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ABSTRACT

I study split-pie bargaining problems between two agents. In chapter two, the types

of both agents determine the value of outside options – I refer to these as interde-

pendent outside options. Since a direct mechanism stipulates outcomes as functions

of agents’ types, a player can update beliefs about another player’s type upon re-

ceiving a recommended outcome. I term this phenomenon as information leakage. I

discuss binding arbitration, where players must stay with a recommended outcome,

and non-binding arbitration, where players are not obliged to stay with an alloca-

tion. The total pie is reduced if the outcome is an outside option. With respect

to efficiency, I derive a necessary and sufficient condition for first best mechanisms.

These are mechanisms that assign zero probability to outside options for every report

received. The condition describes balanced forces in conflict (outside options) and is

the same in the cases of binding and non-binding arbitration. I also show a strong link

between conflict and information: when conflict exists, information leakage occurs.

Hence, non-binding arbitration may seem more restrictive than binding arbitration.

To analyze why this is the case, I solve for second best mechanisms with binding

arbitration and find a condition under which they can be implemented under non-

binding arbitration. Thus, I show that non-binding arbitration can be as effective

as binding arbitration in terms of efficiency. I also examine whether the equivalence

between binding and non-binding arbitration can cease to hold, and provide analysis

of why this happens. In chapter three, the bargaining problem entails no uncertainty

but rather envy. Players can feel envy about the allocation of the other player. The

Nash Bargaining solution is obtained in this context and some comparative statics are

shown. The introduction of envy makes the more envious party a tougher negotiator.
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Chapter 1

INTRODUCTION

In this work I consider two different bargaining problems in which two agents want to

split a fixed and known “pie.” In chapter two, agents have private information about

their type but types do not affect the size of the pie; both agents’ types simultaneously

determine the outside option for each agent. I refer to this situation as interdependent

outside options. This model is motivated by contexts in which the outside option, the

failure to reach agreement, is the outcome of war1. In such context, it is natural to

think that outside options depend on both players military capacity, and the precise

military capacity of each player is the player’s type. It is also natural, to think that

players can always choose to go to war, even after they have accepted an allocation,

peacefully.

I adopt a mechanism design perspective to analyze the mentioned problem. I call

non-binding arbitration, the case where the designer cannot force players to follow

the recommendation. I call binding arbitration, the case where the designer can

force the players to follow the recommendation. Both cases are characterized by

distinct incentive compatibility and individual rationality conditions. Appealing to

the version of the revelation principle in Myerson (1982), there is no loss of generality

in focusing on direct revelation mechanisms in binding and non-binding arbitration.

In these mechanisms, agents satisfy incentive compatibility and obedience constraints.

A mechanism consists of a function that, given both agents’ reports, recommends a

lottery of allocations of the pie with certain probability, and the outside option with
1I thank Carlos Rodriguez-Sickert, Paul Seabright, Miguel Fuentes and Ricardo Guzman, for a

joint project and conversations that helped me motivate the problem.
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some (complementary) probability. Since the mechanism stipulates outcomes as a

function of agents’ types, players may update their beliefs about the other player’s

type upon receiving a recommendation. I refer to this, as “information leakage.”

Hence, the presence of interdependence in outside options, brings about relevance

to the enforcement power of the mechanism designer: if the designer cannot force

players to follow a recommendation, the outside option (after updating its value with

the updated beliefs) may be claimed by a player.

I am interested in ex ante efficient mechanisms. First, I identify a condition on

outside options and distributions of types that is necessary and sufficient for the

existence of first best mechanisms. That is to say, mechanism that assign zero prob-

ability to the outside option and allocate the pie completely for all reports. The

efficiency condition, essentially requires that payoffs from outside options are not

“too far apart” in expected terms. I interpret this as balanced forces in conflict. This

condition applies equally to binding and non-binding arbitration. In addition, the

information leakage phenomenon identified earlier is nonexistent when the efficiency

condition holds, because direct mechanisms can be chosen so that no information is

revealed by the recommended allocations. Conversely, if first best mechanisms are

not implementable, some information is revealed by the allocation proposed by the

mechanism. This illustrates a strong link between conflict and information: when

there must be conflict there must be information leakage. Second, I identify the opti-

mal mechanisms when the efficiency condition described earlier does not hold. I find

the class of second best mechanisms with binding arbitration and identify a sufficient

condition under which those mechanisms can be implemented under non-binding ar-

bitration. Thus, I show that non-binding arbitration can be as effective as binding

arbitration in some environments. Those environments, are characterized to have

very inefficient outside options. In the context of the example of war, the threat of

2



very destructive war, can help the designer’s objective.

Chapter three corresponds to a joint work with Gino Loyola, Associate Professor

at Department of Management Control and Information Systems, University of Chile
2. The work is submitted to International Journal of Game Theory. In chapter three, a

split-pie bargaining problem is analyzed where now there is no uncertainty, but players

can feel envy about the allocation received by the other player. The Nash Bargaining

Solution (NBS) is obtained and some properties are discussed. My contribution to

such work was in the formal development of the proofs and the exposition as well as

discussion of results and possible extensions. The original idea of the paper comes

from previous published work of Gino Loyola and discussions with me. Alternative

approaches were taken by my coauthor to contrast the result of the proofs I carried

out. The paper seeks to analyze, from a theoretical perspective, the role played

by feelings and emotions. This has been increasingly discussed in the literature of

experimental economics. See, for instance, Güth and Kocher(2014), Fischbacher et

al. (2013); Kagel and Wolfe (2001); Pfister and Böhm (2012); Pillutla and Murnighan

(1996); Sanfey et al. (2003); van ’t Wout et al. (2006). The theoretical literature

has mainly focused on possibly not included factors in certain particular negotiation

protocols. The paper contributes to the literature by analyzing the impact of envy in

a theoretical model where a decentralized solution is proposed. This has the virtue of

the analysis to be robust to particular game forms, while satisfying certain properties

desired as in the NBS.

The Nash Bargaining solution in this context is characterized and some properties

are analyzed. Envy plays a role in making the possibility to reach an agreement

difficult. However, conditional on reaching an agreement, it makes a more envious
2Department of Management Control and Information Systems, University of Chile, Diagonal

Paraguay 257, Of. 1903, 8330015, Santiago, Chile. E-mail: gloyola@fen.uchile.cl, Tel: +56 (2) 22
978 37 68.
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player to be a tougher bargaining, giving her/him more bargaining power.
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Chapter 2

BARGAINING WITH INTERDEPENDENT OUTSIDE OPTIONS

2.1 Introduction

I study bargaining between two agents over a fixed value, “the pie”. The environ-

ment exhibits the following characteristics. First, the types of the agents determine

the value of their respective outside options – I refer to these as interdependent out-

side options. The type of an agent is private information for that agent. Second,

outside options are inefficient in the sense that the total pie is reduced if the outcome

is an outside option, that is, if “negotiation breaks down.” I study this problem from

a mechanism design perspective. The mechanism designer’s objective is efficiency. In

particular, the designer seeks to maximize the ex ante expected sum of utilities that

agents obtain from participating in the mechanism.

The features described introduce the possibility that a proposed interim outcome

may not be enforceable ex post. Note that a mechanism stipulates outcomes as

a function of agents’ reports. Once reports are submitted, a proposed outcome is

announced. Thus the announcement potentially reveals information to each player

about the type of the other player, and hence, about the value of the outside option.

I refer to this phenomenon as information leakage. In the context of new information,

a player may choose not to respect a recommended interim outcome. Thus I consider

environments where a mechanism designer can force players to follow recommended

outcomes (I call this binding arbitration), and environments where mechanisms must

be self-enforcing, that is, the mechanisms may only propose outcomes that both

players accept after updating their information (I call this non-binding arbitration).
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Examples of the environment described above abound and have been considered

extensively in the literature. See, for instance, war applications as in Brito and In-

triligator (1985), Hörner et al. (2015), Polacheck and Xiang (2010), and Reed (2003).

Industrial organization applications occurin Das and Sengupta (2001) and Goltsman

and Pavlov (2014). Political campaigns applications are explored in Skarpedas and

Grofman (1995), among others.

As a motivating example, consider two countries negotiating over how to split

a disputed territory. The outside option is an armed conflict, potentially rendering

part of the land less usable (i.e., the pie is diminished). Each country has private

information about its war capabilities, but the value of the outside option (i.e., the

outcome of the war) depends on both countries’ capabilities. It is not uncommon to

seek non-binding arbitration in cases such as this. The case described represents non-

enforceability of a recommendation. In the literature, non-enforceability is sometimes

called veto rights (see, for instance, Forges (1999) and Compte and Jehiel (2009)).

The natural designer’s objective in this case is ex ante efficiency. The designer

will seek to minimize armed conflict in general but may favor some scenarios over

others. For instance, if two strong military forces enter armed conflict, an observer

can expected that a large portion of land will be destroyed. Ideally, the designer

would like to avoid conflict completely. In this sense, the “first best” option consists

of mechanisms that assign zero probability to outside options and allocate the pie

completely, for every report received. I identify a necessary and sufficient condition

on the environment for the existence of a first best mechanism. The condition can be

interpreted as balanced forces in conflict. The condition is the same in binding and

non-binding arbitration. I show that an important feature of first best mechanisms

is that they can be taken as withholding information through a proposed outcome.
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In contrast, if first best mechanisms are not implementable, information is revealed

by the proposed outcomes. This suggests that in the scenario described, the de-

signer may face more restrictions under non-binding arbitration than under binding

arbitration, from the standpoint of efficiency. When first best mechanisms are not

implementable, I study the mechanisms that maximize the ex ante expected sum of

the utilities from participating in the mechanism, considering only those outcomes

that are implementable. I call these second best mechanisms. I identify second best

mechanisms for the binding arbitration problem, in order to see if non-binding arbi-

tration is more restrictive than binding arbitration. I provide a sufficient condition,

under which a designer conducting non-binding arbitration achieves as much as a

designer under binding arbitration in terms of the expected ex ante sum of utilities

of the agents participating in the mechanism. The condition resembles that of first

best mechanisms, suggesting that balanced forces in conflict can help alleviate the

information leakage problem. I analyze properties of optimal mechanisms, in partic-

ular, leakage of information, and examine whether equivalence between binding and

non-binding arbitration holds in general.

For ease of highlighting the contributions of this paper relative to the literature,

I use two concepts as my main ingredients: interdependence of outside options and

non-binding arbitration. Some of the literature has focused on interdependence, but

mainly in the case of binding arbitration. See, for instance, Harsanyi and Selten (1972)

and Myerson (1984), who are interested in ex ante efficiency where interdependence

plays a role in valuations. In the same vein, McLean and Postlewaite (2015) find

conditions to extend VCG mechanisms to interdependent valuations, retaining the

ex post incentive compatibility property. In such papers, there is no problem of

enforcement: it is assumed that players must stay with proposed outcomes regardless

of whether they receive information that updates their beliefs.
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A second strain of literature focuses on non-binding arbitration with indepen-

dence, with players enjoying veto rights. See, for instance, Forges (1999), Shimer

and Werning (2015), and Compte and Jehiel (2009). The designer cannot enforce an

outcome ex post, because players can veto potential recommendations even after they

have agreed to participate in the mechanism. The value of the object or outside option

to a player depends only on that player’s type. This leaves space for a third school

of thought in the literature, one that analyzes interdependent outside options and

non-binding arbitration. Two papers in this school are Cramton and Palfrey(1995)

and Hörner et al. (2015). Cramton and Plafrey(1995) analyze the problem from a

game theoretical perspective in which there are two stages. The first stage is a ratifi-

cation stage, where every player can veto the proposed mechanism. This is followed

by an implementation stage, in which either the proposed mechanism or the status

quo is adopted, depending on the first stage result. The authors propose the concept

of ratifiable mechanisms, defined as mechanisms for which unanimous ratification is

a sequential equilibrium of a two-stage game. In works such as these, there is no

objective role for the designer. The authors’ concern is with the existence of ratifiable

mechanisms, and how to describe those that are objective versus those that are not.

The approach of Hörner et al. (2015) is the closest to that used in the current

paper. The first difference is that the 2015 model considers only two types and

assumes constant inefficiency from outside options (that is, a fixed portion of the

pie is lost in conflict). I assume a continuum of types and no restriction on the

inefficiency of outside options. Given the assumption of constancy of inefficiency in

the 2015 paper, the authors look for mechanisms that minimize the ex ante probability

of conflict. In the present paper, I examine the set of ex ante efficiency mechanisms

that would coincide only when inefficiency from outside options is constant. In Hörner

et al. (2015), the main interest is in comparing binding and non-binding arbitration
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in terms of ex ante probability of conflict. They show that in their model, both types

of arbitration can produce the same ex ante probability of conflict. In this paper,

I examine ex ante efficiency. I demonstrate the necessary and sufficient condition

for first best mechanisms to be implementable. I show their properties of concealing

information. Then I study second best mechanisms, solve the binding arbitration

problem, and show a condition making second best mechanisms implementable with

non-binding arbitration. The condition resembles that for first best mechanisms.

From the contribution of Hö et al. (2015), the question of “equivalence” between

binding and non-binding arbitration is open, to the extent that we do not know

whether it is a function of the two types model or if it can hold more generally. I

conclude my paper with a discussion of why and how “equivalence” can cease to hold.

The problem analyzed is important for two reasons. First, from a theoretical

point of view, the interaction of non-binding arbitration and interdependent outside

options brings a natural information component to the design of the mechanism. The

information that players obtain is endogenously determined by the mechanism. This

has not been explored in the literature (see Hörner et al. (2015)). An “equivalence”

between binding and non-binding arbitration is also important from a technical point

of view. Binding arbitration, although still complicated by interdependence, is a more

tractable problem than non-binding arbitration, so restricting attention to binding

arbitration is valuable at the technical level.

Second, the problem analyzed is of importance from the point of view of appli-

cations. Take the war example for instance. Avoidance of war is crucial for healthy

society. In the context of international conflict, arbitration is naturally thought to be

non-binding, since countries cannot be forced to accept given recommendations. My

result showing that non-binding arbitration can be as “effective” in terms of efficiency
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as binding arbitration implies that in these types of problems, there is no efficiency

lost if one pursues only non-binding arbitration. Non-binding arbitration may be ap-

pealing to actors facing potential conflict, as they could resent the enforcement power

of a mediator, or find it restrictive. More generally, any problem in which conflict

avoidance is desirable could benefit from my analysis.

In section 2.2, I describe the model and introduce non-binding as well as binding

arbitration problems. In section 2.3, I characterize first best mechanisms in both

binding and non-binding arbitration. I show a necessary and sufficient condition for

mechanisms to be implementable, called the efficiency condition. The condition is the

same for both types of arbitration. I also show a link between information leakage

and conflict. In section 2.4, I depart from the efficiency condition and solve for second

best binding arbitration mechanisms. I describe a condition under which second best

mechanisms from binding arbitration can be implemented in non-binding arbitration.

Thus, I show that non-binding arbitration can be as “effective” in terms of efficiency

as binding arbitration. I discuss the reasons for which the equivalence could fail to

hold. Section 2.5 reports conclusions and charts several paths for future work.

2.2 The Model

I consider a bargaining problem where there is a pie of size 1, to be divided among

two players. Each player i ∈ {1, 2} has a type θi ∈ Θi, which is private information

for that player. I assume Θi = [θ, θ] for all i = 1, 2, however, I keep notation the

Θi, in order to make exposition clear, when necessary. I assume that types distribute

independently. For all i ∈ {1, 2}, fi : Θi → R denotes the density function for the

types of player i, and Fi denotes the respective cumulative distribution function. I

assume fi is continuous and f(θi) > 0 for all θi ∈ Θi. I refer to Θ := Θ1 × Θ2 as

10



the type space and an element of Θ to be θ = (θ1, θ2). That is, I assume the first

coordinate of a vector of types represents player 1 and the second one, player 2, unless

I write specific subindices. The outside option of player i ∈ {1, 2} is given by the

function ui : Θ → R. That is, the outside option of player i depends on the types of

both players. I call this, interdependence of outside options. I further assume that

u1 is strictly increasing in the first argument and strictly decreasing in the second.

Similarly, u2 is strictly decreasing in the first argument and strictly increasing in the

second argument. In words, the outside option of a player is strictly increasing in his

own type and strictly decreasing in the other player’s type.

This assumption is in line with the examples mentioned in the introduction. In

the war example, the higher the military capacity of a country (higher type), the

better the outcome of war for it. And the stronger one’s opponent in a war, the worse

the outcome for oneself. In an example of collusion of firms, a disagreement to split

monopoly profits leads to market competition (outside option). The ability of a firm

to succeed in market competition obviously improves its profit, and at the same time

lowers the payoffs of the other firm. Similarly, the strength of the political base of a

party increases the probability of its passing a bill. However, in the face of stronger

political opposition, the probability of passing such abill decreases.

I assume that for any (θ1, θ2), u1(θ1, θ2) + u2(θ1, θ2) < 1. I call this the inefficient

outside options assumption: for any realization of types, the outside options never

split the whole pie (size 1). This corresponds with the inefficiency in the examples.

During a war, some land may become barren, or devastation may make reconstruction

costly. When parties compete to pass a bill, there are costs of campaigning. Likewise,

when firms compete in the market (for instance competing on innovation), the cost of

innovation could be reduced if only one firm produces (there would not be a need for
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differentiation). Finally, I assume the utility for any player of receiving a share of the

pie x ∈ [0, 1] is simply x. This is consistent with our motivating examples, the types

of players, effectively, play a role only if the players choose their outside options. In

the example of war, military capacity does not make a difference at the moment of

valuing certain shares of land whose status is agreed upon peacefully. In the case of

collusive arrangements for firms, the cost of innovation is not present when splitting

monopoly profits. For competing bills, the strength of the political base does not play

a role once a bill has been passed.

Let d∗, represent the outside option outcome and let A = {(x1, x2) : x1 + x2 ≤ 1

and (x1, x2) ∈ [0, 1]2}. The set of all possible outcomes is X = d∗∪A. While the value

of any element in A is known a priori, the value to the players of d∗ depends on both

players’ types. I study the bargaining problem from a mechanism design perspective.

A direct mechanism specifies, for each report (θ1, θ2) ∈ Θ, a distribution over the

set of outcomes, X. I represent such a mechanism with a pair of functions (π, g),

π : Θ → [0, 1] and g : A × Θ → [0, 1]. The value π(θ1, θ2) indicates the probability

assigned to the outside options outcome (d∗), when the report is (θ1, θ2). The value

g((x1, x2)|θ1, θ2) is the probability (or density, depending on how it is designed) of the

outcome (x1, x2) ∈ A. The restriction for the direct mechanism to be a distribution

over the set of outcomes X is:
∫
A
g((x1, x2)|(θ1, θ2))dx1dx2 = 1 − π(θ1, θ2), for all

(θ1, θ2) ∈ Θ. For ease of exposition, for each i = 1, 2, j ̸= i, I define the function

gi : [0, 1]×Θ → [0, 1], by gi(xi|(θ1, θ2)) :=
∫
[0,1]

g((xi, xj)|(θ1, θ2))dxj. Also, whenever

I write i and j, it shall be understood as i ̸= j.

In some scenarios, such as international conflict, it is natural to think that coun-

tries always have the option of going to war, even after they have agreed to participate

in arbitration and received a recommended outcome. I call non-binding arbitra-
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tion, the case where the designer cannot force the players to follow the recommen-

dation. I call binding arbitration the case where the designer can force players to

follow the recommendation. In Hörner et al. (2015), a distinction is made between

mediation and arbitration. In their paper, arbitration is what I call binding arbitra-

tion and mediation corresponds to what I refer to as non-binding arbitration. The

enforcement power of the designer determines distinct incentive compatibility and

individual rationality constraints, as we shall see later. Given a direct mechanism

(π, g), it is useful to understand the case of non-binding arbitration by thinking in

the following way.

First, each player i ∈ {1, 2} chooses to report θi ∈ Θi or not to participate in the

mechanism. In the latter case, the outside option outcome occurs. Once a report is

made, it is only observed by the mechanism designer.

Second, if (θ1, θ2) ∈ Θ has been reported, the mechanism recommends either the

outside option, with probability π(θ1, θ2) or an allocation (x1, x2) ∈ A, drawn from

g(·|(θ1, θ2)).

Third, if the allocation (x1, x2) has been recommended, each player can accept the

recommendation or claim his outside option. It suffices that one of them claims

his/her outside option for the outside option outcome to occur.

Some features of the described timing are noteworthy. First, a player’s report

is only observed by the designer. This is relevant for non-binding arbitration with

interdependent outside options. If reports were publicly announced, truthful reports

would imply that all agents know their outside option precisely. Since players can

claim their outside option, even after participating in the mechanism, they would

only accept recommendations that are ex post individually rational. This restriction

is significant. It is worth noting that this would be the case with independent outside
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options (as in Compte and Jehiel (2009)). When outside options depend only on a

player’s own type, non-binding arbitration forces the designer to satisfy restrictive

ex post individually rational allocations. This need not be the case with interdepen-

dent outside options. In particular, when first best mechanisms are implementable,

the designer can conceal all information about the players’ types. Thus, individual

rationality constraints are simply satisfied at the interim level.

Second, the designer is able to propose a randomization over the set of allocations

for a given pair of types reported. This is relevant when comparing binding and

non-binding arbitration. Indeed, as illustrated later, for binding arbitration it is

without loss of generality to focus on deterministic allocations for a given pair of types

reported. For non-binding arbitration, however, randomizing allocations can make a

significant difference. For instance, the designer could implement an optimal binding

arbitration mechanism, with non-binding arbitration, by randomizing allocations (see

Hörner et al. (2015)). In this case, if the deterministic allocation from the binding

arbitration is proposed, it would not be accepted by the highest type. This, because

the allocation prescribed is less than the updated outside option. Randomization of

allocations helps the designer to induce a “less precise” posterior to the highest type,

such that he/she accepts each of the values of the lottery of allocations that can be

prescribed for the highest type.

Third, the last part of the timing captures lack of enforcement power, what I call

non-binding arbitration. The incentive compatibility (IC) and individual rationality

(IR) constraints must take into account the fact that after any received recommen-

dation, the players can still claim their outside options. Note that this applies not

only to allocations received when reporting true type (IR constraints), but also to

allocations obtained from misreported types (IC constraints).
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For non-binding arbitration I use the version of the revelation principle in Myer-

son (1982). Hence, it is without loss of generality to focus on direct mechanisms that

satisfy incentive compatibility and obedience constraints. I call non-binding arbi-

tration IC and non-binding arbitration IR the corresponding constraints. For

binding arbitration, using the revelation principle in Myerson (1979), we can focus on

“standard” direct mechanisms, satisfying truthful reports. Thus these direct mecha-

nisms need to satisfy what I call binding arbitration IC and binding arbitration

IR.

A direct mechanism (π, g) satisfies non-binding arbitration IC, if for each i =

1, 2 and each θ∗i ∈ Θi

Eθ∗j

[
π(θ∗i , θ

∗
j )ui(θ

∗
i , θ

∗
j ) +

∫
[0,1]

xgi(x|(θ∗i , θ∗j ))dx
]
≥

Eθ∗j

[
π(θi, θ

∗
j )ui(θ

∗
i , θ

∗
j ) +

∫
[0,1]

max{x,Ez[ui(θ
∗
i , z)|x, θi]}gi(x|(θi, θ∗j ))dx

]
,

for all θi ∈ Θi

Where, Ez[ui(θ
∗
i , z)|x, θi] =

∫
Θj

ui(θ
∗
i , z)

f(z)gi(x|(θi, z))∫
Θj

f(θj)gi(x|(θi, θj))dθj
dz,

if
∫
Θj

f(θj)gi(x|(θi, θj))dθj > 0 and Ez[ui(θ
∗
i , z)|x, θi] = 0, otherwise.

Notice that there are two choices for players in the non-binding arbitration IC

constraint. The first is the choice of what type to report. The second is whether to

accept or not the allocation that is being proposed. The latter choice is done by com-

paring the allocation proposed with the conditional expectation of the outside option

of the player. This conditional expectation is computed using Bayes’ rule whenever

possible. Thus it takes into account the report chosen, the allocation recommended

by the mechanism and the mechanism itself. This is the role of information embedded

in the design of the mechanism. However, the information that the mechanism de-

signer can reveal or conceal is not at his/her entire disposal. Later I show that when
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the condition for first best mechanisms is not satisfied, any mechanism satisfying

non-binding arbitration IC and IR must leak some information. That is, regardless

of the objective function of the designer, any implementable mechanism is bound to

leak some information in cases where conflict (outside options) occurs with strictly

positive probability on the type space.

Given the role of information, a deviation to misreport a type may not only be

motivated by what the mechanism prescribes for some other type. It could also be

motivated to obtain a more informative lottery of allocations prescribed for the other

type. This may allow a player to adjust to choose his/her outside option in favorable

situations and keep the allocation in other situation. This “strategic” acquisition of

information is not present in binding arbitration.

With binding arbitration, whenever an allocation is recommended, the players

have to adhere to it. This happens regardless of truth in reporting. Hence, a player

that misreports his/her type does not have the mentioned access to strategic in-

formation. Misreporting could imply a change in the beliefs of a player, but false

information cannot be used to choose which allocations to accept and which to reject.

That is why the incentive compatibility constraints are described as they are below.

A direct mechanism (π, g) satisfies binding arbitration IC, if for each i = 1, 2

and each θ∗i ∈ Θi

Eθ∗j

[
π(θ∗i , θ

∗
j )ui(θ

∗
i , θ

∗
j ) +

∫
[0,1]

xgi(x|(θ∗i , θ∗j ))dx
]
≥

Eθ∗j

[
π(θi, θ

∗
j )ui(θ

∗
i , θ

∗
j ) +

∫
[0,1]

xgi(x|(θi, θ∗j ))dx
]

for all θi ∈ Θi

A player cannot potentially “benefit” from the information he/she could obtain
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from reporting a type different from his/her own, as opposed to the case of non-

binding arbitration. The flow of information is now shut down by the enforcement

power of the mechanism designer.

Non-binding arbitration IR has a role for information. However, the role only

exists for those allocations that are prescribed for truthful reports.

A direct mechanism (π, g) satisfies non-binding arbitration IR if for each i =

1, 2, for every θ∗i ∈ Θi, for all x ∈ [0, 1]

x ≥ Ez[ui(θ
∗
i , z)|x, θ∗i ]

Any mechanism induces a posterior distribution over outside options through the

allocations that it recommends. With non-binding arbitration, the designer needs

to prescribe allocations that are accepted given the updated beliefs of the players,

when they report truthfully. This is captured in non-binding IR constraints. Notice

that if the outside option of a player depends only on his/her own type, the updated

beliefs about the type of the other player would be irrelevant. With interdependent

outside options, any information “leaked” by the mechanism becomes relevant. How-

ever, when binding arbitration is conducted, players cannot make use of information

leaked from the mechanism, in spite of its potential value. Thus the interaction of

interdependent outside options with non-binding arbitration makes relevant the in-

formation problem embedded in the design of the mechanism. Individual rationality

constraints for binding arbitration do not need to take into account the potential

information that the players obtain from the mechanism.

A direct mechanism (π, g) satisfies binding arbitration IR if for each i = 1, 2,

for every θ∗i ∈ Θi,
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Eθ∗j

[
π(θ∗i , θ

∗
j )ui(θ

∗
i , θ

∗
j ) +

∫
[0,1]

xgi(x|(θ∗i , θ∗j ))dx
]
≥ Eθ∗j

[ui(θ
∗
i , θ

∗
j )]

As information acquisition does not play role in binding arbitration, the IR con-

straints can be taken at the interim level. The designer’s enforcement power allows

him/her to provide to the players just the interim expected outside option regardless

of their updated beliefs. Therefore, the mechanism designer needs only to ensure that

each player decides to participate in the mechanism before any recommendation from

it has been made.

To simplify notation and for explanation purposes, I introduce the following no-

tation. Given a direct mechanism (π, g), for each i ∈ {1, 2}, let xi : Θi × Θj → [0, 1]

be such that:

xi(θi, θj) =


1

1− π(θi, θj)

∫
[0,1]

xgi(x|(θi, θj))dx, if π(θi, θj) ̸= 1

0, otherwise.
(2.1)

I call xi(θi, θj) the expected allocation for player i according to (π, g), if the reports

were (θi, θj).

Using this, the utility for player i, of type θi, from participating in the mechanism

when reporting truthfully and accepting all recommended allocations, is given by

Eθj [π(θi, θj)ui(θi, θj) + (1− π(θi, θj))xi(θi, θj)].

The following two lemmas illustrate a useful relation between binding arbitration

and non-binding arbitration IC and IR.

Lemma 1. If a direct mechanism satisfies non-binding arbitration IR, then it satisfies

binding arbitration IR.
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Lemma 2. If a direct mechanism satisfies non-binding arbitration IC, then it satisfies

binding arbitration IC.

The proofs of Lemmas 1 and 2 are straightforward and relegated to the Appendix

for brevity. Together Lemmas 1 and 2 say that if a mechanism (π, g) satisfies non-

binding arbitration IC and IR then it also satisfies binding arbitration IC and IR.

This is important for the objective of the designer.

I am interested in ex ante efficiency. Thus the objective of the designer is to

maximize the expected ex ante sum of utilities of the players from participating in

the mechanism. Using the notation introduced before, the objective of the designer

is,

max
(π,g)

E(θ1,θ2) [π(θ1, θ2) (u1(θ1, θ2) + u2(θ1, θ2)) + (1− π(θ1, θ2)) (x1(θ1, θ2) + x2(θ1, θ2))]

(2.2)

I call non-binding arbitration problem the optimization problem of (2.2)

subject to non-binding arbitration IC and IR. I call binding arbitration problem

the optimization problem of (2.2) subject to binding arbitration IC and IR.

Given Lemmas 1 and 2, it is clear that a designer conducting non-binding arbitra-

tion cannot attain a strictly higher value for (2.2) than that obtained when conducting

binding arbitration.

Notice that given this objective function and the constraints for the binding arbi-

tration problem, it is without loss of generality for the binding arbitration problem

to focus on mechanisms such as (π, x), where x = (x1, x2) with each xi being the

expected allocation for player i, as defined in (2.1). I use this for exposition purpose

whenever it reduces notation.

19



2.3 The First Best

I introduce the first best mechanisms for my first result. First best mechanisms

assign zero probability to the outside option outcome for any possible report, and the

allocation prescribed splits the pie completely, that is x1+x2 = 1 for all recommenda-

tions. Since outside options are inefficient, assigning zero probability to them for all

reports shuts down the inefficiency channel from outside options, and the value of the

objective function as in (2.2) is maximized by always allocating the pie completely.

The highest possible value of (2.2) is one (regardless of the constraints). Notice that

first best mechanisms are, then, ex post efficient. This seems to be very restrictive a

priori, but they are nevertheless possible.

Definition 1. A direct mechanism (π, g) is called first best if π(θ1, θ2) = 0 for any

(θ1, θ2) ∈ Θ. In addition, for any (x1, x2) such that g((x1, x2)|(θ1, θ2)) > 0, for some

(θ1, θ2), it satisfies x1 + x2 = 1.

My first result states that it is possible to implement first best mechanisms, that

is, ex-post efficiency. I establish a necessary and sufficient condition for this to hold,

which I call the efficiency condition. The environment satisfies the efficiency con-

dition if

Eθ2 [u1(θ, θ2)] + Eθ1 [u2(θ1, θ)] ≤ 1

The efficiency condition entails two things. On the one hand, it requires the

expected outside option of the highest types not to be particularly high. That is, the

highest types do not obtain too much of the pie. On the other hand, since the outside

options are decreasing in the other player’s type, lower types do not get extremely

small slices of the pie.
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Theorem 1. There is a first best mechanism (π, g) that satisfies non-binding arbi-

tration IC and IR if and only if

Eθ2 [u1(θ, θ2)] + Eθ1 [u2(θ1, θ)] ≤ 1

Proof. Suppose Eθ2u1(θ, θ2) + Eθ1u2(θ1, θ) ≤ 1. Fix a mechanism (π, g), for which

xi(θi, θj) is the expected allocation that player i would be recommended, according

to (π, g), if the reports were (θi, θj). Let x1(θ
∗
1, θ

∗
2) = Eθ2u1(θ, θ2) for all (θ∗1, θ∗2) ∈ Θ

and x2(θ
∗
1, θ

∗
2) = 1− x1(θ

∗
1, θ

∗
2). Let π(θ∗1, θ∗2) = 0 for all (θ∗1, θ∗2) ∈ Θ. Now, verify that

this proposed first best mechanism satisfies non-binding arbitration IC and IR. To

see that non-binding arbitration IR holds, note that since the allocation is constant

for all reports and π is equal to zero for all reports, we have for all i, j = 1, 2,

i ̸= j, Θ∗
j(θ

∗
i , θ

∗
j ) = [θ, θ] for all (θ∗i , θ∗j ) ∈ Θ. Since, for all (θ∗1, θ∗2) ∈ Θ, x1(θ

∗
1, θ

∗
2) =

Eθ2u1(θ, θ2) and x2(θ
∗
1, θ

∗
2) = 1 − x1(θ

∗
1, θ

∗
2) ≥ Eθ1u2(θ1, θ), using the assumption of

outside options increasing in player’s own type. Thus we have guaranteed non-binding

arbitration IR.

To see that non-binding arbitration IC constraints also hold, note that the allo-

cation recommended is constant for all reports and always better than the highest

expected (unconditional) outside option for each player. Also, π is equal to zero ev-

erywhere on Θ. Then, for player 1, the expected payoffs for type θ∗1 of sending any

report θ∗∗1 ∈ [θ, θ] are Eθ2u1(θ, θ2). For player 2, the expected payoffs for type θ∗2 of

sending any report θ∗∗2 ∈ [θ, θ] are Eθ2

(
1− u1(θ, θ2)

)
. So non-binding arbitration IC

holds.

To see the necessity of the efficiency condition, suppose we have a first best mecha-

nism (π, x), so π is equal to zero everywhere in Θ, and suppose it satisfies non-binding
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arbitration IC and IR. Using non-binding arbitration IR, and the fact that the mech-

anism is first best, then for each (θ∗i , θ
∗
j ) ∈ Θ and each i, xi(θ

∗
i , θ

∗
j ) ≥ Eθj [ui(θ

∗
i , θj) |

θj ∈ Θ∗
j(θ

∗
i , θ

∗
j )]. Taking expectation in both sides with respect to all θ∗j , we obtain

xe
i (θ

∗
i ) := Eθjxi(θ

∗
i , θj) ≥ Eθjui(θ

∗
i , θj). Using this notation, since non-binding arbi-

tration IR holds and the mechanism is first best, for each i, the expected payoffs for

type θ∗i from reporting truthfully are xe
i (θ

∗
i ), and because non-binding arbitration IC

holds, for any θ∗∗i ,

xe
i (θ

∗
i ) ≥ Eθj [πi (θ

∗
i , θ

∗∗
i , θj)xi(θ

∗∗
i , θj) + (1− πi (θ

∗
i , θ

∗∗
i , θj))ui(θ

∗
i , θj)] .

Denote Θ̃j(θ
∗
i , θ

∗∗
i ) := {θ̃j|xi(θ

∗∗
i , θ̃j) < Eθj [ui(θ

∗
i , θj)|θj ∈ Θ∗

j(θ
∗∗
i , θ̃j)]} and Θ̃c

j(θ
∗∗
i , θ∗i )

to be its complement relative to [θ, θ], then

xe
i (θ

∗
i ) ≥

∫
Θ̃c

j(θ
∗∗
i ,θ∗i )

xi(θ
∗∗
i , θj)dF (θj) +

∫
Θ̃j(θ∗∗i ,θ∗i )

ui(θ
∗
i , θj)dF (θj) ≥∫

Θ̃c
j(θ

∗
i ,θ

∗∗
i )

xi(θ
∗∗
i , θj)dF (θj) +

∫
Θ̃j(θ∗i ,θ

∗∗
i )

xi(θ
∗∗
i , θj)dF (θj)

. To see the latter inequality, note that for all θ̃j ∈ Θ̃j(θ
∗
i , θ

∗∗
i ), Eθj [ui(θ

∗
i , θj)|θj ∈

Θ∗
j(θ

∗∗
i , θ̃j)] > xi(θ

∗∗
i , θ̃j). Integrating both sides with respect to all θ̃j ∈ Θ̃j(θ

∗
i , θ

∗∗
i ),

gives ∫
Θ̃j(θ∗i ,θ

∗∗
i )

ui(θ
∗
i , θj)dF (θj) ≥

∫
Θ̃j(θ∗i ,θ

∗∗
i )

xi(θ
∗∗
i , θj)dF (θj)

and hence, the latter inequality. Similarly, for type θ∗∗i , we have xe
i (θ

∗∗
i ) ≥ xe

i (θ
∗
i ).

Hence, xe
i is constant for all i and we denote its value simply by xe

i . Since x2(θ1, θ2) =

1 − x1(θ1, θ2), taking expectations with respect to θ1 and θ2, we have xe
1 + xe

2 =

1. Taking expectation from non-binding arbitration IR with respect to all θj, we

have xe
i ≥ Eθjui(θi, θj) and since outside options are increasing on own type, xe

1 ≥

Eθ2u1(θ, θ2) and 1− xe
1 ≥ Eθ1u2(θ1, θ). Hence, Eθ2u1(θ, θ2) + Eθ1u2(θ1, θ) ≤ 1
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The condition for Theorem 1 suggests a very interesting insight within the context

of the literature on conflict. When the efficiency condition holds, the expected outside

option of the highest types is not very large, but because of our assumption on the

outside options (decreasing in the other player’s type), the lower types do not obtain

too little of the pie from their outside options. The condition can be interpreted as

balanced forces at conflict. That is, types are not “too far apart” in expectations in

terms of outside options. Since the efficiency condition is necessary and sufficient, it

suggests a clear connection between conflict and uncertainty. When lower types are

“too far apart” from higher types in terms of payoffs of outside options, there is a big

difference in facing lower rather than higher types. By Theorem 1 conflict cannot be

avoided in this case.

To illustrate the efficiency condition more specifically, I show two examples. In

both cases, for simplicity of exposition I assume both players have the same utility

of outside options. The first example considers uniform distribution and outside

options as contest success functions (Skarpedas (1996)). That is, for all i = {1, 2},

ui(θi, θj) =
θi

θi + θj
(1− ℓ), where ℓ is the part of the pie that is lost due to inefficiency

of the outside options. The efficiency condition then becomes,

(1− ℓ)
2θ

θ − θ

(
log

(
2θ

θ + θ

))
≤ 1

Notice that if ℓ is sufficiently close to one, the efficiency condition would be satis-

fied. From the perspective of the designer, high inefficiency from outside options helps

him/her achieve efficiency. This is intuitively sound in the case of war: when armed

conflict is highly destructive, both players prefer to settle according to a “peaceful”

alternative.

The efficiency condition is a condition, jointly, on utilities (from outside options)
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and distributions of types. The second example I show seeks to illustrates this.

Suppose the utility of outside options is such that for each i = {1, 2}, ui(θi, θj) =

aθi − bθj, with a, b > 0. I refer to this case as separable utility. The efficiency

condition becomes

(aθ − 1/2)

b
≤ E(θ)

In this case, the efficiency condition requires the first moment of the distribution

of types not to be too low. In other words, when players go to the outside option

outcome, they expect to face a relatively high type. This means that the expected

payoffs obtained from outside options are not high. Hence, outside options are not

attractive for players, a priori, and therefore, they prefer to settle to avoid conflict.

The following Corollary to Theorem 1 allows me to discuss the role of information

in first best mechanisms.

Corollary. Given a first best mechanism (π, g), for each i = 1, 2, xi(θi, θj) can be

taken to be constant.

In a first best mechanism, the player’s expected allocations can be taken to be

constant. This implies that the designer can avoid leaking any information whatsoever

through the mechanism. This observation comes directly from the efficiency condition.

When it is met, the designer (for instance) can give Eθ2u1(θ1, θ2) to player 1 and

Eθ1u2(θ1, θ2) for any report. Since the allocation is not conveying any information,

the non-binding individual rationality constraints are taken just at the interim level.

The allocation satisfies non-binding arbitration IR for the highest type. Therefore it

satisfies it also for all the lower types. This is because outside options are increasing in

the type of the player. Lastly, for non-binding arbitration IC, notice that any reported
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type gives the same allocation, which is bigger than the interim expected outside

options for all types. Therefore, accepting the recommended allocation obtained

from misreporting is optimal. Thus the utility of reporting truthfully is the same as

that of misreporting.

As noted above, the maximum possible value for the objective function in (2.2)

is the size of the pie (assumed to be one). This is an upper bound regardless of the

constraints. Given Theorem 1, this value is obtained in the non-binding arbitration

problem with first best mechanisms, when the efficiency condition holds. By Lemmas

1 and 2, the first best mechanisms of non-binding arbitration can be implemented

in binding arbitration. Hence, both binding and non-binding arbitration problems

attain the same value for the objective function. I state this more formally in the

following Remark.

Remark 1: Suppose Eθ2u1(θ, θ2) + Eθ1u2(θ1, θ) ≤ 1. Fix a mechanism (π∗, g∗)

that is a solution to the non-binding binding arbitration problem. Then (π∗, g∗) is

also a solution to the binding arbitration problem.

This result follows from Theorem 1 and Lemmas 1 and 2. Whenever Eθ2u1(θ, θ2)+

Eθ1u2(θ1, θ) ≤ 1, non-binding and binding arbitration problems can assign zero prob-

ability to the outside options. Thus when the efficiency condition holds, the non-

binding arbitration problem does not lead to a worsening of efficiency as compared

with the binding arbitration problem. The efficiency condition allows the mechanism

designer to implement first best mechanisms.

Furthermore, if there is a first best mechanism that satisfies binding arbitration

IC and IR, the efficiency condition must hold. This follow as a direct observation

from the proof of Theorem 1. I formally state it as follows.

Remark 2: There is a first best mechanism (π, g) that satisfies binding arbitration
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IC and IR if and only if Eθ2u1(θ, θ2) + Eθ1u2(θ1, θ) ≤ 1.

The efficiency condition is necessary and sufficient for implementing binding and

non-binding arbitration first best mechanisms. When the efficiency condition holds,

the first best mechanism can be taken to conceal all information, therefore bypassing

the information leakage problem. This translates into the same IR constraints for both

problems at the interim level. On incentive compatibility constraints, this means that

the allocation from misreporting is the same as the one obtained with truthful reports

accepted at the interim level. Since there is no information leakage, the allocation is

still accepted once a player misreports his/her type. Hence, the IC constraints are

also regarded as the same in both binding and non-binding arbitration.

To see the necessity of the efficiency condition, note that if a first best mechanism

is implementable with binding arbitration, the expected allocation for each player is

constant as a function of his type by binding arbitration IC. By Lemma 2, a first best

mechanism that is implementable with non-binding arbitration also has to satisfy this.

Then, by binding arbitration IR and Lemma 1, first best mechanisms for binding and

non-binding arbitration need to satisfy the condition that the expected allocation for

each player is greater than the expected outside option for the highest type. Since

allocations come from splitting a pie of size 1, the expected value of the allocations

cannot add up to a value more than 1. This means that the expected outside options

of the highest type for each player cannot add up to a value greater than one.

The question remains as to the solution to both the binding arbitration and non-

binding arbitration problems without the efficiency condition. The efficiency condi-

tion can be “generalized” in the sense that the designer can try to find the largest

region for zero probability of conflict. The following proposition shows that it is al-

ways possible to have a “peaceful” region of the type space, that is, a region where
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whenever two types of this region meet, they never resort to their outside option.

Theorem 2. Suppose each ui is continuous. There is always a profile (θ∗1, θ
∗
2) with

θ < θ∗1 and θ < θ∗2 so that, for some mechanism (π, g), the following holds:

1. π(θ1, θ2) = 0 for all (θ1, θ2) ∈ [θ, θ∗1 ]× [θ, θ∗2)

2. (π, g) satisfies non-binding arbitration IR and IC.

Proof. Define N : Θ → R as follows,

N(θ1, θ2) =
1

F2(θ2)

∫
[θ,θ2]

u1(θ1, z)dF2(z) +
1

F1(θ1)

∫
[θ,θ1]

u2(z, θ2)dF1(z).

Note that if Eθ2u1(θ, θ2) + Eθ1u2(θ1, θ) ≤ 1, we are in the context of Theorem

1 and, hence, it can be taken θ∗1 = θ∗2 = θ. If Eθ2u1(θ, θ2) + Eθ1u2(θ1, θ) > 1,

then N(θ, θ) > 1. By the inefficiency assumption, u1(θ, θ) + u2(θ, θ) < 1. Let

Z = {(θ1, θ2) ∈ Θ : N(θ1, θ2) = 1}. Then, by continuity of ui and fi, Z is non-

empty. Pick an element (θ∗1, θ
∗
2) ∈ Z, then θ∗1 > θ and θ∗2 > θ.

Let [(θ∗1, θ
∗
2)] = {(θ1, θ2) ∈ Θ | θ1 ≤ θ∗1 and θ2 ≤ θ∗2}. Let π(θ1, θ2) = 0 for all

(θ1, θ2) ∈ [(θ∗1, θ
∗
2)]. For all i = 1, 2, i ̸= j, let xi(θ1, θ2) = Eθ′j

ui(θ
∗
i , θ

′
j) for all

(θ1, θ2) ∈ [(θ∗1, θ
∗
2)] and π(θ1, θ2) = 1 for all (θ1, θ2) /∈ [(θ∗1, θ

∗
2)]. It is clear that when-

ever the recommended allocation is reached, all players will accept it. So non-binding

arbitration IR holds. To see that non-binding arbitration IC holds, note that if θi > θ∗i

misreports to θ′i > θ∗i his expected payoff remains the same and equal to Eθjui(θi, θj).

If he misreports to θ′′i ≤ θ∗i his expected payoff is Fj(θ
∗
j )Eθj

[
ui(θ

∗
i , θj)|θj ≤ θ∗j

]
+ (1−

Fj(θ
∗
j ))Eθj

[
ui(θi, θj)|θj ≥ θ∗j

]
. Since outside options are strictly increasing in own

type and θi > θ∗i , misreporting to θ′′i has strictly less expected payoffs.

If θi ≤ θ∗i misreports to θ′i ≤ θ∗i his expected payoff remains the same and equal

to
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Fj(θ
∗
j )Eθj

[
ui(θ

∗
i , θj)|θj ≤ θ∗j

]
+ (1 − Fj(θ

∗
j ))Eθj

[
ui(θi, θj)|θj ≥ θ∗j

]
Eθjui(θi, θj). If he

misreports to θ′′i > θ∗i his expected payoff is Eθjui(θi, θj). Since outside options

are strictly increasing in own type and θi < θ∗i , misreporting to θ′′i has strictly less

expected payoffs Thus, non-binding arbitration IC holds.

θ

θ(θ, θ)

(θ, θ)

[Θ∗]
π(θ1, θ2) = 0

[Θ∗′]
π(θ1, θ2) = 0

Figure 2.1: Graphical depiction of Theorem 2.

Figure 2.1 illustrates Theorem 2. The designer can choose among many rectangles

of the type space. I have shown two: Θ∗ and Θ∗′ . For each of these sets, π(θ1, θ2) = 0

for any report of types within that set. Also, as in Corollary 1, the designer is able to

withhold information within a given set by recommending a fixed expected allocation

for any report within such a set. The intuition here is important. The mechanisms

in Theorem 2 are not necessarily the solutions to the arbitration problem. However,

they are desirable from the perspective of a designer with “lexicographic preferences

for peace.” In the context of international conflict, this seems reasonable when war

is likely to be highly destructive. The importance of the mechanisms is that they

provide intuition and some features of the solution to the binding arbitration problem
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(Theorem 3), and they help explain how that solution can be implemented with non-

binding arbitration (Theorem 4).

Observe that the problem without the efficiency condition can be interpreted as a

problem of resource constraints. In particular, the condition on Theorem 1 not being

satisfied can be interpreted as a budget constraint breaking efficiency. Without the

efficiency condition, it would not be a problem if the designer could use resources

from elsewhere. Note that absent any constraints in possible beliefs, the designer

would like to convince the high types that they are facing high types “to the extent

possible”, in order to relax the budget constraint of splitting 1. On the other hand,

lower types do not have the problem of constrained resources when facing other low

types. Another way of saying this is to observe that the efficiency condition holds at

the bottom of the type space. Remember that the intuition of the efficiency condition

is that types are similar or balanced, and thus, the payoffs of the conflict outcome do

not vary much. Note that this is the case if we group low types. Within this group,

types are balanced, and hence, the efficiency condition holds. This is indeed the

logic for the solution of the binding arbitration problem in Theorem 3. In Theorem

4, I show that a solution of these characteristics is implementable with non-binding

arbitration and is actually optimal when the efficiency condition is not satisfied. The

designer conceals some information at the lower region of the type space. Within

this group, players do not know exactly who they are facing, but at the same time

they know they are in the low group. The higher region of the type space is where

budget constraints plays a major role. In these regions high types may face lower

types, and the difference between the payoffs of both is big. Some information must

be revealed when seeking efficiency. It is possible to pool higher and lower types in

the way described above, which illustrates the intuition behind Theorem 3.
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2.4 Beyond The First Best

For this section I depart from the efficiency condition, and hence from first best

mechanisms, to continue to study efficiency. I am interested in the impact on efficiency

of the enforcement power of the mechanism designer. The answer to the question of

when the efficiency condition holds was given in the previous section. Both binding

and non-binding arbitration problems attain the first best. The question remains how

to proceed when the first best cannot be implementable. To answer this, I study the

binding arbitration problem when the efficiency condition does not hold. I show the

solution to the binding arbitration problem in Theorem 3, under a condition in the

primitives that allows π to be increasing. In Theorem 4, I show a sufficient condition

for binding and non-binding arbitration to be “equivalent” in terms of efficiency when

the first best is not implementable.

To motivate the discussion beyond the efficiency condition, I introduce the fol-

lowing definition.

Definition 2. We say a mechanism (π, g) fully conceals information if for all i and

each θi,

Eθj [ui(θi, θj)|xi, θi] = Eθj [ui(θi, θj)], for all xi such that g((xi, xj)|(θi, θj)) > 0 for some

θj and some xj.

The following result allows me to discuss the efficiency condition in the language

of information design.

Proposition 1. Suppose the environment does not satisfy the efficiency condition.

Let (π, g) satisfy non-binding arbitration IC and IR. Then (π, g) does not fully conceal

information.
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Proof. Suppose by contradiction that (π, g) fully conceals information and that the

model does not satisfy the efficiency condition. By fully concealing for (θ, θ), for

each (x1, x2) such that g((x1, x2)|(θ, θ)) > 0, we have x1 ≥ Eθ2 [u1(θ, θ2)] and x2 ≥

Eθ1 [u2(θ1, θ)], by non-binding arbitration IR. Thus, 1 ≥ x1 + x2 ≥ Eθ2 [u1(θ, θ2)] +

Eθ1 [u2(θ1, θ)]. But then, this implies the efficiency condition, leading to a contradic-

tion.

Proposition 1 states that whenever there is some probability of conflict, the de-

signer must leak some information. When higher types have higher outside options

(i.e., we do not have the efficiency condition), the designer needs to satisfy very de-

manding IR constraints. This cannot be done by concealing information when two

high types face each other (they both have high outside options). The designer, then,

may prefer to reveal some information to higher type players to alleviate the stringent

IR. For instance, revealing to a high type that he is facing a high type makes both

players have a less demanding IR, since both know they would not get much from

the outside option. However, information sharing needs to be done in a way that

is incentive compatible. Balancing these two forces, the designer is bound to reveal

some information.

Proposition 1 shows a strong connection between conflict and information leak-

age. Without the efficiency condition, the designer cannot induce any random beliefs

he/she chooses. The designer is restricted as to what information he/she can convey.

This represents a difference with respect to the traditional literature on information

design. As observed, fully concealing information is possible only when the model

satisfies the efficiency condition. This suggests that the designer who seeks efficiency

“weakly prefers” concealing information.
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I introduce the following definition to explain the next results of this section.

Definition 3. Let ℓ : [θ, θ]2 → [0, 1], be defined as follows. For each (θ1, θ2)

ℓ(θ1, θ2) = 1− u1(θ1, θ2) + u2(θ1, θ2)

I call ℓ the efficiency loss function.

For each pair of types (θ1, θ2), ℓ(θ1, θ2) indicates the part of the pie that is lost

when type θ1 and type θ2 go to their outside options. For this reason, the situation

is called efficiency loss. As discussed in the description of the model, efficiency loss

is assumed to be always strictly positive. That is, for each pair (θ1, θ2), ℓ(θ1, θ2) > 0.

In the example of international conflict, this indicates how destructive war can be.

In cartel formation, it indicates the decrease in profits from monopoly to the sum of

the profits of competing firms.

Additionally, I define the following function, let J : [θ, θ]× [θ, θ] → R be such that,

J(θi, θj) =
Fi(θi)

fi(θi)

(
∂ui(θi, θj)/∂θi

ℓ(θi, θj)

)
+

Fj(θj)

fj(θj)

(
∂uj(θi, θj)/∂θj

ℓ(θi, θj)

)
.

The function J is the analogue of the virtual value function in Myerson (1981).

Given the binding arbitration problem, when J is increasing, the solution to the

binding arbitration problem involves π increasing. The following result illustrates the

solution to the binding arbitration problem using this condition on J . In what follows,

for simplicity, I focus on symmetric environments. By a symmetric environment, I

mean, Θi = Θj = [θ, θ], ui(θi, θj) = uj(θj, θi), for each (θi, θj) ∈ [θ, θ] and fi = fj,

where fi is the density of types for player i. I assume each ui is C1.
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Theorem 3. Fix a symmetric environment. Suppose that for each i, ui is C1 and that

J is increasing. Then, any (π, g) solution to the binding arbitration problem partitions

the type space into two regions: Θ∗ and Θ∗c, such that π = 1 almost everywhere in

Θ∗c and π = 0 almost everywhere in Θ∗.

The proof of Theorem 3 can be found in the Appendix. I provide an outline

and explanation of the proof in this section. I first introduce some notation for ease

of exposition. For the binding arbitration problem, given a mechanism (π, g), I use

(π, x), where x is the expected allocation as defined earlier in equation (2.1). For a

given mechanism (π, x), I define for each i the interim utility of participating in the

mechanism, by Vi : [θ, θ] → R such that

Vi(θi) = Eθj [π(θi, θj)ui(θi, θj) + (1− π(θi, θj))xi(θi, θj)] .

I write V to mean V = (V1, V2)

The following two lemmas are used to prove Theorem 3.

Lemma 3. If a mechanism (π, x) satisfies binding arbitration IC and binding arbi-

tration IR for the highest type, then it satisfies binding arbitration IC and IR.

The proof of Lemma 3 can be found in the Appendix. Lemma 3 allows me to

reduce the binding arbitration problem’s IR constraints. In particular, it states that

is sufficient to satisfy binding arbitration IR for the highest type in the binding arbi-

tration problem. The following lemma states that the traditional envelope condition

is necessary for binding arbitration IC. Notice, however, that in general it is not pos-

sible to obtain an IC characterization. In spite of that, Lemma 4 is still useful for

solving the binding arbitration problem.
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Lemma 4. Suppose, for each i, ui is a C1 function. If a mechanism (π, x) satisfies

binding arbitration IC, then for all i = 1, 2, and all θi,

Vi(θi) = Vi(θ) + Eθj

[∫ θi
θ
π(z, θj)

∂ui(z, θj)

∂z
dz

]
Proof. By assuming for all i = 1, 2, ui being C1, all the assumptions from Theorem

2 in Milgrom and Seagal (2002) follow.

Denote Vi(θ|θi) := Eθj [π(θ, θj)ui(θi, θj) + (1 − π(θ, θj))xi(θ, θj)]. Since, ui is C1, for

any given θ, Vi(θ|·) is absolutely continuous. By the same assumption, and since π is a

probability and the set of types is contained in a compact space, there is an integrable

function b : [θ, θ] → ℜ such that
∣∣∣∣∂Vi(θ, θi)

∂θi

∣∣∣∣ ≤ b(θi) and Vi(θ|·) is differentiable for

all θ. Finally by binding arbitration IC, Vi(θ, θi) is maximized at θ = θi. Therefore,

the envelope condition follows from Milgrom and Segal (2002), Theorem 2.

Lemma 4 gives a necessary condition for incentive compatibility when transform-

ing the binding arbitration problem from choosing (π, g) to choosing (π, V ). The role

of the assumption on J is of relevance in this case. If J is increasing, the solution

(π, V ) to a relaxed binding arbitration problem has the property that π is increasing.

The envelope condition from Lemma 4 together with the fact that π increasing gives

binding arbitration IC. Thus we can solve a relaxed problem and obtain the solution

to the binding arbitration problem.

I introduce the following relaxed problem to best explain the proof of Theorem 3.
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max
(π,g)

E(θ1,θ2) [π(θ1, θ2) (u1(θ1, θ2) + u2(θ1, θ2)) + (1− π(θ1, θ2)) (x1(θ1, θ2) + x2(θ1, θ2))]

s.t.

For all i and all θi, Vi(θi) = Vi(θ) + Eθj

[∫ θi
θ
π(z, θj)

∂ui(z, θj)

∂z
dz

]
For all i, Vi(θ) ≥ Eθjui(θ, θj)

Eθi,θj [Vi(θi) + Vj(θj)] ≤ Eθi,θj [π(θi, θj) (ui(θi, θj) + uj(θi, θj)) + (1− π(θi, θj))]

The first constraint is called the envelope condition. The second is highest type

binding arbitration IR. The third is called expected feasibility. The first constraint is

necessary for binding arbitration IC, by Lemma 4. The second constraint suffices for

binding arbitration IR, by Lemma 3. Notice that this problem is a relaxation of the

binding arbitration problem, because the binding arbitration IC constraints may not

hold. That is why I call it a Binding Arbitration Relaxed Problem (BARP). Once the

binding arbitration problem is transformed from choosing (π, g) to choosing (π, V ),

there is one question remaining about whether or not the chosen (π, V ) is actually

feasible, in the sense that can be obtained from some lottery of allocations. That is

the role of what I call expected feasibility in the BARP.

The outline of the proof of Theorem 3 is as follows. First I solve the BARP.

Denote (π, V ) as a solution to it. I show that (π, V ) satisfies the notion that π is

increasing, because J is increasing. By Lemma 4 and π increasing, (π, V ) satisfies

binding arbitration IC. By Lemma 3 it satisfies binding arbitration IR. Thus, (π, V )

is a solution to the binding arbitration problem.
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The following problem helps to explain the intuition behind Theorem 3. As shown

in the proof of Theorem 3, the BARP can be written as a problem with one constraint

linear in π and an objective function also linear in π, as follows.

min
π

∫ θ

θ

∫ θ

θ

ℓ(θi, θj)π(θi, θj)f(θi)f(θj)dθidθj

subject to

∫ θ

θ

∫ θ

θ

[
π(θi, θj)

(
F (θi)

∂ui(θi, θj)

∂θi
f(θj)− (ℓ(θi, θj)/2)f(θi)f(θj)

)
dθidθj

]
= Eθj [ui(θ, θj)]− 1/2

The construction of J , then, reflects the trade-off between satisfying the highest

type IR and worsening the objective function (which is now trying to be minimized).

The trade-off exists because of the need to maintain incentive compatibility. The

mechanism designer has to satisfy the highest type individual rationality. This can

be done by giving him/her high allocation or high probability of conflict. Given the

envelope condition, increasing π for a given type increases his/her expected utility

from participating in the mechanism. Notice, however, that giving a high allocation

to the highest type would be the best way to satisfy his/her IR constraint, given

the objective function. But high allocation for the highest type would mean that

lower types would like to report the highest type. Therefore, to maintain incentive

compatibility, the mechanism designer has to balance the incentives that π provides,

with the impact they have on the objective function. Increasing π for the highest type

provides higher utility to satisfy his/her IR constraint in an incentive compatible way,

but it worsens the value of the objective function. The ratio between the “weights” of
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π in the objective function with those from the constraint reflects such a trade-off. If

that ratio is decreasing, the optimal mechanism starts assigning probability one from

top to bottom of the type space as in Figure 2.2, until the highest type IR is satisfied.

The ratio is decreasing if J is increasing. Thus the designer “prefers” to put higher

probability of conflict in the higher region of the type space.

θ

θ(θ, θ)

(θ, θ)

π(θ1, θ2) = 0

π(θ1, θ2) = 1

Figure 2.2: The solution to the binding arbitration problem.

The solution to the binding arbitration problem when the efficiency condition does

not hold can be regarded as the second best. The optimal mechanism “pools” low

types in a “peaceful” region and higher types into conflict. Notice that this is in line

with the argument in Theorem 2. To see why the second best mechanism pools high

types and low types to the extremes of conflict and zero conflict, respectively, it is

important to see the forces from IR and IC of the binding arbitration problem. For

that, the BARP is instrumental. The J function illustrates the trade-off of satisfying

the highest type while maintaining incentives for truth telling. Since the BARP can

be written as one linear constraint problem with linear objective, the ratio between

the weights of π in the objective function with those in the constraint yields the

trade-off described above. In a pair (θ1, θ2) in which such ratio is high, increasing

π at (θ1, θ2) worsens the objective function more than it helps to satisfy the highest
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type individual rationality. When this ratio is the lowest (not negative), the designer

prefers to start increasing the probability of conflict, because the low ratio indicates

that the utility of the highest type is increased by a large amount compared to the

worsening of the objective function. When J is increasing, the ratio is decreasing.

Hence, the designer “starts” assigning π = 1 at the highest region of the type space

(lowest value of the mentioned ratio) and “stops” when the highest type IR is satisfied

with equality.

I turn to the question of whether we can implement a mechanism such as the

one described in Theorem 3. By Lemmas 1 and 2, if that were possible, the binding

arbitration problem would be equivalent to non-binding arbitration in terms of ex

ante efficiency. The discussions of Theorem 1 and Theorem 2 are useful to motivate

the proof of Theorem 4. Notice that we are in a scenario similar to that of Theorem

2: a peaceful region and a full conflict region. The only difference is that the solution

in Theorem 3 does not necessarily have a rectangle of the type space as a peaceful

region. The idea of how to implement such a solution is derived from the idea of

the implementation in Theorem 2: concealing information within the peaceful region.

The zero conflict region here however may not be easily implementable in terms of

concealing information. The role of inefficiency is crucial to be able to implement

such a mechanism.

The following simplifies the explanation of the proof of Theorem 4. Given (π, V ),

we say (π, x) generates (π, V ), if

Vi(θi) = Eθj

[
π(θi, θj)ui(θi, θj) + (1− π(θi, θj))xi(θi, θj)

]
.

Theorem 4. Assume a symmetric model J is increasing, and each ui is C1. There

is ℓ∗ ∈ (0, 1) such that if ℓ ≥ ℓ∗, a solution to the binding arbitration is a solution to

the non-binding arbitration problem.
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The objective function for both binding and non-binding arbitration problems is

the same. Hence, Lemma 1 and Lemma 2 imply that a solution to the non-binding

arbitration problem gives a value for the objective function that is at most that

attained by a solution to the binding arbitration problem. Therefore, to answer

positively to the question of equivalence, it suffices that there is a solution to the

binding arbitration problem that satisfies non-binding arbitration IC and IR.

The outline of the proof of Theorem 4 is as follows. I start with a solution (π, V )

to the BARP. Then, I show that one can construct an allocation function x so that

(π, x) generates V and that there is a (π, g), for which (π, x) satisfies non-binding

arbitration IC and IR.

Proof of Theorem 4.

Proof. I use xi(θi) = Eθj [xi(θi, θj)], for ease of exposition. Let (π, V ) be a solution to

the BARP. I construct an allocation function x : [θ, θ]2 → [0, 1]2 such that:

i) for any (θi, θj) such that π(θi, θj) = 0, xi(θi) + xj(θj) ≤ 1,

ii) (π, x) generates (π, V ) and

iii) (π, x) is implementable with non-binding arbitration.

Take (π, V ) to be a solution to (BARP).

Denote Θ∗
j(θi) = {θj : π(θi, θj) = 0} and Θ∗c

j (θi), its complement relative to [θ, θ]

. Let m(Θ∗
j(θi)) =

∫
Θ∗

j (θi)
f(θj)dθj. Define θ̃i(θj) = inf{θi : π(θi, θj) = 1} and if

inf{θi : π(θi, θj) = 1} is empty. Let θ̃i(θj) = θ. Denote by V the value Vi(θ)

Using this notation and the fact that the solution can be described as in Theorem

3, we can write

V =

∫
Θj

ui(θ̃i(θj), θj)f(θj)dθj
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Therefore, for any i and any θi

Vi(θi) =

∫
Θj

ui(θ̃i(θj), θj)f(θj)dθj +

∫
Θ∗c(θi)

ui(θi, θj)f(θj)dθj

−
∫
Θ∗c(θi)

ui(θ̃i(θj), θj)f(θj)dθj

Thus,

Vi(θi) =

∫
Θ∗

j (θi)

ui(θ̃i(θj), θj)f(θj)dθj +

∫
Θ∗c(θi)

ui(θi, θj)f(θj)dθj

Hence, I impose the following condition to construct x:

∫
Θ∗c

j (θi)

ui(θi, θj)f(θj)dθj +

∫
Θ∗

j (θi)

xi(θi, θj)f(θj)dθj =

∫
Θ∗

j

ui(θ̃i(θj), θj)f(θj)dθj

+

∫
Θ∗c(θi)

ui(θi, θj)f(θj)dθj

So, I let:

xi(θi) =
(
1/m

(
Θ∗

j (θi)
)) ∫

Θ∗
j (θi)

ui(θ̃i(θj), θj)f(θj)

Now, take (θ, θ′) such that π(θ, θ′) = 0. Then, we can write:

xi(θ) + xj(θ
′) =

1

m(Θ∗
i (θ

′)))

∫
Θ∗

i (θ
′)

[(1− ℓ(θi, θj))− ui(θi, θ̃j(θi))]f(θi)

+
1

m(Θ∗
j(θ)))

∫
Θ∗

j (θ)

ui(θ̃i(θj), θj)f(θj)

We want to show that for any (θ, θ′) such that π(θ, θ′) = 0, xi(θ) + xj(θ
′) ≤ 1.
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If we do that, we observe that if (π, V ) is a solution to the BARP, then (π, x) with

x(θi, θj) = xi(θi) for all θj is a solution to the binding arbitration problem.

I start with

xi(θ) + xj(θ
′) = (1/m(Θ∗

i (θ
′)))

∫
Θ∗

i (θ
′)

[(1− ℓ(θi, θj))− ui(θi, θ̃j(θi))]f(θi)

+(1/m(Θ∗
j(θ)))

∫
Θ∗

j (θ)

ui(θ̃i(θj), θj)f(θj)

So,

xi(θ) + xj(θ
′) = (1− ℓ(θi, θj))(1/m(Θ∗

i (θ
′)))

∫
Θ∗

i (θ
′)

[−ui(θi, θ̃j(θi))]f(θi)

+(1/m(Θ∗
j(θ)))

∫
Θ∗

j (θ)

ui(θ̃i(θj), θj)f(θj)

Let qi(θi, θj) be such that (1− ℓ(θi, θj))qi(θi, θj) = ui(θi, θj), then

xi(θ) + xj(θ
′), equals

(1− ℓ(θi, θj)) + (1− ℓ(θi, θj))
(
1/m(Θ∗

j(θ))
) ∫

Θ∗
j (θ)

qi(θ̃i(θj), θj)f(θj)

−(1− ℓ(θi, θj)) (1/m(Θ∗
i (θ

′)))

∫
Θ∗

i (θ
′)

qi(θi, θ̃j(θi))]f(θi)

Thus,

xi(θ) + xj(θ
′) < (1− ℓ(θi, θj))

[
1− (1/m(Θ∗

i (θ
′)))

∫
Θ∗

i (θ
′)

qi(θi, θ̃j(θi))]f(θi)

]

+(1− ℓ(θi, θj))
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And since ui > 0, we obtain
∫
Θ∗

i (θ
′)
qi(θi, θ̃j(θi))]f(θi) > 0. Hence

xi(θ) + xj(θ
′) < 2(1− ℓ(θi, θj))

So, when ℓ = 1/2, xi(θ) + xj(θ
′) < 1.

Then we conclude that there is ℓ∗ ∈ (0, 1/2) such that when ℓ ≥ ℓ∗, xi(θ)+xj(θ
′) ≤ 1.

Take (π, V ) that is a solution to the BARP, and let x be an allocation function

as constructed.

By binding arbitration IR, for each θi, we obtain

∫
Θ∗

j (θi)

xi(θi, θj)f(θj)dθj +

∫
Θ∗c

j (θi)

ui(θi, θj)f(θj)dθj ≥∫
Θ∗

j (θi)

ui(θi, θj)f(θj)dθj +

∫
Θ∗c

j (θi)

ui(θi, θj)f(θj)dθj

thus, ∫
Θ∗

j (θi)

xi(θi, θj)f(θj)dθj ≥
∫
Θ∗

j (θi)

ui(θi, θj)f(θj)dθj

I define x∗
i : [θ, θ] → [0, 1] by x∗

i (θi)
∫
Θ∗

j (θi)
f(θj)dθj =

∫
Θ∗

j (θi)
xi(θi, θj)f(θj)dθj. Now I

define g∗ to be such that, for each θi, g∗i (xi(θi)|(θi, θj)) = 1−π(θi, θj), for each θj. It is

clear that (π, g∗), by the construction, satisfies non-binding arbitration IR. Whenever

θi is so that Θ∗
j(θi) is not empty (otherwise non-binding arbitration IR is irrelevant),

the following holds

x∗
i (θi) ≥

∫
Θ∗

j (θi)
ui(θi, θj)f(θj)dθj∫

Θ∗
j (θi)

f(θj)dθj
= Ez[ui(θi, z)|xi(θi), θi]

. Hence, non-binding arbitration IR is satisfied. I now show that (π, g∗) satisfies
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non-binding arbitration IC. Given any type θi and θ′i ̸= θi, we need to verify

∫
Θ∗

j (θi)

xi(θi, θj)f(θj)dθj +

∫
Θ∗c

j (θi)

ui(θi, θj)f(θj)dθj ≥∫
Θ∗c

j (θ′i)

ui(θi, θj)f(θj)dθj +

∫
Θ∗

j (θ
′
i)

max{xi(θ
′
i),Ez[ui(θi, z)|xi(θ

′
i), θ

′
i]}f(θj)dθj

(2.3)

Since xi(θ
′
i) is constant across θj, we can have only two cases.

First xi(θ
′
i) ≥ Ez[ui(θi, z)|xi(θ

′
i), θ

′
i] in which case, (2.3) becomes

∫
Θ∗

j (θi)

xi(θi, θj)f(θj)dθj +

∫
Θ∗c

j (θi)

ui(θi, θj)f(θj)dθj ≥∫
Θ∗c

j (θ′i)

ui(θi, θj)f(θj)dθj +

∫
Θ∗

j (θ
′
i)

xi(θ
′
i)f(θj)dθj

. That is, binding arbitration IC holds for θi when he reports θ′i. Since (π, x) satisfies

binding arbitration IC, (π, g∗) satisfies (2.3).

The second case is when xi(θ
′
i) < Ez[ui(θi, z)|xi(θ

′
i), θ

′
i]. Then, (2.3) becomes

∫
Θ∗

j (θi)

xi(θi, θj)f(θj)dθj +

∫
Θ∗c

j (θi)

ui(θi, θj)f(θj)dθj ≥∫
Θ∗c

j (θ′i)

ui(θi, θj)f(θj)dθj +

∫
Θ∗

j (θ
′
i)

ui(θi, θj)f(θj)dθj = Eθj [ui(θi, θj)]

Which holds, since (π, g∗) satisfies binding arbitration IR, because (π, x) does so.

Therefore, (π, g∗) is a solution to the non-binding arbitration problem since it main-

tains π from a solution (π, x) to the binding arbitration and satisfies non-binding

arbitration IC and IR.

Theorem 4 states that under the assumptions described above, a designer who

is constrained to conduct non-binding arbitration mechanisms can be as effective,

in terms of ex ante efficiency, as a designer who conducts binding arbitration. In
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particular, the proof shows that this can be done by partitioning the type space into

a peaceful region and a conflict region. The recommended allocation can be taken

to reveal only that a player is in the peaceful region but not who he is facing. Since

the probability of conflict is increasing under J , the optimal mechanism pools lower

types into peaceful regions and higher types into conflict regions. Thus whenever an

allocation is received, players know they face a lower type but not exactly what type

the other player may be.

Theorem 4 is important for at least two reasons. First, if the equivalence between

the problems hold, then solving the binding arbitration problem requires only study-

ing the expected probability of conflict and the utilities of the players participating.

This is a much easier task than solving a non-binding arbitration problem. Second,

Theorum 4 is important in many applications. If equivalence holds, then the power

of the institution (the mechanism designer) could be taken as unimportant for the

desired objective. This would explain why countries accept binding arbitration in

conflict resolution.

For completeness I mention a class of examples where the assumption of J in-

creasing holds.

Remark 3: Suppose for each i, that Fi is a log-concave and absolutely continuous

function, and each ui is C1, and ∂ui(θi,θj)/∂θi
δ(θi,θj)

is increasing in both arguments. Then J

is increasing.

Log concave distributions and increasing partial derivatives for the two players’

outside options satisfy this assumption with the case of constant ℓ.

In looking for means of breaking the equivalence, my paper suggests that analyzing

decreases in J would be productive. Notice that the assumption on J is an assumption

jointly on the utilities of the outside option and the distribution of types. It is
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important to note that without the condition of J increasing, the complexity of solving

the binding arbitration problem grows significantly. It is not possible to obtain an

IC characterization for binding arbitration IC. Binding arbitration IC in general does

not imply π increasing. Neither does it imply that Eθjπ(θi, θj). The interdependence

of outside options implies some expected “co-monotonicity” of π and the outside

option. The ironing required to solve this problem is then difficult, since it becomes

multidimensional. Restricting attention to Eθjπ(θi, θj) is not sufficient for incentives.

In spite of all this, some comments are worth mentioning. Motivated by Theorem

4, analyzing the case of J decreasing and low ℓ conveys some intuition for how to break

the equivalence between binding and non-binding arbitration. The idea is as follows:

with J decreasing, some kind of simplifying needs to be done for binding arbitration

IC. Suppose this is done “point wise”. Then at the ex post level, some IC constraint

must bind. At the ex post level, it is possible to obtain an IC characterization. The

conjecture is that some upward misreport must be binding for at least some type

(one could actually expect that many IC constraints would bind). With at least

one IC constraint binding (for misreporting a higher type), ℓ low means that there

is not enough inefficiency to “reallocate” by the mechanism. That is, the expected

allocation of misreporting cannot be much bigger in expected terms than that from

truth telling. This means that misreporting in non-binding arbitration can strictly

improve upon misreporting in binding arbitration. But since the binding arbitration

IC was binding, misreporting in non-binding arbitration is strictly better than truth

telling. Then the solution to the binding arbitration problem is not implementable

with non-binding arbitration, because of the non-binding arbitration IC.
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2.5 Conclusions

I consider the question of how to split a pie between two players. The utility of

outside options depends on both players’ types. I refer to this dependence as the

interdependency of outside options. I study the problem from the perspective of

designing mechanisms that seek ex ante efficiency. The presence of interdependent

outside options brings relevance to the enforcement power of the mechanism designer.

I study two cases. First, I consider a case when players cannot be forced to stay with

the recommendation of a designer. I call this case non-binding arbitration. I also

consider a case where players have to stay with each recommendation of the designer.

I call this case binding arbitration. For the case of non-binding arbitration, I consider

direct mechanisms that are incentive compatible and satisfy obedience, appealing to

the version of the revelation principle in Myerson (1982). In the case of binding

arbitration, I restrict attention to incentive compatible mechanisms, appealing to

the revelation principle in Myerson (1979). Since direct mechanisms recommend

outcomes as functions of the types reported by the players, any recommendation

potentially conveys information about the type of the other player. Since outside

options are interdependent, this information is useful for the players. With non-

binding arbitration, a player can use this information and claim an outside option

when it is convenient given his/her updated beliefs. Therefore, the designer who

conducts non-binding arbitration has to take into account potential “information

leakage.”

Outside options are inefficient, in the sense that some part of the pie is lost if

the outside option outcome occurs. Since I am interested in efficiency, the first best

consists of mechanisms that assign probability zero to the outside option outcome

and allocate the pie completely. In Theorem 1, I provide a necessary and sufficient
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condition (the efficiency condition) for first best mechanisms to be implementable.

The efficiency condition is the same for both binding and non-binding arbitration. It

can be interpreted as describing balanced forces in conflict. I show that it allows the

designer to fully conceal information so that no player knows what type he is facing

upon receiving a recommended allocation. This allows the designer to bypass the

information leakage problem. I also show that whenever the efficiency condition does

not hold, the designer is bound to reveal some information.

I depart from the efficiency condition to analyze efficiency beyond the first best.

I study the mechanisms that maximize the ex ante expected sum of utilities of the

players of participating in the mechanism. I solve this problem with binding arbitra-

tion, in Theorem 3. I also provide a sufficient condition for the solution to the binding

arbitration problem to be implementable with non-binding arbitration, in Theorem

4. The condition resembles the efficiency condition, in the sense that it allows the

designer to conceal information for the lower types. Theorem 4 means that a designer

who conducts non-binding arbitration can be as effective as one who conducts bind-

ing arbitration in terms of efficiency. This may explain why countries accept binding

arbitration when facing some types of international discord.

The abstract features of the model can accommodate many applications, including

those related to international conflict, collusion or cartel formation among firms, and

political party rivalry, to mention a few. These applications are significant because

of the impact they have on society at large. Determining whether institutions can be

effective in arbitrating problems is highly relevant. My work contributes to resolving

the efficiency problem across many fields.

The importance of the problem analyzed is also relevant at the technical level.

The conjunction of interdependent outside options and non-binding arbitration im-
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plies that players can potentially learn information from a given mechanism and use

it to veto a recommended allocation. This restricts the designer. The mechanism

designer needs to be careful with information potentially revealed. The implications

for mechanism design are not adequately explored in the literature.

Some avenues for future research are implied in this paper. Theorem 4 shows

a condition for the “equivalence” (in terms of efficiency) between binding and non-

binding arbitration. When the condition does not hold, the question of this equiva-

lence remains open. Some insights in this paper may suggest ways of answering the

question. Additionally, the information design problem embedded into matter of the

mechanism itself is worth exploring . Allowing the designer to send signals to the

players could advance the objective of efficiency. Such signals could shape players’

beliefs, as noted in Balzer and Schneider (2019). Applying tools from information de-

sign literature could also shed light on the equivalence issue. Constrained information

design has recently begun to be explored in Doval and Skreta (2018).
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2.6 Appendix

Proof of Lemma 1.

Proof. Fix a mechanism (π, g) that satisfies non-binding arbitration IR, then for each

i, and each θi ∈ Θi
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x
∫
Θi

f(θj)gi(x|(θi, θj))dθj ≥
∫
Θi

ui(θi, z)f(z)f(x|(θi, z))dz for all x ∈ [0, 1]. Inte-

grating over all x, gives∫
[0,1]

x
[∫

Θi
f(z)g(x|θi, z)dz

]
dx ≥

∫
[0,1]

[∫
Θi

ui(θi, z)f(θj)gi(x|(θi, θj))dθj
]
dx. Rear-

ranging gives

Eθ∗j

[∫
[0,1]

xgi(x|(θi, θ∗j ))dx
]
≥ Eθ∗j

[(1−π(θi, θ
∗
j ))ui(θi, θ

∗
j )]. Adding Eθ∗j

[π(θi, θ
∗
j )ui(θi, θ

∗
j )]

on both sides gives Eθ∗j

[
π(θi, θ

∗
j )ui(θi, θ

∗
j ) +

∫
[0,1]

xgi(x|(θi, θ∗j ))dx
]
≥ Eθ∗j

[ui(θi, θ
∗
j )],

which implies that (π, g) satisfies binding arbitration IR.

Proof of Lemma 2

Proof. Fix a mechanism (π, g) that satisfies non-binding arbitration IC, then, for each

i, j = 1, 2, i ̸= j, for any θi,

Eθ∗j

[
π(θi, θ

∗
j )ui(θi, θ

∗
j ) +

∫
[0,1]

xgi(x|(θi, θ∗j ))dx
]
≥

Eθ∗j

[
π(θi, θ

∗
j )ui(θi, θ

∗
j ) +

∫
[0,1]

max{x,Ez[ui(θi, z)|x, θi]}gi(x|(θi, θ∗j ))dx
]
≥

Eθ∗j

[
π(θi, θ

∗
j )ui(θi, θ

∗
j ) +

∫
[0,1]

xgi(x|(θi, θ∗j ))dx
]
, where the latter inequality follows by

the use of the max operator. Hence, (π, g) satisfies binding arbitration IC.

Proof of Lemma 3

Proof. Take (π, x) that satisfies binding arbitration IC and binding arbitration IR,

for the highest type. Then for all i = 1, 2, for all θi we have, by binding arbitration

IC,

Eθj [π(θi, θj)ui(θi, θj) + (1− π(θi, θj))xi(θi, θj)] ≥

Eθj [π(θ, θj)ui(θi, θj) + (1− π(θ, θj))xi(θ, θj)]

On the other hand, by binding arbitration IR for the highest type, then for all

i = 1, 2,
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Eθj [(1 − π(θ, θj))xi(θ, θj)] ≥ Eθj [(1 − π(θ, θj))ui(θ, θj). Using this in the above

inequality from binding arbitration IC, we get, for all i = 1, 2, j ̸= i, all θi

Eθj [π(θi, θj)ui(θi, θj) + (1− π(θi, θj))xi(θi, θj)] ≥

Eθj [π(θ, θj)ui(θi, θj) + (1− π(θ, θj))ui(θ, θj)] ≥

Eθj [π(θ, θj)ui(θi, θj) + (1− π(θ, θj))ui(θi, θj)],

by the assumption of increasing outside options. Thus, we obtain binding arbitration

IR.

Proof of Theorem 3.

Proof. I call the following equation, as before, the expected feasibility constraint and

I express it

Eθi,θj [Vi(θi) + Vj(θj)] ≤ Eθi,θj [π(θi, θj) (ui(θi, θj) + uj(θi, θj)) + (1− π(θi, θj))] (2.4)

Note that is without loss of generality to assume x1(θ1, θ2) + x2(θ1, θ2) = 1 for

all (θ1, θ2). To see this, note that, if x1(θ1, θ2) + x2(θ1, θ2) < 1 on a strictly positive

measure (according to f), one can increase the objective function and relaxing (2.4)

at the same time. This means, that the objective function of the binding arbitration

problem can be rewritten as:

max
(π,g)

E(θ1,θ2) [−ℓ(θi, θj)π(θ1, θ2)]

Using the envelope condition of Lemma 4 and symmetry we can rewrite the pre-
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vious constraint as

Vi(θ) + Eθi,θj

[∫ θi

θ

π(θi, θj)
∂ui(z, θj)

∂z
dz

]
= 1/2− Eθi,θj [π(θi, θj)ℓ(θi, θj)/2] (2.5)

Notice it is written as equality given the rewritten objective function. To see

this, suppose the expected feasibility constraint did not hold with equality, we could

increase Vi(θ) and decrease π on a strictly positive measure (under f), improving the

objective function. Ultimately, integrating by parts (2.5) gives

Vi(θ) + Eθj

[∫ θ

θ

π(θi, θj)(1− F (θi))
∂ui(θi, θj)

∂θi
dθi

]
= 1/2− Eθi,θj [π(θi, θj)ℓ(θi, θj)/2]

(2.6)

On the other hand, as stated before, by Lemma 3, I focus on binding arbitration

IR for the highest type only, which using Lemma 4 is written as follows,

Vi(θ) + Eθj

[∫ θ

θ

π(θi, θj)
∂ui(θi, θj)

∂θi
dθi

]
≥ Eθj [ui(θ, θj)]

As well as before, it is without loss of generality to write this constraint with

equality. Note that if it were not binding, we could decrease π on a strictly positive

measure (under f) and hence improve the objective function. So we write

Vi(θ) + Eθj

[∫ θ

θ

π(θi, θj)
∂ui(θi, θj)

∂θi
dθi

]
= Eθj [ui(θ, θj)]

Combining this two equations, we obtain only one constraint,

Eθj

[∫ θ

θ

π(θi, θj)F (θi)
∂ui(θi, θj)

∂θi
dθi

]
− Eθi,θj [π(θi, θj)ℓ(θi, θj)/2] = Eθj [ui(θ, θj)]− 1/2
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That is,

∫ θ

θ

∫ θ

θ

[
π(θi, θj)F (θi)

∂ui(θi, θj)

∂θi
f(θj)dθidθj

]
−
∫ θ

θ

∫ θ

θ

[π(θi, θj) (ℓ(θi, θj)/2) f(θi)f(θj)dθidθj] =

Eθj [ui(θ, θj)]− 1/2

Thus, solving the following problem, gives the solution to the BARP

min
π

∫ θ

θ

∫ θ

θ

ℓ(θi, θj)π(θi, θj)f(θi)f(θj)dθidθj

subject to∫ θ

θ

∫ θ

θ

[
π(θi, θj)

(
F (θi)

∂ui(θi, θj)

∂θi
f(θj)− (ℓ(θi, θj)/2)f(θi)f(θj)

)
dθidθj

]
= Eθj [ui(θ, θj)]− 1/2

Note that this problem has an objective function and one constraint that are

both linear in π. We then, can optimize pointwise using the following method, the

formal discussion is in Lemma 5 and Lemma 6 in the Appendix. For each (θi, θj)

we construct a ratio for π(θi, θj) dividing the number multiplying it in the objective

function with the one in the constraint. Since each π(θi, θj) ∈ [0, 1] we set each

of them equal to one, until the constraint holds, starting with those for which the

mentioned ratio is minimum. We first point out that by symmetry π(θi, θj) = π(θi, θj),

so this is taken into account to construct the mentioned ratio. Define the function

β : [θ, θ]× [θ, θ] → ℜ as such ratio, thus,

β(θi, θj) =
2f(θi)f(θj)ℓ(θi, θj)

F (θi)
∂ui(θi, θj)

∂θi
f(θj) + F (θj)

∂uj(θi, θj)

∂θj
f(θi)− (ℓ(θi, θj))f(θi)f(θj)
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or, simplifying, using f > 0,

β(θi, θj) =
2

J(θi, θj)− 1

Let Z∗ ⊂ [θ, θ]2 to satisfy the following properties. First, set π∗(θi, θj) = 1 for all

(θi, θj) ∈ Z∗ and π∗(θ′i, θ
′
j) = 0 for all (θ′i, θ′j) ̸∈ Z∗, and such that

Eθj

[∫ θ

θ

π∗(θi, θj)
∂ui(θi, θj)

∂θi
F (θi)dθi

]
− Eθi,θj [π

∗(θi, θj)ℓ(θi, θj)/2]

= Eθj [ui(θ, θj)]− 1/2

Second, if (θ′i, θ
′
j) ̸∈ Z∗ then β(θ′i, θ

′
j) ≥ β(θi, θj) for any (θi, θj) ∈ Z∗. By the

assumptions maintained, since J is increasing, β is decreasing. Thus, (π∗, V ∗), defined

as above, is increasing and by Lemma 6 in the Appendix, represents the solution to

the BARP. By Lemma 3 it satisfies binding arbitration IR. By π∗ increasing and

Lemma 4, it satisfies binding arbitration IC. To see this, let (π, V ) be a solution to

the BARP. Let θi ̸= θ′i. The following needs to hold for binding arbitration IC,

Vi(θi) ≥ Eθj [π(θ
′
i, θj)ui(θi, θj) + (1− π(θ′i, θj))xi(θ

′
i, θj)],

or

Vi(θi) ≥ Vi(θ
′
i) + Eθj [π(θ

′
i, θj) (ui(θi, θj)− ui(θ

′
i, θj))].

Let θi ≥ θ′i, therefore, the following must be verified,

Vi(θi) = Vi(θ) + Eθj

[∫ θi

θ

π(z, θj)
∂ui(z, θj)

∂z
dz

]
≥

V i(θ) + Eθj

[∫ θ′i

θ

π(z, θj)
∂ui(z, θj)

∂z
dz

]
+ Eθjπ(θ

′
i, θj)[ui(θi, θj)− ui(θ

′
i, θj)].
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Or,

Eθj

[∫ θi

θ′i

π(z, θj)
∂ui(z, θj)

∂z
dz

]
≥ Eθjπ(θ

′
i, θj)[ui(θi, θj)− ui(θ

′
i, θj)].

By monotonicity of π constructed,

Eθj

[∫ θi

θ′i

π(z, θj)
∂ui(z, θj)

∂z
dz

]
≥ Eθj

[∫ θi

θ′i

π(θ′i, θj)
∂ui(z, θj)

∂z
dz

]

= Eθjπ(θ
′
i, θj)[ui(θi, θj)− ui(θ

′
i, θj)]

Similarly, for θi ≤ θ′i. So the solution proposed satisfies binding arbitration IC and

binding arbitration IR.

Let X = [x, x] be an interval of the real line and a(x), b(x) are continuous functions

strictly positive for all x ∈ X and let
∫
X
b(x)dx > A > 0. Consider the following

optimization problem denoted ( E ). Let r(x) =
a(x)

b(x)
. Assume r is monotone.

Consider the following problem.

( E ) min
f :X→[0,1]

B(f) =

∫
X

a(x)f(x)dx

s.t.∫
X

b(x)f(x)dx ≥ A

Observation 1: If b(x) is continuous, then
∫ x

x
b(z)dz is continuous as function of x

Lemma 5. Suppose f ∗ is a solution to ( E ). Then
∫
X
b(x)f ∗(x)dx = A.

Proof. By contradiction suppose f ∗ is a solution and
∫
X
b(x)f ∗(x)dx > A. Let ϵ > 0

be such that
∫
X
b(x)f ∗(x)dx = A+ ϵ. Put α =

A

A+ ϵ
, then α ∈ (0, 1). Let fα = αf ∗.

Then
∫
X
b(x)fα(x)dx = A and strictly improves the objective.
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Lemma 6. The following is a solution to ( E ). Let α∗ ∈ ℜ and f ∗ be such that for all

x ∈ X whenever r(x) ≤ α∗, f ∗(x) = 1 and f ∗(x) = 0 otherwise and
∫
X
b(x)f ∗(x)dx =

A

Proof. By Observation 1 and monotonicity of r, there is an α∗ ∈ R such that f ∗

constructed as in the Lemma accomplishes
∫
X
b(x)f ∗(x)dx = A.

Now, by contradiction, suppose there is an f̃ such that B(f̃) < B(f ∗). We can

write f̃(x) = f ∗(x)+ ℓ(x) for all x ∈ X. That is, ℓ(x) denotes the change made to f ∗

in order to obtain f̃ . f ∗ partitions X into X0 and X1. With X0 denoting the set of all

x such that f ∗(x) = 0 and X1 the set of all x such that f ∗(x) = 1. By Lemma 5, we

can take f̃ to attain the constraint with equality. On the other hand, by construction

f ∗ holds the constraint with equality. It follows that

−
∫
X1

ℓ(x)b(x)dx =

∫
X0

ℓ(x)b(x)dx (2.7)

or

−
∫
X1

ℓ(x)b(x)dx =

∫
X0

ℓ(x)a(x)(1/r(x))dx (2.8)

Since r(x) ≥ α∗, for all x ∈ X0, then

−
∫
X1

ℓ(x)b(x)dx =

∫
X0

ℓ(x)a(x)1/r(x)dx ≤
∫
X0

ℓ(x)a(x)(1/α∗)dx (2.9)

On the other hand, taking difference of the objective functions, we obtain

B(f̃)−B(f ∗) =

∫
X

ℓ(x)a(x)dx =

∫
X0

ℓ(x)a(x)dx+

∫
X1

ℓ(x)a(x)dx (2.10)
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Using (2.10)

B(f̃)−B(f ∗) ≥ −
∫
X1

ℓ(x)b(x)α∗dx+

∫
X1

ℓ(x)a(x)dx =

∫
X1

ℓ(x)b(x)(r(x)−α∗)dx ≥ 0

(2.11)

Note that ℓ(x) ≤ 0 for all x ∈ X1, since f ∗ can only be decreased in X1. At the same

time r(x) ≤ α∗ for all x ∈ X1 by construction of the solution. Lastly, since b(x) > 0

for all x, we obtain the last inequality.
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Chapter 3

NASH BARGAINING SOLUTION UNDER EXTERNALITIES, WITH GINO

LOYOLA

ABSTRACT

The Nash bargaining solution (NBS) of a negotiation is characterized in which two

parties experience a linear envy externality. Our results indicate that such a negative

externality plays a dual role in the NBS outcome: (i) it increases the probability of

a disagreement, and (ii) conditional on an agreement, it constitutes a source of bar-

gaining power. Despite the second result, we show that an increase in envy produces

a negative welfare effect because it reduces both parties’ NBS payoffs.

3.1 Introduction

One of the main issues in recent research on experimental economics is the role

played by feelings and emotional states in bargaining situations (Güth and Kocher

(2014), Fischbacher et al. (2013); Kagel and Wolfe (2001); Pfister and Böhm (2012);

Pillutla and Murnighan (1996); Sanfey et al. (2003); van ’t Wout et al. (2006)). To

model the evidence presented in this research, a growing body of game-theory liter-

ature has arisen that explores the role of other-regarding elements in the preferences

of negotiators in bargaining processes such as envy (Kirchsteiger (1994)), inequity

aversion (Fehr and Schmidt (1999)), fairness (Kahneman et al. (1986); Nowak et al.

(2000); Xie et al. (2012)), reciprocity (Falk and Fischbacher (2006)) and trust (Berg

et al. (1995)). However, all of these studies have focused on decentralized bargaining

procedures such as the ultimatum game, the Nash demand game or variants of the
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alternating offers model, paying little attention to centralized negotiation processes.

To fill this gap, the present article sets out to characterize the sharing rule that a

mediator adopting the Nash bargaining solution (NBS) (Nash (1950)) criterion should

propose when the parties to a dispute are subject to an envy-based externality. We

assume that each party experiences such a negative externality that is proportional

to the surplus stake going to his/her counterpart. Our analysis identifies the role

played by envy in the bargaining outcome and the conditions for an agreement or

disagreement and the characteristics of any agreement that might be arrived at.

More specifically, we show that envy’s role in shaping bargaining game outcomes

is a dual one. On the one hand, if envy levels are high then disagreement is more likely

because the parties are more resistant to mediation proposals involving a concession-

making process. On the other hand, conditional on reaching an agreement, the envy

externality constitutes a source of bargaining power since it works like a commitment

tactic making the envious party a tougher negotiator. This conclusion follows from

the fact that while a party’s share under the NBS is increasing in his/her own envy

level, it is decreasing in that of his/her counterpart.

We demonstrate, however, that the foregoing result is just a second-order effect

given that an increase in envy produces a negative first-order effect on payoffs and

thus ultimately has a negative effect on welfare. In particular, we show formally that

an increase in the envy externality worsens both bargainers’ well-being as each one’s

utility under the NBS is decreasing in his/her own envy level as well as in that of

his/her counterpart.

This paper proceeds as follows. Section 2.2 presents the bargaining problem a me-

diator must solve when distributing a surplus between two envious parties under the

NBS. Section 2.3 characterizes the negotiated solution of this problem, emphasizing

the role played by envy in the bargaining outcome. Section 2.4 discusses the main
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conclusions. All proofs are given in the Appendix.

3.2 Model

Two players, A and B, are bargaining over the division of a surplus π > 0. The

set of feasible agreements is X = {(xA, xB) : 0 ≤ xA ≤ π and xB = π − xA}. If

(xA, xB) ∈ X, then xA is assigned to player A and xB to player B. The payoffs to A

and B are UA(xA, xB) = xA−θAxB and UB(xA, xB) = xB −θBxA, respectively, where

θi > 0 for each i ∈ {A,B} represents the degree of marginal negative externality

experienced by player i due to the portion of the cake that goes to the other player.

Disagreement payoffs are given by dA ≥ 0 and dB ≥ 0.

Now define Ω ≡ {(uA, uB) : there is an x ∈ X with UA(x) = uA and UB(x) = uB}

as the set of all possible utility pairs attainable through agreement. For an arbitrary

utility of player A, uA ∈ [UA(0, π), UA(π, 0)], the corresponding utility for player B

whenever there is an x = (xA, xB) ∈ X with uA = UA(x) can be obtained as follows.

First, rewrite UA(x) in terms only of xA as UA(xA) = (1 + θA)xA − θAπ. Next, find

the value of xA that satisfies UA(xA) = uA, which turns out to be xA(uA) =
uA+θAπ
1+θA

.

Then the utility of B given the utility assigned to A is

g(uA) ≡ UB(xA(uA), π − xA(uA))

=
1− θAθB
1 + θA

π − 1 + θB
1 + θA

uA.

This in turn means that Ω = {(uA, uB) : UA(0, π) ≤ uA ≤ UA(π, 0) and uB = g(uA)}.

Thus, Ω represents the graph of the function g : [−θAπ, π] → R, which is represented

as a straight red line in Figure 3.1.
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Figure 3.1: Nash bargaining solution under externalities.

We are interested in the Nash Bargaining Solution (NBS) for this setting. Using

the previous notation, and denoting Θ ≡ {(uA, uB) ∈ Ω : uA ≥ dA and uB ≥ dB}, the

NBS is the unique pair of utilities (u∗
A, u

∗
B) that solves the following problem:

max
(uA,uB)∈Θ

(uA − dA)(uB − dB),

where the objective function is known as the Nash bargaining product and is repre-

sented as a green indifference curve in Figure 3.1. Using g we can find the utility the

NBS assigns to player A by solving the following problem:

max
uA

(uA − dA)

(
1− θAθB
1 + θA

π − 1 + θB
1 + θA

uA − dB

)
subject to

uA ≥ dA

uA ≤ 1− θAθB
1 + θB

π − 1 + θA
1 + θB

dB.
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As can be seen, the two constraints imply that a necessary condition for the existence

of a solution of this problem is given by

dA ≤ 1− θAθB
1 + θB

π − 1 + θA
1 + θB

dB, (3.1)

otherwise the problem would be infeasible.

Now define xi as the minimum share that induces player i to accept an agreement

such that Ui(xi, π − xi) = di, from which we obtain

xi =
di + θiπ

1 + θi
(3.2)

for i, j ∈ {A,B}, i ̸= j. Consider then the following condition

xA + xB ≤ π. (3.3)

3.3 Results

We first establish the next auxiliary result.

Lemma 1 Condition (3.1) is equivalent to condition (3.3).

Our main result is then stated in the following proposition:

Proposition 1 If condition (3.3) holds, then the NBS can be described as

u∗
A =

1− θAθB
2(1 + θB)

π − 1 + θA
2(1 + θB)

dB +
dA
2

u∗
B =

1− θAθB
2(1 + θA)

π − 1 + θB
2(1 + θA)

dA +
dB
2
.

Otherwise, there is a disagreement.

Taken together Lemma 1 and Proposition 1 imply that each inequality (3.1) and
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(3.3) is both a necessary and a sufficient condition for an agreement. In particular,

inequality (3.3) is just the classical condition for an agreement, but adjusted by

externalities. There will therefore exist an NBS acceptable for both parties as long as

the total surplus to be divided is sufficient to cover at least the sum of their respective

minimum aspirations. Note further that1

∂xi

∂θi
= − di − π

(θi + 1)2
> 0.

The sign of this partial derivative implies that condition (3.3) is less likely to be satis-

fied if the envy level θ of either party increases. We conclude then that a negotiation

breakdown can occur if the envy levels of parties are sufficiently high.

As noted earlier, we can derive xA for a given utility uA as xA(uA) = uA+θAπ
1+θA

.

With this formula we can also derive the associated share of the cake that is assigned

to each player by the NBS. If we denote x∗
i ≡ x∗

i (u
∗
i ) as the share of the cake assigned

to player i, we then obtain the following expressions:

x∗
A =

π(1 + θA(2 + θB)) + (1 + θB)dA − (1 + θA)dB
2(1 + θA)(1 + θB)

x∗
B =

π(1 + θB(2 + θA)) + (1 + θA)dB − (1 + θB)dA
2(1 + θA)(1 + θB)

.

These shares can also be written to resemble the split-the-difference rule (Muthoo

(1999), Chapter 2) as follows

x∗
i = xi +

1

2
(π − xi − xj)

for i, j ∈ {A,B}, i ̸= j. Expressed in this way, the NBS can be seen as delivering
1The sign of this derivative is true because condition (3.3) implies that xi < π, which in turn is

equivalent to the inequality di < π.
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the minimum aspiration to each player and then just splitting the remaining surplus

π − xA − xB equally between them.

Corollary 1 (Source of bargaining power). The shares under the NBS are such that

x∗
i is increasing in θi and decreasing in θj for i, j ∈ {A,B} i ̸= j.

Therefore, although envy could be seen at first glance as a sentiment that weakens

a negotiator, it is in fact a source of bargaining power. Conditional on reaching an

agreement, this externality works as a kind of commitment tactic (Muthoo (1996))

because it constrains a negotiator’s capacity to make concessions to the other nego-

tiator, allowing him/her to obtain a larger share of the surplus to be divided and

hence reduce the share of his/her counterpart.

Despite the foregoing result, it should be noted that a marginal increase in a

party’s envy level has a dual impact, affecting positively his/her own share and neg-

atively that of his/her rival (Corollary 1) but also negatively his/her utility with

assigned shares held constant. Indeed, as we show formally, the magnitude of the

latter impact on utility dominates that of the former on shares. This result is stated

in the following corollary:

Corollary 2 Utilities under the NBS are such that u∗
i is decreasing in θi and θj for

i, j ∈ {A,B} i ̸= j.

We therefore conclude that an increase in any player’s envy level reduces the utility

of both players, and thus, in welfare terms, has ultimately a negative effect.

3.4 Concluding Remarks

It was shown that envy externalities play a dual role in the bargaining outcome

of a negotiation conducted under the NBS criterion. Although higher envy levels

increase the probability of a disagreement, conditional on reaching an agreement
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such an externality is a source of bargaining power for the player who experiences it.

This duality opens the door to an extension of our model in which, at a stage

previous to applying the NBS, negotiators may strategically over-report the true level

of their envy at the risk of provoking a negotiation breakdown. In this new context,

designing an efficient and truth-telling bargaining procedure would be an interesting

exercise that has yet to be explored.

3.5 Appendix

Proof of Lemma 1. Condition (3.1) is equivalent to

(1 + θB)dA + (1 + θA)dB ≤ (1− θAθB)π.

Adding (θA + θB + θAθB)π to both sides of the inequality and then rearranging, we

obtain
dA + θAπ

1 + θA
+

dB + θBπ

1 + θB
≤ π,

which, given the definition of xi in (3.2), completes the proof. □

Proof of Proposition 1. First, we prove the case where condition (3.3) is satisfied.

When the problem expressed only in terms of uA is solved unconstrained, it can

readily be seen from the first-order condition that the equation for u∗
A is as shown.

The strict concavity of the objective function ensures that the first-order condition

gives a unique global maximum. It remains to check the two constraints. We begin

by rearranging the NBS:

u∗
A =

1

2

(
1− θAθB
1 + θB

π − 1 + θA
1 + θB

dB

)
+

1

2
dA.
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It follows that u∗
A ≥ dA since the term in brackets is greater than or equal to dA

because by Lemma 1 if condition (3.3) holds then condition (3.1) also does so. The

same naturally applies for u∗
B ≥ dB, and thus the second constraint is also satisfied as

this is just a rewritten version in terms of uA. The equation for u∗
B is easily checked

by applying g to u∗
A.

Now turning to the case where condition (3.3) is not satisfied, then by Lemma 1,

neither is condition (3.1). This implies that the NBS problem is infeasible and thus

there exists no pair of utilities that is an acceptable agreement to both parties. □

Proof of Corollary 1. It is easily shown that

∂x∗
i

∂θi
= − di − π

2 (θi + 1)2

and
∂x∗

i

∂θj
=

dj − π

2 (θj + 1)2
,

for all i ∈ {A,B}; i ̸= j. Condition (3.3) ensures that xi < π, and therefore that

di < π for each i ∈ {A,B}. This implies that the first derivative takes a positive sign

and the second a negative one. □

Proof of Corollary 2. It is clear by inspection of the functional forms of (u∗
A, u

∗
B) given

in Proposition 1 that the utility assigned to a player by the NBS is decreasing in its

own degree of externality. To see that the solution is also decreasing in the degree of

externality of the other player, we take the partial derivative

∂u∗
i

∂θj
=

(θi + 1) (dj − π)

2 (θj + 1)2
< 0,

for i, j ∈ {A,B} i ̸= j, where the negative sign holds because condition (3.3) implies

xj < π and therefore also the inequality dj < π. □
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Chapter 4

CONCLUSIONS

I have considered two types of bargaining problems, between two players that want

to split a fixed size “pie.” In chapter two, outside options of the players were interde-

pendent, in the sense that they depended on the types of both players. I analyzed the

problem from a mechanism design perspective. I showed a necessary and sufficient

condition (the efficiency condition) for first best mechanism to be implementable even

with asymmetry of information. The efficiency condition can be roughly interpreted

as balanced forces at conflict (the outside options). Then, I depart from this con-

dition to find the second best mechanisms. Given the information leakage problem

that arises when the efficiency condition does not hold, second best mechanisms may

differ depending on the type of arbitration that the mechanism designer can perform.

I solve for the second best mechanisms with binding arbitration and find a condition

for them to be implementable with non-binding arbitration. Such condition can be

interpreted as highly inefficient outside options. This means that as conflict (out-

side options) become more destructive of the “pie,” the designer with non-binding

arbitration can be as effective as one with binding arbitration.

As future work opened by the research exposed here, I can mention some observa-

tions worth noting. The problem of bargaining with interdependent outside options

analyzed, leads to an interesting information problem embedded in the design of the

mechanism that seeks to “solve” to the problem. In particular, one could transform

the problem into a constrained information design problem. Transforming the prob-

lem in this way is interesting in at least two regards. First, it allows to analyze the
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problem in a more intuitive language of information and, second, allows to analyze

a broader set of problems, the so called ratifiable games as in Cramton and Palfrey

(1995).

A more concrete route, looking for future from chapter two is to know whether the

equivalence between binding and non-binding arbitration can be broken. In particular

given the current work there are strong conjectures and some lemmas that lead to

think that the mentioned equivalence is broken.

It is also important to mention that the abstract features of the model can ac-

commodate many applications. For example particular applications as in industrial

organization in the sense of collusion or cartel formation among firms are interesting to

analyze using this paper. Negative campaign in political science is also another route

possible to analyze using the tools developed here. These applications are significant

because of the impact they have on society at large. Determining whether institutions

can be effective in arbitrating problems is highly relevant. My work contributes to

solving the efficiency problem across many practical applications as well.

In chapter three, I included a joint work with Gino Loyola. The bargaining prob-

lem consisted of splitting a pie (of fixed size) when the players can feel envy about

the other players’ allocation. The Nash Bargaining Solution (NBS) was obtained

and some properties were analyzed. It was shown that envy introduces a source of

bargaining power to the players when solving for the NBS. This interesting feature,

opens up the field to study the problem when uncertainty about the degree of envy

of the other player is included. Because of the properties showed of the NBS, if the

designer tries to implement it, incentives lead the players to claim to be very envi-

ous. However, at the same time this could lead to break the negotiation. Balancing

these two forces is relevant when designing a mechanism in this context. As future
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work, the analysis of such problem seems promising. The property of the envy serv-

ing as bargaining power would contradict the incentives for truthful reports making

allegedly impossible to attain the first best as opposed to what happens in chapter

two.
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