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ABSTRACT

The chromatic number χ(G) of a graph G = (V,E) is the minimum number of

colors needed to color V (G) such that no adjacent vertices receive the same color. The

coloring number col(G) of a graph G is the minimum number k such that there exists

a linear ordering of V (G) for which each vertex has at most k− 1 backward neighbors.

It is well known that the coloring number is an upper bound for the chromatic number.

The weak r-coloring number wcolr(G) is a generalization of the coloring number, and

it was first introduced by Kierstead and Yang [23]. The weak r-coloring number

wcolr(G) is the minimum integer k such that for some linear ordering L of V (G) each

vertex v can reach at most k − 1 other smaller vertices u (with respect to L) with a

path of length at most r and u is the smallest vertex in the path. This dissertation

proves that wcol2(G) ≤ 23 for every planar graph G.

The exact distance-3 graph G[\3] of a graph G = (V,E) is a graph with V as its

set of vertices, and xy ∈ E(G[\3]) if and only if the distance between x and y in G is

3. This dissertation improves the best known upper bound of the chromatic number

of the exact distance-3 graphs G[\3] of planar graphs G, which is 105, to 95. It also

improves the best known lower bound, which is 7, to 9.

A class of graphs is nowhere dense if for every r ≥ 1 there exists t ≥ 1 such that no

graph in the class contains a topological minor of the complete graph Kt where every

edge is subdivided at most r times. This dissertation gives a new characterization of

nowhere dense classes using generalized notions of the domination number.
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Chapter 1

INTRODUCTION

In 1852, Francis Guthrie asked wether every map can be colored with four colors

so that no two adjacent regions have the same color. The answer is affirmative and

this very famous fact is known as the Four Color Theorem. The first accepted proof

was given by Appel and Haken in 1977. Thirty-seven years ago, Steven J. Brams

invented the Map-Coloring Game hoping to find a game-theoretic proof of the Four

Color Theorem. Even though his approach was not successful, we are left with an

interesting map-coloring game.

The Map-Coloring Problem is illustrated as follows. Suppose that Alice and Bob,

with Alice playing first, are coloring the regions of a map alternatively, using four

colors, so that no adjacent regions receive the same color. Alice wins the game if

every region receives a color, Bob wins the game otherwise, i.e., Bob wins the game if

at some point during the game there is an uncolored region and all the four colors

are used to color its neighbors. Steven J. Brams was trying to find a strategy for

Alice to win the game no matter how Bob plays. Unfortunately, such a strategy does

not exist. Scientists came up with several maps and strategies for Bob to win the

game no matter how Alice plays. It was then natural to ask what is the smallest

number of colors for which Alice has a winning strategy. In the context of general

graphs, this number is called the game chromatic number χg(G) of a graph G, as

every map can be viewed as a graph with the regions as its set of vertices and each

edge corresponds to adjacent regions. Since then the game chromatic number has

1



received special attention and several approaches have been developed to find this

number.

During the journey of attacking this problem a very useful tool came from an

unexpected source. Chan and Schelp [5] proved that the class of planar graphs

has a linear Ramsey number by bounding, for any vertex v, the number of smaller

vertices, with respect to a fixed linear ordering L, that can be reached from v by a

path of length two whose internal vertex is greater than v. This was the birth of

one of the generalized coloring numbers which was later called the strong 2-coloring

number scol2(G). Kierstead and Trotter [22] realized that this was the missing tool.

They proved that χg(G) ≤ χ(G)(1 + scol2(G)), and as the class of planar graphs

has bounded generalized coloring numbers, χg(G) is also bounded. Kierstead and

Trotter [21] gave the rise of the strong 4-coloring numbers scol4(G) and weak 4-coloring

numbers wcol4(G) by considering paths of length four with large internal vertices in

their study of oriented game chromatic numbers. The general notions of strong r-

coloring numbers scolr(G) and weak r-coloring numbers wcolr(G) were first introduced

by Kierstead and Yang [23]. Since then several applications have been found. Zhu [37]

proved that these invariants are strongly related to low tree depth decompositions and

they can be used to characterize both bounded expansion and nowhere dense classes

of graphs. The generalized coloring numbers can also be used to give a linear-time

constant-factor algorithm for approximation of the k-domination number in classes of

graphs with bounded expansion (Dvořák [8]).

In this dissertation, we focus on the weak 2-coloring number of planar graphs

since this number is an upper bound for the star list chromatic number chs(G). The

best known upper bound for chs(G) was 28 where G is any planar graph; in this

dissertation, we prove that the weak 2-coloring number for any planar graph is at

2



most 23. We also focus on the chromatic numbers of exact distance-3 graphs. We

prove that for any planar graph G, the chromatic number of the exact distance-3

graph G[\3] is at most 95.

This dissertation is organized as follows. This chapter contains the needed back-

ground and a brief history of each notion. In Chapter 2, we prove that for every

planar graph G, wcol2(G) ≤ 23. In Chapter 3, we prove that for every planar graph

G, χ(G[\3]) ≤ 95. We also give an example of a planar graph G with χ(G[\3]) ≥ 9. In

Chapter 4, we investigate a linear ordering L defined by Van den Heuvel et al. [14];

we show that wcol2[G,L] ≤ 26 and we show that, by giving an example, this result is

tight. In Chapter 5, we give a new characterization of nowhere dense class of graphs.

1.1 Generalized Coloring Numbers

All graphs in this paper are finite and simple. For a graph G = (V,E) and vertices

x, y ∈ V , the distance between x and y in G is the number of edges in the shortest

path between x and y and it is denoted by distG(x, y). For v ∈ G, we denote the set

of neighbors of v by NG(v), or briefly by N(v), and for r ∈ N, we denote the set of

vertices within distance at most r from v by Nr[v]. Note that v ∈ Nr[v]. We call Nr[v]

the closed r-neighborhood of v.

Let Π(G) be the set of all linear orders of the vertices V (G) of a graph G. For

L ∈ Π(G), we write u <L v if u is smaller than v with respect to L, and u ≤L v if

u <L v or u = v. Let X and Y be two disjoint sets of vertices of G. We write X <L Y

if every x ∈ X and y ∈ Y satisfy x <L y. Let r be a positive integer and u, v ∈ V (G).

We say that u is strongly r-reachable from v with respect to L if u ≤L v and there

is a path P = u . . . v in G with ‖P‖ ≤ r and v <L w for all internal vertices w of

3



P . If we allow paths of any length we say that u is strongly reachable from v. We

denote the set of all vertices u such that u is strongly r-reachable (strongly reachable)

from v with respect to L by Scolr[G,L, v] (Scol∞[G,L, v]). Let scolr[G,L, v] be the

cardinality of Scolr[G,L, v]. Let scolr[G,L] := maxv∈V (G) scolr[G,L, v]. The strong

r-coloring number scolr(G) of G is defined by

scolr(G) := min
L∈Π(G)

scolr[G,L].

We write scolr[L, u] and Scolr[L, u] instead of scolr[G,L, u] and Scolr[G,L, u] respec-

tively if G is known from the context.

We say that u is weakly r-reachable from v with respect to L if there is a path

P = u . . . v in G with ‖P‖ ≤ r and u ≤L w for all vertices w of P . If we allow paths of

any length we say that u is weakly reachable from v. We denote the set of all vertices

u such that u is weakly r-reachable (weakly reachable) from v with respect to L by

Wcolr[G,L, v] (Wcol∞[G,L, v]). Let wcolr[G,L, v] be the cardinality of Wcolr[G,L, v].

Let wcolr[G,L] := maxv∈V (G) wcolr[G,L, v]. The weak r-coloring number wcolr(G) of

G is defined by

wcolr(G) := min
L∈Π(G)

wcolr[G,L].

Note that when r = 1, then scolr(G) = wcolr(G) = col(G). We write wcolr[L, u]

and Wcolr[L, u] instead of wcolr[G,L, u] and Wcolr[G,L, u] respectively if G is known

from the context.

As noticed in [23], the generalized coloring numbers are related; for every graph G

we have the following

scolr(G) ≤ wcolr(G) ≤ (scolr(G))r.

Thus if the weak r-coloring number is bounded for a particular class of graphs, then

the strong r-coloring number is also bounded and vice versa.
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Let L be a linear ordering of the vertices of a graph G. The fill-in of G with respect

to L is the graph GL obtained inductively by adding for every vertex v ∈ G (starting

with the greatest vertex in the ordering L) an edge uw for all u,w ∈ N(v), u 6= w

satisfying that u <L v and w <L v. The elimination-width of the ordering L is

ω(GL)− 1 where ω(GL) is the size of the largest clique in GL.

Observe that ω(GL) equals the maximum over all vertices v ∈ G of the number of

vertices u such that u ≤L v and u can be reached from v in G by a path whose internal

vertices are greater than v with respect to L. So ω(GL) = maxv∈V (G) scol∞[G,L, v];

thus minL∈Π(G) ω(GL) = scol∞(G).

The generalized coloring numbers are gradations between the coloring number

col(G) and the tree-width tw(G) and the tree-depth td(G).

Proposition 1.1.1. Let G be a graph. Then

1. col(G) ≤ scol2(G) ≤ . . . ≤ scol∞(G) = tw(G) + 1, and

2. col(G) ≤ wcol2(G) ≤ . . . ≤ wcol∞(G) = td(G).

The equality scol∞(G) = tw(G) + 1 is proved in [11] and the equality wcol∞(G) =

td(G) is proved in (Lemma 6.5, [31]).

There are several ways to define the tree-width tw(G) of G, we take this equality

as its definition, i.e., tw(G) = scol∞(G)− 1.

Determining the weak r-coloring numbers is NP -complete when r ≥ 3 [11], while

the problem remains open for r = 2 and for the strong r-coloring numbers when r ≥ 2.

It is natural to ask about the values of the generalized coloring numbers for a

particular class of graphs. Grohe et al. [11] proved that for every graph G, the weak

r-coloring number is bounded above by
(
r+tw(G)
tw(G)

)
. In the same paper, they gave for

every positive integers r and k, a graph G such that tw(G) = k and wcolr(G) ≥ k+ 1.

5



Theorem 1.1.2. Let r be a positive integer.

1. If G is a graph with tw(G) ≤ k then wcolr(G) ≤
(
r+k
k

)
.

2. For every positive integer k, there exists a graph G with tw(G) = k and

wcolr(G) ≥ k + 1.

Van den Heuvel et al. [14] gave a creative proof that dramatically improved the

bounds of the generalized coloring numbers for the class of graphs that exclude Kt as

a minor.

Theorem 1.1.3. Let G be a graph and r be a positive integer. If G excludes Kt as a

minor then

1. scolr(G) ≤
(
t−1
2

)
· (2r + 1), and

2. wcolr(G) ≤
(
r+t−2
t−2

)
· (t− 3)(2r + 1).

Those results were huge improvements from the exponential bounds of Grohe et al.

[11] to linear bounds in r for the strong r-coloring numbers and to polynomial bounds

for the weak r-coloring numbers.

For graphs with bounded genus g, Van den Heuvel et al. [14] proved the following.

Theorem 1.1.4. Let G be a graph with genus g. Then

1. scolr(G) ≤ (4g + 5)r + 2g + 1, and

2. wcolr(G) ≤ (2g +
(
r+2
2

)
) · (2r + 1).

It is well known that every planar graph excludes K5 as a minor, so Theorem 1.1.3

bounds the generalized coloring numbers for planar graphs too. However, Theorem

1.1.4 gives better bounds for planar graphs (g = 0).
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Theorem 1.1.5. (Van den Heuvel et al. [14]) Let G be a planar graph and r be a

positive integer. Then

1. scolr(G) ≤ 5r + 1, and

2. wcolr(G) ≤
(
r+2
2

)
(2r + 1).

For every r ∈ N, there exists a planar graph G such that scolr(G) ≥ r
2
[14], so

the above upper bound for scolr(G) gives a constant-factor approximation. If r = 1,

the bound on col(G) = wcol1(G) = scol1(G) is tight where G is a planar graph. If G

excludes Kt as a minor for t = 2, 3, Van den Heuvel et al. [14] showed the following.

Theorem 1.1.6.

1. If G is a graph that excludes K2 as a minor, scolr(G) = wcolr(G) = 1.

2. If G is a graph that excludes K3 as a minor, scolr(G) ≤ 2 and wcolr(G) ≤ r+ 1.

In Chapter 4, we will study the linear ordering L that Van den Heuvel et al. [14]

constructed to witness scolr(G) ≤ 5r + 1.

The generalized coloring numbers when r = 2 have attracted special attention since

they play an important role on bounding other types of graph chromatic numbers,

namely, game coloring number gcol(G), star chromatic number χs(G) and degenerate

coloring number chd(G). We state the best known bounds for scol2(G) and wcol2(G)

where G is any planar graph, then we provide their relations with the other types of

graph colorings.

Researchers have succeeded in their mission of finding the strong 2-coloring number

scol2(G) for planar graphs. Chan and Schelp [5] proved that the strong 2-coloring

number for planar graphs is bounded above by 761. Kierstead and Trotter [22]

improved the bound to 10, then to 9 (Kierstead et al. [24]). On the other hand,

several planar graphs with strong 2-coloring number equal to 8 have been found [22,
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24]. Eventually, Dvořák et al. [9] proved that the strong 2-coloring number of planar

graphs is at most 8.

Theorem 1.1.7.

1. For every planar graph G, scol2(G) ≤ 8.

2. There exists a planar graph G such that scol2(G) = 8.

Unlike the strong 2-coloring number, researchers are still on the hunt for the weak

2-coloring number. Theorem 1.1.5 gives 30 as a bound for wcol2(G) for any planar

graph G. Kierstead and Yang [25] improved this bound to 28. On the other hand,

Albertson et al. [2] constructed a planar graph G with star chromatic number at least

10, as the star chromatic number is a lower bound for the weak 2-coloring number,

wcol2(G) ≥ 10.

In this dissertation, we prove that the weak 2-coloring number of any planar graph

is at most 23.

1.1.1 Game Coloring Numbers

Let G be a graph. Assume that two players, Alice and Bob, with Alice playing

first, play a game by taking turns on choosing an unchosen vertex from V (G). The

game ends when all V (G) are chosen. For a vertex v of G, define b(v) to be the

number of neighbors of v chosen before v during the game. The score of the game is

s = 1 +maxv∈V (G)b(v).

Alice goal is to minimize s, while Bob goal is to maximize s. The game coloring

number gcol(G) is the smallest s such that Alice has a strategy to make the score at

most s no matter how Bob plays.
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Bartnicki et al. [3] showed the following.

Theorem 1.1.8. Every graph G satisfies that gcol(G) ≤ 3 scol2(G)− 1.

Since scol2(G) ≤ 8 for every planar graph G, we immediately get gcol(G) ≤ 23.

However, this bound is not the best bound; Kierstead [19] proved that 18 colors are

always sufficient when G is a planar graph. Later, Zhu [38] improved the bound to 17.

On the other hand, Wu and Zhu [36] constructed a planar graph G and a strategy for

Bob to make the score at least 11 no matter how Alice plays.

1.1.2 Star chromatic Numbers

A star coloring of a graph G is a proper coloring of G such that any subgraph

of G that is induced by two colors has no P4, i.e. every path of length three in G is

colored with at least three colors. The least number r such that G has a star coloring

using r colors is called the star chromatic number of G, and it is denoted by χs(G).

If we assign for every v ∈ G a list of colors L(v) and we ask to color each vertex using

a color from its list such that we get a star coloring, the coloring is called star list

coloring. The smallest integer k such that for any set of lists {L(v) : v ∈ G} satisfying

|L(v)| = k there exists a star list coloring of G is called the star list chromatic number

of G, and it is denoted by chs(G). Clearly, χs(G) ≤ chs(G) for every graph G.

The problem of finding the star chromatic numbers was first suggested in 1973 by

Grünbaum [13], and has been investigated recently by other authors.

For planar graphs, Albertson et al. [2] proved the following.

Theorem 1.1.9. If G is a planar graph then χs(G) ≤ 20.
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In the same paper, Albertson et al. constructed a planar graph G with χs(G) ≥ 10.

Unfortunately, the proof of Theorem 1.1.9 did not improve the star list chromatic

number chs(G). The following theorem is a well known relation between the star list

chromatic number and the weak 2-coloring number.

Theorem 1.1.10. For every graph G, chs(G) ≤ wcol2(G).

As wcol2(G) ≤ 23 for planar graphs, this number is the new upper bound for

chs(G) too.

For planar bipartite graph, a better bound is found.

Theorem 1.1.11. (Kirestead et al. [20]) If G is planar bipartite graph then chs(G) ≤

14.

In the same paper, Kierstead et al. constructed a planar bipartite graph G such

that χs(G) ≥ 8.

1.1.3 Degenerate Coloring Numbers

Assume that a graph G is vertex colored. Let S be a set of color classes of G. We

denote the subgraph of G that is induced by the set of all vertices v such that v is in

a color class in S by G[S]. A proper coloring of a graph G is a degenerate coloring if

for every set S of color classes, every subgraph H of G[S] has a vertex w such that

dH(w) < |S|. In other words, a proper coloring of a graph G is a degenerate coloring

if for every subgraph H of G, there is a vertex w in H such that the degree of w in H

is less than the number of colors appearing in H. The least number r such that G has

a degenerate coloring using r colors is called the degenerate number of G, and it is

denoted by χd(G). The degenerate coloring was first introduced by Borodin [4]. The
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degenerate coloring is a strengthening of the acyclic coloring number χα(G) which is

the least number of colors needed to properly color the graph G such that the union

of any two color classes induces a forest.

There is another version of coloring called the list degenerate coloring. In this

coloring, for each vertex v ∈ G, a list L(v) of colors is assigned, and we are asked to

color each vertex v of G from its list L(v) such that the coloring is degenerate. The

least k such that for any set of color lists {L(v) : v ∈ G} with |L(v)| = k the graph G

has a list degenerate coloring is called the list degenerate number, and it is denoted by

chd(G). Clearly, for every graph G, we have χd(G) ≤ chd(G).

The strong 2-coloring number is related to the list degenerate coloring number as

the following theorem shows.

Theorem 1.1.12. (Kierstead et al. [24]) For every graph G, chd(G) ≤ scol2(G).

As scol2(G) ≤ 8 for every planar graph G, chd(G) ≤ 8 too. On the other hand,

there are infinity many planar graphs where each vertex is either of degree 5 or 6.

Clearly, those graphs cannot have degenerate coloring with less than 6 colors.

1.2 Path Decomposition for Planar Graphs

Let H1 and H2 be vertex-disjoint subgraphs of G. We say that H1 is adjacent to

H2 if there is an edge uv ∈ E(G) such that v ∈ H1 and u ∈ H2.

Definition 1.2.1. A sequence H = (H1, . . . , Hs) of none-empty subgraphs of a

graph G is a decomposition of G if the sets V (H1), . . . , V (Hs) partition V (G). The

decomposition is connected if each Hi is connected.
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Assume that a decomposition H = (H1, . . . , Hs) of a graph G is given. We denote

the subgraph of G induced by
⋃

i≤j≤s
V (Hj) by G[H≥i].

Definition 1.2.2. Let H = (H1, . . . , Hs) be a decomposition of a graph G. Let C be

a component of G[H≥i] where 1 < i ≤ s. The separating number of C is the number

t of graphs H ′ ∈ {H1, . . . , Hi−1} such that H ′ is adjacent to C. The width of H is

the maximum separating number of a component C of G[H≥i], maximized over all

i, 1 < i ≤ s.

Lemma 1.2.3. (Van den Heuvel et al. [14]) Let H = (H1, . . . , Hs) be a connected

decomposition of a graph G of width at most k. By contracting each connected subgraph

Hi to a single vertex hi, we obtain a graph H = G/H with s vertices and tree-width

at most k. More precisely, the elimination-width of the ordering L = h1, . . . , hs is at

most k.

There is a relation between the elimination-width and weak reachability as next

theorem states.

Theorem 1.2.4. (Grohe et al. [11]) Let G be a graph and let L be a linear order of

V (G) with elimination-width at most k. For all r ∈ N and all v ∈ V (G),

wcolr[G,L, v] ≤
(
r + k

k

)
.

From Theorem 1.2.4 and Lemma 1.2.3 we have the following.

Lemma 1.2.5. Let H = (H1, . . . , Hs) be a connected decomposition of a graph G of

width at most k. Let H be the graph obtained from G by contracting each Hi ∈ H to a

single vertex hi where 1 ≤ i ≤ s. For all r ∈ N and all hi ∈ V (H),

wcolr[H,L, hi] ≤
(
r + k

k

)
where L is the ordering of V (H) that arises naturally from H, i.e., L = h1, . . . , hs.
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A path in a graph G is isometric if it is the shortest path in G between its endpoints.

Observe that if a path is isometric then all its subpaths are also isometric.

Lemma 1.2.6. Let P = x1 . . . xn be an isometric path in G, and let v ∈ G. Then

|Nr[v] ∩ P | ≤ 2r + 1.

Proof. Suppose Nr[v] ∩ P 6= ∅, and let x, y ∈ Nr[v] ∩ P such that distP (x, y) is

maximum. Since x, y ∈ Nr[v], distG(x, y) ≤ 2r. As P is isometric, distP (x, y) =

distG(x, y). Thus |Nr[v] ∩ P | ≤ 2r + 1.

A decomposition H = (H1, . . . , Hs) of a graph G is called an isometric-path

decomposition if for every i, 1 ≤ i ≤ s, Hi is an isometric path in G[H≥i].

Van den Heuvel et al. [14] showed that every maximal planar graph G has an

isometric-path decomposition P = (P1, . . . , Ps) of width at most 2. This decomposi-

tion is a very useful tool and it is the base of our work. For completeness, we include

their proof.

Lemma 1.2.7. (Van den Heuvel et al. [14]) Every maximal planar graph G has an

isometric-path decomposition of width at most 2.

Proof. Fix a plane drawing G̃ of G. For simplicity, we write G for G̃. The lemma is

trivial if |G| = 3, so assume that |G| ≥ 4. We inductively construct an isometric-path

decomposition P1, . . . , Pk, k ≥ 2 such that

(∗) for any component C of G[P≥k+1], the boundary of the region of R2 rG[P1 ∪

. . . ∪ Pk] containing C is a cycle in G that has its vertices in exactly two paths

from P1, . . . , Pk.

Let P1 be any edge of the outer face and let P2 be the vertex of the outer face that is

not contained in P1. Then G[P≥3] has only one component and the boundary of the
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Figure 1.1. Paths Decomposition of Width at Most 2

region of R2 rG[P1 ∪ P2] containing this component is the cycle forming the outer

face.

Now assume that P1, . . . , Pk−1 are constructed as described above. Let Ck be a

component of G[P≥k]. Let Dk be the cycle forming the boundary of the region of

R2 r G[P1 ∪ . . . ∪ Pk−1] in which Ck lies. Let Pa and Pb where 1 ≤ a < b ≤ k − 1

be the paths such that V (Dk) ⊆ V (Pa ∪ Pb). Since any cycle contains at least three

vertices, one of the paths, say Pa, has more than one vertex.

Since Pa is an isometric, any edge vu ∈ Dk where u, v ∈ V (Pa) is also an edge in Pa.

The same is true for Pb. Since Pa and Pb are vertex-disjoint, Dk has exactly two edges

ek and e′k such that ek, e′k /∈ Pa ∪ Pb. Say ek = vkzk, e
′
k = v′kz

′
k, vk, v

′
k ∈ Pa, zk, z′k ∈ Pb.

It is possible that vk = v′k or zk = z′k but not both as G does not have multiple edges.

Note that there could be lots of edges between Pa and Pb but only two of them are in

Dk. Since every face in G is triangulated, each one of those two edges belongs to the

boundary of a triangle face contained in the interior of Dk, see Figure 1.1 on page 14.

Let fk and f ′k be those triangle faces, say ek ∈ G[fk] and e′k ∈ G[f ′k] where G[f ] denotes
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the boundary of the face f . Let wk ∈ G[fk]− {vk, zk} and w′k ∈ G[f ′k]− {v′k, z′k} (it is

possible that wk = w′k). From the definition of Dk, both wk and w′k are in Ck. Choose

Pk to be the shortest path between wk and w′k in Ck.

Let C ′ be a component of G[P≥k+1] such that C ′ ⊂ Ck. From the way Pk is defined,

C ′ is adjacent to at most two paths among Pa,Pb and Pk, and no such component is

adjacent to both Pa and Pb. Now we just need to show that C ′ is adjacent to exactly

two paths among Pa, Pb and Pk. Let D′′ be the cycle forming the boundary of the

region of R2 rG[P1 ∪ . . . ∪ Pk] containing C ′. Assume that V (D′′) ⊆ V (Pi) for some

i ∈ {a, b, k}. Then there exists an edge e = uv ∈ D′′ such that u, v ∈ V (Pi) but

e /∈ Pi; this is in contradiction to the fact that Pi is an isometric path.

Let P = (P1, . . . , Ps) be the resulting decomposition. Let L be any ordering

of V (G) satisfying that V (Pi) <L V (Pj) if i < j (i.e., if x ∈ Pi and y ∈ Pj where

i < j then x <L y). Contract each Pi to a single vertex pi, and call the resulting

graph H, i.e., H = G/P. Let v ∈ G and let Pi be the path containing v. From

Lemma 1.2.5, there are at most
(
r+2
2

)
vertices in H that are weakly r-reachable from

pi with respect to the ordering L′ = p1, . . . , ps. Those vertices correspond to the

only paths in P that may contain vertices that are weakly r-reachable from v in G.

Since each one of those paths Pj is isometric in G[P≥j], Lemma 1.2.6 tells us that

wcolr[G,L, v] ≤
(
r+2
2

)
· (2r + 1).

Theorem 1.2.8. (Van den Heuvel et al. [14]) Let G be a planar graph and r ∈ N.

Then wcolr(G) ≤
(
r+2
2

)
· (2r + 1).

For r = 2, we immediately get wcol2(G) ≤ 30. Note that the restriction of L on

V (Pi), i ∈ [s] was arbitrary. If we fix any endpoint of Pi and order the vertices toward

this end then we easily get wcolr(G) ≤
(
r+2
2

)
· (2r + 1)− r. This gives wcol2(G) ≤ 28.
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In Chapter 2, we will modify the technique used in the proof of Lemma 1.2.7 to

prove that wcol2(G) ≤ 23 for every planar graph G.

1.3 Distance-r-coloring Numbers

Van den Heuvel et al. [15] defined another variant of the generalized coloring

numbers called distance-r-coloring number dcolr(G). Let L ∈ Π(G). For every

v ∈ V (G), let Dcolr[G,L, v] be the set of all vertices u such that there is a path

P = x0 . . . xs in G with x0 = u, xs = v satisfying:

• ‖P‖ = s ≤ r;

• u is the minimum vertex in P with respect to L;

• v ≤L xi for
⌊
r
2

⌋
+ 1 ≤ i ≤ s.

We denote the cardinality of Dcolr[G,L, v] by dcolr[G,L, v]. Let

dcolr[G,L] := max
v∈V (G)

dcolr[G,L, v].

The distance-r-coloring number dcolr(G) is defined as follows.

dcolr(G) := min
L∈Π(G)

dcolr[G,L].

We write Dcolr[L, v] and dcolr[L, v] instead of Dcolr[G,L, v] and dcolr[G,L, v] respec-

tively if G is known from the context.

It is not hard to see that Scolr[L, v] ⊆ Dcolr[L, v] ⊆Wcolr[L, v], so

scolr(G) ≤ dcolr(G) ≤ wcolr(G). (1.3.1)

Also as Wcolb r2c+1[L, v] ⊆ Dcolr[L, v], wcolb r2c+1(G) ≤ dcolr(G).

Van den Heuvel et al. [15] gave explicit upper bounds of dcolr(G) for some classes

of graphs. They proved the following.
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Theorem 1.3.1. Let r ∈ N.

1. If G is a planar graph then dcolr(G) ≤
(b r2c+3

2

)
· (2r + 1)− r.

2. Let t ∈ N and G a graph with tree-width at most t. Then dcolr(G) ≤
(t+b r2c+1

t

)
.

The motivation behind defining the distance-r-coloring number dcolr(G) is to

bound the chromatic number of the exact distance graphs as we see in the following

section.

1.4 Exact Distance Graphs

Let p ∈ N and G = (V,E) is a graph. The p-th power graph Gp of G is a graph

with V as its set of vertices, and xy ∈ E(Gp) if and only if distG(x, y) ≤ p. Problems

related to the chromatic number of Gp were first considered by Kramer and Kramer

[27, 26]. If G is a star then G2 is a clique, so χ(G2) = |V (G)|. Thus there are not

many graphs G for which χ(Gp) is bounded by a constant. It is not hard to show that

for a graph G with maximum degree ∆(G) ≥ 3,

χ(Gp) ≤ 1 + ∆(Gp) ≤ 1 + ∆(G) ·
p−1∑
i=0

(∆(G)− 1)i ∈ O(∆(G)p).

There are some classes of graphs for which the upper bound is better. Recall that a

graph G is k-degenerate if for every subgraph H ⊆ G, H contains a vertex of degree

at most k.

Theorem 1.4.1. (Agnarsson and Halldórsson [1]) Let k, p ∈ N. Let G be a k-

degenerate graph. Then there exists a constant c = c(k, p) such that χ(Gp) ≤ c ·

∆(G)bp/2c.

The exponent
⌊
p
2

⌋
is best possible. In particular, for planar graphs G, χ(G2) has a

linear bound in ∆(G). In 1977, Wegner [35] conjectured that if G is a planar graph and
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∆(G) ≥ 8 then χ(G2) ≤
⌊
3
2
∆(G)

⌋
+ 1, and he gave examples showing that this bound

would be best possible. Since then this conjecture has attracted special attention.

Nešetřil and Ossona de Mendez (Section 11.9, [31]) introduced the notions of exact

power and exact distance graphs. Let p ∈ N and G = (V,E) a graph. The exact

p-power graph G\p of G is a graph with V as its set of vertices, and xy ∈ E(G\p) if and

only if there is a path of length p between x and y in G (the path need not be a shortest

path). While the exact distance-p graph G[\p] is a graph with V as its set of vertices,

and xy ∈ E(G[\p]) if and only if distG(x, y) = p. Clearly, χ(G[\p]) ≤ χ(G\p) ≤ χ(Gp)

as E(G[\p]) ⊆ E(G\p) ⊆ E(Gp).

Every planar graph is 5-degenerate, so Theorem 1.4.1 gives that χ(G\p) ∈

O(∆(G)bp/2c) for every planar graph G. This bound is optimal even for outerpla-

nar graphs [15]. The situation is different for exact distance-p graphs. For every

planar graph G and an odd integer p, χ(G[\p]) ∈ O(1), and when p is even we have

χ(G[\p]) ∈ O(∆(G)). Indeed, those results are special cases from more general results.

Let K be a class of graphs with bounded expansion (the definition will be given

next section). Nešetřil and Ossona de Mendez (Theorem 11.8, [31]) proved that for

G ∈ K and an odd integer p we have χ(G[\p]) ∈ O(1). Van den Heuvel et al. [15]

proved that for G ∈ K and an even integer p we have χ(G[\p]) ∈ O(∆(G)). Since every

class of planar graphs is a class with bounded expansion, their results hold for planar

graphs too.

Theorem 1.4.2. Let K be a class of graphs with bounded expansion.

1. Let p be an odd positive integer. Then there exists a constant C = C(K, p) such

that for every G ∈ K we have χ(G[\p]) ≤ C.

2. Let p be an even positive integer. Then there exists a constant C ′ = C ′(K, p)

such that for every G ∈ K we have χ(G[\p]) ≤ C ′.∆(G).

18



We have seen that in general we cannot bound χ(G\p) without involving ∆(G)

even if p is an odd integer and G is a planar graph. However, if we require that G has

large enough odd girth then we can bound χ(G\p) without involving ∆(G) where p is

odd.

Theorem 1.4.3. (Nešetřil and Ossona de Mendez (Theorem 11.7, [31])) Let K be a

class of graphs with bounded expansion, and p an odd integer. If G ∈ K with odd girth

at least p+ 1 then there exists a constant C = C(K, p) such that χ(G\p) ≤ C.

A class of graphs with bounded expansion can be characterized in many different

ways, one of them is in terms of generalized coloring numbers.

Theorem 1.4.4. (Zhu [37]) A class of graphs K has bounded expansion if and only

if for every r ∈ N there exists a constant cr such that wcolr(G) ≤ cr for all G ∈ K.

Van den Heuvel et al. [15] proved Theorem 1.4.2(2) and gave two different proofs

with better bounds for Theorem 1.4.2(1) using this characterization. They proved the

following.

Theorem 1.4.5. Let G be a graph.

1. If p is an odd positive integer then χ(G[\p]) ≤ dcol2p−1(G).

2. If p is an even positive integer then χ(G[\p]) ≤ dcol2p(G) ·∆(G).

This theorem together with (1.3.1) and Theorem 1.4.4 give Theorem 1.4.2. They

also proved the following.

Theorem 1.4.6. Let G be a graph and p an odd integer. Set q = wcolp(G).

1. We have χ(G[\p]) ≤ (
⌊
p
2

⌋
+ 2)q.

2. If G has odd girth at least p+ 1 then χ(G\p) ≤ (
⌊
p
2

⌋
+ 2)q.
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Clearly, Theorem 1.4.6(1) leads to Theorem 1.4.2(1).

For the class of planar graphs, the class of bounded tree-width graphs and other

classes, Van den Heuvel et al. [15] give explicit upper bounds of χ(G[\p]) by finding

upper bounds of dcolp(G).

Theorem 1.4.7. Let p ∈ N.

1. If G is a planar graph then dcolp(G) ≤
(b p2c+3

2

)
· (2p+ 1)− p.

2. If G is a graph with genus g then dcolp(G) ≤ (2g +
(b p2c+3

2

)
) · (2p+ 1)− p.

3. Let t ∈ N and G is a graph with tree-width at most t. Then dcolp(G) ≤
(t+b p2c+1

t

)
.

4. If G is a graph that excludes Kt as a minor then dcolp(G) ≤
(t+b p2c−1

t−2

)
· (t −

3)(2p+ 1).

Since every outerplanar graph G has tree-width at most 2, Theorem 1.4.7(3) and

Theorem 1.4.5 together give χ(G[\3]) ≤ 10.

From the proof of Theorem 11.8 [31], it follows that for any planar graph G,

χ(G[\3]) ≤ 5.220,971,522. On the other hand, Exercise 11.4 [31] gives an example of

planar graph G with χ(G[\3]) = 6. From Theorem 1.4.5 together with Theorem

1.4.7(1), Van den Heuvel et al. [14] improved the upper bound to 105. In the same

paper, they gave an example for planar graph G with χ(G[\3]) = 7.

In this dissertation, we tighten the range of χ(G[\3]); we prove that χ(G[\3]) ≤ 95

for every planar graph G and we give an example for planar graph G such that

χ(G[\3]) ≥ 9.
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1.5 Nowhere Dense Classes and Classes with Bounded Expansion

The class of nowhere dense graphs was first introduced by Nešetřil and Ossona de

Mendez [30, 31]. It generalizes and includes other types of sparse graph classes such

as classes that exclude minors and classes with bounded expansion. Nowhere dense

graph classes have useful algorithmic properties [6, 31, 12]; some algorithmic hard

problems can be solved efficiently when they are restricted to nowhere dense classes.

Nowhere dense classes are a limit for the efficient solvability of a wide class of problems

[10, 28]. Grohe et al. [12] proved that for every graph in a fixed nowhere dense class,

every first-order property can be decided in almost linear time. Nowhere dense classes

can be characterized in several seemingly different ways. They can be characterized

in terms of shallow minor densities [30], consequently in terms of generalized coloring

numbers (by a result from [37]), sparse neighborhood covers [12, 11], just to name a

few.

Definition 1.5.1. Let C be a class of graphs. We say that C is nowhere dense if for

every r ≥ 1 there exists t ≥ 1 such that no graph in the class contains a topological

minor of the complete graph Kt where every edge is subdivided at most r times. A

class of graphs C is somewhere dense if it is not nowhere dense.

Nowhere dense classes can also be defined in terms of ordinary minors. Denote the

average degree of G by d(G). A class of graphs C is nowhere dense if for every positive

integer r and every ε > 0, there exists a positive integer n0 such that if H is a graph

with |V (H)| ≥ n0 and H is depth-r minor of some G ∈ C, then d(H) ≤ |V (H)|ε.

Theorem 1.5.2. (by a result from [30]) A class of graphs C is nowhere dense if and

only if for every r ∈ N and ε > 0 there exists an integer n0 such that for every graph
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G ∈ C with |V (G)| ≥ n0 we have

wcolr(G) ≤ |V (G)|ε.

There are more restrictive sparse classes which are also characterized in terms of

the generalized coloring numbers.

Definition 1.5.3. Let C be a class of graphs. We say that C has bounded expansion if

for every r ≥ 1 there exists t ≥ 1 such that no graph in the class contains a topological

minor of a graph H where every edge is subdivided at most r times and d(H) ≥ t.

Theorem 1.5.4. (Zhu [37]) A class of graphs C is a class with bounded expansion

if and only if for every positive integer r there exists a constant number c such that

wcolr(G) ≤ c for every G ∈ C.

Next we consider other characterizations of nowhere dense classes; the generalized

coloring numbers were used to prove the forward implication of Theorem 1.5.10 and

Lemma 1.5.13.

1.5.1 Poset Dimension

Nowhere dense classes can also be characterized in terms of poset dimension. Joret

et al. [16] showed that the property of being nowhere dense class can be captured by

looking at the dimension of posets whose order diagrams are in the class when seen as

graphs.

Let P be a poset. The dimension dim(P ) is the least number of total orders such

that the intersection of those orders gives rise to P . The standard way of representing

a poset is by drawing it’s diagram: if v <P u we draw v below u and we draw a curve

from v up to u if the relation v <P u is not implied by transitivity. Any relation
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v <P u not implied by transitivity is called cover relation. The height of a poset is

the maximum number of vertices in a chain in the poset. The diagram corresponds in

a natural way to undirected graph G, where V (G) are the elements of the poset and

E(G) correspond to the pairs of elements in a cover relation. The graph G is called

the cover graph of P .

Recall that a monotone class means a class closed under taking subgraphs.

Theorem 1.5.5. (Joret et al. [16]) Let C be a monotone class of graphs. Then C is

nowhere dense if and only if for every h ∈ N and ε > 1, n-element posets of height at

most h whose cover graphs are in C have dimension O(nε).

It is conjectured that classes with bounded expansion can be characterized in

terms of poset dimension, where the dimension is bounded by a function of the height.

Conjecture 1.5.6. (Joret et al. [17]) A monotone class of graphs C has bounded

expansion if and only if for every fixed h ≥ 1, posets of height at most h whose cover

graphs are in C have bounded dimension.

The forward implication of the conjecture is shown in the same paper, but the

backward direction is still open.

1.5.2 Sparse Neighborhood Covers

Another characterization of nowhere dense graphs is in terms of sparse neighbor-

hood covers. Neighborhood covers with small size and radius play an important role

in the design of many data structures for distributed systems [33, 32].

For a positive integer r, an r-neighborhood cover X of a graph G is a set of

connected subgraphs of G called clusters such that for every vertex v in G there is a
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cluster X ∈ X with Nr(v) ⊆ X. The radius of the cover X is max{rad(X) : X ∈ X}

and it is denoted by rad(X ). The degree dX (v) of v in X is the number of clusters

containing v. The degree of X is max{dX (v) : v ∈ G}.

Definition 1.5.7. A class C admits sparse neighborhood covers if for every positive

integer r, there exists a positive integer c such that for all ε > 0 there exists n0 ∈ N

such that for all G ∈ C with |G| ≥ n0, there exists an r-neighborhood cover X with

rad(X ) ≤ cr at degree at most |G|ε.

The generalized coloring numbers are useful tools in finding neighborhood covers

with small radius.

Theorem 1.5.8. (Grohe et al. [12]) Let G be a graph. If wcol2r(G) = d then G admits

an r-neighborhood cover X of radius at most 2r and degree at most d. Therefore, if C

is nowhere dense class then C admits sparse neighborhood covers.

Theorem 1.5.9. (Grohe et al. [11]) Let C be a monotone class of graphs. If C admits

sparse neighborhood covers then C is nowhere dense.

From Theorem 1.5.8 and Theorem 1.5.9, we have the following.

Theorem 1.5.10. A monotone class of graphs C is nowhere dense if and only if it

admits sparse neighborhood covers.

1.5.3 The k-domination Numbers

A set D ⊆ V (G) is a dominating set if for every v ∈ V (G), either v ∈ D or

N(v)∩D 6= φ. The minimum size of a dominating set is called the domination number

of G, and it is denoted by dom(G). Determining the domination number is a famous
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problem in algorithmic graph theory and it is known to be NP-complete in general

(Karp [18]). Even approximating dom(G) within a factor better than O(log(|V (G)|)

is NP-complete (Raz and Safra [34]). However, when restricted to some sparse classes,

the problem becomes more manageable. For example, for every G with degeneracy at

most c, there exists a linear-time algorithm approximating dom(G) within a factor

O(c2) (Lenzen and Wattenhofer [29]).

The k-domination number generalizes the notion of the domination number. The

k-domination number of a graph G is the minimum size of a set D ⊆ V (G) such that

for every v ∈ G, distG(v, u) ≤ k for some u ∈ D. The k-domination number of a

graph G is denoted by domk(G).

The generalized coloring numbers can be used to give a linear-time constant-factor

algorithm approximating the k-domination number in classes of graphs with bounded

expansion.

Definition 1.5.11. Let G be a graph and A ⊆ V (G). The subset A is d-independent if

for every two vertices x, y ∈ A, distG(x, y) > d. The maximum size of a d-independent

set in G is denoted by αd(G).

It is easy to see that for any graph G, α2k(G) ≤ domk(G). When we restrict the

problem to the classes with bounded expansion, then domk(G) = O(α2k(G)).

Theorem 1.5.12. (Dvorak [8]) If k ≥ 1 and 1 ≤ m ≤ 2k + 1 are integers and G is a

graph satisfying that wcolm(G) ≤ c, then domk(G) ≤ c2αm(G).

From Theorem 1.5.12 and Theorem 1.5.2 we have the following.

Lemma 1.5.13. Let C be a nowhere dense class of graphs. Then for every r ∈ N and

ε > 0 there exists an integer n0 such that for every graph G ∈ C with |V (G)| ≥ n0 we
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have

domr(G) ≤ |V (G)|2εα2r(G).

In Chapter 5, we prove that the converse of Lemma 1.5.13 is also true for every

monotone class of graphs C.
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Chapter 2

ON THE WEAK 2-COLORING NUMBER OF PLANAR GRAPHS

In this chapter, we prove the following.

Theorem 2.0.1. For every planar graph G, wcol2(G) ≤ 23.

We first give an isometric-path decomposition P = (P1, . . . , Ps) for G. After that

we use P to define a linear ordering L of V (G). Then we prove that wcol2[G,L] ≤ 23.

We also give an example of a planar graph G such that wcol2[G,L] = 23. This shows

that the upper bound 23 is optimal in terms of our method.

2.1 Isometric-path Decomposition P

We may assume without loss of generality that G is a maximal planar graph

since removing edges does not increase the weak coloring numbers. We refine the

isometric-path decomposition that is defined by Van den Heuvel et al. [14]. We gave

the construction of their decomposition in the proof of Lemma 1.2.7. Here we add an

extra condition when we choose the shortest path Pk between wk and w′k. If there are

more than one isometric paths then break ties as follows.

(∗∗) Choose Pk so that the interior of the cycle D′ := vkPav
′
kw
′
kPkwkvk has as few

vertices as possible.

Let P = (P1, . . . , Ps) be the resulting isometric-path decomposition. We give

now some notations. For each i ∈ [s], denote the endpoints of Pi by wi and w′i. Let

i ∈ [s]r {1, 2}, then Pi is adjacent to exactly two paths Pa, Pb ∈ {P1, . . . , Pi−1}, a < b.
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We call Pa the strong parent and Pb the weak parent of Pi. We say that Pj, j ∈ [s] is a

parent of Pi if Pj is either the strong or the weak parent of Pi. For each i ∈ [s]r{1, 2},

denote the component of G[P≥i] containing Pi by Ci, the cycle forming the boundary

of the region of R2rG[P1∪ . . .∪Pi−1] in which Ci lies by Di, and the two edges e ∈ Di

such that e /∈ Pa ∪ Pb by ei and e′i. Denote the unique vertex in V (Pa) ∩ ei by vi, and

the unique vertex in V (Pa) ∩ e′i by v′i. Denote the unique vertex in V (Pb) ∩ ei by zi,

and the unique vertex in V (Pb)∩e′i by z′i. The edges ei, e′i each belong to the boundary

of a triangle face contained in the interior of Di. Let fi and f ′i be those triangle faces

with ei ∈ G[fi] and e′i ∈ G[f ′i ]. Denote the unique vertex in G[fi] − {vi, zi} by wi,

and the unique vertex in G[f ′i ]− {v′i, z′i} by w′i. Denote the cycle viPav′iw′iPiwivi by

Di,1 and the cycle wiPiw′iz′iPbziwi by Di,2. Denote the interior of Di,1 by Oi,1, and the

interior of Di,2 by Oi,2.

The following four lemmas follow directly from the construction of P.

Lemma 2.1.1. Let Pi ∈ P, i ≥ 3. If v is a vertex in the interior of Di, then

v ∈ Pj ∈P for some j ≥ i.

Lemma 2.1.2. Let v ∈ Pi, i ≥ 3. Let Pa and Pb be the strong and weak parents of

Pi respectively. If P is a path between v and a vertex u ∈ V (P1 ∪ . . . ∪ Pi−1) then P

intersects with Pa ∪ Pb, more precisely, P intersects with either viPav′i or ziPbz′i.

Lemma 2.1.3. Let Pi ∈ P, i ≥ 3. Let Pa be the strong parent, and Pb the weak

parent of Pi. Then Pa is a parent of Pb, i.e., if b ≥ 3, Pa is either the strong parent

or the weak parent of Pb.

Lemma 2.1.4. Let Pi, Pj ∈P, i ≥ 3. If Pi is a parent of Pj then Cj ⊂ Ci.

We will use the next lemma often in the remainder of this chapter.
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Lemma 2.1.5. Let Pi ∈ P, i ∈ [s] r {1, 2} and let x, y ∈ Pi. Assume that there

exists a path Q between x and y in Oi,1 ∪ Pi such that Q contains at least one vertex

in Oi,1 (i.e., Q is not a subpath of Pi). Then ‖xPiy‖ ≤ ‖Q‖ − 1.

Proof. We may assume without loss of generality that distPi
(x,wi) ≤ distPi

(y, wi). The

path Pi is isometric in Ci, so xPiy is also isometric in Ci. Both xPiy and Q are paths

between x and y in Ci. Thus ‖xPiy‖ ≤ ‖Q‖. Assume that ‖xPiy‖ = ‖Q‖. Starting

from the x-end of Q find the last vertex x′ ∈ Q such that x′ ∈ wiPix. Starting from

the y-end of x′Qy find the last vertex y′ ∈ x′Qy such that y′ ∈ yPiw′i. The vertices x′

and y′ exist because x and y respectively are candidates. Assume that x′ = x and

y′ = y. As Q ⊆ Oi,1 ∪ Pi and Q contains a vertex in Oi,1, the number of vertices in

the interior of the cycle viPav′iw′iPiyQxPiwivi is less than the number of vertices in

Oi,1, a contradiction to (∗∗). Thus ‖xPiy‖ < ‖Q‖ as desired. Assume now that either

x′ 6= x or y′ 6= y. Clearly, ‖xPiy‖ < ‖x′Piy′‖. The path x′Piy′ is isometric in Ci, and

both x′Piy′ and x′Qy′ are paths between x′ and y′ in Ci. Then ‖x′Piy′‖ ≤ ‖x′Qy′‖.

Since either x′ 6= x or y′ 6= y, ‖x′Qy′‖ < ‖Q‖. Hence ‖xPiy‖ ≤ ‖Q‖ − 2.

Now we are ready to define the ordering L that witnesses wcol2[G,L] ≤ 23.

2.2 The ordering L

Let x ∈ Pi, y ∈ Pj, i 6= j. Then x <L y if and only if i < j. We inductively give

the restriction of L on V (Pi), i ∈ [s]. Fix any endpoint r1 of P1 and make it the first

vertex in P1 (the first vertex in L too), then order V (P1) toward r1. The path P2 is a

single vertex r2, so r2 is the third vertex in L.

Let Pi ∈ P, i ∈ [s] r {1, 2}. If vi = v′i (recall that vi and v′i are vertices in the

strong parent of Pi) then denote arbitrary the endpoints of Pi by wi and w′i and set
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Figure 2.1. Pa the Strong Parent of Pi and Pb the Weak Parent of Pi

ri = w′i. If vi 6= v′i then choose notations so that vi <L v
′
i. Let ri ∈ Pi ∩N(vi) such

that distPi
(wi, ri) is maximum over all the vertices in Pi ∩N(vi), see Figure 2.1 on

page 30. Let ri be the first vertex in Pi with respect to L, then order V (Pi) toward

ri, i.e., choose any linear ordering of V (Pi) satisfying that for any x, y ∈ V (Pi) with

distPi
(ri, x) < distPi

(ri, y) then x <L y. Note that if distPi
(ri, x) = distPi

(ri, y), we

arbitrary choose the vertex that comes first. The ordering L is now completed.

Let v ∈ Pi such that v 6= ri. If they exist, let v−, v+ ∈ Pi ∩ N(v) such that

v− <L v <L v
+. If the vertices v− and v+ exist then they are unique.

Each vertex y ∈ Pi gives a rise to two subpaths of Pi, they are wiPiy and yPiw′i.

The next lemma follows from the definition of L.

Lemma 2.2.1. Let x, y ∈ Pi, i ∈ [s] with x <L y. Let Q ∈ {wiPiy, yPiw′i} such that

x /∈ Q, and let z ∈ Q− y. Then y <L z.

Proof. As x <L y, distPi
(ri, x) ≤ distPi

(ri, y). Thus ri ∈ Pi − Q. So distPi
(ri, y) <

distPi
(ri, z).
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Before we prove wcol2[G,L] ≤ 23 for every planar graph G, we illustrate the

construction of P and the ordering L by giving an example of a maximal planar

graph G such that wcol2[G,L] = 23.

2.3 Example

The graph G is given in Figure 2.2 on page 32. It is easy to see that G is a planar

graph and every face is triangulated. We illustrate the decomposition P together with

the ordering L. The first path P1 is the edge u1u2 which is an edge incident to the

outer face. Let u1, u2 be the first and second vertices with respect to L respectively.

The ordering L is represented by purple numerals next to the vertices. The second

path P2 is the vertex u3 which is the vertex of the outer face that is not in P1. The

vertex u3 is the third vertex in L.

Now there is only one component C3 in G[P≥3]. The edge u1u3 belongs to the

boundary of a triangle face incident to a unique vertex (which is u4) in C3. Similar is

true for u2u3, and the vertex associated with u2u3 is u9. Now we pick an isometric

path between u4 and u9 in C3 satisfying (∗∗), so this path is P3 := u4u5u6u7u8u9.

The path P3 is adjacent to P1 and P2, and as 1 < 2, P1 is the strong parent of P3.

Since u1 <L u2, v3 = u1, v
′
3 = u2, w3 = u4, w

′
3 = u9. As N(v3) ∩ P3 = {u4, u5, u6, u7}

and u7 is the farthest of these from w3, r3 = u7. There are more than one way

to order V (P3), for example the second vertex could be u6 or u8. Order V (P3) as

u7 <L u6 <L u8 <L u5 <L u9 <L u4.

There is only one component C4 in G[P≥4]. The next path in P has to be

an isometric path between u10 and u14 in C4 satisfying (∗∗). This path is P4 :=

u10u11u12u13u14. The strong parent of P4 is P2, and as P2 is the single vertex u3
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Figure 2.2. A Planar Graph G and an Ordering L Satisfying wcol2[G,L] = 23. The
Ordering L is Represented by the Purple Numbers

then v4 = v4′ = u3. Any endpoint of P4 is a candidate for w4. Let w4 = u14, so

r4 = w′4 = u10 and the order of V (P4) is u10 <L u11 <L u12 <L u13 <L u14.

Denote the unique component in G[P≥5] by C5. The next path in P has to be

an isometric path between u15 and u18 in C5 satisfying (∗∗). This path is P5 :=

u15u16u17u18. The strong parent of P5 is P3, as u9 <L u4, v5 = u9 and v′5 = u4. As

N(v5) ∩ P5 = {u18}, r5 = u18 and the order of V (P5) is u18 <L u17 <L u16 <L u15.
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Denote the unique component in G[P≥6] by C6. The next path in P is an isometric

path between u19 and u22 in C6 satisfying (∗∗). This path is P6 := u19u20u21u22.

The strong parent of P6 is P4 and v6 = v′6 = u12. So any endpoint of P6 is a

candidate for w6. Choose u22 to be w6, so r6 = w′6 = u19 and the order of V (P6) is

u19 <L u20 <L u21 <L u22.

Denote the unique component in G[P≥7] by C7. The next path is P7 := u23u24u25u26

since it is an isometric path between u23 and u26 satisfying (∗∗). The strong parent of

P7 is P5 and as u17 <L u15, v7 = u17 and v′7 = u15. As N(v7) ∩ P7 = {u26}, r7 = u26

and so the order of V (P7) is u26 <L u25 <L u24 <L u23. The next path P8 in P

has to be a path between u27 and u31 in G[P≥8]; since there is only one such path,

P8 := u27u28u29u30u31. The strong parent of P8 is P5, as u17 <L u15, v8 = u17 and

v′8 = u15. So w8 = u31 and w′8 = u27. As N(v8) ∩ P8 = {u29, u30, u31} and u29 is the

farthest of these from w8, r8 = u29. There are more than way to order the V (P8)

toward r8, we choose the order u29 <L u28 <L u30 <L u27 <L u31. The decomposition

P and the ordering L are now completed.

Claim 2.3.1. wcol2[L, u29] = 23.

For simplicity we write v for u29, and we denote the set of vertices Wcol2[G,L, v]

and the number wcol2[G,L, v] by W(v) and w(v) respectively. Let A :=

{P3, P4, P5, P6, P7, P8}. Observe that W(v) ⊆
⋃
P∈A

P as v is with distance greater than

two from any vertex in P1∪P2. The vertex v is the smallest in P8, so |W(v)∩P8| = 1.

Now we find |W(v) ∩ P7|. Both u24, u25 ∈ N(v) and the paths vu28u23, vu30u26 are

witnessing u23, u26 ∈ W(v) respectively. Thus |W(v) ∩ P7| = 4. The four paths

vu24u19, vu25u20, vu25u21, vu25u22 are witnessing u19, u20, u21, u22 ∈W(v) respectively.

Thus |W(v) ∩ P6| = 4. The vertices u15, u16, u17 are neighbors of v and the path

vu17u18 is witnessing u18 ∈W(v). Thus |W(v)∩P5| = 4. The vertex u15 is a common
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neighbor of v, u10, u11, u12, so {u10, u11, u12} ⊆ W(v). Similarly, the vertex u17 is a

common neighbor of v, u13, u14, so {u13, u14} ⊆ W(v). Thus |W(v) ∩ P4| = 5. The

five paths vu15u4, vu15u5, vu16u6, vu16u7, vu17u8 are witnessing u4, u5, u6, u7, u8 ∈W(v)

respectively. Observe that dist(v, u9) > 2, so u9 /∈W(v), thus |W(v)∩P3| = 5. Hence

all in all w(v) = 23.

2.4 Proof of Theorem 2.0.1

Theorem 2.4.1. wcol2[G,L] ≤ 23.

Proof. Let v ∈ G; then v ∈ Pk for some k ∈ [s]. Recall that W(v) denotes the set of

vertices Wcol2[G,L, v], and w(v) denotes the number wcol2[G,L, v].

Claim 2.4.2. |W(v) ∩ Pk| ≤ 3.

Proof. Follows from Lemma 2.1.5 and Lemma 2.2.1.

If k ≤ 2 then W(v) ⊆ P1 ∪ P2. So w(v) ≤ 3 and we are done. So assume k ≥ 3.

Then Pk is adjacent to exactly two paths Ph, Pj ∈ {P1, . . . , Pk−1}, h < j. So Ph is the

strong parent of Pk, and Pj is the weak parent of Pk. Observe that Ph is a parent

of Pj too. If j ≤ 2 then h = 1, j = 2 and W(v) ⊆ P1 ∪ P2 ∪ Pk; from Lemma 1.2.6,

w(v) ≤ 2 ∗ 5 + 3 = 13. So assume j ≥ 3, then Pj is adjacent to exactly two paths

in {P1, . . . , Pj−1}, one of them is Ph and the other one is Pi, say. Note that Pi is

adjacent to Ph, so either Ph is a parent of Pi or Pi is a parent of Ph. If h ≤ 2 then

W(v) ⊆ P1 ∪ P2 ∪ Pi ∪ Pj ∪ Pk; so w(v) ≤ 4 ∗ 5 + 3 = 23. So assume h ≥ 3; then Ph

is adjacent to exactly two paths Pf , Pg ∈ {P1, . . . , Ph−1}. If i < h then i ∈ {f, g}, so

W(v) ⊆ Pf ∪Pg ∪Ph ∪Pj ∪Pk, and thus w(v) ≤ 4 ∗ 5 + 3 = 23. So assume h < i. See

Figure 2.3 on page 35.
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Figure 2.3. V (D) ⊆ Pf ∪ Ph

Let A := {Pf , Pg, Ph, Pi, Pj, Pk}. Let u ∈ W(v). Then u ∈ P for some P ∈ A.

Therefore w(v) =
∑
P∈A
|W(v)∩P |. In the remainder of this proof we estimate |W(v)∩P |

for each P ∈ A.

Claim 2.4.3. |W(v) ∩ Pj| ≤ 4.

Proof. Recall that V (Dj) ⊆ Ph ∪ Pi as Ph and Pi are the strong and weak parents

of Pj. Let u, u′ ∈ W(v) ∩ Pj such that distPj
(u, u′) is maximum. There exist two

paths each of length at most two in Oj,1 ∪ Pj (as v ∈ Oj,1) witnessing that u ∈W(v)

and u′ ∈ W(v). Those two paths combined contain a path Q of length at most

four between u and u′ in Oj,1 ∪ Pj. If v /∈ Q then ‖uPju′‖ ≤ ‖Q‖ ≤ 2, if v ∈ Q
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then Q contains a vertex in Oj,1; from Lemma 2.1.5, ‖uPju′‖ ≤ ‖Q‖ − 1 ≤ 3. Thus

|W(v) ∩ Pj| ≤ 4.

Claim 2.4.4. If x, y ∈ N(v) ∩ Pj, x 6= y then xy ∈ Pj.

Proof. The path xvy is a path in Oj,1 ∪ Pj and v ∈ Oj,1. From Lemma 2.1.5,

‖xPjy‖ ≤ ‖xvy‖ − 1 = 1. Thus xy ∈ Pj.

Claim 2.4.5. |W(v) ∩ Pi| ≤ 4.

Proof. Let y1, y2 ∈W(v) ∩ Pi such that distPi
(y1, y2) is maximum. Let Q1 be a path

witnessing y1 ∈W(v) and Q2 a path witnessing y2 ∈W(v). As Pk is not adjacent to Pi,

both Q1 and Q2 are of length two, say Q1 = vy′y1, Q2 = vy′′y2. Note that Q1, Q2 ⊆ Ci

and y′, y′′ ∈ Pj ∪ Ph. As h < i, every vertex in Ph is smaller with respect to L than

every vertex in Pi. From the definition of weak reachability, y′, y′′ ∈ Pj. If y′ = y′′

then ‖y1Piy2‖ ≤ ‖y1y′y2‖ ≤ 2. Assume that y′ 6= y′′, then y′, y′′ ∈ N(v) ∩ Pj. From

Claim 2.4.4, y′y′′ ∈ Pj, so ‖y1Piy2‖ ≤ ‖y1y′y′′y2‖ = 3. Thus |W(v) ∩ Pi| ≤ 4.

Let C be the component of G[P≥h+1] containing v. Let D be the cycle forming

the boundary of the region of R2 r G[P1 ∪ . . . ∪ Ph] in which C lies. Then either

V (D) ⊆ Pf ∪ Ph or V (D) ⊆ Pg ∪ Ph. Assume without loss of generality that

V (D) ⊆ Pf ∪ Ph, see the example in Figure 2.3 on page 35. Set

R := |W(v) ∩ Pk|+ |W(v) ∩ Ph|+ |W(v) ∩ Pf |.

Claim 2.4.6. If v = rk then R ≤ 10.

Proof. Clearly, |W(v) ∩ Pk| = 1. Note that v ∈ N(vk).

Case 1: v /∈ N(v′k) or vk = v′k.

Note that vk, v′k ∈ Ph as Ph is the strong parent of Pk. Let z ∈W(v) ∩ Pf , and let Q

be a path witnessing z ∈W(v). As Pk is not adjacent to Pf , Q has to be of length
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exactly two. So Q = vz′z where z′ ∈ Ph ∪ Pj. The path Pj is not adjacent to Pf , so

z′ ∈ Ph. Thus either z′ = vk or z′ = v′k. Since v /∈ N(v′k) or vk = v′k, z′ = vk. The

vertex vk has at most three neighbors in Pf as Pf is an isometric path in Cf . Thus

|W(v) ∩ Pf | ≤ 3. From Lemma 1.2.6, |W(v) ∩ Ph| ≤ 5. So R ≤ 9.

Case 2: v ∈ N(v′k) and vk 6= v′k.

If |W(v)∩Ph| ≤ 4 then R ≤ 10 as |W(v)∩Pf | ≤ 5. So assume that |W(v)∩Ph| = 5.

Let P ∈ {whPhv′k, v′kPhw′h} such that vk ∈ P . Assume that W(v) ∩ Ph ⊆ P . Let

u ∈W(v) ∩ Ph such that distPh
(u, v′k) is maximum, and let Q be a path witnessing

u ∈ W(v). Since |W(v) ∩ Ph| = 5, distPh
(u, v′k) ≥ 4. On the other hand, v′kvQu is

a path in Ch of length at most three, a contradiction. Thus there exists a vertex

w ∈ W(v) ∩ Ph such that w ∈ Ph − P . From Lemma 2.2.1, V (vkPhv
′
k) <L w. As

w /∈ vkPhv′k, w is not a neighbor of v. So any path U witnessing w ∈W(v) has to be

of length two, say U = vw′w where w′ ∈ vkPhv′k or w′ ∈ zkPjz′k. As V (vkPhv
′
k) <L w,

w′ /∈ vkPhv′k. Thus w′ ∈ zkPjz′k. It means that N(v′k) ∩ Pf = φ as G is planar graph.

So |W(v) ∩ Pf | ≤ 3 (vk has at most three neighbors in Pf ). Thus R ≤ 9.

Claim 2.4.7. If v 6= rk and vk = v′k then R ≤ 10.

Proof. Recall that |W(v) ∩ Pk| ≤ 3. If v /∈ N(vk) then |W(v) ∩ Pf | = 0. With

|W(v) ∩ Ph| ≤ 5 we have R ≤ 8. So assume v ∈ N(vk). The vertex vk has at most

three neighbors in Pf , so |W(v) ∩ Pf | ≤ 3. If also |W(v) ∩ Ph| ≤ 4 then R ≤ 10

and we are done. So assume |W(v) ∩ Ph| = 5. If they exist, let t1 and t′1 be the

neighbors of vk in Ph. Let D′4 be the cycle wkPkw′kvkwk and O′4 be the interior of

D′4, see Figure 2.4 on page 38. Observe that N(v) ∩ Ph ⊆ {vk}. If vv′z is a path

witnessing z ∈ W(v) ∩ Ph where v′ ∈ O′4 ∪ {v−, v+, vk} then z ∈ {vk, t1, t′1}. Since

|W(v) ∩ Ph| = 5, there exist two vertices z ∈W(v) ∩ Ph r {vk, t1, t′1} such that the

witnessing path is of the form vv′z where v′ ∈ {zk, z′k}. Call those two vertices t2
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vk = v′k

wk

w′k = rk

Pk

Ph
Pj

v+

v

v−

zk

z′k

t1

t′1

t2

t′2

Figure 2.4. vk = v′k, D′4 is the Brown Cycle in Claim 2.4.7

and t′2. Clearly, distPh
(vk, t2), distPh

(vk, t
′
2) ≥ 2. Assume without loss of generality

that vzkt2 is the path witnessing t2 ∈W(v). Since vkPht2 is isometric and vkzkt2 is a

path in Ch, ‖vkPht2‖ = 2, fix notation so that vkt1t2 ⊆ Ph. Thus vz′kt′2 must be the

path witnessing t′2 ∈ W(v) and vkPht′2 = vkt
′
1t
′
2. Since G is planar, vk cannot have

neighbors in Pf . Thus |W(v) ∩ Pf | = 0 and R ≤ 8.

If it exists, let x1 ∈ N(rk) ∩ wkPkrk, and if it exists, let x2 ∈ N(rk) ∩ rkPkw′k. If

xi, i ∈ [2] exists then it is unique as Pk is isometric.

Claim 2.4.8. If v 6= rk, vk 6= v′k and v ∈ x2Pkw′k then R ≤ 10.

Proof. Observe that v /∈ N(vk). If also v /∈ N(v′k) then |W(v) ∩ Pf | = 0. As

|W(v) ∩ Ph| ≤ 5 and |W(v) ∩ Pk| ≤ 3 we get R ≤ 8. So assume that v ∈ N(v′k). The

vertex v′k has at most three neighbors in Pf , so |W(v)∩Pf | ≤ 3. If also |W(v)∩Ph| ≤ 4

then R ≤ 10. So assume that |W(v) ∩ Ph| = 5. Let P ∈ {whPhv′k, v′kPhw′h} such that
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Figure 2.5. D′4 is the Brown Cycle in the First Drawing, the Second Drawing
Illustrates the Possible Neighbors of v− if v− = rk

vk ∈ P . As in Case 2 of Claim 2.4.6, there exists a vertex w ∈W(v) ∩ Ph such that

w ∈ Ph − P , v′k <L w and any path witnessing w ∈W(v) is of the form vw′w where

w′ ∈ zkPjz′k. The graph G is a planar, so N(v′k)∩Pf = φ. This gives |W(v)∩Pf | = 0,

so R ≤ 8.

Claim 2.4.9. If v 6= rk, vk 6= v′k and v ∈ wkPkx1 then R + |W(v) ∩ Pj| ≤ 14.

Proof. Recall that |W(v) ∩ Pj| ≤ 4 (Claim 2.4.3). So if we show that R ≤ 10

then we are done. As G is planar and rkvk ∈ G, v /∈ N(v′k). If also v /∈ N(vk) then

|W(v)∩Pf | = 0. As |W(v)∩Ph| ≤ 5 and |W(v)∩Pk| ≤ 3 we get R ≤ 8. Assume that

v ∈ N(vk). The vertex vk has at most three neighbors in Pf , so |W(v) ∩ Pf | ≤ 3. If
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|W(v)∩Ph| ≤ 4 or |W(v)∩Pf | ≤ 2 then R ≤ 10. So assume that |W(v)∩Ph| = 5 and

|W(v)∩Pf | = 3. Clearly, R ≤ 5 + 2∗3 = 11. It suffices to prove that |W(v)∩Pj| ≤ 3.

In this paragraph, we prove that v and z′k are neighbors. Let D′4 be the cycle

wkPkrkvkwk and O′4 be the interior of D′4, see Figure 2.5 on page 39. Then v ∈ D′4

and N(v) ∩D′4 = {v−, v+, vk}; note that in this case v− exists and if v 6= wk then v+

exists too. Let z ∈W(v) ∩ Ph, and let Q be a path witnessing that z ∈W(v). Then

{vk, v−, v+, zk, z′k} ∩ (Q− v) 6= φ. If it exists, let t ∈ N(vk) such that t ∈ Ph − vkPhv′k.

Let t′ ∈ N(vk) ∩ vkPhv′k, and if it exists, let t′′ ∈ N(t′) ∩ (Ph − vk). If vk ∈ Q then

z ∈ {vk, t, t′}. If v− ∈ Q and v− 6= rk then z = vk. If v− ∈ Q and v− = rk then

z ∈ {vk, t′, t′′}. If v+ ∈ Q then z = vk , see Figure 2.5 on page 39. As |W(v)∩Ph| = 5

and |{vk, t, t′, t′′}| = 4, there exists a vertex z ∈W(v) ∩ Ph r {vk, t, t′, t′′} and a path

Q witnessing z ∈W(v) such that {zk, z′k} ∩Q 6= φ. Since vk has three neighbors in Pf

and G is planar, Q = vz′kz. So v and z′k are neighbors.

If zk = z′k then directly |W(v) ∩ Pj| ≤ 3 (zk and the two unique neighbors of zk in

Pj, if they exist). So assume that zk 6= z′k.

We show in this paragraph that zk <L z′k. The strong parent of Pj is Ph, so

{vj, v′j} ⊆ V (Ph). From the construction of P, vkPhv′k ⊆ vjPhv
′
j. Let y ∈ {vj, v′j}

such that distPh
(y, vk) ≤ distPh

(y, v′k) and let y′ ∈ {vj, v′j}r {y}. So distPh
(y′, v′k) ≤

distPh
(y′, vk). See the example in Figure 2.6 on page 41. As vk has three neighbors in

Pf and G is planar, y = vk. Since y = vk <L v
′
k, Lemma 2.2.1 tells us that v′k ≤L y′.

So y <L y′, y = vj = vk and y′ = v′j. Since zkvk ∈ E(G), zk ∈ N(vj) ∩ Pj and

distPj
(wj, zk) is maximum over all vertices in N(vj) ∩ Pj. So zk = rj, i.e., zk is the

minimum vertex in Pj with respect to L. Hence zk <L z
′
k.

Assume that there exists u ∈W(v) ∩ Pj such that u ∈ z′kPjw′j − z′k. Then u is not

a neighbor of v as u /∈ zkPjz′k. Let U be a path witnessing u ∈W(v), then U = vu′u

40



Pk PhPj

Pi

wk

w′k

vk

v′k

wj

w′j

zk

z′k

y

y′

Figure 2.6. y and y′

where u′ ∈ zkPjz
′
k ∪ vkPhv′k. As h < j, u′ ∈ zkPjz

′
k. The path Pj is isometric so

u′ = z′k. From Lemma 2.2.1, z′k <L u which is in contradiction to the definition of

weak reachability. Thus W(v) ∩ Pj ⊆ wjPjz
′
k.

Let l ∈W(v) ∩ wjPjz′k such that distPj
(z′k, l) is maximum. Since z′k ∈ N(v) and

l ∈W(v), there exists a path U of length at most three between z′k and l in Oj,1 ∪ Pj .

If v /∈ U then U is of length less than three; if v ∈ U then from Lemma 2.1.5 we have

‖lPjz′k‖ ≤ ‖U‖− 1 ≤ 2. Thus distPj
(l, z′k) ≤ 2 which means that |W(v)∩Pj| ≤ 3.

Claim 2.4.10. R + |W(v) ∩ Pj| ≤ 14.

Proof. Follows from Claims 2.4.3, 2.4.6, 2.4.7, 2.4.8 and 2.4.9.

From Lemma 1.2.6, Claims 2.4.5 and 2.4.10, w(v) ≤ 4 + 14 + 5 = 23.
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Chapter 3

ON THE CHROMATIC NUMBER OF THE EXACT DISTANCE-3 GRAPHS OF

PLANAR GRAPHS

In this chapter, we improve the best known upper bound of the chromatic numbers

of the exact distance-3 graphs G[\3] of planar graphs G, which is 105, to 95. We also

improve the best known lower bound, which is 7, to 9.

Theorem 3.0.1. Let G be a planar graph. Then χ(G[\3]) ≤ 95.

Recall that χ(G[\3]) ≤ dcol5(G) (Theorem 1.4.5), so it suffices to prove that

dcol5(G) ≤ 95 for every planar graph G.

We may assume that G is a maximal planar graph as dcolr(G) does not increase

by removing edges.

Recall the isometric-path decomposition P = (P1, . . . , Ps) constructed in Section

1.2. We define a liner ordering L of V (G) as follows. For each x ∈ Pi, y ∈ Pj with

i < j, put x <L y. For every i ∈ [s], fix any end point ri of Pi and make it the

L-smallest vertex in V (Pi), then order V (Pi) toward this end, i.e., if x, y ∈ Pi such

that distPi
(ri, x) < distPi

(ri, y) then put x <L y.

Let v ∈ G. We denote the number dcol5[G,L, v] and the set Dcol5[G,L, v] by dc(v)

and Dc(v) respectively.

Lemma 3.0.2. Let u ∈ Pi and v ∈ Pk, i < k. Assume that Qu := uu′u′′ . . . v is a path

witnessing that u ∈ Dc(v). Then u′′Quv − u′′ ⊆ Ck.

Proof. The definition of Dc(v) tells us that v <L V (ů′′Quv̊) (if V (ů′′Quv̊) 6= φ). As

V (Dk) <L v, Dk ∩ ů′′Quv̊ = φ, and as v ∈ Ck, u′′Quv − u′′ ⊆ Ck.
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3.1 Proof of Theorem 3.0.1

Theorem 3.1.1. dcol5[G,L] ≤ 95.

First we prove an easy case. Then we name and count the number of paths P ∈P

such that Dc(v) ∩ P 6= φ where v is a fixed vertex in G. We will see that the number

of such paths is at most ten. After that, throughout a series of claims, we bound

|Dc(v) ∩ P | for each one of those paths. The proof will be a direct result from the

claims and the fact that dc(v) =
∑

P∈P |Dc(v) ∩ P |.

Claim 3.1.2. Let v ∈ G. If |{P ∈P : Dc(v) ∩ P 6= φ}| ≤ 9 then dc(v) ≤ 94.

Proof. Let Pα ∈ P such that Dc(v) ∩ Pα 6= φ. From the construction of P, Pα is

isometric in G′ := G[P≥α], and from the definition of Dc(v), Dc(v)∩Pα ⊆ NG′
5 [v]∩Pα.

From Lemma 1.2.6, |Dc(v) ∩ Pα| ≤ 11. Let Pk be the path containing v. From

the restriction of L on V (Pk), Dc(v) ∩ Pk ⊆ rkPkv; let u ∈ Dc(v) ∩ Pk such that

distPk
(u, v) is maximum. Then distPk

(u, v) ≤ 5, and so |Dc(v) ∩ Pk| ≤ 6. Thus

dc(v) ≤ 8 ∗ 11 + 6 = 94.

Claim 3.1.3. For every v ∈ G, |{P ∈P : Dc(v) ∩ P 6= φ}| ≤ 10.

Proof. Let k ∈ [s] such that v ∈ Pk. Assume that k ≥ 3. Let u ∈ Dc(v) r {v}, as

Dc(v)r {v} <L v, u ∈ V (P1 ∪ . . .∪Pk). Let Qu := u0 . . . uq be a path witnessing that

u ∈ Dc(v) where u0 = u and uq = v. Let i = max{j ∈ [q − 1] ∪ {0} : uj <L v}, then i

exists because u0 <L v, and from the definition of Dc(v), i ≤ 2.

Case 1: i = 0.

As k ≥ 3, Pk has a strong parent, call it Ph, and a weak parent, call it Pl (so h < l < k).

Assume that u /∈ Pk. From Lemma 2.1.2, uQuv intersects with Pl ∪ Ph. Since u is
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the only vertex in uQuv satisfying that u <L v, u ∈ Pl ∪ Ph. Thus if i = 0 then

u ∈ Pk ∪ Pl ∪ Ph.

Case 2: i = 1.

By replacing u with u1 in Case 1, we get u1 ∈ Pk ∪ Pl ∪ Ph. From the definition

of Dc(v), u(= u0) <L u1. If u1 ∈ Pk then again u ∈ Pk ∪ Pl ∪ Ph (Lemma 2.1.2).

Assume that u1 ∈ Ph and h ≥ 3. Denote the strong parent of Ph by Pg, and the

weak parent by Pf . Then either u ∈ Ph, or else from Lemma 2.1.2, u ∈ Pf ∪ Pg.

Assume that u1 ∈ Pl and l ≥ 3. Recall that Pl and Ph are the parents of Pk and h < l.

From Lemma 2.1.3, Ph is a parent of Pl. Denote the other parent of Pl by Pm. Then

either u ∈ Pl or , u ∈ Pm ∪ Ph (Lemma 2.1.2). Thus if i = 1 then u ∈ Pj for some

j ∈ A := {k, l,m, h, f, g}.

We need the following observation for the next case:

(?) If m < h then Pm is a parent of Ph (Lemma 2.1.3). As Pg and Pf are the strong

and weak parents of Ph, m ∈ {f, g}.

Case 3: i = 2.

By replacing u with u2 in Case 1, we get u2 ∈ Pk ∪ Pl ∪ Ph. From the definition of

Dc(v), u <L {u1, u2}. Assume that u2 <L u1. By replacing u1 with u2 in Case 2,

we get u ∈ Pj for some j ∈ A. Assume now that u1 <L u2, so u <L u1 <L u2. By

replacing u1 with u2 and replacing u with u1 in Case 2, we get u1 ∈ Pj for some

j ∈ A. If u1 ∈ Pk ∪ Pl ∪ Ph then again u ∈ Pj for some j ∈ A. Assume that u1 ∈ Pg

and g ≥ 3. Denote the strong parent of Pg by Pb, and the weak parent by Pc. From

Lemma 2.1.2, u ∈ Pg ∪ Pc ∪ Pb. Assume that u1 ∈ Pf and f ≥ 3. Recall that Pf and

Pg are the parents of Ph and g < f , so Pg is a parent of Pf . Denote the other parent

of Pf by Pd. From Lemma 2.1.2, u ∈ Pf ∪ Pd ∪ Pg.
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Figure 3.1. pj, j ∈ B

Assume that u1 ∈ Pm and m /∈ {f, g}, so h < m (observation (?)). Recall that Pm

and Ph are the parents of Pl, so Ph is a parent of Pm. Denote the other parent of Pm

by Pn. From Lemma 2.1.2, u ∈ Pm ∪ Pn ∪ Ph. Thus if i = 2 then u ∈ Pj for some

j ∈ B := {k, l,m, n, h, f, d, g, c, b}.

We end this proof with the following observation:

(??) if j ≤ 2 for some j ∈ {k, l,m, h, f, g} then the number of paths P ∈P satisfying

that Dc(v) ∩ P 6= φ is at most nine since Pj has at most one parent instead of

two.

Remark 3.1.4. Recall that Pg and Pd are the parents of Pf . If d < g then Pd is a

parent of Pg; since Pb and Pc are the parents of Pg, d ∈ {b, c}. Recall that Ph and

Pn are the parents of Pm. If n < h then Pn is a parent of Ph; since Pg and Pf are

the parents of Ph, n ∈ {g, f}. Thus if m < h, d < g or n < h (recall observation (?)),

then the number of paths P ∈P satisfying that Dc(v) ∩ P 6= φ is at most nine, and

we are done (Claim 3.1.2).

In the remainder of this proof, we assume that h < m, g < d and h < n. We

will estimate |Dc(v) ∩ Pj| for every j ∈ B. Before we proceed, we provide a simple

drawing to give a quick reference showing how the paths in P are related.

In Figure 3.1 on page 45, we contracted each path Pj, j ∈ B to a single vertex pj.

The vertex pj is to the left of pj′ if and only if j < j′.

Claim 3.1.5. |Dc(v) ∩ Pk| ≤ 6.
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Proof. Follows from the restriction of L on V (Pk) and from the fact that Pk is isometric

in G[P≥k].

Claim 3.1.6. |Dc(v) ∩ Pl|, |Dc(v) ∩ Pf | ≤ 10.

Proof. We first show that v ∈ Ol,1 ∩ Of,1 (recall the definition of Oi,1 from Section

1.2). The paths Ph and Pm are the parents of Pl, and as h < m, Ph is the strong

parent of Pl. Thus Dl,1 = vlPhv
′
lw
′
lPlwlvl; as Ph and Pl are the parents of Pk, Pk is

in the interior of Dl,1, i.e., Pk is in Ol,1, see Figure 3.2 on page 47. Similarly, the

paths Pg and Pd are the parents of Pf , and as g < d, Pg is the strong parent of Pf .

Thus Df,1 = vfPgv
′
fw
′
fPfwfvf . The paths Pg and Pf are the parents of Ph, so Ph is

in Of,1, as Ph and Pk are adjacent and G is planar, Pk is also in Of,1. As v ∈ Pk,

v ∈ Ol,1 ∩Of,1 too.

Let j ∈ {l, f}, and let x, y ∈ Dc(v) ∩ Pj such that distPj
(x, y) is maximum. To

prove the claim, it suffices to show that ‖xPjy‖ ≤ 9. Let Qx and Qy be paths

witnessing that x, y ∈ Dc(v) respectively. Then ||Qx||, ||Qy|| ≤ 5 and Qx, Qy ⊆ Cj.

Starting from the v-end, let x′ be the first vertex in Qx contained in Pj, and starting

from the v-end, let y′ be the first vertex in Qy contained in Pj.

Now the walk W := x′QxvQyy
′ is in Pj ∪ Oj,1 since v ∈ Oj,1, and W 6= x′Pjy

′ as

v ∈ W − x′Pjy′. From Lemma 2.1.5, ‖x′Pjy′‖ ≤ ‖W‖ − 1. Therefore

‖xPjy‖ ≤ ‖xPjx′‖+ ‖x′Pjy′‖+ ‖y′Pjy‖

≤ ‖xPjx′‖+ ‖W‖+ ‖y′Pjy‖ − 1

≤(1) ‖xQxx
′‖+ ‖W‖+ ‖yQyy

′‖ − 1

= ‖xQxvQyy‖ − 1

≤ 9,
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Figure 3.2. v ∈ Oh,1, Oh,1 is the Interior of Dh,1 = vhPgv
′
hw
′
hPhwhvh

where (1) follows from the fact that Pj is isometric in Cj and both paths Qx and Qy

are in Cj.

Claim 3.1.7. |Dc(v) ∩ Pm| ≤ 9.

Proof. Let x, y ∈ Dc(v) ∩ Pm. If we show that ‖xPmy‖ ≤ 8, we are done. Let Qx be

a path witnessing that x ∈ Dc(v), and Qy a path witnessing that y ∈ Dc(v). Then

||Qx||, ||Qy|| ≤ 5 and Qx, Qy ⊆ Cm. As m < k, any path from v ∈ Pk to a vertex

in Pm must intersect with a parent of Pk, i.e., either Ph or Pl (Lemma 2.1.2). As

h < m, Qx ∩ Ph, Qy ∩ Ph = φ. So Qx ∩ Pl, Qy ∩ Pl 6= φ. Starting from the v-end, let
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x′ be the first vertex in Qx contained in Pl. Starting from the v-end, let y′ be the

first vertex in Qy contained in Pl. Then the walk W := x′QxvQyy
′ is in Pl ∪Ol,1 as

Qx ∩ Ph, Qy ∩ Ph = φ and v ∈ Ol,1 (see Claim 3.1.6), and W 6= x′Ply
′. From Lemma

2.1.5, ‖x′Ply′‖ ≤ ‖W‖ − 1.

Starting from the x′-end, let x′′ be the first vertex in x′Qxx contained in Pm.

Starting from the y′-end, let y′′ be the first vertex in y′Qyy contained in Pm. We show

that the walk W ′ := x′′Qxx
′Ply

′Qyy
′′ is in Pm ∪ Om,1. As Ph is the strong parent of

Pm, Dm,1 = vmPhv
′
mw
′
mPmwmvm. As Ph and Pm are the parents of Pl, Pl is in Om,1,

and as Qx ∩ Ph, Qy ∩ Ph = φ, W ′ is in Pm ∪Om,1.

Clearly, W ′ 6= x′′Pmy
′′. From Lemma 2.1.5,

‖x′′Pmy′′‖ ≤ ‖W ′‖ − 1

= ‖x′′Qxx
′‖+ ‖x′Ply′‖+ ‖y′Qyy

′′‖ − 1

≤ ‖x′′Qxx
′‖+ ‖W‖+ ‖y′Qyy

′′‖ − 2

= ‖x′′QxvQyy
′′‖ − 2.

(3.1.1)

Since Pm is isometric in Cm and Qx, Qy ⊆ Cm, ‖xPmx′′‖ ≤ ‖xQxx
′′‖ and ‖y′′Pmy‖ ≤

‖y′′Qyy‖. Thus

‖xPmy‖ ≤ ‖xPmx′′‖+ ‖x′′Pmy′′‖+ ‖y′′Pmy‖

≤ ‖xQxx
′′‖+ ‖x′′QxvQyy

′′‖+ ‖y′′Qyy‖ − 2

= ‖xQxvQyy‖ − 2

≤ 8.

Claim 3.1.8. |Dc(v) ∩ Pn| ≤ 9.

Proof. The proof is similar to the proof of Claim 3.1.7. Let x, y ∈ Dc(v)∩Pn. Let Qx

be a path witnessing that x ∈ Dc(v), and Qy a path witnessing that y ∈ Dc(v). Then
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||Qx||, ||Qy|| ≤ 5 and Qx, Qy ⊆ Cn. Any path from a vertex in Pk to a vertex in Pn

intersects with either Ph or Pl. As h < n, Qx∩Ph, Qy∩Ph = φ, so Qx∩Pl, Qy∩Pl 6= φ.

Starting from the v-end, let x′ be the first vertex in Qx contained in Pl. Starting from

the v-end, let y′ be the first vertex in Qy contained in Pl. Let W := x′QxvQyy
′. Recall

that Dl,1 = vlPhv
′
lw
′
lPlwlvl and v ∈ Ol,1 (see Claim 3.1.6), and as Qx∩Ph, Qy∩Ph = φ,

W is a walk in Pl∪Ol,1. Clearly,W 6= x′Ply
′, so from Lemma 2.1.5, ‖x′Ply′‖ ≤ ‖W‖−1.

Now both x′Qxx and y′Qyy are paths between a vertex in Pl and a vertex in

Pn. Since n < l (Pn is a parent of Pm, and Pm is a parent of Pl), both x′Qxx and

y′Qyy each intersect with a parent of Pl, i.e., either Ph or Pm. We have just seen that

Qx ∩ Ph, Qy ∩ Ph = φ, so x′Qxx ∩ Pm, y′Qyy ∩ Pm 6= φ. Starting from the x′-end, let

x′′ be the first vertex in x′Qxx that is in Pm. Starting from the y′-end, let y′′ be the

first vertex in y′Qyy that is in Pm. We show that the walk W ′ := x′′Qxx
′Ply

′Qyy
′′

is in Pm ∪Om,1. As Ph is the strong parent of Pm, then Dm,1 = vmPhv
′
mw
′
mPmwmvm.

The parents of Pl are Ph and Pm, so Pl is in Om,1. As Qx ∩ Ph, Qy ∩ Ph = φ, W ′ is

in Pm ∪ Om,1. From Lemma 2.1.5, ‖x′′Pmy′′‖ ≤ ‖W ′‖ − 1. As in Inequality (3.1.1),

‖x′′Pmy′′‖ ≤ ‖x′′QxvQyy
′′‖ − 2. Both Qx, Qy ⊆ Cn, and as n < m, Cm ⊂ Cn (Lemma

2.1.4). So xQxx
′′Pmy

′′Qyy is a walk in Cn. As xPny is isometric in Cn,

‖xPny‖ ≤ ‖xQxx
′′‖+ ‖x′′Pmy′′‖+ ‖y′′Qyy‖

≤ ‖xQxx
′′‖+ ‖x′′QxvQyy

′′‖+ ‖y′′Qyy‖ − 2

= ‖xQxvQyy‖ − 2

≤ 8.

Claim 3.1.9. Let u ∈ Dc(v) ∩ Pd and assume that Qu := u0u1u2 . . . uq is a path

witnessing that u ∈ Dc(v) where u0 = u and uq = v. Then u1 ∈ Pf and u2 ∈ vkPhv′k.

Proof. Let i = max{j ∈ [q − 1] ∪ {0} : uj <L v}. We recall some facts from the proof
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of Claim 3.1.3: If i = 0, then u ∈ Pj for some j ∈ {k, l, h}, if i = 1 then u ∈ Pj

for some j ∈ A, if i = 2 and u2 < u1 then u ∈ Pj for some j ∈ A, and if i = 2 and

u1 < u2 then u ∈ Pj for some j ∈ B. Thus i = 2 and u1 < u2 as u ∈ Pd. Also from

the proof of Claim 3.1.3, u1 ∈ Pf . From Lemma 2.1.2, the path u1Quv intersects with

either vkPhv′k or Pl. So either u2 ∈ vkPhv′k or u2 ∈ Pl. As Pf and Pl are not adjacent,

u2 ∈ vkPhv′k.

Claim 3.1.10. |Dc(v) ∩ Pd| ≤ 10.

Proof. Let x, y ∈ Dc(v) ∩ Pd. Let Qx be a path witnessing that x ∈ Dc(v), and let

Qy be a path witnessing that y ∈ Dc(v). Then ‖Qx‖, ‖Qy‖ ≤ 5 and Qx, Qy ⊆ Cd.

Observe also that Qx and Qy each have to be of length at least three. From Claim

3.1.9, Qx = xx′x′′ . . . v, Qy = yy′y′′ . . . v where x′, y′ ∈ Pf and x′′, y′′ ∈ vkPhv′k. We

show that the walk W := x′QxvQyy
′ is in Pf ∪ Of,1. As Pg is the strong parent

of Pf , Df,1 = vfPgv
′
fw
′
fPfwfvf . As Pg and Pf are the parents of Ph, Ch ⊆ Of,1.

From Lemma 3.0.2, x′′Qxv − x′′, y′′Qyv − y′′ ⊆ Ck, and from Lemma 2.1.4, Ck ⊂ Ch.

So x′′QxvQyy
′′ ⊆ Ch, and as x′, y′ ∈ Pf , W ⊆ Pf ∪ Of,1. From Lemma 2.1.5,

‖x′Pfy′‖ ≤ ‖W‖ − 1.

Now the walk xx′Pfy′y is in Cd since x, y ∈ Pd and x′Pfy′ ⊆ Cf ⊂ Cd (Lemma

2.1.4). As xPdy is an isometric path in Cd,

‖xPdy‖ ≤ ‖xx′Pfy′y‖

= ‖xx′‖+ ‖x′Pfy′‖+ ‖y′y‖

≤ ‖xx′‖+ ‖W‖+ ‖y′y‖ − 1

≤ ‖xQxvQyy‖ − 1

≤ 9.
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Figure 3.3. v ∈ Oh,2, Oh,2 is the Interior of Dh,2 = zhPfz
′
hw
′
hPhwhzh

Recall that Pb is the strong parent of Pg, and Pc is the weak parent. Then

Dg,1 = vgPbv
′
gw
′
gPgwgvg and Dg,2 = zgPcz

′
gw
′
gPgwgzg. As Pg is a parent of Ph, and Ph

is a parent of Pk, Ck ⊂ Ch ⊂ Cg (Lemma 2.1.4). So Ck (and then v) is either in Og,1

or Og,2. In both figures, Figure 3.2 on page 47 and Figure 3.3 on page 51, v ⊆ Og,1.

Claim 3.1.11. Assume that v ∈ Og,1. Let u ∈ Dc(v) ∩ Pb and assume that Qu :=

u0u1 . . . uq is a path witnessing that u ∈ Dc(v) where u0 = u and uq = v. Then

u1 ∈ {vh, v′h} and u2 ∈ vkPhv′k.

Proof. Let i = max{j ∈ [q − 1] ∪ {0} : uj <L v}. From the proof of Claim 3.1.3: If
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Figure 3.4. The Brown Cycle is C ′ in Claim 3.1.11 and the Cyan Cycle is C ′′ in
Claim 3.1.13

i = 0, then u ∈ Pj for some j ∈ {k, l, h}, if i = 1 then u ∈ Pj for some j ∈ A, if i = 2

and u2 < u1 then u ∈ Pj for some j ∈ A, and if i = 2 and u1 < u2 then u ∈ Pj for

some j ∈ B. Thus i = 2, u1 < u2 and u1 ∈ Pg. From Lemma 2.1.2, u1Quv intersects

with either vkPhv′k or Pl. So either u2 ∈ vkPhv′k or u2 ∈ Pl. Since Pg and Pl are not a

adjacent, u2 ∈ vkPhv′k.

It is left to show that u1 ∈ {vh, v′h}. As u2 ∈ Ph, u2 is in the interior of Dh, while

Pg − vhPgv′h is in the exterior of Dh. As u1 ∈ N(u2) ∩ Pg, u1 ∈ vhPgv′h. Let the cycle

C ′ := Dh,1 ∪Dg,2 − v̊hPgv̊′h, see Figure 3.4 on page 52; we assumed in the figure that

distPg(vh, wg) ≤ distPg(v
′
h, wg). The inner vertices of vhPgv′h are in the interior of C ′,
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while u is in the exterior (u ∈ Pb). As u and u1 are neighbors, u1 /∈ v̊hPgv̊′h, and

therefore u1 ∈ {vh, v′h}.

Claim 3.1.12. Assume that v ∈ Og,2. Let u ∈ Dc(v) ∩ Pc and assume that Qu :=

u0u1 . . . uq is a path witnessing that u ∈ Dc(v) where u0 = u and uq = v. Then

u1 ∈ {vh, v′h} and u2 ∈ vkPhv′k.

Proof. Replace the cycle Dh,1 ∪Dg,2 − v̊hPgv̊′h in the proof of Claim 3.1.11 with the

cycle Dh,1 ∪Dg,1 − v̊hPgv̊′h.

Claim 3.1.13. Assume that v ∈ Og,1. If |Dc(v) ∩ Pb| ≥ 4 then |Dc(v) ∩ Pg| ≤ 10.

Proof. Let x, y ∈ Dc(v) ∩ Pb such that distPb
(x, y) is maximum. Let Qx be a path

witnessing that x ∈ Dc(v), and Qy a path witnessing that y ∈ Dc(v). Then

‖Qx‖, ‖Qy‖ ≤ 5 and Qx, Qy ⊆ Cb. Observe that both Qx and Qy each have to

be of length at least three. From Claim 3.1.11, Qx = xx′x′′ . . . v and Qy = yy′y′′ . . . v

where x′, y′ ∈ {vh, v′h} and x′′, y′′ ∈ vkPhv
′
k. Assume that x′ = y′. The path Pb is

isometric in Cb and xx′y is a path in Cb, so ‖xPby‖ ≤ ‖xx′y‖ ≤ 2, which is a contradic-

tion to the assumption |Dc(v) ∩ Pb| ≥ 4. Thus x′ 6= y′. We may assume that x′ = vh,

y′ = v′h and vh <L v
′
h. We may also assume that distPg(vh, wg) < distPg(v

′
h, wg), see

Figure 3.4 on page 52. As vh <L v
′
h, V (vhPgv

′
h) <L V (v′hPgw

′
g − v′h). To finish the

proof, it suffices to show that |Dc(v)∩wgPgv′h| ≤ 10 and |Dc(v)∩ (v′hPgw
′
g − v′h)| = 0.

Let z ∈ Dc(v) ∩ wgPgv′h. Let Qz be a path witnessing that z ∈ Dc(v). Then

‖Qz‖ ≤ 5 and Qz ⊆ Cg. From Lemma 3.0.2, vQyy
′′ − y′′ ⊆ Ck, and as g < h < k,

Ck ⊂ Ch ⊂ Cg. Therefore the walk zQzvQyv
′
h is in Cg and of length at most nine. As

Pg is isometric in Cg, ‖zPgv′h‖ ≤ ‖zQzvQyv
′
h‖ ≤ 9. Thus |Dc(v) ∩ wgPgv′h| ≤ 10.

Assume that Dc(v) ∩ (v′hPgw
′
g − v′h) 6= φ. Let w ∈ Dc(v) ∩ (v′hPgw

′
g − v′h) and

assume that Qw is a path witnessing w ∈ Dc(v). The vertex v is in the interior of the
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cycle C ′′ := xPbyv
′
hPgvhx, while w is in the exterior, see Figure 3.4 on page 52. As

G is a planar graph, Qw intersects with C ′′. Note that b < g, so Qw intersects with

vhPgv
′
h. But V (vhPgv

′
h) <L V (v′hPgw

′
g− v′h), a contradiction to the definition of Dc(v).

Thus |Dc(v) ∩ (v′hPgw
′
g − v′h)| = 0.

Claim 3.1.14. Assume that v ∈ Og,2. If |Dc(v) ∩ Pc| ≥ 4 then |Dc(v) ∩ Pg| ≤ 10.

Proof. Replace each b by c, and use Claim 3.1.12 instead of Claim 3.1.11 in the proof

of Claim 3.1.13.

Claim 3.1.15. |Dc(v) ∩ (Pg ∪ Pc ∪ Pb)| ≤ 32.

Proof. Assume that v ∈ Og,1. From Claim 3.1.13, |Dc(v) ∩ (Pg ∪ Pb)| ≤ 21. As

|Dc(v) ∩ Pc| ≤ 11, |Dc(v) ∩ (Pg ∪ Pc ∪ Pb)| ≤ 32. Assume that v ∈ Og,2. From Claim

3.1.14, |Dc(v) ∩ (Pg ∪ Pc)| ≤ 21. As |Dc(v) ∩ Pb| ≤ 11, the statement holds.

Recall that v ∈ Ck ⊂ Ch, so v ∈ Oh,1 or v ∈ Oh,2, see the examples in Figure 3.2

on page 47 and Figure 3.3 on page 51.

Claim 3.1.16. If v ∈ Oh,1 then |Dc(v) ∩ Ph| ≤ 10.

Proof. Let x, y ∈ Dc(v) ∩ Ph. Let Qx be a path witnessing that x ∈ Dc(v), and let

Qy be a path witnessing that y ∈ Dc(v). Then ‖Qx‖, ‖Qy‖ ≤ 5 and Qx, Qy ⊆ Ch.

Starting from the v-end, let x′ be the first vertex in Qx that is also in Ph. Starting

from the v-end, let y′ be the first vertex in Qy that is also in Ph. Recall that

Dh,1 = vhPgv
′
hw
′
hPhwhvh, so V (Dh,1) ⊆ Pg ∪ Ph. As g < h, Qx ∩ Pg, Qy ∩ Pg = φ.

Thus the walk W := x′QxvQyy
′ is in Ph ∪ Oh,1 as v ∈ Oh,1. From Lemma 2.1.5,

‖x′Phy′‖ ≤ ‖W‖ − 1.
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The path xPhy is isometric in Ch and W ′ := xQxx
′Phy

′Qyy is a walk in Ch

(Qx, Qy ⊆ Ch). Thus

‖xPhy‖ ≤ ‖W ′‖

= ‖xQxx
′‖+ ‖x′Phy′‖+ ‖y′Qyy‖

≤ ‖xQxx
′‖+ ‖W‖+ ‖y′Qyy‖ − 1

≤ ‖xQxvQyy‖ − 1

≤ 9.

Claim 3.1.17. If v ∈ Oh,1 then |Dc(v) ∩ Pf | ≤ 9.

Proof. Let x, y ∈ Dc(v) ∩ Pf , let Qx be a path witnessing that x ∈ Dc(v), and let

Qy be a path witnessing that y ∈ Dc(v). Then ‖Qx‖, ‖Qy‖ ≤ 5 and Qx, Qy ⊆ Cf .

Note that v is in the interior of Dh,1 (assumption) while Pf is in the exterior of Dh,1,

so Qx and Qy each intersect with Dh,1. Recall that V (Dh,1) ⊆ Pg ∪ Ph; as g < f ,

Qx ∩ Pg, Qy ∩ Pg = φ, so Qx ∩ Ph, Qy ∩ Ph 6= φ.

Starting from the v-end, let x′ be the first vertex in Qx that is also in Ph. Starting

from the v-end, let y′ be the first vertex in Qy that is also in Ph. Then the walk

W := x′QxvQyy
′ is in Ph ∪Oh,1 as v ∈ Oh,1 and Qx ∩ Pg, Qy ∩ Pg = φ. From Lemma

2.1.5, ‖x′Phy′‖ ≤ ‖W‖−1. Starting from the x′-end, let x′′ be the first vertex in x′Qxx

that is also in Pf . Staring from the y′-end, let y′′ be the first vertex in y′Qyy that is

also in Pf . We show that the walk W ′ := x′′Qxx
′Phy

′Qyy
′′ is in Pf ∪Of,1. Since Pg is

the strong parent of Pf , Df,1 = vfPgv
′
fw
′
fPfwfvf . As Pg and Pf are the parents of

Ph, Ph is in the interior of Df,1. To see that also x′′Qxx
′, y′Qyy

′′ ⊆ Pf ∪Of,1, observe

that V (Df,1) ⊆ Pg ∪ Pf and recall that Qx ∩ Pg, Qy ∩ Pg = φ. Thus W ′ ⊆ Pf ∪Of,1.
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From Lemma 2.1.5,

‖x′′Pfy′′‖ ≤ ‖W ′‖ − 1

= ‖x′′Qxx
′‖+ ‖x′Phy′‖+ ‖y′Qyy

′′‖ − 1

≤ ‖x′′Qxx
′‖+ ‖W‖+ ‖y′Qyy

′′‖ − 2

= ‖x′′QxvQyy
′′‖ − 2.

The path xPfy is isometric in Cf and the walk W ′′ := xQxx
′′Pfy

′′Qyy is clearly in Cf .

Therefore

‖xPfy‖ ≤ ‖W ′′‖

= ‖xQxx
′′‖+ ‖x′′Pfy′′‖+ ‖y′′Qyy‖

≤ ‖xQxx
′′‖+ ‖x′′QxvQyy

′‖+ ‖y′′Qyy‖ − 2

= ‖xQxvQyy‖ − 2

≤ 8.

Claim 3.1.18. If v ∈ Oh,1 then |Dc(v) ∩ Pd| ≤ 9.

Proof. Let x, y ∈ Dc(v)∩Pd, letQx be a path witnessing that x ∈ Dc(v), andQy a path

witnessing that y ∈ Dc(v). Then ‖Qx‖, ‖Qy‖ ≤ 5 and Qx, Qy ⊆ Cd. From Claim 3.1.9,

Qx = xx′x′′ . . . v, Qy = yy′y′′ . . . v where x′, y′ ∈ Pf and x′′, y′′ ∈ vkPhv′k. We show that

the walk W := x′′QxvQyy
′′ is in Ph ∪ Oh,1. From Lemma 3.0.2, W − {x′′, y′′} ⊆ Ck.

As Ck ⊆ Ch, either Ck ⊆ Oh,1 or Ck ⊆ Oh,2. From assumption, v ∈ Oh,1, so Ck ⊆ Oh,1.

Thus W ⊆ Ph ∪Oh,1. From Lemma 2.1.5, ‖x′′Phy′′‖ ≤ ‖W‖ − 1.

Recall that Df,1 = vfPgv
′
fw
′
fPfwfvf . As Pg and Pf are the parents of Ph, Ph is in
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the interior of Df,1. Thus the walk W ′ := x′x′′Phy
′′y′ ⊆ Pf ∪Of,1. From Lemma 2.1.5,

‖x′Pfy′‖ ≤ ‖W ′‖ − 1

= ‖x′x′′‖+ ‖x′′Phy′′‖+ ‖y′′y′‖ − 1

≤ ‖x′x′′‖+ ‖W‖+ ‖y′′y′‖ − 2

= ‖x′QxvQyy
′‖ − 2.

Now W ′′ := xx′Pfy
′y is a walk in Cd as x, y ∈ Pd and x′Pfy′ ⊆ Cf ⊂ Cd (Lemma

2.1.4). Since xPdy is isometric in Cd,

‖xPdy‖ ≤ ‖W ′′‖

= ‖xx′‖+ ‖x′Pfy′‖+ ‖y′y‖

≤ ‖xx′‖+ ‖x′QxvQyy
′‖+ ‖y′y‖ − 2

= ‖xQxvQyy‖ − 2

≤ 8.

Claim 3.1.19. Assume that v ∈ Oh,2. Let u ∈ Dc(v) ∩ Pd and assume that Qu :=

u0u1u2 . . . uq is a path witnessing that u ∈ Dc(v) where u0 = u and uq = v. Then

u2 ∈ {vk, v′k}.

Proof. From Claim 3.1.9, u1 ∈ Pf and u2 ∈ vkPhv
′
k. We just need to show that

u2 /∈ v̊kPhv̊′k. If v̊kPhv̊′k = φ, we are done, so assume that v̊kPhv̊′k 6= φ. Clearly, v̊kPhv̊′k

is in the interior of the cycle C ′ := Dk,1 ∪Dh,1 − v̊kPhv̊′k, see Figure 3.5 on page 58.

Both the interior of Dk,1 and the interior of Dh,1 are in Ch, and as f < h, Lemma

2.1.1 tells us that Pf ∩ Ch = φ. As Pf ∩Dk,1, Pf ∩Dh,1 = φ, Pf (and then u1) is in

the exterior of C ′. As u2 is a neighbor of u1 ∈ Pf , u2 /∈ v̊kPhv̊′k.

Claim 3.1.20. Assume that v ∈ Oh,2. If |Dc(v) ∩ Pd| ≥ 6 then |Dc(v) ∩ Ph| ≤ 9.
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Figure 3.5. The Cyan Cycle is C ′ in Claim 3.1.19 and the Brown Cycle is C ′′ in
Claim 3.1.20

Proof. Let x, y ∈ Dc(v) ∩ Pd such that distPd
(x, y) is maximum. Let Qx be a path

witnessing that x ∈ Dc(v), and Qy a path witnessing that y ∈ Dc(v). Then

‖Qx‖, ‖Qy‖ ≤ 5 and Qx, Qy ⊆ Cd. Observe that Qx and Qy each have to be

of length at least three. From Claim 3.1.19, Qx = xx′x′′ . . . v, Qy = yy′y′′ . . . v

where x′, y′ ∈ Pf , x′′, y′′ ∈ {vk, v′k}. Assume that x′′ = y′′. Then xx′x′′y′y is

a walk of length four in Cd. As xPdy is an isometric path in Cd, ‖xPdy‖ ≤ 4,

and so |Dc(v) ∩ Pd| ≤ 5, which contradicts the assumption. Thus x′′ 6= y′′. We

may assume without loss of generality that x′′ = vk and y′′ = v′k. We also

may assume that vk <L v′k and distPh
(vk, wh) ≤ distPh

(v′k, wh). From the defini-

tion of L, V (vkPhv
′
k) <L V (v′kPhw

′
h − v′k). We finish the proof by showing that

|Dc(v) ∩ whPhv′k| ≤ 9 and |Dc(v) ∩ (v′kPhw
′
h − v′k)| = 0.

Let z ∈ Dc(v) ∩ whPhv′k, and let Qz be a path witnessing that z ∈ Dc(v). Then

‖Qz‖ ≤ 5 and Qz ⊆ Ch. The path v′kQyv−v′k is in Ck (Lemma 3.0.2), as Ck ⊂ Ch and
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DcPi := |Dc(v) ∩ Pi| v ∈ Oh,1 v ∈ Oh,2 v ∈ Oh,1 v ∈ Oh,2

DcPk 6 6 DcPd + DcPh 19 19
DcPl 10 10 DcPg + DcPc + DcPb 32 32
DcPm 9 9
DcPn 9 9
DcPh 10 11
DcPf 9 10
DcPd 9 10

Table 1. Upper Bounds for |Dc(v) ∩ Pi|

v′k ∈ Ph ⊆ Ch, v′kQyv ⊆ Ch. From the definition of Dc(v), ‖v′kQyv‖ ≤ 3, so zQzvQyv
′
k

is a walk of length at most eight between z and v′k in Ch, and zPhv′k is an isometric

path in Ch. Thus ‖zPhv′k‖ ≤ ‖zQzvQyv
′
k‖ ≤ 8, so |Dc(v) ∩ whPhv′k| ≤ 9.

Assume that Dc(v)∩(v′kPhw
′
h−v′k) 6= φ. Let w ∈ Dc(v)∩(v′kPhw

′
h−v′k) and assume

that Qw is a path witnessing that w ∈ Dc(v). From Lemma 2.1.2, Qw intersects

with either vkPhv′k or zkPlz′k. As V (vkPhv
′
k) <L V (v′kPhw

′
h − v′k), Qw ∩ vkPhv′k = φ,

so Qw ∩ zkPlz′k 6= φ. Let the cycle C ′′ := vkPhv
′
ky
′Pfx

′vk, see Figure 3.5 on page 58.

Clearly, w is in the exterior of C ′′, we show that zkPlz′k is in the interior of C ′′. The

path zkPlz′k is adjacent to Pk, and Pk is in Oh,2 (assumption); as G is planar, zkPlz′k

is in Oh,2 too. The cycle Dh,2 and the two edges vkx′,v′ky′ make up three cycles, one

of them is C ′′. Observe that C ′′ is the only cycle among those three that contains

{vk, v′k}. As zkPlz′k is adjacent to vk and v′k, zkPlz′k is in the interior of C ′′. Thus Qw

intersects with C ′′. As V (C ′′) ⊆ Pf ∪ vkPhv′k and Qw ∩ vkPhv′k = φ, Qw ∩ Pf 6= φ, but

this is not possible since V (Pf ) <L V (Ph). Thus Dc(v) ∩ (v′kPhw
′
h − v′k) = φ.

We sum up Claims 3.1.5–3.1.20 in Table 1 on page 59. As dc(v) =
∑

j∈B |Dc(v) ∩

Pj| ≤ 95, Theorem 3.1.1 holds.
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3.2 Lower Bound

An example of a planar graph G with χ(G[\3]) = 6 is given in Exercise 11.4 [31].

Later, Van den Heuvel et al. [14] gave an example of an outerplanar graph G′ with

χ(G′[\3]) = 5 and a planar graph G with χ(G[\3]) = 7. Here we give an outerplanar

graph G′ with χ(G′[\3]) ≥ 6, and a planar graph G with χ(G′[\3]) ≥ 9.

Theorem 3.2.1.

1. There exists an outerplanar G such that χ(G[\3]) ≥ 6.

2. There exists a planar graph G such that χ(G[\3]) ≥ 9.

Proof. (a) Draw a path P of length six, say P = w1 . . . w7. Add a new vertex z, then

for every i ∈ {1, . . . , 7}, add an edge between z and wi. For every i ∈ {1, . . . , 6}, add

a new vertex zi such that zi is a neighbor for wi and wi+1. For every wi, add a new

neighbor yi where i ∈ {1, . . . , 7}, see Figure 3.7 on page 62. Let F be the graph shown

in Figure 3.6 on page 61. We call the vertex w the center of F. We finish constructing

G by making each wi a center of a copy Fi of F where i ∈ {1, . . . , 7}. Let xi1, xi2, xi3, xi4

and xi5 be the vertices in Fi corresponding respectively to the vertices x1, x2, x3, x4

and x5 in F .

In the graph G[\3] we have the odd cycle Ci := xi1x
i
3x

i
5x

i
4x

i
2x

i
1 for each i ∈ {1, . . . , 7}.

So the vertices of Ci received at least three different colors. Moreover for each

i ∈ {2, 3, . . . , 6}, the vertices zi−1, zi, yi and z are neighbors for each vertex of C
i
in

G[\3]. So we cannot use a color appearing in V (Ci) to color any vertex in {zi−1, zi, yi, z}.

Similarly, we cannot use a color appearing in V (C1) (or in V (C7)) to color a vertex in

{y1, z1, z} (or in {z6, y7, z}). Assume without loss of generality that the color given to

y4 is the color 1. Then we have two cases.
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w

x1 x2 x4 x5x3

Figure 3.6. The Graph F

Case 1: z4 is colored with color 1.

Since both y5 and z5 are at distance 3 from y4, neither y5 nor z5 is colored with color

1. Assume without loss of generality y5 is colored with color 2. If z5 is colored with a

color different than color 2 then the set {z4, y5, z5} received 3 different colors and we

are done since there are six colors appeared in V (C5) ∪ {z4, y5, z5}. So assume z5 is

colored with 2. Since y6 and z6 are at distance 3 from both z4 and y5, none of them

can be colored with 1 or 2. Say y6 is colored with color 3. If z6 is colored with a

color different than 3 then the set {z5, y6, z6} received 3 colors and we are done. So

assume z6 is colored with 3. Since y7 is at distance 3 from both z5 and y6, it cannot

be colored with 2 or 3. Thus y7 has to be colored with either 1 or a new color, say 4.

If z is colored with a color different than 2 and 3 then the set {z, z5, y6} received 3

different colors and we are done. If z is colored with 2 then the set {z, z6, y7} received

3 different colors. Similarly, if z is colored with 3 then the set {z, z4, y5} received 3

different colors.

Case 2: z4 is not colored with 1, say color 2.

If z3 is colored with a color different than 1 and 2 then {z3, y4, z4} received 3 colors.
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y1 y2 y3 y4 y5 y6 y7

w1 w2 w3 w4 w5 w6 w7

z2 z3 z4 z5 z6z1

Figure 3.7. The Outerplanar Graph G

If z3 is colored with 1, we have a case similar to Case 1 since G has a vertical line of

symmetry and z3 is facing z4. So assume z3 is colored with 2. Since both z2 and y3

are at distance 3 from both y4 and z4, they cannot be colored with 1 or 2. If z2 and

y3 received different colors then {z2, y3, z3} received 3 colors. So assume z2 and y3

received the same color, say 3. Since y2 and z1 are at distance 3 from both y3 and z3,

they cannot be colored with 2 or 3. If y2 and z1 received different colors then {z2,y2,z1}

received three colors and we are done. Assume both z1 and y2 are colored with 1, or

both are colored with a new color, say 4. If z is colored with a color different than

2 and 3 then the set {z, z3, y3} received 3 colors. If z is colored with 2 then the set

{z, z2, y2} received 3 colors. If z is colored with 3 then the set {z, z4, y4} received 3

colors.

(b) As in part (a) we start with a path P of length six, say P = w′1...w
′
7. Add a

new vertex z′, then add an edge between z′ and w′i for every i ∈ {1, . . . , 7}. Add a

new vertex z′i, 1 ≤ i ≤ 6 such that z′i is a neighbor for w′i and w′i+1. Then for every

w′i add a new neighbor y′i where i ∈ {1, . . . , 7}, see Figure 3.8 on page 63. Let G′ be

the outerplanar graph constructed in part (a). For each i ∈ {1, . . . , 7}, add a copy

G′i of G′, then add an edge between w′i and every vertex in G′i. This is possible to

do without losing planarity because G′i is an outerplanar. Now subdivide each edge
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z′

y′1 y′2 y′3 y′4 y′5 y′6 y′7

w′1 w′2 w′3 w′4 w′5 w′6 w′7

z′2 z′3 z′4 z′5 z′6z′1

Figure 3.8. Part of the Construction of G in (b)

between V (G′i) and w′i, so the distance between w′i and any vertex in G′i is two. The

resulting graph is the desired planar graph G.

From part (a), there are six different colors appearing in the coloring of the subgraph

of G[\3] induced by V (G′i). Using the same argument used in part (a) we find that

for any proper coloring of G[\3], one of the sets {{z′i−1, z′i, y′i, z′}i∈{2,3,...,6}, {y′1, z′1, z′},

{z′6, y′7, z′}} received 3 different colors. Assume without loss of generality that the

set {z′1, z′2, y′2, z′} received 3 colors. In the graph G, each vertex in {z′1, z′2, y′2, z′} is at

distance 3 from each vertex in G′2. Thus at least 9 colors are needed to properly color

G′[\3].
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Chapter 4

GENERALIZED COLORING NUMBERS OF PLANAR GRAPHS

In this chapter, we recall a linear ordering L defined by Van den Heuvel et al. [14]

to prove that scolr(G) ≤ 5r + 1 for planar graphs (Theorem 1.1.5). Then we show

that for any planar graph G, wcol2[G,L, v] ≤ 26. We end this chapter by giving an

example for planar graph G such that wcol2[G,L, v] = 26 for some v ∈ G.

4.1 Breadth-first Trees

A breadth-first search is an algorithm for searching trees, it starts at the tree root

or at an arbitrary vertex, and explores all the neighbor vertices at the present depth

prior to moving to the vertices at the next depth level. The resulted tree is called a

breadth-first tree.

Let T be a breadth-first spanning tree. Let x, x′ ∈ T . We write x <T x
′ if x was

found by T before x′; and we write x ≤T x′ if x = x′ or x <T x
′.

Let T be a tree rooted at a vertex v. We define the level of a vertex x ∈ T to be

lx := distT (v, x), and we denote the set of vertices x ∈ T such that lx = d by Dd.

Lemma 4.1.1. Let G be a graph, and let T ⊆ G be a breadth-first spanning tree with

root r. Then:

1. the path rTx is isometric for all vertices x;

2. if xx′ ∈ E(T ), yy′ ∈ E(G) and x ≤T x′ ≤T y′ then x ≤T y;

3. if Px = x0x1 · · ·xt is a path in T where x = x0 and r = xt and Q = y0 · · · yt is a

path in G where x0 ≤T y0 then xi ≤T yi for all i ∈ [t].
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Proof. We argue by induction on |T | to prove (1). The statement is trivial if |T | = 1.

Assume that the statement holds for every breadth-first spanning tree T with |T | ≤ k

where k is a positive integer.

Assume now that |T | = k + 1. Let u be the last vertex added to T . Clearly, u is a

leaf and T ′ := T − u is a breadth-first spanning tree with root r in G′ := G− u. By

induction hypothesis, the path rT ′x(= rTx) is isometric in G′ for all vertices x ∈ G′.

Assume for contradiction that rTx is not isometric in G for some x ∈ G′. Let P be an

isometric path in G between r and x. Then u ∈ P and ‖P‖ < ‖rTx‖. This contradicts

the fact that x is found by T before u. Assume that rTu is not isometric in G. Let

Q := v0 . . . vi be an isometric path in G where v0 = r and vi = u, so ‖Q‖ < ‖rTu‖. Let

u′ be the unique neighbor of u in T , then ‖v0Qvi−1‖ < ‖rTu′‖. This is in contradiction

to the fact that rT ′u′(= rTu′) is isometric in G′ as v0Qvi−1 ⊆ G′.

For (2), observe that if y <T x then T would have explored every leftover neighbor

of y before adding x′ to T . This is in contradiction to the fact that x′ ≤T y′ and

xx′ ∈ E(T ). Thus x ≤T y.

We prove (3) by induction on |Px|. The statement is trivial if |Px| = 1. Assume that

the statement holds for every path Px with |Px| ≤ k. Assume now that |Px| = k + 1.

Since rPxx ⊆ T , r ≤T xt−1 ≤T · · · ≤T x1 ≤T x. So x1 ≤T x ≤T y0. From (2),

x1 ≤T y1. By induction hypothesis, statement (3) holds for the paths x1Pxxt and

y1Qyt. Hence xi ≤T yi for all i ∈ [t].

4.2 Bounds on the Strong r-coloring Numbers of Planar Graphs

Let G be a planar graph, and fix a plane drawing G̃ of G. For simplicity, we write

G for G̃. Let F = F (G) denote the set of faces of G, G[f ] denote the boundary of the
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face f , V (f) denote the set of vertices of G[f ] and G∗ = (F,E∗) denote the dual of G.

Set F ∗ := F (G∗). It is well known that every connected plane graph has a connected

plane dual.

Lemma 4.2.1. (Proposition 4.6.1, Diestel [7]) For any connected planar graph G, an

edge set D ⊆ E(G) is the edge set of a cycle in G if and only if D∗ := {e∗ : e ∈ D} is

a minimal cut in G∗.

Here we present the linear ordering L that witnesses the bound in the following

theorem.

Theorem 4.2.2. (Van den Heuvel et al. [14]) Let G be a planar graph and r be a

positive integer. Then scolr(G) ≤ 5r + 1.

Without loss of generality, assume G is maximal with |G| ≥ 4. Then G is not a

cycle, and so no two faces have the same boundary.

4.2.1 Construction of L

Fix a vertex v, and a breadth-first spanning tree T ⊆ G rooted at v. Let H be

the spanning subgraph of G∗ with E(H) = {e∗ : e ∈ E(G) r E(T )}.

Lemma 4.2.3. H is a spanning tree of G∗.

Proof. It suffices to show that ‖H‖ = |H| − 1 and H is acyclic. As |H| = |F (G)|,

Euler’s Formula yields

‖H‖ = ‖G‖ − ‖T‖ = (|G|+ |F (G)| − 2)− (|G| − 1) = |F (G)| − 1 = |H| − 1.

Since T is a spanning tree in G, every cut in G must have an edge in T. So E(G)rE(T )

does not contain a cut. By Lemma 4.2.1, H is acyclic.
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Order the vertices of H (faces of G) as f0, . . . , fh using a depth-first search of H,

starting with the outer face f0 of G. For all i ∈ [h] ∪ {0}, let V (fi) = {ai, bi, ci}. For

all i ∈ [h], there is a unique index j(i) < i with fifj(i) ∈ E(H), aibi ∈ E(G− T ) and

aibi = G[fi] ∩G[fj(i)]. Then V (fi) r V (fj(i)) = {ci}.

Treating paths vTx as sequences of vertices starting with v, define a sequence σ

(with repeated vertices) by:

σ = vTa∧0Tb
∧
0 vTc

∧
0 . . .

∧ vTa∧hvTb
∧
hvTch.

Finally, define an ordering L by x <L y if the first occurrence of x in σ comes before

the first occurrence of y in σ. Set Xfi = vTai ∪ vTbi ∪ vTci. We sometimes write Xi

instead of Xfi .

4.2.2 Properties of L

Consider any u ∈ V (G). Set f(u) = fi, where i = min{j : u ∈ Xj}. If i ≥ 1 then

u ∈ vTci since u /∈ Xj(i) and ai, bi ∈ V (fj(i)) ⊆ Xj(i). Next we define a cycle Cu. Let

Cu = G[f0] if f(u) = f0; else f(u) = fi for some i > 0; put eu = aibi and let Cu be

the unique cycle in T + eu. Then Cu = aiTxuTbiai where xu =≤T -max(vTai ∩ vTbi).

Let Ou be the face of Cu not containing f(u) if f(u) is the outer face; else let Ou

be the face of Cu containing f(u). Finally, set Pu = vTu,a(u) = ai, b(u) = bi and

c(u) = ci. See Figure 4.1 on page 68; the black edges are in T.

Lemma 4.2.4. (Van den Heuvel et al. [14]) Let u ∈ V (G) and f(u) = fi. Then

V (Xi) <L V (Ou rXi).

Proof. If f(u) = f0 then Xi = X0 = vTa0 ∪ vTb0 ∪ vTc0. as vTa∧0 vTb∧0 vTc0 is the

initial segment of the sequence σ, the conclusion holds. Suppose f(u) = fi for some
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a(u) b(u)

c(u)

Pc(u) z

u

x

eu

f(u)

Pa(u) Pb(u)

Figure 4.1. f(u),eu,Pa(u), Pb(u) and Pc(u)

i > 0. Let z ∈ V (OurXi); say f(z) = fk. Then z ∈ vTak∪vTbk∪vTck, say z ∈ vTck.

As z ∈ Xk r Xi, k 6= i. It suffices to show that i < k. Observe that v ∈ Xi ∩ vTz

and z ∈ vTz r Xi; as T is acyclic, Xi ∩ zTck = ∅. Recall that Cu ⊆ Xi ∪ aibi, so

zTck ⊆ Ou r Xi. Since G is planar, akbkckak ⊆ Ou ∪ Cu, and so fk ⊆ Ou. Since

eu = aibi is the only edge of Cu in G− T, fi ∈ f0Hfk. Thus i < k.

Lemma 4.2.5. Let z ∈ V (G) and z′, z′′ ∈ Scol1[L, z]rPz with z′ <L z
′′ and z′ /∈ Pz′′.

If f(z) 6= f0 then (a) z ∈ Oz′′ r Pz′′ and (b) z′ ∈ Xf(z′′).

Proof. Assume that f(z′′) 6= f0, then z′′ ∈ Oz′′ and z′′ ∈ Pc(z′′) − Pa(z′′) ∪ Pb(z′′). As

Pa(z′′) and Pb(z′′) appear before Pc(z′′) in the sequence σ, V (Pa(z′′) ∪ Pb(z′′)) <L z′′.

The vertices z and z′′ are adjacent and G is planar, so z ∈ Oz′′ ∪ Cz′′ . Recall that

Cz′′ = a(z′′)Txz′′Tb(z
′′)a(z′′). As V (Pa(z′′) ∪ Pb(z′′)) <L z′′ <L z, z /∈ Cz′′ ∪ Pz′′ .

Thus z ∈ Oz′′ r Pz′′ . The vertices z and z′ are adjacent in the planar graph G, so

z′ ∈ Oz′′ ∪ Cz′′ . From the assumption z′ <L z
′′ and Lemma 4.2.4, z′ /∈ Oz′′ rXf(z′′).

As Cz′′ ⊆ Xf(z′′), z′ ∈ Xf(z′′). Assume now that f(z′′) = f0, then Cz′′ = G[f0]. From

the assumption f(z) 6= f0, z /∈ Cz′′ , and so z ∈ Oz′′ . Since z′′ <L z, z ∈ Oz′′ r vTz′′.

As z′ <L z
′′ and f(z′′) = f0, f(z′) = f0. Thus Xf(z′′) = Xf(z′), and so z′ ∈ Xf(z′′).

68



Proof of Theorem 4.2.2

Theorem 4.2.6. scolr[G,L] ≤ 5r + 1

Proof. Fix a vertex u ∈ V (G) with f(u) = fi. To avoid double subscripts, let

a = ai, b = bi, c = ci.

By Lemma 4.2.4, any path from u to an L-smaller vertex must contain a vertex

in Xi. Assume that fi is the outer face and fix notations so that u ∈ Pc. Then

any vertex w that is strongly r-reachable from u must be in Pa ∪ Pb ∪ Pu. If fi

is an inner face, then any vertex w that is strongly r-reachable from u must be in

Cu ∪ Pu as u ∈ Ou. So in both cases w ∈ Pa ∪ Pb ∪ Pu. By Lemma 4.1.1, the paths

Pa, Pb and Pu are all isometric. As Scolr[L, u] ⊆ Nr[u], Lemma 1.2.6 tells us that

| Scolr[L, u] ∩ Pa|, | Scolr[L, u] ∩ Pb| ≤ 2r + 1 and | Scolr[L, u] ∩ Pu| ≤ r + 1. Thus

scolr[L, u] ≤ 5r + 3. To finish the proof, we improve this bound to 5r + 1 by showing:

if v1, v2 ∈ Scolr[L, u] ∩ Pa (also Pb) with dist(v1, v2) ≥ 2r and v1 <L v2, then v1 ∈ Pu.

(4.2.1)

Consider v1, v2 satisfying the hypothesis. As |lu − lv1| ≤ r and |lu − lv2| ≤ r, this

yields lv1 = lu − r and lv2 = lu + r. Let Qi be the path that witnesses vi ∈ Scolr[L, u]

for i ∈ [2]. Since lvi = lu + (−1)ir, ‖Qi‖ = r. Let R = u0 . . . ur ⊆ Pu with u0 = u. By

Lemma 4.1.1(3) applied to v2Tv1 and Q2uR, v1 ≤T ur. By Lemma 4.1.1(3) applied

to R and Q1, we have v1 ≥T ur. Thus v1 = ur, and so v1 ∈ Pu, proving (4.2.1).

Corollary 4.2.7. Let u ∈ V (G) with f(u) = fi. Then u has at most five L-smaller

neighbors and they are all in Xi.

Proof. Take r = 1 in the previous theorem.

69



4.3 Bounds on wcol2[G,L]

In this section, we prove that wcol2[G,L] ≤ 26. We also give an example for a

planar graph G such that wcol2[G,L, u] = 26 for some u ∈ G.

4.3.1 Upper Bound

Theorem 4.3.1. wcol2[G,L] ≤ 26.

Proof. Consider any vertex u ∈ G; set l = lu. Assume first that f(u) is the outer face.

As u ∈ X0, all the vertices that are L-smaller than u are in X0 = Pa(u) ∪ Pb(u) ∪ Pc(u).

As Wcol2[L, u] ⊆ N2[u], Lemma 1.2.6 tells us that |Wcol2[L, u]∩Pa(u)|, |Wcol2[L, u]∩

Pb(u)|, |Wcol2[L, u] ∩ Pc(u)| ≤ 5. Thus wcol2[L, u] ≤ 5 + 5 + 5 = 15.

Assume that f(u) is an inner face. By Lemma 4.2.4,

Scol1[L, u] ⊆ (Cu ∪ Pu) ∩ (Dl−1 ∪Dl ∪Dl+1)

We will use the estimate

wcol2[L, u] = scol2[L, u] + |Wcol2[L, u] r Scol2[L, u]|

≤ scol2[L, u] + |(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]|

≤ scol2[L, u] +
∑

u′∈Scol1[L,u]

| Scol1[L, u
′] r Scol2[L, u]|

≤ scol2[L, u] +
∑

u′∈Scol1[L,u]

| Scol1[L, u
′] r Scol1[L, u]|.

By Lemma 1.2.6 and (4.2.1),

| Scol1[L, u]∩V (Pa(u)−Pu)|, | Scol1[L, u]∩V (Pb(u)−Pu)| ≤ 2 and | Scol1[L, u]∩Pu| ≤ 2.

We consider three cases. In each case, we first suppose | Scol1[L, u] r {u}| = 5, and

then make easy modifications for the subcase | Scol1[L, u]r{u}| < 5. Choose notation

70



a(u) b(u)

c(u)Pa(u) Pb(u)

Pc(u)

uw

w′

z

z′

x

eu

f(u)

a(u) b(u)

c(u)

Pc(u)

u

x

eu

f(u)

Pa(u) Pb(u)

a(u) b(u)

c(u)

Pc(u)

x

u

eu

f(u)

Pa(u) Pb(u)

Figure 4.2. The Three Major Cases of Theorem 4.3.1

so that ux ∈ Pu and w,w′ ∈ Scol1[L, u] ∩ V (Pa(u) − Pu) with w <L w′ and z, z′ ∈

Scol1[L, u]∩V (Pb(u)−Pu) with z <L z
′. By (4.2.1), ww′, zz′ ∈ E(T ), if x ∈ Pa(u) then

xw ∈ E(T ), and if x ∈ Pb(u) then xz ∈ E(T ). Let w◦ ∈ Pa(u) with lw◦ = lw − 1,

z◦ ∈ Pb(u) with lz◦ = lz− 1 and let y ∈ Pu with ly = lx− 1. If they exist, let w′′ ∈ Pa(u)

with lw′′ = lw + 2 and z′′ ∈ Pb(u) with lz′′ = lz + 2.

Case 1: x ∈ Pa(u) ∩ Pb(u), see the first drawing of Figure 4.2 on page 71.

Then wxz ⊆ T . So lw = lu = lz and x = w◦ = z◦. If u′ ∈ Scol2[L, u] then

lu−2 ≤ lu′ ≤ lu+2. Thus Scol2[L, u] ⊆ {u, x, y, w, w′, w′′, z, z′, z′′}, and so scol2[L, u] ≤

9. Since x,w ∈ Scol1[L, u], | Scol1[L,w] r Scol1[L, u]| ≤ 4, and as y ∈ Scol1[L, x],

scol2[L, u] + | Scol1[L, x] r Scol1[L, u]| ≤ 9 + 4 = 13.

Throughout the rest of the proof when we write vi < vj we mean that vi is

L-smaller than vj.

Assume without loss of generality that w < z; so w < z < z′. We have three

possibilities regarding the L-order of w′. Assume first that w < w′ < z < z′. The

L-smaller neighbor of w′ in Pw′ is w. Since {w,w′} ⊆ Scol1[L, u], | Scol1[L,w
′] r

Scol1[L, u]| ≤ 4.

Now we estimate the size of Scol1[L, z] r Scol1[L, u]. Note that Scol1[L, z] ⊆

(Pa(z) ∪ Pb(z) ∪ Pc(z)) ∩ (Dl−1 ∪Dl ∪Dl+1). Since w′ < z, Lemma 4.2.5 tells us that
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Pw′ ⊆ Xf(z). Since w′ /∈ Pz ⊆ Pc(z) and w′ < z, either Pw′ ⊆ Pa(z) or Pw′ ⊆ Pb(z),

say Pw′ ⊆ Pa(z). Since lw = lz, all the possible L-smaller neighbors of z in Pw′

(x, w and w′) are in Scol1[L, u]. The L-smaller neighbor of z in Pz is x. Thus

| Scol1[L, z] r Scol1[L, u]| ≤ 2. By Lemma 4.2.5, Pw′ ⊆ Xf(z′), say Pw′ ⊆ Pa(z′). The

L-smaller neighbor of z′ in Pc(z′) is z. The vertices at levels lz′ − 1 and lz′ in Pa(z′)

are w and w′. As {w,w′, z, z′} ⊆ Scol1[L, u], | Scol1[L, z
′] r Scol1[L, u]| ≤ 3. Thus

wcol2[L, u] ≤ 13 + 2 ∗ 4 + 2 + 3 = 26.

Now assume that w < z < w′ < z′, the second possibility. By Lemma 4.2.5,

Pz ⊆ Xf(w′), say Pz ⊆ Pa(w′). If they exist, let t, r ∈ Pa(w′) with lt = lz + 1, lr = lz + 2.

The possible L-smaller neighbors of w′ in Pa(w′) are z, t and r. Since w,w′ ∈ Scol1[L, u],

| Scol1[L,w
′] r Scol1[L, u]| ≤ 4. Since w < z, Pw ⊆ Xf(z), say Pw ⊆ Pa(z). If it exists,

let s ∈ Pa(z) with ls = lw + 1. The possible L-smaller neighbors of z in Pa(z) are x,w

and s. Thus | Scol1[L, z] r Scol1[L, u]| ≤ 3.

By Lemma 4.2.5, Pw′ ⊆ Xf(z′), say Pw′ ⊆ Pa(z′). If it exists, let s′ ∈ Pa(z′)

with ls′ = lw′ + 1. Since lw′ = lz′ , the possible L-smaller neighbors of z′ in Pa(z′)

are w,w′ and s′. The L-smaller neighbor of z′ in Pz′ is z; since {w,w′, z, z′} ⊆

Scol1[L, u], | Scol1[L, z
′]r Scol1[L, u]| ≤ 3. In the rest of this paragraph, we show that

| Scol1[L,w
′] r Scol1[L, u]| = 4 and | Scol1[L, z

′] r Scol1[L, u]| = 3 cannot occur at the

same time. If | Scol1[L,w
′] r Scol1[L, u]| = 4 then w′r ∈ E(G); by Lemma 4.1.1(3)

applied to ztr ⊆ T and ww′r ⊆ G, z ≤T w. If | Scol1[L, z
′] r Scol1[L, u]| = 3 then

z′s′ ∈ E(G). By Lemma 4.1.1(3) applied to ww′s′ ⊆ T and zz′s′ ⊆ G, w ≤T z. So

either w′r ∈ E(G) or z′s′ ∈ E(G) but not both. Thus | Scol1[L,w
′] r Scol1[L, u]| +

| Scol1[L, z
′] r Scol1[L, u]| ≤ 6. Therefore wcol2[L, u] ≤ 13 + 4 + 3 + 6 = 26.

Lastly, assume that w < z < z′ < w′. Since z′ < w′, Pz′ ⊆ Xf(w′); assume that

Pz′ ⊆ Pa(w′). If it exists, let s ∈ Pa(w′) with ls = lz′ + 1. Since lw′ = lz′ , the possible
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L-smaller neighbors of w′ in Pa(w′) are z, z′ and s. So | Scol1[L,w
′] r Scol1[L, u]| ≤ 3.

Also as w < z, Pw ⊆ Xf(z); assume that Pw ⊆ Pa(z). If it exists, let t ∈ Pa(z) with

lt = lw + 1. Since lw = lz, the possible L-smaller neighbors of z in Pa(z) are x,w and

t. So | Scol1[L, z] r Scol1[L, u]| ≤ 3. We show that | Scol1[L,w
′] r Scol1[L, u]| = 3

and | Scol1[L, z] r Scol1[L, u]| = 3 cannot occur at the same time. If | Scol1[L,w
′] r

Scol1[L, u]| = 3 then w′s ∈ E(G). By Lemma 4.1.1(3) applied to zz′s ⊆ T and ww′s ⊆

G, z ≤T w. If | Scol1[L, z] r Scol1[L, u]| = 3 then zt ∈ E(G). By Lemma 4.1.1(2)

applied to wt ∈ E(T ) and zt ∈ E(G), w ≤T z. So either w′s ∈ E(G) or zt ∈ E(G)

but not both. Thus | Scol1[L,w
′] r Scol1[L, u]|+ | Scol1[L, z] r Scol1[L, u]| ≤ 5. With

| Scol1[L, z
′] r Scol1[L, u]| ≤ 4 we get wcol2[L, u] ≤ 13 + 5 + 2 ∗ 4 = 26.

Case 2: Without loss of generality x ∈ Pa(u) − Pb(u).

So x = w◦. See the second drawing of Figure 4.2 on page 71. First we bound

scol2[L, u]. By (4.2.1), | Scol2[L, u] ∩ V (Pb(u) − Pu)| ≤ 4 and | Scol2[L, u] ∩ Pc(u)| ≤

3. Every u′ ∈ Scol2[L, u] ∩ V (Pa(u) − Pu) satisfies that lu ≤ lu′ ≤ lu + 2. So

| Scol2[L, u] ∩ V (Pa(u) − Pu)| ≤ 3. Thus scol2[L, u] ≤ 4 + 3 + 3 = 10.

Assume that w < z, so w < z < z′. There are three possibilities regarding the

L-order of w′; they are w < w′ < z < z′, w < z < w′ < z′ and w < z < z′ < w′. In all

those possibilities, | Scol1[L,w]r Scol1[L, u]| ≤ 4 as {x,w} ⊆ Scol1[L, u]. Assume first

that w < w′ < z < z′. The L-smaller neighbor of x in Px is y. Since w,w′ ∈ Scol1[L, u],

| Scol1[L,w
′] r Scol1[L, u]| ≤ 4. Since w′ < z, Lemma 4.2.5 tells us that Pw′ ⊆ Xf(z),

say Pw′ ⊆ Pa(z). By Lemma 4.2.5, Pw′ ⊆ Xf(z′), say Pw′ ⊆ Pa(z′). If it exists, let

s ∈ Pa(z′) with ls = lw′ + 1.

Assume first that lz = lu − 1. From Lemma 4.1.1(2) applied to xu ∈ E(T )

and zu ∈ E(G), x ≤T z. The possible L-smaller neighbors of z in Pa(z) are

y, x and w. The L-smaller neighbor of z in Pz is z◦. If y, z◦ ∈ Scol2[L, u]
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then y, z◦ /∈ Scol1[L, z] r Scol2[L, u] and y /∈ Scol1[L, x] r Scol2[L, u]. Thus

| Scol1[L, x] r Scol2[L, u]| ≤ 4 and | Scol1[L, z] r Scol2[L, u]| ≤ 2. Assume that

y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u]. Then | Scol1[L, x] r Scol2[L, u]| ≤ 4 and

| Scol1[L, z] r Scol2[L, u]| ≤ 3. We show that scol2[L, u] ≤ 9. If it exists, let

t ∈ Pb(u) with lt = lu + 2. Assume that t ∈ Scol2[L, u]. Let P := uu′t be the

witnessing path. From Lemma 4.1.1(3) applied to zz′z′′t ⊆ T and xuu′t ⊆ G we

get z ≤T x, a contradiction. So t /∈ Scol2[L, u]. Thus Scol2[L, u] ∩ Pb(u) ⊆ {z, z′, z′′},

proving that scol2[L, u] ≤ 9. Assume that z◦ ∈ Scol2[L, u] and y /∈ Scol2[L, u].

Clearly, scol2[L, u] ≤ 9 and |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 7. Assume that

y, z◦ /∈ Scol2[L, u]. Then scol2[L, u] ≤ 8 and |(Scol1[L, x]∪Scol1[L, z])rScol2[L, u]| ≤ 8.

So in all cases scol2[L, u]+|(Scol1[L, x]∪Scol1[L, z])rScol2[L, u]| ≤ 16. The possible L-

smaller neighbors of z′ in Pa(z′) are x,w and w′. Thus | Scol1[L, z
′]rScol1[L, u]| ≤ 2. So

wcol2[L, u] ≤ scol2[L, u]+ |(∪u′∈Scol1[L,u] Scol1[L, u
′])rScol2[L, u]| = 16+2∗4+2 = 26.

Now assume that lz = lu. By Lemma 4.1.1(3) applied to z◦zz′ ∈⊆ T and

xuz′ ⊆ G, z◦ ≤T x. The possible L-smaller neighbors of z in Pa(z) are x,w and w′,

and the L-smaller neighbor of z in Pz is z◦. If y, z◦ ∈ Scol2[L, u] then | Scol1[L, x] r

Scol2[L, u]| ≤ 4 and | Scol1[L, z] r Scol2[L, u]| ≤ 2. Assume that y ∈ Scol2[L, u] and

z◦ /∈ Scol2[L, u]. Then | Scol1[L, x]rScol2[L, u]| ≤ 4 and | Scol1[L, z]rScol2[L, u]| ≤ 3.

We show that scol2[L, u] ≤ 9. Let z◦◦ ∈ Pb(u) with lz◦◦ = lu − 2. Assume that

z◦◦ ∈ Scol2[L, u] and z◦◦ 6= y. Let P := uu′z◦◦ be the witnessing path. From

Lemma 4.1.1(3) applied to yxu ⊆ T and z◦◦u′u ⊆ G we get y ≤T z◦◦, and so

x ≤T z◦, a contradiction. So z◦◦ /∈ Scol2[L, u]. Thus Scol2[L, u] ∩ Pb(u) ⊆ {z, z′, z′′},

proving that scol2[L, u] ≤ 9. Assume that z◦ ∈ Scol2[L, u] and y /∈ Scol2[L, u].

Clearly, scol2[L, u] ≤ 9 and |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 7. Assume that

y, z◦ /∈ Scol2[L, u]. Then scol2[L, u] ≤ 8 and |(Scol1[L, x]∪Scol1[L, z])rScol2[L, u]| ≤
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8. So in all cases scol2[L, u] + |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 16. The

possible L-smaller neighbors of z′ in Pa(z′) are w,w′ and s. Assume that z′s ∈ E(G);

by Lemma 4.1.1(3) applied to xww′s ⊆ T and z◦zz′s ⊆ G we have x ≤T z◦, a

contradiction. Therefore |Scol1[L, z
′]rScol1[L, u]| ≤ 2. Thus wcol2[L, u] ≤ scol2[L, u]+

|(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]| ≤ 16 + 2 ∗ 4 + 2 = 26.

Now assume that w < z < w′ < z′. The L-smaller neighbor of x in Px is y. Since

w,w′ ∈ Scol1[L, u], | Scol1[L,w
′]rScol1[L, u]| ≤ 4. By Lemma 4.2.5 we get Pz ⊆ Xf(w′),

say Pz ⊆ Pa(w′). If they exist, let s1, s2 ∈ Pa(w′) with ls1 = lz + 1, ls2 = lz + 2. By

Lemma 4.2.5 we have Pw ⊆ Xf(z), say Pw ⊆ Pa(z). If it exists, let s ∈ Pa(z) with

ls = lw + 1. By Lemma 4.2.5 we have Pw′ ⊆ Xf(z′), say Pw′ ⊆ Pa(z′). If it exist, let

s′ ∈ Pa(z′) with ls′ = lw′ + 1.

Assume that lz = lu − 1. From Lemma 4.1.1(2) applied to xu ∈ E(T ) and

zu ∈ E(G) we get x ≤T z. The possible L-smaller neighbors of z in Pa(z)

are y, x and w. If y, z◦ ∈ Scol2[L, u] then | Scol1[L, x] r Scol2[L, u]| ≤ 4 and

| Scol1[L, z] r Scol2[L, u]| ≤ 2. Assume that y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u].

Then | Scol1[L, x] r Scol2[L, u]| ≤ 4 and | Scol1[L, z] r Scol2[L, u]| ≤ 3. Let t ∈ Pb(u)

with lt = lu + 2. We showed before that t /∈ Scol2[L, u] and that scol2[L, u] ≤ 9.

Assume that y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u] then clearly, scol2[L, u] ≤ 9 and

|(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 7. If y, z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 8

and |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 8. Thus in all cases we have

scol2[L, u] + |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 16. The possible L-smaller

neighbors of z′ in Pa(z′) are x,w and w′. So | Scol1[L, z
′] r Scol1[L, u]| ≤ 2. Thus

wcol2[L, u] ≤ scol2[L, u]+ |(∪u′∈Scol1[L,u] Scol1[L, u
′])rScol2[L, u]| ≤ 16+2∗4+2 = 26.

Assume that lz = lu. From Lemma 4.1.1(2) applied to zz′ ∈ E(T ) and uz′ ∈ E(G)

we get z ≤T u. The possible L-smaller neighbors of w′ in Pa(w′) are z, s1 and s2.
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Assume that w′s2 ∈ E(G). By Lemma 4.1.1(3) applied to zs1s2 ⊆ T and ww′s2 ⊆ G

we get z ≤T w. The possible L-smaller neighbors of z in Pa(z) are x,w and s. Assume

that zs ∈ E(G); by Lemma 4.1.1(2) applied to ws ∈ E(T ) and zs ∈ E(G) we get

w ≤T z. So either zs ∈ E(G) or w′s2 ∈ E(G) but not both. Assume without loss of

generality that zs ∈ E(G) and w′s2 /∈ E(G). Then | Scol1[L,w
′] r Scol1[L, u] ≤ 3. If

y, z◦ ∈ Scol2[L, u] then | Scol1[L, x]rScol2[L, u]| ≤ 4 and | Scol1[L, z]rScol2[L, u]| ≤ 3.

Assume that y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u]. Then | Scol1[L, x] r Scol2[L, u]| ≤ 4

and | Scol1[L, z] r Scol2[L, u]| ≤ 4. We showed before that in this case scol2[L, u] ≤ 9.

Assume that z◦ ∈ Scol2[L, u] and y /∈ Scol2[L, u]. Clearly, scol2[L, u] ≤ 9 and

|(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 8. Assume that y, z◦ /∈ Scol2[L, u]. Then

scol2[L, u] ≤ 8 and |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 9. So in all cases

scol2[L, u] + |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 17. The possible L-smaller

neighbors of z′ in Pa(z′) are w,w′ and s′. Assume that z′s′ ∈ E(G), by Lemma

4.1.1(3) applied to xww′s′ ⊆ T and z◦zz′s′ ⊆ G we get x ≤T z◦, and so u ≤T z, a

contradiction. Thus z′s′ /∈ E(G), and so | Scol1[L, z
′] r Scol1[L, u]| ≤ 2. Therefore

wcol2[L, u] ≤ 17 + 4 + 3 + 2 = 26.

Now assume that w < z < z′ < w′. Lemma 4.2.5 tells us that Pz′ ⊆ Xf(w′), say

Pz′ ⊆ Pa(w′). If they exist, let s1, s2 ∈ Pa(w′) with ls1 = lz′ + 1, ls2 = lz′ + 2. As w < z,

Pw ⊆ Xf(z), say Pw ⊆ Pa(z). If it exists, let t ∈ Pa(z) with lt = lw + 1. Since w < z′,

Lemma 4.2.5 tells us that Pw ⊆ Xf(z′), say Pw ⊆ Pa(z′). If it exists, let t1, t2 ∈ Pa(z′)

with lt1 = lw + 1, lt2 = lw + 2.

Assume first that lz = lu − 1. By Lemma 4.1.1(2) applied to xu ∈ E(T ) and

zu ∈ E(G) we get x ≤T z. The possible L-smaller neighbors of w′ in Pa(w′) are z′, s1

and s2. Assume that w′s2 ∈ E(G); by Lemma 4.1.1(3) applied to zz′s1s2 ⊆ E(T )

and xww′s2 ⊆ E(G) we get z ≤T x, a contradiction. So w′s2 /∈ E(G). Thus
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| Scol1[L,w
′] r Scol1[L, u]| ≤ 3. The L-smaller neighbor of x in Px is y. The pos-

sible L-smaller neighbors of z in Pa(z) are y, x and w, and the L-smaller neigh-

bor of z in Pz is z◦. Note that x,w, z ∈ Scol1[L, u]. If y, z◦ ∈ Scol2[L, u] then

| Scol1[L, x] r Scol2[L, u]| ≤ 4 and | Scol1[L, z] r Scol2[L, u]| ≤ 2. If y ∈ Scol2[L, u]

and z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9, | Scol1[L, x] r Scol2[L, u]| ≤ 4 and

| Scol1[L, z]rScol2[L, u]| ≤ 3. If y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u], then scol2[L, u] ≤

9, |(Scol1[L, x]∪Scol1[L, z])rScol2[L, u]| ≤ 7. If y, z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 8

and |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 8. Thus in all cases scol2[L, u] +

|(Scol1[L, x]∪Scol1[L, z])rScol2[L, u]| ≤ 16. The possible L-smaller neighbors of z′ in

Pa(z′) are x,w and t1. Since x,w, z′ ∈ Scol1[L, u], | Scol1[L, z
′]rScol1[L, u]| ≤ 3. Thus

wcol2[L, u] ≤ scol2[L, u]+ |(∪u′∈Scol1[L,u] Scol1[L, u
′])rScol2[L, u]| ≤ 16+4+2∗3 = 26.

Now assume that lz = lu. By Lemma 4.1.1(3) applied to z◦zz′ ⊆ T and xuz′ ⊆ G

we get z◦ ≤T x. The possible L-smaller neighbors of w′ in Pa(w′) are z, z′ and s1.

Since w,w′, z, z′ ∈ Scol1[L, u], | Scol1[L,w
′] r Scol1[L, u]| ≤ 3. The possible L-smaller

neighbors of z in Pa(z) are x,w and t. Assume that zt ∈ E(G); by Lemma 4.1.1(3)

applied to xwt ⊆ T and z◦zt ⊆ G we get x ≤T z◦, a contradiction. Thus zt /∈ E(G). If

y, z◦ ∈ Scol2[L, u] then | Scol1[L, x]rScol2[L, u]| ≤ 4 and | Scol1[L, z]rScol2[L, u]| ≤ 2.

If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9, | Scol1[L, x]rScol2[L, u]| ≤

4 and | Scol1[L, z] r Scol2[L, u]| ≤ 3. If z◦ ∈ Scol2[L, u] and y /∈ Scol2[L, u] then

scol2[L, u] ≤ 9, | Scol1[L, x] r Scol2[L, u]| ≤ 5 and | Scol1[L, z] r Scol2[L, u]| ≤ 2. If

y, z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 8, | Scol1[L, x]rScol2[L, u]| ≤ 5 and | Scol1[L, z]r

Scol2[L, u]| ≤ 3. So in all cases scol2[L, u] + | Scol1[L, x] r Scol2[L, u]|+ | Scol1[L, z] r

Scol2[L, u]| ≤ 16. So The possible L-smaller neighbors of z′ in Pa(z′) are w, t1 and t2.

Assume that z′t2 ∈ E(G); by Lemma 4.1.1(3) applied to xwt1t2 ⊆ T and z◦zz′t2 ⊆ G

we get that x ≤T z◦, a contradiction. Thus z′t2 /∈ E(G), and so | Scol1[L, z
′] r
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Scol1[L, u]| ≤ 3. Therefore wcol2[L, u] ≤ scol2[L, u] +
∑

u′∈Scol1[L,u] | Scol1[L, u
′] r

Scol2[L, u]| ≤ 16 + 4 + 2 ∗ 3 = 26.

Assume that z < w; so z < w < w′. We have three possibilities regarding the

L-order of z′. They are z < z′ < w < w′, z < w < z′ < w′ and z < w < w′ < z′. We

discuss each possibility.

Assume that z < z′ < w < w′. Since z, z′ ∈ Scol1[L, u], | Scol1[L, z
′]rScol1[L, u]| ≤

4. Since z′ < w, Lemma 4.2.5 tells us that Pz′ ⊆ Xf(w), say Pz′ ⊆ Pa(w). If it exists,

let t ∈ Pa(w) with lt = lz′ + 1. Since z′ < w′, Pz′ ⊆ Xf(w′), say Pz′ ⊆ Pa(w′). If they

exist, let s1, s2 ∈ Pa(w′) with ls1 = lz′ + 1, ls2 = lz′ + 2.

Assume first that lz = lu − 1. By Lemma 4.1.1(2) applied to xu ∈ E(T ) and

zu ∈ E(G) we get x ≤T z. The possible L-smaller neighbors of w in Pa(w) are z, z′

and t. Assume that wt ∈ E(G). By Lemma 4.1.1(3) applied to zz′t ⊆ T and xwt ⊆ G

we get z ≤T x, a contradiction. Thus wt /∈ E(G), so | Scol1[L,w] r Scol1[L, u]| ≤ 2.

The possible L-smaller neighbors of w′ in Pa(w′) are z′, s1 and s2. Assume that

w′s2 ∈ E(G). By Lemma 4.1.1(3) applied to zz′s1s2 ⊆ T and xww′s2 ⊆ G we get

z ≤T x, a contradiction. Thus | Scol1[L,w
′] r Scol1[L, u]| ≤ 3.

Assume that z < x; then Pz ⊆ Xf(x), say Pz ⊆ Pa(x). If it exists, let s ∈ Pa(x) with

ls = lz + 1. The possible L-smaller neighbors of x in Pa(x) are z◦, z and s. Assume

that xs ∈ E(G); by Lemma 4.1.1(2) applied to zs ∈ E(T ) and xs ∈ E(G) we get

z ≤T x, a contradiction. So xs /∈ E(G). Thus the possible L-smaller neighbors of

x in Xf(x) are z◦, z, y and two more vertices in Pb(x) − Px. The possible L-smaller

vertices of z in Xf(z) are z◦, two vertices in Pa(z)−Pz and two vertices in Pb(z)−Pz. If

y, z◦ ∈ Scol2[L, u] then |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 6. If y ∈ Scol2[L, u]

and z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9 and |(Scol1[L, x]∪Scol1[L, z])rScol2[L, u]| ≤ 7

(same result is true if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then
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scol2[L, u] ≤ 8 and |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 8. So in all cases

scol2[L, u] + |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 16.

Now assume that x < z; then Px ⊆ Xf(z), say Px ⊆ Pa(z). If it exists, let

x′ ∈ Pa(z) with lx′ = lx + 1. The possible L-smaller neighbors of z in Pa(z) are

y, x and x′. So the possible L-smaller neighbors of z in Xf(z) are y, x, x′, z◦ and

two vertices in Pb(z) − Pz. The possible L-smaller neighbors of x in Xf(x) are y,

two vertices in Pa(x) − Px and two vertices in Pb(x) − Px. If y, z◦ ∈ Scol2[L, u] then

|(Scol1[L, x]∪Scol1[L, z])rScol2[L, u]| ≤ 7. If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u] then

scol2[L, u] ≤ 9 and |(Scol1[L, x] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 8 (same result is true

if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 8 and

|(Scol1[L, x]∪ Scol1[L, z])r Scol2[L, u]| ≤ 9. So in all cases scol2[L, u] + |(Scol1[L, x]∪

Scol1[L, z]) r Scol2[L, u]| ≤ 17. Thus in both cases (i.e., z < x and x < z) we have

wcol2[L, u] ≤ scol2[L, u]+ |(∪u′∈Scol1[L,u] Scol1[L, u
′])rScol2[L, u]| ≤ 17+2+3+4 = 26.

Assume that lz = lu. By Lemma 4.1.1(3) applied to z◦zz′ ⊆ T and xuz′ ⊆ G

we get z◦ ≤T x. The possible L-smaller neighbors of w′ in Pa(w′) are z, z′ and s1.

Since w,w′, z, z′ ∈ Scol1[L, u], | Scol1[L,w
′] r Scol1[L, u]| ≤ 3. The possible L-smaller

neighbors of w in Pa(w) are z◦, z and z′. So the possible L-smaller neighbors of w in

Xf(w) are z◦, z, z′, x and two vertices in Pb(w) − Pw.

Assume that z < x. By Lemma 4.2.5 we get Pz ⊆ Xf(x), say Pz ⊆ Pa(x). Let

z◦◦ ∈ Pa(x) with lz◦◦ = lx − 1. The possible L-smaller neighbors of x in Pa(x) are

z◦◦, z◦ and z. Assume that z◦◦ 6= y and xz◦◦ ∈ E(G). By Lemma 4.1.1(2) we get

y ≤T z◦◦, and so x ≤T z◦, a contradiction. So either z◦◦ = y or xz◦◦ /∈ E(G). Thus

the possible L-smaller neighbors of x in Xf(x) are y, z◦, z and two vertices in Pb(x)−Px.

The possible L-smaller neighbors of z in Xf(z) are z◦, two vertices in Pa(z) − Pz

and two vertices in Pb(z) − Pz. Therefore if y, z◦ ∈ Scol2[L, u] then |(Scol1[L,w] ∪
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Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 8. If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u]

then scol2[L, u] ≤ 9 and |(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 9

(same result is true if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then

scol1[L, u] ≤ 8 and |(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 10. So in

all cases scol2[L, u] + |(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 18.

Assume that x < z. By Lemma 4.2.5 we get Px ⊆ Xf(z), say Px ⊆ Pa(z). If they

exist, let v1, v2 ∈ Pa(z) with lv1 = lx + 1, lv2 = lx + 2. Assume that zv2 ∈ E(G); by

Lemma 4.1.1(3) applied to xv1v2 ⊆ T and z◦zv2 ⊆ G we get x ≤T z◦, a contradiction.

So zv2 /∈ E(G). Thus the possible L-smaller neighbors of z in Xf(z) are z◦, x, v1 and

two vertices in Pb(z) − Pz. The possible L-smaller vertices of x in Xf(x) are y, two

vertices in Pa(x) − Px and two vertices in Pb(x) − Px. Therefore if y, z◦ ∈ Scol2[L, u]

then |(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 9. If y ∈ Scol2[L, u] and

z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9 and |(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r

Scol2[L, u]| ≤ 10 (same result is true if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]) . If

y, z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 8 and |(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r

Scol2[L, u]| ≤ 11. Thus in all cases scol2[L, u]+|(Scol1[L,w]∪Scol1[L, z]∪Scol1[L, x])r

Scol2[L, u]| ≤ 19. Thus in both cases (i.e., x < z or z < x) we have wcol2[L, u] ≤

scol2[L, u] + |(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]| ≤ 19 + 3 + 4 = 26.

Assume that z < w < z′ < w′. Since z < w, Pz ⊆ Xf(w), say Pz ⊆ Pa(w). If

they exist, let v1, v2 ∈ Pa(w) with lv1 = lz + 1, lv2 = lz + 2. Since z′ < w′, Lemma

4.2.5 tells us that Pz′ ⊆ Xf(w′), say Pz′ ⊆ Pa(w′). If they exist, let s1, s2 ∈ Pa(w′) with

ls1 = lz′ + 1, ls2 = lz′ + 2. Since w < z′, Lemma 4.2.5 tells us that Pw ⊆ Xf(z′), say

Pw ⊆ Pa(z′). Let t1, t2 ∈ Pa(z′) with lt1 = lw + 1, lt2 = lw + 2.

Assume first that lz = lu − 1. By Lemma 4.1.1(2) applied to xu ∈ E(T ) and zu ∈

E(G) we find that x ≤T z. The possible L-smaller neighbors of w in Pa(w) are z, v1 and
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v2. Assume that wv2 ∈ E(G). By Lemma 4.1.1(3) applied to zv1v2 ⊆ T and xwv2 ⊆ G

we get z ≤T x, a contradiction. So wv2 /∈ E(G). Thus | Scol1[L,w] r Scol1[L, u]| ≤ 3.

The possible L-smaller neighbors of w′ in Pa(w′) are z′, s1 and s2. Assume that w′s2 ∈

E(G). By Lemma 4.1.1(3) applied to zz′s1s2 ⊆ T and xww′s2 ⊆ G we get z ≤T x,

a contradiction. So w′s2 /∈ E(G). Thus | Scol1[L,w
′] r Scol1[L, u]| ≤ 3. The possible

L-smaller neighbors of z′ in Pa(z′) are x,w and t1. So | Scol1[L, z
′] r Scol1[L, u]| ≤ 3.

Assume that z < x. Then Pz ⊆ Xf(x), say Pz ⊆ Pa(x). If it exists, let t ∈ Pa(x)

with lt = lz + 1. The possible L-smaller neighbors of x in Xf(x) are z◦, z, t, y and

two vertices in Pb(x) − Px. The possible L-smaller neighbors of z in Xf(z) are z◦, two

vertices in Pa(z)−Pz and two vertices in Pb(z)−Pz. Therefore if y, z◦ ∈ Scol2[L, u] then

|(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 7. If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u]

then scol2[L, u] ≤ 9 and |(Scol[L, z]∪Scol1[L, x])rScol2[L, u]| ≤ 8 (same result is true

if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then scol1[L, u] ≤ 8 and

|(Scol1[L, z]∪ Scol1[L, x])r Scol2[L, u]| ≤ 9. So in all cases scol2[L, u] + |(Scol1[L, z]∪

Scol1[L, x]) r Scol2[L, u]| ≤ 17.

Assume that x < z. Then Px ⊆ Xf(z), say Px ⊆ Pa(z). If it exists, let s ∈ Pa(z)

with ls = lx + 1. The possible L-smaller neighbors of z in Xf(z) are y, x, s, z◦ and

two vertices in Pb(z) − Pz. The possible L-smaller neighbors of x in Xf(x) are y, two

vertices in Pa(x)−Px and two vertices in Pb(x)−Px. Therefore if y, z◦ ∈ Scol2[L, u] then

|(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 7. If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u]

then scol2[L, u] ≤ 9 and |(Scol[L, z]∪Scol1[L, x])rScol2[L, u]| ≤ 8 (same result is true

if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then scol1[L, u] ≤ 8 and

|(Scol1[L, z]∪ Scol1[L, x])r Scol2[L, u]| ≤ 9. So in all cases scol2[L, u] + |(Scol1[L, z]∪

Scol1[L, x]) r Scol2[L, u]| ≤ 17. Thus in both cases (i.e., x < z or z < x) we have

wcol2[L, u] ≤ scol2[L, u] + |(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]| ≤ 17 + 3 ∗ 3 = 26.
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Assume that lz = lu. By Lemma 4.1.1(3) applied to z◦zz′ ⊆ T and xuz′ ⊆ G

we get z◦ ≤T x. The possible L-smaller neighbors of w′ in Pa(w′) are z, z′ and s1.

As z, z′, w, w′ ∈ Scol1[L, u], | Scol1[L,w
′] r Scol1[L, u]| ≤ 3. The possible L-smaller

neighbors of z′ in Pa(z′) are w, t1 and t2. Assume that z′t2 ∈ E(G). By Lemma

4.1.1(3) applied to xwt1t2 ⊆ T and z◦zz′t2 ⊆ G we get x ≤T z◦, a contradiction. So

z′t2 /∈ E(G). Thus | Scol1[L, z
′] r Scol1[L, u]| ≤ 3. The possible L-smaller neighbors

of w in Pa(w) are z◦, z and v1. Thus the possible L-smaller neighbors of w in Xf(w)

are z◦, z, v1, x and two vertices in Pb(w) − Pw.

Assume that z < x. By Lemma 4.2.5 we get Pz ⊆ Xf(x), say Pz ⊆ Pa(x). Let

z◦◦ ∈ Pa(x) with lz◦◦ = lz − 2. Assume that z◦◦ 6= y and xz◦◦ ∈ E(G). By Lemma

4.1.1(2) applied to yx ∈ E(T ) and xz◦◦ ∈ E(G) we get y ≤T z◦◦, and so x ≤T z◦,

a contradiction. So either z◦◦ = y or xz◦◦ /∈ E(G). Thus the possible L-smaller

neighbors of x in Xf(x) are z◦, z, y and two vertices in Pb(x) − Px. The possible L-

smaller neighbors of z in Xf(z) are z◦, two vertices in Pa(z) − Pz and two vertices in

Pb(z)−Pz. Therefore if y, z◦ ∈ Scol2[L, u] then |(Scol1[L,w]∪Scol[L, z]∪Scol1[L, x])r

Scol2[L, u]| ≤ 9. If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9 and

|(Scol1[L,w] ∪ Scol[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 10 (same result is true if y /∈

Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then scol1[L, u] ≤ 8 and

|(Scol1[L,w]∪ Scol1[L, z]∪ Scol1[L, x]) r Scol2[L, u]| ≤ 11. So in all cases scol2[L, u] +

|(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 19.

Assume that x < z. By Lemma 4.2.5 we get Px ⊆ Xf(z), say Px ⊆ Pa(z). If they

exist, let x1, x2 ∈ Pa(z) with lx1 = lx + 1, lx2 = lx + 2. Assume that zx2 ∈ E(G). By

Lemma 4.1.1(3) applied to xx1x2 ⊆ T and z◦zx2 ⊆ G we get x ≤T z◦, a contradiction.

So zx2 /∈ E(G). Thus the possible L-smaller neighbors of z in Xf(z) are x, x1, z◦ and

two vertices in Pb(z) − Pz. The possible L-smaller neighbors of x in Xf(x) are y, two
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vertices in Pa(x) − Px and two vertices in Pb(x) − Px. Therefore if y, z◦ ∈ Scol2[L, u]

then |(Scol1[L,w] ∪ Scol[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 10. If y ∈ Scol2[L, u]

and z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9 and |(Scol1[L,w] ∪ Scol[L, z] ∪ Scol1[L, x]) r

Scol2[L, u]| ≤ 11 (same result is true if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If

y, z◦ /∈ Scol2[L, u] then scol1[L, u] ≤ 8 and |(Scol1[L,w] ∪ Scol1[L, z] ∪ Scol1[L, x]) r

Scol2[L, u]| ≤ 12. So in all cases scol2[L, u] + |(Scol1[L,w]∪ Scol1[L, z]∪ Scol1[L, x])r

Scol2[L, u]| ≤ 20. Thus in both cases (i.e., x < z or z < x) we have wcol2[L, u] ≤

scol2[L, u] + |(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]| ≤ 20 + 3 ∗ 2 = 26.

Assume now that z < w < w′ < z′. Lemma 4.2.5 tells us that Pz ⊆ Xf(w), say

Pz ⊆ Pa(w). If they exist, let s1, s2 ∈ Pa(w) with ls1 = lz + 1, ls2 = lz + 2. Lemma 4.2.5

tells us that Pw′ ⊆ Xf(z′), say Pw′ ⊆ Pa(z′). If it exists, let s ∈ Pa(z′) with ls = lw′ + 1.

Assume first that lz = lu − 1. By Lemma 4.1.1(2) applied to xu ∈ E(T ) and

zu ∈ E(G) we get x ≤T z. The possible L-smaller neighbors of w in Pa(w) are z, s1 and

s2. Assume that ws2 ∈ E(G). By Lemma 4.1.1(3) applied to zs1s2 ⊆ T and xws2 ⊆ G

we get z ≤T x, a contradiction. So ws2 /∈ E(G). Thus | Scol1[L,w] r Scol1[L, u]| ≤ 3.

Since w,w′ ∈ Scol1[L, u], | Scol1[L,w
′] r Scol1[L, u]| ≤ 4. The possible L-smaller

neighbors of z′ in Pa(z′) are x,w and w′. Thus | Scol1[L, z
′] r Scol1[L, u]| ≤ 2.

Assume that z < x. So Pz ⊆ Xf(x), say Pz ⊆ Pa(x). If it exists, let v′ ∈ Pa(x) with

lv′ = lz + 1. So the possible L-smaller neighbors of x in Pa(x) are z◦, z and v′. Assume

that xv′ ∈ E(G). By Lemma 4.1.1(2) applied to zv′ ∈ E(T ) and xv′ ∈ E(G) we get

z ≤T x, a contradiction. So xv′ /∈ E(G). Thus the possible L-smaller neighbors of x

in Xf(x) are z◦, z, y and two vertices in Pb(x)−Px. The possible L-smaller neighbors of

z in Xf(z) are z◦, two vertices in Pa(z)−Pz and two vertices in Pb(z)−Pz. Therefore if

y, z◦ ∈ Scol2[L, u] then |(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 6. If y ∈ Scol2[L, u]

and z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9 and |(Scol1[L, z]∪Scol1[L, x])rScol2[L, u]| ≤ 7
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(same result is true if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then

scol1[L, u] ≤ 8 and |(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 8. So in all cases

scol2[L, u] + |(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 16.

Assume that x < z. So Px ⊆ Xf(z), say Px ⊆ Pa(z). If it exists, let t ∈ Pa(z)

with lt = lx + 1. The possible L-smaller neighbors of z in Pa(z) are y, x and t.

So the possible L-smaller neighbors of z in Xf(z) are y, x, t, z◦ and two vertices

in Pb(z) − Pz. The possible L-smaller neighbors of x in Xf(x) are y, two vertices

in Pa(x) − Px and two vertices in Pb(x) − Px. Therefore if y, z◦ ∈ Scol2[L, u] then

|(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 7. If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u]

then scol2[L, u] ≤ 9 and |(Scol1[L, z]∪Scol1[L, x])rScol2[L, u]| ≤ 8 (same result is true

if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then scol1[L, u] ≤ 8 and

|(Scol1[L, z]∪ Scol1[L, x])r Scol2[L, u]| ≤ 9. So in all cases scol2[L, u] + |(Scol1[L, z]∪

Scol1[L, x]) r Scol2[L, u]| ≤ 17. Thus in both cases (i.e., x < z or z < x) we have

wcol2[L, u] ≤ scol2[L, u]+ |(∪u′∈Scol1[L,u] Scol1[L, u
′])rScol2[L, u]| ≤ 17+3+4+2 = 26.

Assume that lz = lu. By Lemma 4.1.1(3) applied to z◦zz′ ⊆ T and xuz′ ⊆ G

we get z◦ ≤T x. The possible L-smaller neighbors of w in Pa(w) are z◦, z and s1.

Assume that z◦w ∈ E(G). By Lemma 4.1.1(2) applied to xw ∈ E(T ) and z◦w ∈ E(G)

we get x ≤T z◦, a contradiction. Thus | Scol1[L,w] r Scol1[L, u]| ≤ 3. The possible

L-smaller neighbors of w′ in Xf(w′) are w, two vertices in Pa(w′)−Pw′ and two vertices

in Pb(w′)−Pw′ . Thus | Scol1[L,w
′]rScol1[L, u]| ≤ 4. The possible L-smaller neighbors

of z′ in Pa(z′) are w,w′ and s. Assume that z′s ∈ E(G). By Lemma 4.1.1(3) applied

to xww′s ⊆ T and z◦zz′s ⊆ G we get x ≤T z◦, a contradiction. So z′s /∈ E(G). Thus

| Scol1[L, z
′] r Scol1[L, u]| ≤ 2.

Assume that z < x. By Lemma 4.2.5 we get Pz ⊆ Xf(x), say Pz ⊆ Pa(x). Let

z◦◦ ∈ Pa(x) with lz◦◦ = lz − 2. The possible L-smaller neighbors of x in Pa(x) are
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z◦◦, z◦ and z. Assume that z◦◦ 6= y and z◦◦x ∈ E(G). By Lemma 4.1.1(3) applied

to yx ∈ E(T ) and z◦◦x ∈ E(G) we get y ≤T z◦◦. So x ≤T z◦, a contradiction. Thus

either z◦◦ = y or z◦◦x /∈ E(G). So the possible L-smaller neighbors of x in Xf(x)

are z◦, z, y and two vertices in Pb(x) − Px. The possible L-smaller neighbors of z in

Xf(x) are z◦, two vertices in Pa(z) − Pz and two vertices in Pb(z) − Pz. Therefore if

y, z◦ ∈ Scol2[L, u] then |(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 6. If y ∈ Scol2[L, u]

and z◦ /∈ Scol2[L, u] then scol2[L, u] ≤ 9 and |(Scol1[L, z]∪Scol1[L, x])rScol2[L, u]| ≤ 7

(same result is true if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then

scol1[L, u] ≤ 8 and |(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 8. So in all cases

scol2[L, u] + |(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 16.

Assume that x < z. By Lemma 4.2.5 we get Px ⊆ Xf(z), say Px ⊆ Pa(z). If

they exist, let t1, t2 ∈ Pa(z) with lt1 = lx + 1, lt2 = lx + 2. Assume that zt2 ∈

E(G). By Lemma 4.1.1(3) applied to xt1t2 ⊆ T and z◦zt2 ⊆ G we get x ≤T z◦,

a contradiction. So the possible L-smaller neighbors of z in Xf(z) are x, t1, z◦ and

two vertices in Pb(z) − Pz. The possible L-smaller neighbors of x in Xf(x) are y, two

vertices in Pa(x)−Px and two vertices in Pb(x)−Px. Therefore if y, z◦ ∈ Scol2[L, u] then

|(Scol1[L, z]∪Scol1[L, x])rScol2[L, u]| ≤ 7. If y ∈ Scol2[L, u] and z◦ /∈ Scol2[L, u] then

scol2[L, u] ≤ 9 and |(Scol1[L, z] ∪ Scol1[L, x]) r Scol2[L, u]| ≤ 8 (same result is true

if y /∈ Scol2[L, u] and z◦ ∈ Scol2[L, u]). If y, z◦ /∈ Scol2[L, u] then scol1[L, u] ≤ 8 and

|(Scol1[L, z]∪ Scol1[L, x])r Scol2[L, u]| ≤ 9. So in all cases scol2[L, u] + |(Scol1[L, z]∪

Scol1[L, x]) r Scol2[L, u]| ≤ 17. Thus in both cases (i.e., x < z or z < x) we have

wcol2[L, u] ≤ scol2[L, u]+ |(∪u′∈Scol1[L,u] Scol1[L, u
′])rScol2[L, u]| ≤ 17+3+4+2 = 26.

Case 3: x /∈ Pa(u) ∪ Pb(u). See the third drawing of Figure 4.2 on page 71.

By Theorem 4.2.6, scol2[L, u] ≤ 11. Assume without loss of generality that w < z.

So w < z < z′. There are three possibilities regarding the L-order of w′. They are
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w < w′ < z < z′, w < z < w′ < z′ and w < z < z′ < w′. If they exist, let s ∈ Pa(u)

with ls = lw + 3 and t ∈ Pb(u) with lt = lz + 3.

Assume that w < w′ < z < z′. Since w,w′ ∈ Scol1[L, u], | Scol1[L,w
′] r

Scol2[L, u]| ≤ 4. Since w′ < z′, Lemma 4.2.5 tells us that Pw′ ⊆ Xf(z′), say

Pw′ ⊆ Pa(z′). If they exist, let s′, s′′ ∈ Pa(z′) with ls′ = lw′ + 1, ls′′ = lw′ + 2.

Assume first that lu = lw′ = lz′ . By Lemma 4.1.1(2) applied to xu ∈ E(T )

and wu ∈ E(G) we get x ≤T w. Similarly, we get x ≤T z. Assume that

s ∈ Scol2[L, u]. Let P := uu′s be the witnessing path. By Lemma 4.1.1(3) applied

to ww′w′′s ⊆ T and xuu′s ⊆ G we get w ≤T x, a contradiction. So s /∈ Scol2[L, u],

analogously we get t /∈ Scol2[L, u]. Let A := {y, x, u, w◦, w, w′, w′′, z◦, z, z′, z′′}.

Clearly, Scol2[L, u] ⊆ A. Also Scol1[L, x] ⊆ {y, x, w◦, w, w′, z◦, z, z′} ⊆ A. There-

fore scol2[L, u]+ | Scol1[L, x]rScol2[L, u]| ≤ 11. The unique neighbor of w in Pw is w◦,

the unique neighbor of z in Pz is z◦ and w◦, z◦ ∈ A. Thus scol2[L, u] + |(Scol1[L, x] ∪

Scol1[L,w] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 11 + 2 ∗ 4 = 19. The possible L-smaller

neighbors of z′ in Pa(z′) are w,w′ and s′. So | Scol1[L, z
′] r Scol2[L, u]| ≤ 3. Thus

wcol2[L, u] ≤ scol2[L, u] + |(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]| ≤ 19 + 4 + 3 = 26.

Assume that lu = lw = lz. Let w◦◦ ∈ Pa(u) with lw◦◦ = lw − 2 and z◦◦ ∈ Pb(u)

with lz◦◦ = lz − 2. By Lemma 4.1.1(2) applied to ww′ ∈ E(T ) and uw′ ∈ E(G) we

get w ≤T u, analogously we get z ≤T u. Assume that w◦◦ 6= y and w◦◦ ∈ Scol2[L, u].

Let P := w◦◦u′u be the witnessing path. By Lemma 4.1.1(3) applied to yxu ⊆ T

and w◦◦u′u ⊆ G we get y ≤T w◦◦. So x ≤T w◦ and then u ≤T w, a contradiction.

Thus w◦◦ /∈ Scol2[L, u], analogously we get z◦◦ /∈ Scol2[L, u] if z◦◦ 6= y. Then

Scol2[L, u] ⊆ A. Assume that w◦◦ 6= y and w◦◦x ∈ E(G). By Lemma 4.1.1(2) applied

to yx ∈ E(T ) and w◦◦x ∈ E(G) we get y ≤T w◦◦ which leads to a contradiction

as we have just seen. Thus w◦◦x /∈ E(G), similarly, we get z◦◦x /∈ E(G) if z◦◦ 6= y.
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So Scol1[L, x] ⊆ {y, x, w◦, w, z◦, z} ⊆ A. The unique neighbor of w in Pw is w◦, the

unique neighbor of z in Pz is z◦ and w◦, z◦ ∈ A. Thus scol2[L, u] + |(Scol1[L, x] ∪

Scol1[L,w] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 11 + 2 ∗ 4 = 19. The possible L-smaller

neighbors of z′ in Pa(z′) are w,w′ and s′. So | Scol1[L, z
′] r Scol2[L, u]| ≤ 3. Thus

wcol2[L, u] ≤ scol2[L, u] + |(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]| ≤ 19 + 4 + 3 = 26.

Assume that lw′ 6= lz′ . In this case either lw′ = lu = lz′ − 1 or lw′ − 1 = lu = lz′ . By

the two previous paragraphs we get Scol2[L, u] ⊆ A and Scol1[L, x] ⊆ A. The unique

neighbor of w in Pw is w◦ and the unique neighbor of z in Pz is z◦. Thus scol2[L, u] +

|(Scol1[L, x] ∪ Scol1[L,w] ∪ Scol1[L, z]) r Scol2[L, u]| ≤ 11 + 2 ∗ 4 = 19. Assume that

lw′ = lu = lz′ − 1. By Lemma 4.1.1(2) applied to xu ∈ E(T ) and wu ∈ E(G) we get

x ≤T w. By Lemma 4.1.1(3) applied to z◦zz′ ⊆ E(T ) and xuz′ ⊆ E(G) we get z◦ ≤T x.

So z◦ ≤T w. The possible L-smaller neighbors of z′ in Pa(z′) are w′, s′ and s′′. Assume

that z′s′′ ∈ E(T ). By Lemma 4.1.1(3) applied to ww′s′s′′ ⊆ T and z◦zz′s′′ ⊆ G we

get w ≤T z◦, a contradiction. So the possible L-smaller neighbors of z′ in Pa(z′) are

w′ and s′, and then | Scol1[L, z
′] r Scol1[L, u]| ≤ 3. Assume that lw′ − 1 = lu = lz′ .

By Lemma 4.1.1(2) applied to xu ∈ E(T ) and zu ∈ E(G) we get x ≤T z. By

Lemma 4.1.1(3) applied to w◦ww′ ∈ E(T ) and xuw′ ∈ E(G) we get w◦ ≤T x. So

w◦ ≤T z. The possible L-smaller neighbors of z′ in Pa(z′) are w◦, w, w′ ∈ A. Therefore

wcol2[L, u] ≤ scol2[L, u]+ |(∪u′∈Scol1[L,u] Scol1[L, u
′])rScol2[L, u]| ≤ 11+3∗4+3 = 26.

Assume that w < z < w′ < z′. Note that the facts that Scol2[L, u], Scol1[L, x] ⊆ A

were independent from the L-order of w,w′, z, z′. So even in this case we have

Scol2[L, u], Scol1[L, x] ⊆ A. In the previous case we used only the inequality w′ < z′

to show that | Scol1[L, z
′] r Scol2[L, u]| ≤ 3. Since the inequality w′ < z′ is still

valid in this case, we get | Scol1[L, z
′] r Scol2[L, u]| ≤ 3. Therefore wcol2[L, u] ≤

scol2[L, u] + |(∪u′∈Scol1[L,u] Scol1[L, u
′]) r Scol2[L, u]| ≤ 11 + 3 ∗ 4 + 3 = 26.
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Assume that w < z < z′ < w′. Again Scol2[L, u], Scol1[L, x] ⊆ A. By interchanging

the roles of w′ and z′ in the previous cases we get the same result.

The proof above was for the case | Scol1[L, u] r {u}| = 5. Assume now that

| Scol1[L, u] r {u}| ≤ 4. Let x ∈ Pu with lx = lu − 1, and if it exists, let y ∈ Pu with

ly = lu − 2. Assume that x ∈ Pa(u) ∩ Pb(u). If they exist, let w,w′, w′′ ∈ Pa(u) at

levels lu, lu + 1, lu + 2 respectively, and let z, z′, z′′ ∈ Pb(u) at levels lu, lu + 1, lu + 2

respectively. Let B := {u, x, y, w, w′, w′′, z, z′, z′′}. Then Scol2[L, u] ⊆ B. Note that

| Scol1[L, x] r {x}| ≤ 5. Let u′ ∈ Scol1[L, u] r {x, u}. The unique neighbor of u′ in

Pu′ is in B. Therefore wcol2[L, u] ≤ 9 + 5 + 3 ∗ 4 = 26.

Assume without loss of generality that x ∈ Pa(u)−Pb(u). If they exist, let w,w′, w′′ ∈

Pa(u) at levels lu, lu + 1, lu + 2 respectively. If they exist, let z1, z2, z3, z4, z5 ∈ Pb(u) at

levels lu−2, lu−1, lu, lu+1, lu+2 respectively. Let C1 := {y, x, u, w, w′, w′′, z1, z2, z3, z4}

and C2 := {y, x, u, w, w′, w′′, z2, z3, z4, z5}. Note that either Scol2[L, u] ⊆ C1 or

Scol2[L, u] ⊆ C2. Assume that Scol2[L, u] ⊆ C1. For each u′ ∈ Scol1[L, u], the

unique neighbor of u′ in Pu′ is in C1. Thus wcol2[L, u] ≤ 10 + 4 ∗ 4 = 26. As-

sume that Scol2[L, u] ⊆ C2. Assume that z5 /∈ Scol2[L, u], then scol2[L, u] ≤ 9.

For each u′ ∈ Scol1[L, u] r {z2}, the unique neighbor of u′ in Pu′ is in C2. Thus

wcol2[L, u] ≤ 9 + 5 + 3 ∗ 4 = 26. Assume that z5 ∈ Scol2[L, u]. Let P := uzz5 be the

witnessing path. By Lemma 4.1.1(3) applied to z2z3z4z5 ⊆ T and xuzz5 ⊆ G we get

z2 ≤T x. Assume that z2u ∈ E(G); by Lemma 4.1.1(2) applied to xu ∈ E(T )

and z2u ∈ E(G) we get x ≤T z2, a contradiction. So z2 /∈ Scol1[L, u]. Thus

for every u′ ∈ Scol1[L, u], the unique neighbor of u′ in Pu′ is in C2. Therefore

wcol2[L, u] ≤ 10 + 4 ∗ 4 = 26.

Assume that x /∈ Pa(u) ∪ Pb(u). If they exist, let w1, . . . , w5 ∈ Pa(u) with lwi
=

lu + (i − 3) and let z1, . . . , z5 ∈ Pb(u) with lzi = lu + (i − 3). Assume that w5, z5 /∈
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Scol2[L, u]. Let D1 := {y, x, u, w1, . . . , w4, z1, . . . , z4}, then Scol2[L, u] ⊆ D1 and

Scol1[L, x] ⊆ D1. For each u′ ∈ Scol1[L, u], the unique neighbor of u′ in Pu′ is in D1.

Since |D1| ≤ 11, wcol2[L, u] ≤ 11 + 3 ∗ 4 = 23. Assume without loss of generality that

w5 /∈ Scol2[L, u] and z5 ∈ Scol2[L, u]; then as we showed in the previous paragraph,

z2 ≤T x and z2 /∈ Scol1[L, u]. Let D2 := {y, x, u, w1, . . . , w4, z2, . . . , z5}. By (4.2.1)

if both z1, z5 ∈ Scol2[L, u] then z1 ∈ Pu (i.e., z1 = y). Thus Scol2[L, u] ⊆ D2.

Assume that z1 6= y and z1x ∈ E(G). By Lemma 4.1.1(2) applied to yx ∈ E(T ) and

z1x ∈ E(G) we get y ≤T z1, and so x ≤T z2, a contradiction. Thus z1 /∈ Scol1[L, x]

and so Scol1[L, x] ⊆ D2. For every u′ ∈ Scol1[L, u], the unique neighbor of u′ in Pu′ is

in D2. Therefore wcol2[L, u] ≤ 11 + 3 ∗ 4 = 23. Assume that w5, z5 ∈ Scol2[L, u], then

w2 ≤T x, z2 ≤T x and w2, z2 /∈ Scol1[L, u]. Let D3 := {y, x, u, w2, . . . , w5, z2, . . . , z5}.

By (4.2.1) if w1, w5 ∈ Scol2[L, u] then w1 = y, similarly, if z1, z5 ∈ Scol2[L, u] then

z1 = y. Thus Scol2[L, u] ⊆ D3. We have seen that assuming z1 6= y and z1 ∈ Scol1[L, x]

led to a contradiction. Analogously we also have w1 /∈ Scol1[L, x] if w1 6= y. Thus

Scol1[L, x] ⊆ D3. Since w2, z2 /∈ Scol1[L, u], for every u′ ∈ Scol1[L, u], the unique

neighbor of u′ in Pu′ is in D3. Therefore wcol2[L, u] ≤ 11 + 3 ∗ 4 = 23.

4.3.2 Example

In the above technic of defining the ordering L, choosing the drawing of G and the

vertex v are arbitrary. When a drawing of G and a vertex v are fixed, we perform a

breadth-first search of G starting from v. The graph G could have several breadth-first

trees rooted at v. Any one of those trees is a candidate for T . When T is fixed, the

spanning tree H of G∗ is determined in a unique way. Then we perform a depth-first

search F of H starting from the outer face f0. This could be done in several ways
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Figure 4.3. G′[A′ ∪ {c, w1, w2}]

(i.e., F is not unique). We give an example of a maximal planar graph G′ with a fixed

drawing, a vertex v, a breadth-first tree T ′ rooted at v and a depth-first search F ′ of

H ′ rooted at the outer face f0 such that wcol2[G
′, L] = 26 where L is a linear order

constructed using the above technic.

We use Figure 4.3 on page 90 to illustrate the drawing G̃′ of the graph G′. For
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simplicity, we write G′ for G̃′. The boundary of the outer face f0 is the cycle C := abca.

Let P1 := vz1z2a, P2 := vz3z4b and P3 := vw1w2c. The paths union P1∪P2 ∪ P3 divides

the internal region of R2 r C into three identical regions: A (the region bounded

by aP1vP2ba), B (the region bounded by bP2vP3cb) and C (the region bounded by

aP1vP3ca). Let A′ be the set of vertices of G′ in region A or it’s boundary (i.e.,

aP1vP2ba). Define the sets B′ and C ′ in a similar way. We give in Figure 4.3 on

page 90 the drawing of G′ that is induced by A′ ∪ {c, w1, w2}, we denote the drawing

induced by A′ by G′[A′]. The drawings G′[B′] and G′[C ′] are each identical to G′[A′].

Choose a breadth-first tree T ′ of G′ such that T ′ satisfies the following. T ′ is rooted

at v, it satisfies that z1 ≤T ′ z2 ≤T ′ x ≤T ′ w1, the subtree T ′[A′] and the ordering ≤T ′

induced by A′ coincide with Figure 4.4 on page 92. In Figure 4.3 on page 90 the edges

E(T ′) are colored black (the thin edges) and E(G′) r E(T ′) are colored green (the

thick edges).

Let H ′ be the spanning subgraph of the dual graph (G′)∗ of G′ with E(H ′) = {e∗ :

e ∈ E(G′) r E(T ′)}. Lemma 4.2.3 tells us that H ′ is a spanning tree of (G′)∗. We

will construct a depth-first search tree of H ′ starting from f0. This tree is presented

by an ordering F ′ of V (H ′) (faces of G′). We write f <F ′ f
′ if f appears before f ′ in

the ordering F ′.

The root v is the first vertex in the ordering L. The vertices z1, z2, z3, z4 ∈ X0 =

Pa ∪ Pb ∪ Pc. It is not important which one of those four vertices comes first in L,

so assume without loss of generality that z1 <L z2 <L z3 <L z4. Let f1 ∈ V (H ′) be

the face that is bounded by abz6a. Note that ab ∈ G′[f0] ∩G′[f1] and ab /∈ E(T ′), so

f0f1 ∈ E(H ′). Add f1 to the ordering F ′ (i.e., f0, f1 is the first segment of F ′).

The vertices x, z5, z6 ∈ X1 r X0 = V (Pa ∪ Pb ∪ Pz6) r X0 and x is the closer

vertex to v along Pz6 then z5, z6 in this order. Thus f1 = f(x) = f(z5) = f(z6) and
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Figure 4.4. The Subtree T ′[A′] and the Ordering ≤T ′

z4 <L x <L z5 <L z6. Let f2 be the face of the cycle bz6z8b, so X2 = Pb ∪ Pz6 ∪ Pz8 .

Since bz6 ∈ (G′[f1] ∩ G′[f2]) − T ′, f1f2 ∈ E(H ′). Add f2 to F ′. The vertices

z7, z8 ∈ Pz8 − (X0 ∪X1). Thus f2 = f(z7) = f(z8) and z6 <L z7 <L z8.

Let f3 be the face of the cycle z6z8v1z6. The edge z6z8 ∈ (G′[f2] ∩ G′[f3]) − T ′,

so f2f3 ∈ E(H ′). Add f3 to F ′. As z ∈ Pv1 − (X0 ∪ X1 ∪ X2), f3 = f(z) and

z8 <L z. Let f4 be the face of the cycle zz6v1z. Since z6v1 ∈ (G′[f3] ∩ G′[f4]) − T ′,

f3f4 ∈ E(H ′). Add f4 to F ′. Let f5 be the face of the cycle zz5z6z. The edge

zz6 ∈ (G′[f4] ∩G′[f5])− T ′, so f4f5 ∈ E(H ′). Add f5 to F ′. Let f6 be the face of the

cycle zz5z10z. Since zz5 ∈ (G′[f5] ∩ G′[f6]) − T ′, f5f6 ∈ E(H ′). Add f6 to F ′. The

vertices z9, z10 ∈ Pz10 − (X0 ∪ . . . ∪X5). So f6 = f(z9) = f(z10) and z <L z9 <L z10.

Now we proceed in the same fashion with less details. Let f7 be the face of the
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Figure 4.6. f(z) and Scol1[L, z]

cycle zz10z11z. Add f7 to F ′, this is possible because f6f7 ∈ E(H ′). Then f7 = f(z11)

and z10 <L z11. Let f8 be the face of the cycle v2z10z11v2, f9 the face of the cycle

v2v3z11v2, f10 the face of the cycle v2v3v5v2. Add the segment f8, f9, f10 to F ′, this

is possible because f7f8f9f10 ⊆ H ′. Then f10 = f(w) and z11 <L w. Let f11 be the

face of the cycle v3v4v5v3, f12 the face of the cycle v3v4z11v3, f13 the face of the cycle

wv4z11w, f14 the face of the cycle wz11z12w. Add the segment f11, f12, f13, f14 to F ′

(note that f10f11f12f13f14 ⊆ H ′). Then f14 = f(z12) and w <L z12.
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Let f15 be the face of the cycle z11z12z14z11, f16 the face of z12z14z15z12, f17 the

face of v6z14z15v6. Add the segment f15, f16, f17 to F ′. Then f15 = f(z13) = f(z14),

f16 = f(z15), f17 = f(w′) and z12 <L z13 <L z14 <L z15 <L w′. Let f18 be the

face of w′v6z14w′, f19 the face of w′z13z14w′, f20 the face of w′z13z17w′, f21 the face

of w′z17z18w′. Add the segment f18, f19, f20, f21 to F ′. Then f20 = f(z16) = f(z17),

f21 = f(z18) and w′ <L z16 <L z17 <L z18.

Let f22 be the face of z17z18z19z17, f23 the face of v8z18z19v8. Add the segment

f22, f23 to F ′. Then f22 = f(z′) = f(z19), f23 = f(u) and z18 <L z
′ <L z19 <L u. Now

F ′ = f0, . . . f23. Extend F ′ to a depth-first search tree of H ′.

Now we are ready to show that wcol2[L, u] = 26. Theorem 4.3.1 tells us that

wcol2[L, u] ≤ 26. For each s ∈ {x,w,w′, z, z′}, s <L u and su ∈ E(G′). So

{u, x, w, w′, z, z′} ⊆ Scol1[L, u]. For each s ∈ {z18, z19}, s <L u and there is a

path of length two stu ⊆ G′ with u <L t. So {z18, z19} ⊆ Scol2[L, u], see Fig-

ure 4.9 on page 94. For each s ∈ {v, z1, z2, z3, z4}, s <L x and sx ∈ E(G′). So

{v, z1, z2, z3, z4} ⊆ Scol1[L, x] ⊆ Wcol2[L, u], see Figure 4.5 on page 93. For each

s ∈ {z5, z6, z7, z8}, s <L z and sz ∈ E(G′). So {z5, z6, z7, z8} ⊆ Scol1[L, z] ⊆

Wcol2[L, u], see Figure 4.6 on page 93. For each s ∈ {z9, z10, z11}, s <L w

and sw ∈ E(G′). So {z9, z10, z11} ⊆ Scol1[L,w] ⊆ Wcol2[L, u], see Figure 4.7

on page 94. For each s ∈ {z12, z13, z14, z15}, s <L w′ and sw′ ∈ E(G′). So

{z12, z13, z14, z15} ⊆ Scol1[L,w
′] ⊆ Wcol2[L, u], see Figure 4.8 on page 94. For each

s ∈ {z16, z17}, s <L z
′ and sz′ ∈ E(G′). So {z16, z17} ⊆ Scol1[L, z

′] ⊆Wcol2[L, u], see

Figure 4.9 on page 94.

Thus {u, x, w, w′, z, z′, v, z1, . . . z19} ⊆Wcol2[L, u], those vertices are colored blue

in Figure 4.3 on page 90. This shows that wcol2[L, u] = 26.
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Chapter 5

A NEW CHARACTERIZATION OF NOWHERE DENSE CLASSES

We give a new characterization of monotone nowhere dense classes by proving that

the converse of Lemma 1.5.13 is also true. We will use a technique similar to the one

used in Theorem 1.5.9.

Lemma. (Lemma 1.5.13) Let C be a nowhere dense class of graphs. Then for every

r ∈ N and ε > 0 there exists an integer n0 such that for every graph G ∈ C with

|V (G)| ≥ n0 we have

domr(G) ≤ |V (G)|2εα2r(G).

We first construct a somewhere dense class of graphs C ′: For every positive integers

n ≥ 4 and s ≥ 1, let Gn,2s-1 be the graph obtained from Kn by subdividing each

edge 2s− 1 times. Let Y be the set of vertices with degree n− 1 in Gn,2s−1; and let

X be the set of the middle vertices of the paths corresponding to the edges of Kn

in Gn,2s−1. Let Qn,2s−1 be the graph obtained from Gn,2s-1 by adding a new vertex

v adjacent to all the vertices in X. Dvorak [8] showed that doms(Qn,2s−1) ≥ n
2
and

α2s(Qn,2s−1) ≤ 2.

Let G and H be graphs. We write H �tr G if G contains a topological minor of

H where each edge is subdivided at most r times. From Definition 1.5.1 and since

every graph H is a subgraph of K|H|, we have the following equivalent definition of

somewhere dense class. A class of graphs C is somewhere dense if there exists r ≥ 1

such that for all graphs H there exists a graph G ∈ C such that H �tr G.

Now we are ready to prove the result.
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Theorem 5.0.1. Let C be a monotone class of graphs. The class C is nowhere dense

if and only if (*) for every k ∈ N and ε > 0 there exists n0 ∈ N such that for every

graph G ∈ C with |G| ≥ n0 we have

domk(G) ≤ |G|2εα2k(G).

Proof. The forward implication is Lemma 1.5.13. We prove the backward implication.

Assume for a contradiction that (*) holds, but C is somewhere dense. Then there

exists s ∈ N such that for all graphs H there exists a graph G ∈ C such that H �ts G.

Let A = {r(r+ 2) : r ∈ [s]}∪ {s}. For every k ∈ A and ε = 1
20
, (*) returns nk. Let

n0 = maxk∈A{nk, 2s, 64} and let n′ =
(
n0

2

)
· (2s− 1) + n0 + 1; from Ramsey Theorem,

there exists an n′′ ≥ 2 such that every n′′-set X has a monochromatic n′-subset with

respect to any (s+ 1)-coloring of [X]2. Let G ∈ C such that Kn′′ �ts G. Let G′ be the

depth-s topological minor of Kn′′ contained in G. Since C is monotone, G′ is also in C.

Let Puv denote the path corresponding to the edge uv ∈ Kn′′ in G′. Define the

coloring c : E(Kn′′)→ [s] ∪ {0} such that c(uv) = ‖Puv‖ − 1. Ramsey Theorem tells

us that Kn′′ contains a clique of size n′ (i.e., Kn′) such that c(e) = s′ for every e ∈ Kn′

where s′ ∈ [s] ∪ {0}.

Case 1: s′ = 0.

Then Kn′ ⊆ G′ ∈ C; as C is monotone, Kn′ ∈ C too. Since |Qn0,2s−1| =
(
n0

2

)
· (2s− 1) +

n0 + 1 = n′, Qn0,2s−1 ⊆ Kn′ . Thus Qn0,2s−1 ∈ C. As |Qn0,2s−1| ≥ n0, Qn0,2s−1 satisfies

(*). So

doms(Qn0,2s−1) ≤ |Qn0,2s−1|2εα2s(Qn0,2s−1)

≤ (n3
0)

2εα2s(Qn0,2s−1)

≤
√
n0α2s(Qn0,2s−1).

This contradicts the fact that α2s(Qn0,2s−1) ≤ 2 and doms(Qn0,2s−1) ≥ n0

2

Case 2: s′ is a positive integer.
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Since |Qn0,2s′−1| =
(
n0

2

)
· (2s′ − 1) + n0 + 1 ≤ n′, Qn0,2s′−1 ⊆ Kn′ . Let H ′ be the graph

obtained from Kn′ by subdividing each edge s′ times, and let Q′ be the graph obtained

from Qn0,2s′−1 by subdividing each edge s′ times. Then Q′ ⊆ H ′ ⊆ G′; since C is

monotone, Q′ is a graph in C.

From assumption we have

doms′(s′+2)(Q
′) ≤ |Q′|2εα2s′(s′+2)(Q

′).

Note that
|Q′| = |Qn0,2s′−1|+ |E(Qn0,2s′−1)| · s′

≤
(
n0

2

)
· (2s′ − 1) + n0 + 1 +

(
n0

2

)
· (2s′ + 1)s′

≤ 2s′n2
0 + 3s′2n2

0

≤ n3
0 + n4

0

< 2n4
0

< n5
0

So |Q′|2ε < √n0 ≤ n0

8
.

In the rest of the proof, we will show that α2s′(s′+2)(Q
′) ≤ 2. and doms′(Qn0,2s′−1) ≤

2 doms′(s′+2)(Q
′) which gives a contradiction with the fact that doms′(Qn0,2s′−1) ≥ n0

2
.

Denote the set of vertices of degree n0 − 1 in Q′ by I; and let Is′ be the set of

vertices in Q′ within distance at most s′ from some vertex in I. The distance between

any two vertices in Is′ in the graph Q′ is at most 2s′(s′ + 2). In addition, the distance

between any two vertices in V (Q′)\Is′ is at most 2s′(s′ + 1). Thus α2s′(s′+2)(Q
′) ≤ 2.

Let B ⊆ Q′ such that |B| = doms′(s′+2)(Q
′) and every vertex v ∈ Q′ is within

distance at most s′(s′ + 2) from some vertex u ∈ B in Q′. Let C be the set of

vertices obtained from B by replacing each subdividing vertex w with the closest two

branch vertices in Q′. Then C ⊆ Qn0,2s′−1 and |C| ≤ 2|B|. In addition, every vertex
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v ∈ Qn0,2s′−1 is within distance at most s′ from some vertex u ∈ C. Hence,

doms′(Qn0,2s′−1) ≤ 2 doms′(s′+2)(Q
′).
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