacturing methods. By

combining a lattice structure and its negative model, this method can be applied to

creating graded material transitions.

The interface between muscles and bones can also provide inspiration for creating

strong material transitions. This interface consists of many small fibers that unravel

from the muscle then slowly transition to a more rigid material (Rossetti et al., 2017).

This concept can be simplified and scaled up to create a printable structure.

Previous work by the author of this paper introduced a new framework and an

4

accompanying software tool, VoxelFuse, for planning functionally graded and multi-

step fabrication processes (Brauer and Aukes, 2019; Brauer et al., 2020). The frame-

work includes a voxel-based representation for multi-material models, low-level oper-

ations for combining geometries, and algorithms for assisting a designer in computing

manufacturing-compatible sequences. A simple application that was demonstrated

was the generation of a graded material transition using a Gaussian blur. For this

work, VoxelFuse was used as the foundation for scripts to automate the creation of

different transition types.

This work provides a comprehensive comparison of different graded material tran-

sition types. It includes the previously developed transition methods discussed above

based on blurring and triply periodic minimal surfaces. It also includes methods

based on macro-scale dithering, lattice structures, and macro-scale fibers that to our

knowledge have not previously been applied to graded material transitions.

5

Chapter 3

VOXELFUSE FRAMEWORK

In order to generate graded material transitions, a system was needed for repre-

senting and processing 3D models that include material data. For this project, the

VoxelFuse platform was used (Brauer et al., 2020). Previously developed functionality

of this platform included performing basic constructive solid geometry, material, mor-

phology, blurring, and transformation operations as discussed in (Brauer and Aukes,

2019). In order to generate and produce the graded transition types required by this

project, new capabilities were required for generating dithered structures, primitive

solids, and triply periodic minimal surfaces. This chapter summarizes the material

representation used by VoxelFuse and details these improvements.

Model Representation

VoxelFuse uses a voxel-based representation to store and process multi-material

models. Each voxel contains a vector representing the materials present at that voxel.

The material vector for a specific voxel in the model V is defined by

V〈i,j,k〉 = 〈a,m0, ...,mn〉, (3.1)

where a is a boolean value indicating the presence or absence of material at the

corresponding voxel, and m0...n are an arbitrary number of material channels that

contain floating point values representing the percentages of materials present. For

example, a voxel with a = 1, m1 = 0.8, m2 = 0.2 will contain 80% material 1, and

20% material 2. The m0 value represents a null material and is used to express voxels

containing a material density of less than 100%. For example, a voxel with a = 1,

6

m0 = 0.5, m1 = 0.5 will contain material 1 at 50% density. Similar approaches are

also discussed in (Kou and Tan, 2007; Bader, 2017).

By storing material data in this manner, varying mixtures and densities of mate-

rials can be easily represented throughout a model. This is also a similar structure

to that of a color image, allowing many image processing algorithms to be adapted

to operate on 3D data. In addition to the Gaussian blurring algorithm already de-

veloped for VoxelFuse, one image processing algorithm that is of particular interest

for material interface generation is dithering. The development of a 3D dithering

function is discussed further in the following section.

Dithering

Dithering provides a method of simplifying a region of a model containing a contin-

uum of values, such as the result from a blurring operation, into a structure composed

of a small number of discrete values. It is of interest in the generation of material

transitions because it can allow for graded properties to be approximated using only

two materials.

To perform dithering on a multi-material 3D model, the following process is per-

formed sequentially for each voxel in the model. First, the voxel’s material is set to

the single material that is present in the highest percentage at that voxel. The error

caused by changing the material is then calculated by subtracting the new material

percentages from the original values. The error values for each material channel are

then distributed to the surrounding voxels based on a diffusion filter. For this work, a

3D extension of a Stucki filter was used as discussed in Section 4 of (Lou and Stucki,

1998). This filter is illustrated in Figure 3.1, with X representing the voxel that

was just updated. Lou and Stucki note that some error diffusion filters, including

the Stucki filter, can be extended to support three dimensions while others, such as

7

the Floyd-Steinberg filter, cannot because they will introduce artifacts along certain

planes.

Figure 3.1: 3D Stucki Error Diffusion Filter

When implementing this process as a VoxelFuse function, an additional thresh-

olding step was added to prevent error from being distributed to voxels with a high

enough percentage of one material. This prevents small amounts of error from accu-

mulating and changing the material of voxels outside of the transition region.

The application of a dithering to material transitions is discussed further in Section

4. The code developed for performing 3D dithering is included in Appendix A.

Model Generation Functions

Most material transition designs require the generation of new model elements.

Examples range from generating a new rectangular gauge section to generating a

periodic surface in a transition region. For this project, two new sets of functions

were defined and added to VoxelFuse: primitive solids and periodic structures. These

functions are now included in the main VoxelFuse repository (Brauer et al., 2020).

8

Primitive Solids

Primitive generation functions create basic solid shapes based on the desired di-

mensions. This class of functions was used for generating additions to models as

well as volumes that could be intersected with a model to isolate specific regions.

Algorithm 1 provides a general definition of a primitive generation function. In this

function, size represents one or more values which define the size of the output and

material represents the desired material vector for the shape. It is assumed that the

material distribution is uniform upon generation. EmptyModel() is a function of

size that initializes a new model array to hold the generated primitive. The con-

dition(s) to determine if a specific voxel is contained in the volume of a shape will

depend on the specific shape being generated. For example, to generate a sphere, the

distance from the center of the model to a voxel would be compared to the target

radius of the sphere as defined by size.

Algorithm 1 Primitive Solid Generation

1: function Shape(size,material)

2: V ← EmptyModel(size) . Initialize new empty model array

3: for all 〈x, y, z〉 ∈ V do . For all coordinates

4: if 〈x, y, z〉 ∈ (Volume of Shape) then . If voxel is contained in shape

5: V〈x,y,z〉 ← material . Fill voxel in new model

6: end if

7: end for

8: return V

9: end function

Primitive generation functions were created for solids including cubes, cuboids,

spheres, cylinders, cones, and pyramids. These are illustrated in Figure 3.2.

9

Figure 3.2: Results Created by Primitive Generation Functions

Periodic Structures

One potential method for creating a graded material transition is to use a triply

periodic minimal surface to find two interlocking components. In this use case the

surface itself is not desired, but rather the two models resulting from cutting a vol-

ume with the periodic surface. The process for generating two interlocking periodic

elements is defined in Algorithm 2. This function operates in a similar manner to

the function for generating shapes. Rather than checking if a voxel is within a target

shape, this function checks whether the voxel is above or below a target periodic

surface.

Functions for generating periodic structures over cuboid regions were created for

gyroid surfaces, p-surfaces, and d-surfaces. An example output for a structure created

using a gyroid surface is shown in Figure 3.3. The the periodic function F (x, y, z)

used for each type of surface and the application of a periodic structure to a material

transition are discussed further in Section 4.

10

Algorithm 2 Periodic Element Generation

1: function Periodic(size,material)

2: P ,N ← EmptyModel(size) . Initialize two empty model arrays

3: for all 〈x, y, z〉 ∈ P do . For all coordinates

4: if F(x, y, z) > 0 then . If periodic function is positive

5: P〈x,y,z〉 ← material . Fill voxel in positive model

6: else

7: N〈x,y,z〉 ← material . Fill voxel in negative model

8: end if

9: end for

10: return P ,N

11: end function

Figure 3.3: Gyroid Structure Generated Over a 30x30x15 Voxel Region

11

Chapter 4

TRANSITION TYPES

Based on the background research discussed in Section 2, several methods for gen-

erating transitions with graded properties were identified. These types of transitions

are as follows:

1. Blur

2. Dither

3. Lattice structure

4. Triply periodic minimal surface

5. Fibers

Many of these transitions also provide a potential benefit by increasing the contact

surface area or providing mechanical connection between the two joined materials.

The sections below discuss each type in detail. The sample model used is based on

the ASTM D638 standard (ASTM-D638-14, 2014) and is shown in Figure 4.1. This

model is discussed further in Section 5. For layer-based processes, it is assumed that

layers are deposited in the XY plane and build in the positive Z direction.

Blur

A blurred material transition can be computed by applying a Gaussian blurring

algorithm to each material channel in a model in the region surrounding a material

boundary. The resulting blur will be centered about the original material boundary.

12

Figure 4.1: Sample Model with No Transition Applied

This process is illustrated in Figure 4.2, and the result of applying it to the sample

model is shown in Figure 4.3.

Figure 4.2: Blurring Process

A blur represents a true graded material transition with no boundaries between

materials. It is easily applied to any material boundary geometry, including those in

thin model regions where a mechanical connection such as a dog bone is difficult to

fit.

To produce a blurred transition, a manufacturing process that supports multiple

materials and that has a high resolution is required. Even with this type of process,

the blur must be approximated by narrow bands of discrete material, as shown in

Figure 4.3, or by a micro-scale dithered pattern. The remaining types of transitions

represent methods of translating a blurred transition into a structure that is more

13

Figure 4.3: Sample Model with Gaussian Blurring Applied

easily produced.

Dither

The most basic simplification of a blurred material transition is applying a dither-

ing algorithm to approximate the material distribution using two materials. To ensure

support for any boundary surface orientation, a 3D dithering algorithm is needed.

The development of a 3D dithering function is discussed in Section 3. The result of

applying a dithering algorithm to the blurred model from Section 4 is illustrated in

Figure 4.4.

Figure 4.4: Sample Model with 3D Dithering Applied

This approach can be scaled to the resolution capabilities of a given process by

applying a macro-scale dither with a voxel resolution matching the desired minimum

feature size. As noted in (Kaweesa and Meisel, 2018a), large voxel sizes in a dither can

14

shift the material properties away from the target properties, so the resolution should

be kept to the minimum size possible in order to provide the best approximation of

a blur.

The result from applying a dithering algorithm is compatible with 3D printing

processes capable of depositing two or more materials. If two separate manufacturing

processes are to be used for the two materials, an additional constraint will be placed

on the dithering in that all disconnected components must be fully supported along

the Z-axis with respect to the ground plane. By adjusting the error diffusion filter

to remove error propagation in Z, a model with the dithered pattern repeated along

the Z-axis can be achieved. This is illustrated in Figure 4.5. It should be noted

that this will affect the accuracy of the dithered result with respect to the blurred

model, particularly when the material boundary plane does not contain the Z-axis.

In addition, each layer of a dithered model will still contain a number of disconnected

components. While this does not necessarily affect manufacturability, it may increase

production time or difficulty depending on the types of processes used.

Figure 4.5: Sample Model with 2D Dithering Applied to Maintain Support Along the

Z-Axis

A dithered transition benefits from a gradual change in material properties, but

it provides little to no mechanical connection.

15

Lattice Structure

A graded lattice structure for one material in a transition can be found by using

the blurred model to determine the desired density of each lattice element in a grid of

elements that encompasses the model. The lattice elements with the desired densities

can be generated by applying dilate or erode operations to a template element. The

mating structure can then be found by subtracting the lattice structure from the

original model. An example of this process is shown in Figure 4.6.

Figure 4.6: Process for Generating a Graded Transition Using a Lattice Structure

Several factors must be considered when designing the lattice element template.

The element must tessellate in three dimensions while connecting to its neighbors. If

separate processes are used for the lattice and its negative, element overhangs may

need to be designed so that they are supported in Z or can produced by bridging two

regions that are supported in Z. If using a layer-based process, it may be desirable

to choose a lattice design that possesses layers with no disconnected components in

adjacent elements. Finally, if using a casting-based process, the lattice and/or its

negative should consist of a single continuous component so that only a single pour

location is needed.

Two example lattice element patterns and the resulting graded transitions are

16

shown in Figure 4.7. Structure (a) can be produced without supports via bridging,

while structure (b) is supported in Z via angled overhangs. Structure (a) also contains

layers in the XY plane with no disconnected components. Both structures have a

negative that is a continuous component.

(a) (b)

Figure 4.7: Lattice Structure Transitions Using (a) a Plus-Shaped Lattice Element

and (b) an X-Shaped Lattice Element

A lattice structure generated in this manner can be applied to any boundary

surface orientation. However, if the lattice elements are intended to be in a specific

orientation relative to the boundary plane, an additional step may be required to

rotate each element.

Due to the relatively large size of individual lattice elements, this approach will

have larger steps in material properties compared to a stepped blur. It will also

have higher space requirements than a blur or dithering approach. However, a lattice

structure is easier to produce and will provide a stronger mechanical bond.

Triply Periodic Minimal Surface

A triply periodic minimal surface provides a way to divide a volume into two

interlocking components with the same shape. This type of surface is defined by a

17

periodic function of X, Y, and Z, such as the examples shown in Equations 4.1-4.3.

sin(xs) ∗ cos(ys)+

Gyroid sin(ys) ∗ cos(zs)+

sin(zs) ∗ cos(xs) = 0

(4.1)

P Surface cos(xs) + cos(ys) + cos(zs) = 0 (4.2)

sin(xs) ∗ sin(ys) ∗ sin(zs)+

D Surface sin(xs) ∗ cos(ys) ∗ cos(zs)+

cos(xs) ∗ sin(ys) ∗ cos(zs)+

cos(xs) ∗ cos(ys) ∗ sin(zs) = 0

(4.3)

In these equations, s represents a scaling factor and is equal to 2π/(voxels per

period). By using such a surface to split a cube with dimensions equal to the period

of the function, a two-material element can be found which can be used to generate

a graded transition in the same manner as a lattice structure. By applying dilate

or erode operations to each material, the material proportions can be made to vary

throughout the model. Figure 4.8 shows three graded transitions generated using

Equations 4.1-4.3 and the algorithm described in Section 3.

A material transition based on a triply periodic minimal surface shares many of

the characteristics of a transition based on a lattice structure. It has benefits over

a lattice structure in that the element design is defined based on a function and as

such does not need to be manually modeled and and is easily adjusted. Like a lattice

structure, support in Z can be accomplished using angled overhangs or bridging and

some functions will perform better in this area than others.

18

(a) (b)

(c)

Figure 4.8: Graded Transitions Defined Using (a) a Gyroid Surface, (b) a P-Surface,

and (c) a D-Surface

Fibers

The connection between bones and muscles is one example of a strong material

transition in nature. This connection uses micro-scale fibers to improve the bond

strength between two dissimilar materials (Rossetti et al., 2017). By taking inspi-

ration from this structure, a material transition based on macro-scale fibers can be

designed. An example design in two different scales is shown in Figure 4.9.

This structure can be implemented by creating a template element that can be

applied to a blur in the same manner as a lattice structure. By adjusting the base

thickness and spacing of the fibers, this method can be made compatible with pro-

cesses with different minimum feature sizes. Unlike the previous two methods, the

19

(a) (b)

Figure 4.9: Fiber Transitions Using (a) Small and (b) Large Template Elements

pattern elements must be in a specific orientation relative to the material transition

boundary. This can be accomplished by rotating the template elements to align with

a line normal to the boundary plane.

This type of transition provides a large increase in contact surface area as well

as some mechanical bonding. It also does not have any layers with disconnected

components, which can simplify manufacturing.

20

Chapter 5

EXPERIMENTAL SETUP

For this work, the primary measure of performance used for material transitions

is their impact on the ultimate tensile strength of a part. To measure this, a series

of tensile test coupons was created representing each transition type discussed in

Section 4. These coupons were produced via 3D printing, and tensile testing was

used to measure the performance of each transition type. Based on the results of

testing the first set of coupons, a revised set was created and tested to investigate

how tensile strength could be improved without modifying the part’s modulus of

elasticity.

Test Coupon Design

The base coupon design was created in accordance with the ASTM D638 Type I

specification (ASTM-D638-14, 2014). This specification applies to testing the tensile

properties of rigid and semi-rigid plastics. A region was added to the center of the

gauge section to represent the secondary material type. The boundary planes between

this section and the end sections are oriented perpendicular to the axis of loading. For

this work, a rigid material is used for the ends of the sample while a flexible material

is used for the center region of the sample. A model of the coupon was created using

Autodesk Fusion 360 (Autodesk Inc., 2020), then exported in an STL format. This

model is shown in Figure 5.1.

The gauge section of this coupon has a width (W) of 13 mm and a thickness of

3.2 mm. The length of the secondary material region (L0) is 31 mm. Transitions are

21

Figure 5.1: Input Model (Top) and Output Model After Applying a Material Tran-

sition (Bottom)

applied to this model based on a Gaussian blur with a standard deviation σ, resulting

in a transition region that is approximately 4σ long. Circular profiles with a diameter

of 8 mm were added to each end of the coupon to aid in clamping samples in a tensile

testing machine.

Transition Generation

The transition types represented in the set of test coupons are listed in Table 5.1.

The binary interface represents no transition modification and serves as a performance

baseline. Transition models were generated with a Python script created using the

VoxelFuse library. This script is included in Appendix B.

The coupon STL file was imported into the VoxelFuse script using a linear resolu-

tion of 5 voxels / mm. This value was selected for being able to adequately represent

the resolution capabilities of low cost printing processes without posing a barrier in

computation time. The initial blur for all transitions uses a standard deviation (σ)

of 3 mm to yield a transition region that is 12 mm long.

For blurred and dithered transitions, the model was scaled down to a linear res-

olution of 1 voxel / 4 voxels, the transition was applied, then the model was scaled

back to its original size. This results in a minimum feature size of 0.8 mm, which is

compatible with common 3D printing technologies.

22

Label Design

A Binary

B Blur

C 3D dither

D 2D dither

E Gyroid

F P-surface

G D-surface

H + lattice

I X lattice

J Small fibers

K Large fibers

Table 5.1: Tensile Test Coupon Types

For triply periodic surfaces, a 15 voxels cubic element was generated which con-

tained a single period of the surface. This element size results in approximately one

layer of elements in a 3.2 mm thick coupon. The element was then applied to the

model using the procedure described in Section 4.

For lattice structures and fibers, a template element with a size of 15 voxels was

first created using MagicaVoxel (Ephtracy, 2018). The template element was then

imported and applied to the model using the procedure described in Section 4.

After the coupon models were generated, they were combined into a single model

and distinct materials were exported as a series of STL files. These files can be

imported into a 3D printer’s control software and the print settings for each material

can be set independently.

23

Equipment Setup

To produce and test the sample models, a multi-material 3D printer and a tensile

testing system were used. Details on the equipment selected and the setup for each

are discussed below.

3D Printer

All test specimens were produced using a Stratasys Objet 350 3D printer. This

printer uses the PolyJet printing process, which simultaneously deposits both rigid

and flexible resin materials. By mixing these materials, it can produce rubber-like

materials in a range of hardness values between Shore 30A and 95A (Stratasys, 2016).

The Objet 350 is capable of producing all of the transition types described above,

including the stepped blur. For this work, RGD5130-DM and FLX95595-DM material

cartridges were used to create the rigid and flexible coupon materials respectively. For

two material patterns, the flexible portion of the model was set to a hardness value

of Shore 60A. This value was selected such that the test samples would fail in the

transition region for the majority of the samples. For the blur, three additional steps

of material at Shore 70A, 85A, and 90A were used.

For testing done up to this point, each set of 11 coupons was printed in the same

location in the print bed with the samples arranged in parallel. Future testing will

include printing additional samples in other print bed locations and other orientations.

This data will help mitigate any effects caused by printer setup.

Future testing will also make use of an Ultimaker S5 3D printer. This printer

is representative of low-cost options for multi-material 3D printing that are readily

available for educational settings. It uses two extruder heads to alternately deposit

two discrete materials. Samples produced with this printer will use Nylon and TPU

24

filament as the rigid and soft materials. Since this printer cannot mix materials,

it cannot produce the blurred sample. It is also expected to have reduced bonding

strength between the two materials.

Tensile Testing System

The printed models were tested using an Instron 8801 fatigue testing system.

Samples were secured using textured plastic adapters to prevent them from slipping

in the clamps. The test setup is shown in Figure 5.2. All samples were pulled until

failure at a rate of 5 mm/min. Position and load data during the test were collected

at a rate of 100 Hz.

Figure 5.2: Test Sample Mounted in Tensile Testing Machine

Testing Configurations

Two stages of tensile tests were performed. In each stage, three identical sets of

coupons printed on the Objet 350 were used.

25

Stage 1: Centered Material Transitions

In the first stage of testing, coupons were produced with the transition regions

generated centered on the two material boundaries. This approach maintains the

overall ratio of rigid to flexible plastic. However, it in effect reduces the value of L0,

resulting in a change to the overall modulus of elasticity for the sample. Depending

on the specific transition pattern, this effect will be more or less pronounced. The

complete set of printed samples is shown in Figure 5.3. The results from this stage

of testing are documented in Section 6.

Figure 5.3: 3D Printed Test Samples with Centered Transition Regions

Stage 2: Normalized Modulus of Elasticity

In some applications, it may be desired to increase the ultimate tensile strength

of a part without modifying its modulus of elasticity. One such application would

be if the part includes a flexible region that acts as an integrated spring. In this

case, a method is needed for adjusting the material transitions to compensate for the

reduction in the effective length of L0.

26

Using the results of the first set of tests, the effective value of L0 was found for

each sample. A new set of coupons with a normalized modulus of elasticity was

then generated by using these values to scale the value of L0 for each model before

generating material transitions. Only the length of the transition region was scaled

so as to maintain the overall design geometry. The complete set of printed samples

is shown in Figure 5.4. The amount of adjustment needed for each pattern and the

results from this stage of testing are discussed further in Section 6.

Figure 5.4: 3D Printed Test Samples with Adjusted Transition Region Positions

Future Testing

The same two stages of testing will also be performed using samples printed with

the Ultimaker S5. For the first stage of testing with the Ultimaker the same model

files will be used as in Section 5, with the exception that the blurred transition will

not be printed. Other than the blur, all of the transition designs can be produced on a

two-material FDM 3D printer. However, designs that have layers with a large number

of disconnected components, such as the dithered patterns or the lattice structures,

27

may have a long production time with this type of process. The results from this

testing these samples will be used to generate a new set of normalized coupons for

the Ultimaker. It is expected that the scaling factors will differ from those for the

Objet due to changes in material properties and adhesion strength.

28

Chapter 6

RESULTS AND ANALYSIS

After testing the coupons, the data saved by the tensile testing system was filtered

to reduce sensor noise and offset. The stress-strain curve, ultimate tensile strength,

and modulus of elasticity for each sample were then plotted and compared. The point

of failure for each sample was visually inspected. In addition, the interface surface

area and volume percentage of flexible material for each pattern were computed. The

results from each of these tests are discussed below.

Data Filtering Process

The raw data saved by the tensile testing system is in the format of load and

displacement. The sensor offset for each test session was found by running a test

cycle with no sample loaded and averaging the resulting load signal. The raw test

data was first updated with these offset values, then converted to stress and strain

values based on the design gauge length and cross section. A low pass filter with

a cutoff frequency of 1 Hz was applied to remove noise. The three trials for each

coupon design were averaged to obtain a single signal for each. The failure point of

each design was identified by a sharp drop in the stress value between two data points.

Finally, the standard deviations of the three stress values for each failure point were

found. All processing and plotting of data was done using MATLAB.

Stage 1 Results

The results from testing the sets of coupons with the transition region centered at

the material boundary are shown in Figure 6.1. The error bars on the graph represent

29

the standard deviation of the three trials for each design. Several of the transitions

exhibit a significant increase in ultimate stress compared to the binary interface (A),

namely the blur (B), 3D dither (C), and 2D dither (D). The ultimate stress of the

remaining transitions is equivalent to or less than the binary interface, and reduces

in value as the transition moves further away from a true blur.

Figure 6.1: Tensile Testing Data for Samples with Centered Transition Regions

The failure points for each design are shown in Figure 6.2. The binary interface

failed at the material boundary, the blur failed in the flexible material region, and

the remaining designs failed in the transition region.

The modulus of elasticity for each sample was determined by measuring the slope

of the stress-strain curve between the strain values of 0.15 and 0.4. It was observed

that for most samples, the modulus of elasticity was greater than that of the original

binary interface. This is result of the reduced value of L0 caused by adding transitions.

By assuming that the original sample (A) had the intended modulus of elasticity,

the effective length of L0 for each sample was calculated. Table 6.1 summarizes the

effective L0 values calculated from the testing results. The reciprocals of the multiplier

30

Figure 6.2: Failure Points for Samples with Centered Transition Regions

values represent the amounts that the flexible material regions should be scaled to

obtain samples with a normalized modulus of elasticity.

Stage 2 Results

The results from testing the normalized sets of coupons are shown in Figure 6.3.

With the exception of the blur (B), the values for the ultimate stress are lower but

follow the same trends compared to the first stage of testing. The ultimate stress value

for the blurred sample is much lower than in the previous result, putting it below the

binary transition in performance. The reduction in ultimate tensile strength is also

illustrated in Section 6.

The failure points for each design are shown in Figure 6.4. Again, the binary

interface failed at the material boundary and patterns C-K failed in the transition

region. However, the blur in this stage of testing also failed in the transition region.

The modulus of elasticity and effective L0 for each sample were found in the

same manner as before. Table 6.2 summarizes these values, and 6.5 compares the

31

Design L0 Multiplier Effective L0

A Binary 1 31 mm

B Blur 0.9024 27.9739 mm

C 3D dither 0.8406 26.0575 mm

D 2D dither 0.8610 26.6900 mm

E Gyroid 0.8247 25.5658 mm

F P-surface 0.7116 22.0593 mm

G D-surface 0.8626 26.7415 mm

H + lattice 0.9258 28.7001 mm

I X lattice 0.9930 30.7845 mm

J Small fibers 0.8390 26.0369 mm

K Large fibers 0.8464 26.2380 mm

Table 6.1: Effective Length Multiplier for Each Transition Design

Figure 6.3: Tensile Testing Data for Samples with Adjusted Transition Region Posi-

tions

32

Figure 6.4: Failure Points for Samples with Adjusted Transition Region Positions

distribution of the two sets of multipliers. These values show that the normalized

coupons exhibit a modulus of elasticity that is significantly closer to the desired

behavior.

Transition Surface Area

Two approaches were identified for determining the contact surface area of a tran-

sition. The first is to simply measure the area of all faces where two dissimilar

materials meet. The second is to isolate the largest body composed of each ma-

terial and then measure the measure the contact area between these bodies. This

second approach will ignore surface area that is contributed by small, disconnected

components. The surface area identified by each method is illustrated by the red

border in Figure 6.6. Algorithms to find these two values for contact surface area

were implemented using VoxelFuse and applied to the generated transition models.

The script for computing these contact surface area values is included in Appendix

C. The results for each transition type are illustrated in Figure 6.7.

33

Design L0 Multiplier Effective L0

A Binary 1 31 mm

B Blur 1.0234 31.7256 mm

C 3D dither 1.0330 32.0241 mm

D 2D dither 1.0096 31.2975 mm

E Gyroid 0.9975 30.9216 mm

F P-surface 1.1405 35.3566 mm

G D-surface 1.0060 31.1847 mm

H + lattice 1.1901 36.8945 mm

I X lattice 0.9985 30.9537 mm

J Small fibers 1.0323 32.0011 mm

K Large fibers 0.9173 28.4356 mm

Table 6.2: Effective Length Multiplier for Each Transition Design After Normalization

Figure 6.5: Comparison of L0 Multipliers Measured in Each Stage of Testing

34

Figure 6.6: Methods for Calculating the Contact Surface Area of a Transition

Figure 6.7: Contact Surface Area for Each Transition Type

No strong correlation was observed between the contact surface area and the

ultimate tensile strength. The binary (A) and blurred (B) transitions both have

a low contact area because they are simply the cross sectional area of the coupon

multiplied by the number of material steps. The dithered patterns (C and D) have a

high overall surface area due to the large number of disconnected voxels created by

the dithering algorithm. However, they have a little to no contact directly between

the main rigid and flexible portions of the model because the transition is composed

primarily of disconnected voxels. The remaining patterns have variations between

35

their two area values depending on the number of small disconnected components

present at the extremes of their transition regions.

Flexible Material Volume Percentage

The volume percentage of flexible material in each model before and after adjusting

the transitions was found using VoxelFuse, and the percent change for each was

calculated. Figure 6.8 shows these values and compares the changes in each to the

changes in ultimate tensile strength.

Figure 6.8: Change in the Volume of Flexible Material Present in Each Transition

Type

No strong correlation was observed between the changes in volume percentage and

ultimate tensile strength.

Discussion

The results from both stages of testing indicate that the addition of a graded

material transition has the potential to improve the ultimate tensile strength of a

36

part. The Objet printer used for the tests performed up to this point has strong

adhesion between materials. With this printer, the best transition performance was

observed in patterns that were closer to a true blur. This indicates that when material

adhesion is high, adding a gradual change in part properties is more important than

providing a mechanical bond or increasing contact surface area. This is particularly

apparent in the case of the dithered patterns, which have almost no direct contact

between the rigid and flexible regions of the model. Adding certain types of transitions

may even introduce new stress concentrations that weaken the part, as illustrated by

the + lattice and large fiber transitions in particular.

In the next set of experiments using the Ultimaker printer, the bonding between

materials is expected to be lower. In this case, patterns that provide a better me-

chanical bond or that increase contact surface area are expected to exhibit increased

performance relative to other patterns.

The overall decrease in ultimate tensile strength between the two stages of testing

affected the binary interface control samples as well as the samples with modified

transitions. As such, the difference appears to be a result of differences in production

or testing conditions. Some possibilities during production include use of a different

batch of resin, a change in curing time, or use of a different support material removal

procedure. Possibilities during testing include differing temperature or humidity lev-

els. Further analysis of these factors is required if absolute stress-strain values for

each sample are needed.

The large change in the performance of the blurred transition is not consistent

with the results obtained from the other patterns. The blurred pattern also exhibited

little to no change in transition location, contact surface area, and flexible material

volume percentage between the two stages of testing. Based on these results, it is

likely that this pattern was affected by an unidentified factor during production.

37

Possible factors that could affect this single coupon include its location in the print

bed, a malfunction in a print nozzle, or a change in the resin batch having a larger

effect than on other coupons due to the higher number of materials present. Further

testing of the blurred pattern is planned to investigate the cause of the changes to

the blur’s performance. This will include producing and testing a set of coupons with

blurred transitions that includes multiple transition locations, print bed locations,

and print orientations.

The presented approach to modifying the modulus of elasticity to meet a certain

goal value was shown to be effective. However, this approach changes the overall

percentages of rigid and flexible materials present in the model. This will affect other

model properties including mass and moment of inertia. If the structure is a part of

an integrated mechanism, properties such as the range of motion or size of gripping

surfaces may also be affected. The change in the material composition is also a

probable contributor to the changes in ultimate tensile strength. If the production

and/or testing factors are identified and mitigated, there may be a stronger correlation

between the change in material percentage and ultimate strength. These trade-offs

must be considered when selecting how transitions are applied in order to maintain

the desired model properties.

38

Chapter 7

CONCLUSION

This work introduces a series of methods for creating graded material transitions.

The first, a Gaussian blur, is representative of a method for creating a true graded

transition. The remaining approaches are methods of adapting of a blur to a structure

that is compatible with low-cost manufacturing processes which have limits on feature

size and/or material count. Test samples and a testing process are introduced to

allow the trends in transition design performance to be characterized for a given

manufacturing process.

This test results presented in this paper demonstrate that the addition of graded

material transitions can improve the tensile strength of a material transition. For a

3D printing process that yields good adhesion between materials, such as the PolyJet

process used in this project, it was shown that a graded material design that most

closely approximates a blur has a greater impact on improving transition strength

than a design which provides a greater mechanical bond or an increase in contact

surface area. If supported by the target manufacturing process, directly printing

a blurred pattern has the greatest potential to improve part performance. Macro-

scale dithered patterns are also a promising option for printing equipment with a

limited number of materials. Use of other patterns that provide increased mechanical

connection or surface area at the expense of a smooth change in material properties

can introduce new stress concentrations which result in additional points of failure,

potentially lowering transition performance.

A method is presented for tuning the elastic modulus of a part to the match the

original design intent. This method is shown to be effective across different transition

39

designs.

This work also contributes several key features to the VoxelFuse platform to sup-

port the generation of the presented graded material transitions, including 3D dither-

ing and periodic structure generation. These expansions and accompanying applica-

tion examples are made available to allow graded transitions to be easily applied in

future work.

Future Work

During testing inconsistencies were observed in the performance of the blurred

pattern and between the control samples from the two stages of testing. These are

believed to be related to be the result of differences in the manufacturing or test-

ing process. Planned future work includes producing additional samples to better

understand the cause of these inconsistencies.

Future work will also include creating test samples using other printing processes.

This will allow the changes in transition performance trends for these processes to be

identified. Particular focus will be given to low-cost methods in order to support the

use of graded material transitions in an educational environment.

The current testing method focuses on the performance of samples under a tensile

load perpendicular to the material interface plane. Other potential areas for further

testing include changing the angle of the interface plane or testing other loading

configurations such as cyclic or compression loading. The failure points of samples

could also be assessed through microscope failure analysis.

40

REFERENCES

Aremu, A. O., J. P. Brennan-Craddock, A. Panesar, I. A. Ashcroft, R. J. Hague,
R. D. Wildman and C. Tuck, “A voxel-based method of constructing and skinning
conformal and functionally graded lattice structures suitable for additive manufac-
turing”, Additive Manufacturing 13, 1–13 (2017).

ASTM-D638-14, “Standard Test Method for Tensile Properties of Plastics”, ASTM
Standards (2014).

Autodesk Inc., “Fusion 360”, URL https://www.autodesk.com/products/fusion-
360/overview (2020).

Bader, “Methods and Apparatus for 3d Printing of Point Cloud Data”, (2017).

Brauer, C. and D. Aukes, “Voxel-based CAD framework for planning functionally
graded and multi-step rapid fabrication processes”, in “Proceedings of the ASME
Design Engineering Technical Conference”, vol. 2A: 45th D (American Society of
Mechanical Engineers, 2019).

Brauer, C., D. Aukes, J. Brauer and C. Jeffries, “VoxelFuse”, URL
https://github.com/cdbrauer/VoxelFuse (2020).

Cham, J. G., S. A. Bailey, J. E. Clark, R. J. Full and M. R. Cutkosky, “Fast and Ro-
bust: Hexapedal Robots via Shape Deposition Manufacturing”, The International
Journal of Robotics Research 21, 10-11, 869–882 (2002).

Ephtracy, “MagicaVoxel”, URL https://ephtracy.github.io/ (2018).

Hatanaka, M. and M. R. Cutkosky, “Process planning for embedding flexible mate-
rials in multi-material prototypes”, Proceedings of the ASME Design Engineering
Technical Conference 3, 325–333 (2003).

Hiller, J. and H. Lipson, “Automatic design and manufacture of soft robots”, IEEE
Transactions on Robotics 28, 2, 457–466 (2012).

Kaweesa, D. V. and N. A. Meisel, “Material Property Changes in Custom-Designed
Digital Composite Structures Due to Voxel Size”, Proceedings of the 29th Annual
International Solid Freeform Fabrication Symposium pp. 1499–1510 (2018a).

Kaweesa, D. V. and N. A. Meisel, “Quantifying fatigue property changes in mate-
rial jetted parts due to functionally graded material interface design”, Additive
Manufacturing 21, February, 141–149 (2018b).

Kou, X. Y. and S. T. Tan, “Heterogeneous object modeling: A review”, CAD Com-
puter Aided Design 39, 4, 284–301 (2007).

Lou, Q. and P. Stucki, “Fundamentals of 3D halftoning”, in “Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics)”, vol. 1375, pp. 224–239 (Springer Verlag, 1998).

41

Ma, R. R., L. U. Odhner and A. M. Dollar, “A modular, open-source 3D printed
underactuated hand”, Proceedings - IEEE International Conference on Robotics
and Automation pp. 2737–2743 (2013).

Rossetti, L., L. A. Kuntz, E. Kunold, J. Schock, K. W. Müller, H. Grabmayr,
J. Stolberg-Stolberg, F. Pfeiffer, S. A. Sieber, R. Burgkart and A. R. Bausch,
“The microstructure and micromechanics of the tendon-bone insertion”, Nature
Materials 16, 6, 664–670 (2017).

Stoner, B., J. Bartolai, D. V. Kaweesa, N. A. Meisel and T. W. Simpson, “Achieving
Functionally Graded Material Composition Through Bicontinuous Mesostructural
Geometry in Material Extrusion Additive Manufacturing”, Jom 70, 3, 413–418
(2018).

Stratasys, “Objet350 and Objet500 Connex3”, URL https://www.stratasys.com/
3d-printers/objet-350-500-connex3 (2016).

42

APPENDIX A

3D DITHERING CODE

43

1 import PyQt5.QtGui as qg
2 import sys
3
4 import numpy as np
5
6 from voxelfuse.materials import material_properties
7 from voxelfuse.mesh import Mesh
8 from voxelfuse.plot import Plot
9 from voxelfuse.primitives import cuboid
10 from voxelfuse.voxel_model import VoxelModel
11
12 from numba import njit
13
14 @njit()
15 def toFullMaterials(voxels , materials , n_materials):
16 x_len = voxels.shape [0]
17 y_len = voxels.shape [1]
18 z_len = voxels.shape [2]
19
20 full_model = np.zeros ((x_len , y_len , z_len , n_materials), dtype=

np.float32)
21
22 for x in range(x_len):
23 for y in range(y_len):
24 for z in range(z_len):
25 i = voxels[x,y,z]
26 full_model[x,y,z,:] = materials[i]
27
28 return full_model
29
30 def toIndexedMaterials(voxels , model):
31 x_len = model.voxels.shape [0]
32 y_len = model.voxels.shape [1]
33 z_len = model.voxels.shape [2]
34
35 new_voxels = np.zeros ((x_len , y_len , z_len), dtype=np.int32)
36 new_materials = np.zeros ((1, len(material_properties) + 1),

dtype=np.float32)
37
38 for x in range(x_len):
39 for y in range(y_len):
40 for z in range(z_len):
41 m = voxels[x, y, z, :]
42 i = np.where(np.equal(new_materials , m).all(1))[0]
43
44 if len(i) > 0:
45 new_voxels[x, y, z] = i[0]
46 else:
47 new_materials = np.vstack ((new_materials , m))
48 new_voxels[x, y, z] = len(new_materials) - 1
49
50 return VoxelModel(new_voxels , new_materials , model.coords)
51
52 @njit()
53 def addError(model , error , constant , i, x, y, z, x_len , y_len , z_len

, error_spread_threshold):
54 if y < y_len and x < x_len and z < z_len:

44

55 high = np.where(model[x, y, z, 1:] > error_spread_threshold)
[0]

56 if len(high) == 0:
57 model[x, y, z, i] += error * constant * model[x, y, z,

0]
58
59 @njit()
60 def ditherOptimized(full_model , use_full , x_error , y_error , z_error ,

error_spread_threshold):
61 x_len = full_model.shape [0]
62 y_len = full_model.shape [1]
63 z_len = full_model.shape [2]
64
65 for z in range(z_len):
66 for y in range(y_len):
67 for x in range(x_len):
68 voxel = full_model[x, y, z]
69 if voxel [0] == 1.0:
70 max_i = voxel [1:]. argmax ()+1
71 for i in range(1, len(voxel)):
72 if full_model[x, y, z, i] != 0:
73 old = full_model[x, y, z, i]
74
75 if i == max_i:
76 full_model[x, y, z, i] = 1
77 else:
78 full_model[x, y, z, i] = 0
79
80 error = old - full_model[x, y, z, i]
81
82 if use_full:
83 # Based on Fundamentals of 3D

Halftoning by Lou and Stucki
84 addError(full_model , error , 4/21, i,

x+1, y, z, x_len , y_len , z_len , error_spread_threshold)
85 addError(full_model , error , 1/21, i,

x+2, y, z, x_len , y_len , z_len , error_spread_threshold)
86
87 addError(full_model , error , 4/21, i,

x, y+1, z, x_len , y_len , z_len , error_spread_threshold)
88 addError(full_model , error , 1/21, i,

x, y+2, z, x_len , y_len , z_len , error_spread_threshold)
89
90 addError(full_model , error , 1/21, i,

x+1, y+1, z, x_len , y_len , z_len , error_spread_threshold)
91 addError(full_model , error , 1/21, i,

x-1, y+1, z, x_len , y_len , z_len , error_spread_threshold)
92
93 addError(full_model , error , 1/21, i,

x, y-1, z+1, x_len , y_len , z_len , error_spread_threshold)
94 addError(full_model , error , 1/21, i,

x-1, y, z+1, x_len , y_len , z_len , error_spread_threshold)
95 addError(full_model , error , 1/21, i,

x, y+1, z+1, x_len , y_len , z_len , error_spread_threshold)
96 addError(full_model , error , 1/21, i,

x+1, y, z+1, x_len , y_len , z_len , error_spread_threshold)
97

45

98 addError(full_model , error , 4/21, i,
x, y, z+1, x_len , y_len , z_len , error_spread_threshold)

99 addError(full_model , error , 1/21, i,
x, y, z+2, x_len , y_len , z_len , error_spread_threshold)

100 else:
101 addError(full_model , error , x_error ,

i, x+1, y, z, x_len , y_len , z_len , error_spread_threshold)
102 addError(full_model , error , y_error ,

i, x, y+1, z, x_len , y_len , z_len , error_spread_threshold)
103 addError(full_model , error , z_error ,

i, x, y, z+1, x_len , y_len , z_len , error_spread_threshold)
104
105 return full_model
106
107 def dither(model , radius=1, use_full=True , x_error =0.0, y_error =0.0,

z_error =0.0, error_spread_threshold =0.8, blur=True):
108 if radius == 0:
109 return VoxelModel.copy(model)
110
111 if blur:
112 new_model = model.blur(radius)
113 new_model = new_model.scaleValues ()
114 else:
115 new_model = model.scaleValues ()
116
117 full_model = toFullMaterials(new_model.voxels , new_model.

materials , len(material_properties)+1)
118 full_model = ditherOptimized(full_model , use_full , x_error ,

y_error , z_error , error_spread_threshold)
119
120 return toIndexedMaterials(full_model , model)
121
122 if __name__ == ’__main__ ’:
123 app1 = qg.QApplication(sys.argv)
124
125 box_x = 25
126 box_y = 40
127 box_z = 40
128
129 box1 = cuboid ((box_x , box_y , box_z), (0, 0, 0), 1)
130 box2 = cuboid ((box_x , box_y , box_z), (box_x , 0, 0), 3)
131 box3 = cuboid ((box_x , box_y , box_z), (box_x*2, 0, 0), 1)
132 baseModel = box1 | box2 | box3
133 print(’Model Created ’)
134
135 # Process Models
136 blurResult = baseModel.blur(int(round(box_x /2)))
137 ditherResult = dither(baseModel , int(round(box_x /2)))
138
139 blurMesh = Mesh.fromVoxelModel(blurResult)
140 ditherMesh = Mesh.fromVoxelModel(ditherResult)
141
142 plot1 = Plot(blurMesh)
143 plot2 = Plot(ditherMesh)
144
145 plot1.show()
146 plot2.show()

46

147
148 app1.processEvents ()
149 app1.exec_ ()

47

APPENDIX B

TRANSITION GENERATION CODE

48

1 """
2 Copyright 2020
3 Dan Aukes , Cole Brauer
4
5 Generate coupon for tensile testing
6 """
7
8 import os
9 import sys
10 import time
11 import math
12 import yaml
13
14 import PyQt5.QtGui as qg
15 from tqdm import tqdm
16
17 from voxelfuse.voxel_model import VoxelModel
18 from voxelfuse.mesh import Mesh
19 from voxelfuse.plot import Plot
20 from voxelfuse.primitives import *
21 from voxelfuse.periodic import *
22 from voxelfuse.voxel_model import Axes
23
24 from dithering.dither import dither
25
26 configIDs = [’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’]
27
28 # Set desired outputs
29 display = False
30 save = True
31 export = False
32
33 outputFolder = ’stl_files_v4 .2 _combined ’
34
35 if __name__ ==’__main__ ’:
36 for configID in configIDs:
37 # Load config
38 with open("config_files/config_" + configID + ".yaml", ’r’)

as f:
39 try:
40 config = yaml.safe_load(f)
41 except yaml.YAMLError as exc:
42 print(exc)
43
44 # Load settings
45 filename = config.get(’filename ’)
46 res = config.get(’res’) # voxels per mm
47 couponStandard = config.get(’couponStandard ’) # Start of stl

file name
48 centerLengthScale = config.get(’centerLengthScale ’) #

transition length scale multiplier
49 blurRadius = config.get(’blurRadius ’) # mm -- transition

region width * 1/2
50 materialStep = config.get(’materialStep ’) # material step

size of final result
51
52 blurEnable = config.get(’blurEnable ’, False)

49

53 ditherEnable = config.get(’ditherEnable ’, False)
54 latticeEnable = config.get(’latticeEnable ’, False)
55 gyroidEnable = config.get(’gyroidEnable ’, False)
56
57 if ditherEnable:
58 ditherType = config.get(’ditherType ’)
59 processingRes = config.get(’processingRes ’) # voxels per

processed voxel
60
61 if latticeEnable:
62 latticeElementFile = config.get(’latticeElementFile ’)
63 minRadius = config.get(’minRadius ’) # 0/1 min radius

that results in a printable structure
64 maxRadius = config.get(’maxRadius ’) # 3/5 max radius

that results in a viable lattice element
65
66 if gyroidEnable:
67 gyroidType = config.get(’gyroidType ’)
68 gyroidMaxDilate = config.get(’gyroidMaxDilate ’)
69 gyroidMaxErode = config.get(’gyroidMaxErode ’)
70
71 app1 = qg.QApplication(sys.argv)
72
73 # Import coupon components
74 print(’Importing Files ’)
75 end1 = VoxelModel.fromMeshFile(’coupon_templates/’ +

couponStandard + ’-End.stl’, (0, 0, 0), resolution=res).
fitWorkspace ()

76 center = VoxelModel.fromMeshFile(’coupon_templates/’ +
couponStandard + ’-Center -2. stl’, (0, 0, 0), resolution=res).
fitWorkspace ()

77 end2 = end1.rotate90(2, axis=Axes.Z)
78 center.coords = (end1.voxels.shape[0], round((end1.voxels.

shape [1] - center.voxels.shape [1]) / 2), 0)
79 end2.coords = (end1.voxels.shape [0] + center.voxels.shape

[0], 0, 0)
80
81 # Trim center
82 center_cross_section = VoxelModel(center.voxels [0:2, :, :],

3).fitWorkspace ()
83 centerLength = center.voxels.shape [0]
84 centerWidth = center_cross_section.voxels.shape [1]
85 centerHeight = center_cross_section.voxels.shape [2]
86
87 centerCoordsOffset = (
88 center.coords [0], center.coords [1] + round (((center.voxels.

shape [1] - centerWidth) / 2)), center.coords [2])
89 center = cuboid ((centerLength , centerWidth , centerHeight),

centerCoordsOffset)
90
91 # Set materials
92 end1 = end1.setMaterial (1)
93 end2 = end2.setMaterial (1)
94 center = center.setMaterial (2)
95
96 # Combine components
97 coupon = end1 | center | end2

50

98 coupon = coupon.setMaterial (1)
99
100 # Scaled center
101 newCenterLength = round(centerLength * centerLengthScale)
102 centerCoordsOffset = (center.coords [0] + round ((centerLength

- newCenterLength) / 2), center.coords [1], center.coords [2])
103 center = cuboid ((newCenterLength , centerWidth , centerHeight)

, centerCoordsOffset)
104 center = center.setMaterial (2)
105 coupon = center | coupon
106
107 coupon_input = VoxelModel.copy(coupon)
108
109 start = time.time()
110
111 # Generate transition regions
112 transition_1 = cuboid ((blurRadius * res * 2, coupon.voxels.

shape [1], coupon.voxels.shape [2]), (center.coords [0] - (
blurRadius * res), 0, 0), 3)

113 transition_2 = cuboid ((blurRadius * res * 2, coupon.voxels.
shape [1], coupon.voxels.shape [2]), (center.coords [0] - (
blurRadius * res) + newCenterLength , 0, 0), 3)

114 transition_regions = transition_1 | transition_2
115 transition_regions = transition_regions.getComponents ()
116
117 # Generate lattice elements
118 latticeSize = None
119 lattice_elements = None
120 if latticeEnable:
121 # Import Models
122 lattice_model = VoxelModel.fromVoxFile("lattice_elements

/" + latticeElementFile + ’.vox’)
123 latticeSize = lattice_model.voxels.shape [0]
124 print(’Lattice Element Imported ’)
125
126 # Generate Dilated Lattice Elements
127 lattice_elements = [VoxelModel.emptyLike(lattice_model)]
128 for r in range(minRadius , maxRadius + 1):
129 lattice_elements.append(lattice_model.dilate(r))
130 lattice_elements.append(cuboid(lattice_model.voxels.

shape))
131 print(’Lattice Elements Generated ’)
132
133 elif gyroidEnable:
134 # Import Models
135 s = center.voxels.shape [2]
136
137 if gyroidType == 2:
138 lattice_model_1 , lattice_model_2 = schwarzP ((s,s,s),

s)
139 elif gyroidType == 3:
140 lattice_model_1 , lattice_model_2 = schwarzD ((s,s,s),

s)
141 elif gyroidType == 4:
142 lattice_model_1 , lattice_model_2 = FRD((s,s,s), s)
143 else: # gyroidType == 1
144 lattice_model_1 , lattice_model_2 = gyroid ((s,s,s), s

51

)
145
146 latticeSize = s
147 print(’Lattice Element Imported ’)
148
149 # Generate Dilated Lattice Elements
150 lattice_elements = [VoxelModel.emptyLike(lattice_model_1

)]
151 for r in range(0, gyroidMaxErode):
152 lattice_elements.append(lattice_model_1.difference(

lattice_model_2.dilate(gyroidMaxErode - r)))
153 for r in range(0, gyroidMaxDilate + 1):
154 lattice_elements.append(lattice_model_1.dilate(r))
155 lattice_elements.append(cuboid(lattice_model_1.voxels.

shape))
156 print(’Lattice Elements Generated ’)
157
158 # Generate transitions
159 for c in range(transition_regions.numComponents):
160 print(’Component #’ + str(c+1))
161 transition = coupon_input & (transition_regions.

isolateComponent(c+1))
162 transitionCenter = transition.getCenter ()
163 transition = transition.fitWorkspace ()
164 print(transitionCenter)
165
166 if blurEnable: # Blur materials
167 print(’Blurring ’)
168 transition_scaled = transition.blur(blurRadius*res)

Apply blur
169 transition_scaled = transition_scaled.scaleValues ()

Cleanup values
170 transition_scaled = transition_scaled.setCenter(

transitionCenter) # Center processed model on target region
171 transition = transition_scaled & transition

Trim excess voxels
172
173 elif ditherEnable: # Dither materials
174 print(’Dithering ’)
175 x_len = int(transition.voxels.shape [0])
176 y_len = int(transition.voxels.shape [1])
177 z_len = int(transition.voxels.shape [2])
178
179 transition_scaled = transition.blur(blurRadius*res

*1.5)
180 transition_scaled = transition_scaled.scale ((1 /

processingRes)) # Reduce to processing
scale and dilate to compensate for rounding errors

181
182 if ditherType == 2:
183 transition_scaled = dither(transition_scaled ,

blurRadius *(res/processingRes), blur=False , use_full=False ,
y_error =0.8, x_error =0.8) # Apply Dither

184 elif ditherType == 3:
185 transition_scaled = dither(transition_scaled ,

blurRadius *(res/processingRes), blur=False , use_full=False ,
y_error =0.8) # Apply Dither

52

186 else: # ditherType == 1
187 transition_scaled = dither(transition_scaled ,

blurRadius * (res / processingRes), blur=False) # Apply Dither
188
189 transition_scaled = transition_scaled.scaleValues ()

Cleanup values
190 transition_scaled = transition_scaled.scaleToSize(

x_len , y_len , z_len) # Increase to original
scale

191 transition_scaled = transition_scaled.setCenter(
transitionCenter) # Center processed
model on target region

192 transition = transition_scaled & transition
Trim excess voxels

193
194 elif latticeEnable or gyroidEnable:
195 print(’Lattice ’)
196
197 boxX = math.ceil(transition.voxels.shape [0] /

latticeSize)
198 boxY = math.ceil(transition.voxels.shape [1] /

latticeSize)
199 boxZ = math.ceil(transition.voxels.shape [2] /

latticeSize)
200 print ([boxX , boxY , boxZ])
201
202 lattice_locations = transition.scaleToSize(boxX ,

boxY , boxZ)
203 lattice_locations = lattice_locations.blur(

blurRadius *(res/latticeSize))
204 lattice_locations = lattice_locations.scaleValues ()
205 lattice_locations = lattice_locations -

lattice_locations.setMaterial (2)
206 lattice_locations = lattice_locations.scaleNull ()
207
208 # Convert processed model to lattice
209 lattice_result = VoxelModel.emptyLike(

lattice_locations)
210
211 for x in tqdm(range(boxX), desc=’Adding lattice

elements ’):
212 for y in range(boxY):
213 for z in range(boxZ):
214 i = lattice_locations.voxels[x, y, z]
215 density = lattice_locations.materials[i,

0] * (1 - lattice_locations.materials[i, 1])
216
217 if density < 1e-10:
218 r = 0
219 elif density > (1 - 1e-10):
220 r = len(lattice_elements) - 1
221 else:
222 r = round(density * (len(

lattice_elements) - 3)) + 1
223
224 r = int(r)
225

53

226 locationOffset = round((lattice_elements
[r]. voxels.shape [0] - latticeSize) / 2)

227
228 x2 = (x * latticeSize) - locationOffset
229 y2 = (y * latticeSize) - locationOffset
230 z2 = (z * latticeSize) - locationOffset
231
232 lattice_elements[r]. coords = (x2 , y2 , z2

) # Do not use setCoords here
233
234 lattice_result = lattice_result.union(

lattice_elements[r])
235
236 lattice_result = lattice_result.setMaterial (1)
237 lattice_result = lattice_result.setCenter(

transitionCenter) # Center processed model on target region
238 transition_scaled = lattice_result & transition

Trim excess voxels
239 transition = transition_scaled | transition.

setMaterial (2)
240
241 transition = transition & coupon # Trim excess voxels
242 coupon = transition | coupon # Add to result
243
244 coupon = coupon.round(materialStep)
245 coupon = coupon.removeDuplicateMaterials ()
246 coupon.resolution = res
247
248 end = time.time()
249 processingTime = (end - start)
250 print("Processing time = %s" % processingTime)
251
252 if display:
253 # Create mesh data
254 print(’Meshing ’)
255 mesh1 = Mesh.fromVoxelModel(coupon_input.difference(

transition_regions).setMaterial (3) | coupon , resolution=res)
256
257 # Create plot
258 print(’Plotting ’)
259 plot1 = Plot(mesh1 , grids=True , drawEdges=True ,

positionOffset = (35, 2, 0), viewAngle =(50, 40, 200), resolution
=(720, 720), name=filename)

260 plot1.show()
261 app1.processEvents ()
262
263 if save:
264 try:
265 os.mkdir(outputFolder)
266 except OSError:
267 print(’Output folder already exists ’)
268 else:
269 print(’Output folder successfully created ’)
270
271 print(’Saving ’)
272 coupon.saveVF(outputFolder + ’/output_ ’ + filename)
273

54

274 if export:
275 print(’Exporting ’)
276
277 try:
278 os.mkdir(outputFolder + ’/stl_output_ ’ + filename)
279 except OSError:
280 print(’Output folder already exists ’)
281 else:
282 print(’Output folder successfully created ’)
283
284 for m in range(1, len(coupon.materials)):
285 current_mesh = Mesh.fromVoxelModel(coupon.

isolateMaterial(m), resolution=res)
286 current_mesh.export ((outputFolder + ’/stl_output_ ’ +

filename +’/’ + couponStandard + ’_mat_ ’ + str(m) + ’_’ + str(
coupon.materials[m, 2]) + ’.stl’))

287
288 print(’Finished ’)
289 app1.exec_ ()

55

APPENDIX C

CONTACT SURFACE MEASUREMENT CODE

56

1 """
2 Copyright 2020
3 Dan Aukes , Cole Brauer
4
5 1. Isolate a region of a model
6 2. Select one material
7 3. Find the number of faces where this material meets another

material
8 4. Convert number of faces to surface area
9 """
10
11 # Import Libraries
12 import PyQt5.QtGui as qg
13 import sys
14 import numpy as np
15 from tqdm import tqdm
16
17 from voxelfuse.voxel_model import VoxelModel
18 from voxelfuse.primitives import *
19 from voxelfuse.mesh import Mesh
20 from voxelfuse.plot import Plot
21
22 # Start Application
23 if __name__ ==’__main__ ’:
24 app1 = qg.QApplication(sys.argv)
25
26 transitionWidth = 12
27 transitionCenter = 71.1
28 materialToMeasure = 1
29
30 largestOnly = True # Only look at the largest component of each

material
31 cleanup = False # Remove duplicate materials
32 display = False # Display output
33
34 # Open File
35 file = ’stl_files_v4 .2 _combined/output_K ’
36 model = VoxelModel.openVF(file)
37 model.resolution = 5 # Manually set resolution if not set in

file
38 res = model.resolution
39
40 # Define a region in which to calculate the contact area
41 testRegionSize = (round(transitionWidth*res *1.75) , model.voxels.

shape [1], model.voxels.shape [2])
42 testRegionLocation = (model.coords [0] + round(transitionCenter*

res) - round(testRegionSize [0]*.5) , model.coords [1], model.coords
[2])

43 test_region = cuboid(testRegionSize , testRegionLocation ,
material=3, resolution=res)

44
45 # Cleanup operations
46 if cleanup:
47 model.materials = np.round(model.materials , 3)
48 model = model.removeDuplicateMaterials ()
49
50 # Crop the model to the region of interest

57

51 model_cropped = VoxelModel.emptyLike(model)
52 if largestOnly:
53 # Isolate the region of the model that intersects with the

test region
54 model_cropped_all_components = model & test_region
55
56 # Loop through each material in model
57 for m in range(1, len(model_cropped.materials)):
58 model_current_material = model_cropped_all_components.

isolateMaterial(m)
59 model_current_material = model_current_material.

getComponents ()
60
61 # Find the volume of each component made of this

material
62 componentVolumes = np.zeros(model_current_material.

numComponents +1)
63 for c in range(1, model_current_material.numComponents

+1):
64 componentVolumes[c], _ = model_current_material.

getVolume(component=c)
65
66 # Identify the largest component and add to cropped

model
67 largestComponent = componentVolumes.argmax ()
68 model_cropped = model_current_material.isolateComponent(

largestComponent) | model_cropped
69 else:
70 # Isolate the region of the model that intersects with the

test region
71 model_cropped = model & test_region
72
73 # Isolate the material of interest
74 model_single_material = model_cropped.isolateMaterial(

materialToMeasure)
75
76 # Find exterior voxels
77 surfaceVoxelsArray = model_single_material.difference(

model_single_material.erode(radius=1, connectivity =1)).voxels
78
79 x_len = surfaceVoxelsArray.shape [0]
80 y_len = surfaceVoxelsArray.shape [1]
81 z_len = surfaceVoxelsArray.shape [2]
82
83 # Create list of exterior voxel coordinates
84 surfaceVoxelCoords = []
85 for x in tqdm(range(x_len), desc=’Finding exterior voxels ’):
86 for y in range(y_len):
87 for z in range(z_len):
88 if surfaceVoxelsArray[x, y, z] != 0:
89 surfaceVoxelCoords.append ([x, y, z])
90
91 # Find number of contact surfaces for each surface voxel
92 totalSurfaceCount = 0
93 for voxel_coords in tqdm(surfaceVoxelCoords , desc=’Checking for

contact surfaces ’):
94 x = voxel_coords [0]

58

95 y = voxel_coords [1]
96 z = voxel_coords [2]
97
98 if x+1 < x_len:
99 if (model_cropped.voxels[x+1, y, z] != 0) and (

model_cropped.voxels[x+1, y, z] != materialToMeasure):
100 totalSurfaceCount = totalSurfaceCount + 1
101 if x-1 >= 0:
102 if (model_cropped.voxels[x-1, y, z] != 0) and (

model_cropped.voxels[x-1, y, z] != materialToMeasure):
103 totalSurfaceCount = totalSurfaceCount + 1
104
105 if y+1 < y_len:
106 if (model_cropped.voxels[x, y+1, z] != 0) and (

model_cropped.voxels[x, y+1, z] != materialToMeasure):
107 totalSurfaceCount = totalSurfaceCount + 1
108 if y-1 >= 0:
109 if (model_cropped.voxels[x, y-1, z] != 0) and (

model_cropped.voxels[x, y-1, z] != materialToMeasure):
110 totalSurfaceCount = totalSurfaceCount + 1
111
112 if z+1 < z_len:
113 if (model_cropped.voxels[x, y, z+1] != 0) and (

model_cropped.voxels[x, y, z+1] != materialToMeasure):
114 totalSurfaceCount = totalSurfaceCount + 1
115 if z-1 >= 0:
116 if (model_cropped.voxels[x, y, z-1] != 0) and (

model_cropped.voxels[x, y, z-1] != materialToMeasure):
117 totalSurfaceCount = totalSurfaceCount + 1
118
119 print(’\nNumber of contact surfaces: ’ + str(totalSurfaceCount))
120 print(’Surface area: ’ + str(totalSurfaceCount *(1/ res)*(1/ res))

+ ’ mm^2’)
121
122 if display:
123 mesh = Mesh.fromVoxelModel(model_single_material.setMaterial

(4) | model_cropped.setMaterial (3) | model)
124
125 # Create Plot
126 plot1 = Plot(mesh , grids=True)
127 plot1.show()
128 app1.processEvents ()
129 app1.exec_ ()

59

