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ABSTRACT  
   

Humans have modified land systems for centuries in pursuit of a wide range of 

social and ecological benefits. Recent decades have seen an increase in the magnitude 

and scale of land system modification (e.g., the Anthropocene) but also a growing 

recognition and interest in generating land systems that balance environmental and 

human well-being. This dissertation focused on three case studies operating at 

distinctive spatial scales in which broad socio-economic or political-institutional drivers 

affected land systems, with consequences for the environmental conditions of that 

system. Employing a land system architecture (LSA) framework and using landscape 

metrics to quantify landscape composition and configuration from satellite imagery, 

each case linked these drivers to changes in LSA and environmental outcomes.  

The first paper of this dissertation found that divergent design intentions lead to 

unique trajectories for LSA, the urban heat island effect, and bird community at two 

urban riparian sites in the Phoenix metropolitan area. The second paper examined 

institutional shifts that occurred during Cuba’s “special period in time of peace” and 

found that the resulting land tenure changes both modified and maintained the LSA of 

the country, changing cropland but preserving forest land. The third paper found that 

globalized forces may be contributing to the homogenizing urban form of large, populous 

cities in China, India, and the United States—especially for the ten largest cities in each 

country—with implications for surface urban heat island intensity. Expanding knowledge 

on social drivers of land system and environmental change provides insights on 

designing landscapes that optimize for a range of social and ecological trade-offs. 
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I once heard it observed that the fight against climate change (and global 
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CHAPTER 1 

LAND SYSTEM COMPOSITION AND CONFIGURATION: AN INTRODUCTION 

1.1.Introduction 

Land is both a driver and consequence of global environmental change (Steffen et 

al. 2015; 2011). Land systems effect local to global processes such as the movement of 

biologically active nitrogen, habitat loss and fragmentation, greenhouse gas emission 

and absorption, and the hydrologic cycle (de Chazal and Rounsevell 2009; Lambin et al. 

2001; Ruddiman 2013). To provide an example of the magnitude of land’s influence—

agriculture, forestry, and other land uses are the second largest emitter of greenhouse 

gases by economic sector (IPCC 2014). These lands accounts for 24% of total greenhouse 

gas emissions, while the largest emitter—electricity and heat production—accounts for 

25% (IPCC 2014). Moreover, land’s contributions become greater than electricity and 

heat production, if buildings are included in the definition of land (31%) (IPCC 2014). 

Transformations and modifications made to just one aspect of land systems, such 

increasing the amount of urban agriculture in cities, can dramatically alter the amount of 

greenhouse gas emitted globally. If urban agriculture were added to cities around the 

world, energy consumption for heating and cooling is estimated to decrease by 13 to 15 

billion kWh (Clinton et al. 2018). This is equivalent to the annual electricity used by air 

conditioners for approximately 9 million U.S. households (Clinton et al. 2018).  

As demonstrated with this urban agriculture example, the composition and 

configuration of land systems are dominate factors in determining the influence of land. 

Composition is the amount of land and configuration is the spatial arrangement of land 

units. The composition and configuration of land systems  has been linked to impacts on 

water quality (Alberti et al. 2007), carbon storage (Brinck et al. 2017), urban heat island 

(Connors, Galletti, and Chow 2013; Li et al. 2016), biodiversity (Dunning et al. 1995; 
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Hager et al. 2015), and the rates of plant and animal phonology change (Alberti et al. 

2017). As such, human alterations to the composition and configuration of land systems 

profoundly affect the environmental benefits and burdens that land systems can provide 

(Osborne and Kovacic 1993).  

Humans have intentionally (and unintentionally) altered land systems for 

centuries, but the current magnitude and scale are critical to the existence of the 

Anthropocene (Ruddiman 2013). With the recognition of the Anthropocene has come an 

interest in generating landscapes that optimize ecological and social trade-offs to balance 

environmental and human well-being (Nassauer and Opdam 2008; Turner et al. 2013). 

Part and parcel to this work is expanding knowledge on the implications of landscape 

composition and configuration on a variety of socio-environmental outcomes. Early work 

in this arena has considered the effects of landscape changes on one or two outcome 

variables (Connors, Galletti, and Chow 2013; Zhang, Murray, and Turner 2017; Zheng, 

Myint, and Fan 2014), but more work is needed on considering the impacts for multiple 

social and environmental benefits (Bennett, Peterson, and Gordon 2009; Lamy et al. 

2016). Even as new insights are generated, this work will remain ongoing because land 

systems—as a coupled-human-environment system—are complex and dynamic, 

requiring continuous observation and adaptive management strategies (Holling 2001). 

1.2 Research Background 

This dissertation draws from land system science (LSS) (Verburg et al. 2013), and 

its recent subfield—land system architecture (LSA) (Turner et al. 2013). Within the 

frameworks of LSS and LSA, this research employed three case studies to examine the 

impact of broad social drivers on landscape composition and configuration with links to 

the environmental consequences of the resultant land system change. The composition 

and configuration of landscapes were measured via landscape metrics drawn from 



  3 

disciplines such as ecology, spatial statistics, and mathematics (Frazier and Kedron 

2017). Which metrics are suitable for use, and at what scale, was also a focus of this 

dissertation. Cross-case study conclusions about metrics will be drawn in the final 

chapter. 

1.2.1 Land System Science 

Land-use is the intersection of human activity and the environment.  The mosaic 

of land uses and land cover (LULC) generates land systems, and land system science 

(LSS) is the examination of land systems with a particular emphasis on the socio-

environmental drivers and consequences (Verburg et al. 2013). LSS joins together 

remote sensing, social science, and environmental sciences to capture coupled human-

environment dynamics (Turner, Lambin, and Reenberg 2007). These considerations— 

especially in regards to the resulting sustainability, vulnerability, or resilience of a 

landscape—are often shared with sustainability science and similar fields (Meerow, 

Newell, and Stults 2016; Turner, Lambin, and Reenberg 2007).  

Land systems are axiomatically social-ecological systems (SESs) and LSS treats 

LULC as a SES—an ontologically real phenomenon for which theory and models can be 

developed (Meyfroidt et al. 2018; Turner, Lambin, and Reenberg 2007). While the 

development of LSS theory has been slow, as it has for all SESs, major advances have 

been made in understanding land-use and land-cover dynamics (Aspinall and Staiano 

2019; Gutman et al. 2004; Munroe and McSweeney 2019), the social and environmental 

underpinnings of these dynamics (Lambin et al. 2001; McSweeney et al. 2017), and 

modeling land systems (Filatova et al. 2013; Robinson et al. 2018; Veldkamp and 

Lambin 2001; Verburg et al. 2019). 
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1.2.2 Land System Architecture 

LSA—an outgrowth from LSS—explores the role of the composition (relative size 

and total area) and configuration (shape, distribution, and connectivity) of land units in 

relation to the system’s socio-environmental dynamics (Turner et al. 2013). LSA shares 

problems and approaches with work in landscape and urban ecology (Forman 1995; Wu 

2013), urban morphology in urban climatology (Golany 1996), landscape architecture 

(Collinge 1996), and geodesign (Goodchild 2010; McHarg 1992). LSA seeks to quantify 

the impacts of land composition and configuration on the environment and livelihoods, 

ultimately, identifying tradeoffs or potential “win-win” solutions that enhance resilience 

(Turner et al. 2013). Most LSA research to date has been focused on urban 

sustainability—foremost extreme heat and associated issues (Li et al. 2011; Turner 2016; 

Zhou, Wang, and Cadenasso 2017)—with the aim of designing and implementing 

landscape (i.e., “cityscape”) changes that improve urban sustainability (Childers et al. 

2015; McPhearson et al. 2016). 

1.2.3 Landscape Metrics 

Landscape metrics are algorithms that quantify the spatial structure of land-

cover patches in order to represent the biophysical structure and function of interacting 

land-cover patches (Forman and Godron 1986; Frazier 2019). For example, in some 

habitats, fragmentation can be detrimental to biodiversity and landscape metrics provide 

a means to quantify fragmentation (McGarigal and Marks 1995). With numerical 

quantification of fragmentation, assessments can be made about the impacts on diversity 

and assist in management decisions, such as aggregating land uses by maintaining 

undeveloped corridors through developed areas (Forman 1995). 

A limitation to LSA research—and cognate fields—is the disparate and disjointed 

means of measuring landscape change. Metrics have been developed by a variety of 
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research communities to measure the configuration of landscape mosaics (e.g., 

landscape ecology), the spatial dimensions of phenomena (e.g., spatial science), to 

explore land systems (e.g., land system science), and design urban or regional 

configuration (e.g., geodesign). While there are overlaps in the goals and motivations of 

these research communities, each draws from different theoretical foundations to 

address different aspects of land dynamics, commonly focused on different spatial scales 

of analysis. When metrics developed by different communities are applied to the same 

question, however, they have been shown to result in different answers (Li et al. 2016; 

Zhou, Wang, and Cadenasso 2017; Zhou, Huang, and Cadenasso 2011).  

This dissertation begins to address this limitation by employing landscape 

metrics from a variety of research communities to measure composition and 

configuration in each of the LSA case studies. Within the categories of composition and 

configuration, LSA is concerned with size, shape, connectivity, and distribution. Size is 

the relative extent or area of a particular LULC type. Shape is the form of an area of a 

particular LULC, connectivity the linking between areas of the same LULC type, and 

distribution is the spatial arrangement of areas of the same LULC. Table 1 presents the 

landscape metrics used for each case study. 

Table 1. Names, definitions, and equations of the landscape metrics used for each 
chapter of the dissertation. Aspects of composition and configuration are in the left 
column with corresponding metrics in columns to the right. 

 CHAPTER 2 CHAPTER 3 CHAPTER 4 

S
IZ

E
 

(c
o

m
p

o
si

ti
o

n
) 

Percentage of Landscape 
Proportional abundance of 
each class type in the 
landscape. Calculated: 
 

∑ 𝑎𝑖𝑗 × 900𝑛
𝑗=𝑖

𝑍
 

Patch Area 
Sum of all pixels in a 
given patch. 
Calculated in 
hectares: 

𝑎𝑖𝑗 × 250 

Class Area 
Sum of the area of all 
pixels within the 
urban extent classified 
as built-up. Calculated 
in km2: 

∑ 𝑎𝑖𝑗  × 0.0009

𝑛

𝑗=𝑖
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S
H

A
P

E
 

(c
o

n
fi

g
u

ra
ti

o
n

) 

Median Shape Index 
Median value of each patch 
in a given class’ shape 
complexity as defined by: 
 

(
𝑝𝑖𝑗

min 𝑝𝑖𝑗
)

50%

 

Fractal Dimension 
Index 
Measure of shape 
complexity computed 
with a patch’s area 
and perimeter: 
 
2 × ln(0.25(𝑝𝑖𝑗  × 500))

ln(𝑎𝑖𝑗 × 250,000)
 

Edge Density 
Measure of edge 
complexity by 
computing the ratio of 
the length of edge to 
the total area: 

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

𝐴
 (10000) 

 
Reock Score 
Ratio of class area to 
its minimum 
bounding circle:  

𝐴

𝐶
 

C
O

N
N

E
C

T
IV

IT
Y

 
(c

o
n

fi
g

u
ra

ti
o

n
) 

Median Euclidean Nearest-
Neighbor Index 
Median value of the 
distance each patch to the 
nearest patch of the same 
class. Equation is 
represented as:  

ℎ𝑖𝑗50%
 

Contiguity Index 
Assess spatial 
connectedness of 
pixels in the same 
patch: 

[
∑ 𝑐𝑖𝑗𝑟

𝑧
𝑟=1

𝑎𝑖𝑗
] − 1

𝑣 − 1
 

 

Patch Cohesion Index 
Measure of 
connectedness defined 
by the area and 
perimeter of groups of 
connected built-up 
pixels: 

[1 −  
∑ 𝑝𝑖𝑗

𝑛
𝑗=1

∑ 𝑝𝑖𝑗√𝑎𝑖𝑗
𝑛
𝑗=1

] × 

[1 −  
1

√𝑍
]

−1

× 100 

D
IS

T
R

IB
U

T
IO

N
 

(c
o

n
fi

g
u

ra
ti

o
n

) 

Interspersion and 
Juxtaposition Index 
Ratio of observed 
interspersion over 
maximum possible 
interspersion: 

− ∑ [(
𝑒𝑖𝑘

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

) ln (
𝑒𝑖𝑘

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

)]𝑚
𝑘=1

ln(𝑚 − 1)
 

× 100 

Euclidean Nearest 
Neighbor Index 
Distance of each 
patch to the nearest 
patch of the same 
class. Equation 
represented as: 

ℎ𝑖𝑗 

Percentage of Like 
Adjacencies 
Calculates the number 
of built-up pixels that 
are adjacent to built-
up pixels divided by 
the total number of 
pixel adjacencies: 

(
𝑔𝑖𝑖

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

) (100) 
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WHERE: 
𝑎𝑖𝑗 = 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠, 

 𝐴 =  𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠/𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 𝑎𝑟𝑒𝑎 (𝑚2), 
 𝑒𝑖𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚) 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑎𝑛𝑑 𝑘,  
𝑝𝑖𝑗 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ 𝑖𝑗 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠, 

𝑍 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 
𝑔𝑖𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑘𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖, 
𝑔𝑖𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑘𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖 & 𝑘, 
𝑐𝑖𝑗𝑟 = 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑝𝑖𝑥𝑒𝑙 𝑟 𝑖𝑛 𝑝𝑎𝑡𝑐ℎ 𝑖𝑗, 

𝑣 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥, 
ℎ𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑎𝑡𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖 (𝑚), 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 
𝐶 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠′ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑐𝑖𝑟𝑐𝑙𝑒 

 

These metrics were selected from a larger set of metrics based on their relevance to the 

research question and data of each case study. Chapter 5.2 presents this table again and 

reviews each metric and the reason it was selected. 

1.3. Dissertation Organization 

The component works of this dissertation advance understanding on how broad 

social, political, and economic drivers shape LSA and the resultant environmental 

consequences at a variety of scales. Scale is defined as the extent in space, the unit of 

analysis (i.e., patch, class, landscape), and grain size—consistent with Wu and Qi (2000).  

Patches are groupings of pixels of the same or similar LULC type that are different from 

their surroundings. This is the smallest unit of analysis for most landscape metrics 

(McGarigal, Cushman, and Ene 2012). Classes are all patches of the same LULC type in a 

land system, and a landscape is the bounding unit for a mosaic of different LULC types 

(Frazier 2019; McGarigal, Cushman, and Ene 2012). 
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Each chapter is a case study which engages the causes and consequences of LSA 

change at differing scales (Table 2). The chapter are each a published or to be submitted 

research paper.1 

Table 2. Location and spatial scale of analysis for each dissertation chapter. Scale is 
defined in terms of extent, the land unit used for analysis, and the grain (i.e., pixel size) 
of the LULC data. 

CHAPTER LOCATION 
SCALE 

Extent Land Unit Grain 

Chapter 2 
Phoenix Metropolitan 
Area, Arizona, United 

States 
Local Class 30 m 

Chapter 3 Republic of Cuba National Patch 500 m 

Chapter 4 
India, China, &  
United States 

Multi-
national 

Class 30 m 

 

Chapter 2 examined different development trajectories of two urban riparian areas in the 

Phoenix metropolitan area, their resulting LSA, and consequences for bird biota, 

vegetation, and the urban heat island effect.  It was previously published in Land Use 

Policy (Stuhlmacher et al. 2020). Chapter 3 related LSA and environmental changes to 

the broad institutional shifts and policy changes made in Cuba during the “special period 

in time of peace”, the period after the 1991 collapse the Soviet Union (a major trade 

partner of the country). Chapter 4 tested for homogeneity in urbanization across global 

cities in China, India, and the United States and examined the surface urban heat island 

impacts of this urban pattern change.  

 

 
1 The dissertation author is the lead author on the three papers, but all are co-authored works. For 
this reason, references to the case studies throughout the dissertation may use “we” as opposed to 
“I”. Permission for the use of co-authored work was granted from all co-authors, see Appendix A. 
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1.3.1 Urban Development: Rio Salado and New River 

The first case study was at the local level and used class as the unit of analysis 

(Table 2). In the Phoenix, Arizona (USA) metropolitan area, efforts to better utilize the 

Rio Salado riverfront began fifty years ago (Elmore 1995), with substantial attention to 

design and planning but minimal action along the 200-mile riverfront. The exception is 

the city of Tempe’s channelization of a portion of the Rio Salado to the north of its 

downtown, known as Tempe Town Lake (Elmore 1995). Subsequent development 

around the lake included Tempe Beach Park, a riverfront trail, and mixed-use 

development (Elmore 1995). Inspired by the vibrancy Tempe Town Lake’s development 

has brought to Arizona’s central valley, the late Senator John McCain made the 

redevelopment of the Rio Salado riverbed—stretching from Buckeye to Mesa—his legacy 

project. With considerations for the next redevelopment that may be underway, we 

evaluated how the LSA of the riverfront area in Tempe changed from 1985 to 2010 in 

comparison to a similar riparian site (New River) that underwent the more typical 

developer-lead development over the same period. Specifically, we evaluated:  

1. Given the different design intentions of the Rio Salado and New River sites, how 

does their LSA differ?  

2. How does the land surface temperature and vegetation abundance differ between 

the sites? Which LSA modifications—size, shape, distribution, or connectivity—

have the greatest impact on land surface temperature and vegetation? 

3. How do the bird communities differ between the two sites? What role does LSA 

play in the bird community differences between the sites? 

1.3.2 Institutional Shifts: Cuba 

The second case study is at the national level, with patch as the unit of analysis 

(Table 2). This research examined the LSA changes in the Republic of Cuba triggered by 
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the collapse of the Soviet Union and Cuba’s subsequent institutional changes. The 

Republic of Cuba’s rapid institutional transition make it a unique testbed for advancing 

research on the influence of institutional change on LSA change. After the collapse of the 

Soviet Union in 1991, the country began what the government termed the “special period 

in time of peace” (Maal-Bared 2006). Profound changes followed, including privatization 

of land, an opening of the agriculture commodity market, as well as several initiatives to 

diversify and turn production inward (Wright 2009). Employing a quasi-experimental 

design approach (Shadish, Cook, and Campbell 2002), we asked: 

1. How did the composition and configuration (land system architecture) of 

Cuba’s land system change as a result of the institutional shifts caused by the 

collapse of the Soviet Union? 

2. How are the land system architecture and environmental outcomes temporally 

linked to the policy changes in the “special period”? 

1.3.3 Homogenization of Urban Form: China, India and the United States 

The third case study was at the multi-national level with class as the unit of 

analysis (Table 2). The class of interest is built-up lands in China, India, and the United 

States. Built-up land (i.e., urban areas) now house over 50% of the worlds’ population 

and the way in which they are growing (i.e., form or morphology) influences a variety of 

socio-ecological processes (Alberti 2005; Bettencourt et al. 2007; Forman 2014; 

Georgescu et al. 2013; Seto et al. 2012; Turner et al. 2013; United Nations 2018a). The 

high spatial and temporal resolution classifications needed to study these processes, 

however, are few in number (Goldblatt et al. 2018). Employing Landsat and nighttime 

light satellite imagery from 1995-2015, we classified urbanization in five-year time-steps 

using machine learning and transfer learning methods. There is some evidence that the 

urban form of global cities is homogenizing (Jenerette and Potere 2010; Seto and 
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Fragkias 2005) and potential homogenization could have important consequences for 

global environmental change and how cities respond. With this time-series dataset we 

evaluated:  

1. Are large cities around the world homogenizing in terms of the configuration of 

their built-up land footprint?  

2. How do the rates of growth in terms of size, shape, distribution, and 

connectivity influence the potential homogenization? 

3. How does homogenization, if detected, affect the surface urban heat island? 

1.4 Dissertation Contributions 

 This dissertation’s three main contributions are: 1) expanded applications of the 

LSA approach, 2) results with implications for landscape design for each case study, and 

3) insights from the cross-case synthesis on the selection and use of landscape metrics in 

LSA research. Each of these contributions will be discussed in greater detail in the 

concluding chapter (5.4). 
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CHAPTER 2 

ENVIRONMENTAL OUTCOMES OF URBAN LAND SYSTEM CHANGE: COMPARING 

RIPARIAN DESIGN APPROACHES IN THE PHOENIX METROPOLITAN AREA 

2.1 Abstract 

In the face of climate change and other environmental challenges, an increasing 

number of cities are turning to land design to enhance urban sustainability. Land system 

architecture (LSA)—which examines the role of size, shape, distribution, and 

connectivity of land units in relation to the system’s social-environmental dynamics—can 

be a useful perspective for examining how land contributes to the social and 

environmental aspects of urban sustainability. There are two gaps, however, that prevent 

LSA from fully contributing to urban sustainability dialogues. First, it is not well 

understood how urban design goals, as expressed by urban planners and other 

practitioners, relate to LSA and environmental outcomes. Second, most LSA work 

focuses on individual environmental outcomes, such as the urban heat island effect, 

instead of considering the broader suite of outcomes that LSA changes impact. Here, we 

undertake an integrated assessment of LSA impacts on surface urban heat island (based 

on land surface temperature), vegetation presence/health (based on NDVI), and bird 

biota at two riparian sites with different design intentions in the Phoenix, Arizona 

metropolitan area. The Rio Salado in Tempe underwent a city-led, infill redevelopment 

that mixed economic, recreational, and flood control design goals. The New River in 

Peoria experienced a more typical developer-driven urbanization. The contexts and 

design goals of the sites generated differences in their LSA, but only a few of these 

differences were sufficiently unique to contribute to divergent environmental outcomes. 

These differences reside in (1) the greater distribution of recreational land-covers and (2) 

increased surface water at the Rio Salado site compared to the New River site. Both 
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changes are linked to land-cover patches becoming greener and cooler as well as a 

greater presence of waterbird and warbler species at the Rio Salado site. The distinctions 

between the sites provide insight for crafting design goals for redeveloping or restoring 

urban riparian landscapes in the Phoenix metropolitan area grounded in LSA. With the 

incorporation of additional relevant variables, especially socioeconomic ones, the 

research approach employed in this study provides a foundation for the assessment of 

other urban land system change. 

2.2 Introduction 

Urban areas cover approximately one percent of the world’s land surface, house 

over half of the world’s population, and consume seventy-five percent of the world’s 

resources (Harrison and Pearce 2000; Z. Liu et al. 2014; United Nations 2018b). Their 

continued growth raises concerns about urban sustainability (Childers et al. 2014; 

Grimm et al. 2008; Seto et al. 2012; Wu 2014) and the ways in which cities can adapt to 

and mitigate for the range of consequences from global environmental change, foremost 

climate change (Chhetri, Stuhlmacher, and Ishtiaque 2019; Martin and McTarnaghan 

2018; Rosenzweig and Solecki 2015). Urban land design—intentional modifications to 

the size and pattern of a cityscape—affects the structure and function of the environment 

(henceforth environmental outcomes) and is one means to mitigate and adapt to local 

and global environmental changes (Grimm et al. 2015; Turner et al. 2013). 

As such, urban land design is increasingly of interest to research fields such as 

urban climatology (Golany 1996), landscape architecture (Collinge 1996), landscape 

ecology (Forman 1995; Wu 2013), geodesign (Goodchild 2010; McHarg 1992), and land 

system science. Each of these research fields approach design and urban sustainability 

with different queries, theories, and methods, but all are concerned with how design 
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impacts the urban environment (Leemans and Groot 2003; Roy Chowdhury and Turner 

2019). Each fields’ incorporation of urban land design is briefly reviewed below. 

Urban climatology examines the effects of the morphology of built structures and 

vegetation to better understand how the design of urban areas impact microscale and 

mesoscale climate (Oke 1988). Urban climate research also integrates findings, such as 

those on air quality and the urban heat island, with the planning and design process (e.g. 

Coseo and Larsen, 2015; Oke, 1984; Stewart and Oke, 2012). 

Landscape architecture has long examined urban design in terms of the cultural 

landscape, with recent attention on sustainability and design linkages to urban 

ecosystems (Collinge 1996; Wines 2000). Landscape ecology, in turn, has traditionally 

examined the impacts of landscape mosaics, or the composition and configuration of 

land units (i.e., patches), on ecosystem structure and function (Dramstad, Olson, and 

Forman 1996). These two fields have found synergies over the past several decades 

(Forman 2008; Wu 2019), with planned and designed landscapes providing field 

experiments to test landscape ecology hypotheses (Golley and Bellot 1991). Nassauer and 

Opdam (2008) further solidified design as a central component of landscape ecology in 

their pattern-process-design framework. Urban ecology has followed suit (Grimm et al. 

2008) by assessing the role of urban landscape mosaics on environmental outcomes 

(Cadenasso et al. 2013; Forman 2014; S. T. Pickett and Cadenasso 2008). Landscape 

architecture, landscape ecology, and urban ecology now call for transdisciplinary 

inclusion of design in research and practice (Ahern 2013; Cadenasso and Pickett 2013; 

Childers et al. 2015; Dramstad, Olson, and Forman 1996; Nassauer 2012; Nassauer and 

Opdam 2008; Pickett, Cadenasso, and Grove 2004; Steiner 2014).  

Sharing this focus, but largely associated with spatial science, the emerging field 

of geodesign provides a platform for linking various landscape and land system 
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approaches to sustainability (Huang et al. 2019; Wu 2019). Geodesign emphasizes 

inclusive and iterative design in a framework that incorporates spatial technologies (i.e., 

models and simulations) with real-time stakeholder feedback (Steinitz 2012). 

Lastly, land system architecture (LSA) is an outgrowth from land system science 

(LSS) and its interest in sustainability, vulnerability, and resilience (Verburg et al. 2013). 

LSA examines the composition (size/area of a land cover type) and configuration (shape, 

distribution, connectivity of a land-cover type) of built landscapes as a result of formal 

and informal design—typically with a lens on its social-environmental consequences 

(Turner 2010; Turner et al. 2013). LSA has many synergies with landscape ecology 

(Frazier et al. 2019; Vadjunec et al. 2018) and, in some cases, LSA and landscape ecology 

are indistinguishable in methods (Huang and Cadenasso 2016; Li et al. 2011). 

Additionally, sharing concerns with morphology in urban climate research, recent LSA 

research has incorporated the vertical dimension of land-covers (e.g. building or tree 

height) (Zhang, Middel, and Turner 2019). We designate LSA as the variety of work 

across several fields of research loosely affiliated with land system science, especially 

urban land systems.  

Emergent LSA research has largely focused on the built environment’s effect on 

land surface temperature (LST) at a fine-grain level: cases in which 1-30 m resolution 

remote sensing data can be matched to the composition of land units. The composition 

of urban land units have been found to be the dominant driver of LST, but configuration 

has also proven to be significant, and joined with composition, increases the explained 

variance of LST (Li et al. 2016; Li et al. 2012; Zhou, Wang, and Cadenasso 2017; Zhou, 

Huang, and Cadenasso 2011).  

Less is known about how urban design and configuration impact environmental 

outcomes beyond LST, such as flora and fauna abundance and diversity. Additionally, 
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there is increasing interest in evaluating how composition and configuration affect 

multiple ecosystem services (e.g. Bennett et al., 2009; Lamy et al., 2016) especially using 

remotely sensed data (Clinton et al. 2018; Wang et al. 2018). Few assessments, however, 

have addressed the LSA of formally designed landscapes and their multiple 

environmental impacts in an urban context or undertaken a comparison of these impacts 

between developments with different design intentions (but see Turner and Galletti, 

2015). Our study seeks to fill these gaps through a comparison of two urban riparian 

corridors that were constructed with different design intentions in the Phoenix, Arizona 

metropolitan area. The first landscape consists of a riverfront area in the City of Tempe 

that was designed to enhance community use and economic development near the 

historic city center. The second landscape consists of a more common, developer-led 

design of commercial and residential expansion in Peoria. Both sites are similar in terms 

of geography, environment, and climate; and they differ primarily in the role design 

played in their development. The overarching query of this research concerns the urban 

LSA and environmental outcomes generated by the design distinctions.  

These concerns are addressed through three questions: 

1. Given the different design intentions of the two sites, how does their LSA differ?  

2. How does the land surface temperature and vegetation abundance differ between 

the sites? Which LSA modifications—size, shape, distribution, or connectivity—

have the greatest impact on land surface temperature and vegetation? 

3. How do the bird communities differ between the two sites? What role does LSA 

play in the bird community differences between the sites? 

2.3 Case Study 

The Phoenix metropolis is situated in the arid Sonoran Desert and is 

characterized by a sprawling, low-density urban form. Municipal economic growth has 
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long been driven by annexing surrounding unincorporated land (Gerszewski et al. 2014). 

More recently, however, older municipalities in the center of the metropolitan area have 

become “land-locked” (i.e., minimal or no new land to incorporate), and their focus has 

turned to infill development to increase the density of economic and recreational 

opportunities (Gerszewski et al. 2014). In contrast, newer cities on the metropolitan 

fringe have the capacity to convert agricultural and vacant land for urban development. 

The two study sites—Rio Salado in Tempe and New River in Peoria—capture these 

divergent approaches to urbanization within the “land-locked” city of Tempe and along 

the urban fringe in the city of Peoria.  

2.3.1 Rio Salado: Tempe, AZ 

Tempe, Arizona is located approximately 14 km southeast of downtown Phoenix, 

has a population of over 185,000 permanent residents, and is home to the main campus 

of Arizona State University (ASU). Incorporated in 1894, Tempe is one of the older 

municipalities in the region. The Rio Salado (Salt River) flows immediately north of 

Tempe’s downtown and the ASU campus (Fig. 1). A series of upstream reservoirs has 

rendered the riverbed dry for most of its extent through the metro-area; water only flows 

during heavy rains and when reservoirs release water.  

Historically, the majority of the Rio Salado riverfront has been underdeveloped 

for community use, commonly serving as a site for dumping, quarrying, or industrial 

activities. In the 1982 Rio Salado Plan, the city of Tempe enumerated several overarching 

goals to develop the Rio Salado riverfront relevant to design: (1) “Encourage the 

optimum development of land along the Salt River”; (2) “Promote the development of 

outdoor recreational facilities”; and (3) “Combine the flood control with environmental 

design in a manner that will achieve the greatest social and economic benefits for the 

citizens of Tempe” (City of Tempe, 1982: 11-13). Guiding these design goals was an 
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interest in transforming the Rio Salado from an eyesore to an economically viable and 

signature urban environment and, in doing so, investing in Tempe’s downtown. 

In the 1990s, the city of Tempe channelized the portion of the Rio Salado within 

the city limits to create Tempe Town Lake and established Tempe Beach Park along the 

new waterfront (Elmore 1995). The river and the riverfront park are now used for 

multiple social and cultural events, such as concerts, festivals, major races and triathlon 

competitions. Within the park are multi-use paths that stretch along the riverfront into 

neighboring municipalities. Significant development, foremost high-rise commercial 

office buildings and apartment-condo units, continue to be built around the lake today in 

concert with the development of ASU, which possesses a large portion of the river’s south 

bank.  

2.3.2 New River: Peoria, AZ 

Peoria, Arizona is located approximately 22 km northwest of downtown Phoenix. 

It is situated on the western most edge of Maricopa county (the county in which much of 

the Phoenix metropolitan area resides) with a small portion of the city boundaries 

extending west into Yavapai county. Peoria was incorporated in 1954 and has a current 

population of over 168,000 people. The city has seen rapid population growth since the 

1990s and is expected to continue growing faster than both the Phoenix area and the 

state averages (City of Peoria 2014). The New River crosses the southeastern portion of 

Peoria and is an intermittent stream that flows only during heavy rains. Just outside of 

Peoria’s boundaries it joins the Aqua Fria River (also intermittent), which enters the Gila 

River just west of the Rio Salado-Gila connection on the southwest side of the Phoenix 

metropolitan area (Fig. 1). 

The New River development in Peoria, led by commercial developers, constitutes 

a common, contemporary use of riparian space. The aim was to expand the commercial 
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and housing areas of Peoria, while protecting this development from intermittent flood 

events. The area directly around the riverbed (60-150 m on either side) remains largely 

undeveloped (i.e., desert soil and native vegetation) or contains green infrastructure 

resistant to flood impacts. A paved pedestrian and biking trail run along the banks of the 

dry riverbed. At the north end of the study area is Rio Vista Community Park. At 54 acres 

it is the third largest park in Peoria (City of Peoria 2014). It has recreational fields, picnic 

areas, a playground, and a community recreation building (City of Peoria 2014). 

2.4 Methods 

2.4.1 Site Selection  

The portion of the Rio Salado riverfront examined in this study constitutes an 

area 1.5 km on either side of the former perineal river and extends 7 km east-west across 

northern Tempe (Fig. 1). The 1.5 km buffer to the north and south of the river includes a 

previously established bird survey site—part of the Central Arizona-Phoenix Long-Term 

Ecological Research (CAP LTER) network (Bateman et al. 2017)—and was delineated to 

capture both the built and unbuilt parts of the region. The eastern and western bounds of 

the study area are demarcated by the limits of the city of Tempe, as only land within the 

jurisdiction of the city of Tempe’s development project is included in the analysis. The 

boundary of the New River study area is 3 km wide and 6.5 km in length to match the 

approximate dimensions and area of the Rio Salado site. Within the 1.5 km buffer from 

the New River’s banks is a second CAP LTER bird site as well as both built and unbuilt 

lands. 
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Figure 1. (A) Study sites and location of bird surveys in the Phoenix Metropolitan area, 
Arizona, USA. 2019 land cover from high resolution imagery at (B) New River and (C) 
Rio Salado sites. 
 

2.4.2 Base Data and Variables.  

Three principal data sources were employed to generate the variables in this 

study: Landsat 5 satellite images, land use/land cover (LULC) classifications, and bird 

community surveys from CAP LTER (Fig. 2). 
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Figure 2. Methodological workflow. Input data are represented in boxes along the top 
row, intermediate data processing in boxes in the middle row, and analysis in the 
diamonds along the bottom. Black circles at the bottom of the diamonds denotes the 
corresponding research question. 
 

2.4.2.1 Land Use/Land Cover (LULC) Classification and Landscape Metrics  

The land-cover data used to quantify LSA change are based on 30 m 

classifications of Landsat TM 5 imagery (Zhang and Li 2017). Every five-year increment 

from 1985 to 2010 was classified using change vector analysis from the supervised 

object-based classification of the 2010 image (see Zhang and Li, 2017 for full details), 

resulting in six sets of land cover classifications (n=6). The overall accuracy of the 

classification is 92.1%. The original eleven classes have been aggregated to five—water, 

built-up, crop, vegetation, and desert/bare soil.  

Landscape metrics were calculated for each of the five land cover classes. 

Landscape metrics are algorithms that quantify the spatial structure of land-cover 

patterns—primarily composition and configuration—within a geographic area (Frazier 

2019). Landscape metrics typically rely on land units, referred to hereafter as patches, as 
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the fundamental building blocks for computation. Patches represent relatively 

homogenous areas of land-cover that differ from their surroundings (McGarigal, 

Cushman, and Ene 2012). We use patches as our unit of assessment (as opposed to larger 

parcel boundaries) because in urban areas, patches tend to be small and heterogeneous 

within parcel boundaries.   

A suite of landscape metrics was selected to quantify land-cover composition and 

configuration based on correspondence with the four components of LSA: size, shape, 

distribution and connectivity (Turner et al., 2013). Size is the relative extent of an area of 

a particular land cover. Shape is the form of an area of a particular land cover (i.e., 

elliptical, rectilinear) and also considers the complexity of the land cover’s boundaries 

(Connors et al., 2013). Distribution is the spatial arrangement (adjacency) of land-cover 

types, such as random, aggregated, or uniform (Gustafson, 1998). Connectivity is the 

linking, or lack thereof, between land covers of similar ecological or social significance 

(Schumaker, 1996). 

Four class-level landscape metrics were computed in the software program 

FRAGSTATS (McGarigal et al., 2012) to capture each of the four components of LSA. 

Percentage of Landscape (PLAND) quantifies the proportional abundance of each patch 

type in the landscape and represents the area or size of each land-cover class (e.g., built-

up, vegetation). The median Shape Index (SHAPE_MD) is used to quantify shape. This 

index measures shape compactness where a value of one constitutes a square patch and 

higher values represent increasing complexity in shape. SHAPE_MD is calculated by 

taking the median of all patch-level Shape Index values for a given class (i.e., the median 

of the Shape Index for all vegetation patches). The Interspersion and Juxtaposition 

Index (IJI) is used to measure distribution. Higher values mean a proportionate 

distribution of patch type adjacencies (i.e., equal adjacency); a value of zero means a 
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patch type is poorly interspersed. Lastly, the median Euclidean Nearest-Neighbor 

(ENN_MD) is used to measure connectivity. It is calculated by measuring the straight-

line distance between the center of a patch and the nearest neighboring land unit of the 

same class. Since the study sites are small, we are using this distance between patches as 

a proxy for connectivity. Like the Shape Index, ENN_MD is a class-level metric that is 

computed by taking the median value of all patches in a land-cover class. Increasing 

values constitute increasingly dispersed patterns of patches of the same class. These four 

metrics were chosen for their direct relationships to the components of configuration, 

their intuitiveness and ease of interpretation for non-experts, as well as their use in 

previous scholarship linking environmental outcomes to land system composition and 

configuration (Connors, Galletti, and Chow 2013; Li et al. 2012) and measuring 

landscape change over time (Smiraglia et al. 2015). To calculate the metrics, the land-

cover maps for each year were cropped to the study area with a 30 m (1 pixel) exterior 

buffer added to decrease edge effects (McGarigal and Marks, 1995). 

2.4.2.2 Land Surface Temperature (LST) and Normalized Difference 

Vegetation Index (NDVI).  

The average LST and the Normalized Difference Vegetation Index (NDVI)—an 

indicator of vegetation vigor—were calculated using the same cloud-less, summer time 

Landsat 5 Tier 1 Surface Reflectance imagery as the LULC classification. LST is regularly 

used to capture facets of urban climate and studies of urban landscapes (Li et al. 2016; 

Myint et al. 2015; Zhang, Murray, and Turner 2017). NDVI is used in a range of studies 

to measure the rudimentary character of vegetation (Fan and Myint 2014; Qin et al. 

2017), and here NDVI is used to signify the density and quality (greenness) of vegetation 

cover. LST was emissivity corrected using NDVI (Shen et al. 2016). To control for daily 

and monthly variations in temperature, relative class-level NDVI and LST values are 
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used (i.e., water is 5° C cooler than the study area average). Relative values were 

computed by taking the difference between the average class value and the average value 

for the entire study area on a given day. The relative NDVI value for a given class is the 

difference between the average NDVI of the study area and the average NDVI for all 

patches in a given class. The relative LST value for a given class is the difference between 

average LST of the study area and the average LST for all patches in a given class. 

2.4.2.3 Bird Community Surveys.  

The bird survey data at the Rio Salado and New River sites (Fig. 1) contains 

observations of birds seen or heard for a 40-m fixed radius (fixed-radius point count) at 

a 15 minute interval (Bateman et al., 2017). Surveys were completed within four hours of 

sunrise twice annually, once during the winter (December-February) and once during 

the spring (March-May). One bird survey site is located near the Rio Salado and one at 

the New River site (Fig. 1). Observations began in 2001 and are ongoing; we used the 

publicly available data for 2001-2015 for our analysis (n = 14). Community-level metrics, 

including annual bird abundance, richness, and turnover were calculated for each of the 

survey sites (Banville et al., 2017). Annual abundance is calculated as the greatest 

number of individuals of each species observed at the site during the survey year. Annual 

species richness is the number of unique species found at the site during the survey 

period. Turnover is the percentage of species in the community that were lost or gained 

compared to the previous survey. Community metrics were organized and calculated 

using the tidyverse package in R (Wickham 2017). 

2.4.3 Analyses 

Research question one was examined descriptively because of the small number 

of years for which there is LULC data (n = 6). The slopes (i.e., rate of change) of the 

landscape metrics for size, shape, distribution and connectivity were calculated and 
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compared between sites across the six years of data. Both magnitude and direction of 

change were examined.  

To answer research question two, repeated measures correlations were used to 

determine the relationship between the class-level landscape metrics and the class-level 

NDVI and LST values (rmcorr package, Bakdash and Marusich, 2017). Repeated 

measures correlations are preferred over a simple regression or correlation because the 

yearly landscape metrics and environmental outcome variables are non-independent 

observations (Bakdash and Marusich 2017). For the repeated measures correlation, the 

association of one landscape metric with one environmental outcome is calculated with 

each year of data acting as the repeated measure. 

 For research question three, a general linear regression was used to determine 

how the bird community changed over time and between sites for abundance (n = 14), 

richness (n = 14) and turnover (n = 13), followed by an ordination of sites in species 

space to compare the community composition between sites and years. Abundance, 

richness, and turnover are the dependent variables while time and sites are the 

independent variables. We tested for normalcy using a Q-Q plot as well as plotted 

residuals and did not note heteroscedasticity. Given the small number of samples, we 

determined that a linear regression was appropriate to test the general trend over time.  

Temporal and spatial differences in bird community composition were tested 

using nonmetric multidimensional scaling (NMDS) with a square-root transformation 

fitted to two dimensions (vegan package, Oksanen et al., 2018). NMDS is a visualization 

of sites in species space by maximizing the rank correlation between the distance matrix; 

for our analysis we used Bray-Curtis distance and the plotted distances (Clarke 1993). 

Rare species—those observed in less than 10 percent of the total surveys—were removed 

from analysis (McCune and Grace 2002). Dispersion ellipses were calculated based on 
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the standard deviation of weighted averages for the three LSA survey periods (Time 

Period 1: 2001-2004, Time Period 2: 2005-2009, and Time Period 3: 2010-2015) and the 

two sites (Rio Salado and New River). We then fit the landscape metrics onto the bird 

community ordination to calculate the correlation and significance of each metric with 

the bird community. All code and documentation for the analysis is available in a GitHub 

repository: https://github.com/MStuhlmacher/phx-lsa. 

2.5 Results 

2.5.1 Question 1: Change in Land System Architecture 

Research question one examines the changes in composition and configuration of 

land-cover patches at the sites and their resultant land covers. Despite different locations 

in the Phoenix metropolitan area (i.e., center vs. fringe), both sites started with a similar 

level of built-up land (Fig. 3, 4). By 2010, the New River site has 18% more built-up area.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Land use/land cover maps for the (A) Rio Salado and (B) New River sites. 
 

https://github.com/MStuhlmacher/phx-lsa
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Cropland at the New River site was almost entirely urbanized and, at both sites, 

desert land also made up a large portion of what was eventually urbanized. A greater 

proportion of desert land was developed at the Rio Salado site, but approximately 26% of 

it was maintained, largely in desert parklands adjacent to the river (Fig. 3, 4). The 

amount of vegetated land cover increased at both sites, but the Rio Salado gained more 

in terms of both vegetation and water. 

 

 

 

 

 

 

 

 

 

Figure 4. Land-cover class conversion between 1985 and 2010 at the Rio Salado and 
New River sites. Values in parenthesis are the percentage of land a given class covers in 
the study area. 

 

The shape of the land covers at the Rio Salado site underwent little change and 

largely remained compact, with a notable exception of the addition of water in the 

elongated lake (Table 1). In contrast, the land-cover classes at the New River site were 

less compact to start and became marginally more compact as development consolidated 

patches of different land-cover types. Shape compactness for the crop class increases at 

both sites, likely a function of the decreasing amount of cropland and the consolidation 

of the few remaining crop patches (Fig. 3). 
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Table 1. Change in size, shape, distribution, and connectivity at the Rio Salado and New 
River sites by land-cover class. Values in parenthesis are the rate of change (slope) of the 
landscape metrics between 1985 and 2010.  
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Rio Salado 
Increasing 

(0.805) 
Decreasing 

(-1.182) 
Decreasing 

(-0.005) 
Increasing 

(0.152) 
Increasing 

(0.230) 

New River 
Increasing 

(1.704) 
Decreasing 

(-0.567) 
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(-1.213) 
Increasing 

(0.077) 
No Change 
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Rio Salado 
No Change 

(0) 
No Change 

(0) 

More 
Compact 
(-0.008) 

No Change 
(0) 

Less 
Compact 
(0.013) 

New River 
More 

Compact 
(-0.012) 

More 
Compact 
(-0.004) 

More 
Compact 
(-0.005) 

More 
Compact 
(-0.004) 

More 
Compact 
(-0.001) 

D
is

tr
ib

u
ti

o
n

 
(I

J
I)

 

Rio Salado 
More 

Interspersed 
(0.892) 

More 
Interspersed 

(0.296) 

Less 
Interspersed 

(-2.085) 

More 
Interspersed 

(0.054) 

More 
Interspersed 

(1.581) 

New River 
Less 

Interspersed 
(-0.385) 

Less 
Interspersed 

(-2.049) 

More 
Interspersed 

(0.137) 

Less 
Interspersed 

(-0.327) 

More 
Interspersed 

(0.472) 
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Rio Salado 
More 

Isolated 
(0.460) 

More 
Isolated 
(0.619) 

More 
Isolated 
(22.589) 

More 
Isolated 
(0.228) 

Less 
Isolated 
(-0.560) 

New River 
Less 

Isolated 
(-1.467) 

More 
Isolated 
(0.705) 

More 
Isolated 
(2.892) 

Less 
Isolated 
(-6.269) 

Less 
Isolated 
(-3.372) 

 

Distribution values show the largest differences between the sites: built-up, 

desert, crop, and vegetation classes have opposite trends at the two sites (Table 1). Land 

covers within the Rio Salado site became more interspersed, and land covers within the 

New River site became less interspersed. Water, the one class with agreement, became 

more interspersed at both sites. 

Desert and cropland became more isolated at both sites—likely a function of the 

decreasing amounts of those classes as well as the increasing interspersion of built-up 

lands. Water, on the other hand, was less isolated at both sites and was the only class at 

the Rio Salado that did not become more isolated. The built-up and vegetation land-
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covers increased in connectivity for the New River site, while these two land-cover 

classes at the Rio Salado site did not. 

The contrasting design goals of the sites led to two distinctive differences. First, 

the city of Tempe’s goal of encouraging development balanced with the goal of creating 

outdoor recreational spaces which led to less built-up land and more vegetation and 

desert land at the Rio Salado site compared to the New River site. The “recreational” 

(i.e., desert and vegetation) and built-up land-covers became more isolated and 

dispersed. Conversely, at the New River site, almost all classes became less interspersed 

as the development consolidated land-cover patches. Second, the creation of Tempe 

Town Lake to meet flood control goals constituted a major difference in land-cover 

composition between the two sites. The more typical means for ensuring flood-control in 

the Phoenix metropolitan area—in which the area in and around a riverbed is left 

undeveloped or only developed with land covers that are resilient to flooding (i.e. 

playgrounds and playing fields)—was employed at the New River site. The distinctive 

lake created by channelizing the Rio Salado is a function of the way in which the city tied 

flood control to “achieving the greatest social and economic benefits for the citizens of 

Tempe” (City of Tempe, 1982: 11-13). The Rio Salado in Tempe now serves as a focal 

point for tourism and large-scale community events. 

2.5.2 Question 2: Land Surface Temperature, Vegetation Abundance, and 

LSA Change.  

Research question two examines the differences between NDVI and LST at the 

two sites and asks which LSA modification—size, shape, distribution, and connectivity—

had the greatest impact on NDVI and LST. Figure 5 and 6 present NDVI and LST values 

from two Landsat scenes in early August in 1985 and 2010 in order to visualize the 

spatial distribution of these values within the study sites. August 8th, 1985 and August 
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13th, 2010 were selected from the available cloudless summer images based on their 

proximity in date and because they are similar to the monthly average minimum and 

maximum temperatures for the area according to the Global Historical Climatology 

Network Daily Database (Menne, Durre, Vose, et al. 2012; Menne, Durre, Korzeniewski, 

et al. 2012). 

Overall, NDVI increased at the Rio Salado site and decreased at the New River 

site (Fig. 5). The New River site had higher NDVI values in 1985 due to the presence of 

large tracts of farmland, but NDVI declined by 2010 as those tracts urbanized. Both sites 

see pockets of greater NDVI with the addition of small, verdant parks and residential 

landscapes.  

 

 

 

 

 

 

 

 
Figure 5. Normalized Difference Vegetation Index (NDVI) maps for the (A) Rio Salado 
and (B) New River sites in August 1985 and 2010. Average NDVI for the whole study 
area is presented below the year label.  Agricultural lands, as well as golf courses and 
traditional (mesic) residential landscaping have the highest values while water has 
negative values. 

 

LST increased at both sites between 1985 and 2010, and the average August 

daytime LST reached approximately 46° C in 2010 at both sites (Fig. 6). The increase in 

temperature at both sites can be attributed to the overall urbanization occurring within 

and outside the study area boundaries (i.e., urban heat island effect) and, perhaps, 
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climate change. In 1985 and 2010, areas with water and vegetation were cooler at both 

sites, and built-up areas had the highest LST. The New River site was cooler in 1985 and 

experienced a much greater increase in temperature than the Rio Salado site—partially 

attributable to the loss of cropland and gain in built-up area. 

 

 

 

 

 

 

 

 
Figure 6. Land Surface Temperature (LST) maps for the (A) Rio Salado and (B) New 
River sites in August 1985 and 2010. Average LST for the whole study area is presented 
below the year label. Color palette was determined by stretching the values within 2.5 
standard deviations of the Rio Salado 2010 mean (SD = 4.7° C). Agricultural lands, as 
well as golf courses and water bodies, are cool while built up surfaces, especially in 2010, 
are hot. 

 

Examining the impact of configuration on NDVI and LST, we find that only shape 

and distribution had statistically significant relationships with these two environmental 

variables (Fig. 7). Size and connectivity did not have statistically significant relationships 

with NDVI and LST so are not presented here. 
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Figure 7. Repeated Measures Correlation graphs for the class-level landscape metric 
values and environmental variables at the Rio Salado and New River sites. Each point 
represents one year of data, and the colors denote the classes. (A) is the relationship 
between class NDVI difference (y-axis) and class shape or distribution values (x-axis). 
Class NDVI difference is the difference between the average NDVI of the site and the 
average NDVI for all patches in a given class. Positive y-axis values indicate greater 
greenness compared to site average. (B) is the relationship between class LST difference 
(y-axis) and class shape or distribution values (x-axis). Class LST difference is the 
difference between the average LST of the site and the class average LST. Negative y-axis 
values indicate that the patches in a given class were cooler than the site average. 

 

At the Rio Salado site, patches that were interspersed were greener (rrm = 0.45, p 

= 0.024) and cooler (rrm = -0.79, p = 2.4e-06) compared to the site average. This 

relationship was determined considering all land classes but was largely driven by the 

built-up, crop, and water classes (Fig. 7). At the New River site, patches that were more 

compact were greener (rrm = 0.46, p = 0.017) and cooler (rrm = 0.4, p = 0.044) compared 

to the average. Overall, the statistically significant relationships were most often driven 

by the built-up, crop, and water classes with riverbed and vegetation having a smaller 

range of values. Shape and LST had the opposite relationship at the two sites. There was 
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very little change in the shape of patches at the Rio Salado site, so the relationship was 

largely driven by the only land-cover classes that did change (water and the crop). Thus, 

more weight should be given to the New River shape result—that more compact patches 

are cooler—because it has a greater number of non-zero values. 

Overall, there were moderate differences between the sites in terms of NDVI and 

LST. NDVI at the Rio Salado site increased marginally, while NDVI at the New River site 

decreased dramatically (largely owing to the urbanization of cropland). LST for both 

sites rose, ending at approximately the same average temperature. The New River site 

experienced a larger increase in temperature, but it was approximately 2.5°C cooler than 

Tempe in 1985. The repeated measures correlation indicates that shape and distribution 

have a statically significant relationship with NDVI and LST, while size and connectivity 

do not. The small number of years examined in this assessment limit the conclusions we 

can draw with the repeated measures correlation, but the results provide context about 

the effect of landscape metrics as well as the classes that drive the relationships between 

landscape metrics and NDVI/LST. Water, for example, is a driver in all of the 

correlations presented. 

2.5.3 Question 3: Bird Community and LSA Change.  

Research question three evaluates bird community differences between the two 

sites and the role that LSA played in these differences. Bird community abundance, 

richness, and turnover declined at both sites (Fig. 8), but abundance is the only metric 

for which there was a statistically significant difference between the two sites (F= 4.36, 

P=0.04). 
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Figure 8. Bird Community Metrics. The dashed lines are the raw data, the solid lines 
represent the linear regression slope for the community metric (abundance, richness, 
turnover) at the given site from 2001 to 2015. 

 

Abundance values started higher at the New River site, likely a function of the 

nearby undeveloped desert and agricultural land. The steep decline in abundance, from 

approximately 100 to approximately 40 over the course of fourteen years, is attributable 

to accumulative effects of rapid land-use change and urbanization on the urban fringe. 

The Rio Salado site, in the urban center, had lower abundance in 2001 but was more 

stable, potentially due to the addition of water and vegetation classes, which could 

provide consistent resources to the bird community there. The two sites appear to be 

nearing similar levels of abundance over time, following a larger trend in the Phoenix 

metro area where riparian bird communities are shifting toward urban dwelling species 

(Banville et al. 2017).  

Differences between site type and temporal shifts in the bird community (Non-

metric multidimensional scaling - NMDS stress= 0.23; fit R2=0.95) is evidenced in the 

unconstrained ordination of sites in species space (Fig. 9). Temporal shifts are displayed 

on the x-axis, with lower x-values representing earlier survey years (R2=0.32, P= 0.001). 

Over time, the species composition at the sites became more similar. Site differences are 

displayed on the y-axis, with negative y-values representing the New River site and 

positive y-values representing the Rio Salado site (R2=0.36, P= 0.0001). We found that 

the Rio Salado supported a different bird community than it might have if it followed an 
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urbanization trajectory similar to the New River site (Fig. 9). The Rio Salado site 

supported bird species that require aquatic habitat, as well as warbler species, likely due 

to the prevalence of semi-restored, perennial riparian habitat (H. L. Bateman et al. 

2015). Conversely, terrestrial bird species and desert specialist species were more 

prevalent at the New River site. Appendix B contains a table with the four-letter alpha 

code, common name, and scientific name for all bird species in our analysis. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Non-metric multidimensional scaling (NMDS) visualizing the temporal and 
spatial relationship between bird species, and the LSA components of size, shape, 
distribution, and connectivity. The blue circles (Rio Salado) and maroon triangles (New 
River) are the sites over time, arranged in species-space with bird-species labeled by 
their 4-letter alpha codes. See Appendix B for corresponding species names. Vectors 
reflect the strength and direction of the LSA components; only statistically significant 
(P< 0.05) vectors are presented. Site differences are reflected by the y-axis; vectors 
related to Rio Salado are in the upper portion (positive numbers), vectors related to the 
New River site are in the lower portion (negative numbers). Grey ellipses represent 
centroids for the three time periods (Time Period 1: 2001-2004, Time Period 2: 2005-
2009, and Time Period 3: 2010-2015) along the x-axis. Positive x-axis numbers refer to 
earlier time periods beginning in 2001, while negative numbers refer to later time 
periods ending in 2015. 
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Water was one of the most important land-cover classes separating the sites in 

terms of habitat. All landscape metrics for the water class were significantly related to 

the bird community at the Rio Salado: water size (R2=0.73, P= 0.001), water connectivity 

(R2=0.24, P= 0.022), water shape (R2=0.28, P= 0.025), and water distribution (R2=0.52, 

P= 0.001).Conversely, built-up patches were emphasized in relationship to the bird 

community at the New River site: built-up size (R2=0.71, P= 0.001), built-up shape 

(R2=0.34, P= 0.007), and built-up distribution (R2=0.63, P= 0.001). Built-up 

connectivity was positively and significantly related to the Rio Salado bird community 

(R2=0.44, P= 0.003). Consistent with the role of urbanization in the convergence of the 

bird community make-up over time, built-up lands are more significant in the later years 

of the analysis, while the soil/desert and vegetation classes are significant for earlier 

years. Two of the four vegetation landscape metrics were significantly related to the bird 

community at the Rio Salado site: vegetation size (R2=0.48, P= 0.002), and vegetation 

distribution (R2=0.52, P= 0.001) along with soil/desert size (R2=0.74, P= 0.001) and 

distribution (R2=0.52, P= 0.001).  

In answer to research question three, only the bird abundance trend was 

statistically different between the two sites. Bird abundance at the New River site was 

higher to begin with but appears to be nearing similar levels to that of the Rio Salado 

over time. The abundance trend at the Rio Salado was more stable, but still in decline. In 

terms of the role that LSA plays in the bird community differences between the sites, the 

interspersed patches of desert and vegetation noted above were also found to be 

significant in their relationship with the bird community at the Rio Salado. 

The bird community’s relationship with water and built-up land was even more 

pronounced; size, shape, distribution and connectivity were all significant for the water 

and built-up classes at the Rio Salado site. The differences in the sites’ bird communities 
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is attributable to the presence of desert, vegetated areas, and water at the Rio Salado site 

(more water bird species) and built-up areas at the New River site (more terrestrial 

species). Despite these differences, the bird communities’ species composition at both 

sites—depicted by the three grey ellipses—became more similar over time, a trend 

mirrored in the larger metro-area (Banville et al. 2017). 

2.6 Discussion 

The distinctive design goals of Rio Salado generated various differences in LSA 

compared to the developer-led urban expansion at the New River site. Only two LSA 

differences, however, were sufficiently unique to lead to divergent outcomes for the 

environmental variables examined. First is the difference between the sites in terms of 

configuration—specifically the distribution of recreational land-cover classes. Second is 

the large composition change caused by the addition of Tempe Town Lake at the Rio 

Salado site.  

2.6.1 Configuration 

Among the four components of LSA—size, shape, distribution and connectivity—

the differences in the trajectories of the two sites were greatest in terms of distribution 

(i.e., the interspersion or adjacency of patches of the same class among other classes). 

The Rio Salado’s built-up, vegetation, and desert land-cover patches became more 

interspersed as the area developed (Table 1), which had implications for the site’s surface 

temperature, greenness, and the bird community. The repeated measures correlations 

and NMDS indicate that distribution has a statistically significant relationship with each 

of the examined environmental outcomes: greater interspersion was related to greener 

and cooler conditions (Fig. 7) and the distribution of desert, vegetation, and water 

patches were related to the bird community at the Rio Salado site (Fig. 9).  
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The importance of land-cover distribution in distinguishing the Rio Salado site 

has potential planning implications. Developers, planners, and other land design 

professionals must consider the surrounding context of the land covers with which they 

are working (Connors, Galletti, and Chow 2013). The value of considering the 

composition and configuration of landscapes as a whole is well understood (Huang et al. 

2019; Nassauer and Opdam 2008; Steinitz 2012; Turner 2016; Vadjunec et al. 2018), 

and our findings on the importance of distribution highlight this further. Distribution, of 

all the components of LSA, is a measure of configuration strongly tied to the surrounding 

landscape. 

Notably, our findings about the primacy of distribution are counter to much of 

the previous LSA literature that has found composition to be the primary driver of LST 

(Li et al. 2017; Li et al. 2012; Zhou, Wang, and Cadenasso 2017; Zhou, Huang, and 

Cadenasso 2011), although at least one LST study  (Li et al., 2016) also found 

configuration to be more important than composition. Additionally, the finding that 

interspersed patches are greener and cooler is contrary to some previous findings on 

pattern and LST (Fan, Myint, and Zheng 2015; Li et al. 2017; Li et al. 2012; Myint et al. 

2015). Configuration relationships, however, have been found to vary in magnitude, 

significance, or direction based on the location of the case study (Zhou, Wang, and 

Cadenasso 2017), the scale (Connors, Galletti, and Chow 2013) and the land-cover class 

evaluated (Myint et al. 2015). The variation in scale may partly be explained by the 

Phoenix metro-area findings that clustered green space enhances local cooling but 

interspersed patches lead to greater regional cooling (Zhang, Murray, and Turner 2017). 

Our findings on the role of distribution may be influenced by our methodology. 

The majority of previous research has examined one class (i.e., greenspace or impervious 

surface) at a time (Fan, Myint, and Zheng 2015; Li et al. 2012; Zhang, Murray, and 
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Turner 2017). We chose to use a repeated measures correlation, which considers the 

relationship between NDVI and LST with all land-cover classes together but also 

identifies which classes drive the relationship. Methodologically, this mirrors the need 

for thinking about and planning land-cover change in context. The repeated measures 

correlation may be more appropriate than examining one class in isolation because land-

cover classes co-exist in a landscape, and any environmental impacts are a response to a 

mosaic of heterogeneous land covers. This is especially the case in urban green spaces, 

which are functional components of urban ecosystems that interact spatially with 

surrounding land-covers (Noss 1987; Tian et al. 2011).  

2.6.2 Composition 

The addition of Tempe Town Lake—a major change of land composition—allowed 

the Rio Salado site to support waterbird and warbler species. The New River site, with its 

greater amount of built-up land cover, supported more terrestrial bird species (Fig. 9). 

This aligns with multi-site evaluations in central Arizona which have found land-change 

to be a dominate factor in changes in species composition over time, leading to more 

unique species between land-use types (Allen et al. 2019). Water was also one of the 

most influential classes in determining the relationships of the repeated measures 

correlations (Fig. 7).  

Additionally, abundance declined less precipitously at the Rio Salado site (Fig. 8), 

which may be attributable to the lower levels of abundance to begin with or the addition 

of water. In the Phoenix metro-area, abundant surface water can lead to higher levels of 

bird diversity than the outlying desert (Andrade et al. 2018). The lake creation may have 

slowed the decline of bird diversity at the Rio Salado, but diversity and abundance at the 

two sites seem to be converging. These trends reflects the larger, regional scale shifts in 

which the riparian bird community is shifting toward urban dwelling, resident species 
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(Banville et al. 2017) along with a decline of desert species in the southwest (Iknayan and 

Beissinger 2018; Warren et al. 2019) and the broader North American avifauna decline 

(Rosenberg et al. 2019). 

2.6.3 Summary 

In summation, despite distinctive design goals and corresponding differences in 

the LSA of the two sites, only moderate differences in the environmental outcomes were 

identified. Our findings are consistent with Turner and Galletti (2015), who also found 

modest improvements in the environmental performance of an urban development that 

employed purposeful environmental design. It follows that one of the major policy and 

planning implications of our study is that existing methods from LSA (and similar 

landscape design fields) can inform sustainable urbanization by providing quantifiable 

metrics for measuring a range of environmental outcomes (Turner 2016; Turner et al. 

2013; Turner and Galletti 2015; Wu 2019). There is more to be done, however, before 

LSA methods are regularly operationalized in land-based decision making. In this study, 

we focused on environmental consequences, but recognize that the inclusion of the social 

dimensions of LSA (e.g., housing costs or proximity to recreation spaces) would alter our 

results. Future LSA work requires collaboration with government officials, policy 

makers, planners, developers, and other stakeholders to identify and monitor relevant 

socio-environmental desired outcome variables and frame them in terms of their 

contribution to neighborhood, city, or regional sustainability goals (Aragon et al. 2019; 

Groffman et al. 2017). 

2.6.4 Limitations 

One limitation of this study is the effect that the selection and the extent of the 

two case study sites may have on the results. The Rio Salado’s urbanization is an infill 

development, while the New River site urbanized the fringe of the metropolitan area. 
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These contrasting sites were chosen to ensure divergent design intentions, systematic 

bird survey data, and riparian locations. The initial differences in the land systems of the 

two sites, however, confounds our ability to assess environmental change because they 

do not begin with similar bird communities, NDVI, or LST values. Moreover, while the 

boundaries of each site were selected to be similar in area and inclusive of surrounding 

land-covers, the extent of the study areas influences the LSA, NDVI, and LST results.  

Another limitation involves the 2010 end date of the systematically classified 

LULC data for the Phoenix metropolitan area. High resolution Google Earth imagery 

shows that land changes between 2010 and 2015 are minimal at the New River site. The 

Rio Salado site, however, continues to be developed, including large, commercial, and 

residential buildings along the eastern portions of Tempe Town Lake. This development 

would not likely change the composition trajectories identified from the 1985-2010 data, 

but it may have an impact on the configuration results of our study.  

Finally, the disparate and disjointed means of measuring urban landscape 

composition and configuration is a limitation of this study and all LSA research. Many of 

the most commonly employed landscape metrics were developed for traditional 

ecological questions, and it is not clear how robust they may be for heterogeneous urban 

contexts. Inconsistencies may emerge in urban landscapes because the patterns and 

processes of urban areas differ from the non-urban settings. As an example, the urban 

heat island effect is a local climatological process unique to urban areas (Oke et al. 2017), 

and changing the metrics applied to LSA and temperature have yielded different 

outcomes (Li et al. 2016; Zhou, Wang, and Cadenasso 2017; Zhou, Huang, and 

Cadenasso 2011). The research community has yet to systematically address this issue.   
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2.7 Conclusion 

Our research investigated how the divergent design intentions of the Rio Salado 

and New River sites affected the areas’ LSA and explored some environmental outcomes 

of this change. The findings indicate that few LSA changes were sufficiently unique to 

contribute to divergent environmental outcomes, but those that did had an outsized role 

in shaping the differences between sites. The design goals of the Rio Salado resulted in 

the interspersion of built-up, vegetation, and desert patches. Distribution (the 

interspersion of patches) was found to be statistically significant in terms of all analyzed 

environmental outcomes. The distribution of non-built (vegetation, water, and 

soil/desert) land cover was related to the Rio Salado bird community, and greater 

interspersion was related to cooler land surface temperature and higher vegetation 

presence/health at the Rio Salado site. The channelization of the Rio Salado into Tempe 

Town Lake allowed the site to support more waterbird and warbler species. In contrast, 

with less surface water and greater built-up area, the New River site supported mostly 

terrestrial species.  

Advancing understanding about the relationship between LSA and 

environmental outcomes is important for a range of research fields—landscape and 

urban ecology, landscape architecture, urban climatology, geodesign, and LSS—and to 

urban planning. Many cities are developing or redeveloping their urban structure, 

especially in riparian areas. The composition and configuration changes cities make in 

these waterfront development projects will affect the areas’ environmental outcomes. We 

encourage using (and improving) LSA’s quantitative geospatial methods to plan land-

cover change contextualized by the surrounding landscape as well as environmental, 

social, and economic goals. Our queries and findings are the beginning of a line of 
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research that will provide insights on design goals and their impacts on composition, 

configuration, and environmental outcomes. 
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CHAPTER 3 

INSTITUTIONAL SHIFTS AND ENVIRONMENTAL CHANGE: A LAND SYSTEM 

ARCHITECTURE CASE STUDY FROM THE REPUBLIC OF CUBA DURING THE 

PERÍODO ESPECIAL 

3.1 Abstract 

Policy plays a key role in where, how, and when land systems are modified. While 

the role of policy in governing land systems is commonly acknowledged, it is often 

under-addressed due to difficulties isolating the effect of policy or data availability. We 

begin to fill this gap by examining the landscape modifications in Cuba brought about by 

the collapse of the Soviet Union and the resulting El Período Especial en Tiempos de Paz 

(“The Special Period in Time of Peace”). Employing a time-series of satellite imagery, we 

compared the land system and environmental variables before and after the collapse of 

the Soviet Union. We found that the Cuban landscape underwent statistically significant 

change that can be linked to the institutional shift that occurred in this period. In 

particular, concentrated policy efforts to transform agricultural production and protect 

forest lands corresponded to landscape composition and configuration change (or, in the 

case of protected forest lands, a lack of change). The landscape and environmental 

change resulting from the Período Especial’s institutional shifts became visible in the 

landscape in as quickly as a few years or as slowly as a few decades. 

3.2 Introduction 

With global populations expected to increase by an additional two billion over the 

next thirty years (United Nations 2019) and over 75% of the Earth’s ice-free land 

(terrestrial surface) already modified by humans (Verburg et al. 2013), it is increasingly 

important to understand how land systems contribute to environmental change locally 

and globally. Governance is an acknowledged but commonly under-addressed aspects of 
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land systems (Verburg et al. 2015) or other socio-environmental systems (Ostrom 2009). 

Governance is the coordination and control of actors leading to the creation of 

institutions (Lebel et al. 2006). Institutions are the rules constraining and prescribing 

actors’ interactions such as formal rules (i.e., policy) and informal norms (Crawford and 

Ostrom 1995). With the exception of research on the commons (e.g., Ostrom et al., 2007) 

and recent attention to illicit land changes (e.g., McSweeney et al., 2017; Tellman et al., 

2020), much of land system governance research is focused on formal institutions such 

as policies. In the context of land systems, policy can take many forms, such as zoning, 

establishment of protected areas, treaties, taxation, regulation, and permitting. 

Global level examinations of the role of institutions grouped countries by broad 

institutional structures (i.e., democracy, communism) and compared environmental 

outcomes by group. Corresponding to the mix of economic development levels, resource 

availability, and institutional structures of countries around the world, conclusions of 

this research were mixed. Democracies were found to establish more protected lands, 

were more likely to regulate domestic environmental outputs, and support global efforts 

of environmental regulation (Congleton 1992; Midlarsky 1998; Neumayer 2002). Some, 

but not all, types of pollution decreased with an increase of political freedoms (Barrett 

and Graddy 2000). Namely, democracies produced more methane (Congleton 1992) and 

were also correlated with higher rates of deforestation, carbon dioxide emissions, and 

soil erosion (Midlarsky 1998).  

The role of institutional changes on land systems and environmental outcomes 

can also be examined within countries that have undergone broad institutional change 

which holds some country level variables constant. The dissolution of the Soviet Union 

(USSR) provided several case studies as Soviet bloc countries transitioned to different 

institutional structures. For instance, broad land system change analysis in southern 
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central Siberian Russia, found that deforestation due to logging decreased, reforestation 

occurred, and the extent of agricultural lands decreased (Bergen et al. 2008; Peterson et 

al. 2009).  

The Republic of Cuba is a good candidate for research that furthers the 

unresolved debate about institutions and environmental protection. Cuba has undergone 

profound institutional transitions over the course of several decades, especially those 

stemming from the Cuban revolution in 1959 and the dissolution of the USSR in 1991. 

Moreover, these changes took place within an archipelago holding the highest endemism 

of all the West Indies and Antillean islands; 90% of the amphibians, 85% of the reptiles, 

50% of the flowering plants, and 32% of the vertebrates are only found in Cuba (Santana 

1991). 

After the 1959 Cuban revolution, the island’s agriculture (and broader) economy 

became structured almost entirely around capital investments and trade relations with 

the USSR (Choy et al. 2005; Diaz-Briquets and Pérez-López 2000). Sugar was the 

keystone crop, through protected trade with Russia, sugar funded a highly mechanized 

state agricultural program reliant on Soviet machinery and fossil fuels (Choy et al. 2005). 

Indeed, Cuba is said to have had the most tractors per arable unit of land of any country 

in the world during this time (Choy et al. 2005). When the USSR dissolved in 1991, Cuba 

lost its main trade partner, industrial agricultural in the country came to a standstill, and 

an economic crisis followed (Castro and Ramonet 2008; Choy et al. 2005).  

The government termed this economic crisis the “special period in time of peace” 

(“Período Especial en Tiempos de Paz”, often shortened to “Período Especial”). The 

period (1991-2000) brought profound changes in land tenure, including privatization of 

land, an opening of the agricultural commodity market, as well as several initiatives to 

diversify and turn agricultural production inward (Wright 2009). These institutional 
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changes have been subject to a mix of condemnation and praise in regard to the 

country’s sustainability (Maal-Bared 2006; Machado 2017; Pope and Finn 2017; Stricker 

2010). For example, mining and tourism—activities controlled by the government—have 

been found to be the greatest threat to water quality because of their contributions to 

Cuba’s already burdened wastewater system (Maal-Bared 2006). On the other hand, 

initiatives such as the government’s push for low-input, subsistence agriculture in both 

urban and rural areas, have been praised as exemplars of sustainability and food 

sovereignty (McKibben 2005; Wright 2009).  

What impact did these institutional changes have on the Cuban land system and 

environment? We pose this question through the lens of land system architecture—

examining the composition and configuration of land-use, land-covers, and their change 

(Turner, Lambin, and Reenberg 2007; Turner et al. 2013). Land system architecture 

affects processes including the movement of biologically active nitrogen, habitat loss, 

greenhouse gas emission and absorption, and the hydrologic cycles (Hager et al. 2015; 

Lambin et al. 2001). Reliable data, especially time-series data, is often difficult to access 

as US-Cuba relations fluctuate with each new administration (Biegon 2020; Cohn 2010; 

Pope and Finn 2017). Satellite imagery, however, provides unbiased systemic source of 

data on land system and can improve understanding on the processes that influence 

land-based outcomes, even when other data are scarce (Tellman et al. 2020). 

Employing a time series of Landsat imagery (1985-2010) as well as other 

remotely sensed data sources, we evaluated the linkages between institutional changes 

and land system changes as a result of the Período Especial using a quasi-experimental 

design approach. Specifically, we asked:  
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1. How did the composition and configuration (land system architecture) of 

Cuba’s land system change as a result of the institutional shifts caused by the 

collapse of the Soviet Union? 

2. How are the land system architecture and environmental outcomes 

temporally linked to the policy changes in the Período Especial? 

3.3 Data and Methods 

3.3.1 Study Area 

The Cuban archipelago comprises approximately 1600 islands; the largest island 

of the archipelago (hereafter the main island) is about 104,000 km2 in area. Cuba’s 

population was ~10,098,000 in 1985 and ~11,226,000 in 2010 (United Nations 2018a). 

Historically, Cuba’s economy has been centered around the production of sugar cane, 

tobacco, and rum (Alvarez 2004). These still make up a substantial portion of the 

country’s exports—sugar (34%), rolled tobacco (19%), rum (7.3%)—along with nickel and 

other minerals (10%) (Hausmann et al. 2012). 

The biomes of Cuba’s main island include: tropical/subtropical moist/dry 

broadleaf forests, mangroves, and flooded grasslands and savannas (Dinerstein et al. 

2017). We focused our analysis on the main island because the 30m resolution of 

Landsat imagery cannot adequately capture many of the smaller islands of the 

archipelago which are a kilometer or less in area.  

3.3.2 Research Design 

Figure 1 visualizes the research design. Remotely sensed imagery from each year 

was used to calculate land system and environmental variables. Values from pre and post 

the dissolution of the USSR were compared via statistical tests and linked to the policy 

changes that occurred during the period. 
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Figure 1. Research design diagram. Timeline along the top shows the years analyzed 
and the major events related to institutional change. Input data from remotely sensed 
sources represented in grey, with intermediary data below. Statistical tests which 
compare the two periods (1985-1990 vs. 1995-2010) are labeled with circles 
corresponding to the research question. 
 

3.3.3 Cuban Policy Documents 

We collected Cuban policy documents from 1963 to 2012 at the Law Library 

archives at the United States Library of Congress. In advance of the visit to the archives, 

a list was made of all potentially relevant primary source policy documents visible in the 

online catalogue. While at the archive, primary source documents as well as additional 

secondary source documents were scanned. Scanned documents were then ordered by 

year of enactment and summarized. Those that were deemed potentially relevant were 

translated and coded according to the LULC class they may affect. Five types of policy 

documents were collected: leyes (laws by the National Assembly of People’s Power—

Cuba’s largest legislative body), decreto leyes (decree-laws by the Council of State—the 

smaller legislative body), decretos (decrees by the Council of Ministers), and 

instrucciónes (instructions by Cuba’s judicial body). It should be noted that all 
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documents related to land and environment available in the archive were scanned but, 

because of tenuous relations between the two countries, may not reflect the full set of 

Cuban policies instituted in this era. 

3.3.4 Land and Environmental Data 

Landsat 5 Thematic Mapper (TM) served as the main data source for the land 

use/land cover (LULC) classifications and computing environmental variables (Fig. 1). 

Landsat 5 was launched mid-1984 and decommissioned in 2013. Our analysis used 

satellite imagery from 1985, 1990, 1995, 2000, 2005 and 2010 to provide two sets of 

datapoints before the fall of the USSR and four after to examine short and long-term 

impacts. 

3.3.4.1 Land use/land cover classification 

The LULC classification used a combination of Landsat 5 TM Tier 1 imagery, the 

Shuttle Radar Topography Mission (SRTM) 30m digital elevation model (Farr et al. 

2007), and Global Radiance-Calibrated Nighttime Lights Version 4, Defense 

Meteorological Program Operational Linescan System (DMSP-OLS) imagery when 

available. A cloud-free Landsat 5 composite was created for each year, pulling from 

surrounding years when a complete cloud-free coverage was not attainable from one 

year. All of the Landsat bands were included along with the Normalized Difference 

Spectral Vector (NDSV), the Enhanced Vegetation Index (EVI), and texture computed 

from each band’s gray level co-occurence matrix (Haralick, Shanmugam, and Dinstein 

1973). NDSV is a stack of indices that is computed by taking the normalize difference of 

every band with each other (Trianni et al. 2015). We used NDSV over a smaller subset of 

normalized difference calculations (such as NDVI and NDWI) because including all has 

been shown to increase classification accuracy (Goldblatt et al. 2018). 
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A random forest classification was used to identify 1) cropland, 2) barren, 

grasslands and shrublands, 3) built-up, 4) forest, and 5) water LULC classes. The 

classification was run in Google Earth Engine with 30 trees, because average accuracy 

often levels off between 10 and 50 trees (Goldblatt et al. 2016). Two random forest 

classifiers were trained, one for 1985 and 1990 (the years for which there is not DMSP-

OLS data) and one for 1995 and 2000 (which included the DMSP-OLS nighttime lights 

imagery).  

Each classifier was trained with 760 labels and each classification was validated 

with 100 labels. The training and validation data was generated by randomly distributing 

samples according to the proportional presence of that land cover in each year 

(determined via the 2000 MODIS MCD12Q1.51 Land Cover Type classification) (Foody 

2017; Wulder et al. 2006). Samples were hand labeled using high resolution imagery for 

2005 and 2010. Landsat imagery was used for the remaining years because high-

resolution, cloud-free imagery was not accessible. In the original validation and training 

set, each label was agreed upon by at least two hand labelers. 160 more labels were 

added to improve the accuracy for a total of 760 training labels for each classifier. 

In order to have a greater number of training labels and predictor data for each 

classifier, we combined training labels and predictors from two years. This resulted in 

using 760 labels for each classifier instead of running each year separately with 380 

labels per year. The 1985/1990 combined classifier was used to classify imagery from 

1985 and 1990 separately. The 1995/2000 combined classifier was used to classify 

imagery from 1995, 2000, 2005 and 2010 separately. 
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3.3.4.2 Classification accuracy assessment 

For each year, 100 validation samples were used to calculate the accuracy results 

for the land cover classification. We computed overall accuracy, as well as precision and 

recall by class. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑎. 𝑘. 𝑎. 𝑢𝑠𝑒𝑟′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑎. 𝑘. 𝑎. 𝑠𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

where TP = true positive, TN = true negative, FN = false negative & FP = false positive.  

3.3.5 Measures 

3.3.5.1 Landscape metrics 

The LULC classifications were used to calculate landscape metrics. Landscape 

metrics are algorithms that quantify the composition and configuration of relatively 

homogeneous patches of land within a geographic area (Frazier 2019; McGarigal, 

Cushman, and Ene 2012). Composition is the proportionate area of land patches and 

configuration is their spatial arrangement. Table 1 presents the metrics used to measure 

composition (size) and configuration (shape, connectivity, and distance between 

patches), which together constitute land system architecture (Turner et al. 2013).  

Table 1. Patch-level metrics used to quantify size, shape, and connectivity at the patch 
level. Equations are derived from FRAGSTATS (McGarigal, Cushman, and Ene 2012). 

 
Metric 
Name 

Description Equation 

SIZE 
(composition) 

Patch Area 

Sum of all pixels in a 
given patch. 
Calculated in 

hectares. 

𝑎𝑖𝑗 × 250 

SHAPE 
(configuration) 

Fractal 
Dimension 

Index 

Measure of shape 
complexity computed 

with a patch’s area 
and perimeter. 

2 × ln(0.25(𝑝𝑖𝑗  × 500))

ln(𝑎𝑖𝑗 × 250,000)
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CONNECTIVITY 
(configuration) 

Contiguity 
Index 

Assess spatial 
connectedness of 
pixels in the same 

patch. 

[
∑ 𝑐𝑖𝑗𝑟

𝑧
𝑟=1

𝑎𝑖𝑗
] − 1

𝑣 − 1
 

DISTANCE 
(configuration) 

Euclidean 
Nearest 

Neighbor 
Index 

Distance of each patch 
to the nearest patch of 

the same class. 
ℎ𝑖𝑗 

WHERE: 
𝑎𝑖𝑗 = 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠, 

𝑝𝑖𝑗 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ 𝑖𝑗 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠, 

𝑐𝑖𝑗𝑟 = 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑝𝑖𝑥𝑒𝑙 𝑟 𝑖𝑛 𝑝𝑎𝑡𝑐ℎ 𝑖𝑗, 

𝑣 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥, 
ℎ𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑎𝑡𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖 (𝑚) 

 

We chose these metrics because of their use in similar research and their ease of 

interpretation  (Li et al. 2012; Stuhlmacher et al. 2020). We computed patch level 

metrics using the landscapemetrics R package (Hesselbarth et al. 2019; McGarigal and 

Marks 1995). To reduce computation and memory loads, the LULC classification was 

aggregated from 30m to 500m resolution using the majority rule.  

3.3.5.2 Environmental variables 

We computed brightness, greenness, and wetness from the tasseled-cap 

transformation as proxies of environmental conditions related to the presence of bare 

ground/soil, vegetation, and levels of soil moisture. A tasseled-cap transformation is a 

linear combination of image bands, we used the coefficients computed for Landsat 5 

from Crist and Cicone (1984). Brightness corresponds to the overall reflectance of the 

image, in particular the presence of soil or other bare areas (i.e., soil brightness), 

greenness identifies high levels of vegetation, and wetness corresponds to soil or surface 

moisture (Crist and Cicone 1984).  

3.3.6 Statistical Analysis 

We used Kruskal-Wallis tests to determine if the change in patch-level landscape 

metrics from 1985-2010 was statistically significant. The Kruskal-Wallis test was chosen 
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because it is non-parametric as our data did not satisfy regression assumptions. 

Additionally, because we were particularly interested in comparing the years before and 

after 1991, we employed a post-hoc analysis—the Dunn Test—to quantify which changes 

between years were statistically significant. The p-values for the Dunn Test results were 

adjusted using the Benjamini-Hochberg method. The Dunn Test is a commonly used 

post-hoc analysis and was appropriate for our data because the groups had an unequal 

number of variances (Zar 2010).  

To determine how the landscape change affected environmental variables, we 

averaged pixel-level environmental values by class and by year. Each year’s class level 

values were used to compute the percent change of the environmental variables using 

1985 as the baseline. 1985 was used as the baseline because the USSR slowly weakened 

before it dissolved in 1991, and the land system architecture of Cuba may already have 

begun to change in response by 1990.  

3.4 Results 

3.4.1 Environmental Policy 

A total of fifty-three policies from the Library of Congress archives were collected, 

with forty determined to be potentially relevant to land systems or the environment. The 

set of forty were subset further based on dates of enactment (1980-2012) and specific 

content of the policy as it related to land systems (Table 2). 

Table 2. Environmental policies (laws, decrees, resolutions, and instructions) from 
1980 to 2012 collected at the United States Library of Congress ordered by date of 
enactment. Citation column contains the policy sponsor and the year enacted. 

Policy 
Type & No. 

Name Summary Citation 

Ley No. 27 
Gran parque nacional 

Sierra Maestra 
Establishes a national 

park in the Sierra Maestra 
Roa García, 

1980 
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Decreto No. 
66 

Reglamento de mercado 
libre campesino 

Allows a free market for 
surplus agricultural 

products. Expands rights 
for urban farmers 

Castro Ruz, 
1980 

Instrucción 
No. 99 

Sobre la succesión de la 
tierra de los pequenos 

agricultores 

Allows for small plots of 
land to be inherited by 

others who have worked 
the land 

Edelemann, 
1981 

Decreto No. 
106 

Reglamente del mercado 
libre campesino 

New regulations for the 
previously established 

free market for 
agricultural products 

Castro Ruz 
and Villa 

Sosa, 1982 

Ley No. 36 Cooperativas agropecuarias 
Gives legal recognition to 
agricultural cooperatives 

Pardo, 1982 

Decreto Ley 
No. 63 

Sobre la herencia de la 
tierra propiedad de los 
agricultores pequeños 

Regulations on the 
inheritance of small 

agricultural plots 

Castro Ruz, 
1983 

Decreto Ley 
No. 125 

Regimen de posesion, 
propiedad y herencia de la 

tierra y bienes 
agropecuarios 

Regulations on 
inheritance of land and 

agricultural goods 

Castro Ruz, 
1991 

Decreto Ley 
No. 136 

Del patrimonio forestal y la 
fauna silvestre 

Protection of forests and 
wildlife 

Castro Ruz, 
1993a 

Decreto Ley 
No. 138 

De las aguas terrestres 
Protection and 

conservation of terrestrial 
waters 

Castro Ruz, 
1993b 

Decreto Ley 
No. 153 

De las regulaciones de la 
sanidad vegetal 

Establishes sanitation and 
other public health 

related requirements for 
agricultural products 

Castro Ruz, 
1994 
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Ley No. 76 Ley de minas 

Establishes regulations 
for the protection, 
development, and 

exploitation of mineral 
resources 

Alarcón de 
Quesada, 

1995 

Decreto No. 
199 

De contravenciones de las 
reglaciones para la 

protección y uso racional de 
los recursos hidráulicos 

Defines consequences of 
violating the regulations 

of hydraulic resources 

Castro Ruz 
et al., 1995 

Ley No. 81 De medio ambiente 

Comprehensive 
environmental law about 

protected areas and 
biodiversity 

Alarcón de 
Quesada, 

1997 

Decreto No. 
222 

Reglamento de la ley de 
minas 

Mining regulations 
Castro Ruz 
et al., 1997 

Ley No. 85 Ley forestal Forest protection 
Alarcón de 
Quesada, 

1998 

Decreto No. 
268 

Contravenciones de las 
regulaciones forestales 

Regulation to support the 
forest protection law (No. 

85) 

Castro Ruz 
et al., 1999 

Decreto Ley 
No. 201 

Del sistema nacional de 
areas protegidas 

Establishes a national 
system of protected areas 

Castro Ruz, 
1999b 

Decreto Ley 
No. 259 

Sobre la entrega de tierras 
ociosas en usufructo 

Regulations on the use of 
usufruct land 

Castro Ruz, 
2008 

Decreto No. 
282 

Reglamento para la 
implementacion de la 

entrega de tierras ociosas 
en usufructo 

Regulations to support 
the usufruct land law (No. 

259) 

Castro Ruz 
et al., 2008 
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Decreto Ley 
No. 300 

Sobre la entrega de tierras 
estatales ociosas en 

usufructo 

Consolidation and 
simplification of 

regulations on the use of 
state lands 

Castro Ruz, 
2012 

 

Policies pre and post the collapse of the Soviet Union were focused on different 

themes. From 1980-1991 most policies were focused on agriculture reform. After 1991, 

there continued to be some policy creation around agriculture, but the majority of 

change centered around environmental protection, particularly of forest lands. We thus 

hypothesized considerable change in agricultural lands as a result of the collapse of the 

Soviet Union but minimal change to forest lands.  

3.4.1 Land and Environmental Change 

3.4.1.1 LULC Classification 

The LULC classification resulted in overall accuracies ranging from 85-92% 

(Table 3). Accuracies were lower in 2005 and 2010 because the classification was trained 

using earlier years and validation samples were labeled using different imagery. The 

barren/grass/shrubland class has the lowest precision and recall which was likely 

attributable to being more spectrally mixed compared to the other classes. One 

limitation to our research, along with most research relying on remotely sensed time-

series data, was that changes observed in the LULC classification may be a function of 

classification errors or sensor degradation instead of on-the-ground landscape change. 

Table 3. Accuracy assessment of five land cover classes for Cuba’s main island for 1985, 
1990, 1995, 2000, 2005 and 2010. 

 1985 1990 1995 2000 2005 2010 

Overall Accuracy 90.0% 92.0% 90.0% 91.0% 88.0% 86.0% 

Cropland Precision 88.5% 91.7% 82.8% 79.3% 87.0% 88.9% 

Barren/Grass/Shrubland Precision 55.6% 77.8% 60.0% 60.0% 44.4% 50.0% 

Built-up Precision 100.0% 90.0% 100.0% 100.0% 100.0% 66.7% 
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2010 1985 

Forest Precision 72.7% 81.8% 75.0% 90.9% 69.2% 90.0% 

Water Precision 100.0% 97.8% 100.0% 100.0% 100.0% 100.0% 

Croplands Recall 92.0% 88.0% 96.0% 92.0% 80.0% 64.0% 

Barren/Grass/Shrubland Recall 50.0% 70.0% 30.0% 30.0% 40.0% 60.0% 

Built-up Recall 90.0% 90.0% 90.0% 100.0% 100.0% 100.0% 

Forest Recall 80.0% 90.0% 90.0% 100.0% 90.0% 90.0% 

Water Recall 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

3.4.1.2 Landscape Composition and Configuration 

Cuba experienced considerable change to the composition of LULC on its main 

island after the fall of the Soviet Union (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. LULC class conversions between 1985 and 2010 in Cuba. See Table 4 for the 
percentage of land a given class covers each year. 
 
Cropland, barren/grass/shrubland, and built-up lands changed the most, with the 

majority of their change occurring after 1991 (Fig. 2, Table 4). Cropland was 
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predominately converted to barren/grass/shrubland or built-up areas. Some cropland 

and barren/grass/shrubland also becomes forest land, causing the percentage of overall 

forest land to stay relatively constant, peaking in 2005 and returning 17.4% by 2010. The 

growth of the barren/grass/shrubland class came primarily from cropland that was left 

fallow but secondarily from degraded forest land. 

Table 4. Proportion of LULC for each class from 1985-2010. 

 1985 1990 1995 2000 2005 2010 

Cropland 45.2% 45.1% 39.3% 38.8% 38.1% 27.2% 

Barren/Grass/Shrubland 16.0% 14.0% 17.0% 18.2% 21.3% 27.8% 

Built-up 2.5% 2.7% 2.4% 3.8% 5.2% 8.8% 

Forest 17.4% 19.2% 22.4% 20.6% 16.7% 17.4% 

Water 18.8% 19.0% 19.0% 18.6% 18.7% 18.9% 

 

Water proportion (which includes lakes and rivers as well as the ocean boarding the 

main island) stayed relatively constant over the period. Maps of the LULC for each year 

are in Appendix C. 

We quantified the composition and configuration of these landscape changes in 

terms of patch size, shape, connectivity, and the distance between patches of the same 

LULC class. Figure 3 presents the average values for each metric (i.e., class-level value) 

for the croplands, barren/grass/shrublands, built-up, and forest LULC classes. Water 

was excluded because it was relatively stable (Table 4) and was not expected to fluctuate 

based on policy changes.  
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Figure 3. The average values of patch (A) area, (B) connectivity, (C) distance, and (D) 
shape landscape metrics by year and by class. Each plot has a vertical dotted line drawn 
at 1991, the year that the Soviet Union collapsed. Linear trends were calculated for 
datapoints before (1985-1990) and after the fall (1995-2010) of the Soviet Union, with 
standard errors calculated for 1995-2010 (there was insufficient data to calculate 
standard error for 1985-1990). 
 
For many metrics and classes there was a change in values or trend after 1991 (Fig. 3). 

Croplands have some of the largest magnitudes of change, but depending on the metric, 

barren/grass/shrubland and built-up land also underwent substantial change. Forest 

experienced some change immediately after the 1991, but remained relatively constant. 

Along with the overall decline in cropland, the average patch size decreased 

(Table 4, Fig. 3A). The croplands class experienced an increase in connectivity (Fig. 3B), 

a decrease in distance between patches (Fig. 3C), and increasing shape complexity (Fig. 

3D). The average patch size of the barren/grass/shrublands class increased—similar to 

the total area (Fig. 3A, Table 4). Barren/grass/shrubland increased in patch connectivity 

(Fig. 3B), decreased in distance between patches (Fig. 3C), and experienced a jump in 

shape complexity (Fig. 3D). Consistent with the growth in built-up areas, the average 

patch size of built-up patches (i.e., urban areas) increased slightly (Table 4, Fig. 3A). 

(A) (B) 

(C) (D) 
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Patch connectivity and shape complexity also increased (Fig. 3B & 3D) while the average 

distance between urban patches decreased substantially (Fig. 3C). Forest patches did not 

change considerably in terms of size (Fig. 3A). The connectivity and shape complexity of 

forest patches increased post-1991 but decreased to 1985 levels by 2010 (Fig. 3B & 3D). 

The distance between forest patches also declined immediately after 1991 but increased 

from 1995 onward (Fig. 3C).  

The Kruskal-Wallis test indicated that the changes in the composition and 

configuration of the LULC over time were statistically significant for all classes and 

metrics (Table 5).  

Table 5. Kruskal-Wallis chi-squared values by metrics and by LULC class. All are 
statistically significant (p<0.05). 

 
Crop 

Barren/Grass 
/Shrubland 

Built-
up 

Forest 

Size (Patch Area) 82.9 407.0 352.3 35.5 

Connectivity (Contiguity Index) 79.6 412.9 321.7 35.1 

Distance (Euclidean Nearest Neighbor Index) 101.5 1415.1 1869.2 105.5 

Shape (Fractal Dimension Index) 82.0 342.2 356.8 30.9 

 

The LSA change was different for each LULC class, with higher chi-squared values 

corresponding to a higher likelihood that the variation was not a product of chance (i.e., 

greater change). With the post-hoc analysis (Dunn Test), we examined the difference 

between 1985 and each subsequent year (Fig. 4). See Appendix C, Figs. 2-17 for the Dunn 

Test results for all year combinations. 
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Figure 4. Bar plot of the Dunn test Z value for the comparison between 1985 and each 
subsequent year. Positive or negative Z values indicate the direction of the differences. 
Dark grey bars are statistically significant (p<0.05) and white bars are not. 
 

The year in which the landscape metric values became statistically significantly 

different from 1985 varied by metric and LULC class. Barren/grass/shrubland showed a 

statistically significant difference immediately in 1990 and croplands took the longest to 

have statistically significant differences. By 2005, however, the differences were 

statistically significant for all metrics and LULC classes. After 2005, all classes remained 

significant except for forest. The forest class began to return to 1985 values in terms of 

size, connectivity, and shape (Fig. 4B, C, D). Forest areas also had the lowest magnitude 

of change for most metrics. Collectively, connectivity and distribution (measures of 

configuration) had a greater number of statistically significant years than size (a measure 

of composition). 
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3.4.1.2 Environmental Variables 

Additionally, we examined the change over time for a selection of environmental 

variables calculated from satellite imagery. Table 6 presents the percent change of the 

environmental variables by class. 

Table 6. Class average percent change between 1985 and subsequent years for each of 
the environmental variables.  

  Brightness Greenness Wetness 

Cropland 

1985-1990 -4.7% 6.6% -83.6% 

1985-1995 -2.3% 35.9% -83.4% 

1985-2000 0.9% 34.5% -53.9% 

1985-2005 1.5% 24.7% -33.4% 

1985-2010 3.8% 2.5% 49.8% 

Barren/Grass/ 

Shrubland 

1985-1990 -4.4% 6.2% -87.7% 

1985-1995 -4.3% 29.3% -107.4% 

1985-2000 -1.6% 26.0% -84.7% 

1985-2005 -1.7% 21.5% -83.6% 

1985-2010 -2.8% -7.2% -13.6% 

Built-up 

1985-1990 -2.5% 22.2% -40.4% 

1985-1995 -7.6% 68.1% -69.4% 

1985-2000 -2.5% 63.8% -38.0% 

1985-2005 -0.3% 62.3% -22.4% 

1985-2010 -0.4% 36.8% 32.4% 

Forest 

1985-1990 1.0% 11.9% -175.2% 

1985-1995 2.3% 30.6% -205.5% 

1985-2000 2.8% 29.1% -171.0% 

1985-2005 1.7% 28.3% -197.6% 

1985-2010 -3.2% 9.1% -79.5% 

 

With a few exceptions, the absolute percent change of environmental variables peaked 

between 1995 and 2005. This is consistent with when the majority of landscape metrics 

began to show statistically significant change from pre-collapse values; 56% experienced 

statistically significant change in 1995, 87.5% by 2000, and 100% by 2005 (Fig. 4). 

In the context of our results, brightness corresponds to the amount of bare soil or 

barren land in a given class. The brightness of cropland and barren/grass/shrubland 

decreased immediately in 1990, suggesting that a lower percentage of the crop class was 
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bare ground in 1990 and 1995. The percent change became positive in 2000 and was 

highest in 2010 which means that croplands had the highest proportion of bare soil that 

year. The amount of bare soil in forest lands increased until 2000, indicating perhaps 

some level of stress in the years before and after the collapse of the USSR which 

corresponds to some of the forest conversion seen in Figure 2. Brightness decreased in 

subsequent years and by 2010 the total amount of bare soil in the forest class was lower 

than 1985. 

Greenness corresponds to the presence and health of vegetation in each LULC 

class. Of the four classes, built-up lands (i.e., urban areas) experienced the most change 

in vegetation, and cropland experienced the second highest change. The increase in the 

greenness of urban areas was likely a function of the increase in urban agriculture that 

occurred to meet the nutrition needs of urban residents. Correspondingly, the greenness 

of built-up lands peaked in 1995, immediately after the collapse of the Soviet Union and 

before new trade relationships were established. 

Wetness—the amount of surface moisture in each class—declined for nearly all 

years and classes with forest lands showing the largest decline in wetness. The decline in 

the soil moisture of croplands could correspond to a decrease in irrigation. In other 

classes, which receive the majority of their moisture from rainfall, the meaning of the 

declining values is obscured by any year-over-year changes in precipitation.   

3.5 Discussion 

The land system architecture of Cuba underwent a variety of changes as a result 

of the Período Especial and the corresponding institutional transition. First, agricultural 

lands decreased in total area, patch size, and the distance between patches but increased 

in shape complexity and connectivity (Table 4, Fig. 3). These composition and 

configuration changes point to a move away from large standard plot sizes towards 



  65 

smaller, irregularly sized plots. Much of the agricultural land transitioned to 

barren/grass/shrublands and a portion of it urbanized (Fig. 2, Table 4). There was some 

urbanization during this period, built-up lands increased in area, the distance between 

built-up patches decreased, and the average size, complexity, and connectivity increased 

(Table 4, Fig. 3). Finally, the composition and configuration of forest lands fluctuated 

somewhat with conversions to and from the barren/grass/shrubland class (Fig. 2), but 

by 2010 have values similar to before the Período Especial (Table 4, Fig. 3). Many of 

these changes are linked to policies that came into effect from 1980-2012 (Batchelder 

1952; Diaz-Briquets and Pérez-López 2000; Gott 2004; Houck 2000); next, we link 

these policies to change in agriculture, urbanization, and forest lands/protected areas. 

3.5.1 Agriculture 

The Cuban government’s response to the fall of the Soviet Union can be seen in 

several major agriculture policy changes, many of which occurred before 1991 as the 

USSR began to weaken. The first major change was Decreto No. 66 (1980), which 

established a free market for the sale of surplus agricultural projects. Second, several 

policies expanded legal rights and protections for agricultural cooperatives and urban 

farmers (Decreto No 66, 1980; Ley No. 36, 1982; Decreto Ley No. 125, 1991). Most 

salient to land tenure were 1) the allowances made for small plots of land to be inherited 

by others who have worked the lands (as opposed to a state-ownership model) 

(Instrucción No.  99, 1981) and 2) clarifying the use of usufruct lands (Decreto Ley No. 

259, 2008). 

The sequence of policies suggests that the transition from large, state-run plots to 

smaller, community or individually held plots was an iterative process. For example, free 

markets for agricultural goods were established in 1980 (Decreto No. 66), inheritance of 

small plots became legal in 1981 (Instrucción No.  99, 1981), and the use of usufruct land 
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was clarified in 2008 (Decreto Ley No. 259, 2008). Yet for many years after—in 1982, 

1991, 1994, 2008 and 2012—additional regulations were added to the free market and 

land tenure changes (Decreto No. 106 ,1982; Decreto Ley No. 63, 1982; Decreto Ley No. 

125, 1991; Decreto Ley No. 153, 1994; Decreto No. 282, 2008; Decreto Ley No. 300, 

2012). 

This iteration in the creation and implementation of policies may explain why the 

land system architecture showed impacts as quickly as five years and as late as two 

decades (Fig. 4, Table 6). The greatest percent change to the environmental variables 

computed for the cropland class occurred early in this range with absolute change 

peaking in 1990 for brightness and wetness and 1995 for greenness (Table 6). Similar 

changes are seen in the first few years of percent change of brightness, greenness, and 

wetness for the barren/grass/shrubland class (Table 6), which experienced an increase 

in area in tandem with the decline in cropland extent (Table 4, Fig. 4A).  

3.5.2 Urbanization 

The influence of agricultural change extended into Cuba’s urban landscapes. In 

particular, a major consequence of the collapse of the USSR was food shortages in Cuba 

(Rodríguez-Ojea et al. 2002). In the early 1990s, Cuba had one of the worst per capita 

food production rates of any country in the Caribbean or Latin America; Cuba was 

dependent on imports for 90% of the fats, 55% of the calories, and 50% of the protein 

consumed in the country (Altieri and Funes-Monzote 2012; Koont 2011).  

Partially a function of food scarcity, Cuba had significantly lower population 

growth than other Caribbean and Latin American countries (11.2% vs. 47.0%) between 

1985 and 2010 (United Nations 2018a). The majority of population growth that did occur 

was in urban areas (World Bank Group 2019), and the extent of built up lands increased 

by 6% (Table 4). Consistent with this urbanization, the average patch size of built-up 
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lands (i.e., urban areas) increased (Fig. 3A), the average distance between urban patches 

decreased, and the connectivity and shape complexity of patches increased (Fig. 3).  

The urbanization trend became statistically significant in 2000 (Fig. 4), 

approximately a decade after the Soviet Union’s dissolution. This lag in urban growth 

could correspond with the time needed for Cubans to adapt and diversify their food 

sources (Bono and Finn 2017). With policies like Decreto No. 66 (1980), the government 

encouraged urban agriculture as a way to cope with the loss of Soviet subsides (Cruz and 

Medina 2003; Koont 2011; Premat 2012; Wright 2009). The increase in the greenness of 

urban areas (likely due to the increase of urban agriculture) peaked in 1995 immediately 

after the collapse of the Soviet Union and remained high until after the end of the 

Período Especial in 2000 (Table 6). 

3.5.3 Forest Lands and Protected Area 

Compared to the other LULC classes examined, forested lands experienced 

relatively little change in composition (Table 4) and a lower magnitude of configuration 

change (Fig. 3, 4). The relative stability of forest lands during this period of otherwise 

profound LULC change may be attributable to specific policy efforts made to protect 

forests and other natural areas in Cuba (Whittle and Santos 2006). The earliest law 

protecting forest land came before the collapse of the USSR, but the majority were 

instituted after the country had recovered from the initial economic shock of the 

collapse.  

For example, Ley No. 27 (1980) established one of the first National Parks in the 

Sierra Maestra mountains. About a decade later, a comprehensive environmental law on 

protected areas and biodiversity was enacted (Ley No. 81, 1997), and a national system of 

protected areas was established (Ley No. 201, 1999). Also enacted after the collapse of 

the USSR were several policies aimed at protecting forests in particular (Ley No. 136, 
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1993; Ley No. 85, 1998; Decreto No. 268, 1999), as well as others that protected wildlife 

and terrestrial waters (Decreto Ley No. 138, 1993; Decreto No. 199, 1995), and regulated 

mineral extraction (Ley No. 76, 1995; Decreto No. 222, 1997). 

The total area of forest land peaked in 1995 as did its absolute percent change in 

greenness and wetness (Table 4, 6). In 2010, greenness and wetness were closest to their 

pre-collapse values. Satellite imagery provides a very high-level assessment of 

environmental quality (Clinton et al. 2018; Wang et al. 2018), but these results point to 

some conversion, with a small peak and decline in both forest extent and vegetation 

quality (Fig. 2, Table 3, 5). This is corroborated by on-the-ground environmental 

assessments of invasive scrubland species (Perez, Noa, and Sinoga 2010), soil 

degradation (Medina et al. 2017) and water quality (Maal-Bared 2006) as well as 

research that has found that some of the keystone environmental policies were not fully 

implemented (Whittle and Santos 2006).   

3.5.4 Land System Architecture 

The combination of our lands system architecture and environmental variable 

results suggests that immediately after the 1991 shock, Cuban land systems underwent a 

transition that lasted from a few years to a few decades. Consistent with other 

examinations of post-shock land systems (Bergen et al. 2008; Kuemmerle et al. 2009; 

Munteanu et al. 2014; Peterson et al. 2009), some aspects of the land system 

architecture took new trajectories while others returned to pre-shock conditions 

(Chhetri, Stuhlmacher, and Ishtiaque 2019). Forest areas appeared to return to pre-

shock values: by 2010, the total proportional cover returned to 17.4% (Table 3). 

Additionally, area, connectivity, and shape were no longer statistically significant in their 

difference from 1985 (Fig. 3A, B, D). In contrast, agriculture showed the opposite 
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trajectory: land tenure was fundamentally altered (Febles-González et al. 2011) with 

corresponding changes to composition and configuration (Table 4, Fig. 3, 4). 

Previous research has largely examined the composition of LULC in Cuba 

(Gebelein 2012; Machado 2018). We found measures of configuration to have greater 

statistical significance than composition (Fig. 4) which shows the importance of 

considering both. We advocate for a land system architecture approach to capture 

greater nuisance around the role of governance in influencing land systems. Advancing 

understanding of this relationship also requires attention to the consequences of land 

system composition and configuration following more mundane institutional changes. 

3.6 Conclusion 

We found statistically significant changes to Cuba’s land system architecture—the 

composition and configuration of land—which related to the policy changes made as a 

result of the Período Especial. Agriculture was one of the most salient ways in which the 

land use and cover of Cuba changed during this period. Leading up to and after the 

collapse of trade and subsidy relations with the USSR, the Cuban government instituted 

a series of policies to transition the country from large-scale, state supported mechanized 

agriculture to smaller, low-input farming (Cruz and Medina 2003; Premat 2012; Wright 

2009). We see the likely manifestation of this change in the composition and 

configuration of cropland as well as the barren/grass/shrubland patches that took its 

place. Forest lands experienced the least amount of change, which was potentially 

attributable to the wide-ranging environmental protections established in this period 

(Whittle and Santos 2006). The largest differences from pre-collapse environmental 

proxy values (both positive and negative) occurred in 1995 and 2005, consistent with the 

timing of the majority of landscape metrics showing statistically significant change. 
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CHAPTER 4 

IS URBAN FORM HOMOGENIZING IN GLOBAL CITIES?: ASSESSING GROWTH 

PATTERNS AND IMPLICATIONS 

4.1 Abstract 

In the past few decades, the world’s population has become majority urban and 

cities are becoming increasingly globalized. Many have hypothesized that globalization 

will result in a homogenization of urban form in globalized cities, but this hypothesis has 

rarely been tested. Using satellite data and machine learning, we test the urban form 

homogenization hypothesis on the fifty largest cities of China, India, and the US, 

examining how the composition and configuration of urban areas have changed over 

time (1995-2015). Additionally, we quantify the impact of homogenization in terms of 

the temporal relationship between urban form and surface urban heat island intensity. 

There is some evidence of homogenization, with greater evidence for the most globalized 

cities in each country. Connectivity and shape show homogenization, and shape is also 

strongly related to both daytime and nighttime surface urban heat island intensity (with 

opposite relationships for day and night). Surface urban heat island is likely not the only 

socio-environmental impact of urban homogenization, we close with a discussion on 

what homogenization means for cities.   

4.2 Introduction 

The proportion of the world living in urban areas is growing along with the extent 

of urban areas (Liu et al. 2018; United Nations 2018a). In 1950, 30% of the world’s 

population lived in urban areas, and by 2050 this proportion is expected to increase to 

68% (United Nations 2018a). Urbanization has been especially dramatic in China, India, 

and the United States, which together contributed about 43% of the increase in urban 

areas globally between 1990 and 2010 (Liu et al. 2018). These profound population shifts 



  72 

and corresponding urban growth have changed the form (i.e., composition and 

configuration) of cities. Composition is the area of a city’s built footprint and 

configuration is the spatial arrangement—collectively these make up two-dimensional 

urban form (Turner et al. 2013). 

The form of urban areas have a variety of socio-ecological consequences for cities 

and their surrounding landscapes (Eakin, Winkels, and Sendzimir 2009; Forman 2014; 

Seto et al. 2012; Turner et al. 2013). In terms of social impacts, the size of urban areas 

has been empirically related to wealth creation, innovation, and infrastructure—factors 

that determine the pace and quality of life for urban residents (Bettencourt et al. 2007). 

Environmental impacts of urban form include the alteration of hydrological networks 

(Hurkmans et al. 2009; McPhillips et al. 2019); energy, carbon, and nutrient flows (Chen 

and Chen 2015; Lin et al. 2014); and habitat availability and biodiversity (Hahs et al. 

2009; Seto, Güneralp, and Hutyra 2012). In addition, the growth of urban areas 

contributes to an urban heat island effect which, in tandem with global climate change, 

has major consequences for human health and mortality in urban areas (Hondula, 

Georgescu, and Balling 2014; Oke et al. 2017). Prolonged extreme heat events (20 days 

or more per year) now affect around 30% of the world’s population (Mora et al. 2017).  

With the many effects that composition and configuration have on socio-

environmental outcomes in cities, more work is needed on how the form of urban areas 

are changing and at what rate. The rapid increase in the built-up footprint of urban areas 

has occurred in tandem with globalization, with globalized forces likely playing a role in 

urban growth in the last few decades. As such, homogenization of urban form at a variety 

of scales has been hypothesized (Boone et al. 2012; Sassen 2008). There is limited 

research testing this hypothesis, but studies of a small number of cities or at coarser 

scales have found evidence of homogenization—as measured by changes in the 
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magnitude and the variation of landscape metric values over multiple years (Jenerette 

and Potere 2010; Seto and Fragkias 2005). If the form of global cities is homogenizing, 

cities will experience increasingly similar socio-ecological consequences; for example, 

increased intensity of the urban heat island effect. 

Urban heat islands are influenced by the composition and configuration of built-

up land as registered by both air and land surface temperature (Imhoff et al. 2010; Oke 

1988). Land surface temperature (LST) and surface urban heat islands (SUHI), while not 

equivalent to air temperature, can be a useful proxy variable for studying urban heat 

because of its global coverage and high spatial resolution (Imhoff et al. 2010). The total 

area of impervious surface (i.e., composition) is often a primary predictor of SUHI 

intensity (Clinton and Gong 2013). Configuration also significantly contributes to LST 

(Kamarianakis et al. 2017; Galletti, Li, and Connors 2019). For example, a 10% increase 

in the spatial contiguity of built-up land has been predicted to increase urban air 

temperatures by 0.3-0.4°C in large US cities (Debbage and Shepherd 2015), and, in 

Shanghai, highly concentrated and adjacent built-up land was related to greater summer 

SUHI intensity (Li et al. 2011).  

Increased understanding of how urban form contributes to SUHI intensity may 

improve mitigation efforts (Rosenzweig and Solecki 2015). For instance, small, 

dispersed, and oblong cities have been found to decrease urban heat island intensity 

(Zhou, Rybski, and Kropp 2017). A mosaic of natural land-cover classes interspersed 

within urban areas can provide a suite of socio-environmental benefits including 

decreased SUHI (Stuhlmacher et al. 2020). Star-shaped cities could keep the GHG 

emissions of transportation low while also avoiding some of the negative urban heat 

island implications of compact cities (Pierer and Creutzig 2019). In fact, commonly 
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employed urban adaptation strategies, may have the potential to completely counteract 

the urban heat island impacts of urban expansion (Georgescu et al. 2014). 

In the era of globalization and global environmental change, there is a need for 

linking urban form changes to impacts in globalized cities around the world. If urban 

form is homogenizing, a multitude of socio-environmental outcomes will be affected, but 

there is little research examining urban homogenization and its impacts over time. We 

begin to fill this gap by quantifying year-over-year urban form changes of 150 global 

cities in China, India, and the United States, and examining the impacts on year-over-

year SUHI intensity in those cities. Specifically, we ask: 

1. Are large cities around the world homogenizing in terms of the configuration of 

their built land footprint?  

2. How do the rates of growth in terms of size, shape, distribution, and connectivity 

influence homogenization in different countries? 

3. How does homogenization, if detected, affect the surface urban heat island 

intensity? 

Past research at this scale has been limited by data availability and computation 

power. Advances in remote sensing, parallel and cloud computing, and tools such as 

Google Earth Engine—which leverage these technological advances—allow research to be 

conducted at an unprecedented spatial scale with greater temporal and finer spatial 

resolution (Gorelick et al. 2017). The petabytes of data stored in the Earth Engine data 

catalog also streamlines the process of integrating datasets from multiple satellite and 

aerial sensors. Together, these innovations allow us to address our three questions by 1) 

classifying urbanization in the fifty largest cities of China, India, and the US, 2) 

examining how the composition and configuration of urban areas have changed over 
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time (1995-2015), and 3) quantifying the temporal relationship between urban form and 

surface urban heat island intensity.  

4.3 Methodology 

4.3.1 Study Areas 

4.3.1.1 China 

In the 1950s about 12% of China’s population lived in urban areas, but by 2015, 

56% of the country’s population of approximately 1.4 billion people were urban residents 

(United Nations 2018a). During this rapid urbanization, the government of China 

invested considerably in urban infrastructure—about $116 per capita—and had an 

urbanization rate of 41% (Dobbs and Sankhe 2010). The urban population density of 

China is approximately 150 people per square kilometer (United Nations 2018a). 

4.3.1.2. India 

17% of India’s population lived in urban areas in 1950; by 2015 33% of India’s 

population of 1.3 billion people lived in urban areas (United Nations 2018a). India has 

very high urban population densities—approaching 441 people per square kilometer in 

2015—but only spends about $17 per capita on capital investments in urban 

infrastructure with very little government oversight to growth (Dobbs and Sankhe 2010; 

United Nations 2018a). Between 1950 and 2005, the country had a 29% growth rate 

(Dobbs and Sankhe 2010; United Nations 2018a).  

4.3.1.3 United States 

Initial urban growth occurred in the US between 1790 and 1890, with increasing 

urbanization ever since (Census Bureau 2012). In 1950, 64% of the population lived in 

urban areas; by 2015, 82% of the country’s population of approximately 321 million 

people lived in urban areas (Census Bureau 2016; United Nations 2018a). Controlled 

locally, urbanization in the US is often sprawling with discontinuous and spatially 
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expansive low-density development (Carruthers 2002); the population density in urban 

areas is a low 35.1 people per square kilometer (United Nations 2018a).  

4.3.2 City Selection 

The fifty most populous cities in each country in 2015 according to the GPWv4: 

Gridded Population of the World Version 4.1, UN-Adjusted Population Count (CIESIN 

and Columbia University 2018) were selected for analysis (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The fifty most populous cities in China, India, and the US (in grey). The insets 
are examples of urban growth from 1995-2015 in Guangzhou, China; Hyderabad, India; 
and Atlanta, USA. 
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We selected the same number of cities from each country instead of using a population 

threshold in order to prevent a wide variation in the number of cities analyzed per 

country. As noted, the US, India, and China have dramatically different per city 

populations and proportions of the population living in urban areas. We focused on large 

cities because their size suggests increased integration into the global economy with 

various shared interests affecting growth.  

4.3.3 Data 

A machine learning classification algorithm developed by Goldblatt et al. (2018) 

utilizing Landsat and nighttime light imagery was employed. The years of satellite 

launches and decommissions determined which satellite could be used for which years 

(Table 1).  

Table 1. Landsat and nighttime light satellites available for use for each year of analysis 

Year Landsat Number Nighttime Lights 

1995 Landsat 5 DMSP-OLS 
2000 Landsat 7 DMSP-OLS 
2005 Landsat 7 DMSP-OLS 
2010 Landsat 7 DMSP-OLS 
2015 Landsat 8 VIIRS 

 

To determine whether the different satellites could be substituted in our algorithm, 

Landsat 7 and Landsat 8 were tested and compared, as were DMSP-OLS and VIIRS for 

2013, when all these sensors overlap. We found that the balanced accuracy of the 

Landsat 7 and 8 classifications are within one percentage point of each other for India 

and the US. Employing VIIRS (instead of DMSP-OLS) resulted in the same balanced 

accuracy in the US and improved the balanced accuracy in India by 4% (Appendix D, 

Table 1). China was not included in Goldblatt et al. (2018), so new thresholds were 

determined using the original methods. 
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4.3.3.1 Generating Training Data 

A data-driven method was used to generate and label training data because of the 

large spatial and temporal coverage of our classification. To start, the landscape was 

subdivided into hexagons of three different sizes (Fig. 2). Using hexagons, which tile well 

over a round surface, reduced processing time and allowed the training data and 

classification to be calibrated to the landscape of that region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 2. Hexagon sizes used in analysis (1, 4, and 8 decimal degrees) overlaid on 
unprojected country boundaries for China, India, and the US. 
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Within each hexagon, several thresholds were used to determine what area of the 

hexagon were likely built-up or non built-up. First, we calculated high and low nighttime 

light thresholds. All areas above the high threshold were likely built-up and all areas 

below the threshold were likely non built-up. From the likely built-up region, highly 

vegetated areas (using a NDVI threshold) as well as bodies of water (using a NDWI 

threshold) were masked out. NDVI, NDWI, and high and low nighttime light thresholds 

by country and sensor are presented in Appendix D, Table 2. 

An equal number of points were scattered in the “likely built-up” and the “likely 

non built-up” regions delineated by the thresholds. Pixels in the range between the two 

were not sampled from. This method, applied to each hexagon, ensured that training 

samples were selected in a way that captured the variation between hexagons regardless 

of the level of nighttime lights in that hexagon. In total 120,000 points per country were 

randomly scattered. 

4.3.4 Classification 

These points and their corresponding labels of built-up (BU) or non built-up 

(NBU) were input into a Random Forest classifier with twenty trees. Twenty trees were 

used because the improvement in accuracy has been shown to level out between ten and 

one hundred trees (Goldblatt et al. 2016). The classification algorithm was applied every 

five years from 1995 to 2015. Imagery from years immediately before and after a given 

year were used to fill in any data gaps caused by clouds or Landsat 7’s broken scanline 

corrector.  

The classification was run within the set of interlocking hexagons (Fig. 2) and 

then all hexagons of corresponding size and country were mosaicked. For each country, 

two different sized hexagons were used to create the final classification composite. The 

most accurate hexagon size for each country made up the majority of the composite with 



  80 

a different hexagon size filling in missing hexagons (i.e., hexagons that were excluded 

due to insufficient nighttime light data). In the US, 4-degree hexagons were used for the 

majority of the country with 1-degree hexagons filling in below and on the coasts. In 

India, 1-degree hexagons were used for the majority of the country with 8-degree 

hexagons filling in below and on the coasts. In China, 1-degree hexagons were used for 

the majority of the country with 4-degree hexagons filling in below and on the coasts.  

The classification algorithm outputs a posterior probability between 0 and 1 for 

each pixel; the posterior probability threshold for each hexagon was selected using the 

Otsu method, which has been previously employed to threshold images with non-normal 

distributions of pixel values (Ng 2006). The Otsu algorithm utilizes nonparametric and 

unsupervised methods for automatic threshold selection (Otsu 1979). Here it was used to 

determine the threshold at which the variance between the BU and NBU class is 

maximized, resulting in a binary classification (Goldblatt et al. 2018). For the final post-

processing, water (Carol et al. 2017) and gas flares (Elvidge et al. 2009) were masked 

out. Additionally, a 3x3 pixel square-kernel moving window and a year-over-year 

consistency check was applied to the finalized time series. Pixels which experience 

“impossible” oscillations between BU and NBU were recoded to their most likely class. 

An “impossible” oscillation is any pixel which deurbanizes for only one time-period after 

it urbanizes as well as the inverse (Schneider and Mertes 2014). 

4.3.5 Accuracy Assessment 

Accuracy assessments were undertaken using the original 61,953 validation 

polygons collected for Goldblatt et al. (2018). An additional 150,000 validation points 

were added for the years 1995, 2000, 2005, 2010, and 2015, with 10,000 points for each 

country and each year. The additional validation points were scattered via stratified 

random sampling as in Goldblatt et al. (2018). Hand labels of BU or NBU were 
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determined based on Landsat imagery (because of the lack of high-resolution imagery 

for the early years of the analysis) by two undergraduate researchers with a graduate 

researcher tie-breaking any label for which there was disagreement. Half of the total set 

of labeled points were used for threshold testing, and the full set of validation points was 

used to determine the final accuracy of each classification after post-processing.  

Six accuracy metrics—overall accuracy, precision, true positive rate (TPR), true 

negative rate (TNR), balanced accuracy, and the F-measure—were calculated. We refer to 

the BU class as positive and the NBU class as negative. Thus, the number of correctly 

classified BU pixels was true positive (TP), the number of correctly classified NBU pixels 

was true negative (TN), the number of NBU pixels incorrectly classified as BU was false 

positive (FP), and the number of BU pixels incorrectly classified as NBU was false 

negative (FN). 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑎. 𝑘. 𝑎. 𝑢𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃𝑅 (𝑎. 𝑘. 𝑎. 𝑠𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁𝑅 (𝑎. 𝑘. 𝑎. 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
 

F-measure = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

4.3.6 Calculation of Landscape Metrics 

Due to variation in the way that China, India, and the US define metropolitan 

boundaries, the City Clustering Algorithm was used to determine the extent of each 

metropolitan area (Rozenfeld et al. 2008). All pixels within a 5 km circular kernel were 

determined to be part of the same metropolitan area until no connected urban pixels 

remained (Oliveira, Andrade, and Makse 2014). Five landscape metrics were calculated 
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to quantify the size, shape, distribution, and connectivity of built-up land in each of the 

150 metropolitan boundaries defined by the City Clustering Algorithm (Table 2). 

Landscape metrics are algorithms that quantify the spatial structure of land units, which 

we defined as groupings of pixels identified as built-up (Frazier 2019).  

Table 2. Definition and equations for the landscape metrics used to quantify 
composition and configuration. Parenthesis below metric description is the name of the 
metric. 

 Metric Definition Equation 

SIZE 
composition 

Area 

Sum of the area of all 
pixels within the urban 

extent classified as built-
up. Calculated in km2. 

∑ 𝑎𝑖𝑗  × 0.0009

𝑛

𝑗=𝑖

 

SHAPE 
configuration 

Shape 
Complexity 

(Edge 
Density) 

Measure of shape 
complexity. Calculated by 

taking the ratio of the 
length of edge to the total 

area. 

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

𝐴
 (10000) 

Shape 
Compactness 

(Reock 
Score) 

Measure of shape 
compactness. Calculated 
by finding the ration of 

class area to its minimum 
bounding circle. 

𝐴

𝐶
 

CONNECTIVITY 
configuration 

Connectedne
ss 

(Patch 
Cohesion 

Index) 

Measure of connectedness 
defined by the area and 
perimeter of groups of 

connected built-up pixels. 

[1 −  
∑ 𝑝𝑖𝑗

𝑛
𝑗=1

∑ 𝑝𝑖𝑗√𝑎𝑖𝑗
𝑛
𝑗=1

]

×  [1 −  
1

√𝑍
]

−1
× 100 

DISTRIBUTION 
configuration 

Adjacency 
(Percentage 

of Like 
Adjacencies) 

Calculates the number of 
built-up pixels that are 

adjacent to built-up pixels 
divided by the total 

number of pixel 
adjacencies. 

(
𝑔𝑖𝑖

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

) (100) 

WHERE: 
𝑎𝑖𝑗 = 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠, 

𝐴 =  𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠/𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 𝑎𝑟𝑒𝑎 (𝑚2), 
𝑒𝑖𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚) 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑎𝑛𝑑 𝑘,  
𝑝𝑖𝑗 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ 𝑖𝑗 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠, 

𝑍 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 
𝑔𝑖𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑘𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖, 
𝑔𝑖𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑘𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖 & 𝑘, 
𝐶 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠′ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑐𝑖𝑟𝑐𝑙𝑒 
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Edge Density, Percentage of Like Adjacencies, and the Patch Cohesion Index were 

calculated using FRAGSTATS version 4 (McGarigal, Cushman, and Ene 2012), and the 

Reock score (Reock 1961) was calculated using the compactr R function (Migurski 2018). 

These five metrics were chosen because of their use in previous research on urban areas 

(Alberti et al. 2007; Connors, Galletti, and Chow 2013; Fan et al. 2015; Kong et al. 2010). 

4.3.7 Surface Urban Heat Island Intensity  

To measure differences in land surface temperature (LST) between the cities and 

their outlying rural areas, a methodology similar to that employed by Debbage and 

Shepherd (2015) and Peng et al. (2012) was utilized. A buffer was set around the 

metropolitan boundary of a city. The size of the buffer was determined in accordance 

with the average city size per country: a 50km buffer is used in the US, 25km buffer in 

China, and a 1km buffer in India. To correct for the intervening effects of nearby water 

and urban areas—surface water and neighboring urban areas were subtracted from the 

buffer region. Surface water was defined using the MOD44W.006 Land Water Mask 

derived from MODIS and SRTM (Carol et al. 2017), and urban areas were defined using 

our classification. Additionally, to correct for the effect elevation has on temperature, 

only pixels that were within 50 meters of the average elevation of the urban area (Farr et 

al. 2007) were included in the rural buffer region (Debbage and Shepherd 2015). 

Within the resulting urban and rural boundaries, the average daytime and 

nighttime summer LST was calculated. LST values were derived from the average of 

MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day Global 1km 

images (Wan, Hook, and Hulley 2015) of three summer months (exact months vary by 

climate zone: June-August in China and the US and March-May in India) disregarding 

all pixels for which the QC band has a LST error > 2K as in Zhou et al. (2017). 

The urban and rural values were then differenced— 
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 ∆𝑇 = 𝑇𝑈 − 𝑇𝑅, where: TU = urban temperature and TR = rural temperature 

—to determine the magnitude of the surface urban heat island. This calculation was 

conducted for all 150 cities in our analysis for the years when MODIS is available (2000, 

2005, 2010, 2015). 

4.3.8 Statistical Analyses 

Changes in the magnitude and the variation of urban form values over multiple 

years (i.e., temporal trends in homogenization or heterogenization) were first examined 

by via box and whisker plots. Second, a Kruskal-Wallis test was used to determine if the 

changes in the distribution were statistically significant. The Kruskal-Wallis test was 

appropriate because the distribution of the urban form values did not satisfy regression 

assumptions.  

Repeated measures correlations were employed to determine if there was a 

statistically significant relationship between the change in the composition and 

configuration of a city and its SUHI intensity over time. Repeated measures correlations 

were preferred over a simple regression because the year-over-year urban form and 

SUHI values were not independent observations (Bakdash and Marusich 2017). We 

calculated the association of one area/pattern metrics with the SUHI intensity values for 

a group of cities using the Rmcorr R package (Marusich and Bakdash 2018). The 

regression assumptions of repeated measures correlations (linearity, equal variance, and 

normally distributed errors) were checked by using Q-Q plots and plotting the residuals. 

SUHI intensity as well as the role of composition and configuration on SUHI 

processes have been found to vary based on the climatological conditions of the city 

(Imhoff et al. 2010; Zhou, Wang, and Cadenasso 2017), so we tested separating cities  

based on biome data from Dinerstein et al. (2017) which resulted in ten biome 
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groupings. We did not find biome to substantially effect our results; results separated by 

biome are available in Appendix D. 

4.4 Results 

4.4.1 Accuracy Assessment 

Fifteen urban classifications were created—one for each country and for each 

year. Table 3 presents the performance measures of the fifteen classifications by country 

and year. 

Table 3. Accuracy assessment of China, India, and US urban classification for the years 
1995, 2000, 2005, 2010, and 2015. 

 India 

 1995 2000 2005 2010 2015 

Overall Accuracy 70.88% 75.97% 76.83% 76.91% 80.04% 

Precision 89.64% 91.49% 93.06% 93.44% 89.76% 

TPR 38.44% 52.88% 55.76% 56.78% 67.19% 

TNR 96.49% 95.78% 96.18% 96.18% 92.54% 

Balanced Accuracy 67.47% 74.33% 75.97% 76.48% 79.86% 

F-measure 53.81% 67.02% 69.74% 70.63% 76.85% 

 China 

 1995 2000 2005 2010 2015 

Overall Accuracy 89.97% 89.83% 89.52% 91.21% 90.93% 

Precision 80.90% 82.42% 86.76% 91.42% 97.14% 

TPR 78.74% 81.70% 81.78% 86.15% 82.09% 

TNR 93.75% 93.07% 93.53% 94.59% 98.05% 

Balanced Accuracy 86.25% 87.38% 87.65% 90.37% 90.07% 

F-measure 79.81% 82.06% 84.20% 88.71% 88.98% 

 United States 

 1995 2000 2005 2010 2015 

Overall Accuracy 80.46% 81.85% 83.28% 84.56% 84.63% 

Precision 85.88% 87.31% 89.41% 90.07% 87.70% 
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TPR 58.11% 62.59% 66.30% 70.16% 72.89% 

TNR 94.15% 94.18% 94.71% 94.60% 92.84% 

Balanced Accuracy 76.13% 78.39% 80.51% 82.38% 82.87% 

F-measure 69.32% 72.91% 76.14% 78.88% 79.61% 

 
Despite disproportionately representing urban land in the stratified random sample, our 

validation dataset contained greater NBU points, so we focused primarily on the 

balanced accuracy, which corrects for this imbalance. 

The lowest balanced accuracy for all three countries was 1995, with 

improvements in accuracy for subsequent years. We attribute lower accuracy in the early 

years to the fewer number of bands and the lower spatial resolution for some bands on 

Landsat 5 as well as greater difficulty in obtaining accurately labeled validation data (i.e., 

high resolution imagery is not widely available for this period). Of the three countries, 

China had the highest balanced accuracy, the US the second, and India the lowest. The 

wide variety of potential spectral signatures in urban areas in India along with the higher 

prevalence of informal developments made India more difficult to classify using transfer 

learning from nighttime lights. Overall, we found that our classification method was 

more or as accurate than other global classifications. Appendix D, Table 4 provides the 

balanced accuracy of MODIS MCD12Q2.006 Land Cover Dynamics Yearly Global 500m 

dataset (Friedl and Sulla-Menashe 2019) and GlobCover: Global Land Cover Map 

(European Space Agency and Université Catholique de Louvain 2010) using our 

validation set. 

4.4.2 Research Question 1: Homogenization 

We first examined homogenization descriptively with the distribution of urban 

composition and configuration values 1995 to 2015 (Fig. 3). A Kruskal-Wallis test was 

used to determine if the change over time had at least one statistically significant 
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difference between the median values of each year (Fig. 3). All were statistically 

significant, but larger chi-squared values correspond to greater change. 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

Figure 3. Distribution of area and pattern metrics for the 50 largest cities in China, 
India, and the US for 1995-2015. Area, shape compactness, connectivity, and shape 
complexity increase each year. Adjacency is the exception—it peaks around 2005 or 2010 
(depending on the country) and then declines in 2015. The table presents the Kruskal-
Wallis chi-squared test results. All values are statistically significant (p < 0.05). 
 

Area, shape complexity, and connectedness increased and shape compactness decreased 

(0 = most compact) for the large, populous cities in each country. Adjacency peaked in 

2010 for China and 2005 for India and the US. Connectedness—because of the similar 

trend and decreasing variance—was the only metric that showed potential 

homogenization across all 50 cities in each country. The saturation of very high 

connectedness values may be an argument against homogenization, but adjacency saw a 

similar saturation in the peaks of 2005 and 2010 but did not continue to homogenize in 

the same way that connectedness continued to. 

Kruskal-Wallis chi-squared India China US 

Area 127.2 41.6 9.1 

Shape Complexity  30.0 98.2 18.5 

Shape Compactness 53.5 102.2 26.9 

Adjacency 31.2 15.8 19.2 

Connectedness 21.8 80.8 17.6 
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The case for homogenization is stronger for the ten largest cities in each country 

(Fig. 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. Distribution of composition and configuration metrics for the 50 (left) and 10 
(right) most populous cities in China, India, and the US for 1995-2015. For the 10 most 
populous cities in each country (30 total), area, shape complexity, shape compactness 
and connectivity have a statistically significant differences between years (p < 0.05). 
Adjacency peaks in 2010 and is not statistically significant. Except for area, the variance 
of the metrics values decreases, pointing to homogenization in the very largest cities of 
each country. All statistically significant values in the Kruskal-Wallis table are marked *. 
 

These larger cities were more likely to be shaped by global forces, such as international 

trade, and the analysis showed a trend toward homogenization for the two measures of 

shape (complexity and compactness) in addition to connectivity.  

 

 

 

Kruskal-Wallis chi-squared 
10 cities 

Area 8.42* 

Shape Complexity  18.16* 

Shape Compactness 22.45* 

Adjacency 4.70 

Connectedness 12.78* 
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4.4.3 Research Question 2: Rate of Change 

Many of the composition and configuration metrics followed similar trends, but 

the pace of change was distinct for each country. The average percent change was largest 

for India and smallest for the US (Table 4). 

Table 4. Average percent change of urban form by country from 1995-2015. Left column 
presents the percent change for the 50 most populous cities, right column is just the 10 
most populous. 

Average Percent 
Change 
(1995-2015) 

India China United States 

No. of cities: 50 10 50 10 50 10 

Area 330.6% 165.0% 210.5% 196.8% 61.1% 43.7% 
Shape Complexity   333.8% 212.4% 188.2% 162.1% 31.2% 6.67% 
Shape Compactness 201.7% 139.7% 192.9% 199.3% 56.2% 37.7% 
Adjacency -0.57% -1.1% 1.05% 1.84% 6.25% 7.61% 
Connectedness 1.0% 0.52% 0.63% 0.57% 0.30% 0.10% 

 
The average rate of change for the 10 most populous cities in each country was lower 

than the average for all 50 (Table 4), which suggests that the majority of urban form 

change was not occurring in the 10 most populous cities. Of the three countries, India 

had the largest gap in the rate of change between 50 cities and 10 cities, indicating that 

mid-sized cities (the remaining 40 of the 50 most populous) were changing the fastest in 

India.  

These rates of change (Table 4) as well as the distribution of metric values (Fig. 3) 

suggest that India, China, and the US may represent three snapshots along a 

homogenization trajectory. Descriptively for all 150 cities, India in 2015 had an urban 

form similar to China in 1995 and China in 2015 showed similarities to the urban form of 

the US in 1995 (Fig. 3). These trends were particularly salient for area, shape complexity 

and shape compactness which are related to urban expansion and sprawl.  

4.4.4 Research Question 3: Homogenization and Surface Urban Heat Island 

The homogenization of the configuration of major cities in China, India, and the 

US has implication for the SUHI experienced by the millions of residents of these 
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metropolitan areas. Figure 5 visualizes the distribution of daytime and nighttime SUHI 

intensity for the 50 largest cities in each country from 2000 – 2015. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Distribution of yearly daytime and nighttime surface urban heat island 
(SUHI) intensity by country. China and the US had a greater range of SUHI intensities 
and more outliers.  
 
Daytime SUHI intensity ranged from less than -5°C to greater than 10°C. Cities in China 

and the US experienced nearly the full range, while cities in India had a narrower range. 

Nighttime SUHI intensity were largely between 0-5°C, with ~2°C being the most 

common nighttime SUHI intensity. Temporal trends between the countries were fairly 

uneven. Generally, 2015 had a narrower spread of values but daytime SUHI in the US 

was an exception. See Appendix D for a discussion on how SUHI intensity differed by 

biome. 

The change in SUHI intensity over time had statistically significant relationships 

with changes in the composition and configuration of the built-up land in the 150 large, 

populous cities in India, China, and the United States (Figure 6).  
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Figure 6. Repeated measures correlation for the 150 cities between area, shape 
complexity, shape compactness, adjacency, connectedness, daytime (top row), and 
nighttime (bottom row) surface urban heat island intensity. Each color corresponds to a 
different city with the points marking the yearly relationship (one point is one year) 
between a given pattern metric and surface urban heat island intensity. Circular points 
correspond to Indian cities, triangular points correspond to US cities, and square points 
correspond to Chinese cities. The lines are the common regression slopes for each of the 
150 cities over time. Light grey plots are statistically significant (p<0.05) and dark grey 
plots are not.  
 
Daytime SUHI intensity had statistically significant relationships with area, shape 

complexity, shape compactness, and connectedness. As area, shape complexity, and 

connectedness increased and as shape compactness decreased over time, the daytime 

SUHI intensity increased. Nighttime SUHI intensity has statistically significant 

relationships with shape complexity, shape compactness, adjacency, and connectedness. 

As shape complexity increased, connectedness increased, and shape compactness 

decreased, nighttime SUHI decreased; but as adjacency increased over time, so did 

nighttime SUHI. Shape complexity, shape compactness, and connectedness were 

significant for both daytime and nighttime SUHI intensity, but they had opposite 

relationships. See Appendix D for a discussion on the similarities and differences 

between the statistically significant repeated measures trends and the individual city 

trends. 
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Shape compactness and shape complexity had the highest Rrm coefficients, 

suggesting that changes to shape complexity and compactness would affect SUHI more 

than the other composition and configuration change. Shape complexity and 

compactness are related to sprawl: shape compactness is a function of the directions of 

development from the city center and infill (or the lack thereof), while shape complexity 

measures the jaggedness of a city’s boundaries (Bhatta, Saraswati, and Bandyopadhyay 

2010). Additionally, nighttime SUHI had higher Rrm coefficients for shape compactness 

and complexity than daytime SUHI, suggesting that nighttime SUHI intensity may be 

more substantially altered by changes in urban form. This is corroborated by the SUHI, 

shape compactness, and shape complexity trajectories for the subset of the ten largest 

cities in each country (Fig. 7). 

 

 

 

 

 

 

 

 

Figure 7. Repeated measures correlation for the 30 most populous cities between area, 
shape complexity, shape compactness, adjacency, connectedness, daytime (top row), and 
nighttime (bottom row) surface urban heat island intensity. Each color corresponds to a 
different city with the points marking the yearly relationship between a given pattern 
metric and surface urban heat island intensity. The lines are the common regression 
slopes for each of the 30 cities over time. Light grey plots are statistically significant 
(p<0.05) and dark grey plots are not. Circular points correspond to Indian cities, 
triangular points correspond to US cities, and square points correspond to Chinese cities. 
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The ten largest cities in each country had fewer statistically significant 

relationships with composition and configuration because their composition and 

configuration were not changing as rapidly as smaller cities (Table 4). The relationships 

that were statistically significant have the same direction of trend as when all 5o cities in 

each country are considered (Fig. 6). Showing similar arrangement, but more visible in 

this subset of cities, is the SUHI and urban form difference between the US, China, and 

India.  

The 10 largest cities in each country clearly illustrate the differences and 

similarities in how the homogenization of urban form affected the SUHI in each country. 

The US often had greater daytime SUHI intensity and corresponding metric values (i.e., 

greater area and shape complexity), with China overlapping or a couple of years behind. 

India consistently had the lowest daytime SUHI but with later years beginning to overlap 

with the end range of US and China. Conversely, nighttime SUHI had a greater mix of 

countries at high and low intensity, especially in the middle range between 1-3°C. 

4.5 Discussion 

4.5.1 Homogenization 

Often hypothesized, but rarely tested, we have found that the built-up footprint of 

global cities around the world are homogenizing in some respects. The 50 largest cities in 

China, India, and the US showed a homogenization of urban form in terms of 

connectivity (Fig. 3) and the 10 largest cities in each country show a homogenization in 

terms of connectivity and shape (Fig.4). This homogenization is congruent with that 

identified in previous research on cities in China (Seto and Fragkias 2005) and globally 

(Jenerette and Potere 2010). Additionally, it corresponds with examinations focused on 

homogenization of suburban landscapes, in particular residential landscapes (Groffman 

et al. 2014; Polsky et al. 2014). 
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4.5.2 Homogenization and Surface Urban Heat Island Intensity 

Considerable previous research has examined the relationship between urban 

form and SUHI intensity (Debbage and Shepherd 2015; J. Li et al. 2011; Xiaoxiao Li et al. 

2016; Pierer and Creutzig 2019; Zhang, Middel, and Turner 2019; B. Zhou, Rybski, and 

Kropp 2017; Galletti, Li, and Connors 2019). In order to examine the specific effect of 

homogenization on SUHI, our analysis considered the relationship between urban form 

and SUHI intensity as the cities grew in size and became more similar in terms of 

configuration. We found that two measures of shape—complexity and compactness—

were changing the fastest (Table 4), had higher Rrm coefficients (Fig. 6), and were 

homogenizing in the 10 largest cities (Fig. 4). While previous research is divided on 

whether composition (size) or configuration (shape, connectivity, adjacency) has a larger 

role in SUHI intensity, this study and others find that configuration, in particular shape, 

is significant and may have primacy (Li et al. 2016; Stuhlmacher et al. 2020).  

The intensity of the daytime and nighttime SUHI effect had opposing 

relationships with urban form (Fig. 6, 7). The diurnal differences in urban heat islands 

are well known (Arnfield 2003; Kalnay and Cai 2003; Oke et al. 2017) and previous 

research on urban form, daytime, and nighttime SUHI intensity has suggested that 

daytime and nighttime SUHI heat island operate via different mechanisms (Peng et al. 

2012; Zhang, Middel, and Turner 2019). Adding to this literature, our paper is among the 

first to consider SUHI and urban form change over multiple years. We find that daytime 

SUHI intensity had greater variation in yearly values and year-over-year values than 

nighttime SUHI intensity (Fig. 5) but that nighttime SUHI had stronger relationships 

with urban form over time (Fig. 6 & 7).  
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4.5.3 Implications for Cities 

The homogenization of urban form suggests that global cities will face similar 

challenges induced by similarities in the configuration of their urban landscape. Urban 

form has consequences for a variety of processes in cities including the rates of plant and 

animal phenology change (Alberti et al. 2017), urban hydrological networks (Hurkmans 

et al. 2009; McPhillips et al. 2019), energy, carbon, and nutrient flows (Chen and Chen 

2015; Lin et al. 2014; Seto, Güneralp, and Hutyra 2012), habitat availability (Hahs et al. 

2009) and, as discussed here, SUHI intensity. The consequences of homogenizing urban 

form on these processes can be both positive and negative. To mitigate negative 

consequences, urban planning practitioners can make interventions that modify urban 

form. Our findings have two implications for urban planning and other city practitioners. 

First, we consistently found that urban form related to sprawl—shape complexity 

and compactness—changed the fastest and were most relevant in terms of both 

homogenization and SUHI intensity (Table 4, Figs. 4, 6). City sprawl is relevant in the US 

(Bounoua et al. 2018) which already has very high levels as well as in China and India 

(Deng et al. 2019; Rahman et al. 2011) where sprawl is increasing quickly (Fig. 3, Table 

4). In particular, we find urban expansion and increased sprawl to be fastest in mid-sized 

cities (Table 4) which is consistent with the higher rates of growth of small-medium 

urban areas noted in a recent global synthesis (Güneralp et al. 2020). 

In addition to contributing to SUHI, sprawl has a variety of other socio-

environmental consequences that warrant attention (Ewing et al. 2016; Nechyba and 

Walsh 2004). Reducing sprawl (i.e., decreasing shape complexity and increasing shape 

compactness) corresponds to lower daytime SUHI intensity but higher nighttime SUHI 

intensity (Figs. 6, 7). When making decisions that change urban form, urban planners 
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will have to make trade-offs or optimizations between daytime and nighttime SUHI (as 

well as other socio-ecological consequences). 

Second, a descriptive interpretation of our results is that the urban form of India, 

China, and the US represent sequential snapshots on a trajectory towards potential 

homogenization. Congruent with each country’s current development trajectory (Seto et 

al. 2011), India in 2015 looks similar to China in 1995 and China in 2015 looks similar to 

the US in 1995 (Fig. 3). We find these snapshots mirrored in the percent change each 

country experiences: India has the fastest rate of change, China the second, and the US 

the slowest (Table 4). As well as in the countries’ trajectories in relation to urban form 

and SUHI (Fig. 7). Following each other on a trajectory towards homogenization means 

there is potential for learning from the country or city that is just ahead or farther ahead 

on the trajectory (Boone et al. 2012). Cities contending with similar globalized forces 

stand to benefit most. In response, creating and strengthening networks among the 

world’s largest cities to share best-practices may improve urban sustainability and 

resilience worldwide (Childers et al. 2014). 

4.6 Conclusion 

The urban form of the most populous cities in China, India, and the US 

homogenized in terms of shape and connectivity between 1995 and 2015. The rate at 

which the urban form changed was highest in India and lowest in the US. While this 

homogenization has implications for numerous socio-environmental processes, those 

involving the intensity of the SUHI effect indicated that shape complexity and shape 

compactness (measures of sprawl) were most important. Day and night SUHI intensities 

exhibited the opposite relationship with sprawl, indicating there are tradeoffs or 

optimizations that must be made in the mitigation process.  
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As a result of urban form homogenization and global environmental change, 

cities around the world are facing similar challenges. Attention to the spatial 

arrangement of urban areas can help illuminate the linkages between urban form and 

environmental outcomes. While research of this kind has begun to increase, more effort 

is required from various communities of researchers to address the fundamental 

processes of and the complex challenges posed by our urban landscapes. 
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CHAPTER 5 

LANDSCAPE TO PATCH: CONCLUDING THOUGHTS 

Geography has a long tradition of studying human-environment relationships, 

stretching from Alexander von Humboldt’s insistence on integrated science through the 

landschaft work in Germany, landscape morphology, environmental hazards in the 

United States, and into contemporary interests in cultural and political ecology and land 

system science (LSS) (Turner 2002). LSS constitutes a science-based vision of human-

environment relationships, growing from cultural ecology (e.g., Moran 2016) and 

stimulated by international research agendas on global environmental change and 

sustainability (Turner, Lambin, and Reenberg 2007). It focuses on the interactive 

human-environmental dynamics affecting landscapes or land systems, with various 

implications examined. Importantly, LSS integrates two historically distinctive 

dimensions of the geographical sciences, the spatial-temporal dimensions focused on the 

spatial attributes of phenomena and human-environmental ones (Turner, Lambin, and 

Reenberg 2007). 

This dissertation is embedded in LSS, addressing questions about human-

environmental dynamics and employing spatial analysis—especially remote sensing—to 

explore questions about land system architecture (LSA) (Turner et al. 2013). As such this 

dissertation melds the interests of each geographical dimension through three case 

studies operating at three distinctive spatial scales. Each case study examined how broad 

socio-economic or political-institutional drivers affected the architecture or design of the 

land system, with consequences for the environmental outcomes of that system. Results 

from each of the case studies are reviewed below. 
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5.1 Summaries of Chapters 

5.1.1 Chapter Two 

In the second chapter, LSA and environmental consequences of two development 

project in the Phoenix metropolitan area were examined. We found that divergent design 

intentions affected the resultant LSA at the Rio Salado and New River riparian sites. Two 

LSA changes, in particular, resulted in divergent environmental outcomes for the 

redevelopment of the Rio Salado site. The first is related to configuration. The 

distribution of the built-up, vegetation, and desert classes had statistically significant 

relationships with all examined environmental variables (i.e., land surface temperature, 

vegetation, and bird community). The second is related to composition, in particular the 

addition of Tempe Town Lake. The 4% increase in water allowed the site to support more 

waterbird and warbler species than the conventional development around the New River 

wash. 

The results of this work provide insights about identifying and monitoring the 

success of urban riparian redevelopment goals. Many riparian redevelopments are 

focused on water, and while the composition of water did have a sizeable effect on the 

environmental outcomes at the Rio Salado, the configuration of the landscape had a 

greater number of statistically significant relationships. Building from the broadened 

perspective of the landscape, the incorporation of both social and environmental 

dimensions—as well as the corresponding stakeholders—is essential to identify and 

monitor relevant socio-environmental outcomes.  

5.1.2 Chapter Three 

 The third chapter used patch as the unit of analysis to examine if the LSA of Cuba 

changed as a result of the institutional shifts brought about by the 1991 collapse of the 

Soviet Union and how this change related to certain environmental outcomes. We found 
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statistically significant LSA change that linked to policies enacted in response to the 

Soviet Union’s collapse and subsequent economic crisis. Depending on the element of 

LSA or the environmental outcome variable (i.e., brightness, greenness, wetness) 

examined, statistically significant change occurred five years to a several decades after 

the collapse of the Soviet support.  

We found that when specific polices were implemented, and how, played a large 

role in the timing and type of change for croplands and the lack of change in forest lands. 

Croplands were the most affected class; they transitioned from large, standard sized 

plots associated with Soviet subsidized industrial agriculture to irregularly shaped, small 

plots, farmed with low-input methods by cooperative community groups. The policies of 

this period showed a clear trajectory of support for this transition with modifications to 

land tenure, establishing a free market for agricultural goods, and expanding other legal 

protections for farmers. Forest lands had the lowest magnitude of change, owing in part, 

to the environmental policies enacted starting in 1991 establishing a national system of 

protected areas and protecting forest lands in particular.  

5.1.3 Chapter Four 

The fourth chapter was focused on just one class: built-up lands in the fifty most 

populous cities in China, India, and the United States. It aimed to determine if the urban 

form (LSA) of cities was homogenizing and the significance of homogenization for the 

surface urban heat island (SUHI) effect. We found that all 150 cities are following a 

similar trend (becoming larger, similar in shape, and connected) but homogenization 

was most evident in the three country’s thirty largest cities. This urban form change was 

associated with a change in SUHI intensity particularly for form changes related to 

sprawl (shape complexity and shape compactness). Shape complexity and compactness, 

however, had opposite relationships with daytime and nighttime SUHI.  
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These findings have implications for designing urban landscapes. Sprawl has a 

complicated relationship with SUHI, so should be managed in relation to the desired 

reduction of SUHI as well as other negative impacts  of sprawl, such as economic 

inefficiencies, ecological problems, and social inequitable conditions (Ewing et al. 2016; 

Nechyba and Walsh 2004). Reducing sprawl corresponds to decreasing shape 

complexity and increasing shape compactness but daytime and nighttime SUHI have 

opposite relationships—decreased shape complexity corresponds to lower daytime SUHI 

but higher nighttime SUHI and increasing shape compactness corresponds to lower 

daytime SUHI but higher nighttime SUHI. Thus, reducing sprawl involves making trade-

offs or optimizations between reducing SUHI during daytime or nighttime (Zhang, 

Murray, and Turner 2017). Balancing these trade-offs should be specific to the priorities 

of a given city, which for SUHI, are likely associated with a city’s climatic conditions. 

Phoenix, for example, may choose to prioritize reducing nighttime SUHI because it 

contributes to higher heat-related mortality when homeless people (or other people 

without access to adequate air conditioning or cooling shelters) are unable to cool their 

core body temperature overnight (Laaidi et al. 2012). 

5.2 Landscape Metrics 

A core component of this dissertation are the metrics used to quantify landscape 

composition and configuration. For each dissertation chapter, a larger set of metrics was 

calculated and then subset based on relevance to the case study’s research questions and 

data. Table 1 presents the final set of landscape metrics that were used in each case 

study. 
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Table 1. Names, definitions, and equations of the landscape metrics used for each 
chapter of the dissertation. Aspects of composition and configuration are in the left 
column with corresponding metrics in columns to the right. 

 CHAPTER 2 CHAPTER 3 CHAPTER 4 

S
IZ

E
 

(c
o

m
p

o
si

ti
o

n
) 

Percentage of Landscape 
Proportional abundance of 
each class type in the 
landscape. Calculated: 
 

∑ 𝑎𝑖𝑗 × 900𝑛
𝑗=𝑖

𝑍
 

Patch Area 
Sum of all pixels in a 
given patch. 
Calculated in 
hectares: 

𝑎𝑖𝑗 × 250 

Class Area 
Sum of the area of all 
pixels within the 
urban extent classified 
as built-up. Calculated 
in km2: 

∑ 𝑎𝑖𝑗  × 0.0009

𝑛

𝑗=𝑖

 

 

S
H

A
P

E
 

(c
o

n
fi

g
u

ra
ti

o
n

) 

Median Shape Index 
Median value of each patch 
in a given class’ shape 
complexity as defined by: 
 

(
𝑝𝑖𝑗

min 𝑝𝑖𝑗
)

50%

 

Fractal Dimension 
Index 
Measure of shape 
complexity computed 
with a patch’s area 
and perimeter: 
 
2 × ln(0.25(𝑝𝑖𝑗  × 500))

ln(𝑎𝑖𝑗 × 250,000)
 

Edge Density 
Measure of edge 
complexity by 
computing the ratio of 
the length of edge to 
the total area: 

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

𝐴
 (10000) 

 
Reock Score 
Ratio of class area to 
its minimum 
bounding circle:  

𝐴

𝐶
 

C
O

N
N

E
C

T
IV

IT
Y

 
(c

o
n

fi
g

u
ra

ti
o

n
) 

Median Euclidean Nearest-
Neighbor Index 
Median value of the 
distance each patch to the 
nearest patch of the same 
class. Equation is 
represented as:  

ℎ𝑖𝑗50%
 

Contiguity Index 
Assess spatial 
connectedness of 
pixels in the same 
patch: 

[
∑ 𝑐𝑖𝑗𝑟

𝑧
𝑟=1

𝑎𝑖𝑗
] − 1

𝑣 − 1
 

 

Patch Cohesion Index 
Measure of 
connectedness defined 
by the area and 
perimeter of groups of 
connected built-up 
pixels: 

[1 −  
∑ 𝑝𝑖𝑗

𝑛
𝑗=1

∑ 𝑝𝑖𝑗√𝑎𝑖𝑗
𝑛
𝑗=1

] × 

[1 −  
1

√𝑍
]

−1

× 100 
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D
IS

T
R

IB
U

T
IO

N
 

(c
o

n
fi

g
u

ra
ti

o
n

) 

Interspersion and 
Juxtaposition Index 
Ratio of observed 
interspersion over 
maximum possible 
interspersion: 

− ∑ [(
𝑒𝑖𝑘

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

) ln (
𝑒𝑖𝑘

∑ 𝑒𝑖𝑘
𝑚
𝑘=1

)]𝑚
𝑘=1

ln(𝑚 − 1)
 

× 100 

Euclidean Nearest 
Neighbor Index 
Distance of each 
patch to the nearest 
patch of the same 
class. Equation 
represented as: 

ℎ𝑖𝑗 

Percentage of Like 
Adjacencies 
Calculates the number 
of built-up pixels that 
are adjacent to built-
up pixels divided by 
the total number of 
pixel adjacencies: 

(
𝑔𝑖𝑖

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

) (100) 

 
WHERE: 
𝑎𝑖𝑗 = 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠, 

 𝐴 =  𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠/𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 𝑎𝑟𝑒𝑎 (𝑚2), 
 𝑒𝑖𝑘 = 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚) 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑎𝑛𝑑 𝑘,  
𝑝𝑖𝑗 = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ 𝑖𝑗 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠, 

𝑍 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 
𝑔𝑖𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑘𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖, 
𝑔𝑖𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑘𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖 & 𝑘, 
𝑐𝑖𝑗𝑟 = 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑝𝑖𝑥𝑒𝑙 𝑟 𝑖𝑛 𝑝𝑎𝑡𝑐ℎ 𝑖𝑗, 

𝑣 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥, 
ℎ𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑎𝑡𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖 (𝑚), 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 
𝐶 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠′ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑐𝑖𝑟𝑐𝑙𝑒 

 

These metrics draw from patch-based and spatial science methods and were calculated 

using the FRAGSTATS GUI as well as compactR, and landscapemetric R packages 

(McGarigal, Cushman, and Ene 2012; Hesselbarth et al. 2019; Migurski 2018).  

5.2.1 Size 

Size is a measure of composition and is the relative extent of an area of a 

particular land cover. In the case studies, size was measured either in total area or the 

proportion of total area. For the analysis of the Rio Salado and New River developments, 

using the Percentage of Landscapes to represent size was appropriate because the metric 

inherently considers the whole landscape. This focus on the landscape was mirrored in 

the statistical tests used in the analysis, such as the repeated measures correlation. 

Chapters 3 and 4 used patch and class area, respectively. Chapter 3 employs patch area 

in order have enough data to conduct statistically robust tests on change over time. For 
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testing for urban homogenization in Chapter 4, class area provided a relevant value that 

was also easily comparable across cities.  

5.2.2 Shape 

Shape is a measure of configuration and is defined by the form of an area of a 

particular land cover (i.e., elliptical, rectilinear), including the complexity of the 

boundaries (Connors, Galletti, and Chow 2013). Most of the measures of shape used in 

the case studies were measures of shape complexity that compared the perimeter of the 

patch/class to a simplified perimeter or total area (Median Shape Index, Fractal 

Dimension Index, and Edge Density). In Chapter 4, an additional measure of shape that 

examined the compactness of the class, the Reock Score (Reock 1961), was also used. 

Together these metrics captured distinct shape change that, in the case of this research, 

correspond to increasing urban sprawl: Edge Density showed an increase in shape 

complexity and Reock Score showed a decrease in shape compactness. This suggests that 

for some contexts, using two metrics to capture these two aspects of shape is important 

(this is elaborated upon below in section 5.3.3). 

5.2.3 Connectivity 

Connectivity is a measure of configuration and is the linking, or lack thereof, 

between land covers of the same class (Schumaker 1996). The metrics used for 

connectivity vary by case study. For the Rio Salado and New River sites (Chapter 2), 

class-level connectivity was measured by the median distance between patches of the 

same class (Euclidean Nearest Neighbor Index). This was an appropriate measure 

because of the relatively small spatial extent of the study areas and the focus on bird 

biota which fly between habitat patches. The Cuba case study (Chapter 3) necessitated 

patch level metrics so the Contiguity Index, a measure of within patch connectivity, was 

most appropriate. Lastly, the urban case study (Chapter 4) examined class level 
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connectivity (i.e., all built-up land in a given urban area) so the Patch Cohesion Index, a 

class level measure that looked at the connectedness of built-up patches, was applicable.  

5.2.4 Distribution 

Distribution is a measure of configuration and is the spatial arrangement of land-

cover types, such as random, aggregated, or uniform, as well as their density (Gustafson 

1998). The metrics used to measure distribution varied by study area and research 

contexts. The Rio Salado and New River analysis used the Interspersion and 

Juxtaposition Index which considered observed interspersion in relation to maximum 

possible interspersion. This was appropriate for the landscape approach of Chapter 2 

because the resulting metric values could be easily compared between classes. The Cuba 

case study (Chapter 3) employed the distance between patches of the same class 

(Euclidean Nearest Neighbor Index) as a measure of distribution. Distribution is 

inherently a measure that relates more than one patch to each other, and when 

calculating patch level metrics this was the only metric that takes other patches into 

account. Last, the urban case study (Chapter 4) employed Percentage of Like Adjacencies 

which calculates, for built-up pixels, the proportion of adjacent pixels that are also built-

up. It captures the distribution of built-up land in the metropolitan area in a way that has 

previously been linked to socio-environmental urban processes (Alberti et al. 2007). 

5.3 Cross-Case Study Conclusions 

In the early stages of LSA research, a variety of metrics from a range of fields 

should be tested for their applicability. Based on the three case studies in this 

dissertation, several conclusions are relevant to the continued use and testing of metrics 

for LSA research. First, LSA research should take a flexible, but context-specific 

approach in the selection of metrics. A potential workflow to aid in the metric selection 

process is outlined in section 5.3.1. Second, all three case studies found configuration to 
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have more statistically significant relationships with environmental variables than 

composition did. This is elaborated on in section 5.3.2, but may be a function of 

incorporating new metrics into LSA research. In particular, some of the case studies 

point to the importance of using two different metrics to capture the interrelated aspects 

of shape—one for shape compactness and one for shape complexity. This is explored in 

section 5.3.3. 

5.3.1 Selecting Context Appropriate Metrics 

 Across the three case studies, there was very little overlap in the final subset of 

metrics that were used. This suggests that there is not a single set of metrics that should 

be used for all LSA research. Instead, determining which metrics are suitable for a given 

LSA research question is highly context dependent, with the spatial scale and socio-

ecological variables of interest having the greatest impact on selecting metrics.  

Based on the selection processed used in the three case studies, several steps 

related to identifying appropriate metrics are recommended. First, determine what level 

of metrics the research question requires: patch, class, or landscape. In this dissertation 

the choice was a function of the land-use and land-cover data and the number of 

observations that the selected statistical tests needed. Each case study in this dissertation 

used only one metric level (class for Chapters 2 and 4, patch for Chapter 3) but other 

analyses may require multiple levels.  

Second, categorize metrics according to the components of landscape 

composition and configuration that need to be measured. This will likely be the four 

components of LSA—size, shape, connectivity, and distribution—but may not be in every 

case. In doing so, remove metrics that are mathematically redundant. For example, at 

the patch level, Related Circumscribing Circle (CIRCLE) from FRAGSTATS (McGarigal, 
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Cushman, and Ene 2012) and the Reock Score from spatial sciences (Reock 1961) are 

redundant.  

Third, consider the socio-environmental processes that are relevant to your 

research question. This can be done by reviewing metrics used successfully in previous 

research but should also involve considering the way in which landscape structure is 

hypothesized to be relevant. For example, graph theory metrics ended up not being used 

in any of the case studies, despite testing them on multiple cases, because these metrics 

are most useful for representing ecological flow probability or a species’ ability to move 

between habitats (Baranyi et al. 2011). This dissertation’s reliance on satellite imagery 

for the majority of environmental variables made graph theory metrics less applicable.  

 Finally, because many metrics come from applications other than LSA, adopt a 

flexible approach in determining which metrics are suitable. Chapter 2 and 3 used 

Euclidean Nearest Neighbor distance as measures of connectivity and distribution 

respectively. Using one metric for two different aspects of LSA is not problematic 

because the appropriateness and interpretation of metrics varies dramatically by 

research contexts and spatial scale. In addition to the justifications noted above (sections 

5.2.3 & 5.2.4), one of the most important differences between the two cases is that the 

metrics for Chapter 2 were calculated at the class level, while the metrics for Chapter 3 

were calculated at the patch level. Flexibility in incorporating new metrics is essential in 

the early phases of LSA research. Incorporation of new metrics is potentially one of the 

reasons some LSA research has found configuration to be as or more important than 

composition. 

5.3.2 Composition and Configuration 

In each of the case studies, measures of configuration had greater statistical 

significance than measures of composition. This is contrary to previous findings on the 
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primacy of configuration (Li et al. 2017; Li et al. 2012; Zhou, Wang, and Cadenasso 2017; 

Zhou, Huang, and Cadenasso 2011) but joins a small and growing amount of research 

which has found configuration to be as or more important (Li et al. 2016; Zhang, Murray, 

and Turner 2017). As noted above, the metric used to measure configuration appears to 

be central to these findings.  

Most LSA research has employed patch-based methods (i.e., FRAGSTATS), but 

research that has found configuration to be more important has often employed other 

means of calculating configuration. For example, Li et al. (2016) uses the normalized 

moment of inertia drawn from spatial science as opposed to patch-based methods. Thus, 

there is continued need to test the appropriateness of non patch-based metrics for use in 

LSA research with particular attention to what aspect of composition a given metric is 

capturing. This is because the divergent results around configuration may also link to the 

multiple ways of measuring shape (i.e., complexity vs. compactness).  

5.3.3 Shape Complexity vs. Compactness 

Shape is considered one of three aspects of composition (along with distribution 

and connectivity). Chapter 4 found that two aspects of shape—shape complexity and 

shape compactness—while related, cannot both be captured with the same metric. For 

example, two patches could have the same area and minimum bounding circle, but have 

very different complexities. In the urban case study (Chapter 4) two measures of shape 

were used, producing unique results and trends (Fig. 1). 
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Figure 1. Density plots for the distribution of A) edge density (a measure of shape 
complexity) and B) reock score (a measure of shape compactness) for the 50 cities of 
China, India, and the United States. The US from 1995-2005 is a good example of the 
two metrics exhibiting different rates of change. 
 

Additionally, the metrics produced unique values measuring different aspects of 

urbanization. Increasing Edge Density signals that city’s boundaries were becoming 

more complex and the increasing Reock scores means there was a decrease in the cities’ 

compactness. Together the metrics suggested an increase in urban sprawl over time. 

Patch level metrics used in the Cuba case study (Chapter 3) also showed 

differences between shape complexity and compactness. Fractal Dimension Index was 

used in the analysis and is a measure of shape complexity. Related Circumscribing Circle 

was calculated for this concluding chapter as an example of a shape compactness. Figure 

2 depicts these differences for the built-up class. 

 

 

 

 

 

A) B) 
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Figure 2. Density plots for built-up patch values of A) fractal dimension index (a 
measure of shape complexity) and B) related circumscribing circle (a measure of shape 
compactness). 
 

Both fractal dimension index and related circumscribing circle had peaks at the right end 

of the graph—the least complex (fractal dimension index = 1) and most compact (related 

circumscribing circle = 0)—for all patches that are made up of one pixel or are perfectly 

square. Beyond this similarity, however, the two metrics had unique trends and signify 

different types of LSA change. For example, the related circumscribing circle had a 

slower rate of change between 1985 and 2010 which suggests that patches were changing 

in complexity faster than they were changing in compactness. 

5.4 Contributions of Research 

 This dissertation expanded the applications in which LSA approaches have been 

applied, produced case study specific results with implications relevant to the design of 

landscapes, and provided some insight on the selection and use of metrics in LSA 

research.  

5.4.1 Expanded Application of LSA Approach 

LSA’s consideration of composition, configuration, and their socio-environmental 

consequences is widely relevant, but to date, LSA research has largely been focused on 

city-scale examinations of urban heat and its associated impacts (Li et al. 2017; Turner 

2016; Zhang, Murray, and Turner 2017; Connors, Galletti, and Chow 2013). While this 

dissertation engaged with urban heat in Chapters 2 and 4, urban heat was often part of a 

A) B) 
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broader set of environmental outcomes such as bird biota (Ch. 2) or tasseled cap 

variables (Ch. 3). Additionally, Chapters 3 and 4 expanded beyond the examination of a 

single city to evaluate the LSA of a country (Ch. 3) or cities across multiple countries (Ch. 

4).  Expanding the scope of LSA furthers its contributions to the landscape composition 

and configuration research occurring in cognate fields—such as landscape ecology, 

landscape architecture, urban climatology and geodesign—and begins to incorporate LSS 

in conversations around landscape design. 

5.4.2 Landscape Design 

The composition and configuration of the Earth’s surfaces are dominant factors 

in the environmental benefits and burdens a land system—rural to urban—can provide. 

Human uses affect these services through the “design” of the built environment (Osborne 

and Kovacic 1993). An important implication of LSA research is the ability to design 

landscape mosaics that optimize social and ecological trade-offs to improve resilience 

(Nassauer and Opdam 2008; B. L. Turner et al. 2013). Furthering landscape design, each 

case study provided context-specific findings relevant to the design of landscapes.  

Additionally, the case studies together provide insights on selecting metrics for 

use in LSA research. Improved application of landscape metrics will further land 

assessment research by providing a meaningful quantitative measure for understanding 

land-cover changes and socio-environmental trade-offs that must be made when 

modifying landscapes (Dramstad 2009; Kupfer 2012). As a result, researchers will be 

able to provide decision makers with improved understanding of outcomes on which to 

construct options that enhance sustainability and resilience. 

5.4.3 Metric Evaluation  

 The metric evaluation conducted as part of this dissertation marks the beginning 

of a discussion on which metrics are suitable for use in LSA. A flexible, context-specific 
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approach is recommended for selecting metrics with particular attention to how shape is 

measured. I suggest using two metrics to measure shape, one which captures shape 

complexity and one which captures shape compactness. Continued attention on 

configuration metrics can help tease apart the role that composition and configuration 

play separately and together. These results will have implications beyond the sub-field of 

LSA. Urban climate research, urban ecology, landscape ecology, landscape architecture, 

and geodesign scholars also use landscape pattern metrics and thus will benefit from 

greater clarity on meaningfully and accurately applying metrics.  

5.5 Challenges and Directions for Future Research 

First, based on findings in my dissertation and the inconsistencies that have 

emerged in other research (Leitao et al. 2006; Luck and Wu 2002; Seto and Fragkias 

2005), future work is need on landscape metrics that are suitable for studying urban 

systems. In particular, I see potential in applying landscape metrics that use fuzzy or 

non-binary classifications (to capture different levels of urbanization) or 3D metrics 

(Kedron, Zhao, and Frazier 2019; McGarigal, Tagil, and Cushman 2009; McIntyre and 

Barrett 1992). The landscape metrics used in the urban case study (Chapter 4) captured 

city-level changes in composition and configuration which was a fit our dataset and 

research questions comparing 2D LSA change across cities. In future research on city 

LSA change, however, non-categorical metrics or 3D metrics could provide a much more 

nuanced perspective. For example, using 3D metrics would have shown greater contrast 

between the Rio Salado’s density of high-rise developments and the low density 

residential and retail development that occurred at the New River site.  

Second, I am interested in understanding the impact policy has on land, 

especially urban land. Much policy research is focused on the impacts for people or 

firms, with minimal emphasis on the land system or environmental impacts. Employing 
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longitudinal data from satellite imagery, there is potential to examine land and 

environmental impacts at a variety of scales and to link the impacts of one scale to 

another. The scale at which policy influences urban land systems can be large and 

systematic (such as an urban growth boundary) or relatively fine-grained (such as a 

zoning policy) with interactions between the scales. 

Third, in future research I aim to integrate design—the intentional modifications 

to the composition and configuration of a landscape—into LSS research. With the 

growing emphasis on transdisciplinary and convergent research, design can be fertile 

ground for integrating practitioners and other stakeholders into LSS research. LSA, with 

its focus on composition and configuration, is well poised to contribute to this 

integration.  

The lack of interpretability of some landscape metrics is a current challenge for 

transdisciplinary land system architecture research. In future work, a greater focus needs 

to be put on making sure that the metrics used to quantify landscape pattern are not only 

context appropriate, but also easily interpretable by decision makers. As an example, if 

urban planners and land managers do not understand how to raise or lower a 

landscape’s Fractal Dimension Index, the possibility of operationalizing any findings 

about the metric will be significantly reduced. 

In conclusion, there is a need for continued exploration of landscape metrics that 

are suitable for LSA and interpretable by stakeholders, especially in urban areas. I plan 

to continue this work and apply landscape metrics to questions of urban design, 

environmental outcomes, and policy impacts. Together, my aim is that this research 

speaks to the broader question: How can (urban) landscapes be managed in order to 

balance social and ecological well-being? 
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Bird species seen or heard at the Rio Salado and New River CAP LTER birding sites. 

Table 1. Common name, scientific name, and 4-letter alpha code for all bird species in 
our analysis. The 4-letter alpha codes are the ones used during the CAP LTER data 
collection—English name 54th AOU Supplement (2013) alpha codes. 

4-letter 
alpha code 

Common Name Scientific Name 

ABTO Abert's Towhee Melozone aberti 

AMBI American Bittern Botaurus lentiginosus 

AMCO American Coot Fulica americana 

AMKE American Kestrel Falco sparverius 

ANHU Anna's Hummingbird Calypte anna 

ATFL Ash-throated Flycatcher Myiarchus cinerascens 

AUWA Audubon's Warbler Setophaga coronata auduboni 

BCNH Black-crowned Night-Heron Nycticorax nycticorax 

BEKI Belted Kingfisher Megaceryle alcyon 

BEWR Bewick's Wren Thryomanes bewickii 

BGGN Blue-gray Gnatcatcher Polioptila caerulea 

BHCO Brown-headed Cowbird Molothrus ater 

BLPH Black Phoebe Sayornis nigricans 

BNST Black-necked Stilt Himantopus mexicanus 

BRSP Brewer's Sparrow Spizella breweri 

BTGN Black-tailed Gnatcatcher Polioptila melanura 

BTYW Black-throated Gray Warbler Setophaga nigrescens 

CACW Cactus Wren Campylorhynchus brunneicapillus 

CANG Canada Goose Branta canadensis 

CHSP Chipping Sparrow Spizella passerina 

CITE Cinnamon Teal Spatula cyanoptera 

CLSW Cliff Swallow Petrochelidon pyrrhonota 

COGA Common gallinule Gallinula galeata 

COHU Costa's Hummingbird Calypte costae 

CORA Common Raven Corvus corax 

COYE Common Yellowthroat Geothlypis trichas 

EUCD Eurasian Collared-Dove Streptopelia decaocto 

EUST European Starling Sturnus vulgaris 

GAQU Gambel's Quail Callipepla gambelii 

GBHE Great Blue Heron Ardea herodias 

GIWO Gila Woodpecker Melanerpes uropygialis 

GREG Great Egret Ardea alba 

GRHE Green Heron Butorides virescens 

GRYE Greater Yellowlegs Tringa melanoleuca 

GTGR Great-tailed Grackle Quiscalus mexicanus 
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GTTO Green-tailed Towhee Pipilo chlorurus 

HOFI House Finch Haemorhous mexicanus 

HOSP House Sparrow Passer domesticus 

HOWR House Wren Troglodytes aedon 

INDO Inca Dove Columbina inca 

KILL Killdeer Charadrius vociferus 

LBDO Long-billed Dowitcher Limnodromus scolopaceus 

LBWO Ladder-backed Woodpecker Dryobates scalaris 

LEGO Lesser Goldfinch Spinus psaltria 

LESA Least Sandpiper Calidris minutilla 

LISP Lincoln's Sparrow Melospiza lincolnii 

LUWA Lucy's Warbler Leiothlypis luciae 

MALL Mallard Anas platyrhynchos 

MAWR Marsh Wren Cistothorus palustris 

MGWA MacGillivray's Warbler Geothlypis tolmiei 

MODO Mourning Dove Zenaida macroura 

NECO Neotropic Cormorant Phalacrocorax brasilianus 

NOCA Northern Cardinal Cardinalis cardinalis 

NOFL Northern Flicker Colaptes auratus 

NOMO Northern Mockingbird Mimus polyglottos 

NRWS 
Northern Rough-winged 

Swallow 
Stelgidopteryx serripennis 

OCWA Orange-crowned Warbler Leiothlypis celata 

OSPR Osprey Pandion haliaetus 

PBGR Pied-billed Grebe Podilymbus podiceps 

PHAI Phainopepla Phainopepla nitens 

PWWR Pacific/Winter Wren 
Troglodytes pacificus/ Troglodytes 

hiemalis 

PYRR Pyrrhuloxia Cardinalis sinuatus 

RCKI Ruby-crowned Kinglet Regulus calendula 

ROPI Rock Pigeon Columba livia 

RWBL Red-winged Blackbird Agelaius phoeniceus 

SAPH Say's Phoebe Sayornis saya 

SOSP Song Sparrow Melospiza melodia 

SPSA Spotted Sandpiper Actitis macularius 

TOWA Townsend's Warbler Setophaga townsendi 

VERD Verdin Auriparus flaviceps 

VIRA Virginia Rail Rallus limicola 

WCSP White-crowned Sparrow Zonotrichia leucophrys 

WEKI Western Kingbird Tyrannus verticalis 

WEME Western Meadowlark Sturnella neglecta 

WESA Western Sandpiper Calidris mauri 
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WETA Western Tanager Piranga ludoviciana 

WISN Wilson's Snipe Gallinago delicata 

WIWA Wilson's Warbler Cardellina pusilla 

WWDO White-winged Dove Zenaida asiatica 

YEWA Yellow Warbler Setophaga petechia 

YRWA Yellow-rumped Warbler Setophaga coronata 

 

  

 

 

 

 

 

 

 

 

 

 



  147 

APPENDIX C 

CHAPTER 3: SUPPLEMENTAL MATERIAL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  148 

Figure 1 visualizes the output of the 30 meter land use/land cover classification output 
for 1985-2010 in five year time steps. 
 
 

 

 

 

 

 

 

 

Figure 1. Land use/land cover classification for each year of analysis. Light tan is 
agricultural lands, olive green is barren/grass/shrublands, fir green is forest lands, black 
is built-up lands, and blue is water. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Crop area bar plot of the Dunn test Z value for the year comparison. Positive or 
negative Z values indicate the direction of the differences. Dark grey bars are statistically 
significant (p<0.05) and white bars are not. 
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Figure 3. Crop connectivity bar plot of the Dunn test Z value for the year comparison. 
Positive or negative Z values indicate the direction of the differences. Dark grey bars are 
statistically significant (p<0.05) and white bars are not. 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 4. Crop patch distance (distribution) bar plot of the Dunn test Z value for the year 
comparison. Positive or negative Z values indicate the direction of the differences. Dark 
grey bars are statistically significant (p<0.05) and white bars are not. 
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Figure 5. Crop shape bar plot of the Dunn test Z value for the year comparison. Positive 
or negative Z values indicate the direction of the differences. Dark grey bars are 
statistically significant (p<0.05) and white bars are not. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. Barren/grass/shrubland area bar plot of the Dunn test Z value for the year 
comparison. Positive or negative Z values indicate the direction of the differences. Dark 
grey bars are statistically significant (p<0.05) and white bars are not. 
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Figure 7. Barren/grass/shrubland connectivity bar plot of the Dunn test Z value for the 
year comparison. Positive or negative Z values indicate the direction of the differences. 
Dark grey bars are statistically significant (p<0.05) and white bars are not. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Barren/grass/shrubland patch distance (distribution) bar plot of the Dunn test 
Z value for the year comparison. Positive or negative Z values indicate the direction of 
the differences. Dark grey bars are statistically significant (p<0.05) and white bars are 
not. 
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Figure 9. Barren/grass/shrubland shape bar plot of the Dunn test Z value for the year 
comparison. Positive or negative Z values indicate the direction of the differences. Dark 
grey bars are statistically significant (p<0.05) and white bars are not. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Built-up area bar plot of the Dunn test Z value for the year comparison. 
Positive or negative Z values indicate the direction of the differences. Dark grey bars are 
statistically significant (p<0.05) and white bars are not. 
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Figure 11. Built-up connectivity bar plot of the Dunn test Z value for the year 
comparison. Positive or negative Z values indicate the direction of the differences. Dark 
grey bars are statistically significant (p<0.05) and white bars are not. 
 

 

 

 

 

 

 

 

 

 

 

Figure 12. Built-up patch distance (distribution) bar plot of the Dunn test Z value for the 
year comparison. Positive or negative Z values indicate the direction of the differences. 
Dark grey bars are statistically significant (p<0.05) and white bars are not. 
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Figure 13. Built-up shape bar plot of the Dunn test Z value for the year comparison. 
Positive or negative Z values indicate the direction of the differences. Dark grey bars are 
statistically significant (p<0.05) and white bars are not. 
 

 

 

 

 

 

 

 

 

 

 

Figure 14. Forest area bar plot of the Dunn test Z value for the year comparison. Positive 
or negative Z values indicate the direction of the differences. Dark grey bars are 
statistically significant (p<0.05) and white bars are not. 



  155 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Forest connectivity bar plot of the Dunn test Z value for the year comparison. 
Positive or negative Z values indicate the direction of the differences. Dark grey bars are 
statistically significant (p<0.05) and white bars are not. 
 

 

 

 

 

 

 

 

 

 

 

Figure 16. Forest patch distance (distribution) bar plot of the Dunn test Z value for the 
year comparison. Positive or negative Z values indicate the direction of the differences. 
Dark grey bars are statistically significant (p<0.05) and white bars are not. 
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Figure 17. Forest shape bar plot of the Dunn test Z value for the year comparison. 
Positive or negative Z values indicate the direction of the differences. Dark grey bars are 
statistically significant (p<0.05) and white bars are not. 
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D.1 Methodology 
 
D.1.1 Threshold Setting 

 
Table 1 presents the balanced accuracies of 2013 classifications done to determine if the 
method from Goldblatt et al. (2018) could be extended to different sensors. 
 
Table 1. Balanced accuracy of 2013 classifications in India and the United States. 2013 
was used to test compatibility because Landsat 5, Landsat 7, DMPS-OLS, and VIIRS 
were all active that year. 

India  United States 

Landsat 7 & 
DMSP-OLS 

Landsat 8 & 
VIIRS 

 Landsat 7 & 
DMSP-OLS 

Landsat 8 & 
VIIRS 

76.5% 80.5%  81.9% 81.5% 

 
A variety of thresholds were used to determine where to scatter training points for the 
classification. Table 2 presents the NDVI, NDWI, and nighttime light threshold for each 
country and satellite.  

 
Table 2. NDVI, NDWI, and nighttime light thresholds used in the United States, India 
and China for Landsat 5, Landsat 7, Landsat 8, DMSP-OLS, and VIIRS 

  United States India China 

Landsat 5 
NDVI 90th percentile 90th percentile 75th percentile 

NDWI -0.01 -0.01 0.15 

Landsat 7 
NDVI 90th percentile 90th percentile 75th percentile 

NDWI -0.01 -0.01 0.15 

Landsat 8 
NDVI 90th percentile 90th percentile 75th percentile 

NDWI -0.01 -0.01 0.15 

DMSP-OLS 
Highly lit 90th percentile 95th percentile 95th percentile 

Low lit 75th percentile 75th percentile 25th percentile 

VIIRS 
Highly lit 90th percentile 90th percentile 95th percentile 

Low lit 60th percentile 55th percentile 25th percentile 

 
NDWI does not use a percentile threshold because of minimal regional variation 
compared to NDVI or nighttime lights. A higher NDWI threshold was used in China 
because the dense urbanization cast shadows, which required a stricter threshold so that 
only water would be masked (Xu 2006). Nighttime light thresholds for Landsat 7 and 
DMSP-OLS were from Goldblatt et al. (2018). Due to the change in sensors in 2015, new 
thresholds were determined for Landsat 8 and VIIRS using the same methods. 
 
D.1.2 Biome Grouping 
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Table 3 displays each city in the analysis according to country and biome group. Biome 
groupings come from Dinerstein et al. (2017) with some biomes combined to increase 
the number of cities in a given biome grouping. Groupings made up of multiple biomes 
are noted in parenthesis in the rightmost column. 

 
Table 3. List of the 50 cities for each country and the biome they reside in. Rows that are 
greyed-out are the biomes that are not included in the final analysis. 

 India China United States 

Desert and xeric 
shrublands 

Chandigarh, Guntur, 
Gurgaon, Ludhiana, 

Nashik, 
Tiruchirappalli 

 
El Paso, Las 

Vegas, Phoenix, 
Salt Lake City 

Wetlands 
(combination of 

flooded grasslands 
& savannas and 

mangroves) 

Surat  Miami 

Mediterranean 
forests, woodlands, 

and scrub 
  

Los Angeles, San 
Diego, San 
Francisco 

Montane 
grasslands and 

shrublands 
 Lanzhou  

Temperate forests 
(combination of 

temperate conifer 
forests and 
temperate 

broadleaf and 
mixed forests) 

 

Anshan, Baoding, 
Beijing, 

Changchun, 
Changsha, 
Chengdu, 

Chongqing, Dalian, 
Handan, 

Hangzhou, Harbin, 
Hefei, Huaian, 

Jilin, Jining, Linyi, 
Luoyang, 

Nanchang, 
Nanjing, Nantong, 

Pingdingshan, 
Qingdao, 
Shanghai, 
Shenyang, 

Shijiazhuang, 
Tangshan, Tianjin, 
Weifang, Wuhan, 
Xi’an, Xinxiang, 
Xuzhou, Yantai, 

Yinchuan, 
Zhengzhou 

Atlanta, Boston, 
Bridgeport, 

Buffalo, Charlotte, 
Cincinnati, 
Cleveland, 
Columbus, 

Detroit, 
Indianapolis, 

Louisville, 
Minneapolis, 

Nashville, New 
Orleans, New 

York, 
Philadelphia, 
Pittsburgh, 
Providence, 

Raleigh, Seattle, 
Springfield, 

Washington DC 
 
 

Temperate 
grasslands, 

 
Baotou, Datong, 

Hohhot 

Austin, Chicago, 
Dallas, Denver, 

Fort Myers, 
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savannas and 
shrublands 

Jacksonville, 
Kansas City, 

Memphis, 
Milwaukee, 

Oklahoma City, 
Orlando, Portland, 

Richmond, 
Sacramento, Saint 

Louis, San 
Antonio, Tampa, 
Virginia Beach 

Tropical and 
subtropical dry 

broadleaf forests 

Ahmadabad, Asansol, 
Bangalore, Bhopal, 
Chennai, Dhanbad, 

Durgapur, 
Hyderabad, Indore, 

Jaipur, Jamshedpur, 
Karagpur, Mysuru, 

Nagpur, Pune, 
Ramgarh, Ranchi, 
Salem, Tiruppur, 

Vadodara, 
Vijayawada, 

Warangal 

  

Tropical and 
subtropical 
grasslands, 

savannas, and 
shrublands 

  Houston, McAllen 

Tropical and 
subtropical moist 
broadleaf forests 

Agartala, Agra, Bhilai, 
Bhubaneswar, 

Coimbatore, Delhi, 
Guwahati, Imphal, 

Kanpur, 
Karunagappalli, 
Kochi, Kolkata, 

Lucknow, Meerut, 
Mumbai, Patna, 

Prayagraj, Rourkela, 
Thiruvananthapuram, 

Varanasi, 
Visakhapatnam 

Fuzhou, 
Guangzhou, 

Guiyang, Haikou, 
Jieyang, Kunming, 
Liuzhou, Nanning, 

Quanzhou, 
Taizhou, Wenzhou 

 

 
D.2 Results 
 
D.2.1 Accuracy Assessment Comparison 
 
We compared the accuracy of our classification (30m) to similar classifications available 
for all three countries (Table 4). GlobCover has a 300m resolution and is only available 
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for 2009. MODIS MCD 12Q2.006 has a 500m resolution and is available from 2001-
2015. 
 
Table 4. Balanced accuracies for GlobCover: Global Land Cover Map in 2009 and 
MODIS MCD12Q2.006 Land Cover Dynamics Yearly Global 500m, Annual International 
Geosphere-Biosphere Programme (IGBP) classification for 2001, 2005, 2010, and 2015. 

Classification / Year 
Validation 

Year 
China India United States 

GlobCover / 2009 2010 76.93% 67.3% 59.3% 

MCD12Q2.006 / 2001 2000 88.8% 77.4% 78.2% 

MCD12Q2.006 / 2005 2005 89.9% 77.8% 78.7% 

MCD12Q2.006 / 2010 2010 90.5% 78.3% 79.0% 

MCD12Q2.006 / 2015 2015 91.6% 78.4% 79.1% 

 
D.2.2 Effect of Biome 
 
To test if the climatological conditions of each city affected the strength and direction of 
the SUHI relationships, the correlations were separated by the biome associated with the 
climatic type (Fig. 1). Five biomes are home to 142 of the 150 cities in our analysis: 32 in 
the tropical and subtropical moist broadleaf forest biome; 22 in the tropical and 
subtropical dry broadleaf forest biome; 57 in the temperate forest biome (which is a 
combination of the broadleaf, mixed and conifer temperate forest biome); and 21 in the 
temperate grasslands, savannas, and shrublands biome. The remaining 8 cities reside in 
biomes for which there are too few cities to conduct a statistically viable analysis.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Distribution of yearly daytime and nighttime surface urban heat island intensity 
by biome. The color of city footprints corresponds to the biome they reside in. 8 cities are 
grey because they reside in biomes (a. tropical and subtropical grasslands, savannas, and 
shrublands; b. flooded grasslands and savannas; c. mangrove; d. montane grasslands 
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and shrublands; and e. Mediterranean forests, woodlands, and scrub) that were excluded 
because of limited numbers of cities in these biomes. 

 
Cities in tropical and subtropical moist broadleaf forests experienced the whole range of 
daytime SUHI intensity (-5°C to 10°C) (Fig. 1) Temperate forests had the highest mean 
daytime SUHI intensity (~3.4°C) and deserts have the lowest (~-0.3°C) with tropical and 
subtropical dry broadleaf forests close behind (~-0.28°C) (Table 5). Deserts had the 
highest mean nighttime SUHI intensity (~2.1°C), and tropical and subtropical dry 
broadleaf forests had the lowest (~ 1.5°C). Along with a narrower range of values, 
nighttime SUHI effect also had less variation over time.   

 
Temporally, 2000 had a wider spread of values and 2015 was more concentrated, but 
several biomes (day and night in tropical and subtropical dry broadleaf forests, and night 
in temperate grasslands, savannas and shrublands) were an exception to this. Cities 
residing in temperate grasslands, savannas, and shrublands-deserts had the greatest 
variation over time. Tropical and subtropical dry broadleaf forests and temperate forests 
had the least variation. 

 
Despite the variation in SUHI intensity across biomes, we see similar relationships with 
urban form change over time (Fig. 2). For the relationships that are statistically 
significant across multiple biomes, it was more common for the strength of the 
relationships to change, not the direction.  

 

 

 

 
Figure 2. Correlation matrix for the repeated measures correlation results for the five 
biomes that house the majority of the 150 cities. Color indicates direction and strength of 
the relationship while asterisks indicate p-values of < 0.05. 
 
Shape complexity and shape compactness have the greatest number of statistically 
significant relationships with daytime and nighttime SUHI effect across the five biomes 
(Fig. 2).  The moist/dry tropical and subtropical broadleaf forests had the greatest 
number of statistically significant relationships between urban form and the 
daytime/nighttime SUHI effect. Collectively, these two biomes contain 54 of the most 
populous cities in the three countries. Figure 3 shows the raw data (points) and the 
repeated measures regression slope (dotted lines) between form and daytime/nighttime 
SUHI in the tropical and subtropical dry broadleaf forest biome. In the tropical and 
subtropical dry broadleaf forests, the intensity of the daytime and nighttime SUHI effect 
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exhibited opposite relationships with urban form (Fig 3). For example, increasing shape 
complexity led to greater daytime SUHI intensity but lower nighttime SUHI intensity 
(Fig. 3A).  
 

 

 

 

 

 

 

 

 

Figure 3. Repeated measures correlation between shape complexity, shape compactness, 
daytime and nighttime surface urban heat island intensity in the tropical and subtropical 
dry broadleaf forest biome. Each color corresponds to a different city with the points 
marking the relationship over time between a given pattern metric and the daytime 
surface urban heat island intensity. The dashed lines are the common regression slopes 
for each city in the tropical and subtropical dry broadleaf forest biome over time. 

 
The moist and dry tropical and subtropical broadleaf forest biomes were the biomes with 
the greatest number of statistically significant relationships between urban form and 
SUHI intensity (Fig. 2). These two biomes are home to 86% of the cities we examine in 
India, 22% of Chinese cities, but no US cities (Table 3). The high proportion of large 
Indian cities residing in these two biomes suggests that purposeful urban form 
modification in India could make the largest impact on SUHI reduction. Much of the 
work on urban form and urban heat island has been concentrated in the US and China 
(Debbage and Shepherd 2015; Fan, Myint, and Zheng 2015; Li et al. 2011; Li et al. 2016; 
Meng et al. 2016), and India has the least amount of research on the topic (Shastri et al. 
2017).163 
 
D.2.3 Repeated Measures Correlation vs. Linear Trends for Individual Cities 
 
To test how representative the relationships found by the repeated measures correlation 
were, we also calculated the slope over time for the relationship between the landscape 
metrics and daytime and nighttime SUHI for the full set of 150 cities. Figure 4 is the 
same daytime and nighttime repeated measures figure as Ch. 4, Fig. 6, but with the 
addition of the individual slopes of cities as dotted lines. 
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Figure 4. Repeated measures correlation for the 150 cities between area, shape 
complexity, shape compactness, adjacency, connectedness, daytime (top row), and 
nighttime (bottom row) surface urban heat island intensity. Each color corresponds to a 
different city with the points marking the yearly relationship (one point is one year) 
between a given pattern metric and surface urban heat island intensity. Circular points 
correspond to Indian cities, triangular points correspond to US cities, and square points 
correspond to Chinese cities. Solid lines are the common regression slopes for each of the 
150 cities over time, while dotted lines are the individual city linear trends. Light grey 
plots are statistically significant (p<0.05) and dark grey plots are not. 
 
The vast majority of the individual city slopes were not statistically significant, especially 
those very close to zero. These slopes lie largely in the center of Fig. 6 and are not visible. 
To show the distribution, Fig. 5 and 6 are histograms of the slopes for the 150 cities for 
daytime and nighttime, respectively.  
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Figure 5. Histograms of individual city slopes for the relationships between landscape 
metrics (the four that were statistically significant according to the repeated measures 
correlation) and daytime SUHI intensity. Black line is drawn at zero and the red line is 
drawn at the slope found by the repeated measures correlation. The red line is not visible 
on plots where the repeated measures correlation slope is also very close to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Histograms of individual city slopes for the relationships between landscape 
metrics (the four that were statistically significant according to the repeated measures 
correlation) and nighttime SUHI intensity. Black line is drawn at zero and the red line is 
drawn at the slope found by the repeated measures correlation. The red line is not visible 
on plots where the repeated measures correlation slope is also very close to zero. 
 
These slopes were used to determine how many cities had opposite relationships 
between the landscape metrics and SUHI from the relationship determined by the 
repeated measures correlation. Approximately 40-45% of cities had opposite 
relationships individually compared to the relationships determined by the whole. Many 
of these cities, however, had slopes very close to zero (Fig. 5 & 6) and therefore did not 
exert as much of an influence on the final repeated measures correlation values as did 
the cities with larger slopes. When the zero and nearly zero slopes were removed (those 
in the center bin of each histogram), the proportion of cities with opposite relationships 
dropped to 10-40% depending on the metric. Table 5 presents these values for each 
metric and SUHI intensity relationship that was statistically significant in the repeated 
measures correlation. 
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Table 5. Total number of cities and relative proportion of cities that had opposite slopes 
from the repeated measures correlation. City totals are presented as well the number of 
cities once the histogram bin centering around zero is removed from the total count. 
Greyed out rows are for those that were not statistically significant in the repeated 
measures correlation. 

 Daytime Nighttime 

 Total Removed 0 Total Removed 0 
 # % # % # % # % 
Area 65 43% 28 19%     
Shape Complexity 63 42% 54 36% 63 42% 38 25% 
Shape Compactness 63 42% 47 31% 64 43% 51 34% 
Adjacency     62 41% 59 39% 
Connectedness 62 41% 16 11% 68 45% 29 19% 

 


