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ABSTRACT

In large modern urban areas, traffic congestion and fatality have become two serious

problems. To improve the safety and efficiency of ground mobility, one promising

solution is the cooperative control of connected and automated vehicle (CAV) systems,

which can avoid human drivers’ incapability and errors. Taking advantage of two-

dimensional (2D) vehicular control, this dissertation intends to conduct a thorough

investigation of the modeling, control, and optimization of CAV systems with flocking

control. Flocking is a dynamic swarm congregating behavior of a group of agents with

self-organizing features, and flocking control of CAV systems attempts to achieve the

maintenance of a small and nearly constant distance among vehicles, speed match,

destination cohesion, and collision and obstacle avoidance.

Concerning artificial multi-agent systems, such as mobile robots and CAV systems,

a set of engineering performance requirements should be considered in flocking theory

for practical applications. In this dissertation, three novel flocking control protocols are

studied, which consider convergence speed, permanent obstacle avoidance, and energy

efficiency. Furthermore, considering nonlinear vehicle dynamics, a novel hierarchical

flocking control framework is proposed for CAV systems to integrate high-level flocking

coordination planning and low-level vehicle dynamics control together. On one hand,

using 2D flocking theory, the decision making and motion planning of engaged vehicles

are produced in a distributed manner based on shared information. On the other hand,

using the proposed framework, many advanced vehicle dynamics control methods

and tools are applicable. For instance, in the low-level vehicle dynamics control, in

addition to path trajectory tracking, the maintenance of vehicle later/yaw stability

and rollover propensity mitigation are achieved by using additional actuators, such
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as all-wheel driving and four-wheel steering, to enhance vehicle safety and efficiency

with over-actuated features.

Co-simulations using MATLAB/Simulink® and CarSim® are conducted to illus-

trate the performances of the proposed flocking framework and all controller designs

proposed in this dissertation. Moreover, a scaled CAV system is developed, and field

experiments are also completed to further demonstrate the feasibility of the proposed

flocking framework. Consequently, the proposed flocking framework can successfully

complete a 2D vehicular flocking coordination. The novel flocking control protocols are

also able to accommodate the practical requirements of artificial multi-agent systems

by enhancing convergence speed, saving energy consumption, and avoiding permanent

obstacles. In addition, employing the proposed control methods, vehicle stability is

guaranteed as expected.
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Chapter 1

INTRODUCTION

1.1 Motivation: Why Connected and Automated Vehicle Systems?

In large modern urban areas, traffic congestion and fatality have become two

serious problems. Statistically, in 2017, traffic jams resulted in 8.8 billion hours of

delayed person-hours and $179 billion economic loss in the U.S., which is estimated to

increase to $237 billion by 2025 (Schrank, Eisele, and Lomax 2019). Moreover, based

on the data obtained from the World Health Organization, traffic accidents caused 1.35

million death worldwide in 2016, whilst it has become the eighth leading cause of death

for people of all ages (World Health Organization 2018). In the U.S., the increase in

traffic fatalities in 2016, 6%, even reached the highest point in nearly five decades

(NHTSA’s National Center for Statistics and Analysis 2016). One notable reason for

those unexpected problems is that car drivers may not be able to give appropriate

commands to avoid traffic congestion or fatality because of human’s inattention and

incapability to timely observe, predict, and react. It is also reported that 94% of

car crashes in the US are due to human errors. Therefore, researchers and engineers

propose connected and automated vehicle (CAV) systems as a new promising solution

to tackle urban transportation problems by excluding human errors.

Before diving deep into the concept of CAV systems, I would like to define several

terminologies used throughout this dissertation.
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Autonomous driving technology : the technology drives vehicles only based on

perception information and vehicle states acquired from onboard sensors without

communication with other vehicles or infrastructures.

Automated vehicle: the vehicle uses mechatronics actuators and autonomous

driving technologies to replace human driving.

Connected vehicles : the vehicles are connected together through wireless commu-

nication networks to share information.

Using the aforementioned terminologies, the CAV systems in this dissertation

refer to a group of automated vehicles that are connected together for cooperative

control purposes. Especially, the CAV systems can be explored in the context of

vehicular cyber-physical systems (CPS). A general CPS, as a new generation embedded

system, integrates a collection of real-time decision making, networking, and physical

processing in a feedback loop (Lee 2008; Alur 2015; Lee and Seshia 2016). Specifically,

the vehicular CPS is composed of multiple automated vehicles and vehicular wireless

communication networks.

The autonomous driving technology is employed as the physical-processing and

decision-making layers of vehicular CPS, which enables the autonomy of individual

vehicles. On the one hand, the development of vehicle electrification including drive-

by-wire technologies paves the way for autonomous driving, which uses electrified

actuators to generate control efforts. In other words, the conventional mechanical

control systems, such as pedals, steering columns, pumps, and belts, are substituted by

electronic control systems. As a result, the drive-by-wire technologies make it possible

to drive vehicles using electronic signals, instead of manipulating the mechanical control

systems with human intervention. Besides, the drive-by-wire systems also inspire over-

actuated vehicle controls, which provides extra control degrees of freedom to maintain
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vehicle stability and save energy. On the other hand, powered by the advancement of

onboard sensing, data processing, and real-time decision making, various autonomous

driving control algorithms for individual vehicles have been prevalently investigated,

such as lane-keeping control, pedestrians and obstacles detection, trajectory-tracking

control, and adaptive cruise control (ACC) (Martínez-García, Zhang, and Gordon 2016;

Sivaraman and Trivedi 2013; Desjardins and Chaib-Draa 2011; Potsaid et al. 2007). A

notable success instance of individually autonomous driving was the winner, “Tartan

Racing” team, led by Carnegie Mellon University, in the 2007 DARPA Urban Challenge

(Darms et al. 2009). Moreover, Waymo LLC. has recently launched to test their fully

self-driving cars on public roads in Arizona without a human backup driver, which

could be considered as the first Level 4 automated driving car defined by the Society

of Automobile Engineers on public roads in the world (Jones 2017).

While the individual automated vehicles are expected to handle most of the

complex traffic scenarios, some inherent drawbacks appear. First, the onboard sensors

of automated vehicles usually have inherent measurement delays, and it is also time-

consuming to observe or estimate states of other vehicles. The time delays in perception

not only significantly influence the real-time construction of vehicle surroundings but

also jeopardize autonomous driving safety. Second, in some particular situations,

the ranging sensors, such as radars, of individual automated vehicles sometimes fail

to detect obstacles or other vehicles. For example, a vehicle cannot measure the

inter-vehicle gap to its preceding vehicle during cornering as well as the states of the

preceding vehicle. Such information absence of other vehicles may result in unexpected

safety issues as well. Finally, the cooperative control among a group of automated

vehicles is anticipated in intelligent transportation systems to improve safety and

traffic capacity, whose objectives include the maintenance of a small and nearly
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constant distance among vehicles, speed match, destination cohesion, and collision and

obstacle avoidance. However, individual automated vehicles cannot complete those

cooperative tasks with the absence of information sharing. Therefore, the vehicular

wireless network is required as the communication layer of a vehicular CPS to connect

individual automated vehicles together, so-called CAV systems.

Using vehicular wireless communication, the vehicle states and other perception

information can be directly acquired without the limitations of sensor delays and

state observation/estimation, whilst the perception capability of onboard sensors are

also compensated without driving scenario limitations. In addition, the cooperative

control can also be achieved based on the shared information and control protocol

design. To sum up, the CAV systems have great potential to resolve traffic congestion

and fatality issues benefited by vehicle autonomy and vehicular communication.

1.2 Literature Review

1.2.1 Cooperative Control in CAV Systems

Back in the late 1980s, research on the cooperative control of multi-vehicle systems

was investigated to achieve consensus phenomena via centralized or distributed control

protocols, which referred to dynamical coordination of a group of CAVs connected

by wireless communication (Chen and Cheng 2010; Murray 2007; Cao et al. 2012).

Benefited from the shared information and coordinated behaviors, the cooperative

control of CAV systems has broad engineering applications in transportation systems,

military systems, mobile sensor networks, robotic systems, and testbeds (Murray

2007). Recently, with the advancement of vehicular wireless communication, onboard

4



sensing and data processing, and control-by-wire actuation, the cooperative control of

CAV systems is explored in the context of vehicular CPS (Cao et al. 2012).

In the literature, the cooperative control of CAV systems can be considered as a

combination of four components, which are agent dynamics, communication topology,

distributed controller, and formation geometry, respectively (Li et al. 2015). In

addition, three different types of cooperative control of CAV systems can be roughly

summarized. The interested readers may refer to (Siegel, Erb, and Sarma 2017;

Rios-Torres and Malikopoulos 2016; Guanetti, Kim, and Borrelli 2018) for the detailed

survey of CAV systems.

The first type is the cooperative adaptive cruise control (CACC), which is an

extension of the ACC (Van Arem, Van Driel, and Visser 2006). The ACC aims to

achieve constant distance or time gap among vehicles via automated speed control

to release human driver burden (Vahidi and Eskandarian 2003). However, the ACC

has issues resulted from inherent sensor delays and string instability. Thus, the

CACC typically tries to maintain constant time gaps among multiple vehicles via

wireless communication, through which the issues of the ACC are resolved (Milanes

et al. 2014). While most of the CACC can control vehicle speeds automatically, the

steering commands still need to be provided by human drivers.

The second type of cooperative control of CAV systems is vehicle platooning, which

tries to improve transportation capacity, safety, and energy efficiency through a rigid

vehicle platoon formation (Jia et al. 2016). Back in the 1980s, many fundamental

theories and concepts in the vehicle platooning control were investigated in Partners

for Advanced Transportation Technology (PATH) research program at the University

of California, Berkeley (Hedrick, Tomizuka, and Varaiya 1994). Compared with the

CACC, the platooning can provide additional active steering control and maintain
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very short vehicle distances with a close coupling relationship among vehicles (Jia

et al. 2016; Hedrick, Tomizuka, and Varaiya 1994). Moreover, the multiple platooning

(multi-platooning) control was also proposed, which could consider multi-platoon

joining and leaving maneuvers (Fernandes and Nunes 2015).

Nevertheless, both the CACC and the vehicle platooning control mainly involve

a one-dimensional (1D) fluid model and a single-string communication topology

within a single dedicated lane traffic flow. In other words, vehicle lateral dynamics

and communication are not substantially discussed. Therefore, the CACC and the

platooning cannot fully take advantage of multi-vehicle cooperation in two-dimensional

(2D) traffic.

The third type is the flocking control of CAV systems, even though few research

papers discuss the flocking application of CAV systems (Iftekhar and Olfati-Saber 2012;

Xu et al. 2016; Liu and Xu 2015). The flocking is a swarm ubiquitous congregating

phenomenon in groups of agents with self-organizing features, which can be modeled

and analyzed by developing different flocking theories (Tanner, Jadbabaie, and Pappas

2003; Arcak 2007; Olfati-Saber 2006). More descriptions and details of flocking

theories would be provided in sections 1.2.2 and 2.2. With the development of the

flocking theory, while the concept “flocking” is still used, more factors are enclosed in

the flocking theory, such as objective tracking, and obstacle avoidance (Olfati-Saber

2006; Tanner, Jadbabaie, and Pappas 2007; Su, Wang, and Lin 2009; R. Olfati-Saber

and R. Murray 2004). Therefore, currently, most of flocking theories do not refer to a

unique flocking behavior but the integration of flocking consensus, objective tracking,

and obstacle avoidance. Considering various cooperative swarm behaviors for the

multi-agent system, different swarm controls may have different global objectives

(Siciliano and Khatib 2016). Theoretically, compared with other swarm controls,
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the flocking theory is able to satisfy all aforementioned objectives of the cooperative

control of CAV systems. Namely, the flocking theory has the closest control goals for

the application of CAV systems.

The flocking control has a good fit to achieve the full 2D interaction in transporta-

tion systems, in which the cooperative behaviors are anticipated for CAV systems to

improve the traffic energy efficiency, capacity, and safety. Besides, flocking control is

suitable for implementations. The flocking control is usually achieved in a distributed

manner without a centralized communication center, which shows vast advantages in

terms of low cost, robustness, and strong scalability (Wang and Peng 2012). Moreover,

communications among agents can be frequently connected or disconnected, which are

represented by uncertain switching algebraic graphs instead of fixed and symmetrical

topology (Olfati-Saber 2006). Therefore, flocking theories can be applied to a group

of automated vehicles without the scalability issue, and only the local communication,

computation, and sensing are required. Hence, the flocking theory processes great

potential to deal with traffic congestion and fatalities problems.

Note that in this dissertation, the concept of “agent” is used in generous multi-

agent systems, which can be replaced by “vehicle” or “CAV” for specific vehicular

applications.

1.2.2 Flocking Control in Multi-Agent Systems

Flocking is a swarm dynamic coordination behavior of multi-agent systems with

maintaining the constant inter-agent distance, matching the speed, and avoiding the

collision. In nature, flocking phenomena prevalently exist in the migrations of a group

of animals, such as birds, fishes, bees, and bacteria (Okubo 1986; Toner and Tu
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1998). Featured by self-organizing characteristic, strong scalability, and uncertain

interaction communication topology, flocking phenomena spur broad interdisciplinary

engineering applications in the distributed cooperative control of artificial multi-agent

systems over large-scale complex networks, such as intelligent transportation systems,

military systems, mobile robots, and mobile sensor networks (Murray 2007; Motsch

and Tadmor 2011; Tanner 2007; Turgut et al. 2008).

In past decades, to understand this fascinating and complicated motion pattern,

scientists and researchers investigated the basic theory in three main aspects to

model, animate, and analyze the flocking phenomena. First, a set of flocking rules

was proposed to describe the working principles of natural flocks. For example,

Reynolds proposed three well-known heuristic rules in the 1980s (Reynolds 1987),

which consisted of cohesion, separation, and alignment. Other flocking rules such

as virtual leader seeking of flocks (Su, Wang, and Lin 2009) and obstacle avoidance

(R. Olfati-Saber and R. Murray 2003) were also investigated. For instance, Su et al.

studied the goal-seeking of flocks with multiple virtual leaders (Su, Wang, and Yang

2008). Moreover, Tanner et al. discussed the flocking obstacle avoidance (Tanner,

Jadbabaie, and Pappas 2003).

Second, many mathematical modeling methods of flocks were also studied. In

1987, Reynolds developed the Boid model to simulate flocking behaviors together

with his three simple rules (Reynolds 1987). In 1995, the Vicsek model was proposed

by simplifying the Boid model and achieving velocity synchronization and position

stabilization (Vicsek et al. 1995). The Vicsek model was extended in 2002 to three-

dimensional space with sensing zones, which is called the Couzin model (Couzin

et al. 2002). The Couzin model can exhibit behaviors of torus and self-sorting. In
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addition, the Cucker-Smale model is also a pioneering work to describe how agents

interact to align with their neighbors (Cucker and Smale 2007).

Third, regarding different agent dynamics, a great number of flocking control

methods were developed to achieve the proposed flocking rules, such as Lyapunov-

based approaches, optimization-based approaches, graph-theoretic approaches, and

passivity-based approaches (R. Olfati-Saber and R. Murray 2004; Tanner, Jadbabaie,

and Pappas 2003; Liu and Xu 2015; Arcak 2007; Hong et al. 2007; Dunbar and Murray

2006). Representatively, Olfati-Saber suggested a theoretical framework for analysis

and design of decentralized flocking algorithms with a switching network connectivity

structure (Olfati-Saber 2006), which integrated the passivity-based approach with a

velocity consensus term for objective tracking.

1.2.3 Electric Vehicle System and Control with Over-Actuated Features

Spurred by the decline of fossil fuel and the strict emission requirements for

environmental protection, the development of electric vehicles (EVs) with few/no

emissions and high efficiency gathers significant concerns recently (Wada 2009; Noori,

Gardner, and Tatari 2015; Burke 2007). In 2017, there are more than 3 million

EVs on the road worldwide, and the sales of new EVs surpassed 1 million units

(Noori, Gardner, and Tatari 2018). Concurrently, the rapidly expanded market of EVs

also promotes the explosion of new vehicle electrification technologies, such as the

distributed propulsion architecture with in-wheel motors (IWMs) and steer-by-wire

actuation systems (Noori, Gardner, and Tatari 2018; Murata 2012). One significant

advantage of these electrification technologies is to provide redundant actuators to

improve the safety, energy efficiency, and agility of EVs (F. Wang et al. 2019; Peng
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et al. 2019). For instance, the direct yaw moment control (DYC) and the four-wheel

steering (4WS) control achieved by the IWMs and 4WS can simultaneously prevent

vehicle rollover and maintain the input-output stability of vehicle planar motions

(H. Wang et al. 2014; Wang and Chen 2018c).

For vehicles with over-actuated features, a hierarchical control configuration is a

common framework to generate high-level virtual controls for certain control purposes.

Then, control allocation is usually utilized to produce real controls by distributing the

virtual controls to all available actuators. Intuitively, the number of available actuators

is more than the number of virtual controls. Actually, a control allocation problem

is an optimization problem with constraints, which penalizes the dissatisfaction of

virtual controls as well as the energy consumption of real controls. The detailed

control allocation information may refer to (Johansen and Fossen 2013).

Using control allocation, researchers and engineers have successfully enhanced

vehicle stability and energy efficiency. For example, an automotive vehicle yaw

stabilization scheme was developed via a dynamic control allocation approach (Tjonnas

and Johansen 2009). Furthermore, an energy efficiency improvement method for

electric vehicle planar motion was proposed with adaptive control allocation (Chen

and Wang 2013).

1.3 Challenges in Flocking Control of CAV Systems

Currently, numerous studies about 1D CACC and platooning were explored.

However, the flocking modeling and control of CAV systems for a general 2D planar

motion are not well studied.
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First, nonlinear vehicle dynamics are not fully explored in the flocking control of

CAV systems. For example, a group of agent models simplified as single or double-

integrator dynamics were used to directly apply existing flocking control protocols

(Liu and Xu 2015; Iftekhar and Olfati-Saber 2012), instead of using practical vehicle

planar dynamics with nonlinear tire models.

Second, vehicle yaw/orientation dynamics was not well addressed. In the existing

flocking theory (Olfati-Saber 2006), the orientation of each agent was not intentionally

controlled when the simplified point-mass modeling of agents was applied. Theoreti-

cally, the double-integrator dynamics is under-actuated when the additional control

of yaw/orientation dynamics is required. Hence, Olfati-Saber firstly proposed to use

the near-identity diffeomorphism (NID) transformation to partially linearize a class

of kinematic SE (2) vehicles that engaged yaw motions (Olfati-Saber 2002; Iftekhar

and Olfati-Saber 2012). However, a vehicle could be an over-actuated system. In this

regard, the NID transformation cannot be directly applied without sacrificing the

control performance of CAV systems since the control degrees of freedom cannot be

fully utilized. Moreover, the application of the NID transformation in the flocking

theory may lead to inappropriate flocking control protocols, which are transformed

for the yaw/orientation control of vehicles. The stability of vehicles, especially for

yaw motions, is therefore not guaranteed. The proof of the stability issue of the NID

transformation is referred to as section 4.2.

Third, the existing flocking control is not suitable for transportation system

applications. On the one hand, the original flocking control algorithms do not adapt

to traffic rules and shared driving environments. For instance, the assumptions of free

flocking and temporary obstacles may fail or even be impossible in transportation

systems, in which lane boundaries could be permanent obstacles for every agent/vehicle.
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Furthermore, the flocking behaviors of vehicles also need to handle lane-keeping

and lane-changing situations based on the traffic rules. On the other hand, the

specific requirements of flocking performances emerged from transportation system

applications. For example, CAV systems may need to consider energy efficiency from

a system level. Moreover, convergence speed is also a critical concern in practical

engineering applications.

Fourth, over-actuated vehicle control systems still need further investigations

regarding complicated tire-road contact conditions. Additional actuators or novel

advanced control methods are excepted to be applied to improve vehicle safety.

Fifth, no experimental validation has been carried out to prove the feasibility,

robustness, and accuracy of flocking applications. The field tests should be conducted

to bridge flocking theoretical works and experimental validations, in which all CAVs

are fully controlled in a distributed manner. The tunable parameters in flocking

algorithms could be obtained for real vehicles as well.

1.4 Statement of Contributions

To tackle the aforementioned challenges, this dissertation seeks to promote the

application of the 2D flocking theory in the cooperative control of CAV systems with

over-actuated features. The board contributions of this dissertation lie in the following

aspects, which are summarized in Fig. 1 as well1.

1To make this dissertation completed, in Appendix A, several novel vehicle dynamics control
methods are studied by fully utilizing the advantages of extra actuators. Maintaining vehicle stability,
additional actuators, namely active yaw stabilizer and active rollover preventer, are applied to
enhance vehicle yaw/lateral and roll stability. To detect both tripped and untripped rollover, a new
rollover index, named mass-center-position metric, is developed.
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Figure 1. Summary of dissertation contributions.

First, several new flocking control algorithms are developed to accommodate

flocking rules and traffic environments. The performance considerations of fast

convergence speed, permanent obstacle avoidance, and energy efficiency are used to

extend the engineering applications of flocking theory.

Second, a novel hierarchical flocking control framework for CAV systems to integrate

path planning, speed profile generation, and nonlinear vehicle dynamics control. With

hierarchical configuration, the proposed flocking control framework can adapt to

complicated vehicle dynamics with a self-organizing feature. In the high-level layer,

applying a 2D flocking theory, the cooperative trajectories (paths and speeds) of

CAV systems are produced via a distributed control based on shared information.

In the low-level layer, the trajectory tracking and vehicle orientation guidance of
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vehicles are achieved by a feedforward and feedback control design. In particular,

control allocation is established to take the merits of the over-actuated properties of

each vehicle. Note that the proposed framework can be applied to other autonomous

systems as well, such as unmanned aerial vehicles, autonomous underwater vehicles,

and mobile robots.

Third, experimental validations are conducted to demonstrate the proposed hierar-

chical flocking control framework. Three scaled CAVs with a wireless communication

network are developed as a general research platform. Additionally, three flocking

cases are also exhibited to further confirm results obtained from simulations in a

practical fashion.

1.5 Dissertation Roadmap

This dissertation is organized in the following way.

In Chapter 2, a brief preliminary is presented to summarize several key concepts of

algebraic graph theory. Moreover, a brief introduction of conventional flocking control

algorithms and basic analysis tools is given.

In Chapter 3, several novel flocking rules and protocols are proposed to accom-

modate transportation engineering applications. The convergence speed, permanent

obstacle avoidance, and energy efficiency are investigated.

In Chapter 4, a novel hierarchical flocking coordination framework is proposed to

integrate flocking control and vehicle dynamics control. Besides, the sectionalization

and transformation of vehicle models, vehicle predictive orientation guidance, and

low-level controller design are also presented.
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In Chapter 5, experiments are conducted to demonstrate novel flocking protocols. A

scaled CAV system is developed for experimental research. Furthermore, experimental

results are analyzed to convince the proposed hierarchical flocking control of CAV

systems.

Finally, in Chapter 6, conclusions are summarized, and future potential research

directions are proposed.

15



Chapter 2

PRELIMINARIES

The graph-based abstraction method plays an important role in the analysis

and synthesis control of multi-agent systems, which provides a system-level network

topology description in terms of the interaction geometry including vertices and

edges. Hence, this chapter covers some basic concepts and analysis tools used in

algebraic graph theory used throughout this dissertation. More details about algebraic

graph theory may refer to (Godsil and Royle 2013). In addition, several significant

preliminary results of the flocking control theory are discussed as well.

2.1 Algebraic Graph Theory

2.1.1 Basic Concepts

The geometry topology of flocks is modeled by a proximity structure (G, q), where

q = col(q1, . . . , qn) ∈ Rmn denotes the spatial geometry configuration of n agents in a

m-dimensional space, and G is the proximity net of a graph that consists of a pair of

vertices and edges indicated in (2.1).

E(q) = {(i, j) ∈ V × V : ‖qj − qi‖ < dr, i 6= j},V = {1, 2, . . . , n}, (2.1)

where dr is the interaction range of agents, and ‖ · ‖ represents the 2-norm operation.

Based on the edge definition, a set of spatial neighbors of agent i is defined by

(2.2).

Ni = {j ∈ V : ‖qj − qi‖ < dr, i 6= j}. (2.2)
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2.1.2 Graph Matrices and Laplacians

The adjacency matrix A = [aij ] of a graph is a matrix where the elements represent

the connective weights among vertices. When a pair of vertices are connected through

an edge, we have aij 6= 0 ⇐⇒ (i, j) ∈ E ; otherwise, aij = 0. A graph is called weighted

whenever its adjacency matrix contains other than just 0-1 elements. Furthermore, a

graph is called undirected if an only if its adjacency matrix is symmetric.

The Laplacian matrix of a graph, denoted as L, and its spectral properties are

used to analyze convergence and stability performance. The scalar graph Laplacian is

a matrix associated with G, which is defined in (2.3).

L = ∆(A)− A, (2.3)

where ∆(A) is the degree matrix of G as decipted in (2.4).

∆(A) = diag

 n∑
j=1

aij

 , i ∈ V . (2.4)

Laplacian matrix L always has a zero eigenvalue λ1 = 0. To evaluate the convergence

performance of a multi-agent system, the minimum non-zero eigenvalue of Laplacian

matrix, denoted as λ2(L), indicates the worst-case convergence speed.

2.2 Flocking Theory

2.2.1 Flocking Control

In flocking theory, three categories of agents are typically defined, which are

α-agents, β-agents, and γ-agents, respectively. The α-agents represent the flock
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that performs flocking behaviors, the dynamics of which are depicted as a class of

double-integrator equations in (2.5).
q̇i = pi

ṗi = ui

i ∈ V , (2.5)

where qi, pi and ui ∈ Rm denote the position, velocity and control input of α-agent

i. The β-agents represent obstacles, which typically interact with α-agents through

repulsive forces. The γ-agents are (virtual) leaders of a group of α-agents, which can

provide the position and speed trajectory references for α-agents to avoid fragmentation

among α-agents.

Given the α-agent dynamics described in (2.5), the flocking control protocol ui is

given in (2.6) (Olfati-Saber 2006).

ui = fαi + fβi + fγi , (2.6)

where fαi is the control effort to regulate the desired lattice geometry without collision

among α-agents, fβi is the repulsive force for the obstacle avoidance, and fγi is the

navigational term to collectively enable the objective position and speed tracking.

The desired geometry topology of the flocking coordination is typically recognized

as a lattice formation, which satisfies the constraints in (2.7).

− ε ≤
∥∥qi − qj∥∥− d ≤ ε,∀(i, j) ∈ E(q), (2.7)

where d is the lattice scale and ε is the edge-length uncertainty.

2.2.2 Flocking Hamiltonian Operator

In flocking theory, a Hamiltonian operator, which is a strong analytic tool to

evaluate the behaviors of a group of agents, is typically used to describe the satisfaction
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of the flocking rules required by desired flocking phenomena. Therefore, the associated

Hamiltonian, which consists of the structural potential collective energy and kinetic

energy of a multi-agent system, is formulated in (2.8) to evaluate the satisfaction of

the flocking rules of the multi-agent system, which include the formation of the desired

lattice (cohesion), collision avoidance among α-agents (separation), speed matching

among α-agents (alignment), obstacle avoidance, and position and speed tracking of a

virtual navigational leader.

H(q, p) = K(p) + V (q), (2.8)

where p = col(p1, · · · , pi, · · · pn) ∈ Rmn, and K(p) is the relative kinetic energy related

to a virtual leader, γ-agent, which is defined in (2.9) to imply the performance of

alignment and speed tracking.

K(p) =
cγ1
2

∑
i∈V

‖pi − pr‖2 ≥ 0, (2.9)

where cγ1 is a constant weight, and pr is the velocity of the γ-agent.

The potential energy V (q) in (2.8) consists of three parts depicted in (2.10).

V (q) = Vα(q) + Vβ(q) + Vγ(q), (2.10)

where Vα, Vβ, and Vγ are potential energy functions that represent the interaction

effects among α-α agents, α-β agents, and α-γ agents, respectively. In details, Vα

is defined in (2.11), which attempts to evaluate the performance of cohesion and

separation among α-agents.

Vα(q) = cα
∑
i∈V

∑
j∈V/{i}

∫ ‖qj−qi‖σ
‖d‖σ

φα(x)dx

 ≥ 0, (2.11)

where cα is a constant weight, and ‖ · ‖σ denotes σ-norm defined in (2.12) to make

‖ · ‖σ differentiable everywhere.

‖z‖σ =
1

σ

[√
1 + σ‖z‖2 − 1

]
, (2.12)
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where σ ∈ (0, 1) is a small constant. Additionally, φα is a coordination action function

to generalize a smooth pairwise potential energy with a finite cut-off, which is presented

in (2.13).

φα(z) = ρh(z/‖dr‖σ)φ(z − ‖d‖σ), (2.13)

where

ρh(z) =



1 z ∈ [0, h)

1
2

[
1 + cos

(
π z−h

1−h

)]
z ∈ [h, 1]

0 otherwise

, (2.14)

where h ∈ (0, 1). In addition,

φ(z) =
1

2
[(a+ b)σ1(z + c) + (a− b)], (2.15)

in which σ1(z) = z/
√

1 + z2, and the parameters a, b, and c satisfy 0 < a ≤ b and

c = |a− b|/
√

4ab.

The potential energy between α-agents and β-agents, namely Vβ, is formulated in

(2.16) to evaluate the relative positions between α-agents and obstacles.

Vβ(q) = cβ
∑
i∈V

∑
k∈Nβ

i

∫ ‖q̂i,k−qi‖
σ

‖d̂‖
σ

φβ(x)dx ≥ 0, (2.16)

where cβ is a constant weight, and d̂ is the constant interaction range of α-agents

for detecting β-agents, and φβ ≤ 0 is an repulsive obstacle action function defined in

(2.17).

φβ(z) = ρh(z/‖d̂‖σ)(σ1(z − ‖d̂‖σ)− 1). (2.17)

In addition, Nβ
i is the neighbor set of α-agent i composed by β-agents, and q̂i,k can

be determined by the closest distance from the position of a point on the neighboring

obstacle boundary as shown in (2.18).

q̂i,k = arg min
x∈Ok

‖x− qi‖ . (2.18)
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The potential energy regarding to the virtual leader position tracking of α-agents,

namely Vγ, is presented in (2.19).

Vγ(q) = cγ2
1

2

∑
i∈V

‖qi − qr‖2 > 0, (2.19)

where cγ2 is a constant weight, and qr is the position of the γ-agent.
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Chapter 3

DEVELOPMENT OF NOVEL FLOCKING CONTROL ALGORITHMS

3.1 Overview

Actually, most of flocking rules and flocking algorithms attempt to provide the

interaction protocols of multi-agent systems among α-agents, β-agents, and γ-agents.

In this regard, various flocking control protocols are actually used to regulate interac-

tions in multi-agent systems considering α-agents, β-agents, and γ-agents. To promote

the engineering applications of flocking theory, this chapter aims to investigate the

performances of fast convergence, permanent obstacle avoidance, and energy efficiency,

which involve α-α, α-β, and α-γ interactions, respectively. The detailed contributions

of this chapter are summarized as follows 2.

1. To improve flocking convergence speed for completing certain emergent tasks,

e.g. quick seeking and rescue, a novel fast-convergence flocking control method of

multi-agent systems with switching communication topology is proposed. First,

a new distributed per-step convergence factor (D-PCF) is defined to indicate

the convergence speed of each agent. Then, to decrease the D-PCF and thus

increase flocking convergence speed, a new distributed fast synchronization

(DFS) algorithm is developed to determine position-dependent and velocity-

dependent adjacency weights on every communication channel of an ad hoc

network of multi-agent systems. The simulation results show that compared

2The main content of this chapter is based on the author’s works in (Wang and Chen 2020b),
(Wang and Chen 2019b), and the manuscript “Flocking control of multi-agent systems with permanent
obstacles in strictly confined environments” submitted to Automatica.
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with conventional flocking control, the flocking control with the DFS algorithm

can significantly accelerate flocking convergence speed without requiring larger

control inputs.

2. Considering flocking behaviors in a strictly confined environment, the persistent

interactions always existing between flocking agents and permanent boundaries

(obstacles) is critical for engineering applications. To handle permanent obstacles,

this chapter proposes a novel flocking control algorithm to guarantee the desired

flocking coordination of multi-agent systems with permanent obstacle constraints.

By analyzing the comprehensive behaviors of flocks via the Hamiltonian function,

an obstacle zero-sum condition is developed to ensure the satisfaction of required

flocking rules including permanent obstacle avoidance. Then, an additional

control term representing the resultant influence of permanent obstacles is

introduced to tackle interactions from permanent obstacles in a strictly confined

space. Demonstrated and compared through simulation results, a multi-agent

system steered by the proposed flocking control protocol can successfully achieve

the desired flocking behaviors with permanent obstacles avoidance.

3. Inspired by cooperative foraging behavior in goose flocks, a distributed least-

informed (DLI) method is introduced to achieve energy-efficient flocking control

by selecting the least required informed agents. To avoid the fragmentation

issue when applying the DLI method, three new concepts about the informed

path, cycle, and tree are proposed. Based on the properties of the proposed

new concepts, a theorem of fragmentation prevention is developed for multi-

agent systems with a fraction of informed agents. Utilizing the developed

theorem of fragmentation prevention, the initialization and updating principles

of the selection of the least informed agents in the DLI method are described.
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Simulation results demonstrate that by using the DLI method, a multi-agent

system of 30 agents can successfully achieve energy-efficient flocking control

without fragmentation. Namely, a collective motion around a defined objective

with velocity consensus (flock formation) is achieved by a total 15.9% energy

reduction, compared with the completed informed method.

3.2 Fast-Convergence Flocking Control of Multi-Agent Systems with Switching

Communication Topology

The flocking convergence speed is a critical concern in some practical emergent

flocking tasks, e.g. quick seeking and rescue (Murray 2007). However, in existing

flocking research, only the asymptotic stability of flocking control protocols is analyzed

via LaSalle’s invariance principle (Olfati-Saber 2006), but the flocking convergence

speed is not well discussed. Therefore, it is necessary to investigate the fast-convergence

flocking control of multi-agent systems.

In the literature, the most fast-convergence problem for multi-agent systems is

studied in consensus controls or averaging with a fixed communication topology and

first-order agent dynamics. Usually, the Laplacian matrix L and its spectral properties

of a multi-agent system abstracted as an algebraic graph G were used to analyze the

convergence and stability performance (Godsil and Royle 2013). To evaluate flocking

convergence performance, the minimum non-zero eigenvalue of the Laplacian matrix,

λ2(L), indicates the worst-case convergence speed. Furthermore, an asymptotic or

per-step convergence factor (PCF) for the whole multi-agent system, denoted as ρ,

was also determined to give convergence time (Xiao and Boyd 2004). For a first-

order multi-agent system with a fixed communication topology, the configuration of
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the Laplacian matrix is fixed. Therefore, it is possible to minimize λ2(L) or ρ by

searching optimal fixed adjacency weights off-line on each edge of G, while it may be

a challenging optimization problem neither convex nor locally Lipschitz (Xiao and

Boyd 2004; Kim 2010; Kim and Mesbahi 2006; Liu and Morse 2011). For example, L.

Xiao et al. considered the fast convergence performance of linear iterations yielding

distributed averaging consensus (Xiao and Boyd 2004).

Nevertheless, a switching communication topology in multi-agent systems with

ad hoc networks is more common in flocking applications, whereas the failure and

creation of connections between two agents happened frequently. Thus, the real-

time distributed optimization of adjacency weights is necessary to improve flocking

convergence speed. Furthermore, the second-order multi-agent systems are also more

practical in reality. Unfortunately, few research works address the enhancement of

convergence speed in flocking control considering the second-order agent dynamics

and switching communication topology.

Motivated by the aforementioned problems, this chapter proposes the D-PCF

to represent the disagreement status of flocking controls and develops the novel

DFS algorithm to improve the flocking control convergence speed of second-order

multi-agent systems, regarding the switching communication topology.

3.2.1 Flocking Distributed Disagreement Function and Convergence Factor

The disagreement function refers to a measure of the group disagreement in a

networked multi-agent system. In the context of flocking control, three well-known

Reynolds heuristic rules of flocking behaviors are applied to design the disagreement

function, which include cohesion, separation, and alignment rules (Reynolds 1987). In
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Figure 2. Regular hexagon pattern in a flocking lattice formation.

addition, virtual leader tracking and obstacle avoidance are also anticipated in flocking.

Therefore, the Hamiltonian of a multi-agent system for flocking consensus control is

defined as (2.8). The decision value is also an important parameter in the cooperative

control of multi-agent systems. In the flocking control problem, the decision value is

the common value of a group of agents whenever the agents are all in an agreement

of the flocking rules. Therefore, the associated decision value of the disagreement

function H is one of its local minima, denoted as H∗.

To examine the distributed disagreement status, a distributed Hamiltonian is

proposed to indicate the local satisfaction of the flocking rules of each agent. For

every α-agent i ∈ V, an associated sub-graph Gi can be defined, which consists of a

pair of vertices Vi = i, Ni and directed edges Ei = (i, j) : j ∈ Ni. Corresponding to

α-agent i, the distributed Hamiltonian over Gi is defined as (3.1).

Hi = V α
i + V γ

i +Ki, i ∈ V , (3.1)

where V α
i , V

γ
i and Ki are the distributed collective potential of lattice formation and

virtual leader position tracking, and relative kinematic energy of Gi, respectively.

Intuitively, Hi are determined by only using information shared between α-agent i

and its neighborhoods.
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Theoretically, based on the lattice formation with the constraint in (2.7), a regular

hexagon pattern around an α-agent, illustrated in Fig. 2, is expected as a successful

lattice formation. That is because the regular hexagon is the most compact geometry

shape that can fit together without leaving gaps and keep identical distance among

vertices (Ball 2016). From Fig. 2, based on the Reynolds flocking rules, three

requirements for achieving the regular hexagon pattern include: i) the ideal number

of α-agents in Ni should be at most six if the condition dr ∈ (d,
√

3d) holds; ii) the

gap between α-agent i and every α-agent in Ni is d; iii) the position configuration

of α-agents in in Ni should be distributed evenly on the circle centered at α-agent

i. Hence, V α
i is defined as (3.2), which only uses local information sharing, and the

logarithmic operator in (3.2) ensures V α
i = 0 if and only if Λi, ei, and Ξi all equal to

zero.

V α
i = ln

[
(1 + Λi)(1 + ei)(1 + Ξi)

]
, i ∈ V , (3.2)

where Λi indicates the satisfaction of the number of neighbors in Ni, which is depicted

in (3.3).

Λi =


0 |Ni| ≤ 6

|Ni| |Ni| > 6

, i ∈ V , (3.3)

where |Ni| denotes the number of neighbors. In addition, ei denotes the summation of

the satisfaction errors of the lattice scale between α-agent i and its neighbors, which

is depicted in (3.4).

ei =
∑
j∈Ni

|dij − d|, i ∈ V , (3.4)

where dij =
∥∥qj − qi∥∥. The position distribution of neighbors is evaluated by Ξi, which

is defined as (3.5).

Ξi =

∥∥∥∥∥∥
∑
j∈Ni

qj − qi∥∥qj − qi∥∥
∥∥∥∥∥∥ , i ∈ V . (3.5)
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The term V γ
i and Ki in (3.1) are defined in (3.6) and (3.7), respectively.

V γ
i =

∥∥qj − qi∥∥ , i ∈ V , (3.6)

Ki =
1

2

∑
j∈Ni

∥∥pj − pi∥∥2
+‖pi − pr‖2

 , i ∈ V . (3.7)

Lemma 3.2.1. Considering α-agent i and dr ∈ (d,
√

3d) in a multi-agent system with

a distributed Hamiltonian Hi defined in (3.1), the local minimum of Hi is zero and

implies that α-agent i satisfies the Reynolds flocking rules and virtual leader tracking.

Proof. From (3.3), (3.4), and (3.5), it can be seen that Λi, eij, and Ξi are all non-

negative. Therefore, the values of the natural logarithm function in (3.2) are always

non-negative, so that V α
i ≥ 0. Especially, the condition i), ii), and iii) are held when

V α
i = 0. In addition, V γ

i and Ki in (3.6) and (3.7) are summations of a set of 2-norm

functions, which result in V γ
i ≥ 0 and Ki ≥ 0, and V γ

i = 0 and Ki = 0 imply the

achievement of the position and velocity tracking of the virtual leader.

To sum up, we have

Hi = V α
i + V γ

i +Ki ≥ 0, i ∈ V . (3.8)

The local minima of Hi are zero that satisfy the flocking rules.

Remark 3.2.1. The failure of the achievement of zero distributed Hamiltonian does

not mean the dissatisfaction of flocking rules. For instance, when |Ni| is 1 for α-agent

i, it is impossible to make Ξi = 0, thus Hi 6= 0. Nevertheless, we may not be able to

claim that α-agent i breaks the condition i) and iii) if it locates at the geometry edge

of a multi-agent system.

The potential energy representing the interaction among α-α agents in (2.8),

namely Vα, is not the exact sum of the distribution collective potential of lattice
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formation, V α
i in (3.1), since the number and position distribution of neighborhoods

of α-agent i have to be considered in V α
i .

The relationship between the decision value H∗ of the whole multi-agent system

and the distributed Hamiltonian is described in Theorem 3.2.1.

Theorem 3.2.1. Assuming |Ni| > 1,∀i ∈ V and considering a multi-agent system

with a set of distributed Hamiltonians Hi, the decision value of the multi-agent system,

H∗, is achieved if the following condition (3.9) holds.

∑
i∈V

Hi = V ∗γ , (3.9)

where V ∗γ denotes a local minimum of Vγ.

Proof. Using (3.1), (3.2), (3.6) and (3.7) for all α-agents in the multi-agent system,

we have ∑
i∈V

Hi =
∑
i∈V

(V α
i + V γ

i +Ki) = Vγ +K +
∑
i∈V

V α
i . (3.10)

The quadratic form of (2.19) makes the values of Vγ non-negative. However, Vγ

cannot be zero since it is impossible for all α-agents to locate at pr simultaneously,

namely pi = pr,∀i ∈ V, which violates the flocking rules on cohesion and alignment.

Therefore, the flocking rule on the position tracking of α-agents with respect to the

γ-agent is achieved whenever Vγ = V ∗γ > 0. Therefore, using Lemma 3.2.1, we have

∑
i∈V

Hi ≥ V ∗γ . (3.11)

As a result, whenever the summation of distributed Hamiltonians equals to V ∗γ , the

Reynolds flocking rules and virtual leader tracking are satisfied, and the decision value

of the multi-agent systems is achieved. Specially, the decision value H∗ equals to

V ∗γ .
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The PCF is a measure of the convergence speed to achieve the decision value (Xiao

and Boyd 2004). Using the disagreement function H and its decision value H∗, the

following formula in (3.12) defines the PCF at the time interval k.

ρ[k] = sup
H[k−1]6=H∗

∥∥H[k]−H∗
∥∥∥∥H[k − 1]−H∗
∥∥ . (3.12)

In the same way, based on the distributed Hamiltonian, the D-PCF of α-agent i is

described in (3.13).

ρi[k] = sup
Θi[k−1]6=Θ∗i

∥∥Θi[k]−Θ∗i
∥∥∥∥Θi[k − 1]−Θ∗i
∥∥ , (3.13)

in which Θi = V α
i + 1

2

∑
j∈Ni

∥∥pj − pi∥∥2, and Θ∗i denotes the decision value of Θi that

is zero. From (3.13), the D-PCF ρi > 1 indicates the increase of Θi, and the larger ρi

implies the faster increase of Θi. Otherwise, ρi < 1 indicates the decrease of Θi, and

the smaller ρi implies the faster decrease of Θi.

3.2.2 Fast Synchronization Strategy

The Laplacian matrix L is determined by algebraic connectivity information

(adjacency weights) of multi-agent systems. Thus, given the adjacency weights aij,

an adjacency matrix A = [aij] and its associated Laplacian L(A) can be constructed.

Based on the Laplacian analysis, the flocking convergence speed is actually determined

by adjacency weights among agents (Godsil and Royle 2013). Therefore, determining

an appropriate adjacency matrix A in real-time is a potential solution to decrease the

flocking convergence factor.

In flocking theory, considering the adjacency matrix, the distributed control input

ui for a free-flocking scenario can be designed as (3.14), whose performance has been

successfully demonstrated and analyzed in (Olfati-Saber 2006). Within (3.14), the
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Figure 3. Adjacency bump function with respect to various values of h.

non-negative element aij of A affects producing attractive or repulsive forces between

a pair of α-agents.

ui = cα
∑
j∈Ni

[
−nijφα

(∥∥qj − qi∥∥σ , aij) ,+aij(pj − pi)]−cγ1(pr−pi)−cγ2(qr−qi), (3.14)

where nij denotes the unit vector along the line from α-agent i and α-agent j. Usually,

aij is calculated through an adjacency bump function to provide position-dependent

finite cut-offs and smooth adjacency weights. For example, the piecewise function

shown in (3.15) was proposed in (R. Olfati-Saber and R. Murray 2003). From (3.15), it

can be seen that aij ∈ [0, 1] is held for all neighbors j ∈ Ni of α-agent i. Furthermore,

the parameter h alters the curve shape of the adjacency bump function. The influence

of the different values of h on the curve shape of the adjacency bump function is

presented in Fig. 3.

aij(z) =



1 z ∈ [0, h)

1
2

[
1 + cos

(
π z−h

1−h

)]
z ∈ [h, 1]

0 otherwise

, (3.15)

where h ∈ (0, 1) is a constant, and z =
∥∥qj − qi∥∥ /r.
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For a given adjacency bump function, a possible way to strengthen or weaken aij

for additional fast convergence concerns is tuning function parameters in real-time.

Hence, the decrease of flocking convergence factor could depend on the time-varying

values of h if the adjacency bump function (3.15) is employed.

Based on Theorem 3.2.1, a minimum summation of distributed Hamiltonians also

implies the achievement of the decision value. Namely, minimizing the distributed

Hamiltonian of every agent also can make the multi-agent system reach a flocking

agreement. Therefore, based on the D-PCF defined in (3.13), it is possible to accelerate

the flocking control by achieving the least ρi for all α-agents, which provides the

fastest convergence speed for Θi approaching Θ∗i . To enhance flocking convergence

speed, a distributed optimization problem can be established in (3.16).

min
qi[k],pi[k]

ρi[k]

s.t. qi[k], pi[k] ∈ Rm, i ∈ V
. (3.16)

The solution of (3.16), denoted as (q∗i [k], p∗i [k]), is the optimal position and velocity of α-

agent i, which can accommodate the minimum convergence factor. Thus, the adjacency

weights aij should be adjusted to make states of α-agent i approach (q∗i [k], p∗i [k]). After

solving (3.16), the curve shape of the adjacency bump function can be determined

to make every agent move towards the desired position and velocity (q∗i [k], p∗i [k]),

which can speedup the flocking control. Since (q∗i [k], p∗i [k]) contains both position

and velocity information, every edge (i, j) ∈ E in multi-agent systems should have

two different adjacency weights, position-dependent weight aqij and velocity-dependent

weight apij, respectively. Therefore, the flocking control protocol can be augmented as

ũi = cα
∑
j∈Ni

[
−nijφα

(∥∥qj − qi∥∥σ , aqij) ,+apij(pj − pi)]−cγ1(pr−pi)−cγ2(qr−qi). (3.17)
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In addition, aqij and a
p
ij are calculated by modifying the adjacency bump function in

(3.15), which replaces h by hqij or h
p
ij. In detail, hqij and h

p
ij are defined as

hsij =

(
1−

∥∥sj − s∗i∥∥
2dr

)∣∣∣∣∣cos
θsij
2

∣∣∣∣∣ , j ∈ Ni, (3.18)

in which s is either q or p, and θsij ∈ []0, 2π is the angle between sj and s∗i . In (3.18),

the differences of distance and orientation between sj and s∗i is used to determine

the values of hsij. When sj is closer to s∗i , a larger hsij is produced to give a larger asij

to strength the position-dependent or velocity-dependent adjacency weights between

α-agent j and α-agent i, which make states of α-agent i approach to s∗i . Otherwise, a

smaller asij is produced.

3.2.3 Simulation Results and Discussions

In this section, simulations are conducted in MATLAB® to verify the performance

of the proposed DFS algorithm. Note that all values used in simulations only have

numerical meaning, so that there is no physics unit for all parameters and variables.

In the simulations, ten α-agents are randomly initialized in a 2-dimensional spatial

box (0, 60) × (0, 60) with zero velocity. The unique virtual leader of the group of

agents is set to move along a straight line with the constant velocity vector [3, 0]T,

which starts from the position (60, 30). In addition, the lattice scale d is 3, and the

interaction region dr is 5.1, which satisfies the condition dr ∈ (d,
√

3d).

Two cases are studied. The first case (Case 1) uses the conventional flocking

control, which is only steered by the flocking control protocol introduced in (3.14)

with the adjacency bump function in (3.15), where h is 0.3. The second case (Case 2)

employs the DFS algorithm with the same initial condition of Case 1. In addition,
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Figure 4. Flocking movement in Case 1.

the augmented flocking control protocol in (3.17) with the modified adjacency bump

function is used in Case 2. Results are shown in Fig. 4, 5, 6, 7, and 8.

The flocking movements of the group of agents are presented in Fig. 4 and Fig.

5. With the same initial condition, both Case 1 and Case 2 can achieve the flocking

formation pattern and track the virtual leader, and the desired lattice scale is kept

once the flocking is formed. Thus, the DFS algorithm does not impair the satisfactions

of the flocking rules and virtual leader tracking.

The velocity consensus performances of the flocks are shown in Fig. 6, where px

and py denote the velocity of agents along X and Y direction, respectively. The groups

of agents in both Case 1 and Case 2 can successfully track the virtual leader velocity

vector. However, the velocity consensus is achieved around 2.5 s in Case 2 as implied

by the consensus point (solid red circle) in Fig. 6 (c) and (d), which is achieved in
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Figure 5. Flocking movement in Case 2.

Case 1 around 5 s as indicated in Fig. 6 (a) and (b). Thus, the DFS algorithm can

successfully speed up the flocking velocity consensus. In Fig. 7, ux and uy denote

the control inputs of every agent along X and Y direction, respectively. Similar to

velocity consensus, the control inputs in Case 2 also have faster convergence speed. In

addition, the magnitude of control inputs in Case 2 is even less than the ones in Case

1. Hence, the DFS algorithm does not demand larger control inputs.

The flocking convergence performance with the DFS algorithm is also directly

demonstrated through the disagreement function (Hamiltonian) in Fig. 8, which plots

the time history of the Hamiltonian of the whole multi-agent system. Before 1.04 s,

the disagreement function in both Case 1 and Case 2 shows a trend for growth till the

peak value, 1892. Then, the disagreement function in two cases starts to decrease,

and the decision value, 480, is gradually achieved. From two zoom-in plots in Fig. 8,
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Figure 6. Velocity consensus results in flocking.

 

Case 1 Case 1

Case 2 Case 2

Figure 7. Control inputs results in flocking.
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Figure 8. Hamiltonian results in flocking.

a faster negative decrease rate can be observed, which confirms the DFS algorithm

can help to achieve desired flocking consensus faster.

3.2.4 Conclusions

The D-PFC and the DFS algorithm are proposed to achieve the fast-convergence

flocking control of second-order multi-agent systems with the switching communication

topology. Demonstrated by two numerical cases study, simulation results show that

the group of agents steered by the augmented flocking control protocol with the DFS

algorithm can successfully accelerate the flocking control speed without demanding

larger control inputs.

3.3 Flocking Control of Multi-Agent Systems with Permanent Obstacles in Strictly

Confined Environments

In the existing flocking studies, free flocking without obstacles is a dominated

scenario as indicated in Fig. 9 (a) (Reynolds 1987; Su, Wang, and Lin 2009; Tanner,

Jadbabaie, and Pappas 2003). In some other flocking scenarios with obstacle avoidance,
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the obstacles are typically considered as temporary objects that only have transient

interactions (repulsive forces) with respect to flocking agents (Olfati-Saber 2006;

Khatib 1986). For example, two different types of temporary obstacles, a black ellipse

in front of agents and two boundaries of a confined space that are close to agents,

are shown in Fig. 9 (b) and (c), respectively. These obstacles, which only interact

partial agents temporarily (labeled by red color), are usually modeled as temporary

spatio-temporal constraints. All of the flocking agents are not directly influenced by

obstacles at one time (Vásárhelyi et al. 2018). Therefore, after the flocking agents

bypass (see Fig. 9 (b)) or depart away from (see Fig. 9 (c)) the temporary obstacles,

the influences of obstacles are not considered and discussed in any final equilibrium of

flocking dynamics for multi-agent systems (Olfati-Saber 2006; Khatib 1986).

Although a free flocking and/or temporary obstacles may be sufficiently assumed in

nature or in sensing networks (Olfati-Saber 2006; Liu and Xu 2015), these assumptions

can fail or even be impossible in some engineering applications of artificial multi-

agent systems. One notable example is that the road boundaries cannot be taken

as temporary constraints of vehicular agents in transportation systems considering

traffic safety (Iftekhar and Olfati-Saber 2012). Furthermore, the vascular walls of

human blood vessels, in which a group of micro-robots is manipulated, cannot be

viewed as temporary obstacles as well (Jeon et al. 2010). For the road boundaries

and vascular walls, persistent interactions on all of the (vehicular and robotic) agents

would perform all the time for safety considerations.

Permanent obstacles are defined as obstacles or boundaries that persistently

interact with agents all the time in the process of flocking coordination in this section.

The permanent obstacles could be generated or defined by different situations, such
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Confined space

Figure 9. Flocking scenarios without obstacles or with temporary obstacles
(boundaries) that only interact with partial agents (labeled by red color) for a period
of time.

 

Agents interacted with obstacles

Permanent obstaclesStrictly confined space

Figure 10. Flocking interactions with permanent obstacles (boundaries) that interact
with all of the agents all the time in a strictly confined space.
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as a group of agents moving in a strictly confined environment. The strictly confined

environment makes the constrained multi-agent systems interacted with boundaries

all the time as long as they are moving in the space. Therefore, the boundaries of

the strictly confined environment could be considered as permanent obstacles. An

example of the strictly confined environment is presented in Fig. 10, in which all of

the agents are controlled in a limited tube-like space to satisfy all the required flocking

rules.

Motivated by the aforementioned problem, this section seeks to generalize and

extend the existing flocking theory for the cooperative control of multi-agent systems

with permanent obstacles in strictly confined environments.

3.3.1 Flocking Behaviors with Temporary Obstacles

In literature, a general cooperative control problem of multi-agent systems, such

as formation and clumping control, can be formulated as an optimization problem,

in which the control law attempts to minimize a cost function iteratively to achieve

control objectives (Nedic and Liu 2018; Nedic and Ozdaglar 2009). Inspired by this

idea, the cooperative control of flocking coordination was solved by optimization

techniques to adapt to large-scale complicated scenarios (Yu, Chen, and Cao 2010;

Zhang et al. 2019). In this section, we also take the merits of the optimization

paradigm to appraise flocking behaviors to expand the following discussions.

In details, the Hamiltonian in (2.8) is adopted as the cost function of the opti-

mization problem for flocking control since its minima represent the satisfaction of

flocking rules, which is analyzed in the remainder of this section. Furthermore, the

flocking control protocol is the searching strategy to solve the optimization problem.
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Hence, the flocking optimization problem is established in (3.19).

min
q,p

H(q, p)

s.t. q, p ∈ Rmn

, (3.19)

The set of optimal solution of (3.19) is written in (3.20), which ensures the minimum

of H, denoted as H∗.

S =

{
(q∗, p∗)| arg min

q,p∈Rmn
H(q, p)

}
. (3.20)

For free flocking or flocking with only temporary obstacles, the relationship between

the local minima of all energy sub-terms in H and the satisfactions of corresponding

flocking rules are discussed in Lemma 3.3.1, 3.3.2, 3.3.3, and 3.3.4 as follows.

Lemma 3.3.1. The flocking rules on the cohesion and separation of α-agents are

achieved at
∥∥qj − qi∥∥σ =‖d‖σ ,∀i ∈ V , j ∈ Ni 6= ∅ if and only if Vα = 0 in (2.11).

Proof. On the one hand, the flocking rules on the cohesion and separation of α-agents

means that every α-agent keeps ‖d‖σ with each neighbor in Ni, namely
∥∥qj − qi∥∥σ =

‖d‖σ ,∀i ∈ V , j ∈ Ni 6= ∅. Therefore, from (2.11), the lower limit of the integral, ‖d‖σ,

equals to its upper limit,
∥∥qj − qi∥∥σ, so that Vα = 0.

On the other hand, based on (2.13), we have the definite integral∫‖qj−qi‖
σ

‖d‖σ
φα(x)dx ≥ 0, which makes Vα = 0 if and only if the definite integral

equals to zero. If Vα = 0, there are two cases. The first case is φα = 0 resulted

from
∥∥qj − qi∥∥σ ≥‖r‖σ, which makes Ni = ∅,∀i ∈ V. However, the set of neighbors

of α-agent i should not be empty regarding the requirements of cohesion. The

second case is
∥∥qj − qi∥∥σ = ‖d‖σ, which satisfies the flocking rules on cohesion and

separation.

Lemma 3.3.2. The flocking rules on the alignment and speed tracking of the (virtual)

γ-agent are achieved at pi = pr,∀i ∈ V if and only if K = 0 in (2.9) .
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Proof. On the one hand, the flocking rules on the alignment and speed tracking of

the (virtual) γ-agent means that every α-agents has the same velocity as the γ-agent,

namely pi = pr. Substituting pi = pr into (2.9), we have K = 0.

On the other hand, owing to the quadratic form of the kinetic energy in (2.9),

K = 0 gives pi = pr.

Lemma 3.3.3. The flocking rule on the avoidance of temporary obstacles is achieved

at
∥∥q̂i,k − qi∥∥σ ≥∥∥∥d̂∥∥∥, namely, φβ = 0,∀k ∈ Nβ

i , i ∈ V if and only if Vβ = 0 in (2.16).

Proof. On the one hand, the flocking rule on the avoidance of temporary obstacles

means that the distance from every α-agent to β-agents is larger than
∥∥∥d̂∥∥∥

σ
, which

results in φβ = 0,∀k ∈ Nβ
i , i ∈ V . Substituting φβ = 0 into (2.16), we have Vβ = 0.

On the other hand, based on (2.17), we have the definite integral∫‖q̂i,k−qi‖
σ

‖d̂‖
σ

φβ(x)dx ≥ 0, which makes Vβ = 0 if and only if the definite integral

equals to zero. If Vβ = 0, there are two cases. The first case is
∥∥q̂i,k − qi∥∥σ =

∥∥∥d̂∥∥∥
σ
to

provide the same limits of the definite integral. The second case is
∥∥q̂i,k − qi∥∥σ ≥‖d‖σ,

which makes φβ = 0. Both cases satisfy the flocking rule on the avoidance of temporary

obstacles.

Lemma 3.3.4. The flocking rule on the position tracking of α-agents with respect to

the γ-agent is achieved if and only if Vγ = V ∗γ > 0 in (2.19), in which V ∗γ denotes the

value of Vγ at its local minima.

Proof. The quadratic form of (2.19) makes the values of Vγ non-negative. However,

Vγ cannot be zero since it is impossible for all α-agents to locate at pr simultaneously,

namely pi = pr,∀i ∈ V, which violates the flocking rules on cohesion and alignment.

Therefore, the flocking rule on the position tracking of α-agents with respect to the

γ-agent is achieved whenever Vγ = V ∗γ > 0.
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Based on the above discussions and summaries in Lemma 3.3.1, 3.3.2, 3.3.3, and

3.3.4, Theorem 3.3.1 is provided to characterize the set of local minima of H for

flocking with temporary obstacles, which was only partially implied in literature (Reza

Olfati-Saber and R. M. Murray 2003), but now is rephrased in the context of the

optimization problem (3.19) and (3.20).

Theorem 3.3.1 (Flocking with temporary obstacles). For a multi-agent system that

obeys certain flocking rules, e.g. the cohesion, separation, alignment, avoidance of

temporary obstacles, position and speed tracking of a (virtual) objective, every local

minimum of the associated H satisfies the set of flocking rules, and vice versa.

Proof. Based on the inequalities in (2.9), (2.11), (2.16), and (2.19), we have

H ≥ V ∗γ ,∀t > 0. (3.21)

In addition, by utilizing the summarized properties in Lemma 3.3.1, 3.3.2, 3.3.3,

and 3.3.4 between the satisfaction of flocking rules and the values of K, Vα, Vβ, and

Vγ, H = V ∗γ implies K, Vα, Vβ, and Vγ = 0. Therefore, the minimization of the

Hamiltonian obtains a set of local minima with the same value V ∗γ , which represents

the achievement of the desired flocking rules of the multi-agent system. Namely, S in

(3.20) can be rewritten as (3.22).

S =
{

(q∗, p∗) ∈ Rmn × Rmn : H = V ∗γ

}
. (3.22)

Therefore, the sufficiency is proved.

For the necessity, if the required flocking rules are satisfied, the local minima of K,

Vα, Vβ, and Vγ are all achieved. Based on (2.8) and (2.10), the combination of the

local minima of K, Vα, Vβ, and Vγ is also a local minimum of the corresponding H.

Thus, the necessity is proved.
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Based on Theorem 3.3.1, we have the following corollary for free flocking, which

can be understood as a specific case in Theorem 3.3.1.

Corollary 3.3.1 (Free flocking). For a multi-agent system that obeys the set of

flocking rules described in Theorem 3.3.1 without requiring obstacle avoidance, every

local minimum of the associated H satisfies the set of flocking rules, and vice versa.

Proof. Without considering obstacle avoidance, the inequality in (3.21) is still held

since temporary obstacles do not exist in any equilibrium of H. Based on (2.16),

Vβ = 0 since there is no obstacle. Employing the same proof process of Theorem 3.3.1,

H = V ∗γ also indicates free flocking phenomena without obstacles. The necessity can

be similarly proved as well through the counterpart in Theorem 3.3.1.

Actually, Theorem 3.3.1 and Corollary 3.3.1 do not provide any surprising results

of flocking coordination compared with some existing conclusions, such as Theorem

2 and Theorem 5 in (Olfati-Saber 2006), but reveal the characteristics of H in the

optimization paradigm. Essentially, the optimization of H is not a convex optimization

problem since there are multiple local minima. However, due to the following aspects,

the nonconvex optimization problem can still be resolved via convex optimization

techniques. First, the Hamiltonian H is as the summation of K, Vα, Vβ, and Vγ

by utilizing relative distances and speeds among α, β, and γ agents. Hence, H is

translation-invariant and has a set of equilibrium points with the same value. For

free flocking or flocking with temporary obstacles, the minimum value of H is V ∗γ ,

which represents the achievement of the flocking rules. Second, it is acceptable that H

approaches any local minimum for the desired flocking coordination by given certain

initial and boundary conditions. Therefore, the control protocol for flocking with

temporary obstacles or free flocking can be effectively and directly determined through
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convex optimization techniques (Boyd and Vandenberghe 2004; Nedic and Ozdaglar

2009). That is why the gradient decent method can be used in this section to derive

the flocking control input ui, ∀i ∈ V in (3.23) to iteratively find local minimum of H,

which is similar to other classic flocking control protocols in (Arcak 2007; Olfati-Saber

2006; Su, Wang, and Lin 2009).

ui = −∇qi,piH

= (−∇qiVα︸ ︷︷ ︸
fαi

) + (−∇qiVβ︸ ︷︷ ︸
fβi

) + (−∇qiVγ −∇piK︸ ︷︷ ︸
fγi

), (3.23)

where

∇qiVα(q) = −cα
∑
j∈Nα

i

nijφα

(∥∥qj − qi∥∥σ) , (3.24)

∇qiVβ(q) = −cβ
∑
k∈Nβ

i

n̂i,kφβ

(∥∥q̂i,k − qi∥∥σ) , (3.25)

∇qiVγ(q) = cγ2(qi − qr), (3.26)

∇piK(p) = cγ1(pi − pr). (3.27)

In (3.23), fαi is the control effort to regulate the desired lattice geometry without

collision among α-agents, fβi is the repulsive force for the obstacle avoidance, and

fγi is the navigational term to collectively enable the (virtual) objective position and

speed tracking. In (3.24) and (3.25), nij is the unit vector along the line connecting qi

and qj, and n̂i,k is the unit vector along the line connecting qi and q̂i,k.

3.3.2 Flocking Behaviors with Interactions with Permanent Obstacles

Beyond the temporary obstacles, the avoidance of permanent obstacles, which could

be generated by strictly confined working spaces in some engineering applications, has
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to be addressed as well in flocking control. Similar to temporary obstacles, permanent

obstacles are also assumed as static without loss of generality so that the definition of

β-agents in (2.18) still can be applied. However, H containing Vβ in (2.16) cannot be

solely used to evaluate the avoidance of permanent obstacles of α-agents as elaborated

in Theorem 3.3.2.

In a strictly confined space, the boundaries (serving as permanent constraints or

obstacles) always have influences on α-agents during and after a flocking process,

namely
∥∥q̂i,k − qi∥∥σ < ‖d̂‖σ for all t > 0. Hence, based on the discussion in 4), Vβ in

(2.16) can never reach zero. In this situation, permanent obstacles are avoided only

when Vβ = V ∗β is held, where V ∗β > 0 is the optimal value at the local minima of Vβ

with permanent constraints. Therefore, the inequality (3.21) has to be rewritten as

(3.28) for flocking with permanent obstacles.

H ≥ V ∗γ + V ∗β ,∀t > 0. (3.28)

The following Theorem 3.3.2 provides the properties of the Hamiltonian accommo-

dating interactions from permanent obstacles. Based on Theorem 3.3.2, the obstacle

zero-sum condition is proposed to fulfill the new requirements of flocking control with

permanent obstacles in a strictly confined environment.

Theorem 3.3.2 (Flocking with permanent obstacles). Let a multi-agent system obey

a set of flocking rules including cohesion, separation, alignment, position and speed

tracking of a virtual leader, and obstacle avoidance in a strictly confined space. Then,

the set of flocking rules is satisfied if and only if the Hamiltonian H achieve the local

minima with the obstacle zero-sum condition in (3.29).

∑
k∈Nβ

i

n̂i,kφβ
(∥∥q̂i,k − qi∥∥σ ) = 0,∀i ∈ V . (3.29)
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Proof. According to (3.28), the achieved local minima of H can be defined in the set

of the configuration and velocity of α-agents in (3.30), where the equality in (3.28) is

held.

S =
{

(q∗, p∗) ∈ Rmn × Rmn : H = V ∗γ + V ∗β

}
. (3.30)

Next, we are going to prove that only the local minima in (3.30) with the satisfied

obstacle zero-sum condition (3.29) can assure the set of flocking rules including

permanent obstacle avoidance. For the local minima of H, the corresponding gradient

is zero, presented in (3.31).

∇H = ∇qVα +∇qVβ +∇qVγ +∇pK = 0n×1. (3.31)

For flocking with temporary obstacles, ∇H will asymptotically go to zero since ∇qVα,

∇qVβ, ∇qVγ , and ∇pK will approach to 0n×1 by applying the gradient-based flocking

control protocol in (3.23). In particular, ∇qVβ converges to 0n×1 once the influences of

temporary obstacles disappear. Namely,
∥∥q̂i,k − qi∥∥σ ≥ ‖d̂‖σ for all i ∈ V and k ∈ Nβ

i

makes φβ
(∥∥q̂i,k − qi∥∥σ ) = 0, which makes the equality in (3.32) held by substituting

(3.25).

∇qVβ =
∑
i∈V

∇qiVβ(q) = 0n×1. (3.32)

In sum, there are generally no interactions between α-agents and temporary obstacles

in any equilibrium (local minimum) of H. In other words, temporary obstacles will

disappear after the desired flocking pattern (lattice) is formed.

Nevertheless, when permanent obstacles, namely the boundaries or constraints of

the strictly confined space, are considered, the condition
∥∥q̂i,k − qi∥∥σ ≥ ‖d̂‖σ cannot

be satisfied for all t > 0. Hence, it is implausible to have φβ
(∥∥q̂i,k − qi∥∥σ ) = 0 for

all t > 0 to make ∇qVβ = 0n×1. For permanent obstacle avoidance, an alternative

situation to still make ∇qVβ = 0n×1 is that for any α-agent i, we have the summation

in (3.25) equal to zero, which is defined as the obstacle zero-sum condition in (3.29).
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The proof of the converse can be completed in a reverse way and omitted for

simplicity.

The obstacle zero-sum condition in (3.29) indicates that the resultant influence

of neighbored obstacles in Nβ
i of α-agent i is zero. Therefore, the obstacle zero-sum

condition can be recognized as a new flocking rule to avoid reaching undesirable local

minima that cannot satisfy the obstacle zero-sum condition, which specifically works

for flocking control with permanent obstacles or in a strictly confined environment.

The existence of the solutions to satisfy the obstacle zero-sum condition is proved as

follows.

In the obstacle zero-sum condition, n̂i,k is defined as

n̂i,k =
q̂i,k − qi√

1 + σ
∥∥q̂i,k − qi∥∥2

. (3.33)

Substituting (3.33) into (3.29), we have

∑
k∈Nβ

i

q̂i,k − qi√
1 + σ

∥∥q̂i,k − qi∥∥2
φβ
(∥∥q̂i,k − qi∥∥σ ) = 0, (3.34)

which results in

∑
k∈Nβ

i

q̂i,kφ
′
β(
∥∥q̂i,k − qi∥∥) = qi

∑
k∈Nβ

i

φ′β(
∥∥q̂i,k − qi∥∥), (3.35)

where

φ′β(
∥∥q̂i,k − qi∥∥) =

φβ
(∥∥q̂i,k − qi∥∥σ )√

1 + σ
∥∥q̂i,k − qi∥∥2

. (3.36)

Therefore, based on (3.35), given certain permanent obstacles (β-agents), the existence

of solutions for the obstacle zero-sum condition implies that there is a solution of

(3.37).

qi =

∑
k∈Nβ

i
q̂i,kφ

′
β(
∥∥q̂i,k − qi∥∥)∑

k∈Nβ
i
φ′β(
∥∥q̂i,k − qi∥∥)

. (3.37)
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With permanent obstacles, Nβ
i is not an empty set. Namely, the denominator in

the right-hand-side of (3.37) cannot be zero, such that the solution of qi exists with

permanent obstacles.

Remark 3.3.1. The obstacle zero-sum condition provides us a new tool to completely

describe flocking phenomena with permanent obstacles. However, the obstacle zero-

sum condition is not required to be satisfied all the time as long as it is achieved on

the final equilibrium of H.

Indicated by Theorem 3.3.2, the relationship between Vβ(q) and the obstacle

zero-sum condition in (3.29) is depicted in Corollary 3.3.2.

Corollary 3.3.2. Considering Vβ(q) is the obstacle potential energy of a multi-agent

system with permanent obstacles, Vβ(q) = V ∗β is obtained if and only if the obstacle

zero-sum condition is satisfied.

Proof. The corollary is readily obtained based on the proof process of Theorem

3.3.2.

3.3.3 Novel Flocking Control Algorithm for Permanent Obstacles

In free flocking or flocking with temporary obstacles, Theorem 3.3.1 and Corollary

3.3.1 imply that it is suitable to use the conventional Hamiltonian depicted in (2.8)

to develop flocking control protocols via the classic gradient descent method. In

particular, the gradient-based term fβi in (3.23) generates a repulsive force normal to

the surfaces of temporary obstacles to keep α-agents away. However, flocking control

with permanent obstacles cannot formulate an optimization problem using H in (2.8).

Theorem 3.3.2 implies that with the interactions from permanent obstacles, there
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are two types of local minima of H: local minima satisfying and unsatisfying the

obstacle zero-sum condition. Namely, not all of the local minima of H can satisfy

the obstacle zero-sum condition in (3.29). As a result, H in (2.8) cannot evaluate

flocking behaviors with permanent obstacles anymore, and the gradient descent method

cannot guarantee an appropriate local minimum of H, which also satisfies the obstacle

zero-sum condition.

A novel augmented Hamiltonian will be proposed to consider the obstacle zero-sum

condition in this section, and a new flocking control protocol is developed by using

the augmented Hamiltonian.

The Hamiltonian in (2.8) is augmented to Ĥ in (3.38) when the obstacle zero-sum

condition is considered.

Ĥ = H +Hβ, (3.38)

where Hβ, defined in (3.39), is a new potential energy term to evaluate the resultant

forces of (permanent) β-agents on α-agents.

Hβ =
∑
i∈V

∥∥∥H i
β

∥∥∥
σ
≥ 0, (3.39)

in which

H i
β =

∑
k∈Nβ

i

n̂i,kφβ
(∥∥q̂i,k − qi∥∥σ ). (3.40)

Intuitively, Hβ = 0 when the obstacle zero-sum condition is achieved. Based on the

proof of Theorem 3.3.2, the new equilibrium points of Ĥ, denoted as (q̂∗, p̂∗), is a

selection of the equilibrium points of H in (3.30) that satisfy the obstacle zero-sum

condition.

Using (3.38), the gradient decent method could be applied to develop a new

flocking control algorithm based on the newly augmented Hamiltonian. The resulted
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augmented flocking control protocol is first presented in (3.41).

ûi = fαi + fβi + hβi + fγi , (3.41)

where hβi is defined in (3.42) that represents the force steering multi-agent systems to

satisfy the obstacle zero-sum condition.

hβi = −∇qiHβ = −∇σ(H i
β), (3.42)

in which ∇σ is the gradient of σ-norm that is described in (3.43).

∇σ(z) =
z

1 + σ‖z‖σ
. (3.43)

The relationship between the augmented Hamiltonian, Ĥ, and the set of flocking

rules including permanent obstacle avoidance is described in the following Theorem

3.3.3.

Theorem 3.3.3 (Augmented Hamiltonian). For a multi-agent system that obeys a

set of flocking rules, e.g. cohesion, separation, alignment, position and speed tracking

of a virtual leader, and permanent obstacle avoidance, every local minimum of the

associated augmented Hamiltonian Ĥ defined in (3.38) indicates the satisfaction of

the set of flocking rules, and vice versa.

Proof. Based on the inequalities of (3.28) and (3.39), and the equation (3.38), we have

Ĥ ≥ V ∗γ + V ∗β ,∀t > 0. (3.44)

Therefore, the set of configurations and velocities of α-agents defined in (3.45) is the

group of all the local minim of Ĥ.

Ŝ =
{

(q̂∗, p̂∗) ∈ Rmn × Rmn : Ĥ = V ∗γ + V ∗β

}
. (3.45)
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Indicated by Theorem 3.3.2, the condition Vβ = V ∗β is held if and only if the obstacle

zero-sum condition is satisfied (Hβ = 0). Therefore, all members (q∗, p∗) in Ŝ meet

the requirements of all the flocking rules including permanent obstacle avoidance.

The proof of the converse can be completed in a reverse way and is omitted for

simplicity.

Remark 3.3.2. Actually, compared with H, the augmented Hamiltonian Ĥ does not

create new equilibrium points but helps to select a group of equilibrium points that

satisfy the obstacle zero-sum condition. Namely, Ŝ in (3.45) is a subset of S in (3.30).

Therefore, the conclusions from the convergence and stability analysis of H in existing

literature still can be applied to Ĥ.

3.3.4 Simulation Results and Discussions

Simulation results are obtained through MATLAB® to verify and compare the

proposed augmented flocking control design for permanent obstacles. In this section,

a CAV system within a three-lane freeway environment is studied, which is a tube-like

2D strictly confined space as depicted in Fig. 11.

Five indistinctive α-agents (vehicles), V1-V5, are initialized with random positions

(X, Y ) between two straight road boundaries, which are recognized as two neighboring

obstacle profiles Ok to generate permanent obstacles (β-agents). The area between two

permanent road boundaries is defined as the feasible space for the flocking control of

α-agents. In this situation, α-agents always interact with β-agents in the feasible space.

Note that β-agents are continuously determined based on the changing positions of

α-agents. Implied in Fig. 11, because Ok are two parallel straight road boundaries,
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Figure 11. A 2D strictly confined three-lane freeway environment with the α-agents
(vehicles), β-agents(permanent road boundaries), and γ-agent (virtual leader).

β-agents of an α-agent at one time are always two perpendicularly projected points

on the road boundaries with respect to the α-agent. Moreover, five α-agents are

commanded to track a navigational virtual leader γ-agent moving along the middle line

of the middle lane at Y = 4.5 m with a fixed speed of 20 m/s. Thus, five α-agents are

expected to achieve the desired lattice along the middle line. Regarding the targeted

driving speed, the lattice scale d among vehicles is set as 30 m to keep traffic safety.

In addition, given the lattice ratio κ = 1.6, the interaction range r of α-agents is 48 m.

Two different simulation cases are studied for comparison. The first case is that

the augmented flocking control protocol specifically developed for permanent obstacles

is applied. The second case is that the existing classic flocking algorithm without

considering permanent obstacles (e.g. the flocking design in (Olfati-Saber 2006)) is

applied with the same initial conditions of the first case. The simulation results of

the first case are presented in Fig. 12 and Fig. 13, and the simulation results of the

second case are presented in Fig. 14 and Fig. 15. Furthermore, to explain the dynamic

behaviors of vehicles, the responses of the lateral control input of V1 is illustrated in

Fig. 16, and the responses of the Hamiltonian H and Hβ are presented in Fig. 17.
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Figure 12. Maneuvers of α-agents with the augmented flocking control protocol.

 

Figure 13. Longitudinal and lateral velocity trajectories of α-agents with the
augmented flocking control protocol.

From the maneuvers of α-agents with the augmented flocking control protocol,

as shown in Fig. 12, all α-agents are constrained within the feasible space, and the

desired lattice is successfully formed along the middle line to track the common virtual

leader, γ-agent. Moreover, the zoom-in circle also indicates that there is no collision

during the process. From Fig. 13, the longitudinal and lateral speeds of α-agents, pi−x

and pi−y, also asymptotically converge to the anticipated values. Therefore, the full set
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Figure 14. Maneuvers of α-agents with the classic flocking control protocol.

 

Figure 15. Longitudinal and lateral velocity trajectories of α-agents with the classic
flocking control protocol.
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of flocking rules, especially the avoidance of permanent obstacles (road boundaries),

is satisfied in the strictly confined space.

When a conventional flocking algorithm without considering permanent obstacles

is applied, not all of α-agents are controlled along the middle line to track the virtual

γ-agent as expected, shown in Fig. 14. The vehicles, V1, V4, and V5, although are

still restricted within the feasible space, move towards/against the permanent road

boundaries. The geometry topology of α-agents, hence, does not achieve the desired

flocking lattice. Furthermore, the oscillations around the desired speeds presented in

the zoom-in circles in Fig. 15 are observed in the speed trajectories of V1, V4, and

V5, which are owing to the influences of the permanent road boundaries as well. To

explain the oscillations in Fig. 14 and Fig. 15, the lateral control inputs of V1, u1−y,

is illustrated in Fig. 16.

From the perspective of control inputs in Fig. 16, the permanent boundaries

generate repulsive forces as the barriers of the α-agent V1 to avoidance obstacles. In

the classic flocking control shown in Fig. 16 (a), without regulated by hβi , the repulsive

forces from the permanent road boundaries, fβ1−y, to V1 contradict to fα1−y and fγ1−y

for lattice formation, collision avoidance, and virtual leader tracking. Namely, when

V1 approaches to the middle line to avoid road boundaries, fβ1−y decreases with the

increases of fα1−y and fγ1−y. As a result, V1 moves back towards road boundaries,

which increases fβ1−y to push vehicles to the middle line again. Hence, the oscillations

in positions and speeds occur, which is not acceptable considering the requirements of

traffic safety. However, as presented in Fig. 16 (b), the augmented flocking control is

able to resolve the oscillation issue with the help of hβi .
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control

Augmented flocking control

 

Figure 16. Lateral control inputs of V1.

Examining the responses of H and Ĥ shown in Fig. 17 (a), the five vehicles

controlled by the augmented flocking control is able to asymptotically approach to a

local minimum. For the classic flocking control, however, H cannot approach a local

minimum because of the unexpected oscillation phenomena around the equilibrium

point. In (3.39), Hβ indicates the satisfaction of the obstacle zero-sum condition to

avoid permanent obstacles in the strictly confined space. As shown in Fig. 17 (b),

compared with the classic flocking control, the augmented flocking control successfully

handles the interactions from permanent obstacles without oscillations by approaching

Hβ = 0. Thus, the multi-agent system with the augmented flocking control protocol is

verified to achieve the set of flocking rules including permanent obstacle avoidance, as

indicated in Theorem 3.3.3. On the other hand, since the obstacle zero-sum condition

is not satisfied when the classic flocking control is employed, from the oscillations of
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Figure 17. Hamiltonian responses of flocking controls.

Hβ in Fig. 17 (b), the flocking rule of permanent obstacle avoidance is violated, as

shown in Fig. 14.

3.3.5 Conclusions

This section analyzes comprehensive flocking behaviors with permanent obstacles

in a strictly confined space. It is proved that the set of flocking rules including
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permanent obstacle avoidance can only be achieved when the obstacle zero-sum

condition is held. Moreover, a novel augmented flocking protocol is proposed to

achieve flocking coordination with permanent obstacles. Implied by simulation results,

the augmented flocking protocol algorithm can successfully achieve the desired flocking

coordination with respect to permanent obstacles, while the existing flocking control

without permanent obstacles cannot.

3.4 Energy-Efficient Flocking Control

In the nature, flocking implies certain system-level energy optimization for the

migration of a group of animals. However, few literatures specifically formulate the

energy efficiency performance of flocking control to investigate this important flocking

feature, which is a critical concern in engineering applications. For example, UAVs

and AGVs are all energy-consuming multi-agent systems for flocking control (Murray

2007). Therefore, this section is motivated to develop an energy-efficient flocking

control method.

In the science of animal behavior, it is reported that geese on the border of flocks

often appeared to eat more food to balance out the energy cost of grazing and vigilant

behavior (Black et al. 1992). In other words, to improve the energy efficiency of the

whole group, the social division with different energy-based characteristics can be

observed in goose flocks with different task assignments of geese. Inspired by the

foraging cooperation in goose flocks, an energy-efficient way to model the flocking

phenomenon could be achieved by assigning agents with different roles corresponding

to different control inputs. In the flocking theory, the control inputs of agents that

perform flocking coordination are determined by the information collected from their
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neighbors, obstacles, and/or leader(s). Depending on if an agent can or cannot obtain

the movement information of the leader(s), a group of agents can be classified into

two categories: informed and uninformed. Usually, the informed agents have larger

accelerations from attraction influences of the leader(s), which force them to achieve

the destination cohesion. Thus, informed agents also cost more energy than uninformed

agents. In this case, the energy efficiency of cooperative control of multi-agent systems

could be improved by only allocating leader’s information to a small portion of agents.

Namely, only a minority of agents will be selected as informed agents, and other

uninformed agents just follow their nearest neighbors.

From the system-level perspective, the aforementioned idea is promising because

both the communication energy and the kinetic energy will be saved, since the majority

of (uninformed) agents may require less control efforts due to the lack of pertinent

information from the leader(s). On the other hand, a fraction of informed agents in

a group was proved to be able to lead and complete a desired coordinated motion

collectively. For example, only a proportion of informed agents in a swarm was

needed to guide the whole group towards a destination (Couzin et al. 2005) or velocity

consensus (Su, Wang, and Lin 2009). However, with a fraction of informed agents, the

fragmentation issue may emerge, as illustrated in Fig. 18. Theoretically, a flocking

formation requires that the communication graph of a multi-agent system has at least

one rooted spanning tree (Wang, Qin, and Yu 2014). The information absence of

goals cannot guarantee that the communication topology of the multi-agent system

has at least one rooted spanning tree to enable a desired flocking pattern.

To promote engineering applications of the flocking theory, energy-efficient flocking

control is studied in this section based on a novel DLI method. The proposed DLI
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Figure 18. Fragmentation in flocking formation.

method can achieve flocking formation without fragmentation and also reduce energy

consumption by seeking the least selection of informed agents.

3.4.1 Flocking Control with Selected Informed Agents for Energy Saving

In the flocking control protocol (2.5), all α-agents are informed about the states

of γ-agents to avoid fragmentation. Without considering obstacle avoidance (no fβi ),

if a fraction of α-agents is selected to be informed, the control protocol (2.6) can be

rewritten in (3.46).

ŭi = fαi + hi(t)f
γ
i , (3.46)

where hi(t) is a time-varying parameter. Whenever hi = 1, α-agent i is informed.

Otherwise, hi = 0. Since γ-agents represent the desired objectives or virtual leaders of

α-agents, the positions and speeds of γ-agents can be assumed to be larger than those

of α-agents for the tracking purpose. Thus, fγi is usually nonnegative. Therefore, with

the same configuration q of all nodes/agents, the relationship between the flocking

control protocol (2.6) and (3.46) can be depicted by the inequality in (3.47).

ŭi ≤ ui. (3.47)

The equality in (3.47) is held if and only if all α-agents are informed.
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To evaluate the energy consumption of the group of α-agents, an energy-based

index is defined as (3.48),

E =

∫
P (t)dt, (3.48)

where

P (t) =
∑
i∈V

(
|uT
i (t)||

∫
ui(t)|

)
. (3.49)

Note that in (3.49), ui can be replaced by ŭ. As indicated by (3.47) and (3.49),

the smaller ŭ can give less P , such that the energy consumption defined in (3.48) is

reduced. In this case, the optimization of the selection of the informed α-agents is a

promising way to improve the energy efficiency of the flocking control.

Remark 3.4.1. To guarantee the leader tacking performance, at least one informed

α-agent should be kept, which is also the optimal number of the informed α-agents

for the energy-efficient flocking control.

3.4.2 Informed Path, Cycle, and Tree

In order to prevent the fragmentation when only a fraction of informed α-agents

are selected, the definitions of path, cycle, and tree in graph theory are extended to

the informed path, cycle, and tree, respectively. The three new concepts are defined

as follows, and also illustrated in Fig. 19.

Definition 3.4.1 (Informed path, cycle, and tree). Considering a multi-agent system

as a graph G, an informed path, informed cycle, or informed tree, is defined as a

(subgraph) path, cycle, or tree of G, which contains at least one informed α-agent,

respectively.
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Figure 19. Illustration of informed path, cycle, and tree.

Within an informed path, cycle, or tree, every uninformed α-agent can access to

at least one informed α-agent through a path based on the definition. The following

lemmas provide the consensus properties of the multi-agent system controlled by the

protocol (3.46), if an informed path, cycle, or tree exists.

Lemma 3.4.1 (Flocking enabled by informed path). For a multi-agent system G

with the agent dynamics shown in (2.5) and controlled by the flocking control protocol

(3.46), suppose that an informed path Pinfo ⊆ G is a rooted spanning tree and exists

for all t ≥ 0, the flocking formation, consisting of a quasi α-lattice formation, velocity

consensus, and objective tracking, is achieved without fragmentation.

Proof. The subgraph Pinfo is a rooted spanning tree of G, such that V(Pinfo) = V(G).

Therefore, with the first term in the flocking control protocol (3.46), the consensus

of the whole group is achieved with the formation of a quasi α-lattice to avoid the

fragmentation with a matched velocity, whereas all uninformed α-agents in G can

access to at least one informed α-agents via a path.

For the virtual leader tracking, since hi = 1 holds for all informed α-agents in (3.46),

the term fγi guarantees that all informed α-agents are able to track the objective. In

(Su, Wang, and Lin 2009), it also claimed that an uninformed α-agent can track the
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virtual leader as long as it has a path with an informed α-agent. Hence, all uninformed

α-agents in G also can follow the virtual leader.

Lemma 3.4.2 (Flocking enabled by informed cycle). For a multi-agent system G

with the agent dynamics shown in (2.5) and controlled by the protocol (3.46), suppose

that an informed cycle Cinfo ⊆ G exists for all t ≥ 0, and also spatially encloses all

α-agents in the complement set G \ Cinfo, the flocking formation, consisting of a quasi

α-lattice formation, velocity consensus, and objective tracking, is achieved without

fragmentation.

Proof. The class of α-agents spatially enclosed by Cinfo is denoted by B, such that

V(G) = B∪Cinfo. If B = ∅, a rooted spanning tree of G in the form of an informed path

is contained in Cinfo whenever any edge of Cinfo is removed to break the cycle. Thus,

using Lemma 3.4.1, all α-agents in G achieve the flocking without the fragmentation.

If B 6= ∅, Cinfo is a subgraph of G, such that V(Cinfo) ⊂ V(G). When Cinfo intends

to achieve flocking, the space enclosed by Cinfo is contracted. In this regard, given the

finite interaction range dr, the shrunk spatial space makes any enclosed α-agent in B

is asymptotically connected to α-agents in Cinfo. Namely, G contains a bipartite graph

Gbi = Ebi,V(B),V(Cinfo) as t → ∞, whose partition has the mapping relationship

from V(B) to V(Cinfo) via the edge set Ebi. Therefore, the union Gbi ∪ Cinfo contains a

rooted spanning tree, and all uninformed α-agents can access to at least one informed

α-agents through a path.

Lemma 3.4.3 (Flocking enabled by informed tree). For a multi-agent system G with

the agent dynamics shown in (2.5) and controlled by the protocol (3.46), suppose that

an informed tree Tinfo ⊆ G is a rooted spanning tree, and exists for all t ≥ 0, the
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flocking formation, consisting of a quasi α-lattice formation, velocity consensus, and

objective tracking, is achieved without fragmentation.

Proof. Since a tree can be broken down into multiple paths (Godsil and Royle 2013),

an informed tree Tinfo can also be broken down into several informed paths, namely

Tinfo =
⋃
i∈I P iinfo, where I = 1, 2, . . .. Using Lemma 3.4.1, each partition P iinfo is

able to achieve the flocking without the fragmentation. Hence, Tinfo can also achieve

the flocking without the fragmentation.

Collecting Lemma 3.4.1, 3.4.2, and 3.4.3, the following theorem of the fragmentation

prevention is developed to avoid the fragmentation with a portion of informed α-agents.

Theorem 3.4.1 (Fragmentation prevention). For a multi-agent system G with the

agent dynamics shown in (2.5) and controlled by the protocol (3.46), suppose that only

a fraction of α-agents is informed, the fragmentation is prevented if every uninformed

α-agent satisfies at least one of the following conditions for all t ≥ 0:

(i) Belongs to an informed path, cycle, or tree;

(ii) Spatially enclosed by an informed cycle.

Proof. If the set of spatial neighbors of an α-agent is not empty, the α-agent must

belong to a path, cycle, or tree, which connects the α-agent to any of its neighbors.

Thus, the connected α-agents in the graph G can be represented by a group of paths,

which can composite the cycle or tree further, if possible. Based on Lemma 3.4.1,

3.4.2, and 3.4.3, the uninformed α-agents have to belong to an informed path, cycle,

or tree to avoid the fragmentation to guarantee the formation of the rooted spanning

tree.

If the set of spatial neighbors of an α-agent is empty, the α-agent is called individual

α-agent, which cannot access any information from other α-agents. Using Lemma 3.4.2,
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the uninformed individual α-agent still can be a part of desired flocking formation if

it is spatially bounded by an informed cycle. Otherwise, the individual α-agent has to

be informed to prevent the fragmentation.

Essentially, two conditions in Theorem 3.4.1 guarantee that every α-agent is either

informed or uninformed that accesses at least one informed α-agent through a path,

although the multi-agent system does not have a root spanning tree yet.

3.4.3 Distributed Least-Informed Method

To reduce the energy cost of the flocking control of multi-agent systems, one

possible method is to only select a fraction of informed α-agents. In this section,

the DLI method is developed to seek the least required informed α-agents for energy

efficiency improvement. To avoid the fragmentation issue, the DLI method should

satisfy Theorem 3.4.1 strictly.

Based on Remark 3.4.1, the least one informed α-agent is anticipated to achieve the

most energy-efficient flocking without fragmentation. However, this unique informed

α-agent cannot be determined until a rooted spanning tree appears. Therefore, the

DLI method works in an iterative fashion to monotonically decrease the number of

informed α-agents and simultaneously satisfy the conditions in Theorem 3.4.1. Given

initial positions of all α-agents, the initial informed α-agents is determined through

the following (3.50).

An α-agent i is initially selected to be informed if the inequality in (3.50) is

satisfied. (
qi − qj

)T · (qi − qci ) ≥ 0,∀j ∈ Nα
i , (3.50)
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Figure 20. Initial selection of the informed and uninformed α-agents.

where qci is a local mass center defined as

qci = Ave(Nα
i ) =

qi +
∑
j∈Nα

i

qj

|Nα
i |+ 1

, (3.51)

in which |Nα
i | denotes the quantity of Nα

i .

The DLI method is created in a distributed manner. Therefore, each α-agent can

be determined as informed or uninformed based on the information only gathered from

its neighbors set Nα
i . The inequality in (3.50) also works for Nα

i = ∅, which gives

qci = qi and thus makes the left-hand side of the inequality zero. Hence, α-agents with

Nα
i = ∅ should be initialized as informed ones. For clarification, Fig. 20 illustrates

the initial selection of the informed and unformed α-agents of a network using (3.50).

The α-agent “a” in Fig. 20 is initialized as an uninformed agent since there are two

agents within the neighbor set do not satisfy the inequality in (3.50). However, all

α-agents in the neighbor set of the α-agent “b” hold the inequality in (3.50), so that

the α-agent “b” is initialized as an informed agent.

After initialization, an updating policy is needed to change the informed α-agents

to uninformed and vice versa during the flocking formation. In the updating process,

on one hand, an uninformed α-agent has to be changed to be informed to avoid
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fragmentation if it does not satisfy the conditions in Theorem 1 anymore. Since all

uninformed α-agents are enclosed by the informed cycles after the initialization based

on (3.50), using Lemma 3.4.2, the uninformed α-agents can always access at least one

informed α-agent through a path. Hence, none of the uninformed α-agents need to

change status after the initialization, which guarantees that the number of informed

α-agents is monotonically decreased during the formation of flocking.

On the other hand, some informed α-agents need to be updated to become

uninformed to save energy. To achieve this update without fragmentation (satisfy the

conditions in Theorem 3.4.1), an informed α-agent is updated to be uninformed if and

only if it connects to another informed α-agent via a path. In other words, the loss

of the information privilege should not influence any other uninformed α-agents to

satisfy the conditions in Theorem 3.4.1. Since the undirected communication topology

is utilized, an arbitral agreement is necessary to determine the sequence of the loss of

the information privilege of two or more connected informed α-agents. The arbitral

index is defined in (3.52).

Ωi =‖qi − qr‖+‖pi − pr‖ , i ∈ V . (3.52)

The informed α-agent is changed to be uninformed whenever it has the largest Ωi,

compared with any other connected and informed α-agents. Due to the distributed

configuration, all involved informed α-agents can be updated simultaneously in every

time interval.

3.4.4 Simulation Results and Discussions

In this section, simulation results are displayed to verify the energy-efficient

flocking control, enabled by the proposed DLI method. In the simulation, 10 α-agents
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are commanded to move in free 2-dimensional space without obstacles. The finite

interaction range dr is 4.5 m, the lattice scale d is 3 m, and the edge-length uncertainty

ε is 0.1 m. Moreover, the simulated agents are initialized with random positions in the

box area [0, 30]× [0, 30] m2 with zero velocities. The virtual unique leader, γ-agent,

of the group of α-agents is set to move along a straight line with the constant velocity

vector [1.5, 0]T m/s, which starts from the initial position (15, 15). Thus, 10 α-agents

are expected to achieve a quasi α-lattice and move collectively around the γ-agent.

Moreover, the average speeds of the group of α-agents, q̄x and q̄y, is used to indicate

the velocity consensus.

Three different cases are investigated in this section for comparisons with the same

initial condition and flocking control setups. In the first case, all the α-agents are

assumed to be informed and controlled by the classic protocol without hi. In the

second case, the group of α-agents is controlled by the protocol (3.46), and three

α-agents in the group are randomly selected to be informed initially without updates.

Finally, the DLI method is demonstrated in the third case to generate informed

α-agents. Simulation results are presented in Fig. 21, 22, 23, 24, 25.

The movement of the group of α-agents for three cases is shown in Fig. 21, 22,

23, where the red circles represent the uninformed α-agents and the red circles with

blue stars represents the informed α-agents. In Fig. 21, the flocking without the

fragmentation is achieved when all α-agents are informed, which shows the similar

results given in (Olfati-Saber 2006) and (Su, Wang, and Lin 2009). In Fig. 22, the

fragmentation happens and only a small portion of uninformed α-agents connected to

the three informed α-agents is formatted in the desired flocking pattern. The result of
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Figure 21. Flocking formation of α-agents for Case 1.

 

Figure 22. Flocking formation of α-agents for Case 2.
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Figure 23. Flocking formation of α-agents for Case 3.

Case 3 in Fig. 23 shows that a desired flocking without fragmentation is achieved,

and the number of informed α-agents is decreased. Therefore, the informed α-agents

generated by the DLI method are able to satisfy the conditions in Theorem 3.4.1 and

finally lead the desired flocking configuration. Moreover, in Fig. 23, the final number

of informed α-agents is only one, which is the least number of required informed

α-agents for tracking the leader. Although the steady flocking configurations of Case

1 and Case 3 are different (see t = 15 s in Fig. 21 and Fig. 23), both of them are the

desired flocking formations as well as satisfy the flocking rules.

Fig. 24 shows the velocity consensus performance of the flocks. The group of

α-agents controlled by the protocol (3.46) in Case 1 can successfully track the desired

velocity vector of the given γ-agent. Compared with the failure of velocity consensus

in Case 2, the flocks in Case 3 can track the desired velocity. Since the quantity of
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Figure 24. Velocity consensus of the flocks.

 

E
/J

25

Figure 25. Energy consumption of the flocks.
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informed α-agents is decreased in the process of flocking, the velocity tracking errors

are slowly decreased over a relatively long time. This is because the impact of the

virtual leader, γ-agent, is reduced by less informed α-agents. The fast convergence of

the flocking control is an interesting topic and will be addressed in the future.

The energy efficiency performance of the DLI method is demonstrated in Fig.

25, in which η denotes the normalization of P . As shown in the bar chart of Fig.

25, the integrals of P , namely E, of Case 1, Case 2, and Case 3 are 23.9 J, 11.2 J,

and 20.1 J, respectively. Compared with Case 1, the energy consumption for Case

3, when the DLI method is applied, is reduced by 15.9% via appropriately selecting

less informed α-agents. Note that it is meaningless to have the least energy in Case 2,

since the randomly selected informed α-agents cannot avoid the fragmentation. While

employing the DLI method may increase the onboard computational energy cost, the

energy savings on the kinetic energy consumption is typically much more than the

computational energy cost for practical multi-agent systems, such as UAVs and AGVs.

3.4.5 Conclusions

This section proposes the DLI method to generate the least required informed

α-agents to improve the energy efficiency of the flocking control and simultaneously

avoid the fragmentation. Demonstrated by three simulation examples for a multi-

agent system with 10 α-agents, the simulation results show that the group of α-agents

controlled by the protocol with the DLI method can successfully achieve the desired

flocking configuration with less energy consumption.

73



Chapter 4

HIERARCHICAL FLOCKING FRAMEWORK FOR CAV SYSTEMS

4.1 Overview

The existing fundamental benchmark of flocking control of multi-agent systems

can be summarized as follows: a group of agents is controlled by flocking protocols

to achieve desired flocking rules based on double-integrator models and the NID

transformation. This fundamental benchmark may work for some multi-agent systems,

such as mobile robots and unmanned aerial vehicles (UAVs), but not for CAV systems,

of which the nonlinear vehicle dynamics and tire forces cannot be handled by double-

integrator models and the NID transformation.

In this chapter, two main issues in the application of flocking theory in the

cooperative control of CAV systems are resolved. First, nonlinear vehicle dynamics

are fully considered in the flocking control of CAV systems. Second, the vehicle

yaw/orientation dynamics are well addressed without the NID transformation. The

detailed contributions of this chapter are summarized as follows 3.

1. A novel hierarchical flocking control framework for CAV systems is proposed,

which can handle complex nonlinear vehicle dynamics without using the NID

transformation. Within the novel framework, mission planning, path planning,

speed profile generation, and local vehicle dynamics control are synthesized

together. Moreover, different vehicle sizes can be considered in the modified

3The main content of this chapter is based on the author’s works in (Wang and Chen 2018a) and
(Wang and Chen 2020a).
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flocking control design. Note that the proposed framework can be applied to other

artificial multi-agent systems as well, such as UAVs, autonomous underwater

vehicles, and mobile robots.

2. The agent/vehicle dynamics sectionalization is provided. Benefited from the

proposed framework, different models of agent/vehicle dynamics are applied in

different layers. Hence, the practical nonlinear vehicle dynamics are separated

from the high-level flocking controller, which is authentically utilized in the

low-level trajectory tracking control.

3. The predictive orientation guidance of CAV systems is produced. Given global

path trajectory references and speed profiles, a sequence of the ideal heading

angles is predicted based on the assumption of zero sideslip angle of vehicles,

which is continuously described by an optimal fitting curve. Thus, the orientation

reference is defined by taking the first-time derivative of the optimal fitting

curve.

4. Together with nonlinear vehicle dynamics, path planning, speed trajectory, and

orientation guidance are tracked through both feedforward and feedback con-

trollers. In the low-level controller design, this chapter exploits an analytical

single-point preview (ASPP) driver model as the feedforward control. Further-

more, a nonlinear Lyapunov controller with control allocation is employed as

the feedback control to fully take the merits of the over-actuated vehicles.

5. An integrated simulation example of the flocking control of CAV systems on the

multi-lane traffic environment is demonstrated with nonlinear vehicle dynamics,

an obstacle, and multiple distinctive destinations.
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4.2 Stability Issue of the NID Transformation

The NID transformation that cannot be applied in the flocking control of CAV

systems is discussed in this section. In the flocking algorithm depicted in (2.6), only

translation motions of α-agents modeled are controlled. However, the orientations of

agents are not considered. Thus, when any flocking control law is applied to CAV

systems, an under-actuated control problem emerges since vehicle yaw dynamics also

need to be controlled. In this regard, the NID transformation method was proposed

to tackle the under-actuated control mathematically (Olfati-Saber 2002).

In the NID transformation, the dynamics of a kinematic SE (2) vehicle ( introduced

in (4.7)) is augmented with λ dynamics governed by (4.1).

λ̇ = −cλ (λ− ε) , (4.1)

where 0 < ε < λ(0) < 1, and 0 < cλ. The augmented agent dynamics is shown in

(4.2). 

q̇i = Rλiv + λ̇Rλie1

ṗi = Rλiτi +Rλi r̂i(λ, λ̇)v + λ̇Rλi

[
r̂i(λ, λ̇)− cλI

]
e1

Ṙλi = Rλi r̂i(λ, λ̇)

v̇i = τi

, (4.2)

where Rλi = [Rie1, λRie2], e2 = [0, 1]T, and r̂i(λ, λ̇) is defined in (4.3).

r̂i(λ, λ̇) =

 0 −λi
ri
λ

λ̇

λ

 . (4.3)

For the second equation in (4.2), the control input τi is obtained by directly

applying ui to the double-integrator dynamics, as shown in (4.4).

τi = R−1
λi
ui − r̂i(λ, λ̇)vi − λ̇

[
r̂i(λ, λ̇)− cλI

]
e1. (4.4)
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Hence, the second factor of τi, denoted by τ ′i , for vehicle yaw dynamics control is

obtained in (4.5).

ṙi = τ ′i = −Vi
λ
ri +

RT
2i

λ
ui, (4.5)

where R2i is the second column of Ri. The explicit solution of (4.5) is solved as (4.6).

ri(t) = r0ie
−Vi
λ
t +

∫ t

0

e−
Vi
λ

(t−s)R
T
2i

λ
uids, (4.6)

From (4.6), vehicle yaw rate ri(t) is exponential stable without flocking control

(ui = 0). The first issue in (4.6) is that the yaw dynamics is dominated by λ dynamics

with small λ values (λ < 1) and not controllable, which may not be desired for yaw

rate tracking control purposes. Second, the control inputs determined in (4.4) is not

designed for yaw rate stabilization or tracking. In fact, to achieve flock coordination

and obstacle avoidance, the flocking control law may influence the transit performance

of exponential stability of ri(t). As also suggested in (Olfati-Saber 2002), vehicle yaw

dynamics could be locally controlled to track the desired yaw rate, which could be

independent to the NID transformation. Last but not the least, the NID method may

be only applicable for SE(2) vehicles. This transformation cannot be employed to

practical nonlinear vehicle dynamics or other autonomous systems that have specific

yaw motion control requirements. Note that the translation motion of CAV systems

is not discussed here, which is controlled by flocking algorithms directly to guarantee

flocking coordination and stability.

77



 

Flocking Control 

Protocol

(Motion Planning)

Orientation Guidance 

Generation

Path Trajectory 

Generation

(Behavior 

Planning)

Global Trajectory Controller 

with Control Allocation

Vehicle 

Dynamics

+
-

Global-

Local 

Frame 

Transform

Decision Making Layer

Physical Processing Layer

States Predictions

agents −

M
u

lt
i-

v
eh

ic
le

 

T
ra

je
ct

o
ry

 T
ra

ck
in

g
F

lo
ck

in
g

 C
o

n
tr

o
l

agents −

Generation

,  agents  −
Generation

Real-time Agents 

Topology

Communication Layer

Obstacles & 

Objective

Flocking Rules (Mission Planning)

Figure 26. Novel hierarchical framework for the flocking control.

4.3 Hierarchical Framework for Flocking Control

4.3.1 Framework Configuration

To tackle the issues resulted from vehicle dynamics and orientation control, a novel

hierarchical framework for the flocking control of CAVs is proposed in Fig. 26, which

represents a typical vehicular CPS. From Fig. 26, the proposed framework contains

two main components, the high-level flocking control and the low-level trajectory

tracking control of CAV systems.
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The high-level flocking control consists of information sharing and decision making

in the network. Given the flocking rules, flocking theory is utilized to generate

the trajectory references of the path and speed profile of a group of agents in the

high-level layer, which includes mission planning, motion planning, and behavior

planning. Namely, based on the shared global state-feedback of α-agents, updated

obstacle detection, and objective setup, the geometric topology of multi-agent systems

is generated in the communication layer of the vehicular CPS. The states of vehicles

are predicted by applying the flocking control protocol in the high-level layer. Here,

the flocking rules serve as the mission planning of CAV systems, and the flocking

control protocol provides the motion planning of each vehicle. Moreover, the predicted

states of vehicles are utilized to generate the desired references of trajectories and

orientations, which is considered as the behavior planning of each vehicle.

In the low-level physical layer, the flocking control is realized through a class

of global trajectory tracking control problems solved by the local vehicle dynamics

controllers with the control allocation. The advantages of the proposed flocking control

framework are stated as follows.

First, the proposed framework does not require dynamics transformation, such as

the NID method. Hence, there is no stability issue introduced by the NID transfor-

mation (see section 4.2) when the flocking protocol is applied to control nonlinear

vehicle dynamics, which make the proposed framework applicable to many other

autonomous multi-agent systems, such as unmanned aerial vehicles, autonomous

underwater vehicles, and mobile robots.

Second, the hierarchical configuration clearly separates the high-level flocking

control design and the low-level control design for physical processing systems. From

Fig. 26, a successful system synthesis depends on accurate predictions of vehicle states.
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However, the simple agent dynamics are hard to fully and accurately predict the real

vehicle states due to high nonlinearities. Benefited from the proposed hierarchical

framework, the employment of simplified agent models in the high-level layer does

not influence the prediction errors, if vehicles can fully track the references, including

the path trajectories and orientations, generated by the flocking algorithm. Thus,

in addition to achieving the high-level references, additional control requirements

and more practical and complex system dynamics can be added and satisfied in the

low-level control design.

Third, the proposed flocking control framework enables over-actuated vehicle

control with prediction features. The independent low-level vehicle control can be

formulated as an over-actuated control problem, which has more control degrees of

freedom and feasibility to realize better control performance. In addition, given the

state feedback of agents, the trajectories and orientations of agents are generated by

the flocking algorithm with prediction features, which also benefit predictive control

performance for the flock coordination to avoid collisions.

Fourth, the proposed hierarchical framework can handle the obstacle avoidance

in the real world. Even though it is challenging for vehicles to acquire sufficient

information of obstacles on the road in practice, the obstacle avoidance in the flocking

control does not require full knowledge of all obstacles as long as the obstacles can

be detected before vehicles approach them. Namely, in the proposed hierarchical

framework, vehicles only need to avoid the obstacles that appear within finite detection

ranges of vehicles. The detection ranges depend on the capability of the onboard

sensors. Therefore, the proposed framework is suitable for obstacle avoidance in

real-world situations.
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Remark 4.3.1. Although some existing studies reported separating the high-level

planning and the low-level trajectory tracking, those research works were mainly about

a single vehicle, which cannot be extended for CAV systems in a straightforward

way (Lim et al. 2018). On the one hand, the practical nonlinear vehicle dynamics

and tire model are enclosed in the proposed framework. Hence, the road condition is

considered. On the other hand, the complete framework for CAV systems not only

has the high-level planning module and the low-level tracking control but also involves

the communication layer, which can be recognized as a vehicular CPS and does not

exist for a single-vehicle.

4.3.2 Traffic Rules in Flocking Control

To represent traffic rules for the application of the high-level flocking control, two

typical traffic scenarios are mainly identified in this dissertation, namely lane-keeping

and lane-changing driving maneuvers. When the flocking control protocol is applied

to transportation systems, the corresponding definitions of β-agents and γ-agents are

proposed to accommodate the lane-keeping and lane-changing behaviors.

The definitions of β-agents and γ-agents representing basic vehicle behaviors in

traffic are shown in Fig. 27. For the lane-keeping scenario in Fig. 27 (a), β-agents are

defined as two boundary lines of the lane, which serve as the permanent spatiotemporal

constraints to achieve the lane-keeping control. At the same time, α-agents also receive

the information from the navigational (virtual) γ-agent that moves along with the

middle line of the lane. When the lane is blocked by an obstacle, the lane-changing

behavior is expected to avoid the collision.
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Figure 27. Definitions of β-agents and γ-agents for lane-keeping and lane-changing.

For the lane-changing scenario in Fig. 27 (b), before the vehicle enters the targeted

lane, the boundary between two lanes is not described as β-agents anymore, while

the outer boundaries of two lanes and the roadblock still perform as the constraints

to generate β-agents. After the vehicle entering the targeted lane, the lane-keeping

control is resumed. To lead the lane-changing maneuver, the γ-agent is also switched

to move along with the middle line of the targeted lane.

Remark 4.3.2. Obstacles, namely β-agents can be either continuous or discrete, which

depends on the obstacle properties. For example, the road boundary lines in Fig. 27

can generate continuous β-agents since they are permanent constraints of vehicles.

However, the roadblock in a lane may provide a discrete β-agent since it only temporally

appears in the detection range of vehicles. The virtual leaders γ-agents are continuous

because α-agents should always receive the virtual leader information during the

flocking process.
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4.4 Vehicle Dynamics Sectionalization

Benefited by the proposed flocking coordination framework, the high-level flocking

control of multi-agent systems and the low-level control of physical systems are able to

adopt different dynamic models of the same agents to balance computation efficiency

and control performance. Thus, for CAV systems, in addition to the aforementioned

double-integrator dynamics in (2.5), SE (2) vehicle dynamics and nonlinear single-track

vehicle dynamics are introduced in this section.

4.4.1 Global SE (2) vehicle dynamics

The global SE (2) vehicle dynamics integrates vehicle global coordinates and

orientations, which is depicted in (4.7).

ẋ =

[
Ẋ Ẏ

]T

= (Re1)V

Ṙ = Rr̂

v̇ = τ

, (4.7)

where x is vehicle global position with two coordinates X and Y , e1 = [ 1 0 ]T, r̂ =

diag(r,−r). In addition, v = [ V r ]T, τ is control input, and R is the rotation matrix

associated with vehicle heading angle ψ that is defined in (4.8).

R =

cosψ − sinψ

sinψ cosψ

 . (4.8)
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Figure 28. Single-track vehicle model diagram.

4.4.2 Nonlinear Single-Track Vehicle Dynamics

A nonlinear single-track vehicle dynamics model is adopted to describe the planar

motion of vehicles, which is illustrated in Fig. 28.

Within Fig. 28, x-y is a local coordination frame of the vehicle. The governing

equations of the vehicle dynamics with respect to the local frame are formulated in

(4.9). 

M(v̇x − rvy) = −Fyf sin δ + Fxf cos δf + Fxr − Fre︸ ︷︷ ︸
fx

+Fcx

M(v̇y + rvx) = Fyf cos δf + Fxf sin δf + Fyr︸ ︷︷ ︸
fy

+Fcy

Iz ṙ = FyfLf cos δf − FyrLr + FxfLf sin δf︸ ︷︷ ︸
fm

+Mc

, (4.9)

where fx, fy, and fm are the external resultant longitudinal force, lateral force, and

yaw moment from tires and air, respectively.

To determine tire forces in (4.9), the Dugoff’s tire model is applied, which is

featured by the simple formulation but able to describe the nonlinearities and coupling

effects of tire longitudinal and lateral forces (Ding and Taheri 2010).
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4.4.3 Model Sectionalization and Transformation

In the proposed flocking control framework, different control algorithms in different

modules take the merits of different vehicle dynamics models to balance computational

efficiency and control performance. Table 1 lists the sectionalization assignment of

dynamic models.

Table 1. Dynamics model sectionalization assignment

Module Dynamics Model
Flocking control Double-integrator dynamics

Orientation guidance SE(2) vehicle dynamics
Global trajectory controller Nonlinear vehicle dynamics

In the flocking theory, the double-integrator dynamics of agents (2.5) are applied.

In the orientation guidance module, the full global planar motion of agents should

be considered, which includes both translation and rotation of agents. Thus, the

global SE (2) vehicle dynamics (4.7) are adopted to generate orientation guidance. In

the global trajectory controller with the control allocation, the single-track vehicle

dynamics (4.9) have to be employed for considering practical vehicle performances

and tire forces.

Remark 4.4.1. In the low-level control allocation, the load transfer among four tires is

also considered, which is not explicitly shown in (4.9).

When the measured states of multiple vehicles are input to the information layer

and the high-level control layer of the vehicular CPS, the following transformation
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from the local frame to the global frame via (4.10) should be applied.vx
vy

 =

 cos (ψ + β) sin (ψ + β)

− sin (ψ + β) cos (ψ + β)


Ẋ
Ẏ

 (4.10)

4.5 Controller Design

In this chapter, the high-level flocking control employs the conventional flocking

control protocol, and the size of vehicles is considered. Besides, the low-level trajectory

tracking control configuration is presented in Fig. 29. To fully track the states of

α-agents, both global position and speed errors need to be mitigated. For the global

positions tracking, a novel driver model, ASPP, is proposed to give the feedforward

control to minimize both longitudinal and lateral position tacking errors, which

considers the real-time flocking control requirements and the sensitivity of lateral tire

forces. Furthermore, a nonlinear feedback Lyapunov controller with control allocation

is designed for the global speeds tracking and the yaw motion stabilization.
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4.5.1 High-Level Flocking Control

The high-level flocking control protocol is implied in (3.23). To accommodate the

dimensions of vehicles, the modified desired lattice scale is defined as d′ = d+ dL, in

which dL is larger than the largest dimension of CAVs. Hence, the parameter d in the

flocking protocol (3.23) is replaced by d′.

4.5.2 Predictive Orientation Guidance for CAV systems

The path references of CAV systems are directed from the positions of α-agents

in flocking theory. However, as shown in (2.5), α-agents are typically modeled as a

group of mass points without considering their orientations or yaw dynamics, while

the yaw dynamics control is essential for vehicle driving. In this section, a predictive

orientation planner is proposed to produce the yaw rate references for multi-vehicle

systems. To maintain vehicle stability, zero sideslip angle is usually anticipated, which

requires the vehicle lateral speed to be controlled around zero. Namely, it is ideal for

α-agents to head towards their reference positions at the next time interval, which

can be predicted through the flocking theory.
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To track zero sideslip angle references of vehicles, Fig. 30 gives the definition of

an ideal heading angle of α-agent i. In Fig. 30, ∆t is the sampling interval and k is

a positive integer, and ∆Xi and ∆Yi are longitudinal and lateral distances between

the current position of α-agent i at k∆t and the next position reference at (k + 1)∆t,

respectively. From Fig. 30, the ideal heading angle ψdi at k∆t is defined in (4.11).

ψdi(k∆t) = arctan

(
∆Yi
∆Xi

)
= arctan

(
Ẏi(k∆t)

Ẋi(k∆t)

)
. (4.11)

Given a n-step time horizon starting from (k∆t), the states Ẏi and Ẋi of α-agent

i only at (k∆t) are from the real-time feedback, and the states from (k + 1)∆t to

(k+n−1)∆t are predicted by the flocking algorithm. Thus, in addition to ψdi(k∆t), the

other n− 1(n > 1) predicted values of the ideal heading angles can also be determined

using the same method as shown in (4.11), which are denoted by ψdi((k + 1)∆t),

. . . , ψdi((k + n− 1)∆t). Then, an optimal fitting curve function fi(t) is obtained to

continuously describe the ideal heading angle sequence, which is a polynomial function

as depicted in (4.12).

ψdi = fi(t) =
n−1∑
j=0

ajt
j, (4.12)

where aj is the polynomial coefficient. Taking the first time derivative of fi(t), the

slope value of the fitting curve at the first time point k∆t, denoted by rdi(k∆t), is

adopted as the yaw rate control reference, and it is updated iteratively along with the

shifted time horizon, as shown in Fig. 31. Within Fig. 31, ψi denotes a measurement

of the current heading angle, and ψ̃di denotes the predicted heading angle.

In sum, based on the requirement of zero sideslip angles, the ideal heading angles

and yaw rates of CAV systems are produced through current states of agents, path

predictions via flocking protocols, and optimal curve fitting. Therefore, the yaw rate
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Figure 32. Schematic geometry of vehicle path tracking.

references are consistent with vehicle path trajectory tracking and yaw dynamics

stabilization.

4.5.3 Analytical Single-Point Preview Driver Model

A novel ASPP driver model is proposed in this section to perform as a feedforward

control for path tracking. The schematic geometry of vehicle path tracking is presented

in Fig. 32. Within Fig. 32, o is the current vehicle steering center. Besides, the

superscript (·)′ denotes the control targets of vehicle states, and R′ is the steering

radius with respect to o′.
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Given the corresponding coordinates of CG and CG′, namely (X, Y ) and (Xd, Yd),

respectively, the vehicle steering center should move from o to o′ to make the vehicle

drive along an ideal circular curve connecting CG and CG′, which is the red dash

curve in Fig. 32. As a result, a new front slip angle α′f is required. The output of the

ASPP driver model is the desired feedforward steering angle δ′, which is depicted in

(4.13).

δ′ = β +
Lfr

vx
− α′f . (4.13)

From the geometry relationship and desired driving path shown in Fig. 32, the desired

front tire sideslip angle is determined in (4.14).

α′f = arctan

(
R′ + sin β + Lf

R′ cos β

)
, (4.14)

in which

R′ =

√
(Xd −X)2 + (Yd − Y )2

2 cos θ
, (4.15)

where

θ =
π

2
+ β − arctan

(
Yd − Y
Xd −X

)
+ ψ. (4.16)

From (4.15) and (4.16), the tracking errors of both longitudinal and lateral path

trajectories are considered. Thus, the ASPP driver model is able to be applied to the

flocking control of CAV systems.

4.5.4 Nonlinear Laypunov Controller Design with Control Allocation

Assume that the corrective control in (4.9) are achieved through the common

active front steering (AFS) control and the direct yaw moment control (DYC). Thus,

besides the feedforward control δ′, three feedback control efforts are designed as the

virtual control inputs, Fcx, Fcy, and Mc, which can be realized by the AFS and DYC.
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Based on (4.9), the control law given by the following proposition can track the vehicle

speeds trajectory and the yaw rate reference.

Proposition 4.5.1. The virtual feedback control input ũ =

[
Fcx Fcy Mc

]T

in (4.17)

makes the tracking errors of driving speeds and yaw rates asymptotically stable.

ũ = M̄

(
χ̇d + χd − χ+

[
−rvy rvx 0

]T
)
− f , (4.17)

where M̄ = diag(M,M, Iz), χ = [ vx vy r ]T is vehicle states, χd = [ vxd vyd rd ]T is vehicle

reference, and f = [ fx fy fm ]T. A rotation matrix is adopted to transform vehicle

coordinates between the local and global frames, as indicated in (4.10).

Proof. Given the reference vector χd, the tracking error vector is defined as

e =

[
e1 e2 e3

]T

= χ− χd. (4.18)

Defining a Lyapunov function in (4.19), we have the derivative of V̇ in (4.20).

V =
1

2
eTe. (4.19)

V̇ =
3∑
j=1

ėjej. (4.20)

From (4.20), the condition,

ėj = −ej, j = 1, 2, 3, (4.21)

makes V̇ negative definite, namely

V̇ = −
3∑
j=1

ė2
j < 0. (4.22)

Substituting (4.9) and (4.18) into (4.21), we have

v̇x = rvy +
fx + Fcx
M

= v̇xd + vxd − vx

v̇y = −rvx +
fy + Fcy
M

= v̇yd + vyd − vy

ṙ =
fm +Mc

Iz
= ṙd + rd − r

. (4.23)
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Therefore, the feedback control law in (4.17) are obtained by solving (4.23).

To incorporate all the vehicle control systems together, the relationship between

the achievable values of ũ from the control allocation, ũ′, and the real control vector

U are developed as

ũ′ =


F ′cx

F ′cy

M ′
c

 = SU, (4.24)

where

S =


0 1 1 1 1

Cf 0 0 0 0

LfCf ls/2 −ls/2 ls/2 −ls/2

 , (4.25)

and U = [ ∆δf F
fl
cx F frcx F rlcx F

rr
cx ]T, in which ∆δf is the corrective front steering angle, and

F fl
cx , F fr

cx , F rl
cx, and F rr

cx are four corrective longitudinal tire forces. The quadratic

control allocation problem is formulated in (4.26).

min
U

J = (ũ′ − ũ)TW1(ũ′ − ũ) + UTW2U

s.t. U ∈ Ub
, (4.26)

where J is the cost function, W1 and W2 are the weighting matrix, and Ub is the

feasible region of U . In (4.26), the cost function J contains the actuator penalty and

the error generated by the control allocation algorithm. Hence, the real feedback

control effort is

U = arg min
U∈Ub

J(t, ũ, U). (4.27)
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Figure 33. Flowchart of the simulation configuration.

4.6 Simulation Results and Discussions

Simulations are conducted in MATLAB/Simulink® to verify the novel flocking

control framework with trajectory tracking for CAV systems. The flowchart of the

simulation configuration is shown in Fig. 33.

The parameters of vehicles and flocking control are listed in Table 2. Considering

the real sizes of the CAVs, the width (wheel track) is 1.65 m, and the length (wheelbase)

is 3.05 m, so that L is 3.05 m.

The simulated scenario is a one-way three-lane straight highway with an obstacle

on the middle line of “Lane 2”, as shown in Fig. 34. The two outer lane boundaries

93



Table 2. Parameter values of simulated vehicles and flocking control

Symbol Parameter values
M 1,650 kg
Iz 3,234 kg ·m2

Cx 80,000
Cy 45 kN · rad−1

Lf 1.4 m
Lr 1.65 m
dr 48 m
d 40 m
cα1,2 1
cβ1,2 1.2
cγ1,2 1
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Figure 34. A one-way three-lane highway with an obstacle.

are indicated as double lines at Y = 0 m and Y = 9 m, and the obstacle, as one

β-agent, is always served as the spatial constraint. The obstacle has a round shape

with a radius at 1.5 m, which can totally block “Lane 2”. To avoid the obstacle, the

lane-changing maneuvers of vehicles are expected.

Four different cases are investigated in the simulation. In the first case, five

indistinctive vehicles, V1-V5, are controlled to achieve the flocking coordination on

the middle line of “Lane 2” at Y = 4.5 m, and the obstacle locates at X = 50 m. In

addition, vehicles (α-agents) are controlled to follow γ-agents with a constant desired
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speed at 20 m/s on the highway, where the tire-road friction coefficient in the Dugoff’s

tire model is set as 0.85. Initial yaw rates and sideslip angles are all zeros. The vehicle

initial positions are randomly selected in the area of (X0, Y0) ∈ [0, 40m] × [0, 9m],

and the non-zero initial longitudinal speeds are selected in the set Vx0 ∈ (0, 20m/s).

Compared with the first case, the second case only changes the obstacle location, which

is moved to X = 420 m to examine the influence of the obstacle on a different stage

of the flocking coordination. The third case is the most complicated one. Instead of a

unique middle line tracking, vehicles are assigned to achieve flocking on two different

middle lines of “Lane 1” and “Lane 2” where Y = 1.5 m and Y = 4.5 m, for the

obstacle at X = 320 m. Finally, the fourth case is an unstable case without obstacles

by using the existing fundamental benchmark. Namely, the proposed hierarchical

flocking control framework is not employed. In the fourth case, the double-integrator

agent dynamics is used, and the NID transformation as shown in section 4.2 is also

used for vehicle yaw dynamics control without considering nonlinear vehicle dynamics.

Other setups in the fourth case are the same as what are used in the first case. The

simulation results of these cases are presented in Fig. 35.

As illustrated in Fig. 35, all simulated CAVs start from different random initial

positions without overlaps. In Fig. 35 (a) for the first case, the obstacle appears during

the coordinating process of the quasi α-lattice, or the flocking. The plot indicates that

five vehicles are able to avoid the suddenly emerged roadblock, which can be detected

in real-time through the advanced onboard perception and sensing systems, such as

lidar, camera, and radar. Bypassing the roadblock, the flocking is then gradually

realized as shown in the enlarged circle. The constant distances among vehicles are

remained for improving traffic capacity. In the second case, the flocking is achieved

first, as presented in Fig. 35 (b). After that, while moving with the desired flocking
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Figure 35. Path trajectories of five simulated vehicles in four different cases.

coordination, the CAV systems can still avoid the obstacle in a collective manner. In

the third case, shown in Fig. 35 (c), led by two different assigned objectives (γ-agents),

two groups of flocks are controlled on the middle lines of “Lane 1” and “Lane 2”,

respectively. Therefore, the CAV systems with flocking control can robustly achieve

the flocking coordination to track multiple objectives and avoid collisions in a 2D

traffic environment. Moreover, once the flocking is reached, all connected vehicles

within the flocking behave in a collective fashion.

The flocking path trajectories of the fourth case are presented in Fig. 35 (d). The

unstable vehicle control performance is observed, which is consistent with the analyses

in section 4.2. Therefore, compared with the proposed flocking control framework,

the existing flocking algorithm by using the NID and simplified double-integrator

dynamics cannot handle nonlinear vehicle dynamics and orientation control. Thus,

flocking behaviors cannot be successfully achieved.
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Figure 36. Global speeds of vehicles in the third case.

Furthermore, in Fig. 35, the steady-state of the flocking coordination is similar to

the vehicle platooning. That is because the road boundary serves as the permanent

spatial constraint during the lane-keeping scenario, which is always symmetric to the

trajectory of γ-agent. In this regard, vehicle platooning can be recognized as one of

the special cases of vehicle flocking coordination.

In detail, Fig. 36, 37, 38, 39, and 40 present the vehicle states, tracking errors,

and control inputs in the third case as a paradigm. The corresponding global speeds

responses of vehicles are shown in Fig. 36. It can be seen that all simulated vehicles

can track the desired speeds, which is defined as 20 m/s for Vxi and 0 m/s for Vyi.

Thus, velocity alignment in the flock is successfully performed. From Fig. 37, the

vehicle yaw and lateral stability of vehicles are maintained through the orientation

guidance and control.
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Figure 37. Yaw rates and sideslip angles of vehicles in the third case.

The reference tracking performances are presented in Fig. 38. Considering the

nonlinear vehicle dynamics based on the novel framework, tracking errors of global

path trajectories and vehicle local states are suppressed by the driver model and

the nonlinear Lyapunov controller. In addition, owing to the small tracking errors

illustrated in Fig. 38, the prediction errors resulted from the simple agent dynamics

model are compensated, which is also one of the advantages of the proposed framework.

Therefore, the hierarchical control framework with model sectionalization involving

the nonlinear vehicle dynamics guarantees the stabilization performance of trajectories

tracking of the global positions and orientations with small tracking errors.

In the high-level control layer, the flocking control law gives control efforts, as pre-

sented in Fig. 39, which indicate that both global longitudinal and lateral acceleration

commands are stable to achieve the path trajectories in Fig. 35 (c). After the control
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Figure 38. Tracking errors of vehicles in the third case.

allocation, the feedback control efforts are reasonably commanded, as indicated in

Fig. 40.

Using the proposed hierarchical flocking coordination framework, the high-level

layer only provides the real-time global path planning, and the detailed local orientation

reference and trajectory tracking control inputs are generated and achieved by the low-

level control of realistic nonlinear vehicle dynamics. Compared with vehicle platooning

control, the CAV system with the flocking control interacts in a 2D protocol, even

with multiple different cohesion destinations.

99



 

Figure 39. Virtual control inputs of α-agents in the third case.

 

Figure 40. Real control inputs of vehicles in the third case.
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All the obtained simulation results assume that the vehicles are identical. Because

vehicles with various parameters are more practical in a real transportation system,

heterogeneous vehicles with different sizes, dynamics, and/or constraints should

be considered. In fact, the proposed framework may still work even if the high-

level homogeneous agent dynamics is applied to the low-level heterogeneous vehicle

dynamics. For instance, vehicles with larger sizes and masses usually have larger

powers for prolusion and control. Therefore, a group of vehicles with heterogeneous

dynamics could still overcome the prediction errors resulted from the homogeneous

agent dynamics if the control capabilities are enough to achieve small tracking errors.

The general heterogeneous dynamics problem is still challenging for the flocking

theory and cooperative control of vehicles, which will be an interesting future work to

extend the proposed framework.

4.7 Conclusions

This chapter introduces a novel hierarchical flocking coordination framework to

extend the application of the flocking theory for the cooperative control of multi-CAVs.

Without relying on the NID transformation, the proposed hierarchical framework gives

the global path trajectory in the high-level control layer and considers the nonlinear

vehicle dynamics in the low level, which achieves the orientation and trajectory

tracking control locally. Demonstrated by different cases in the one-way three-lane

highway simulation, the proposed flocking coordination framework can successfully

achieve velocity alignment, orientation control, collision avoidance between CAVs and

obstacle, and multiple destinations cohesion with small tracking errors.
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Chapter 5

EXPERIMENTAL VALIDATION OF FLOCKING CONTROL

The experimental validation of flocking control is necessary to prove the feasibility

of flocking applications in transportation systems. Therefore, to conduct vehicular

flocking experiments, a prototype of CAV research platform is introduced in this

chapter, which includes three CAVs, as shown in Fig. 41. In particular, each

CAV includes a drive-by-wire chassis and an onboard control system with wireless

communication. Furthermore, three experimental cases are investigated in this chapter

to demonstrate the proposed hierarchical flocking framework for CAV systems.

 

Figure 41. The scaled vehicle platform prototype.
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Figure 42. Mechanical configuration of scaled vehicle platform prototype.

5.1 Scaled Vehicle Platform Prototype Development

5.1.1 Vehicle Chassis

The configuration of the chassis design of each scaled CAV is presented in Fig. 42.

The chassis is purely driven by electricity with four independent motors. Additionally,

the chassis also has two steering motors to provide four-wheel steering capability. In

particular, the chassis can be controlled through drive-by-wire technologies by using

CAN bus protocols. Some vehicle parameters of the developed scaled CAV are listed

in Table 3.
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Table 3. Parameter values of a scaled CAV

Category Values
Size (length × width × height) 1030 mm × 632 mm × 265 mm

Weight sprung mass: 50 kg; unsprung mass: 8 kg
Maximum payload 20 kg

Maximum acceleration 9 m · s−2 with zero payload
Maximum speed 53 mph
Battery capacity 30,000 mAh

Peak power 3 kW

5.1.2 Vehicle Power and Control System

The configuration of the CAV power and control system is shown in Fig. 43. The

power supply of the scaled CAV is a package of the 12V, 30,000 mAh LiFePO4 battery

equipped with a battery management system (BMS). The actuators of the scaled CAV

include four driven motors and two servo steering motors. All on-board devices (e.g.

GNSS, Raspberry Pi) and sensors are powered by an additional 12V DC onboard

battery.

For control purposes, as shown in Fig. 43, the scaled CAV uses a Raspberry Pi

3 Model B+ as an onboard computer to share, transform, and record data. The

low-level vehicle dynamics control unit employs New Eagle Raptor BCM 48, which

receives vehicle states and sends CAN control commands to the chassis. The vehicle

inertial states are measured by an inertial measurement unit (IMU), and the vehicle

global positions and heading angles are obtained through a real-time kinematic GNSS

system, which can provide the scaled CAV centimeter-level positioning. To connected

three CAVs together and monitor vehicle statuses, a set of V2V and V2I networks are

created for information sharing. In detail, the V2V network is developed based on the
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UDP/IP protocol, and the V2I network is a WiFi-based network to start/stop the

automatic control of scaled CAVs and retrieve data.

5.1.3 Vehicular Onboard Software System

The configuration of the vehicle onboard software system is presented in Fig. 44.

In the onboard computer (Raspberry Pi 3 B+), a set of Python scripts is programmed

to configure system setups, enable data transmission, transformation, and recording,

and generate high-level flocking control inputs. The information going through V2X

communication, including V2V and V2I communication, is also transmitted via the

onboard computer. To accommodate the I2C bus using by IMU, an Arduino board

with C scripts is adopted for data acquisition. Furthermore, for the low-level control

of actuators, the rapid prototype development method is used to produce control

algorithms by MATLAB/Simulink®.

5.2 Experiment Setups

The experiments are conducted in open flat ground, in which the antenna position

of the GNSS base station is the origin of the global coordinate, and the directions of

east and north are assigned as X and Y directions of the global coordinate, respectively.

To verify the proposed hierarchical flocking control framework for CAV systems,

three cases are investigated in this chapter. The first case is free flocking without any

influences from obstacles. In the first case, three CAVs (α-agents) are required to

track a unique virtual leader (γ-agent). The second case is constrained flocking. In
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Figure 43. Power and control configuration of scaled vehicle platform prototype.
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Raspberry Pi software (Python scripts)
• System configuration
• Data transmission, transformation,  and recording
• High-level flocking control protocol
• V2X communication protocol (UDP/IP and WiFi)

New Eagle BCM48 software (C scripts)
• Low-level vehicle dynamics control (rapid prototype development using MATLAB)

Arduino software (C scripts)
• Data acquisition

GNSS, radios, and other sensorsIMU

AGV Chassis

AGV inputs

Onboard software

Figure 44. Onboard software configuration of scaled vehicle platform prototype.

the second case, three CAVs are required to track a unique virtual leader constrained

by two boundary walls (β-agents) located at X = 3.5 m and X = 9.5 m, respectively.

The third case employs two γ-agents, and different CAVs are asked to track different

γ-agent in a space constrained by two walls introduced in the second case.

In the first and second cases, the unique γ-agent travels along the straight line Y

= 6.5 m with speed 1.5 m/s. In the third case, two γ-agents travel along with two

straight lines at Y = 5 m and Y = 8 m, respectively. All of other parameter values of

flocking control are listed in Table 4.
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Table 4. Parameter values of flocking control in experiments

Category Values
cα 0.08
cβ 0.15
cγ 0.2
dα 3.0 m
rα 5.0 m
rβ 1.5 m
h 0.5
a 5
b 5
σ 0.1

5.3 Experiment Results and Discussions

The maneuvers of scaled CAVs in experiments are presented in Fig. 45, which

implies lattice formation, collision avoidance among vehicles, and virtual leader position

tracking. In Fig. 45 (a), it can be seen that the desired α-lattice is gradually formed

in free flocking around the given γ-agent at Y = 6.5. Moreover, there is no collision,

otherwise, three CAVs cannot have smooth path trajectories. Compared with free

flocking, the maneuvers of the constrained flocking case, as shown in Fig. 45 (b), are

affected by two walls, which force three CAVs to follow the γ-agent on a straight line.

The chain-like lattice is also confirmed by the simulation results presented in Fig. 35.

The multiple γ-agent tracking maneuvers are shown in Fig. 45 (c), which further

verifies that the proposed hierarchical flocking control framework for CAV systems is

competent for multiple γ-agent tracking without collision.

The detailed speed consensus, high-level flocking control inputs, and low-level

vehicle real control inputs are presented in Fig. 46, 47, 48, and 49. Note that only

the results of the constrained flocking case are exhibited as a paradigm. The desired
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(b)

(c)

Free flocking

Constrained flocking

Boundary

Multiple virtual leaders

Boundary

Figure 45. Maneuvers of scaled CAVs in experiments.
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speed of CAVs is 1.5 m/s along the line Y = 6.5 m. Namely, the desired longitudinal

speed of each CAV is 1.5 m/s, and the lateral speed should be zero. The speed

consensus performance of CAVs is presented in Fig. 46, which implies that the desired

longitudinal and lateral speeds are achieved. Thus, the speed consensus among three

CAVs and the virtual leader is successfully performed.

Based on the double-integer node dynamics, the high-level flocking control inputs

actually can be recognized as the required acceleration. As indicated in Table 3, the

maximum acceleration of each CAV is 9 m/s2. The maximum value of the high-level

flocking control inputs generated during the experiment is 0.85 m/s2. The low-level

vehicle real control inputs, including steering angles and wheel torques, are plotted in

Fig. 48 and 49, which indicate that the proposed framework can successfully command

appropriate feedback control efforts. Therefore, the high-level flocking control and

the low-level vehicle dynamics control do not violate the capability of each CAV.

Furthermore, the values of flocking parameters listed in Table 4 is also practical and

reasonable.

5.4 Conclusions

This chapter introduces the development of scaled CAVs, and the experiments are

carried out as well. The experiment results further demonstrate that the proposed

hierarchical flocking control framework works well on real vehicles.
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Figure 46. Speed trajectories of scaled CAVs in the constrained flocking case.

 

Figure 47. High-level flocking control inputs of scaled CAVs in the constrained
flocking case.
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Figure 48. Steering angles of scaled CAVs in the constrained flocking case.

 

Figure 49. Wheel torques of scaled CAVs in the constrained flocking case.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, a novel hierarchical flocking control framework is proposed to

coordinate CAV systems in traffic. Employing the proposed flocking control framework,

the issue resulted from the NID transformation is resolved, and the advantages of

vehicles with over-actuated features also become feasible for the cooperative control of

CAV systems. To generalize the engineering application of flocking theory in the high

level of the proposed framework, this dissertation also develops several novel flocking

control protocols regarding different performances required in vehicular control, which

include fast convergence, permanent obstacle avoidance, and energy efficiency. In

the low-level of the proposed framework, the new feedforward control (ASPP) and

feedback control with control allocation are also introduced to take advantage of extra

actuators. Finally, the experiments using three scaled CAVs are conducted to validate

the proposed framework.

Based on simulation results, the proposed framework, flocking control algorithms,

and vehicle dynamics control methods are able to achieve the anticipated performances.

In addition, the experiment results also further demonstrate the proposed framework

in reality. To sum up, the contributions in this dissertation could help to promote an

efficient and safe ground mobility solution for modern transportation systems.
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6.2 Future Work

Although the flocking control of CAV systems brings a promising solution to

reduce traffic fatality and congestion, there are still many unexplored problems that

endow researchers and scientists plenty of opportunities for future research. Several

interesting topics are covered as follows.

1. In the literature, most of flocking studies use rigid interaction ranges and desired

inter-agent gaps, so-called rigid spacing policy (RSP). Namely, the interaction

ranges and the desired inter-agent gaps around every α-agent are constant and

rigid during flocking control processes regardless of the speed, heading, and

relative positions of α-agents. The RSP makes it simple to design flocking

control protocols and conduct stability analysis. However, the flocking geometry

configuration caused by the RSP is hard to adapt to complex traffic scenarios.

Furthermore, the RSP is also not able to provide appropriate control inputs to

benefit flocking engineering performances. Hence, a novel spacing policy should

be investigated to generalize and extend the existing flocking theory for the

vehicular cooperative control of CAV systems with an adaptive inter-agent gap.

2. As an essential component in CAV systems, vehicular communication is vulnera-

ble to the presence of various cyber-attack threats, which are inherent challenges

for networked systems. Therefore, cybersecurity attracts considerable attention

from many researchers and engineers as a top priority. To enhance the security

and robustness of CAV systems, the detection and rejection of cyber-attack with

the hierarchical flocking control framework is essential. Besides, a novel resilient

flocking control by specifically considering cyber-attack threats is necessary for

vehicular flocking control.
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3. In this dissertation, all of the involved vehicles are assumed to be homogeneous

with the same dynamics property and control capability. However, it is impossible

in reality. In the future, the vehicular flocking control with heterogeneous vehicle

dynamics and constrained vehicle capability should be investigated to further

generalize the application of the proposed framework.

4. In this dissertation, three scaled CAVs are used for experimental demonstrations.

However, the similitude analysis between a scaled CAV and a full-size vehicle

is not conducted. To get more convincing experiment results, the similitude

relationship, including geometric, kinematic, and dynamic similitude, needs to

be further addressed. Otherwise, a group of full-size CAVs may be required to

carry out road experiments.
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A.1 Overview

Benefited by the advancement of vehicular electrification, a set of redundant
actuators can provide over-actuated features to further improve vehicle safety and
efficiency via vehicle dynamics control. To promote the application of over-actuated
vehicles, two main aspects of vehicle dynamics control are investigated in this chapter.
On the one hand, an essential task for vehicle dynamics control is vehicle planar
and roll motion stability maintenance under critical driving maneuvers. On the
other hand, saving vehicle operation energy is also an essential task regarding vehicle
both longitudinal and lateral motions. The detailed contributions of this chapter are
summarized as follows 4.

1. A novel active yaw stabilizer (AYS) system is proposed for improving vehicle
lateral stability control. The introduced AYS, inspired by the recent IWM
technology, has two degrees-of-freedom with independent self-rotating and or-
biting movements. The dynamic model of the AYS is first developed. The
capability of the AYS is then investigated to show its maximum generation
of corrective lateral forces and yaw moments, given a limited vehicle space.
Utilizing the high-level Lyapunov-based control design and the low-level control
allocation design, a hierarchical control architecture is established to integrate
the AYS control with AFS and DYC. To demonstrate the advantages of the
AYS, generating corrective lateral force and yaw moment without relying on
tire-road interaction, double-lane change maneuvers are studied on road with
various tire-road friction coefficients.

2. To give continuous and completed rollover information, this chapter presents a
novel rollover index based on a mass-center-position (MCP) metric. The MCP is
first determined by estimating the positions of the center of mass of the vehicle,
which consists of one sprung mass and two unsprung masses with two switchable
roll motion models, before and after tire liftoff. The roll motion information
can then be provided through the MCP continuously without saturation for
both tripped and untripped rollovers. Moreover, to describe the completed
rollover status, different criteria are derived from D’Alembert’s principle and
the moment balance conditions based on the MCP. In addition to tire liftoff,
three new rollover statuses, “rollover threshold,” “rollover,” and vehicle jumping
“in the air,” can be all identified by the proposed criteria.

3. To enhance the performance of vehicle rollover detection and prevention, a novel
control strategy integrating the MCP metric and the active rollover preventer
(ARPer) system is proposed. The applied MCP metric can provide completed

4The main content of this appendix is based on the author’s works in (Wang and Chen 2017c,
2018b, 2019c, 2019a, 2017b, 2017a)
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rollover information without saturation in the case of tire lift-off. Based on the
continuous roll motion detection provided by the MCP metric, the proposed
ARPer system can generate corrective control efforts independent to tire-road
interactions. Moreover, the capability of the ARPer system is investigated for
the given vehicle physical spatial constraints. A hierarchical control architecture
is also designed for tracking desired accelerations derived from the MCP metric
and allocating control efforts to the ARPer system and AFS control.

A.2 Lateral Stability Maintenance with Active Yaw Stabilizer

To achieve effective vehicle lateral/yaw stabilization, two categories of vehicle active
control systems can be classified based on different principles to generate corrective
lateral forces or yaw moments. The first category is based on the interaction between
tire and road, which produces corrective lateral forces or yaw moment by directly
changing the tire lateral friction forces, such as active steering control (ASC) (Zheng
and Anwar 2009; Falcone et al. 2007), or by redistributing tire longitudinal friction
forces, such as direct yaw moment control (DYC) (Shibahata, Shimada, and Tomari
1993; Geng et al. 2009). On a high friction coefficient (high-µ) or uniform friction
coefficient road, ASC and DYC are effective and perform well. However, on a low-µ
or split-µ road, ASC and DYC are not able to generate appropriate corrective lateral
force or yaw moment under certain critical driving conditions.

To overcome the aforementioned disadvantages of ASC and DYC, the other
category of control methods introduces extra corrective yaw moments and lateral
forces independent to tire-road interaction by utilizing a controlled moving or rotating
mass in vehicles, such as an active gyroscope (Mashadi and Gowdini 2015), a controlled
momentum wheel system (Diba and Esmailzadeh 2012) and a stabilizer pendulum
(Goodarzi, Diba, and Esmailzadeh 2014; Goodarzi et al. 2016). By controlling a
moving or rotating mass, the interactions, a force and a moment, between a vehicle
and the mass act as external corrective efforts for maintaining vehicle lateral/yaw
stability. Although a moving or rotating mass can introduce forces and moments
independent to tire-road friction conditions, the added extra mass requires certain
rooms to hold an additional object, which does not benefit the lightweight and compact
layout of modern vehicles (Tamaki 1999). Thus, the capabilities of these systems are
limited by object masses and installation spaces.

Inspired by the latest electrical actuation and control technology for electric vehicles
with IWMs, this section proposes a novel active yaw stabilizer (AYS) system, mainly
consisting of an electric motor and an orbit, to produce corrective yaw moments and
lateral forces within the available spaces of vehicles. For an electric vehicle driven by
IWMs, a spare wheel utilizing an IWM can be applied as the electric motor in the
proposed AYS system without additional space requirements. Moreover, the battery
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Figure 50. Illustration of the proposed AYS on a vehicle.

system in the electric vehicle can also be utilized to power the AYS to assist vehicle
lateral dynamics stabilization without significantly increasing vehicle complexity and
weight. The sketch of a vehicle equipped with the proposed AYS is shown in Fig. 50,
where Ts and Tt are two driving torques that make the motor self-rotating and orbiting,
respectively. Therefore, the electric motor in the proposed AYS can rotate and move
along with the orbit simultaneously, which stands for two additional corrective yaw
moment and lateral force sources.

A.2.1 Modeling of Vehicle Lateral and Yaw Motion with Active Yaw Stabilizer

A 4-wheel vehicle model for lateral dynamics is adopted in this section. Equipped
with the proposed AYS system, the vehicle model with AYS is shown in Fig. 51.
The local frame X-Y is fixed at the CG of the vehicle. Within Fig. 51, θ and γ
denote two stabilizer position angles with respect to the centers of orbit and CG
(they are not necessary at the same location), respectively; Lc is the distance from
the middle point of the orbit to CG; ωs and ωt denote the orbiting angular speed
and self-rotating angular speed, respectively; R denotes the radius of orbit; lx and ly
represent the longitudinal and lateral distance from the stabilizer to the CG of the
vehicle, respectively.

The vehicle state-space model can be written as (A.1).

ẋ =

[
0 −1
0 0

]
x+

[
1

Mvx
0

0 1
Iz

]
τc +

[
Ffl+Ffr+Frl+Frr

Mvx
(Ffl+Ffr)Lf−(Frl+Frr)Lr

Iz

]
, (A.1)
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Figure 51. Four-wheel vehicle lateral motion model with the proposed AYS.

where x = [β, r]T denotes vehicle states, and τc = [Fc,Mc]
T denotes the virtual control

inputs that are generated via AYS, DYC, or ASC systems. Moreover, lateral tire forces
Ffl,fr,rl,rr in (A.1) are determined by the Magic formula tire model, which integrates
the effects of tire vertical load transfer, tire slip ratio, tire-road coefficient, and the
coupling between lateral friction forces and longitudinal friction forces (Rajamani
2006).

From Fig. 51, the system of the vehicle equipped the AYS is a multibody dynamic
system. Therefore, the corrective lateral force FAY S and yaw moment MAY S are
introduced by the reaction force and moment resulted from the AYS, which are
presented as (A.2). {

FAY S = −masy
MAY S = −Ts +m(asylx + asxly)

, (A.2)

where m denotes the stabilizer mass; asy and asx denote the lateral and longitudinal
acceleration of stabilizer with respect to the local frame fixed on the vehicle body.

Due to the rotation of the vehicle local frame, three accelerations, including
transport acceleration ae, relative acceleration ar, and Coriolis acceleration ac, are
involved. The decomposition of these accelerations are presented in Fig. 52, where
(art, arn) and (aet, aen) are the tangential and normal decomposition of ar and the
rotational portion of ae, respectively, and (aex, aey) is the orthogonal decomposition of
the translational portion of ae. Each acceleration decomposition could be determined
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Figure 52. Stabilizer acceleration decomposition.

through the equation given below:

aex = v̇x − vyr
aey = v̇y − vxr
aet = ṙl

aen = ṙ2l

art = ω̇tR

arn = ω̇2
tR

ac = 2rωtR

. (A.3)

Thus, asy and asx could be rewritten as (A.4) based on Fig. 52, and the corrective
lateral force FAY S and yaw moment MAY S introduced by the AYS are obtained as
(A.5) by substituting (A.3) and (A.4) into asy and asx in (A.2).{

asx = aex + aen cos γ + (arn + ac) cos θ − aet sin γ − art sin θ

asy = aey − aen sin γ − (arn + ac) sin θ − aet cos γ − art cosh θ
. (A.4)
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FAY S = −m(vx(β̇ + r)− ṙl cos γ − r2l sin γ)︸ ︷︷ ︸
f1

+−m(−ω2
tR sin θ − ω̇tR cos θ)︸ ︷︷ ︸

f2

+ 2mrωtR sin θ︸ ︷︷ ︸
f3

MAY S = −ωsIs

+
m(lx(vx(β̇ + r)− ṙl cos γ − r2l sin γ)

+(−vxβr − ṙl sin γ + r2l sin γ)ly)︸ ︷︷ ︸
t1

+m(lx(−ω2
tR sin θ − ω̇tR cos θ) + (ω2

tR cos θ − ω̇tR sin θ)ly)︸ ︷︷ ︸
t2

+m((−2rωtR sin θ)lx + (2rωtR cos θ)ly)︸ ︷︷ ︸
t3

ω̇t = Tt
It

ω̇s = Ts
Is

, (A.5)

where Ts and Tt represent two torques that drive the motor self-rotating and orbiting,
respectively; Is and It denote two moments of inertia of stabilizer when it rotates or
orbits, respectively. Both FAYS and MAYS in (A.5) include three items: f1 and t1
describe the sum of efforts related to vehicle states; f2 and t2 represent efforts mainly
related to the AYS orbiting states; f3 and t3 denote the sum of efforts related to the
coupling of vehicle states and stabilizer orbiting states. Physically, these three items
are all variables with respect to the mass and position of stabilizer.

A.2.2 Evaluation of the Capability of Active Yaw Stabilizer

Before applying the proposed AYS to enhance the vehicle lateral stability control,
the capability of the novel AYS system needs to be first evaluated, considering the
limited vehicle space for the proposed AYS design. Based on (A.5), various factors
can influence the corrective lateral force and yaw moment introducedd by the AYS.
For example, stabilizer states ωs and ωt, controlled by Ts and Tt, may influence the
maximum values of the introduced force and moment. Vehicle states, including β
and r, also have contributions in the production of FAY S and MAY S. Different from
these time-varying variables interacted with the control efforts, the predefined design
parameters of the proposed AYS system that influence the AYS capability, including R,
m, max[lx], and max[ly], are mainly discussed to consider the limited space in vehicles.
Within the design parameters, m, max[lx], and max[ly] are limited by the property
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of the stabilizer and vehicle spare space, which have less ranges to be adjusted. As
a result, only R is the main variable to determine the orbit shape that can largely
influence FAY S and MAY S. One typical case is studied here to show the potential of
FAY S and MAY S with respect to different values of R, given certain stabilizer and
vehicle states and other design parameters.

Most variables and their values used in the capability study are listed in Table
5, where all values related to the vehicle are obtained from CarSim® B-class sports
car examples. Based on characteristics of an electric motor, which was applied as an
in-wheel motor (Geng et al. 2009), the maximum of Ts is assumed as large as 80 N ·m.
The actuator used to orbit the stabilizer is assumed to provide Tt as large as 100
N ·m. Based on the maximum tangential propulsion and the mass of the stabilizer,
the tangential acceleration along the orbit can reach as high as 4 m/s2. While ω̇s is
kept as zero for this evaluation because the effect of ω̇s could be simply considered
by adding the maximum of Ts to MAY S. Given each specific value of R and other
parameters shown in Table 5, an open-loop simulation with a step steering angle at 5
degrees is applied to the vehicle. The maximum absolute values of FAY S and MAY S

are recorded for each test value of R.

Table 5. Variables in capability study

Variable Values
vx 90 km/h
m 25 kg
δf 5 deg (step signal)
M 1,020 kg
Iz 1,020 kg ·m2

Lf 1.165 m
Lr 1.165 m

max[lx] 1 m
max[ly] 1.5 m

The maximum absolute values of FAY S and MAY S, denoted by max[|FAY S|] and
max[|MAY S|], with respect to varying are shown in Fig. 53. The signs of max[FAY S]
and max[MAY S] may be changed by different directions of ωs and ω̇s, so that the
absolute values are adopted to evaluate the AYS capability without considering moving
directions of the AYS. In Fig. 53, plots (a) and (c) are obtained when the stabilizer
moves towards the same direction as the steering angle, and plots (b) and (d) are
obtained when the stabilizer moves towards the opposite direction of the steering
angle to cover all situations with possible orbiting directions of the stabilizer.
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Figure 53. Maximum |FAY S| and |MAY S| curve with respect to variable R.

Considering achieving maximum values of FAY S andMAY S simultaneously (without
scarifying one with the other maximized), when R is about 3 m, FAY S and MAY S

can achieve their maximum values at 380 N and 470 N ·m respectively in the same
direction case, according to Fig. 53. Adding the maximum Ts to the moment, the
overall capability of this novel AYS can provide the maximum correct lateral force at
380 N and yaw moment at 550 N ·m. Based on the capability analyses, the achievable
corrective lateral force and yaw moment of the proposed AYS system, within the
available vehicle space, can provide considerable complementation to existing vehicle
lateral dynamics control methods, such as ASC or DYC. Considering the fact that
the introduced corrective lateral force and yaw moment are independent to tire-road
friction forces, the AYS will provide significant support for vehicle lateral stabilization
especially on low-µ or split-µ road.

A.2.3 Controller Design

With the evaluated capability of AYS, the control design used to integrate the
proposed AYS system with existing vehicle lateral dynamics control methods is
discussed in this section. The overview of the hierarchical control architecture of the
vehicle lateral dynamics is presented in Fig. 54. Since the integration of AYS with
AFS or DYC is considered to stabilize the vehicle lateral dynamics, the number of
low-level control actuation ud is more than that of required high-level virtual control
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Figure 54. Hierarchical control architecture of over-actuated vehicle lateral dynamics.

τc. Thus, this control design is considered for an over-actuated system in which control
allocation is necessary to distribute the high-level virtual control to the low-level real
controls. In this section, the integration of AYS and AFS or DYC is considered to
show the advantages brought by AYS when it works with AFS on low-µ road and
with DYC on split-µ road.

Based on the control-oriented model of vehicle lateral dynamics (A.1), a nonlinear
controller to track the references of vehicle states are designed based on Lyapunov
theory, which is given by the following proposition.

Proposition A.2.1. The following virtual control design τc = [Fc,Mc]
T in (A.6)

makes the tracking errors of two states in the system (A.1) asymptotically stable and
the errors gradually go to zero.

τc =

[
Mvx 0

0 Iz

]ẋd + xd − x−

[
0 −1
0 0

]
x−

[
Ffl+Ffr+Frl+Frr

Mvx
(Ffl+Ffr)Lf−(Frl+Frr)Lr

Iz

] , (A.6)

where xd = [βd, rd]
T, and the subscript (·)d denotes the desired reference.

Proof. The proof of this proposition is omitted here for simplification since it follows
the same method used in the proof of Proposition 4.5.1.

Based on the obtained high-level control design (A.6), the control allocation
algorithm needs to be developed to distribute τc to low-level real controls. To
incorporate all the applied vehicle lateral dynamics control together, namely AYS,
DYC, and AFS, the relationship between the achievable values of τc from control
allocation, τ , and the three real controls are developed as

τ =

[
F ′c
M ′

c

]
= Sud, (A.7)

where

S =

[
1 0 1 0
−l 1 Lf 1

]
, (A.8)
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and ud = [ FAY S MAY S FAFS MDYC ]T, FAFS denotes the corrective lateral force generated
by AFS and MDY C represents the corrective yaw moment generated by DYC. The
relationship between the high-level control and the low-level control, through the
control effectiveness matrix S, can be readily obtained for AFS and DYC. For the AYS,
the relationship can be obtained from the dimension labeled in Fig. 51. Considering
S has more columns than rows, infinite solutions theoretically exist for ud to make τ
close to τc. Therefore, the control allocation algorithm is designed to find the optimal
solution u∗d within all the solutions under constraints. The control allocation problem
is formulated as

min
ud

J = (τc − τ)TW1(τc − τ) + uT
dW2ud

s.t. ud ∈ U
, (A.9)

where J is the cost function, W1 and W2 are the weighting matrix, and U is the
feasible region of ud.

A.2.4 Simulation Results and Discussions

In this section, co-simulations integrating CarSim® with MATLAB/Simulink®

are applied to verify the vehicle lateral dynamics control performance enhanced by
the novel AYS system. In CarSim®, a B-class sports car with high-fidelity vehicle
parameters, tire model and aerodynamic properties is selected as a simulation vehicle.
The main vehicle parameter values in CarSim® are modified as shown in Table 5.
The steering angle corresponding to a double lane change maneuver is commanded
on a low-µ road and split-µ road simulation, respectively. Moreover, the rest of the
components in simulation, including vehicle dynamics model, actuator models, and
controller with control allocation, are all established in Simulink®. The reference
signals of vehicle sideslip angle and yaw rate are obtained when the vehicle is driven
on the consistent high-µ (µ = 1) road, with keeping all other test conditions same.

Two cases are studied in this section. In the first case (low-µ road simulation), the
tire-road friction coefficient µ is set as 0.5. The control performances are compared
among the vehicle without control (as the baseline), the vehicle controlled by AFS,
and the vehicle controlled by the integration of AFS and AYS. In the second case
(split-µ road simulation), the tire-road friction coefficient µ is set as 0.3 on the right
side and 0.85 on the left side. The control performances are compared with the vehicle
without control (as the baseline), the vehicle controlled by DYC, and the vehicle
controlled by the integration of DYC and AYS.

The simulation results of the first case are presented in Fig. 55, 56, 57. The
sideslip angle and yaw rate response results are presented in Fig. 55. From Fig. 55,
it is seen that the uncontrolled vehicle cannot track the sideslip angle and yaw rate
references since the tire-road friction coefficient is reduced from 1 to 0.5. Similarly,
the vehicle controlled by AFS also cannot track the references since the low-µ road
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Figure 55. Side slip angle and yaw rate responses for a double lane change maneuver
on the low-µ road.

condition does not support sufficient lateral friction forces production with respect
to additional steering angles. However, the vehicle controlled by the integration of
AFS and AYS can track the desired references to keep the lateral stability. This
is because the proposed AYS introduces assisted corrective lateral forces and yaw
moments, which are independent of road surface conditions. The simulation results
display that the performance of AFS can be improved by introducing the AYS.

The control efforts of different control methods are shown in Fig. 56, where F ′c and
M
′
c are the control lateral force and yaw moment, respectively, provided by the AFS

method in Fig. 56 (a) and the AFS+AYS method in Fig. 56 (b). From Fig. 56 (a),
F
′
c and M ′

c generated by the AFS alone cannot satisfy Fc and Mc requirements from
the high-level control. Therefore, AFS cannot provide reasonable control efforts to
satisfy τc calculated from the high-level controller. The control efforts provided by the
integration of AFS and AYS, however, follow the τc signal well, shown in Fig. 56 (b).
That is because F ′c and M ′

c produced by AYS is independent of road-tire interactions,
and they can provide feasible additional corrective control efforts to help AFS achieve
τc tracking. From the perspective of tire forces, contributions produced by AYS to Fc
and Mc can help vehicle steering tires work in a linear stable region, as presented in
Fig. 57. Thus, AYS helps AFS perform well through the introduction of additional
FAY S and MAY S on the low-µ road.
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Figure 56. Virtual control tracking performance of the AFS and the AFS+AYS
methods on the low-µ road.

 

Figure 57. Front left tire lateral tire forces on the low-µ road.

The simulation results of the second case are presented in Fig. 58, 59, 60. The
sideslip angle and yaw rate simulation results are presented in Fig. 58. From Fig. 58,
the uncontrolled vehicle cannot track side slip angle and yaw rate references since the
tire-road friction coefficient is changed from 1 to split-µ. Additionally, the vehicle
controlled by DYC cannot track side slip angle and yaw rate references neither on
the split-µ road. However, the vehicle controlled by the integration of DYC and AYS
can track the references well, which means that AYS can help DYC improve vehicle
lateral stability on the split-µ road.

The virtual control of different control methods is shown in Fig. 59. From Fig. 59
(a), it can be seen that although DYC follows the trend of Mc in τc, Fc is zero because
DYC is based on the longitudinal friction force differences and cannot generate lateral
forces. On the other hand, longitudinal tire friction forces cannot produce the required
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Figure 58. Side slip angle and yaw rate responses for a double lane change maneuver
on the split-µ road.

corrective yaw moment due to the different friction coefficients between the left and
right road surfaces. Similar to the analyses of the low-µ simulation, an additional
FAY S and MAY S produced by AYS are independent of the road-tire interactions. This
helps the control system provide large enough Fc and Mc to satisfy the virtual control
requirements of high-level control design, as shown in Fig. 59 (b).

Fig. 60 presents the longitudinal forces Fxfl,xfr,xrl,xrr of four tires with respect to
wheel slip ratio κ, where the subscript (·)xfl,xfr,xrl,xrr denotes front-left, front-right,
rear-left, and rear-right tire, respectively. Fig. 60 also shows that the uncontrolled
vehicle is not able to maintain a small κ for all four wheels, especially for two wheels
driving on the low-µ side (right side). The same situation happens for the vehicle
controlled by DYC. Thus, corrective yaw moment produced by DYC is not applicable
and will not maintain vehicle lateral stability. However, for the vehicle controlled
by the integration of AYS and DYC, all four wheels keep the small κ during the
simulation.
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Figure 59. Virtual control tracking performance of the DYC and the DYC+AYS
methods on the split-µ road.

 

Figure 60. Longitudinal tire forces on the split-µ road.
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A.2.5 Conclusions

The vehicle lateral dynamics stability is improved by using a novel AYS system
and a corresponding control allocation algorithm design. On one hand, this proposed
AYS has two degrees of freedom, which are exploited for corrective control efforts
production. The AYS capability study shows that the corrective lateral force and yaw
moment are as large as 380 N and 550 N ·m. Thus, AYS can significantly complement
and improve ASC or DYC performance without being affected by tire-road friction
forces. On the other hand, AYS is integrated with the other vehicle lateral dynamics
stability control methods—AFS or DYC. The simulation results demonstrate that
AYS can effectively help AFS and DYC maintain vehicle lateral stability under critical
driving conditions via independent assisted corrective lateral force and yaw moment.

A.3 Rollover Propensity Detection and Prevention

It is known that there is a higher risk of rollovers in vehicles with an increased
height of the center of gravity (CG) and limited wheel track, such as sports utility
vehicles, light trucks, and minivans. Statistically, nearly 33% of all traffic fatalities in
car crashes result from rollovers (NHTSA’s National Center for Statistics and Analysis
2016). In addition, in 2015, the annual percentage of fatalities in rollovers, 12.4%,
increased most among various car crash types in the US (NHTSA’s National Center for
Statistics and Analysis 2016). Owing to such high fatalities of rollovers, the National
Highway Traffic Safety Administration (NHTSA) launched rollover resistance ratings
in the New Car Assessment Program (NCAP) from one star (the highest risk) to five
stars (the lowest risk) to inform rollover risk (Rajamani 2006).

In recent years, electric anti-rollover technology emerges as a new vibrant research
area to prevent rollover propensity. Generally, there are two classes of methods for
anti-rollover in literature. The first category is passive warning-based systems (PWS)
(Rajamani 2006). Within a PWS, the rollover propensity is detected or predicted
throughout a rollover index (RI), and then a warning is provided to alert the driver
to command corrective action. Powered by the advancement of onboard sensing
and actuating technology, the other category is the active rollover prevention (ARP)
systems, such as active steering control, differential braking, and active suspension
(Yim 2011; Parida, Raha, and Ramani 2014; Goldman, El-Gindy, and Kulakowski
2001; Mashadi, Mokhtari-Alehashem, and Mostaghimi 2016). Triggered by a RI, an
ARP system is able to automatically generate corrective control efforts to prevent the
impending rollover. ARP techniques can be generally classified into two categories
in literature, indirect and direct methods. The indirect approach is usually engaged
with vehicle lateral or vertical dynamics control. For example, the rollover propensity
was avoided by lateral acceleration mitigation through active steering control (ASC)
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(Solmaz, Corless, and Shorten 2007) and differential braking (DB) (Yoon, Kim, and
Yi 2007), or by adjusting vertical suspension forces through active or semi-active
suspension technologies (Yim 2011; Parida, Raha, and Ramani 2014). One advantage
of the indirect approach is that existing actuators for vehicle lateral and vertical
dynamics control can be applied for roll motion control and no additional actuators
are required. Two main issues, however, limit the application of indirect methods.
On one hand, typical control effects through lateral acceleration mitigation and/or
vertical suspension force adjustment tightly depend on the tire-road friction forces.
The activated ARP, therefore, may not perform well when vehicles drive on the road
with low or split friction coefficients. Additionally, when the tire lift-off (nearly)
happens, which is a typical indicator for ARP activation (Yim 2011), the indirect
approach may totally lose the rollover control capability since vertical loads and
thus friction forces of lifted tires all become zero. On the other hand, few indirect
methods can simultaneously maintain vehicle lateral performance and prevent vehicle
rollovers. In the scenario with ARP activated, the control demands for lateral stability
or ride comfort and those for rollover prevention may be contradictory. Thus, certain
trade-offs between different vehicle dynamic performance are inevitable (Parida, Raha,
and Ramani 2014; Yim, Park, and Yi 2010; Yoon et al. 2010).

Distinct from indirect methods, the direct approach resolves the rollover propensity
independently without relying on tire vertical loads and friction forces. For instance,
Mashadi et al. proposed a gyroscopic device to produce a corrective roll moment for
the rollover prevention (Feng, Tan, and Tomizuka 1998). Similarly, Goodarzi et al.
also tried to use a pendulum system to produce a moment to achieve the same control
objective (Mashadi, Mokhtari-Alehashem, and Mostaghimi 2016). Nevertheless, one
limitation of the existing direct methods is that the limited moving mass is mounted
at a fixed position, which thus can only provide a limited corrective roll moment.
Moreover, another limitation is that additional dedicated systems with relatively large
dimensions are usually required and may not be feasible for the limited vehicle spaces.
In other words, sufficient corrective roll moments for rollover prevention from an
independent ARP system may be a heavy burden or even unachievable.

To overcome the aforementioned problems of existing ARP systems, the authors
proposed a novel active rollover prevention method, called an active rollover preventer
(ARPer). The ARPer, including a rotating motor and an orbit, locates at the back of
the vehicle in the vertical plane, as shown in Fig. 61. The ARPer is inspired by the
application of in-wheel motor technology, which can serve as the spare actuator/wheel
of (hybrid) electric vehicles actuated by in-wheel motors (Chen and Wang 2013). This
novel compact spare wheel configuration will have less dedicated space requirements.
Moreover, the ARPer has two degrees of freedom (DOFs): moving along the orbit and
self-rotating, which are driven by Ts and Tt, respectively. Both DOFs can introduce
independent corrective roll moments without relying on tire-road friction forces. This
section studies a novel vehicle rollover prevention control strategy by integrating
the MCP metric with the ARPer to fully utilize its advantages. Once the rollover

142



 

tT

sT

Orbit

Preventer

Figure 61. The schematic of the novel active rollover preventer system.

propensity is detected, continuous control efforts are determined through the MCP
metric and applied through the proposed ARPer. In addition, a novel dynamic
weighting method is employed to smooth chattering in control and vehicle states
resulted from the strict ARPer activated threshold. Other contributions of this section
also include the capability investigation of the ARPer subject to the limited vehicle
space and driving torques.

A.3.1 Modeling of Vehicle Roll Dynamics with Active Rollover Preventer

The general schematic diagram of the vehicle roll dynamics model equipped with
the ARPer is presented in Fig. 62. Since the roll dynamics is dominated in the
impending rollover scenario, the vehicle in Fig. 62 is modeled as an inertial system for
simplicity. Within Fig. 62, ls is the vehicle track, hc is the distance from the center
of gravity (CG) to the center of roll (CR), hs is the distance from the CG to the
interaction point between the sprung mass and the unsprung mass, R is the radius of
the orbit, l is the distance from the middle point of the orbit to the bottom of the
sprung mass, zs is the vertical translation of the sprung mass, ϕ is the roll angle of
sprung mass, ys is the lateral translation of the sprung mass, and ωs and ωt are the
ARPer self-rotation angular speed and orbiting angular speed, respectively. Moreover,
M is the vehicle sprung mass, g is the gravity acceleration, Fsl,sr are two suspension
forces and θsl,sr are suspension inclination angles, Fcy is the corrective lateral force,
Fcz is the corrective vertical force, Mc is the corrective roll moment, and Flat is the
vehicle lateral force, which is described in (A.10),

Flat = (M +mu)(ÿs + Vxr), (A.10)

where mu is the unsprung mass.
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Figure 62. Vehicle roll dynamic model with the active rollover preventer.

Considering Fcy, Fcz and Mc introduced by ARPer, the governing equations of the
sprung mass are written in (A.11).

Mz̈s = Fsl cos θsl + Fsr cos θsr −Mg + Fcz

Mÿs = Fsl sin θsl + Fsr sin θsr −Mhcϕ̈+ Fcy

(Ixx +Mh2
c)ϕ̈ = Flathc cosϕ+Mghc sinϕ+

ls
2

(Fsr − Fsl)

+ (hc + hs)[Fsr sin(ϕ− θsr) + Fsl sin(ϕ− θsl)] +Mc

(A.11)

where Ixx is the moment of inertia of vehicle with respect to X axis, respectively.
Within (A.11), Fcy, Fcz and Mc are determined in (A.12).

Fcy = −masy
Fcz = −masz
Mc = −Ts +mR

′
(asz sin θ − asy cos θ)

, (A.12)

where m is the mass of the preventer, and θ is the orbiting angle between the orbit
vertical central line and the line through CR and preventer. The reference position
is defined as the intersection of the orbit and the vertical line passing the current
CR. asy and asz are the equivalent lateral and vertical acceleration of the preventer,
respectively, which will be further expanded in the following subsection. In addition,
R
′ is the distance from the stabilizer to the current CR, which is determined in (A.13).

R
′
=
√

[l + hc − hs −R(1− cos θ)]2 + (R sin θ)2. (A.13)
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Remark A.3.1. Only the sprung mass is modeled in the vehicle rollover dynamics since
the ARPer only interacts with the sprung mass directly. Moreover, for simplicity,
the complex interaction or suspension forces between the sprung and unsprung mass
are abstracted as two external forces by combining spring, damper, and suspension
geometry forces together.

Considering the rolling of the sprung mass, three accelerations, including transport
acceleration ae, relative acceleration ar, and Coriolis acceleration ac, are involved in
the preventer kinematics analysis under the global frame. The decompositions of
these three accelerations are presented in Fig. 63. Within Fig. 63, γ is the orbiting
angle between the orbit vertical central line and the line through the preventer and
the orbit center; (art, arn) and (aet, aen) are the tangential and normal decompositions
of ar and the rotational portion of ae, respectively, and (aex, aey) is the orthogonal
decompositions of the translational portion of ae. Each acceleration decomposition is
determined in (A.14). 

aey = ÿs

aez = z̈s

aet = ϕ̈R
′

aen = ϕ̇2R
′

art = ω̇tR

arn = ωt
2R

ac = 2ϕ̇ωtR

, (A.14)

where ω̇t = Tt/Jpt, and Jpt is the moment of inertia of the preventer with respect
to the orbiting axle. Thus, asy and asz in (A.11) are described in (A.15) based on
Fig. 63, and the corrective lateral force Fcy, vertical force Fcz and roll moment Mc

introduced by the ARPer are obtained in (A.16) by substituting (A.14) and (A.15)
into asy and asz in (A.11). Within (A.16), Jpt is the moment of inertia of the preventer
with respect to the self-spinning axle.{

asy = aey + aet cos γ − aen sin γ − (arn + ac) sin θ + art cos θ

asz = aez − aet sin γ − aen cos γ − (arn + ac) cos θ − art sin θ
. (A.15)
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Figure 63. Decompositions of the preventer accelerations.

Fcy = −m
[
ÿs + ϕ̈R

′
cos γ − ϕ̇2R

′
sin γ − (ωt

2R + 2ϕ̇ωtR) sin θ + ω̇tR cos θ
]

Fcz = −m
[
z̈s − ϕ̈R

′
sin γ − ϕ̇2R

′
cos γ − (ωt

2R + 2ϕ̇ωtR) cos θ − ω̇tR sin θ
]

Mc = −ω̇sJps +mR
′


[
z̈s − ϕ̈R

′
sin γ − ϕ̇2R

′
cos γ

−(ωt
2R + 2ϕ̇ωtR) cos θ − ω̇tR sin θ

]
sin θ

−

[
ÿs + ϕ̈R

′
cos γ − ϕ̇2R

′
sin γ

−(ωt
2R + 2ϕ̇ωtR) sin θ + ω̇tR cos θ

]
cos θ


.

(A.16)

A.3.2 Mass-Center-Position Metric

A novel MCP metric is propped to provide provide the completed and continuous
rollover information without saturation, even after tire lift-off. Using the MCP metric,
both untripped and tripped rollovers are able to be detected via the estimation of
the center of mass of vehicles. The general position vector of the CM of the vehicle
system rsys is written as the weighted average vector shown in (9).

rsys =

{
Mrs+mu(rul+rur)

M+2mu
Before tire lift-off

(M+mu)rInt+muru
M+2mu

After Tire lift-off
, (A.17)

where rs is position vector of the CM of the sprung mass, and rul and rur are two
position vectors of the CM of unsprung masses for left and right sides, respectively;
rInt and ru are the position vectors of the CM of the integrated mass and the unsprung
mass without lift-off, respectively.
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The MCP, represented as Rsys, is defined in the following equation,

Rsys =

[
Rsys_y

Rsys_z

]
=


(

[rsys]Y ′−Z′l
+ [rsys]Y ′−Z′r

)
Y(

1
2
[rsys]Y ′−Z′l

+ [rsys]Y ′−Z′r

)
Z

 , (A.18)

where [·]Y ′−Z′l and [·]Y ′−Z′r denote the vector coordinates under the frame Y ′ −Z ′l and
Y
′−Z ′r. Different from the coordinate Y −Z in Fig. 62, the frames Y ′−Z ′l and Y

′−Z ′r
here are only used for the MCP estimation, which are fixed at the outer edges of the
left and right side tire-ground contact patches, respectively. Adopting two different
frames, Y ′ − Z ′l and Y

′ − Z ′r, can help to keep the consistent manner of the MCP
determination when either left-side or right-side rollover happens. Furthermore, (·)Y
and (·)Z denote the lateral and vertical coordinate values of the vector, respectively.
Physically, Rsys_y, the lateral coordinate value of Rsys, represents the lateral distance
from the CM to the middle point of the vehicle track. A positive Rsys_y means the
vehicle rolls to right side, otherwise the vehicle rolls to left side. Moreover, Rsys_z is
the vertical coordinate value of Rsys, which represents the height of the CM.

For a driving vehicle, when one side tires (left or right) are lift-off or the rollover
happens, the whole vehicle moment should be balanced with respect to the tire loads
equivalent center of the contact patch, which is presented in (A.19) based on the
d’Alembert principle. The d’Alembert principle, as a universal principle for dynamical
system, can help to detect more rollover statuses in a dynamic manner, even vehicle
jumping into the air.ΣLM = M

[
R̈sys_yRsys_z −∆L(g − R̈sys_z)

]
ΣRM = M

[
R̈sys_yRsys_z + ∆R(g − R̈sys_z)

] , (A.19)

where ΣL,rM denote the summations of left and right side moment balances, and ∆L

and ∆R denote the distances from the estimated MCP to the left and right equivalent
load center of the contact patch, respectively.

If tire lift-off on one side happens, either left or right side, only one equation
in (A.19) will be satisfied. However, if both sides are lift-off, two equations in
(A.19) are satisfied simultaneously, which implies vehicle rollover happening or vehicle
jumping in the air. D’Alembert’s principle, as a universal principle for the dynamic
system, can help to detect more rollover statuses than those in literature, such as
the aforementioned “vehicle jumping in the air”. Moreover, the mass redistribution
in vehicle dynamics resulted from tire lift-off does not influence the feasibility of
D’Alembert’s principle, which makes the MCP metric free of saturation.

Another new rollover status, called rollover threshold, could also be identified
similarly from (A.19) based on the D’Alembert’s principle. When the tire lift-off is
detected by (A.19), the equivalent tire load center of the contact patch is assumed
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at the middle point of the tire-road contact line in the roll plane. Because of tire
deformation, when tires on one side are lift-off, the equivalent tire load center of the
contact patch on the other side of the vehicle should move towards the outer edge of
the tire if no effective prevention control is performed. In this situation, the rollover
is going to happen immediately. This critical threshold, namely the equivalent tire
load center moving from the middle point to the outer edge of the tire, is the most
dangerous point before the rollover inevitably happens. In this case, the equivalent
tire load center is assumed as the outer edge point of the tire-road contact line.
Thus, ΣL,rM and ∆L,R should be updated as ΣL,rM

′ and ∆
′
L,R, which are calculated

similarly from (A.19) but the equivalent tire load centers are at left or right edges,
respectively. To summarize, vehicle tire lift-off and rollover detection criteria are listed
in Table 6. Several symbolic numbers in the last column are defined as indicators to
represent different vehicle roll statuses in Table 6. These symbolic numbers are used
to clearly represent the vehicle roll statuses in the simulation results for comparisons.

Table 6. Criteria for vehicle roll status detection

No. Criteria Roll Status Description Indicator*
1 ΣLM 6= 0 and ΣRM 6= 0 Safe** 0
2 ΣLM = 0 and ΣRM 6= 0 Right side tire lift-off +1
3 ΣLM 6= 0 and ΣRM = 0 Left side tire lift-off −1
4 ΣLM

′
= 0 and ΣRM

′ 6= 0 Vehicle left side rollover threshold +1.5
5 ΣLM

′ 6= 0 and ΣRM
′
= 0 Vehicle right side rollover threshold −1.5

6 ΣLM
′
= 0 and ΣRM

′
= 0 One side rollover happening ±2

7 ΣL,RM = 0 and ΣL,RM
′

= 0 Vehicle jumping in the air 3

*: “±” represents the left-side rolling and right-side rolling, respectively.

**: it is also possible that vehicles are in the air if the criterion 7 satisfied in prior.

As implied in Table 6, criterion 7 represents the start or end of vehicle jumping
in the air, which will not be held all the time during the vehicle in the air. That is
because (A.19) is developed with respect to the tire-road contact patch defined by
the frames Y ′ − Z ′l and Y

′ − Z ′r that are all fixed on the ground. Once the vehicle
jumping in the air, the moment balance calculation will not represent the tire-road
contact status. In this case, the moment balance values determined by (A.19) become
non-zero, which are positively proportional to the vehicle jumping displacement with
respect to the frames located on the ground. Therefore, criterion 1 also means the
vehicle in the air if criterion 7 is satisfied in prior.
Remark A.3.2. For criterion 6, the vehicle rollover direction is decided by the rollover
threshold in criterion 4 or 5 on which threshold is reached first. For example, the
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vehicle is going to roll towards the left side when criterion 4 is first satisfied and then
ΣRM

′
= 0 in criterion 6 is also reached. Moreover, the vehicle status of jumping in

the air typically will not happen after the rollover. Thus, the vehicle jumping in the
air should satisfy criterion 7 first and then satisfy criterion 1.

A.3.3 Evaluation of the Capability of Active Rollover Preventer

Based on pragmatic considerations, the capability of the novel ARPer system is
investigated in this section under certain constrains of orbit dimension, preventer
mass, and preventer driving torques. Specifically, three classes of variables can affect
the capability of the ARPer system according to (A.16): geometry design parameters,
driving torques, and vehicle states.

The geometry design parameters include R, m, l. Among these three parameters,
R is the only parameter that can be largely varied, while the other two are all limited
by vehicle physical spatial constrains. As the preventer driving torques, the maximum
self-rotating Ts is assumed as large as 80 N ·m, based on properties of an electric
motor employed as an IWM [22]. Moreover, the tangential propulsion used to orbit the
preventer is assumed as large as 100 N. Therefore, based on the mass of the preventer,
25 kg, the absolute tangential acceleration ω̇t along the orbit can reach 4 m/s2. The
self-rotating acceleration ω̇s is kept as zero for this evaluation because the effect of
ω̇s could be simply considered by adding the maximum of Ts to Mc. Finally, vehicle
states are varied for different driving maneuvers and speeds and also influenced by
driving environments and vehicle design properties, such as road friction coefficient,
vehicle mass, and dimension.

To evaluate the capability of the ARPer system, the open-loop simulations are
conducted in CarSim® with an E-class SUV driving in a fishhook maneuver on the
road with 0.85 road friction coefficient. The vehicle starting driving speed is 80 km/h.
The steering wheel angle for the typical fishhook maneuver recommended in the NCAP.
Physical vehicle spatial constraints and other vehicle parameters are summarized in
Table 7. Within Table 7, max[lw] and max[lh] denotes the maximum orbit width and
height. Given a certain value of R positive or negative constant ω̇t is commanded at
different positions on the orbit. Then, the maximum absolute values of Fcy, Fcz, and
Mc, denoted by max[|Fcy|], max[|Fcz|], and max[|Mc|], respectively, are obtained from
the entire fishhook simulations. The results with respect to various R are presented
in Fig. 64.
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Table 7. Simulation variables and values in the ARPer capability study

Variable Values
M 1590 kg
mu 135 kg
m 25 kg
M 1,020 kg
Ixx 894.4 kg ·m2

max[lw] 2 m
max[lh] 1 m

l 1 m

The result presented in Fig. 64 for the corrective moment adds the maximum
Ts in, 80 N ·m. Intuitively, with the increasing of R, max[|Mc|] also increases, while
max[|Fcy|] and max[|Fcz|] decrease, where the minimum values of max[|Fcy|] and
max[|Fcz|] approach 550 N and 200 N, respectively. Therefore, the ARPer system may
not be able to prevent vehicle rollover independently due to the limited actuation and
other vehicle physical spatial constrains. However, the ARPer system can still provide
considerable complementation to the existing rollover prevention method. Considering
the fact that the introduced corrective roll moment and forces are independent to
tire-road friction forces, the ARPer system should offer significant supports for vehicle
rollover prevention, especially after tire lift-off.

Remark A.3.3. The capability of the ARPer system may also be affected by the
limited orbit constraints. When the preventer reaches two ends of the orbit, there is
no orbiting movement to generate the corrective control efforts.

A.3.4 Controller Design

Based on the ARPer system capability investigation, the vehicle rollover prevention
control could have a better performance to integrate the proposed ARPer system with
some existing control methods, such as active front steering (AFS), which achieves
rollover prevention through lateral acceleration mitigation. The overview of the control
architecture of the vehicle rollover detection and prevention is presented in Fig. 65.
Within Fig. 65, control efforts for rollover prevention through the dynamic weighting
block provide adjustable control gains, which are aimed to resolve control chattering
issues resulted from the ARP activated by a constant threshold.
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Figure 64. Active rollover preventer system capability evaluation results with respect
to various orbit radii.
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According to Table 6, it is anticipated that both ΣLM 6= 0 and ΣRM 6= 0 are
satisfied to mitigate vehicle rollover propensity. Therefore, assuming that the vehicle
mass center does not move, the desired vehicle roll statuses, denoted as ΣLM0 and
ΣRM0, are obtained in (A.20) by substituting zero accelerations of the MCP into
(A.19). {

ΣLM0 = −∆L(M + 2mu)g

ΣRM0 = −∆R(M + 2mu)g
. (A.20)

When ΣLM0 and ΣRM0 are achieved when the vehicle mass center moves, the desired
acceleration value of the MCP, denoted as [R̈sys]d, is determined in (A.21) by using
(A.20).

[R̈sys]d =

[
(R̈sys_y)d
(R̈sys_z)d

]
=

[
Rsys_z ∆L

Rsys_z −∆R

]−1 [
ΣLM0

M+2mu
+ g∆L

ΣRM0

M+2mu
− g∆R

]
. (A.21)

Given [R̈sys]d, a nonlinear controller for tracking the references is designed based on
the Lyapunov theory. The nonlinear controller is given by the following proposition.

Proposition A.3.1. Control inputs u = [Fcy, Fcz]
T in the following equation will

achieve asymptotic tracking on the given reference in (A.21) and prevent vehicle
impending rollover.

u = (M + 2mu)
(

[R̈sys]d + [Ṙsys]d − Ṙsys

)
. (A.22)

Proof. The proof of this proposition is omitted here for simplification since it follows
the same method used in the proof of Proposition 4.5.1.

A constant rollover index threshold is usually required to trigger the ARP control.
Nevertheless, the ARP control may be turned on and off frequently due to some
aggressive vehicle driving maneuvers, such as a fishhook with relatively high speed.
Frequently enabling and disabling the ARP control not only provide discontinuous
control efforts but also cause unnecessary chattering of roll states. Thus, in order
to avoid the chattering of control efforts and roll states caused by the ARP control
frequent switching, a dynamic weighting is applied to smooth the control efforts. The
design of dynamic weighting function, shown in (A.23), is based on an upper normal
distribution function and values of the lateral load transfer ratio (LTR) for tire lift-off
detection. The LTR is a prevalent dynamic RI defined by the difference of vertical
tire loads between the left and right sides, which is constrained from −1 to 1 by tire
lift-off.

w(|LTR|) =

{
0 |LTR| ≤ ξ

1− exp−( |LTR|−ξ
σ

)2 |LTR| > ξ
, (A.23)

where σ and ξ two small constants. Using (A.23), the rollover prevention control can
work through a continuous weighting function, instead of a constant threshold, and
chattering is also mitigated.
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Figure 66. Stable region in the phase portrait of roll angles.

A.3.5 Simulation Results and Discussions

In this section, co-simulation between CarSim® and MATLAB/Simulink® is used
to demonstrate the vehicle rollover prevention performance enhanced by the novel
ARPer system. In CarSim®, the same E-class SUV and fishhook maneuver as those
utilized in ARPer capability study are applied in simulations. Based on the capability
study, the orbit radius R is selected at 3 m to make trade-offs among max[|Fcy|],
max[|Fcz|], and max[|Mc|]. Moreover, all simulations have an initial entrance speed at
46 km/h and are on the road with a 0.85 friction coefficient. The ARPer system is
assumed to be mounted at the rear of the SUV as shown in Fig. 61. Furthermore, this
SUV is also equipped with a roof cargo box to raise the CG position. Keeping all the
aforementioned conditions the same, when the mass of the roof cargo box increases to
250 kg, the LTR result shows that the uncontrolled vehicle rolls over. Thus, a 250 kg
roof cargo box is added to obtain the baseline of the rollover vehicle without control.

To further compare and evaluate the control performance, a roll angle phase
portrait is also used. In the phase portrait of roll angles, a desired region for the
vehicle roll motion is defined in Fig. 66, based on the tire lift-off threshold. Within
Fig. 66, the thresholds of ϕ̇ and ϕ lie on two straight lines at zeros. The corresponding
intersections, denoted by ϕ̇th and ϕth, are defined in (A.24).{

ϕ̇th = Mgls
croll

ϕ = 0

ϕth = arctan(muls
Mhc

) ϕ̇ = 0
, (A.24)

where croll is the roll damping, which is set as 100 kN/rad.

Remark A.3.4. The tire lift-up of different wheels may not happen simultaneously in
practice. Hence, the average values of tire forces and unsprung masses states of front
and rear wheels are used in the simulations.
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Figure 67. LTR responses for rollover prevention control.

The simulation results of the LTR, the moment balance, and the roll angle phase
portrait are presented in Fig. 67, 68, and 69. Within Fig. 67, 68, and 69, the baseline
is the uncontrolled vehicle with a 250 kg roof cargo box.

From Fig. 67 and 68, due to zero steering angle at the beginning of simulations, LTR
keeps at zero, and ΣLM and ΣRM are the same as ΣLM0 and ΣRM0, respectively.
With the increasing of steering angle, ΣLM and ΣRM start to depart from their
desired values, and LTR also simultaneously increases close to 1, which indicates
that rollover is going to happen. Then, for baseline and vehicle controlled only by
AFS, simulations stop around 4 seconds since vehicle rollovers are not prevented
successfully. However, vehicle controlled by both AFS and ARPer can go through the
whole simulation and ΣLM, ΣRM and LTR finally can come back to their desired
values. Thus, it is demonstrated that with the assistance of the ARPer, the total
vehicle ability for rollover prevention is improved. From the roll angle phase portrait,
shown in Fig. 69, neither baseline nor vehicle controlled by AFS can keep roll angles
trajectories within the desired region. Again, vehicle controlled by both AFS and the
ARPer can achieve that.

Front tire lateral forces, presented in Fig. 70, can explain more on the working
principle of the ARPer. Within Fig. 70, Fyfl and Fyfr denote front left and right tire
forces, respectively. From Fig. 70 (a), before rollover happens, Fyfr in the case of
AFS control is zero since the right-side tires are lifted off. Consequently, AFS fails to
provide enough lateral forces for rollover prevention. In Fig. 70 (b), both Fyfl and
Fyfr do not become zero, because the ARPer prevents rollover by offering significant
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Figure 68. Responses of moment balances.
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Figure 69. Roll angle phase portrait.
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Figure 70. Lateral tire force responses for rollover prevention control.

control efforts, including lateral forces, without being affected by tire lift-off. On the
other hand, non-zero lateral tire forces feedback also helps AFS to perform better.

Since the ARPer system is mounted at the rear of the SUV, an additional yaw
moment is introduced, and the yaw stability may be affected. Nevertheless, the ARPer
system is not trigged until the impending hazardous rollover is detected. Since the
ARPer system does not work all the time, it has limited influences on yaw stability.

A.3.6 Conclusions

This section proposes a novel vehicle rollover prevention methodology by utilizing
the ARPer. Demonstrated by the fishhook maneuver through the co-simulation
between CarSim® and MATLAB/Simulink®, three conclusions are summarized.
First, the ARPer capability study shows that the corrective control efforts generated
by the preventer can provide significant complementation for vehicle rollover prevention.
Second, the integration of the MCP metric and the ARPer can successfully complete
rollover detection and prevention through continuous roll motion information without
saturated by tire lift-off. Third, the ARPer can not only successfully assist AFS to
prevent the rollover propensity, but also be robust to tire-road contact situations, even
when tires are lifted off.
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