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ABSTRACT 

           The focus of this dissertation is first on understanding the difficulties involved 

in constructing reduced order models of structures that exhibit a strong 

nonlinearity/strongly nonlinear events such as snap-through, buckling (local or 

global), mode switching, symmetry breaking. Next, based on this understanding, it is 

desired to modify/extend the current Nonlinear Reduced Order Modeling (NLROM) 

methodology, basis selection and/or identification methodology, to obtain reliable 

reduced order models of these structures. Focusing on these goals, the work carried 

out addressed more specifically the following issues:  

 i) optimization of the basis to capture at best the response in the smallest number of 

modes, 

 ii) improved identification of the reduced order model stiffness coefficients, 

 iii) detection of strongly nonlinear events using NLROM. 

For the first issue, an approach was proposed to rotate a limited number of linear 

modes to become more dominant in the response of the structure. This step was 

achieved through a proper orthogonal decomposition of the projection on these linear 

modes of a series of representative nonlinear displacements. This rotation does not 

expand the modal space but renders that part of the basis more efficient, the 

identification of stiffness coefficients more reliable, and the selection of dual modes 

more compact. In fact, a separate approach was also proposed for an independent 

optimization of the duals. Regarding the second issue, two tuning approaches of the 

stiffness coefficients were proposed to improve the identification of a limited set of 
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critical coefficients based on independent response data of the structure. Both 

approaches led to a significant improvement of the static prediction for the clamped-

clamped curved beam model. Extensive validations of the NLROMs based on the 

above novel approaches was carried out by comparisons with full finite element 

response data. The third issue, the detection of nonlinear events, was finally addressed 

by building connections between the eigenvalues of the finite element software 

(Nastran here) and NLROM tangent stiffness matrices and the occurrence of the 

‘events’  which is further extended to the assessment of the accuracy with which the 

NLROM captures the full finite element behavior after the event has occurred.  
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CHAPTER 1 INTRODUCTION AND BACKGROUND 

In the last 4 decades, finite element methods have revolutionized structural analyses 

and design by providing the capability to model complex geometries, boundary conditions, 

loadings, and material properties and provide results with guaranteed accuracy, potential 

for refinement, and, generally speaking, speed. Commercial finite element software, such 

as Nastran, ABAQUS, and ANSYS have extraordinary arrays of elements, boundary 

conditions, solutions schemes, to address a wide variety of problems. While these 

capabilities were growing and the computing speeds and resources were increasing so were 

the demands: long term dynamic analyses necessary to estimate fatigue life, geometric and 

material nonlinearities to reflect large deformations of more flexible or more heavily 

loaded structures, multi-physics analyses to reflect the coupling of the structure with its 

surrounding, consideration of uncertainties, etc. While these advanced capabilities are 

available in commercial finite element software, they come with substantial CPU time 

penalty that prevent them from being used as efficient design tools. 

If the structure can be assumed to behave linearly, most of the above requirements 

can be fairly easily met by using modal methods in which the response of the structure can 

be expanded in terms of a very limited number of its modes thereby providing a dramatic 

reduction of the computations. Moreover, these modes can be determined from the 

underlying finite element model and thus modal analysis complements the finite element 

methodology to enable a series of additional capabilities. 

A similar effort for structures in the nonlinear geometric regime was initiated by at 

least 2001 [1] in a study that proposed and performed a first validation of a nonlinear 
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reduced order modeling approach in which the response is, as in the modal analysis of 

linear structures, expressed as a linear combination of the (linear) modes. Then, these 

authors replaced the linear stiffness matrix by cubic polynomials of the generalized 

coordinates to model the geometric nonlinear effects. Moreover, the coefficients of these 

multidimensional polynomials were identified from standard outputs of a finite element 

code and the underlying finite element model. Then, the reduced order model could be 

constructed non-intrusively thereby allowing to use it with Nastran, Abaqus, and similar 

software and thereby achieving a complementarity with these standard analysis and design 

tools. Owing to its significantly reduced number of independent variables the response of 

the reduced order model could be computed much faster than the one of the original, 

potentially large sized, finite element model. 

Since 2001, significant efforts have been dedicated by a limited number of 

researchers to improving the above reduced order modeling strategy in the following 

directions (see [2] for a slightly dated review): 

(i) extension of the basis, 

(ii) alternative identification methods of the coefficients of the cubic polynomials, 

(iii) validations to more complex structures and with various physical features, 

(iv) methodology extensions. 

A short period after the original paper, it was recognized [3,4] that the basis of low 

frequency modes of the linear structure would not represent well the response of the 

structure, most notably it would not be able to capture the membrane stretching. This 

stretching is, for thin walled structures, a primarily “in plane” deformation while the linear 
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modes are primarily “transverse”. Noting that the membrane deformations are small and 

typically high frequency, it was suggested [3], that they be statically condensed (Implicitly 

Condensed or IC) in the much larger transverse motions to obtain the response of the 

structure. However, in a post processing effort, the membrane motions are recovered 

(Implicit Condensation with Expansion or ICE) to allow accurate predictions of the entire 

displacement field as well as stresses. 

A different strategy was proposed in [4,5] that expands the basis to include not only 

low frequency linear modes of the structures but also a series of enrichments that capture 

the membrane deformations that are induced by large motions of the linear modes of the 

basis. These enrichments were referred to as “dual modes” and were shown to be 

determinable from standard outputs of finite element codes so that the non-intrusiveness 

was preserved. 

Finally, efforts were also dedicated [6-10] to use higher frequency/in-plane linear 

modes of the structure. This framework guarantees the completeness of the basis, a very 

important property, and yielded good results on “simple” structures, e.g., [6,7]. 

Unfortunately, it was shown to be very difficult to implement efficiently on complex 

models, see [10], more so than the dual mode-based approach, see [11] for comparison. 

The identification of the coefficients of the cubic polynomials has also received 

significant attention in part due to the modeling induced by the cubic restoring force. As 

shown in [2,3,12], the cubic nonlinearity is exact under some assumptions, e.g., Kirchhoff-

St Venant material, von Karman strains, but is otherwise an approximation of the structural 
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behavior predicted by most commercial finite elements, see discussions in [13,14] 

regarding Nastran. 

Two different viewpoints have been adopted for the identification of the 

coefficients. The first one has been (as in the original paper of [1]) to apply sets of forces 

to the finite element modeled structure and compute the corresponding responses. Then, 

project these forces and the finite element responses on the basis and impose the 

satisfaction of the reduced order model governing equations to obtain conditions to be 

satisfied by the coefficients, e.g., see [2]. Note that this effort can be done with static forces 

only since the nonlinear terms in the model relate only to deformations, not their rate. 

The second perspective has been the reverse of the above one, i.e., impose 

displacements that are consistent with the basis and determine from the finite element 

model the forces which are required to achieve them. Then, as above, the forces are 

projected on the basis and the satisfaction of the reduced order model governing equations 

is imposed to obtain the necessary conditions for the coefficients.  This strategy, developed 

by [15], is particularly convenient because an appropriate (and simple) selection of the 

imposed displacement fields leads to an identification of the coefficients by very small 

groups, 3 at most, and thus to a lack of conditioning issues that may be encountered in the 

other approach. This scheme is however not applicable (with the exception of flat structures, 

see [16]) to reduced order models based solely on linear modes (i.e., with implicit 

condensation). 

Since the number of coefficients of the cubic polynomials grows rapidly, as M 4/6 

with the number M of modes in the basis, a modification of the imposed displacement 
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approach has been proposed [11] in which the tangent stiffness matrix of the finite element 

model is extracted for each imposed deformed shape. Projecting this matrix on the basis 

and matching it to the reduced order model tangent stiffness matrix then provides M (M 

+1)/2 equations for every deformed shape as opposed to M modal forces. This approach is 

then much more efficient to identify the coefficients, requiring only of the order of M 2/2 

deformed shapes and finite element computations vs. M 3/6 in the original approach. 

The imposed displacement-based identification approaches require the user 

selection of the magnitude of these displacements their shapes being part of the algorithm. 

Often, the identified values of the coefficients are nearly independent of this magnitude, 

but a definite sensitivity has been observed for some structures. In such cases, the multiple 

level approach of [17] should be used; it seeks the range of magnitudes of the displacements 

in which the coefficients are most constant, a sign of good identification. The identification 

of the coefficients from experimental data has also been investigated, see [18]. 

The validation of the reduced order modeling approaches to a broad array of 

different structural model is a fundamental component of the formulation and development 

of these methods. Indeed, at the contrary of linear structures, nonlinear ones may exhibit 

fundamentally different behaviors and thus one purpose of the validations is to assess 

whether the reduced order modeling approach is valid broadly or only limited to a class of 

structures with specific response properties. Another purpose of the validations is to assess 

the impact of differences in the structural modeling, cubic for the reduced order model but 

likely something else (usually unclear because of proprietary concerns) for the finite 

element model, especially when the deformations become large and/or when the 
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nonlinearity is very strong. Since its first paper [4], the ASU group has constructed 

nonlinear reduced order model for 35 different structures ranging from straight beams to 

complex multibay [11,19] and orthogrid panels with up to 200,000 degrees of freedom 

finite element models [20-22], see [13,16,23-27] for a sample of these including 

cantilevered, free, and spring supported structures as well as some exhibiting a notch or a 

crack. The number of modes in the reduced order models which have been developed in 

these investigations have ranged from 2 to 85 and very good to excellent predictions, as 

compared to their full finite element counterparts, have been obtained in about 32 of these 

35 cases. 

Extensions of the reduced order methodology have focused primarily on the 

inclusion of heating effects with the temperature itself represented in a modal expansion 

format, see [21,30-33] to account for the complex temperature distributions that can result 

from aerodynamic heating in hypersonic flight. The extension of the methodology to 

account for uncertainties in the structure has also been successfully pursued [12, 14, 34-

35]. Efforts have also been dedicated to the analysis of structures composed of 

substructures, e.g., by component mode synthesis [36,37] or the recently defined 

component-centric approach [38]. Finally, the coupling with the acoustic pressure field has 

been investigated in [39-40] and the consideration of piezoelectric effects addressed in [41] 

by relying on the thermal analogy. 

Regardless of the structure to be modeled, there are two key issues in constructing 

a non-intrusive reduced order model: obtaining an a priori basis that represents well the 
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response of the structure and accurately identifying the nonlinear stiffness coefficients. The 

severity of these issues is increased when considering structures with strong nonlinearity. 

Consider first the basis which has been determined by first selecting a set of linear 

modes of the structure, then determining “dual modes” which capture the effects of the 

geometric nonlinearity when the response is otherwise dominated by either one or a pair of 

the linear modes. Among the strongly nonlinear behaviors analyzed in this dissertation are 

those induced by a bifurcation. In such cases, the basis that is needed after the bifurcation 

may be quite different from the one needed before it occurs – even in terms of linear modes 

as will be demonstrated in a symmetry breaking example. While the linear modes of the 

structure are known to form a basis, no such result exists for the dual modes. They have 

been successfully used in a large number (over 30) of structures with definite nonlinearity 

but not behavior changes. It is thus unclear that they would still be appropriate, in the 

current format or not, for strongly nonlinear situations such as bifurcations.  

In fact, predicting well the occurrence of a bifurcation will require not only that the 

corresponding deflection be well captured by the basis but also that the coefficients of the 

nonlinear reduced order model be accurately estimated. Past experiences have 

demonstrated that not all these coefficients can be considered reliably estimated owing to 

differences in nonlinear formulation between Nastran and the reduced order modeling. 

Those that dominate the response when (i) one or two low frequency linear modes are 

larger than the others and (ii) the dual mode generalized coordinates are much smaller than 

those of the linear modes, are typically well estimated but the others are not/may not be. 

When very large deflections occur along multiple linear and dual modes, as is the case with 
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the post snap-through behavior of a clamped-clamped curved beam, most coefficients have 

a significant effect and thus must reliably be identified. If they are not, the prediction could 

be very poor or simply nonexistent because the reduced order model governing equations 

are not stable. 

The above challenges will be discussed in further details in the next few chapters 

and remedies will be proposed and successfully validated. 
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CHAPTER 2 OBJECTIVES 

2.1 Status of Unsuccessful/Partially Successful NLROMs 

As stated in the previous chapter, the ASU group successfully developed nonlinear 

structural reduced order models (ROM) for 32 of the 35 structures that have been 

considered over the years. Moreover, good predictive capabilities were obtained for 2 of 

the 32 structures but only when using an unorthodox basis (for 1 structure) or when 

excluding part of the loading domain (for the other structure). 

Not surprisingly, these structures that have not been fully satisfactorily modeled are 

those which exhibit the strongest nonlinearity, most notably snap-through or buckling. 

These structures, their behavior, and the NLROM status are described below: 

1) The clamped-clamped curved beam introduced in [7] and considered with snap-

throughs in [42]. The desired analysis extended to the occurrence of snap-

throughs and included the effects of a temperature field as well. Good 

predictions of the response without and with limited temperature were obtained 

but mostly using a basis formed by the linear modes of the straight beam (the 

unorthodox basis referred above) and by zeroing out, without strong argument, 

a series of stiffness coefficients. The most significant challenge encountered 

when building various NLROMs of this structure was instability – the NLROM 

marching would most often become unstable at the snap-through load. 

2) The shallow cylindrical shell introduced by Drs J.J. Hollkamp and R. Gordon in 

[32]. In unpublished efforts, the ASU group encountered difficulties in obtaining 
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a basis, dual modes in particular, providing a good modeling of the response over 

the entire range of response levels including the mode switching point. 

3) The Culler-McNamara panel defined in [43] and considered by NLROMs 

without and with temperatures in [27,30,31]. A structural NLROM was obtained 

that provides a very good modeling of the structural behavior in the response 

range of the problem. However, just outside that range, most notably when 

subjected to an upward loading, the panel exhibits a local buckling that involves 

strongly the stiffener, and which was never successfully captured by the 

published NLROM. More specifically, it was found that (i) the NLROM basis 

developed a priori (without the knowledge of the local buckling) did not 

represent well the buckled shape and (ii) the NLROM became unstable in the 

neighborhood of the buckling point. 

4) The two joined wings discussed in [44]. The NLROM obtained for these models 

does not account correctly for the buckling, nor any post-buckling behavior. 

Besides the particular odd behavior of these wings, it has been noted that the 

cubic relationship between generalized coordinates and restoring force central to 

the NLROM is not consistent with the Nastran data even for the fundamental 

mode.  

5) The full cylindrical shell analyzed in [32,33] subjected to tension and shear. The 

NLROM model could not capture the transition of the deformations through a 

series of different wrinkling patterns at nearly constant load, not the ensuing 

short post-buckling behavior. 
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In view of the above challenges, the focus of this thesis is first on understanding 

the difficulties in constructing reduced order models for structures exhibiting a strong 

nonlinearity and second on building reliable nonlinear reduced order models by 

modifying/extending current NLROM methodology. Of particular interest here are the first 

three structures in the above list only as the difficulties with the joined wings appear related 

to the core assumption of the NLROMs and thus should be the focus of a dedicated 

extension of the methodology. The full cylindrical shell of [32,33] may also suffer from 

the same issue or may simply be an extremely complex problem. Either way, its 

consideration should be revisited but only after fully successful NLROMs of the first 

structures are developed in a systematic manner. 

2.2 Specific Objectives of the Present Investigation 

Reviewing the above status of the NLROM efforts previously focused on the 

structures (1)-(3) it appears that the challenges can be regrouped as:  

(i) difficulty in obtaining a basis that represents well the deformations of the 

structure, and/or 

(ii) identifying a NLROM that is numerically stable in the range of deformations 

considered. 

Understanding these issues as they relate to the structures (1)-(3) and possibly 

others and resolving them in a generic (not ad hoc) manner are the specific objectives. 

In regard to the basis selection, the perspective of the present work remains that it 

be constructed from a limited information on the dynamics of the structure, i.e., primarily 
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linear modes and their associated duals as well as a limited set of static deformations 

resulting from “standard” loads (e.g., uniform pressure). Basic physical understanding of 

the structural behavior may also be expected, e.g., the potential for a clamped-clamped 

curved beam to experience snap through. 

However, the existence of a local buckling under a particular loading condition 

should not be assumed as prior information because a comprehensive analysis of the 

structural behavior through the potential loading space is not a desirable or feasible option. 

Such an effort would dramatically undermine the computational benefits of the reduced 

order models, especially in the context of multi-physics problems such as the aero-

structural-thermal coupled behavior of the Culler-McNamara panel, see for example 

[27,30,31,43] where it may not even be feasible. 

Under the above restrictions, it may not be possible to construct a priori a basis that 

will always capture well the response. The potential for an inaccurate representation of the 

response is especially high in critical conditions, e.g., occurrence of buckling, and this 

investigation will focus as well on detecting such conditions and failures of the NLROM. 

This detection would be the first step in adapting the NLROM to the unexpected loading 

conditions, possibly along the lines of the Reduced ROMs (RROMs) developed in a 

different investigation [45]. 
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2.3 Validation Structures for the Present Investigation 

The clamped-clamped curved beam, the shallow cylindrical shell, and the Culler-

McNamara panel are briefly described in the ensuing sections and their properties and 

behavior summarized. 

2.3.1 Curved Beam 

The geometry of the beam of [7,42] is showed in Figure 1. 

 
Figure 1. Curved Beam Geometry [7,42]. 

The beam was clamped on both ends, had an elastic modulus of 10.6×106 psi, shear 

modulus of 4.0×106 psi, and density of 2.588×10-4 lbf-sec2/in4. A finite element model with 

144 CBEAM elements was developed in Nastran. 

Consider first the behavior of the beam under static loads, more specifically a 

downward uniform pressure is assumed applied on the beam. The displacement is small if 

the pressure is small and the relation between pressure and displacement is very close to 

linear for the curved beam under small pressure. When increasing the value of pressure, 

the relation become more and more nonlinear. In fact, once the value exceeds a threshold 

value, the displacement will increase suddenly and sharply, and the beam has snapped-

through, see Figure 2. When the magnitude of the pressure is reduced, from high to low, 

t = 0.09 in

w = 1.0 in

t = 0.09 in

w = 1.0 in
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the beam also experiences a snap-through (referred to here as snap-back) when the pressure 

is decreased below a threshold value, which is not the same one as in the loading process. 

Accordingly, there exists two stable static configurations of the beam in a particular range 

of pressures. These various behaviors lead to a load-deformation curve that is drastically 

nonlinear. 

 

Figure 2. Vertical (Transverse) Displacement of the Beam Center as a Function of the 

Applied Uniform Pressure (Positive Downward). The Arrows Indicate the Loading 

Direction. 
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For dynamic cases, depending on the magnitude and frequency of the excitation, 

the occurrence of snap-through events varies from very rare, to frequent, to continuous as 

shown in Figure 3.  

 

Figure 3. Typical Time Histories of the Transverse Displacement of the Center of the 

Curved Beam under Different Levels Excitations Showing No Snap-Through (Top), 

Occasional Snap-Throughs (Middle), and Frequent Snap-Throughs (Bottom). 

 

2.3.2 Shallow Cylindrical Panel 

The second validation structure is the shallow cylindrical shell introduced in [32] 

and which is shown in  
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. The panel is clamped on all the edges, has dimensions of 9.75 in by 15.75 in 

(projected length in the curved direction) by 0.048 in thick and a constant radius of 

curvature of 100 in in the x-y plane. The material properties are as follows: Young’s 

modulus of 2.85×106 psi, its Poisson’s ratio is 0.3 and the density equals 7.84×10-4 lbf-

sec2/in4. A finite element model with 39×63 shell (CQUAD4) elements was developed in 

Nastran and the panel is clamped on all 4 edges. 

 

Figure 4. Finite Element Model of the Shallow Cylindrical Shell [32]. 

For this curved panel, one of the strongly nonlinear behaviors is mode switching. 

Specifically, under a small downward uniform pressure, the deformation is single-welled 

as show in Figure 5(a) for which the only maximum displacement occurs at the center of 

the panel. The displacement decreases from the center to the sides. However, for large 

enough pressures, the deformation becomes double-welled as showed in Figure 5(b) and 

exhibits two peaks.  

  

x 

y 

z 
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a)                                                                  b) 

Figure 5. Deflections of the Shallow Cylindrical Shell under Uniform Pressure. 

(a) Low Pressure, Single-welled Deformation, (b) High Pressure, Double-welled 

Deformation. 

Another interesting feature of this panel is the occurrence under appropriately large 

dynamic pressure (uniform) of a symmetry breaking of the response. It is seen from Figure 

4 that the panel has two axes of symmetry. Thus, when a uniform pressure is imposed 

(static or dynamic), there exists a deformation pattern that also exhibits that double 

symmetry. Statically, it appears that this is the only solution and similarly in the dynamic 

setting under “low” excitation. However, under large enough dynamic pressure, 

asymmetric deformations appear signaling that the symmetric solution has become 

physically unstable. 

The occurrence of symmetry breaking is a good example of the information about 

the structural response that cannot be expected available as the basis is constructed. A basis 

composed of doubly symmetric transverse modes is thus expected to be selected and the 

asymmetric response will not be predicted correctly. The key need will thus be to predict 

the occurrence of the symmetry breaking from the NLROM to flag the potential for 

inadequacy of the basis.  
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2.3.3 Culler-McNamara or Representative hypersonic panel 

The representative hypersonic panel first considered by Culler and McNamara [43] 

is shown in Figure 6. It is composed of a skin and two parallel stiffeners of dimensions 

shown in Figure 6(a) and thicknesses of 0.065 in and 0.0325 in for the skin and stiffener. 

The panel is made of a composite material (advanced carbon-carbon 4) with the following 

properties: Young’s modulus11 of 15×106 psi, Young modulus22 of 15×106 psi, density of 

0.065 lbm/in3, shear modulus12 equals 2.5×106 psi, and the Poisson’s ratio12 is 0.3. The 

Nastran finite element model is composed of 2400 identical 4-node plate (CQUAD4) 

elements, of sizes 0.25 in by 0.25 in, resulting in 2499 nodes. For ease of plotting, the panel 

will sometimes be shown as “flattened”, i.e., with the two stiffeners rotated in the plane of 

the skin, as shown in Figure 6(b).   
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Skin 

 (a) 

(b) 

Figure 6. (a) The Representative Hypersonic Panel [43]. (b) Its “Flattened” Version. 

The boundary conditions are: 

(1) At the leading edge, x=0 and z=0, zero displacements are enforced for all 

degrees of freedom except for the y translations which are free. 

(2) At the trailing edge, x=12 in and z=0, zero displacements are enforced for all 

degrees of freedom except x and y translations, which are free. Springs also act 

on the nodes of the trailing edge in the x direction with a spring constant of 2378 

lbs/in. 

(3) At the panel center, x=6 in, y=5 in, and z=0, zero displacements in y translations 

are imposed. 

Stiffener 

Stiffener Skin 
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Figure 7. Local Bucking of the Representative Hypersonic Panel – Different Views. 

In analyzing the response of this panel in [27], it was found that it exhibits a local 

buckling which, as shown in Figure 7, affects primarily the stiffeners and the skin near the 

fold line. This local bucking decreases sharply the eigenvalue of tangent stiffness matrix 

but not to zero like a global buckling or the snap-through of the curved beam. 
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CHAPTER 3 NLROM FORMULATION REVIEW 

For completeness, the formulation of the nonlinear reduced order modeling is 

reviewed below detailing in order the 3 key aspects of governing equations derivation, 

dual mode construction and non-intrusive identification of the stiffness coefficients.  

3.1 NLROM Governing Equations 

 The nonlinear reduced order modeling method utilized here can be viewed as the 

extension to the nonlinear geometric situation of the modal models developed in linear 

structures. The derivation of the equations of motion is taken from [2]. In NLROM, the 

displacement field u  expressed as  

  
M

( )

n=1

( ) = ( ) n
nt q t u  ( 1 )  

where u is the displacement of all degrees of freedom of all nodes, ( )n  are the basis 

functions, and nq  are the corresponding generalized coordinates. The basis functions ( )n  

result from the mode selection process discuss in the next section and are constant vectors. 

A key property of these functions is that they must satisfy the geometric boundary 

conditions. In a dynamic analysis, the displacements vary with time, so u is a function of 

time and so are the generalized coordinates. 

 Since the basis functions are intended to be constant and must satisfy the geometric 

boundary conditions, these conditions cannot be time dependent. Thus, the equations of 

motion of the structure must be expressed in the undeformed configuration. From finite 
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deformation elasticity theory, the momentum balance of an infinitesimal element is 

(summation over repeated indices is assumed in all equations unless otherwise stated) 

  ( ) 0

0 0ik i i

k

P b u
X

 


+ =


 for 0X  ( 2 )  

where P  is the first Piola-Kirchhoff stress tensor, X is the coordinate of the undeformed 

configuration, 0 is the density in the reference configuration, and 0
b  is the vector of body 

forces. The displacement vector is 

  Xxu −=  ( 3 )  

where x is the coordinate of the current configuration. Moreover, the stress tensor P can 

be expressed as 

  ik ij jkP F S=  ( 4 )  

where S denotes the second Piola-Kirchhoff stress tensor and F  is the deformation 

gradient tensor defined as: 

  i i
ij ij

j j

x u
F

X X


 
= = +
 

 ( 5 )  

where ij  denotes the Kronecker delta. 

 Consider now the boundary conditions, 0  is the domain occupied by the structure 

( x ) and 0  is its boundary which may be composed of two parts. One is t
0  on which 
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the traction 0
t  are prescribed. The other one is u

0  on which the displacement are 

specified (assumed zero here). The boundary conditions are thus 

  00
ikjkij tnSF =  ( 6 )  

and 

  0u =  for u
0X  ( 7 )  

 To complete the formulation of the elasticity problem, it remains to specify material 

behavior. A St Venant-Kirchhoff model is assumed here in which the relation between the 

second Piola-Kirchhoff stress tensor S  and the Green strain tensor E  is linear. That is, 

defining 

  ( )ijkjkiij FFE −=
2

1
 ( 8 )  

the constitutive relation is 

  klijklij ECS =  ( 9 )  

where ijklC  denotes the fourth order elasticity tensor. 

 To get the governing equation of finite dimensional reduced order models, a test 

function ( )v v X=  is used to form the weak form where v  is sufficiently differentiable and 

0v =  on u
0 . Multiplying Eq. (2) by this function and using Eq. (4), one has 
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  ( ) 0

0 0i ij jk i i i i

k

v F S v b v u
X

 


+ =


 ( 10 )  

where 

  ( ) ( ) ( )i
i ij jk i ij jk ij jk

k k k

v
v F S v F S F S

X X X

 
= −

  
 ( 11 )  

Inserting this relation in Eq. (10) and integrating over the entire domain 0  yields 

( )
0 0 0 0

0

0 0dX ( )dX dX dXi
i i ij jk i i i ij jk

k k

v
v u F S v b v F S

X X   

 
+ = +

       ( 12 )  

Applying Gauss’ theorem and imposing the boundary condition Eq. (6) yields 

0 0 0 0

0 0

0 0dX ( )dX dX d
t

i
i i ij jk i i i i

k

v
v u F S v b v t s

X
 

   


+ = +

    . ( 13 )  

In the context of the above continuum, the reduced order model Eq. ( 1 ) is 

M
( )

n=1

( , ) = ( ) ( )n

i n iu t q t X X  

in which the basis functions ( ) ( )n X  satisfy the boundary conditions and are assumed to 

be sufficiently differentiable (by construction). Then, they are appropriate test functions. 

Selecting 
( )m

i iv =  in Eq. (13), in which the displacement field iu  is expressed as in Eq. 

( 1 ) yields after some algebraic manipulations the governing equations for the nonlinear 

reduced order models as 
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(1) (2) (3)

ij j ij j ijl j l ijlp j l p iM q K q K q q K q q q F+ + + =  ( 14 )  

where 

  

0

( ) ( )

0 dm n

mn i iM X


=    ( 15 )  

  

0

( ) ( )
(1)

m n

i l
mn iklp

k p

K C d X
X X



 
=

   ( 16 )  

  (2) (2) (2) (2)1 ˆ ˆ ˆ
2

mnp mnp pmn npmK K K K = + +
 

 ( 17 )  

  

0

( ) ( ) ( )
(2)ˆ

m n p

i r r
mnp ijkl

j k l

K C d X
X X X



  
=

    ( 18 )  

  

0

( ) ( ) ( ) ( )
(3) 1ˆ

2

m s n p

i i r r
msnp jklw

j k k l

K C d X
X X X X



   
=

     ( 19 )  

  

0 0

( ) 0 ( ) 0

0 d d
t

m m

m i i i iF b X t s
 

=  +    ( 20 )  

 Equation ( 14 ) is the governing equation appropriate for structures with no energy 

dissipation which is usually not the situation in real life. To render the NLROM of practical 

significance, damping is added to model the dissipation mechanisms in real structures. In 

this investigation, a linear damping model will be assumed to focus on the nonlinear 

geometric effects resulting from the restoring force, but it is recognized that a nonlinear 

damping, such as the one utilized in [45], may be more appropriate, especially to model 
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effects where the damping plays a dominant role. With this assumption, Eq. (14) is 

modified to read 

                          ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++
)3()2()1(  ( 21 )  

 A Rayleigh damping will be used consistently in the validation examples because 

it provides some flexibility on the damping modeling but also because it is readily 

implementable in Nastran to allow exact one to one comparison. Then, 

  (1)

ij ij ijD M K= +   ( 22 )  

where   and   are constants of proportionality. They are specified as in the linear case, 

e.g. to have a particular modal damping ratio of certain modes as discussed in the 

validations.  

 As stated in the introduction, heated structures have also been considered in the 

literature and will be addressed here as well. In such cases, Eq. ( 21 ) must be extended to 

include the effects of thermal expansion and possibly the changes of material properties 

with temperature, see [21,28-31]. The temperature field could be represented by a series of 

temperature basis functions 

  
( )

1

( , ) ( ) ( )n

n

n

T t t T



=

=X X  ( 23 )  

The constitutive relation become   
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   0( )ij ijkl kl klS C E T T= − −  ( 24 )  

where  is the thermal expansion tensor. When the thermal expansion must be accounted 

for, it was shown [28] that Eq. ( 21 ) should be replaced by 

(1) ( ) (2) (3) ( )th th

ij j ij j ij j ijl j l ijl j l ijlp j l p i il lM q D q K q K q K q q K q q q F F + + − + + = +  ( 25 )  

where  and C are temperature independent. In the above equation, ( )th

ijlK is a temperature 

induced stiffness coefficient relating to the likely constrained thermal expansion and 

( )th

il lF   is similarly a thermal modal force both expressed as 

  

0

( ) ( )
( ) ( )

m n
th Pi i

mnp jklr lr

k j

K C T d X
X X




 
=

   ( 26 )  

  

0

( )
( ) ( )

m
th ni

mn iklr lr

k

F C T d X
X





=


 ( 27 )  

3.2 Basis Selection 

 Having established the form of the governing equations of the NLROM, the second 

critical task is the selection of the basis. Clearly, obtaining a perfect representation of the 

displacement would require that the number of basis functions (also referred to as modes 

and assumed linearly independent) be equal to the total number of degrees of freedom of 

the finite element model, or infinity for real structures which have infinite degrees of 

freedom. Accordingly, one would not expect any (significant) reduction in the 

computational effort since the benefits of reduced order models are associated with the 
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decrease in the number of degrees of freedom not with a transformation of the equations. 

However, if the basis is not complete, there would inevitably be truncation (or 

representation) error. This discussion leads to two contradictory requirements for the basis: 

(i) only have a small number of basis functions and (ii) induce a small truncation error. 

 The objective of basis selection is then to form a group of bases functions that will 

achieve both (i) and (ii) at best. While a formal optimization problem to find the basis 

might be formulated by relying on the above, a different approach is followed here seeking 

to achieve a given truncation error, 1% is usually used, with an “appropriately low” number 

of modes. When possible and mathematically straightforward, the number of modes will 

be reduced consistently with this error but efforts to “marginally” reduce the size of the 

basis are not undertaken because they would incur a computational cost or user time which 

would negatively impact the benefits of using NLROMs (see also discussion on Reduced 

ROMs in [45]). What is key for the present investigation is the process by which to 

construct a good basis, inducing a representation error of 1% or less and having a relatively 

small number of modes. 

 In linear dynamic problems, the selection of the basis has been well resolved and 

consists of the linear modes (or normal modes) of the structure which are the eigenvectors 

of the eigenproblem, 

  (1) 2ˆ ˆˆ ˆ
l l l= K M  ( 28 )  

where l are the natural frequencies and ̂ are the (linear or normal) modes from which 

the basis is selected. Note that the number of modes is equal to the number of degrees of 
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freedom of the structure so that the conflicting issues of truncation and reduction are also 

present here. The selection of the modes to include on the basis depends on the excitation 

and more specifically on its band of energy. Assuming a low damping, the modes which 

will be most present in the response are those who are (i) strongly excited by the loading 

and (ii) low frequency. Given the excitation or the type of excitations, a formal selection 

process of the modes can then be conducted. Note that the energy of the excitation is limited 

to a particular band, the response of the structure is also limited to that band, i.e., there is 

no transfer of energy to lower or higher frequencies possible – at the contrary of nonlinear 

systems. 

 The basis functions to be used in nonlinear geometric problems should definitely 

include all of the modes that would be chosen if the problem was linear, but this is in 

general not sufficient. The structures of particular interest here are thin walled ones and the 

excitation may be expected to be primarily “transverse”. Then, the deflections are also 

primarily transverse, even in the nonlinear case and these components can be well 

represented by the low frequency/first few linear modes of the structure which are also 

transverse dominant. In general, it is advisable to take more of these linear modes than 

would be used in the linear case because a transfer of energy from low frequency to higher 

frequency often happens and modes not excited in the linear problem are excited in the 

nonlinear one. 

 Even though the transverse deflections are the largest by far, it is not sufficient to 

only model them. When these deflections become large, in-plane deflections do appear 

associated with the “membrane stretching”. While small, these deflections are typically 
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associated with very stiff motions and thus carry significant potential energy. In fact, they 

can be viewed as resulting from an energy transfer from low frequency to high frequencies 

as mentioned above. They must thus be included in the basis in the form of enrichments 

which are selected here as the dual modes first introduced in [5], see also [2,11]. Their 

construction is briefly reviewed below. 

 Dual modes can be viewed as associated with the transverse displacements 

described by the linear basis, i.e., the transverse modes. The general procedure to obtain 

these dual modes is to subject the system to forces that would induce displacements along 

the transverse modes in the linear case and assess what additional deformations happen. 

Since these deformations are small, the response is globally along the transverse mode or 

modes chosen which implies that the applied forces could be selected as those that induce 

a response exactly in that mode in the linear case. Note further that the expectations of the 

dual modes to be very stiff (high frequency) implies that their response would be quasi-

static even if the transverse motions are fully dynamic. Accordingly, it is sufficient for the 

dual mode construction to proceed statically. 

 On that basis, denoting by Ψ , the transverse mode of which the dual need to be 

determined, the applied loading on the structure (m)
F  should be of the form  

  =(m) (1)

FEF K Ψ  ( 29 )  

where  is the amplification factor used for adjusting the magnitude of loading. This factor 

should be large enough that nonlinear geometric effects are indeed present and are of the 

same order of magnitude as those observed in the NLROM solution to the actual loading. 
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Practically, a series of loadings of the form of Eq. ( 29 ) are applied with both positive and 

negative values in a range that induces peak deflections of the structure from very small 

(linear) to a few thicknesses (nonlinear). 

 Once the nonlinear displacements resulting from the loading of Eq. ( 29 ) have been 

obtained, their components along the transverse modes are removed through a Gram-

Schmidt orthogonalization. Next, a Proper Orthogonal Decomposition (POD) is carried out 

on the remainders of the displacements and a group of eigenvectors/eigenvalues are 

obtained.  

 To minimize the number of modes in the basis, not all eigenvectors are selected as 

dual modes. There are two criteria for dual selection. One is the representation of the 

remainders, especially in the in-plane direction, the other one is the strain energy. The strain 

energy of a particular mode V  is here assumed to be that of the linear structure, i.e., 

  
1

2
V = T (1)

Ψ K Ψ  ( 30 )  

 Since the motivation for the dual modes is to capture the nonlinear in-plane 

response, those that induce large reductions in the representation error in the in-plane 

direction could be taken as candidates. Moreover, since in-plane motions are typically quite 

stiff, the corresponding strain energy should also be large, and this is a second criterion for 

the selection of an eigenvector as a dual mode. 

 The next question to address is for which modes the dual construction should be 

carried out. The contributions of the various transverse modes in the nonlinear response of 
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the structure are not equal. In fact, there is usually a very large difference among these 

transverse modes. These contributions could be evaluated by comparing the projections on 

these modes of some representative nonlinear displacements obtained to guide the basis 

selection. The ones that have contributions significantly greater than the other ones could 

be considered as ‘dominant’ modes and their duals should be constructed. 

 Note however that owing to the nonlinearity of the response, the dual constructed 

for the sum of two transverse mode is not equal to the sum of the duals obtained by 

considering each mode separately. Thus, the vector Ψ  in Eq. ( 29 ) should also include 

linear combinations of these dominant modes, typically by two up to three (see discussion 

in [5]) to reflect correctly the in-plane deformations when more than one mode is present 

in the response. While the non-dominant modes may not be large enough to represent the 

response of the structure at any time, they can potentially modify the dominant modes and 

thus linear combinations involving a dominant mode and a non-dominant one is also 

typically considered. 

 At the end of the dual construction process, the basis is finally obtained as 

   ˆ ˆ,t d =    ( 31 )  

where ˆ
t are linear modes, ˆ

d are dual modes.  



33 

 

3.3 Identification of the NLROM Parameters 

 The last critical step of the NLROM construction is the non-intrusive identification 

of all its parameters, i.e., their estimation using standard input-output of commercial finite 

element codes. Proceeding as in the linear case, one obtains directly 

  ( ) ( )ˆi j

ij p pr rM M=    ( 32 )  

  (1) ( ) (1) ( )ˆi j

ij p pr rK K=    ( 33 )  

where M̂  and ˆ (1)
K are the finite element mass and linear stiffness matrices which can be 

outputted by commercial finite element software, e.g., Nastran. Damping can then be 

obtained from Eq. ( 22 ). It then remains to identify the parameters 
(2)K  and 

(3)K  which 

will be obtained, as discussed in the introduction, using the imposed displacement approach. 

 Under static conditions and ignoring thermal effects, the governing equations, Eq. 

( 25 ), can be written as, 

  
(1) (2) (3)

ij j ijl j l ijlp j l p iK q K q q K q q q F+ + =  ( 34 )  

where iF  are the modal forces. The strategy devised in [15] is to impose several sets of 

displacements (i.e., the jq ), then to determine the corresponding modal forces using the 

finite element code, finally to impose the satisfaction of Eq. ( 34 ) in which the 

displacements and modal forces have been inserted. This process leads to sets of linear 

equations for the unknown stiffness coefficients from which they can be determined. The 
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specific sets of displacements are chosen to form small systems of equations for the 

coefficients vs. one large one. Specifically, they are sets: 

i) displacements proportional to a single mode 

Impose jq = q, jq = - q and jq = 0.5q; all other generalized coordinates = 0. 

Repeat for all values of j. 

ii) displacements proportional to a linear combination of 2 modes 

Impose jq = lq = q, jq = lq = -q, and jq =- lq = q all other generalized 

coordinates = 0. Repeat for all distinct values of j and l. 

iii) displacements proportional to a linear combination of 3 modes 

  Impose jq = lq = kq = q, all other generalized coordinates = 0. Repeat for all 

distinct values of j, l, and k. 

 For set (i), the displacements imposed on the finite element model is 

  ( ) ( ) ( )
, ,

n n n

n n nu q u q u q
 

=  =  =   ( 35 )  

To each displacement corresponds one group of equations from eq. (34) so the total 

equations are, 

  

(1) (2) 2 (3) 3

(1) (2) 2 (3) 3

(1) (2) 2 (3) 3

in n inn n innn n i

in n inn n innn n i

in n inn n innn n i

K q K q K q F

K q K q K q F

K q K q K q F

  

+ + =

+ + =

+ + =

 ( 36 )  
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where i= 1,2, 3, …, M, and there is no summation over repeated indices. Equation (35) 

provides the values of 
(1)

inK ,
(2)

innK , and 
(3)

innnK for all i and all of them by repeating for every 

n = 1, ..., M.  

 For set (ii), the displacements imposed on the finite element model are 

  
( ) ( )n m

n mu q q=  +   ( 37 )  

where n m and no summation over n or m. The coefficients 
(1) (2) (3), ,in inn innnK K K and 

(1) (2) (3), ,im imm immmK K K  which have been found in step (i) can be taken as known in the 

corresponding modal force equations. Then, all coefficients of the form 
(2) (3) (3), ,inm innm inmmK K K

can be identified. 

 For set (iii), the displacement imposed on the finite element model is 

  
( ) ( ) ( )n m r

n m ru q q q=  +  +   ( 38 )  

and it leads to the remaining coefficients
(3)

inmrK with m, n, and r all different. 

 For each imposed displacement, M modal forces are obtained and thus M equations 

of the form of Eq. ( 34 ). The number of imposed displacements to identify the order M 4/6 

stiffness coefficients is thus of order M 3/6. 

 More recently [11], a modification of the above approach was proposed in which 

the tangent stiffness matrix of the finite element model (projected on the basis) is matched 

to the NLROM one. The tangent stiffness matrix is by definition 
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( )T i
iu

u

F
K

q


=


 ( 39 )  

and thus, for the NLROM, it is 

                      
( ) (1) (2) (2) (3) (3) (3)T

iu iu iju iuj j ijlu ijul iujl j lK K K K q K K K q q   = + + + + +     ( 40 )  

 This matrix should be matched to the tangent stiffness matrix of the finite element 

model projected on the basis, i.e., to 

  
(T) T (T)

FEK =Ψ K Ψ  ( 41 )  

 Note in this approach that M (M +1)/2 equations are obtained for every deformed 

shape as opposed to M modal forces. It is then much more efficient than the previous one 

to identify the coefficients, requiring only of the order of M 2/2 deformed shapes and finite 

element computations vs. M 3/6 in the original approach. 
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CHAPTER 4 BASIS OPTIMIZATION 

4.1 Optimization of the Transverse Basis ˆ
l  

A standard observation made in regards to modal expansion of the form of Eq. ( 1 ) 

is that replacing the basis function (n)ψ  by linear combinations of themselves does not 

change the capability of the sum to represent any particular function. It may thus be 

concluded that there is no value in performing a rotation of the linear modes to form the 

first, transverse part of the basis. 

This conclusion is correct for the transverse basis alone, but it must be remembered 

that these transverse modes are the source of the dual modes. So, a transformation of the 

transverse modes will give rise to new dual modes which are not simple rotations of the 

prior duals because the duals are derived from a nonlinear problem. Accordingly, it is 

meaningful to investigate the role of a rotation of the transverse mode on the 

appropriateness of the duals and, more globally of the corresponding basis, in representing 

the response. 

In this regard, it has long been noted that the duals are particularly efficient when 

there is only one mode that dominates the response. In fact, in most of the successful 

NLROMs, there is a strongly dominant single mode – typically the lowest frequency mode 

excited. Accordingly, it is proposed here to induce a rotation of the linear modes to capture, 

at best with one mode, the response of the structure in some typical nonlinear responses 

computed in advance for that purpose. 
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Emphasizing one mode vs. multiple ones has also some potential stability benefit. 

Indeed, it has often been observed that the cubic coefficients (3)

iujlK  with u  j  l are more 

sensitive to the conditions of the identification than their counterparts where u = j = l. When 

the response is primarily split between two or more modes, many more cubic coefficients 

are strongly involved in the equations than when there is a single mode. So, a single 

dominant mode response is likely to provide an increase accuracy/stability by reducing the 

number of terms on which the identification may be inaccurate (this issue results from the 

nonlinear geometric model of the finite element being different from the one assumed from 

the NLROM, see [13,14]). 

Consider the curved beam of section 2.3.1 and shown in Figure 8 are its first 6 

linear modes. Shown in Figure 9 are the displacement of the beam under downward 

pressures, one below the snap-through level and the other above it. 

At first glance, the curves of Figure 8 and Figure 9 are quite different. There are a 

few nodal points on linear modes but not on the displacements. Using that linear basis to 

represent well the deformations is possible but this approximation will heavily involve 

several of the linear modes.  

Based on the above discussion, a process was established to create a rotation of the 

basis (the 6 linear modes) so that one of them provides the best possible approximation of 

the observed (reference) static deformations. This process is as follows. 
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Figure 8. Mode Shape of the First 6 Linear Modes. In-plane (Tx, Left Column) and 

Transverse (Ty, Right Column) Deflections.   
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Figure 9. Deformation of the Curved Beam under Uniform Downward Loadings of 1 lb/in (Top) 

and 3 lbs/in (Bottom). 

(1) Generate a series of nonlinear displacements from the finite element under 

loading that are relevant to the structure and its expected excitation. These 

nonlinear displacements are typically static ones, which are faster to 

determine, but dynamic ones are also applicable. These nonlinear 

displacements should span the range of expected deformations of the 

structure. 

(2) Project the nonlinear displacements on the selected normal modes. 

(3) Perform a POD analysis of the projection coefficients, selecting the 

eigenvectors corresponding to the largest eigenvalues. 

(4) Using the eigenvectors, transform the original modes into modes that span 

the structure.  

0 50 100 150
-0.2

-0.1

0

N
o
. 
o
f 

th
ic

k
n
e
s
s

 load -1 (before snap-through)

0 50 100 150

Node number (horizontal position)

-15

-10

-5

0

T
y/

th
ic

k
n
e
s
s

 load -3 (after snap-through)



41 

 

The application of this process to the curved beam using displacements under 

uniform pressures from -0.1 lb/in to -4.5 lbs/in led to the mode shown on Figure 10 (from 

the eigenvector with largest eigenvalue). Clearly, this new mode is much closer to the 

reference static displacements implying that it will be dominant in the response of the 

curved beam.  

 

Figure 10. Mode Shape of the POD Mode. 

It is not enough to consider only one mode and thus others must be appended. They 

could be chosen either as originating from additional eigenvectors of the POD analysis, 

especially those with eigenvalues larger than the floor, or from linear modes. 

4.2 Optimization of the Dual Basis ˆ
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Past efforts have shown that the dual modes are often very efficient in 

complementing the transverse modes, i.e., that they represent well reference nonlinear 

responses with only a few modes. In some cases, a slow convergence of the representation 

with respect to the number of dual modes has been observed thereby penalizing the 

computational benefits of the NLROM but also, as pointed out above, potentially leading 

to stability problems of this model.  
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On that basis, it was questioned whether it would be possible to rotate a given basis 

of dual modes into one in which the number of dominant duals is reduced. This effort could 

be accomplished as done with the transverse basis by performing a POD of the projections 

of the reference deflections, but this strategy may lead to a set of dual modes too biased 

toward the reference data. 

A different approach was adopted here that is similar in spirit to some aspects of 

the construction of the optimum thermal modes [46]. Specifically, recognize first that the 

dominant stiffness coefficient (2)

ijlK  where ‘i’ and ‘j’ refer to linear (transverse) modes and 

‘l’ is associated with a dual. These terms are the most significant ones (besides the linear) 

because (i) they are the main coupling mechanism between the linear and the dual modes 

and thus induce the membrane softening effects and (ii) because they are multiplied by a 

first power of the dual modes generalized coordinates which are typically much smaller 

than their linear modes counterparts. So, quadratic terms involving two or more dual modes 

coordinates have typically small effects and are often neglected (as proposed in [47]). 

Cubic terms involving the dual modes are also known to be very small. 

Given the linearity of the coefficients (2)

ijlK  with respect to the dual mode l, see Eqs 

( 17 )-( 18 ), it is concluded that the coefficient (2)

ijlK  corresponding to a linear combination 

of dual modes 

  
( ) ( )=l n

n
n

   ( 42 )  

where the summation extend over the dual mode indices, would be given by 
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(2) (2)

= n ijnijl
n

K K  ( 43 )  

On this basis, one can define an optimization of the dual mode basis seeking to 

maximize, with respect to the parameters n , one or a particular set of coefficients (2)

ijlK  

for specific values of i and j. Of particular interest would be the optimization of the dual 

associated with transverse mode 1, i.e., 
(2)

11lK . Note in this effort that a normalization 

constraint should be imposed on the parameters n  to avoid an unbounded solution. 

 Define here 
1 2

(2) (2) (2) (2)
, ,...,

nttd ttd ttd ttd
K K K K =

  
 the vector of quadratic coefficients of 

interest where the first two indices could be any pair of transverse mode numbers but 

remain the same for all terms. Introduce similarly  1 2, ,...,
T

n   = . The problem is then 

to maximize 
2

(2)
ttd

K   given 1T  = (the constraint could be changed to be adapted to 

different problem) where 

  ( ) ( )
2

(2) (2) (2) (2) (2)
T

T T
ttd ttd ttd ttd ttd

K K K K K    = =  ( 44 )  

Adding the constraint through a Lagrange multiplier, the objective function becomes

  ( )(2) (2)
1T T T

ttd ttd
f K K    = + −  ( 45 )  

Rewriting in index format and differentiating yields 

  ( )1i ij j i if V    = + −  ( 46 )  
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  2kj j ik i k
k

f
V V  




= + +


 ( 47 )  

where 
(2) (2)T
ttd ttd

V K K=  and thus is symmetric so that 

  2 2kj j k
k

f
V  




= +


 ( 48 )  

Setting the above derivative to zero to achieve the optimum leads to  

  kj j kV  = −  ( 49 )  

Rewriting this equation in matrix form yields the eigenvalue problem 

  = V  ( 50 )  

The corresponding eigenvector(s)  with largest eigenvalue(s)  could then be used to rotate 

the dual modes as in Eq. ( 42 ). 

 Another strategy for the dual modes optimization is based on performing their 

modal analysis, i.e., solving the eigenvalue problem 

  dd ddK M=   ( 51 )  

where ,dd ddK M  are the dual blocks of the linear stiffness and mass matrices. 

Eigenvectors in Eq ( 51 ) associated with eigenvalues   that are in the range of those of 

the linear modes should likely be eliminated as duplicating the role of the linear modes. 

Moreover, the eigenvectors with very large eigenvalues would lead to dual modes that are 
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extremely stiff and thus not likely to contribute significantly to the response. It is thus 

suggested that the eigenvectors with low eigenvalues but larger than those of the linear 

modes be kept and that the rotation be carried out as in Eq. ( 42 ) 
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CHAPTER 5 SYMMETRY AND TUNING OF COEFFICIENTS 

5.1 Symmetry of Stiffness Matrix 

The identification methods reviewed in section 3.3 provide estimates of each of the 

linear, quadratic, and stiffness coefficient of the reduced order model regardless of any 

condition that must link them. Such conditions however do exist and result from the fact 

that the nonlinear geometric restoring force is rooted in elasticity and thus must be a 

conservative force. Thus, any modal force 𝐹𝑖 should be representable as 

  i
i

V
F

q


=


 ( 52 )  

where V is the potential energy, and iq  is the generalized displacement. Since the potential 

energy V must be the same for all indices i, there is necessarily a connection between 

different modal forces, more specifically 

  
2

ji

j i i j

FF V

q q q q

 
= =

   
 ( 53 )  

Accordingly, there must exist relations between different sets of stiffness coefficients. To 

derive these conditions which are referred to here as symmetry conditions, consider Eq. 

( 34 ) 

(1) (2) (3)

i ij j ijl j l ijlp j l pF K q K q q K q q q= + +  

Assume a 3 modes model for which 
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1
1

V
F

q


=


, 2
2

V
F

q


=


, 3
3

V
F

q


=


 

Then, different components of the modal forces will be considered, integrated to 

yield the corresponding contributions to the potential energy, and then differentiated to 

determine the associated terms on the other modal forces. Consider first the linear stiffness 

terms. On the modal force 1, there is a component (1)

1, 12 2LF K q=  for which the 

corresponding component of the potential energy is 
(1) (1)

1 1, 1 12 2 1 12 2 1LV F dq K q dq K q q= = =  . 

Differentiation of this term with respect to 2q  to obtain the corresponding component of 

the modal force 2F  gives
(1)1

2, 112
2

L
V

F K q
q


= =


. However, the coefficient of 1q  in the 

expression of 2F  should be 
(1)
21K . Thus, one must have 

(1) (1)
21 12K K= . 

For the quadratic stiffness terms, consider the component (2)

1, 123 2 3QF K q q=  for 

which the corresponding component of the potential energy is 

(2) (2)

2 1, 1 123 2 3 1 123 1 2 3QV F dq K q q dq K q q q= = =  . Differentiating this expression with respect to  

2q  and 3q yields
(2)2

2, 1 3123
2

Q
V

F K q q
q


= =


and 
(2)2

3, 1 2123
3

Q
V

F K q q
q


= =


. Comparing these 

terms with those from Eq. (34) yields the symmetry relations 
(2) (2) (2)
123 213 312K K K= = . 

Proceeding similarly with all groups of terms leads to the set of symmetry 

relations listed in Table 1 (no sum for the repeated index, i j l p   ). 

  



48 

 

Table 1. Symmetry Relations of  Stiffness Coefficients. 

 iF  V  V
q




 Symmetry of 

Stiffness 

Linear 

stiffness 
(1)

jijK q  (1)
i jijK q q  (1)

j iijF K q=  (1) (1)
ij jiK K=  

Quadratic 

stiffness 

(2)
j lijl

K q q  
(2)

i j lijl
K q q q  

(2)
j i lijl

F K q q=  

(2)
l i jijl

F K q q=  

(2) (2)
ijl jil

K K=  

(2) (2)
ijl lij

K K=  

(2) 2
jijjK q  

(2) 2
i jijjK q q  

(2)
2j i lijjF K q q=  

(2) (2)
2jij ijjK K=  

(2)
i jiijK q q  

(2) 21

2
i jiijK q q  (2) 21

2
j iiijF K q=  (2) (2)1

2
jii iijK K=  

Cubic 

stiffness 

(3)
j l pijlp

K q q q  
(3)

i j l pijlp
K q q q q  

(3)
j i l pijlp

F K q q q=  

(3)
l i j pijlp

F K q q q=  

(3)
p i j lijlp

F K q q q=  

(3) (3)
ijlp jilp

K K=  

(3) (3)
ijlp lijp

K K=  

(3) (3)
ijlp pijl

K K=  

(3) 2
j lijll

K q q  
(3) 2

i j lijll
K q q q  

(3) 2
j i lijll

F K q q=  

(3)
2l i j lijll

F K q q q=  

(3) (3)
ijll jill

K K=  

(3) (3)
2

lijl ijll
K K=  

(3) 2
j pijjpK q q  

(3) 2
i j pijjpK q q q  

(3)
2j i j pijjpF K q q q=  

(3) 2
p i jijjpF K q q=  

(3) (3)
2jijp ijjpK K=  

(3) (3)
pijj ijjpK K=  

(3)
i l piilp

K q q q  
(3) 21

2
i l piilp

K q q q  

(3) 21

2
l i piilp

F K q q=  

(3) 21

2
p i liilp

F K q q=  

 

(3) (3)1

2liip iilp
K K=  

(3) (3)1

2piil iilp
K K=  

(3) 3
jijjjK q  

(3) 3
i jijjjK q q  

(3) 23j i jijjjF K q q=  
(3) (3)

3jijj ijjjK K=  

(3) 2
i piiipK q q  

(3) 31

3
i piiipK q q  (3) 31

3
p iiiipF K q=  (3) (3)1

3
piii iiipK K=  

(3) 2
i liill

K q q  
(3) 2 21

2
i liill

K q q  (3) 2
l i liill

F K q q=  
(3) (3)
iill liil

K K=  
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The symmetry relations can be used to check if the stiffness coefficients are well 

identified. If the symmetry is well respected for a particular set of coefficients, it could be 

assumed that these stiffness coefficients are well identified. If not, it can certainly be 

concluded that at least some of them are badly identified. The existence of the above 

symmetry relations will be used in connection with the tuning of stiffness coefficients in 

the following sections. 

While not directly relevant here, it should be noted that the potential energy 

discussed here is the elastic strain energy and thus must be a positive function. This 

property is essential in proving the positive definiteness of the matrix BK , see [12]. 

5.2 Tuning of Stiffness Coefficients 

The accurate NLROM prediction of discrete events, such as the snap-through or 

snap-back of the curved beam, requires that the NLROM coefficients induce the 

appropriate condition, here the existence of a zero eigenvalue of the tangent stiffness 

matrix, and at the appropriate loading condition. These conditions are not always met by 

the stiffness coefficients identified as discussed in section 3.3 in which case it might be 

desirable to develop a strategy to refine an existing identified NLROM. 

Over the years, it has traditionally been concluded that the stiffness coefficients 

whose indices refer to all transverse modes, denoted here as 
(1)
ttK , 

(2)
tttK , and 

(3)
ttttK , and 

the linear and quadratic ones involving only one index referring to a dual mode, i.e., 
(1)
td

K

, 
(1)
dt

K , 
(2)
dtt

K , and 
(2)
ttd

K  (note that the dual modes corresponding to indices larger than the 
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transverse ones) are “well enough” identified. On the contrary, the other coefficients have 

typically not satisfied the check of symmetry and have been considered neither accurate 

nor reliable. On that basis, it has been proposed to zero them out leading to “cleaned 

models” as compared to the “full models” in which all coefficients 
(1)
dd

K  are retained. One 

exception to the zeroing out of coefficients involving multiple indices of dual modes are 

the coefficients which have been found to be well identified by comparison with their 

values determined directly from the linear stiffness matrix. 

For most structures, the generalized coordinates associated with the dual modes are 

much smaller than their transverse counterparts and thus the neglect of 
2
dq  and 

3
dq  terms 

in the cleaned model has often seemed adequate. In practice, cleaned models have been 

observed to be more stable than the full ones and effectively can be marched numerically 

faster since the number of products to carry out in the evaluation of the nonlinear stiffness 

terms is reduced. 

The use of cleaned coefficients is however inconsistent with the derivation of the 

NLROM governing equations and the positive definiteness of the matrix BK  involving the 

linear, quadratic and cubic coefficients. Moreover, their use in problems exhibiting very 

delicate nonlinear behaviors, e.g., snap-through of a clamped-clamped curved beam, seems 

too brutal as small nonlinear stiffness terms may (and indeed do) have a much larger effect 

owing to the near zero effective stiffness. 

The above discussion has motivated a separate effort focused on answering the 

following questions: 
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(a) are the coefficients deemed unreliable really so? 

(b) if they are unreliable, how could we determine them more reliably than by the     

methods formulated so far? 

 (c) do these coefficients actually matter and in what conditions? 

To achieve step (a) and, in part, step (c), requires the availability of another finite 

element software yielding NLROM coefficients that can be trusted and/or known to be 

consistent with NLROM modeling. Limited prior experience with the Air Force Research 

Laboratory (AFRL) finite element code based on [52] had suggested that it might be a good 

candidate. It was decided to use the symmetry of the coefficients as the test to determine 

whether this AFRL code could be considered as benchmark. Using this finite element on 

the clamped-clamped curved beam considered earlier in this investigation resulted in a near 

perfect matching of all relationships between coefficients, the numerical errors in their 

satisfaction was small enough that it could be construed as numerical noise vs. formulation 

differences. On that basis, the AFRL code beam modeling is considered a benchmark. Note 

that a NLROM model satisfying all relationships will be referred to here as “super 

symmetric”; it guarantees that the nonlinear stiffness forces are conservative, i.e., will not 

lead to spurious energy input/dissipation that, even small, may be detrimental to the 

prediction of the snap-through behavior. 

Consistently with the above plan, the first task to address was the comparison of 

the stiffness coefficients identified from a Nastran model and those from the AFRL code 

model of the identical structure with the exact same basis functions. The structure selected 

for this comparison was the clamped-clamped curved beam and several bases were 
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considered, i.e., the three transverse and five dual (3T5D) and 6T7D (6L7D) models 

discussed in Chapter 6 as well as a 1T1D model which includes the first transverse and the 

first dual of the 3T5D one.  

The model 1T1D has only two modes which are not sufficient to represent the 

behavior of the clamped-clamped curved beam. Accordingly, it is just used here to do a 

preliminary check on the symmetry of stiffness coefficients identified from different finite 

element models which is easy to implement since the number of basis is small. The 

comparison of coefficients performed for the 1T1D model is in Table 2. The values of the 

18 coefficients (linear, quadratic, and cubic) obtained from Nastran and the AFRL code by 

application of the tangent stiffness matrix with either single or multiple levels are listed. 

Note that mode 1 is the transverse (“t”) while mode 2 is a dual (“d”). 

As stated earlier, note how well the symmetry of the coefficients is met for the 

AFRL code model, e.g., 
(2) (2)
112 2112K K=  and 

(3) (3)
1122 2112K K=  to all (7) significant digits 

outputted. For the Nastran model, the first comparison (
(2) (2)
112 2112K K= ) is also satisfied to 

7 digits but 
(3)
1122K  and 

(3)
2112K  differ by an order of magnitude in both single and multiple 

level identifications. For the coefficients of the cleaned model, the agreement between 

Nastran and the AFRL code is typically very good but it is hit and miss for the others: 

(3)
1122K  is close but 

(3)
2112K  is completely off. A similar situation occurs with quadratic 

coefficients, 
(2)
222K  matches well across methods and codes but 

(2)
122K  does not.  
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Table 2. Stiffness Coefficients of the 1T1D Model of the Clamped-Clamped Curved Beam 

Obtained from Nastran and AFRL Code Finite Element Models. 

  
Stiffness 

coefficient 

single level 

(Nastran) 

Multi levels 

(Nastran) 

Multi levels 

(AFRL) 

Linear 

(1)
11K  4.569850 106 4.569850 106 4.569849 106 

(1)
12K  1.644244 101 1.639386 101 -4.530981 102 

(1)
21K  1.644244 101 2.843700 101 -4.530981 102 

(1)
22K  1.857135 1010 1.857135 1010 1.857093 1010 

Quadratic 

(2)
111K  1.105734 109 1.105734 109 1.106010 109 

(2)
112K  -3.021570 1010 -3.024704 1010 -3.014157 1010 

(2)
122K  -2.353559 109 -2.353559 109 -3.825756 109 

(2)
211K  -1.510785 1010 -1.510785 1010 -1.507079 1010 

(2)
212K  -1.517122 109 -3.112120 109 -7.651512 109 

(2)
222K  1.080430 1011 1.080430 1011 1.093611 1011 

Cubic 

(3)
1111K  8.948197 1010 8.948351 1010 9.007757 1010 

(3)
1112K  3.020189 109 2.956064 109 -2.847274 1010 

(3)
1122K  1.226251 1012 1.226218 1012 1.242726 1012 

(3)
1222K  -3.637409 1011 -3.637819 1011 -3.992950 1011 

(3)
2111K  1.006726 109 9.773128 108 -9.490912 109 

(3)
2112K  1.148455 1011 1.149881 1011 1.242726 1012 

(3)
2122K  -1.091223 1012 -1.091379 1012 -1.197885 1012 

(3)
2222K  -8.213170 1012 -8.212456 1012 6.695294 1012 

The large relative difference between the linear coupling terms 
(1)
12K  and 

(1)
21K  

may be surprising but note that this a shallow curved beam. The coupling between 
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transverse and in-plane displacements should be small. The two modes are composed of 

one transverse mode which is focused on capturing transverse displacement and one dual 

mode which is focused on in-plane displacement. So, both of these coefficients should be 

much smaller than the diagonal terms and the values shown are admissible considering the 

large values of 
(1)
11K  and 

(1)
22K . 

In the remainder of this section, it is desired to extend the comparisons done above 

on the 1T1D model to 2 NLROMs with larger bases, i.e., 3T5D and 6L7D. One possible 

strategy is to compare, as discussed above, the coefficients that related to each by 

symmetry. Another, simpler strategy would be to compare the coefficients identified from 

Nastran with their counterparts obtained similarly from the Air Force code. The data of 

Table 2 would suggest that the comparison is meaningful: the coefficients that respect 

symmetry when identified with Nastran also match their Air Force code counterparts and 

the most significant terms such as 
(2)
111K  and 

(3)
1111K  also match each other.  

To further support the appropriateness of this comparison, shown in Figure 11 are 

the deflections induced by a uniform load of 4.5lbs/in (i.e., well above the snap-through 

threshold of 2.4lbs/in) as predicted by Nastran and several NLROMs. Clearly, the full 

NLROM constructed from the AFRL finite element code gives predictions that match 

perfectly the corresponding Nastran results. On the contrary, the NLROM identified from 

Nastran clearly yield unacceptable results in the horizontal direction. These observations 

support the expectation that the NLROM stiffness coefficients identified from the Air 

Force code can serve as target for those obtained by Nastran.  
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Figure 11. In-plane/Horizontal (Top) and Transverse/Vertical (Bottom) Displacements of the 

Clamped-Clamped Curved Beam under a Uniform Pressure of 4.5lbs/in. Nastran, Full and Cleaned 

3T5D NLROMs Developed from Nastran (“nas”) and Air Force Code (“bob”) Finite Element 

Models. 

It is further worthwhile to also assess the cleaned version of these models from 

Figure 11. The Air Force code identified NLROM is worsened somewhat by the cleaning 

process demonstrating that the cleaned coefficients have an effect on the predictions. On 

the contrary, the Nastran identified NLROM has noticeably improved by the cleaning 

suggesting that the cleaned coefficients cannot be considered reliable. Moreover, there is 

still a slight difference between this cleaned model and the one identified from the Air 

Force code indicating that differences in the coefficients retained after the cleaning, i.e., 

the most important ones, also occur. 
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Proceeding with the comparison for the 3T5D and 6L7D models, the relative error 

between the corresponding Nastran and the AFRL code identified values of each set of 

coefficients was evaluated as 

  100%Nastran Bobtran

Bobtran

K K
error

K

−
=   ( 54 )  

These relative errors are shown in Figure 13-Figure 18 for the linear, quadratic, and 

cubic coefficients. Note that the errors are plotted by groups as to easily identify those for 

which a good matching takes place and the others. 

 The results shown in Figure 13-Figure 18 clearly substantiate the prior observations 

that justified the use of cleaned models: the cubic coefficients
(3)
tttd

K , 
(3)
dttt

K , 
(3)
ttdd

K , 
(3)
dttd

K , 

(3)
tddd

K , 
(3)
dtdd

K , 
(3)
dddd

K identified from the Nastran finite element model are effectively 

almost always vastly different from those determined from the AFRL code benchmark 

model. The situation is less dramatic for the quadratic terms but very significant errors still 

occur quite often for 
(2)
tdd

K , 
(2)
dtd

K , and
(2)
ddd

K . These observations thus support the use of 

cleaned models in general. 
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Figure 12 Relative Errors of the Nastran Identified Cleaned Stiffness Coefficients in 

Comparison to Their Counterparts from the AFRL Code. (a) 3T5D, (b) 6T7D, and (c) 

6T8D NLROMs Discussed in Chapter 6. 
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 The availability of stiffness coefficients identified from Nastran and from the AFRL 

code for the same basis allows to assess one more presumed property of the Nastran 

identified coefficients, i.e., that those involving 2 or more indices are less accurate than 

those that relate to 1 mode only. This was checked by comparing the differences of the 

cleaned stiffness coefficients (the other ones not being reliable) determined from Nastran 

and from the AFRL code, as done in Figure 13-Figure 18 and for three different bases. 

These comparisons are shown in Figure 12. Overall, the vast majority of these errors are 

small, a few percent or less, and thus it is difficult to draw definite conclusions. However, 

one pattern that is shown, and was not expected, is that the error appears to be growing as 

the mode number increasing when considering the coefficients 
(2)
tttK  and 

(3)
ttttK . 

It should be recognized that the above discussion does not imply that the AFRL 

code is a better or worse nonlinear finite element code than Nastran. Rather, it only 

demonstrates that the Nastran nonlinear geometric formulation is not consistent with the 

one underlying the NLROM construction. Moreover, the above comments technically only 

apply to beam elements as it is not clear whether the Nastran nonlinear formulations for 

plate/shell or block elements are similar/exhibit similar issues. For plates/shell, experience 

on many different models suggests that the issue is indeed similar to that of beams. 

Similarly, the findings only relate to Nastran models, not any other commercial finite 

element code.  
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Figure 13. Relative Errors of the Nastran Identified Linear Stiffness Coefficients in Comparison to 

Their AFRL Code Counterparts, 3T5D Model, T = Transverse, Modes 1-3, D = Dual, Modes 4-8. 

 

 

Figure 14. Relative Errors of the Nastran Identified Linear Stiffness Coefficients in Comparison to 

Their AFRL Code Counterparts, 6L7D Model, L = Transverse, Modes 1-6, D = Dual, Modes 7-13.  
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Figure 15. Relative Errors of the Nastran Identified Quadratic Stiffness Coefficients in Comparison 

to Their AFRL Code Counterparts, 3T5D Model, T = Transverse, Modes 1-3, D = Dual, Modes 4-

8. 

 

Figure 16. Relative Errors of the Nastran Identified Quadratic Stiffness Coefficients in Comparison 

to Their AFRL Code Counterparts, 6L7D Model, L = Transverse, Modes 1-6, D = Dual, Modes 7-

13. 
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Figure 17. Relative Errors of The Nastran Identified Cubic Stiffness Coefficients in Comparison to 

Their AFRL Code Counterparts, 3T5D Model, T = Transverse, Modes 1-3, D = Dual, Modes 4-8. 

 

Figure 18. Relative Errors of the Nastran Identified Cubic Stiffness Coefficients in Comparison to 

Their AFRL Code Counterparts, 6L7D Model, L = Transverse, Modes 1-6, D = Dual, Modes 7-13. 
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of which was shown to be very sensitive to small changes in the coefficients [49]. For this 

structure, it is surmised at this point that cleaning the coefficients will modify the response, 

see Chapter 6 for confirmation. It is thus desirable in such cases to be able to obtain 

meaningful values of some or all of the coefficients 
(2)
tdd

K , 
(2)
dtd

K , 
(2)
ddd

K , 
(3)
tttd

K , 
(3)
dttt

K , 

(3)
ttdd

K , 
(3)
dttd

K , 
(3)
tddd

K , 
(3)
dtdd

K , and 
(3)
dddd

K , from specifically selected Nastran runs. The 

NLROM including any of these coefficients identified as below will be referred to as 

“extended”. 

Then, the questions to address are (i) what run should be carried out and (ii) how 

the coefficients should be identified. Here we introduce two strategies performing tuning 

on stiffness coefficients, one based on modal forces, the other one based on generalized 

coordinates of NLROM. 

5.2.1 Tuning Based on Modal Force 

Assuming that the response is strongly dominated by the mode 1 (either the first 

transverse mode or the first POD mode, see section 4.1), the coefficients (2)

111K  and 

especially (3)

1111K  will play a key role in the capture of the events and thus may be tuned to 

capture it and/or provide an improved prediction of the response in the neighborhood of 

this event. As shown in Chapter 6, a large sensitivity of the response of the clamped-

clamped curved beam to the coefficient (3)

1111K  was observed and a very slight fine tuning 

of its value made a significant difference in predictions. 
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In general, it may be argued that the fine tuning should involve a series of critical 

parameters, not just one. A formal process to achieve this tuning was formulated based on 

the availability of finite element static data, displacements and modal forces. Specifically, 

these quantities would be related by the NLROM governing equations, i.e., Eq. ( 34 ), if 

the NLROM was an exact match of Nastran. In this equation, the values of the generalized 

coordinates jq  are the projections of the Nastran displacements on the NLROM basis and 

iF  are the modal forces, i.e., the projections of the loading on the NLROM basis. Since the 

NLROM is not an exact match of Nastran, the modal forces ˆ
iF  predicted by Eq. ( 34 ) 

based on the projections jq  and the NLROM parameters (1)ˆ
ijK , (2)ˆ

ijl
K  and (3)ˆ

ijlp
K  are  

(1) (2) (3)ˆ ˆ ˆ ˆ
j j l j l p iij ijl ijlp

K q K q q K q q q F+ + =  ( 55 )  

What is desired here then is to modify the NLROM parameters, from (1)ˆ
ijK , (2)ˆ

ijl
K , and 

(3)ˆ
ijlp

K  to (1)
ijK , (2)

ijl
K , and (3)

ijlp
K so that Eq. ( 34 ) holds. Subtracting Eq. ( 55 )from Eq. 

( 34 ) leads to 

(1) (2) (3) ˆ
j j l j l p i i iij ijl ijlp

K q K q q K q q q F F F + + = = −  ( 56 )  

where 

(1) (1) (1)ˆ
ij ij ijK K K = − , (2) (2) (2)ˆ

ijl ijl ijl
K K K = − , (3) (3) (3)ˆ

ijlp ijlp ijlp
K K K = −  ( 57 )  

The system of Eq. ( 56 ) can be rewritten in the matrix-vector form 
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  =Q K F   ( 58 )  

Since the number of coefficients is typically very large, it is not reasonable to expect 

that there would be enough Nastran data to estimate all variations in the coefficients. To 

palliate this situation, it will be assumed here that the identification of the original set of 

coefficients has been done carefully so that the parameters (1)ˆ
ijK , (2)ˆ

ijl
K , and (3)ˆ

ijlp
K  are 

close to the desired ones (1)
ijK , (2)

ijl
K , and (3)

ijlp
K . Then, Eq. ( 58 ) can be viewed as a 

constraint in the minimization of the overall magnitude of the change in NLROM 

parameters quantified by Κ . Proceeding with an implementation of the constraints of 

Eq. ( 58 ) by Lagrange multipliers, denoted collectively by the vector  , leads to the linear 

system of equations 

  T+ =K Q    ( 59 )  

Combining this condition with the constraints leads to the final equations 

  
T    

=     
    

KI Q

FQ

 

 
 ( 60 )  

To implement this strategy, it is necessary to know that the discrepancy between 

iF  and ˆ
iF  originates from slight errors in the NLROM parameters, not from a truncation 

error in Eq. ( 34 ). That is, the representation error of the Nastran data must be very small. 

In practice, the truncation error may just be small but not very small in which the exact 

satisfaction of the modal force constraint may actually be inappropriate and potentially 

damage the prediction capabilities of the model. 
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5.2.2 Tuning Based on Generalized Coordinates 

The second tuning approach proposed here is to rely on actual response, as opposed 

to made up imposed displacements, to a load that is at least somewhat similar to the one of 

which the response is desired. Regarding the identification, it is proposed here to rely on a 

least square strategy directly at the level of the generalized coordinates. That is, to select 

the coefficients to be identified so that the predicted generalized coordinates are as close 

as possible to those obtained by projecting the Nastran response on the basis for the 

specified loading cases. Specifically, it is proposed to minimize 

  
2(1)

, ,
1 1

ln M
Nas ROM
j i j ij

i j

E w q q

= =

 = −
   ( 61 )  

where ln  and M are the number of  load cases considered for the identification and the 

number of modes in the NLROM basis, and 
(1)
jw  denotes a set of positive weights. 

Moreover, ,
Nas
j iq  and ,

ROM
j iq  are the values of the generalized coordinate ‘j’ in load case ‘i’ 

obtained by projection of the Nastran finite element response and by integration of the 

NLROM governing equations, respectively. Note that the latter set of values is implicitly 

dependent on the coefficients to be identified. 

Besides the deviation between generalized displacements from Nastran and 

NLROM, the magnitude of the stiffness coefficients could also be added into consideration 

which lead to 
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2(1) (2)

, ,
1 1

ln M
TNas ROM

j i j i s sj
i j

E w q q k w k

= =

 = − +
   ( 62 )  

where sk  denotes the vector of values of the cleaned coefficients to be identified and (2)w  

is a positive definite weight matrix.  

For a given load, a commercial finite element software can be used to output the 

corresponding nonlinear displacement from which the generalized coordinates can be 

obtained by projection on the selected basis in NLROM. For the same load, the 

corresponding generalized coordinates can also be obtained from NLROM given the 

stiffness coefficients. In general, there would be some difference between the two sets of 

generalized coordinates which will depend on the identified stiffness coefficients. So, the 

basic idea is to minimize the difference by varying the stiffness coefficients. 

The process of minimization was performed in MATLAB using its built-in function 

‘fminunc’ and is summarized in the flowchart below, 

 

Figure 19. Flowchart of Generalized Coordinates-Based Stiffness Tuning 
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The minimization of E may be expensive as it requires iterative solutions of the 

NLROM governing equations which are nonlinear. There are four ways to reduce the 

computational cost: 

(i) Tuning only on “super symmetric” stiffness, i.e. only change 
(2)
123K  where 

(2)
213K  and 

(2)
312K  are imposed to equal 

(2)
123K .  

(ii) Tuning only the coefficients which are thought to be not well identified, i.e., 

(2)
tdd

K , 
(2)
dtd

K , 
(2)
ddd

K , 
(3)
tttd

K , 
(3)
dttt

K , 
(3)
ttdd

K , 
(3)
dttd

K , 
(3)
tddd

K , 
(3)
dtdd

K , and 
(3)
dddd

K  . 

(iii) Tuning only on stiffness coefficients with two or less indices corresponding to 

dual modes, i.e., 
(2)
tdd

K , 
(2)
dtd

K , 
(3)
tttd

K , 
(3)
dttt

K , 
(3)
ttdd

K , and 
(3)
dttd

K . 

(iv)  Tuning solely the stiffness coefficients that are likely to provide the largest 

impact to the response, i.e., related to the dominant transverse and dual modes. 

From the validation results, the second tuning approach was more stable than the 

first one. This finding is rather expected since the second approach is based on the actual 

computational results of the NLROM while the first one focuses only on the modal force 

which may lead to some stiffness components deviating very significantly from the true 

value. 
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CHAPTER 6 VALIDATION RESULTS 

6.1 Validation Plan 

 The focus of this chapter is on validating the concepts developed in previous 

sections, in particular the optimization of the linear modes, of the duals, as well as the 

stiffness coefficients tuning. The three structures discussed in section 2.3 will be 

considered for this validation effort. More specifically, the optimization of the linear modes 

of section 4.1 will be carried for all three structures, either as a strategy to reduce the 

number of linear modes and/or to improve the construction of the duals by creating more 

distinct dominant modes. The optimization of the duals, as discussed in section 4.2, will be 

applied solely to the clamped-clamped curved beam. This structure will also be the primary 

testbed for the stiffness coefficients tuning strategies of Chapter 5 because capturing its 

snap throughs in either static or dynamic conditions has been shown to require a particular 

good reduced order model which is difficult to achieve directly using the existing methods 

of section 3.3. The stiffness coefficients tuning approach will also be performed on the 

hypersonic panel in an unsuccessful attempt to better capture the occurrence of local 

buckling. The lack of success in this effort is not due to the tuning strategy but rather to the 

inadequacy of the basis which it cannot overcome. The validations of the NLROM will be 

performed on static loading, assessing displacements and eigenvalues of tangent stiffness 

matrix, as well as on dynamic conditions, and, for a small set of NLROMs, on the response 

due to a constant applied temperature. 
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6.2 Application to the Curved Beam 

 The strategies developed in the last two sections were first applied to the clamped-

clamped curved beam shown in Figure 1 under symmetry constraints, i.e., the finite 

element model was forced to only exhibit symmetric deformations using multi point 

constraints. This constraint was imposed to reduce the complexity of the problem since the 

snap-through may occur under both symmetric and antisymmetric motions with the latter 

occurring at a slight lower load level than the former. The validation results presented 

below are split into 4 separate efforts/sections:  

i) Optimization of the basis.  

ii) Results with optimized basis before tuning. 

iii) Results after tuning based on modal force. 

iv) Results after tuning based on generalized displacements. 

6.2.1 Optimization of the Basis 

As mentioned in Chapter 4, see Figure 8, the mode shapes of the linear modes of 

the curved beam are not very similar to the actual deformation induced by a uniform load. 

Accordingly, the first task focused on the optimization of the linear basis. Specifically, the 

Nastran static nonlinear displacements induced by the uniform pressures of -0.1, -0.2, -

0.3, ..., -4.5 lbs/in were used as reference data and were projected on the first 15 linear 

modes of the beam. The set of projection coefficients were then processed by a POD and 

the first eigenvector was retained to construct the first transverse mode. The linear (normal) 

modes 1, 2, 3, 5, 6 from Nastran SOL103 were added to this first transverse mode and 

made orthogonal to it. leading finally to 6 transverse modes (denoted as transverse 1 to 6). 
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Next, 8 dual modes were determined from these 6 transverse modes considering 

combinations (1-1), (1-2), (1-3), (1-4), (1-5), (1-6), and are shown in Figure 20-Figure 21. 

While the predictions of this 6T8D NLROM were very close to those of Nastran prior to 

the snap-through, the model is unstable post snap-through even though the truncation error 

is quite small. A possible reason for this behavior is an inaccurate identification of some 

of stiffness coefficients as discussed in Chapter 5. To circumvent this issue, it was desired 

here to proceed with an optimization of the dual modes to reduce the size of the basis and 

hopefully improved the predictive capabilities of the NLROM. 

 Before performing this optimization, it is useful to investigate the relative 

magnitudes of the transverse (Ty) and in-plane (Tx) of the linear (see Figure 8) and dual 

(see Figure 20-Figure 21) modes, see Table 3. Note on this table that the ratio is inverted 

for the linear and dual modes. It is seen that the (original) linear modes are strongly 

transverse dominant while the reverse typically holds for the duals, although the ratio of 

magnitudes is smaller, i.e., there is a large contribution of transverse motions in the duals 

than in-plane in the linear modes. Moreover, the third dual is clearly transverse dominant. 
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Figure 20. In-plane (Left Column) and Transverse (Right Column) Displacements of the 

Original Duals 1-4. Curved Beam.  
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Figure 21. In-plane (Left Column) and Transverse (Right Column) Displacements of the 

Original Duals 5-8. Curved Beam. 
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Table 3. Ratios of Transverse and In-plane Displacements NORMs, Linear, Transverse 

and Dual Modes, Curved Beam. 

Norm(Ty)/N

orm(Tx) 

Lin. 1 Lin. 2 Lin. 3 Lin. 4 Lin. 5 Lin. 6 

24.04 17.57 14.50 14.97 15.17 15.27 

Norm(Ty)/N

orm(Tx) 

Tran. 1 Tran. 2 Tran. 3 Tran. 4 Tran. 5 Tran. 6 

61.26 13.97 13.51 14.08 18.96 15.58 

Norm(Tx)/N

orm(Ty) 

Dual 1 Dual 2 Dual 3 Dual 4 Dual 5 Dual 6 Dual 7 Dual 8 

4.26 6.28 0.50 2.77 7.16 10.81 12.21 6.70 

 

 The first effort to optimize the duals proceeded as in Eq. (49) and (50) focusing on 

the quadratic stiffness term
(2)
ttd

K . Since there is only one combination of transverse modes, 

only one optimum dual can be generated in this process and it is shown in Figure 22. This 

basis function is fairly similar to the first dual of Figure 20 but the first and last peaks have 

been reduced. Note that the ratio of the norms of the in-plane and transverse displacement 

is rather small, 2.57, confirming the visual expectation from Figure 22 that the transverse 

component is still rather large. Nevertheless, this mode seems very efficient in reducing 

the representation error of the uniform response post snap-through as shown in Figure 23  

(curve “Opti 1”) for the loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch. More specifically, this 

error drops from 164% to 32% with that single dual. For comparison, the first original dual 

only reduces it to 95%. Enriching further the model would require the consideration of 

other combinations of the transverse modes beside the 1-1.  



74 

 

 
Figure 22. In-plane and Transverse Components of the Dual Mode Optimized According 

to Eqs (49) and (50). Curved Beam. 

 

 
(a) 

 
(b) 

Figure 23. Average Representation Error, in %, of the In-plane Displacements 

corresponding to Loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch (i.e., Post Snap Through) vs. 

Number of Various Types of Dual Modes. (a) Linear, (b) Log Scale. 
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4 are the corresponding eigenvalues while the new duals associated with the corresponding 

eigenvectors are shown in Figure 24-Figure 25 

Table 4. Eigenvalues Associated with the Original Dual Mass and Linear Stiffness 

Matrices. 
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Figure 24. In-plane (Left Column) and Transverse (Right Column) Displacements of the 

New Duals 1-4 Following the Modal Analysis of Eq. (51). Curved Beam. 
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Figure 25. In-plane (Left Column) and Transverse (Right Column) Displacements of the 

New Duals 5-8 Following the Modal Analysis of Eq. (51). Curved Beam. 

 Two key observations can be drawn from Figure 24-Figure 25. First, it is seen that 
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as the transverse motions are much softer than the in-plane ones and thus the eigenvalue 

problem splits these motions into separate eigenvectors/new duals.  

Table 5. Ratio of Transverse and In-plane Displacements Norms, New Dual Modes, 

Curved Beam.  

 Dual 

1 

Dual 

2 

Dual 

3 

Dual 

4 

Dual 

5 

Dual 

6 

Dual 

7 

Dual 

8 

Norm(Tx)/Norm(Ty) 6.23 14.18 15.21 14.01 18.01 14.72 13.40 0.08 

 The assessment of these new duals for the representation of the uniform 

displacement data was carried out as before by evaluating the average in-plane 

representation error corresponding to the loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch, see 

Figure 23. Note in this figure that the new duals were considered in order of increasing 

eigenvalue and that the transverse dominant one was not included. That is, the error is 

presented for new duals in order 7, 6, 5, ..., 1. It is seen that the two in-plane duals with 

lowest eigenvalues (i.e., 6 and 7 in Figure 25) provide a significant drop in the 

representation error, yet, not quite as large as the original duals. However, the 

representation error drops consistently with these new duals at the contrary of the original 

ones. In this regard, note that the increase in representation error for the original duals 

associated with dual #3 results from this dual being primarily transverse. Thus, it leads to 

a decrease of the representation error in the transverse error but at the cost of an increase 

in the in-plane one. In this light, the continuous decrease of the representation error for the 

new duals is effectively associated with the decoupling induced by the eigenvalue problem. 
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 It is concluded from the above discussion that the two dual optimization strategies 

of section 4.2 are both beneficial but in different ways. Then, it was questioned whether 

they could be combined to achieve an even better selection of duals. To this end, the two 

duals 7 and 6 were first retained and an optimization as in Eqs (49)-(50) was performed 

with transverse mode 1 (the POD mode) and the remaining 5 new duals (1 to 5) in Figure 

24-Figure 25. Shown in Table 6 are the corresponding quadratic coefficients 
(2)
11d

K  for d 

=7 to 11 (new dual modes 1 to 5) after separate identification. Also shown on this table, on 

the left most column, is the optimum value corresponding to the optimum new dual shown 

as final dual 3 on Table 7. 

 The inclusion of this 3rd final dual led to a significant drop in the representation 

error which still was slightly larger than the 1% usually desired. Accordingly, other 

combinations of linear modes were considered in the quadratic stiffness coefficients-based 

optimization and it was found that the 1-3 transverse mode combination led to the largest 

drop in representation error. Shown in Table 7 and Figure 26 (final dual 4) are the result of 

this optimization which does lead to yet another notable drop in the representation error, 

see Figure 23, well below 1%. Note that this 4th new dual appears very similar to the new 

dual 5 (flipped sign) which is consistent with the very close values of the quadratic stiffness 

coefficient of mode 11 (new dual 5). Given the low representation error, no further duals 

were considered leading to a 4 dual mode basis, shown in Figure 26, vs. the original 8.  
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Table 6. Data and Result of Optimization of New Duals 1-5 Using Eqs (49)-(50) for the 

1-1 Combination. 

 Index and values of (2)

ijlK  for the 5 new dual modes before optimization 

(2)

ijlK  (1,1,7) (1,1,8) (1,1,9) (1,1,10) (1,1,11) 

2.1679e+10 3.7415e+09 6.7323e+09 -5.6926e+09 -1.0910e+10 8.0979e+09 

 

Table 7. Data and Result of Optimization of New Duals 1-5 Using Eqs (49)-(50) for the 

1-3 Combination. 

 Index and values of (2)

ijlK  for the 5 new dual modes before optimization 

(2)

ijlK  (1,3,7) (1,3,8) (1,3,9) (1,3,10) (1,3,11) 

-3.7078e+11 -1.8903e+10 -1.2731e+11 5.0843e+10 4.6443e+10 3.4567e+11 

 In a final attempt to reduce the basis size, the role of each of the 6 transverse modes 

was analyzed and it was found that the last 3 transverse modes contributed only little to the 

reduction of the transverse representation error. Accordingly, they were removed yielding 

a 3 transverse – 4 dual (3T4D) basis which will be validated in the next section. 

 It was of interest to assess this basis in comparison to a 3T4D one which would be 

built following the standard dual construction process. Specifically, 2 duals were taken 

from each of the 1-1 and 1-2 combinations. Then, the in-plane representation error of the 

2 3T4D bases are compared on Figure 27 on the same data as Figure 23. As would be 

expected, the 4 optimized duals decrease the representation error faster than the one 

constructed by the regular process. The gain is minimal for the first dual but is much larger 

for the next two. Eventually, on dual 4, the optimum approach cannot reduce the error 
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much more but the regular process still can and yields to a final representation error that is 

very similar to that of the optimized process. This comparison confirms that the benefit of 

the dual optimization process is primarily in potentially reducing the number of duals 

necessary. 

 

Figure 26. In-plane (Left Column) and Transverse (Right Column) Displacements of the 

4 Final Duals Following from the Two Optimizations. Curved Beam.  
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Figure 27. Average Representation Error for the Two 3T4D Models, in %, of the In-plane 

Displacements corresponding to Loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch (i.e., Post 

Snap Through) vs. Number of Various Types of Dual Modes. (a) Linear, (b) Log Scale. 

 

6.2.2 Results with Optimized Basis before Tuning  

The identification of the stiffness coefficients of the 3T4D NLROM were 

determined using the single-level tangent stiffness approach and the model was cleaned. 

Then, the assessment of this NLROM started with the comparison of static predictions. The 

static displacements before snap-through and the location of that event are well captured 

by the ROM, see Figure 28 and Figure 29, but not as well after snap-through (which occurs 

for a load of 2.4 lbf/inch). Similar observations can be drawn from the prediction of the 

lowest eigenvalue of the tangent stiffness matrix, see Figure 30. Note on this figure that 

the lowest eigenvalues obtained by projecting the Nastran tangent stiffness matrix on the 

NLROM basis (“Nastran proj.”) are also shown and are much closer to those of the full 

Nastran model than its NLROM counterpart. This observation suggests that the largest 
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source of the discrepancy between NLROM and Nastran above the snap-through load 

originates from the coefficients of the model, not from the basis selection. 

 
(a)                                                                      (b) 

Figure 28. Displacements vs. Uniform Load, Clamped-Clamped Cantilevered Beam. (a) 

Transverse Displacement at Beam Middle and Quarter Point, (b) In-Plane Displacement at Quarter 

Point. 

 

   
(a)                                                                              (b) 

Figure 29. In-Plane (Top) and Transverse (Bottom) Deformations of the Clamped-Clamped Curved 

Beam under a Uniform Load of (a) 1 lbs/in, (b) 4.5 lbs/in.  
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Figure 30. Lowest Eigenvalue of the Tangent Stiffness Matrix Corresponding to a Symmetric 

Eigenvector vs. Uniform Load Magnitude. Clamped-Clamped Curved Beam 

 
Figure 31. Time Histories of the Transverse Displacement of the Center of the Clamped-Clamped 

Beam under Low (Top), Medium (Middle), and High (Bottom) Acoustic Loadings.  
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A dynamic validation of this NLROM was also carried out, see Figure 31 and 

Figure 32 for time histories and power spectra density, under acoustic loads bandlimited in 

the [0,500]Hz frequency and of level ranging from low to medium to high for which the 

beam vibrates around the undeformed position, exhibits occasional snap-throughs, and 

regularly snap-through, respectively, see Figure 31. As shown in Figure 32, a good to very 

good match of the Nastran and NLROM power spectra was observed. 

 

 

Figure 32. Power Spectral Densities of the In-Plane (Left) and Transverse (Right) Displacements at 

the Quarter Point of the Clamped-Clamped Beam under (a) Low, (b) Medium, and (c) High 

Loading.  
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6.2.3 Results after Tuning Based on Modal Force 

One aspect which has not been touched in the above section and earlier efforts was 

the static snap-back of the model and more specifically whether the NLROM could also 

capture it well. To this end, static displacements under a set of uniform pressures in loading 

and unloading were determined from both Nastran and the NLROM. The loading phase 

went from loads of 0.1 lb/in to 4.5 lbs/in followed by unloading at the same pressures with 

an interval of 0.1 lb/in in both cases. Note that all NLROM results were obtained as the 

long-term response of dynamic computations performed using Newmark’s algorithm with 

initial conditions corresponding to the converged solution at the prior load condition. The 

NLROM solutions obtained are thus all stable.  

  



86 

 

 

 

Figure 33. (a) Transverse Center Displacement vs. Uniform Load of the Clamped-Clamped Curved 

Beam Center Including Snap-Back. (b) Same as (a) Zoomed. Nastran and Various Versions of the 

3T4D NLROM.  
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The results from these computations, shown in Figure 33, extend those shown in 

Figure 28(a). In particular, it is seen that the difference in predictions between Nastran and 

NLROM post snap-through remains as the beam is unloaded leading eventually to a snap-

back load that is very small, much smaller than its Nastran counterpart, see Figure 33. 

Accordingly, some improvement of the model was sought.  

The prediction error after snap-through is much larger than the representation error 

of the Nastran data by the basis. It was thus wondered whether the relatively poor matching 

of Figure 33(b) after snap-through could be attributed to just small inaccuracies of the 

identified coefficients. To this end, a sensitivity analysis was carried out in which each 

NLROM coefficient was varied by 5% one at a time and the prediction of the model at a 

post snap-through level recomputed. This effort demonstrated that: 

i) the cubic stiffness coefficient of the first basis function 
(3)

1111K  has by far the 

strongest effect on the response, especially on its in-plane component, and 

ii) that there are many coefficients which have no significant effect on the 

response. 

Point ii) suggested that some coefficients having no effect on the response could be 

eliminated which also support the form of the ‘cleaned model’. Moreover, point i) 

suggested that very small changes in the leading cubic stiffness parameter 
(3)

1111K  associated 

with the first transverse mode of the NLROM could have significant effects on the load vs. 

displacement curve. This is confirmed on Figure 33 where two additional NLROM 

predictions are also shown with values of 
(3)

1111K  decreased by 0.2% (“K1111 modified 1”) 
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and 0.3% (“K1111 modified 2”). An improvement of the unloading curve prediction and of 

the post snap-through behavior is clearly observed without any adverse effect on the 

loading branch. 

The improvements obtained in Figure 33 by varying the parameter 
(3)

1111K  

demonstrate that a fine tuning of the NLROM parameters is indeed promising and thus the 

application of the approach of section 5 was undertaken. Note for the 3T4D basis and 

before snap-through that the prediction is very good and the representation errors 

(transverse and in-plane) are very small. After snap-through, the representation error is 

between 0.07%-0.09% in the transverse direction and 0.4%-1.2% in the in-plane direction. 

These errors were deemed small enough to apply the formal fine-tuning approach using 

Nastran data from the uniform loadings of 2.3 lbs/in, 2.4 lbs/in, 4.5 lbs/in all three in the 

loading branch and 0.5 lb/in in the unloading branch. Moreover, since the prediction of the 

response before snap-through is excellent, it was decided to only tune the cubic stiffness 

coefficients which play a small role then but a much bigger one after snap-through. Note 

that all cubic coefficients were tuned here even those that relate to the duals and which 

were zeroed out in the cleaned model the results of which were presented in the previous 

section.  



89 

 

 

Figure 34 Nastran and ROM Predicted Modal Forces, before and after Tuning, Modal 

Forces Along Modes 1 (Top), 2 (Middle), and 3 (Bottom). Loading (Left) and Unloading 

(Right) Branches. 

  

As shown in Figure 34 the original model did not, surprisingly, capture very well 

the modal forces along the transverse modes 1, 2, and 3. However, after applying the tuning 

of Eq. ( 60 ) a sharp improvement is observed, and the Nastran and NLROM modal forces 

are indistinguishable from each other. More importantly, the improvement in the modal 

force matching is reflected in the load vs. center displacement curve, see Figure 33 which 

now agrees with the Nastran one nearly exactly through the entire cycle of loading. The 

improvement is also visible at other points of the beam as seen in Figure 35 where the tuned 

NLROM response now perfectly matches the Nastran predictions.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 35. In-Plane (Top) and Transverse (Bottom) Deformations of the Clamped-Clamped Beam 

at 0F under a Uniform Load of (a) 1 lb/in (b) 2.3 lb/in, (c) 2.4 lb/in, and (d) 4.5 lb/in. Nastran, 3T4D 

NLROM before Tuning (“ROM orig.”) and after Turning (“ROM Tuned”). 

In view of the results obtained in Figure 33-Figure 35, the tuned NLROM was 

adopted at 0F and its accuracy at 50F and 150F was assessed next. Unfortunately, it was 

found that the model is unstable at these temperatures. To better understand the issue, the 

accuracy of the basis to represent the Nastran data at these temperatures was assessed. 

Shown in Figure 36 are the average representation errors of the 3T4D basis for 

displacements post snap-through at 0F, 50F, and 150F. It is seen that these errors are larger 

at 50F and 150F than at 0F, although not dramatically.   
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Figure 36. Average Representation Errors, In-Plane and Transverse, of the 3T4D Basis for Post 

Snap-Through Displacements at 0F, 50F, and 150F. 

Another metric of the appropriateness of the basis is the matching of the 

eigenvalues of the tangent stiffness matrix from Nastran and from the projection of that 

matrix on the basis. This comparison is achieved on Figure 37 for the three temperatures 

and the first two eigenvalues, expanding the results of Figure 30. These results confirm 

those of Figure 30 and more clearly demonstrate that the 3T4D basis is not sufficient to 

provide a good match of the Nastran results at 50F and 150F.  
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Figure 37. First (Left) and Second (Right) Lowest Eigenvalues of the Tangent Stiffness Matrix 

from Nastran and Projected on the 3T4D, 3T6D, and 3T7D Bases for (a) 0F, (b) 50F, (c) 150F.  
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Figure 38. Ratio of Projection Coefficients of the Nastran Deflection Right before Snap-Through at 

Different Temperatures on the 3 Transverse Modes (Absolute Value). 

 

Table 8. Projection Coefficients of the Nastran Deflection Right before Snap-Through at Different 

Temperatures on the 3 Transverse Modes. 

 0F 50F 150F 

1q
 -6.5 10-4 -1.3 10-4 1.1 10-3 

2q
 -2.7 10-4 1.3 10-3 1.9 10-3 

3q
 5.6 10-6 -1.3 10-4 -1.4 10-4 

In fact, these results suggest that a change in the response near/post snap-through 

occurs at 50F or 150F. To understand better this change, the deflections of the beam right 

before snap-through at these three temperatures were analyzed. As shown in Figure 38 and 

Table 8, that deflection changes very significantly with temperature: while it is dominated 

at 0F by the first mode, then the second with little contribution from the third, this last 
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mode is much more important at 50F and the second mode dominates. At 150F, the 

situation has somewhat reverted and the second mode is dominant. 

The above findings suggest that dual modes with modes 2 and 3 dominant should 

be present to properly capture the in-plane component of the deformations. A revisit of the 

dual modes selection was accordingly performed with modes 1, 2, and 3 potentially 

dominant. There were 6 dual modes taken, three from the combination 1-1, and one each 

from the combinations 1-2, 2-3, and 3-3, leading to a 3T6D model. 

The projection of the Nastran tangent stiffness matrices on this new basis was 

carried out and the computation of the corresponding eigenvalues confirm the benefit of 

the additional 2 dual modes. As seen in Figure 37, the matching with Nastran just before 

and at snap-through at 50F and 150F is significantly improved. Yet, it may also be observed 

that the eigenvalues post snap-through do not match very well their Nastran counterparts. 

To resolve this last issue, the eigenvectors associated with the lowest eigenvalue of the 

Nastran tangent stiffness matrix at 0F under the entire set of uniform pressure considered 

(from 1 lb/in to 7 lbs/in) were extracted, then projected on the 3T6D basis. Finally, the 

residuals of projection were assembled in a proper orthogonal decomposition format and 

the leading eigenvector of this analysis was retained to complement the basis, transforming 

it into a 3T7D model. Note that the above process has created at 0F a NLROM basis 

representing well the response of the curved beam under various temperatures. Such an 

effort is in contrast with the strategy developed in connection with other temperature 

loading scenarios, e.g. see [29,31,41], in which the “cold” basis, i.e., the 3T4D here, is 
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enriched by additional basis functions to capture well the deflections induced by a non zero 

temperature. 

As seen in Figure 37, the addition of this 10th mode to the basis leads to a significant 

improvement of the matching of the lowest 2 eigenvalues of the tangent stiffness matrix at 

all 3 temperatures. The average representation error of the Nastran data post snap-through 

was also found to be very low, see Figure 39, strongly suggesting that the basis is now 

appropriate for the prediction of the response at the 3 temperature levels. 

The NLROM parameters of this new model were identified by the multiple level 

method of [17] and the tuning process described in connection with the 3T4D model was 

repeated with data from the uniform pressures of 2.4 lbs/in, 4.5 lbs/in and 0.5lb/in at 0F, 

which are right after snap-through, maximum loading and right before snap-back, as well 

as uniform pressures of 4 psi, 4.1 lbs/in and 0.3 lbs/in at 50F, which are right before, right 

after snap-through, right before snap-back. Then, shown in Figure 40, are the load vs. 

center displacement of the beam predicted by this NLROM as compared to Nastran for 0F, 

50F, and 150F. While the predictions match nearly exactly Nastran at 0F, there is a slight 

difference in the snap-through load at 50F and both snap-through and snap-back at 150F 

This situation likely results from tuning having been carried out on data at 0F. Note finally 

that the 3T7D model did not converge after snap-through before tuning, even cleaned.  
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Figure 39. Average Representation Errors, In-Plane and Transverse, of the 3T7D Basis for Post 

Snap-Through Displacements at 0F, 50F, and 150F. 

           

 

Figure 40. Transverse Displacement of the Beam Center vs. Uniform Load of the Clamped-

Clamped Curved Beam Center including Snap-Back. (a) 0F, (b) 50F, (c) 150F. Nastran and 3T7D 

NLROM after Tuning.  
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Figure 41. In-Plane (Top) and Transverse (Bottom) Deformations of the Clamped-Clamped Curved 

Beam at 50F under a Uniform Load of (a) 0.1 lb/in, (b) 4 lbs/in, (c) 4.1 lbs/in, And (d) 7 lbs/in. 

Nastran and 3T7D NLROM after Tuning. 

Moreover, shown in Figure 41 and Figure 42 are the deflections predicted by the 

model under different loads under the temperatures of 50F and 150F. At 50F, an excellent 

matching between Nastran and the NLROM is again observed before snap-through. Post 

snap-through, see Fig. 31(d), the agreement is very good. However, just after the Nastran 

predicted snap-through, see Fig 31(c), there is a significant difference between Nastran and 

the NLROM predictions, but this is due to the small difference in the snap-through load. 
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as can also be seen on Figure 42(c), but also at the highest load level of 7 lbs/in but the 

accuracy is nevertheless very good. 

An assessment of the 3T7D NLROM under dynamic loading was also undertaken. 

At 0F, when the excitation is low or medium, there is some improvements in the predictions 

as compared with the 3T4D model, see Figure 43. Unfortunately, the 3T7D NLROM is 

unstable at the high excitation level. When the temperature is increased to 50F or 150F, the 

NLROM is unstable under all dynamic loadings. 

 
(a) 

 
(b) 

 
（c） 

 
(d) 

Figure 42. In-Plane (Top) and Transverse (Bottom) Deformations of the Clamped-Clamped Curved 

Beam at 150F under a Uniform Load of (a) 3 lbs/in, (b) 4.2 lbs/in, (c) 4.6 lbs/in, and (d) 7 lbs/in. 

Nastran and 3T7D NLROM after Tuning.  
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Figure 43. Power Spectral Densities of the In-Plane (Left) and Transverse (Right) Displacements at 

the Quarter Point of the Clamped-Clamped Beam under (a) Low, (b) Medium Loading. Nastran 

and 3T7D NLROM before and after (“tuned”) Tuning. 
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Nastran counterpart except in the direct neighborhood of the snap-back position.   
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Figure 44. Transverse Displacement of the Beam Center under Uniform Load Predicted by 

Nastran, the Cleaned 3T5D NLROM Before Tuning (“clean”), and the 3T5D NLROM after 

Tuning (“clean-tuning”). 

 

6.2.4 Results after Tuning Based on Generalized Coordinates 

The tuning based on the generalized coordinates was performed a bit differently 

from the modal force one carried out in the previous section. Specifically, it also started 

from the cleaned model but to it were added stiffness coefficients that involve the grouping 

td such ass 
(2)
ttd

K  (already included, kept as it), 
(2)
dtd

K , 
(3)
tttd

K , 
(3)
ttdd

K  and their companions 

(those related by the super symmetry relations) 
(2)
dtt

K  (already included, kept as it), 
(2)
tdd

K , 

(3)
dttt

K , and 
(3)
dttd

K  for a series of transverse and dual modes 

Before performing the optimization, the cleaned model was rendered super 

symmetric by averaging the coefficients which should be equal. Moreover, the 

optimization of E was performed under the constraints that the cleaned coefficients to 
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identify also satisfied the super symmetry relations. This constraint first reduces the 

number of coefficients to be identified but it also guarantees that the elastic forces are 

associated with a potential thereby reducing the potential for spurious energy 

input/dissipation. This tuning was accomplished without weight on the coefficients, 
(2)w , 

and the loading cases were selected as static uniform pressures of 2.4lbs/in and 4.5lbs/in in 

the loading direction and 0.7lbs/in in unloading. This effort was carried out for the 3T5D, 

3T7D, and 6T8D models discussed in the previous sections but also for a 6L7D model 

formed by the first 6 symmetric linear modes of the curved beam and 7 duals from the 21 

combinations of the 6 modes that reduce the most the in-plane error. This latter model is 

interesting to consider here because it is constructed without any prior knowledge of the 

beam response, i.e., without any basis optimization. Its stiffness coefficients were 

identified from the multiple level approach. The set of coefficients which were tuned 

involved all transverse and dual modes for the 3T5D model but only the first 4 transverse 

and 4 duals for the 6T8D one. For the 3T7D model, the process involved all transverse 

modes but only the first 3 duals while all linear modes and the first 5 duals only were 

considered for the 6L7D model. Validations under different types of loads were performed 

and are discussed next. 

6.2.4.1 Under Uniform Static Load 

Shown in Figure 45(a) are the loading-unloading curve corresponding to the 

transverse displacement of the middle of the beam under uniform load, as predicted from 

Nastran, the two cleaned NLROMs (3T5D and 6L7D), as well as their corresponding 

extended models (including the clean coefficients and those identified, referred to as 
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“clean-tuned” in the figures). The matching of the Nastran curve by the latter models is 

clearly excellent in both loading and unloading at the contrary of the cleaned models before 

tuning which capture it well before snap-through but poorly predict the post snap-through 

behavior. A similar comparison is shown in Figure 45(b) for the 3T7D and 6T8D models 

which shows again very good to excellent matching with the Nastran data. Note that neither 

of these two models converged post snap-through before tuning. 

To complement the above analysis of the center displacement, shown in Figure 46 

and Figure 47 are the deformations, transverse (vertical) and in-plane (horizontal) of the 

beam at the two loadings of 1lb/in and 4.5lbs/in. The first one is well below the snap-

through threshold and good predictions are obtained with all 4 models and in both 

directions. The tuning did not worsen the matching. At the higher loading however, the 

cleaned models are clearly significantly in error but the extended ones match the Nastran 

predictions nearly perfectly.  
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(a) 

 
(b) 

Figure 45. Transverse Displacement of the Beam Center under Uniform Load Predicted by (a) 

Nastran, the Cleaned 3T5D and 6L7D NlROMs, and the Corresponding Extended (“clean-tuned”) 

Models with the Identified Coefficients. (b)Same as (a) but Tuned 3T7D and 6T8D NLROMs 
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Figure 46. In-plane/Horizontal (Top) and Transverse/Vertical (Bottom) Displacements of the 

Clamped-Clamped Curved Beam under a Uniform Pressure of 1lbs/in. Nastran, Cleaned and 

Extended (“clean-tuned”) 3T5D and 6L7D NLROMS. 

 

 
Figure 47. In-plane/Horizontal (Top) and Transverse/Vertical (Bottom) Displacements of the 

Clamped-Clamped Curved Beam under a Uniform Pressure of 4.5lbs/in. Nastran, Cleaned and 

Extended (“clean-tuned”) 3T5D and 6L7D NLROMs.  
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 It was also of interest to assess the static response of the above tuned 3T5D 

NLROM with temperature and shown in Figure 48 are the loading-unloading predictions 

at 50F and 150F. Even though the 3T5D basis does not have a low representation error of 

these static responses, especially at 150F, the predictions are quite good at 50F and 

reasonable at 150F, and all stable at both temperatures.  

 

(a)                                                                (b) 

Figure 48. Transverse Displacement of Beam Center vs. Uniform Load including Snap-

Back at (a) 50F, (b) 150F. Nastran and Extended (“cleaned-tuned”) 3T5D NLROM. 

 

6.2.4.2 Under Absolute Sinusoidal Load 

The previous results focused on loading cases that are similar to those used for 

identification, i.e., a uniform load. It could thus be questioned whether the extended 

NLROMs are applicable only to this loading or are genuinely models of the curved beam 

and thus applicable to other loadings as well. To assess this applicability, pressure loadings 

in the form of the absolute value of a sine function with period matching the length of the 

beam were applied to the beam. The shape of loading is shown in Figure 49. Maximum 
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value occurs at the two quarter points of the beam and the load at the center of the beam is 

zero.  

 

Figure 49. Shape of Absolute Sine Load. 

Then, shown in Figure 50 - Figure 54 are the loading curve corresponding to the 

transverse displacement of the middle of the beam and the deformations, transverse 

(vertical) and in-plane (horizontal) of the beam at two loadings, one below the snap-

through threshold and the other above it. These results are consistent with those from the 

uniform loading: the predictions from the extended models constructed from uniform 

loading (i.e., as above) almost perfectly match the Nastran full finite element results while 

those from the cleaned models are only good below snap-through, even for the modal force 

tuned model, see Figure 54. 

These results demonstrate that the loadings used for the identification do not need 

to be similar to those used in the ensuing prediction and thus genuine NLROMs are 

obtained as part of the identification. 
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Figure 50. Transverse Displacement of the Beam Center under an Absolute Value of Sine Loading 

Predicted by Nastran, the Cleaned 3T5D and 6L7D NLROMs, and the Corresponding Extended 

(“clean-tuned”) Models with the Identified Coefficients. 
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Figure 51. In-plane/Horizontal (Top) and Transverse/Vertical (Bottom) Displacements of the 

Clamped-Clamped Curved Beam under an Absolute Value of Sine Loading with Peak Pressure of 

1lb/in. Nastran, Cleaned and Extended (“clean-tuned”) 3T5D and 6L7D NLROMs. 

 

 
Figure 52. In-plane/Horizontal (Top) and Transverse/Vertical (Bottom) Displacements of the 

Clamped-Clamped Curved Beam under an Absolute Value of Sine Loading with Peak Pressure of 

7lbs/in. Nastran, Cleaned and Extended (“clean-tuned”) 3T5D and 6L7D NLROMs.  
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Figure 53. Transverse Displacement of the Beam Center under an Absolute Value of Sine Loading 

Predicted by Nastran, the Extended (”clean-tuned”) 3T7D and 6T78D NLROMs. 

 

 
Figure 54. Transverse Displacement of the Beam Center under an Absolute Value of Sine Loading 

Predicted by Nastran, Extended (Cleaned and Tuned from the Modal Force (“1s”) and Generalized 

Coordinates (“2nd”) Tuning) 3T5D NLROM. 
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6.2.4.3 Under Dynamic Load 

The extended NLROMs were also tested in a dynamic setting under acoustic loads 

bandlimited in the [0,500] Hz frequency and of levels ranging from low to medium to high 

for which the beam vibrates around the undeformed position, exhibits occasional snap-

throughs, and regularly snap-through, respectively. Then, shown in Figure 55-Figure 56 

are the power spectral densities of the transverse and in-plane displacement of the node 

located at the quarter point of the beam for the full finite element model and the 3T5D and 

6L7D cleaned and extended NLROMs. While the predictions of the cleaned models are 

fairly good, it is seen that the extended models capture better the Nastran features, e.g., the 

low frequency peak in Figure 55(b) and Figure 56. 
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Figure 55. Power Spectral Densities of the In-plane (Left) and Transverse (Right) Displacements at 

the Quarter Point of the Clamped-Clamped Beam under (a) Low and (b) Medium Acoustic 

Loading. Predictions from Nastran Finite Element, and Cleaned and Extended (“clean-tuned”) 

3T5D and 6L7D NlLROMs.  
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Figure 56. Power Spectral Densities of the In-plane (Left) and Transverse (Right) Displacements at 

the Quarter Point of the Clamped-Clamped Beam under High Acoustic  Loading. Predictions from 

Nastran Finite Element, and Cleaned and Extended (“clean-tuned”) 3T5D and 6L7D NLROMs. 
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6.3 Application to the Shallow Cylindrical Shell 

The shallow cylindrical shell shown in Figure 4 has been found in this investigation 

to exhibit two strong nonlinear features, i.e., of mode switching and symmetry breaking. A 

first challenge of this model construction was the determination of a set of dual modes 

leading to a good representation of the response in the x and z directions. Following the 

work on the clamped-clamped curved beam, the first part of the basis was constructed by 

a proper orthogonal decomposition of the projection of a series (11) of nonlinear Nastran 

static solutions (SOL 106) corresponding to uniform pressures of different magnitudes with 

peak transverse displacement extending up to 3.1 thicknesses on the first 8 symmetric 

linear modes of the undeformed panel. The 6 POD modes with the largest eigenvalues, see 

Figure 57, were retained as the transverse modes in this computation. Duals were then 

constructed with the first 2 POD modes as dominant leading to 7 dual modes orthogonal to 

the first 27 symmetric linear modes. This extended orthogonalization was carried out to 

eliminate more significantly the transverse components present in the data and thereby 

generate dual modes with stronger in-plane components that rapidly reduce the in-plane 

representation error. The identification of the stiffness coefficients was initially done with 

the single level approach. 

6.3.1 Validation Results under Static Load 

This 13-mode 6T7D model performed very well in predicting the static response 

vs. load over a broad range of pressures including the occurrence of a mode switching event.   

see Figure 58 and Figure 59. A deviation between the maximum displacement and 

displacement at the center of the panel in transverse direction arises as the load increases. 
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Figure 57. Singular Values of the POD of the Projections on the First 8 Symmetric Linear Modes 
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Figure 58. Center and Peak Displacements along the Y (Transverse) Direction vs. Applied Uniform 

Pressure. Nastran and NLROM Predictions. 
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clearly show the veering that is the origin of the mode switching. Moreover, the 
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Figure 59. Contour Plots of Displacements along X, Y, Z as Predicted by Nastran and the NLROM 

for Uniform Pressures of (a) 1.5 psi, (b) 2.5 psi, and (c) 3.0 psi.  
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Figure 60. Eigenvalues of the Tangent Stiffness Matrix from Nastran (Corresponding to Symmetric 

Eigenvectors), Projected Nastran Tangent Stiffness Matrix on the Basis, and from the ROM. 
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much larger frequency band than necessary, dynamic computations have shown that there 

is significant out-of-band response, especially at the higher load levels, which warrant the 

use of that number of modes. 

The NLROM considered for dynamic loadings was then obtained by appending the 

7 dual modes derived from the 6 POD modes only and this 18-mode model provided an 

excellent prediction of the Nastran results at the 140dB and 150dB levels, see Figure 61 

and Figure 62. However, it did not capture well the high frequency component of the power 

spectral density at the 160dB. The issue was eventually found to be rooted in a poor 

identification of some of the nonlinear stiffness coefficients using the single level tangent 

stiffness approach of [11], even though it has been very successful in many prior 

applications. 

 

Figure 61. Power Spectral Densities of the Displacements in the X, Y, and Z Directions at the Node 

657 Located at Quarter Length of the Panel in both X and Z Directions, OASPL of 140dB. 
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Figure 62. Power Spectral Densities of the Displacements in the X, Y, and Z Directions at the Node 

657 Located at Quarter Length of the Panel in both X and Z Directions, OASPL of 150dB. 

To resolve this issue, the multilevel identification method developed recently, see 

[17], was used. In this process, it was found that the difficulties encountered at the 160dB 

level were resolved and that the 18-mode NLROM does indeed provide a very good match 

of the Nastran predictions at that level, see Figure 63.  
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(a)  

(b)  

Figure 63. Power Spectral Densities of the Response Corresponding to 160dB Excitation, Nastran 

and NLROM. (a) Node 657 of Coordinates (0.25,0.25), (b) Node 1248 near Middle. Displacements 

along the X, Y, and Z Directions.  
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6.3.2.2 170dB-Symmetry Breaking 

Based on the very good results obtained in Figure 63, the analysis proceeded to the 

higher level of 170dB excitation, see Figure 64. While the NLROM predictions are still 

very good in the band, there is a clear worsening of the matching with Nastran in the 

domain [500,1000] Hz. To understand the source of this degradation, a short time history 

of the full Nastran displacement field was computed and outputted. The representation 

error of this data with the existing basis and the remaining 18 symmetric linear modes in 

the range of 1-100 is shown in Figure 65(a). It is seen on this figure that with the 11T7D 

basis, the representation error is 16% which is certainly too large to have a good match as 

observed in Figure 64. Moreover, the addition of a series of symmetric linear modes does 

not lead to a significant reduction of the error, only by about 2.5%! 

This observation suggests that the response of the panel may be exhibiting an 

antisymmetric component. To confirm this assumption, the 18-mode basis was 

complemented with the 71 antisymmetric modes in the range 1-100 and shown in Figure 

65(b) is the corresponding representation error vs. mode number. It is clearly seen that the 

addition of antisymmetric modes reduces the error significantly, by approximately 13% 

from 16% to 2.5%. Moreover, much of this drop is generated by the antisymmetric modes 

1, 3, and 9 (i.e., linear modes 1, 5, and 14). The inclusion of these 3 modes would lead to 

a representation error of approximately 6% which is still reasonably large and with no 

obvious strong contributor, either symmetric or antisymmetric, see Figure 65 (a) and (b). 
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(a) 

 
(b) 

Figure 64. Power Spectral Densities of the Response Corresponding to 170db Excitation, Nastran 

and NLROM at Node 1248 near Panel Middle. Displacements along the (a) Y, and (b) Z 

Directions. 

 

 
(a) 

 
(b) 

Figure 65. Representation Errors of a Short Time Nastran Displacement Field Corresponding to a 

170db Excitation with the 11T7D Mode Basis and Additional (a) Symmetric, (b) Antisymmetric 

Modes. 
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symmetrically with respect to the panel center at (x, z) coordinates (0.25,0.25), (0.25,0.75), 

(0.75,0.25), and (0.75,0.75) showed in Figure 66. In Figure 67, there is an obvious 

difference among displacements of the 4 nodes. Zooming in allows to better analyze the 

symmetry of displacements, see Figure 68. In Figure 68(a), it is seen that the displacements 

of the 4 nodes overlap with each other and the deformation of the curved panel is symmetric 

about the two axes. In Figure 68(b), it is seen that the displacements are separated into two 

groups: nodes 657 and 1873 have the same displacements and nodes 688 and 1904 also 

have the same displacements but different from the other two. Next, Figure 68(c), the 

displacements of the 4 nodes are not close to each other. Finally, in Figure 68(d), the 

situation is different, displacements of nodes 657 and 1904 are the same and nodes 688 and 

1873 have the same displacements but different from the other two. These figures confirm 

the existence of antisymmetry but also demonstrate the type of antisymmetry is not always 

the same in the same time history so that multiple symmetry breaking modes exist.  

 

Figure 66 Locations of Four Symmetric Nodes on the Curved Panel  



124 

 

 
Figure 67. Time History of the Nastran Displacements along the Y Direction at the Nodes 657, 688, 

1873, and 1904. 170dB Excitation 

 

                                                       

 

                                                       

Figure 68 Segment of Time History of the Nastran Displacements along the Y Direction at the 

Nodes 657, 688, 1873, and 1904. 170dB Excitation  
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6.4 Application to the Hypersonic Panel 

 This section focuses on the NLROM validation to the hypersonic panel of Figure 6 

introduced in [1] and of which a structural NLROM was originally constructed in [2]. The 

focus of this effort was on revisiting the NLROM of [2], especially seeking a reduced 

number of basis functions by relying on the proper orthogonal decomposition (POD) based 

optimization of transverse modes already successfully demonstrated in earlier reports on 

the curved clamped-clamped beam and the cylindrical panel. The issue of identification of 

the stiffness coefficients of this novel NLROM will also be addressed. 

 Consistently with the arguments of [27], the frequency band of interest for the panel 

of Figure 6 was selected to be [0, 2000] Hz which contains 30 linear modes, 16 of which 

have the appropriate  symmetry (left-right of the flow) to be included in the NLROM basis.  

 The first effort focused on the selection of the basis functions that are primarily 

transverse on the skin and are related to the 16 linear modes. To this end, a set of static 

loadings with a uniform pressure ranging from -4 to 4 psi were imposed on the finite 

element model and the corresponding displacement fields determined. These static 

solutions were then projected on the 16 linear modes and a POD analysis of the resulting 

16 generalized coordinates was carried out. Shown in Figure 69 are the resulting 

eigenvalues showing that there is 1 dominant eigenvector and 2 that are smaller but 

significant. A different but related perspective is shown in Figure 70 which shows the 

average representation error of the displacements along z of all degrees of freedom (skin 

and stiffeners) as functions of either the POD eigenvectors or the linear modes. Note that 

the error is averaged over the set of the data corresponding to loads from -7 to +7 psi. 
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Clearly, 3 POD eigenvectors are dominant while the number of significant linear modes is 

larger, at least 4, possibly 7. 

 

Figure 69. Eigenvalues of the POD of the Projection of the Panel Response to the 11 Uniform 

Presssures on the 16 Linear Modes. 

 

Figure 70. Average Representation Errors of the Set Of 11 Static Displacements under Uniform 

Pressure. Displacements along Z, Entire Panel. Linear Modes and POD Eigenvectors.  
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 Proceeding as with the curved clamped-clamped beam and the cylindrical shell, the 

POD eigenvectors were used to define the duals to be added to the basis.  Combinations of 

the first 3 POD eigenvectors were considered, i.e., 1-1,1-2,1-3,2-2,2-3,3-3, resulting in 10 

dual modes. 

 The combination of the 16 POD or linear modes and the 10 dual modes led to a 

very good representation of the static displacements also in the x and y displacements, see 

Figure 71. 

 

Figure 71. Average Representation Errors of the Set of 11 Static Displacements under Uniform 

Pressure. Displacements along X (Left) and Y (Right), Entire Panel. 16 POD Eigenvectors and the 

10 Dual Modes. 
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 Based on the above excellent results, the coefficients of the 16POD10D NLROM 

were identified using the tangent stiffness matrix approach and either a single level or the 

multiple level approach [17]. Unfortunately, it was found that neither of these NLROMs 

was stable even after cleaning. Since the 16POD and 16 linear modes span the same space, 

being linear combinations of each other, a second NLROM was constructed with the 

16L10D basis. This NLROM was found to be slightly more stable, converging - when 

cleaned and identified from either single of multiple level. 

 A similar behavior was observed with the curved clamped-clamped beam and the 

issue was resolved by reducing the basis. Accordingly, a similar effort was initiated here 

with a decrease of the number of POD modes which was reduced to 3. Moreover, the dual 

selection process was redone with the combinations 1-1,1-2,1-3 since the contribution of 

the first POD mode is much larger than the ones of the 2nd and 3rd eigenvectors. This led 

to 8 duals and thus a 3POD8D basis. Another selection of duals, all based on the 1-1 

combination let to a 3POD5D basis and both of them were considered further. 

 The average representation errors of the uniform pressure data with these bases are 

good, see Figure 72, the errors in the z direction are less than 0.5% while the errors along 

the x directions are 1.3% for 3POD8D and 2.3% for 3POD5D. The errors on the larger y 

displacements are both less than 1%. 

6.4.1 Validation Results before Tuning 

 These two models were identified using the single level tangent stiffness matrix 

approach and were found to be stable with or without cleaning (3POD5D NLROM) and 
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with cleaning only (3POD8D). The static predictions of these models are summarized in 

Figure 73 for the maximum z displacement of the skin while the entire displacement fields 

are shown in Figure 75-Figure 76 for 3 specific loads. 

 

 

Figure 72. Average Representation Errors of the Set of 11 Static Displacements under Uniform 

Pressure. Displacements along Z (Top), X (Bottom Left), and Y (Bottom Right). as a Function of 

the Mode Number (Transverse Then Dual), 3POD8D and 3POD5D Bases.  
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Figure 73. Maximum Displacement along the Z Direction.Nastran and the 3 NLROMs. 

 

Figure 74. Displacements Fields along the X, Y and Z Directions on the Skin and Stiffeners 

(Flattened) Predicted by Nastran, Projection of Nastran on the Basis, and the 3POD5D ROM both 

Cleaned and Not. Uniform Pressure of 0.5 psi (Upward).  
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Figure 75. Displacements Fields along the X, Y,  and Z Directions on the Skin and Stiffeners 

(Flattened) Predicted by Nastran, Projection of Nastran on the Basis, and the 3POD5D ROM both 

Cleaned and Not. Uniform Pressure of 7 psi (Upward). 

 
Figure 76. Displacements Fields along the X, Y,  and Z Directions on the Skin and Stiffeners 

(Flattened) Predicted by Nastran, Projection of Nastran on the Basis, and The 3POD5D ROM Both 

Cleaned and Not. Uniform Pressure of -7 psi (Downward).  
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Figure 77. Displacements along the Y Direction on the Right Stiffener Predicted by (a) Nastran, (b) 

Projection of Nastran on the Basis, and (c) the Cleaned 3POD5D ROM Uniform Pressure of 7 psi 

(Upward). 

 It is seen from Figure 74-Figure 76 that the cleaning of the 3POD5D NLROM is 

very beneficial, enabling a good to excellent match of the Nastran results through most of 

the loading domain at the contrary of the uncleaned model which is only good for small 
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not good however and thus suggest that the identification of the coefficients may be at 

fault. 

 After the success obtained with the fine tuning of the NLROM coefficients for the 

clamped-clamped curved beam, a similar effort was undertaken for the above 3POD8D 

(3T8D) NLROM.  

 The validation of this NLROM has been partially successful. The transverse (Tz) 

displacement predicted by the NLROM was quite close to the Nastran SOL 106 results but 

the local buckling on stiffeners was not correctly captured as seen in Figure 78: the finite 

element results exhibit 2 peaks while those from the NLROM exhibit only one. Since this 

local buckling is the strong nonlinearity of interest for this panel, it is desired to extend the 

current methodology to capture the two peaks. 

 
(a)        (b) 

Figure 78. Displacements along the Y Direction on the Right Stiffener Predicted by (a) Nastran, (b) 

the Cleaned 3POD8D ROM Uniform Pressure of 7 psi (Upward).Validation Results after Tuning 
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results from the NLROM match their Nastran counterparts. Before tuning, a projection was 

performed of Nastran displacements on the 11 modes (3T8D). For this effort, 40 load levels 

were selected as [-10:0.5:-0.5, 0.5:0.5:10] psi. To evaluate the importance of each mode, 

the absolute values of the projection of the 40 displacements were averaged for each mode 

and are shown in Figure 79. It is seen from this figure that the projection coefficients of the 

last 3 modes are relatively small compared to the others. Accordingly, and to minimize the 

number of stiffness coefficients to be tuned, only the stiffness related to the first 8 modes 

are taken into consideration of tuning.  

 The load levels selected for the tuning were [-10 -8 -3 2.5 5] psi, see Figure 73 for 

the loading curve. It is seen that the predictions from the NLROM already match well with 

the Nastran results before tuning when the pressure is within [-5, 5] psi. The discrepancy 

between these two predictions occurs for higher pressures. After tuning, the discrepancy 

under large negative load has disappeared but a zigzag pattern is observed in the response 

for load levels between 5.5 psi and 10 psi. This odd behavior is in fact due to a lack of 

stability of the tuned NLROM in that loading zone with the results of Figure 80 obtained 

with the arclength method. Note that this region of instability of the model reasonably 

matches the region in which the local buckling develops.   
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Figure 79. Average of Absolute Value of Projection Coefficients of the 40 Nonlinear Nastran 

Responses on Each NLROM Mode. 

 

Figure 80. Transverse Deflection of the Center of the Panel vs. Uniform Applied Pressure on Skin. 

Nastran, and Predictions from the 3T8D NLROM before (‘sym-cleaned”) and after Turning (“sym-

cleaned-tuned”).  
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 Shown in Figure 81 is the lowest eigenvalue of the tangent stiffness matrix plotted 

as a function of the applied pressure obtained from Nastran (SOL 106) directly, its 

projection on the NLROM basis, and the predictions from the original and tuned NLROMs. 

This figure is very instructive. It shows first that the basis is not appropriate to predict the 

local buckling, notwithstanding the observation of Figure 77. Indeed, the behavior of the 

panel for pressures larger than 5 psi, as the projection of the Nastran tangent stiffness matrix 

on the basis does not follow the large drop seen by the Nastran curve, it only shows a very 

slight dip. The predictions from the original NLROM do not show any dip at all while the 

tuned NLROM is clearly seen to exhibit instability as the local buckling starts. 

 

Figure 81. Lowest Eigenvalue of the Tangent Stiffness Matrix vs. Uniform Applied Pressure on 

Skin. Nastran, its Projection on the 3T8D Basis, and Predictions from the 3T8D NLROM before 

(‘sym-cleaned”) and after Turning (“sym-cleaned-tuned”).  
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 It is also seen on Figure 81 that there exists a discrepancy between the NLROM 

predicted eigenvalues and those obtained by projecting the Nastran tangent stiffness on the 

basis. That discrepancy is slightly reduced in the tuning but is still significant. This 

discrepancy may suggest that the remaining NLROM coefficients, i.e., those of the form 

(1)
ttK , 

(1)
td

K , 
(1)
dd

K , 
(2)
tttK , 

(2)
ttd

K , and 
(3)
ttttK  may not be very accurately identified. To 

assess this possibility, a sensitivity analysis was performed by reducing by 0.5% percent 

each coefficient in turn and recomputing the corresponding change in the first eigenvalue 

of the tangent stiffness matrix at 3 psi. Those with the largest effect are listed in Table 9-

Table 10.  

Table 9. Relative Change in Lowest Eigenvalue of 3T8D NLROM Tangent Stiffness 

Matrix at 3 psi Induced by a Change of 0.5% of Selected Quadratic Coefficients. 

Quadratic stiffness K114 K134 K119 K124 K116 

Variation (%) 4.51 0.78 -0.61 0.22 -0.14 

Table 10. Relative Change in Lowest Eigenvalue of 3T8D NLROM Tangent Stiffness Matrix at 3 

psi Induced by a Change of 0.5% of Selected Cubic Coefficients. 

Cubic stiffness K1111 K1113 K1112 K1123 K1133 K1233 K1222 K1122 

Variation (%) -2.50 -0.67 -0.27 -0.20 -0.14 -0.029 -0.028 -0.023 
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 A tuning of these terms was performed for the cleaned 3T8D NLROM focusing on 

the lowest eigenvalue of the tangent stiffness matrix at the pressure of 3 psi. It is seen from 

Figure 82 and Figure 83 that the matching of the lowest eigenvalue is improved after tuning 

of these terms and that the displacement did not worsen. Nevertheless, this process could 

not generate the dip of the lowest eigenvalue that is shown by the projection of the Nastran 

results on the basis in the neighborhood of local buckling. 

 

Figure 82. Lowest Eigenvalue of the Tangent Stiffness Matrix vs. Uniform Applied Pressure on 

Skin before and after Tuning. Nastran, its Projection on the 3T8D Basis, and Predictions from the 

3T8D NLROM Before (‘sym-cleaned”) and After Additional Turning (“sym-cleaned-tuned”). 
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Figure 83. Transverse Deflection of the Center of the Panel vs. Uniform Applied Pressure on Skin. 

Nastran, and Predictions from the 3T8D NLROM Before (‘sym-cleaned”) and AfterAdditional 

Turning (“sym-cleaned-tuned”). 

 The above discussion demonstrates that the NLROM basis would indeed need to 

be improved to capture the local buckling. The first efforts in this direction focused on 

enriching the basis with modes extracted from response quantities in the direct 

neighborhood of the local buckling. As seen from Figure 80-Figure 83, the tangent stiffness 

matrix is much more sensitive to this event that the displacements. Accordingly, the 

enrichment was attempted from the eigenvectors of the tangent stiffness matrix at the 10 

load levels selected as [5.5:0.5:10] psi. For simplicity, the eigenvector corresponding to the 

lowest eigenvalue of the Nastran tangent stiffness matrix was simply appended to the basis 

and the projection of this matrix on the new basis recomputed and reanalyzed.   
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Figure 84. (a) Lowest Eigenvalue of the Tangent Stiffness Matrix vs. Uniform Applied Pressure on 

Skin. Nastran, its Projection on the 3T8D Basis, and 3T8D Basis Enriched with the Nastran 

Eigenvectors one at a Time.  

(b) Same as (a) Zoomed. 
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the behavior of the structure in this region changes quickly from one load to the other. To 

obtain a better understanding of this situation, the MAC values of the 10 eigenvectors were 

computed. The MAC, modal assurance criterion, is a standard measure introduced to make 

a correspondence between experimental mode shapes and finite element ones, but it can be 

used more broadly to compare two modes. It is defined as 

  

( )( )

T

i j

T T

i i j j

MAC
 

   
=  ( 63 )  

where i  and j  are two different modes. The MAC is between 0 and 1 (by Cauchy-

Schwarz inequality) and the modes look similar if MAC > 0.9 or so. The MAC numbers 

for the 10 eigenvectors are listed in Table 11.  

Very surprisingly, it is found that many of these values are very close to 1 

suggesting that the modes should be very similar – while in fact the results of Figure 84 

show the contrary.  

 One possible option to explain these seemingly conflicting observations is that the 

difference between two eigenvectors is primarily along in-plane directions of which the 

components are small but stiff. Thus, small differences in those degrees of freedom would 

only marginally affect the MAC but would affect much more significantly the eigenvalues 

of the tangent stiffness matrix. To validate this possibility, the difference between the 

eigenvectors corresponding to the 4th and 8th loading levels was computed, then the 

potential energy (based on the linear stiffness matrix) corresponding to this difference 

determined. This energy was found to be 10.4% of the corresponding energy of either 
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eigenvectors, which is quite large considering that the MAC value is 0.984. This check 

validates the proposed explanation for the behavior of Table 10 and Figure 84. 

 

Table 11. Modal Assurance Criterion (MAC) Values of the 10 Eigenvectors of the Nastran Tangent 

Stiffness Matrix Corresponding to the Lowest Eigenvalue and 10 Different Loads Near Local 

Buckling. 

Enrichment 1 2 3 4 5 6 7 8 9 10 

1 1.00 0.47 0.00 0.03 0.03 0.04 0.04 0.04 0.04 0.04 

2 0.47 1.00 0.18 0.09 0.06 0.04 0.03 0.02 0.01 0.00 

3 0.00 0.18 1.00 0.96 0.92 0.95 0.94 0.97 0.95 0.74 

4 0.03 0.09 0.96 1.00 0.99 0.99 0.99 0.98 0.98 0.89 

5 0.03 0.06 0.92 0.99 1.00 0.99 0.99 0.96 0.98 0.93 

6 0.04 0.04 0.95 0.99 0.99 1.00 1.00 0.98 0.99 0.90 

7 0.04 0.03 0.94 0.99 0.99 1.00 1.00 0.99 0.99 0.90 

8 0.04 0.02 0.97 0.98 0.96 0.98 0.99 1.00 0.99 0.84 

9 0.04 0.01 0.95 0.98 0.98 0.99 0.99 0.99 1.00 0.88 

10 0.04 0.00 0.74 0.89 0.93 0.90 0.90 0.84 0.88 1.00 

 

The overall conclusion of the above effort is that the local deformations around the 

local buckling zone change significantly as the load is increased past the buckling point. 

Thus, capturing the behavior of the panel in this loading region would require the addition 
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of a significant number of modes, e.g., those derived from the tangent stiffness matrix 

eigenvector analysis. This task was not accomplished here because another strategy may 

be better suited to the capturing of the buckling point and post buckling behavior. 

Specifically, it is thought at this point that a global-local modeling in the spirit of [25,26] 

would be a better alternative. The implementation of such a modeling strategy is outside 

the focus of the present work and is thus left as an open problem. 
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CHAPTER 7 DETECTION OF STRONGLY NONLINEAR EVENTS 

7.1 Detection from the NLROM 

Over the last three decades, the analysis of structures undergoing large, nonlinear 

geometric response by modal-like/reduced order modeling (NLROMs) methods has seen 

dramatic improvements in state of the art. One of the challenges in applying this 

methodology is often the appropriateness of the basis used: is it fully appropriate or does 

it neglect important components of the response? In the latter case, inaccurate predictions 

are essentially guaranteed. This issue is particularly significant for non-intrusive NLROMs 

which are constructed from finite element models developed in commercial software. In 

these situations, the computation of the NLROM solution is completely independent of the 

full finite element model. Through the development history of these non-intrusive methods, 

and in Chapter 6 of the present work, the appropriateness of the basis has been assessed by 

comparing the predictions of the response obtained by the full finite element model and the 

NLROM. In practice, such a validation strategy is not appropriate, it would defeat the 

purpose of the construction of the NLROMs to have the full finite element solution. 

In this light, one focus of this dissertation is on a preliminary effort to formulate 

validation strategies of the NLROM predictions that use the least number of calls to the 

underlying full finite element model. Two situations are envisioned here: 

(1) the structural response evolves “smoothly” as a function of time and/or loading 

which could be showed as in Figure 85(a) 

(2) the structural response exhibits instances/segments in which it evolves very 

rapidly which could be showed as in Figure 85(b), e.g., due to snap-through, 
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buckling (global or local), symmetry breaking. These segments will henceforth 

referred to as “events”. 

     

Figure 85. Relation between Response and Time/Loading (a) Smoothly (b)Rapidly 

In static problems, a straightforward strategy would be to periodically subject the 

full finite element model to the loading and compare its response to the one predicted by 

the NLROM. If the magnitude of the difference is quantified as acceptable the NLROM 

computation moves on until the next check. Otherwise, the difference vector of the 

responses could be used as an enrichment to the basis to allow the NLROM to move 

forward. 

The above approach is potentially applicable, although clumsy, in dynamic 

situations. The inertia and damping terms of the NLROM response could be construed as 

pseudo forces and combined with the actual loading to create forces that can be applied 

statically to the finite element model for validation. 

Relying on such comparisons to reliably move forward through the set of 

computations assumes in fact that the evolution of the error will be slow enough, i.e., that 

situation (1) above is encountered. For situation (2), it is proposed here that the validation 

(a) (b) 
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of the NLROM be carried out on the eigenvalues of the tangent stiffness matrix, quantities 

that can be evaluated in both static and dynamic setting. In fact, an eigenvalue-based 

assessment would be a useful complement to analyzing responses even in situation (1). 

For the curved beam, it is clearly seen from Figure 2 there is a ‘jump’ of static 

displacement when snap-through occurs. In this case, the displacement field reflects the 

‘sharp change’ accurately but there are some cases for which displacements are not a good 

choice to exhibit the event, e.g. consider the hypersonic panel of Figure 6 for which the 

displacement at the center vs. applied pressure is shown in Figure 80. This curve is quite 

smooth and does readily point to the local buckling occurring near 5 psi.  

Based on the above observations and the work of Chapter 6, it is proposed here to 

use the eigenvalues of the tangent stiffness matrix for detection of events. Figure 30 and 

Figure 81 show the eigenvalues vs. load for the clamped-clamped curved beam and the 

hypersonic panel. On both figures, the ‘sharp change’ of behavior is clearly seen and the 

event is detectable. 

In this light, one focus of this thesis is on assessing the benefits of monitoring the 

eigenvalues of the tangent stiffness matrix for 

(i) the detection of events and  

(ii) the assessment of the NLROM basis to capture the response through the 

event.  

 This effort will be carried out on the curved shell of [32], see Figure 4, as it 

approaches symmetry breaking occurrences in dynamic simulations and on the clamped-
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clamped curved beam of [42], see Figure 1, as it snap-through. These analyses will rely on 

NLROMs developed in Chapter 6. 

 Consider first the curved shell of Figure 4 under an acoustic loading of 170dB 

OASPL found in Chapter 6 to exhibit a symmetry breaking which is a bifurcation and thus 

should exhibit a vanishing first eigenvalue of the Nastran tangent stiffness matrix. To 

confirm this occurrence, some time intervals were first identified during which the 

asymmetry of the response, outputted at only a few symmetrically located nodes for time 

and storage efficiency, seemed to start/rapidly increase. Full field displacement data was 

then generated at every time step during those time intervals. Finally, these displacement 

fields were reimposed statically to the finite element model one by one and the 

corresponding Nastran tangent stiffness matrices outputted. The analysis of their 

eigenvalues, carried out of core with Matlab, did indeed yield some small negative values 

as seen in Figure 86. 

The next question was then to ascertain whether the eigenvalues of the NLROM  

tangent stiffness matrix would also vanish. This check was performed at both 160dB and 

170dB, see Figure 87. At 160dB, it is found that the lowest eigenvalue does dip below zero 

on a very limited number of occasions while such occurrences are quite continuous at 

170dB. These observations indicate first and foremost that the NLROM does predict the 

occurrence of a change in response through a vanishing of the tangent stiffness eigenvalues. 

It does predict it to occur at 160dB, at too low a level, but the rare occurrence of the negative 

eigenvalues for that loading vs. at 170dB suggests that it is marginally present. 
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Figure 86. Lowest Eigenvalue of the Nastran Tangent Stiffness Matrix. Curved Shell, Dynamic 

Excitation of OASPL 170dB. 

To use this information efficiently, it is proposed here that a check of the 

eigenvalues of the NLROM with those of Nastran be done punctually for displacement 

fields such that the NLROM predicts a negative lowest eigenvalue as well as for 

neighboring time steps where the eigenvalue is notably positive, see Figure 88 for the 

comparison of eigenvalues when the NLROM one is negative at 160dB. 

The planned use of this data is as follows. If the accuracy of the NLROM 

eigenvalues in comparison with the Nastran ones is good, or similar, for both positive and 

negative cases, it would then be concluded that the strongly nonlinear event (bifurcation, 

snap-through, buckling, etc.) predicted by the NLROM is genuine. If the accuracy is 

dissimilar, i.e., good for the positive case, less so for the negative one, it would then be 

concluded that the strongly nonlinear event may not be occurring. However, the presence 

0.668 0.67 0.672 0.674 0.676
-2

0

2

4

6

8

10

12
x 10

6

Time (s)

N
a

s
tr

a
n

 -
 1

s
t  e

ig
e

n
v
a

lu
e



149 

 

of negative eigenvalues of the NLROM and of Nastran for those displacements would be 

indicative that the occurrence of the event is near. 

The second scenario is observed in connection with the NLROM data at 160dB. As 

seen from Figure 88, the eigenvalues of the NLROM tangent stiffness matrix and their 

Nastran counterparts do not match well for the negative occurrence of the former. However, 

the matching is significantly better for the positive occurrences and improving as the 

magnitude of the eigenvalue increases. This increased accuracy of the eigenvalues away 

from zero suggests that the NLROM response is accurate except during the occurrence of 

near or below zero eigenvalues. This tentative conclusion is actually correct as 

demonstrated by the good match of the power spectral densities of the Nastran and 

NLROM responses at 160dB, see [50]. The poor matching of the near zero eigenvalues 

confirms the finding that the bifurcation is not correctly predicted, it does not happen for 

Nastran at 160dB but will happen at a slightly higher level. 

Further validation of the above observations can be drawn from the clamped-

clamped curved beam of Figure 1 which is shown in Figure 89. Since the NLROM provides 

an excellent match of the Nastran response through the snap-through, it would be expected 

that the NLROM eigenvalues and their Nastran counterparts would closely match each 

other for both positive and negative eigenvalues. This is indeed what Figure 89 

demonstrates. Note, however, that the most negative eigenvalues are not as well captured 

as the other ones.  
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Figure 87. First Eigenvalues of the NLROM Tangent Stiffness Matrix vs. Time. 

Curved Shell OASPL Of (a) 160db, (b) 170db. 

 

 

Figure 88. Lowest Eigenvalues of the Tangent Stiffness Matrix, Nastran and NLROM, when the 

Latter One is Negative, Curved Shell at OASPL 160db.   

0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

6

7
x 10

6

Time (s)

N
L

R
O

M
 -

 1
s
t  E

ig
e

n
v
a

lu
e

0 1 2 3 4 5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

8

Time (s)

N
L

R
O

M
 -

 1
s
t  E

ig
e

n
v
a

lu
e

0 50 100 150 200 250 300
-2

0

2

4

6

8

1
s
t 
lo

w
e
s
t 
e
ig

e
n
v
a
lu

e

10
6

Nastran sym

NLROM

(a) (b) 



151 

 

 

Figure 89. Comparison of Lowest Eigenvalues of the Nastran and NLROM Tangent Stiffness 

Matrices for NLROM Deformations Corresponding to Specific Sets of NLROM Eigenvalues. 

Clamped-Clamped Curved Beam. 

 

With regard to the cylindrical panel, it is worthwhile to recognize that, 

hypothetically, the symmetry breaking might have influenced only the eigenvalues of the 

antisymmetric modes. In that case, it would have been unobserved in the NLROM since 

this model only includes the symmetric ones. It is not clear whether such a situation is 

possible or not but ultimately the split of modes into symmetric and antisymmetric only 

occurs for structures with high degree of symmetry which are typically not observed in real 

structures for which events such as snap-through and buckling would involve many of the 

low frequency linear modes. 
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7.2 Detection from Dual Construction Data 

 The discussion of the previous section has focused on detecting the occurrence of 

strongly nonlinear events from a NLROM, i.e., with a basis that represents well the 

response of the structure up to and including the event. The study of the hypersonic panel 

in Chapter 6 has demonstrated that some events may not be captured by the basis and thus 

would not be detected using the strategy of the previous section. 

 Accordingly, it was questioned what data could be used to detect such events and 

more specifically data that is already used in the construction of the NLROM. Of particular 

interest here are the static responses generated for the construction of the duals as they span 

a range of displacement levels. Shown in Figure 90 are the displacements of the hypersonic 

panel center vs. the load magnitude induced by the loading corresponding to the 1-1, 1-2, 

and 1-3 combinations. While none of these curves indicate the presence of the local 

buckling, this is consistent with the discussion of Chapter 6, e.g., Figure 73, that the 

displacements - at that location at least - are not sensitive to the buckling and that the 

eigenvalues of the tangent stiffness matrix should instead be investigated. 

 Then, shown in Figure 91 at the lowest three eigenvalues of the tangent stiffness 

matrices corresponding to the displacements of Figure 90. As observed with the uniform 

load, a sharp drop of the eigenvalues is observed mostly for the 2nd and 3rd eigenvalues 

that could be associated with the occurrence of local buckling in that data. To confirm this 

potential, shown in Figure 92-Figure 93 are selected eigenvectors of these tangent stiffness 

matrices and it is seen that some of these, more specifically the eigenvectors associated 
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with the 1-1 combination shown on Figure 92, exhibit the pattern of deflection on the 

stiffener that is consistent with the local buckling, see Figure 75 and Figure 77. 

 If these eigenvectors are indeed indicative of the local buckling, then enriching the 

3T8D basis with them should improve the capturing of the dip of the Nastran tangent 

stiffness eigenvalue observed in Figure 81. Specifically, the three eigenvectors of the most 

2 negative load factor of combination 1-1, most 3 negative load factor of combination 1-2 

and combination 1-3, 24 eigenvectors in total, were appended to the model 3T8D. Then, 

the lowest eigenvalue of the Nastran tangent stiffness projected on this basis was plotted, 

see in Figure 95. It is seen in this figure that the enriched basis does notably better in 

predicting the Nastran eigenvalue, not only the onset of the dip but also the beginning of 

the decreasing value phase.  

 The above results demonstrate that the occurrence of the local buckling can indeed 

be detected from the data generated for the duals, more specifically the eigenvalues of the 

tangent stiffness matrix, and that the corresponding eigenvectors may produce worthwhile 

enrichments of the basis to capture the post event behavior.  
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Figure 90 Transverse Deflection at the Center of the Hypersonic Panel vs. Load Factor 

Generated for the Construction of the 1-1, 1-2, and 1-3 Duals. 
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Figure 91. Eigenvalues of the Tangent Stiffness of the Hypersonic Panel vs. Load Factor 

Generated for the Construction of the 1-1, 1-2, and 1-3 Duals. 
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Figure 92. Selected Eigenvectors of the Tangent Stiffness of the Hypersonic Panel vs. 

Load Factor Generated for the Construction of the 1-1 Duals. 
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Figure 93. Selected Eigenvectors of the Tangent Stiffness of the Hypersonic Panel vs. 

Load Factor Generated for the Construction of the 1-2 Duals. 

  

combo 1-2 Ty 2nd eigenvector

0 2 4 6 8 10 12

0

2

4

6

8

10

-250

-200

-150

-100

-50

0

50

100

150

200

250
combo 1-2 Tz  2nd eigenvector

0 2 4 6 8 10 12

0

2

4

6

8

10

-40

-30

-20

-10

0

10

20

30

40

50

combo 1-2 Ty 3rd eigenvector

0 2 4 6 8 10 12

0

2

4

6

8

10

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100
combo 1-2 Tz 3rd eigenvector

0 2 4 6 8 10 12

0

2

4

6

8

10

-100

-80

-60

-40

-20

0

20



158 

 

 

Figure 94. Selected Eigenvectors of the Tangent Stiffness of the Hypersonic Panel vs. 

Load Factor Generated for the Construction of the 1-3 Duals. 
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Figure 95. Lowest Eigenvalue of the Tangent Stiffness Matrix vs. Uniform Applied 

Pressure on Skin. Effect of Enriching the Basis with Dual Data Based Eigenvectors. 
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CHAPTER 8 SUMMARY & RECOMMENDATION FOR FUTURE WORK 

The focus of the present investigation was on understanding and resolving the 

difficulties encountered in the past when constructing nonlinear reduced order models of 

structures exhibiting strongly nonlinear features, most notably the clamped-clamped 

curved beam, the shallow cylindrical shell, and the representative hypersonic panel. 

Central to the present effort is the assertion that better predictions by the NLROM 

are obtained when the number of basis functions that have large components is as small as 

possible. For the linear part of the basis, this assumption is consistent with the current state 

of the art of NLROMs at ASU, most of the models considered so far have had one dominant 

linear mode and the predictions have been very good to excellent. When multiple linear 

modes are dominant, achieving similarly accurate predictions has been more challenging 

or not achieved. 

It is believed that this correlation stems from two challenges of NLROM 

constructions. The first is the basis selection and most notably the determination of the 

duals which complement the linear modes to form the basis. This process is very 

straightforward when a single linear mode dominates the response but becomes more 

challenging when two or more modes play a key role owing to the need to create a set of 

loadings that induce displacements fields that are representative of the likely variable 

combination of dominant linear modes. The second challenge relates to the identification 

of the nonlinear stiffnesses. Specifically, having multiple dominant linear modes also 

implies that there exists a much larger number of stiffness coefficients that have an 
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important effect on the magnitude of the restoring forces, in particular, coefficients 

involving indices corresponding to multiple modes.  

Based on the above assertion and observations, an optimization of the basis was 

defined seeking to concentrate the response on a small subset of modes. For the linear part 

of the basis, this effort was accomplished using a set of finite element static displacements 

obtained under relevant loading conditions, referred to as the reference data. These 

displacements fields are first projected on a series of linear modes and these projections 

are processed through a Proper Orthogonal Decomposition to determine the most 

significant combinations of linear modes in the response. Then, the eigenvector(s) with the 

largest eigenvalue(s) is (are) retained and their full finite element space counterpart 

determined. This (these) mode(s) then form the core of the linear basis. To this core are 

finally added the rest of the linear modes which are further orthogonalized. This process 

was shown to be very efficient in connection with the curved beam, the cylindrical shell 

and the hypersonic panel, leading to linear modes that very well represented the response. 

An optimization of the dual modes was also proposed motivated by the desire to 

concentrate the response in a small number of modes to improve the identification/stability 

of the NLROM but also to address situations observed in the past where the number of dual 

modes necessary was unusually large (e.g., more than twice the number of linear modes). 

This effort was not carried out on the reference data used for the linear modes to avoid a 

bias of the model to this data. Rather, it was carried out using the identified stiffness 

coefficients seeking more specifically the linear combinations of the duals that maximize 

the coupling with the linear basis as measured by the dominant quadratic stiffness terms. 
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The combination of the above basis optimization schemes led to NLROMs of the 

clamped-clamped curved beam and the shallow cylindrical shell that provided the best and 

most stable predictions of the Nastran results of all attempts previously made for these 

models at ASU. These results demonstrate the validity of the starting assertion, i.e., that 

better predictions by the NLROM are obtained when the number of basis functions that 

have large components is as small as possible. The quality of the match of the NLROM 

predictions with their Nastran counterparts was generally excellent even in strongly 

nonlinear events. Moreover, the NLROMs were very compact, i.e., with small number of 

modes and coefficients, implying fast NLROM computations. 

Next, the identification of the nonlinear stiffness coefficients was revisited. A key 

focus was to provide solid data regarding the accuracy of the coefficients identified from 

Nastran. To this end, the clamped-clamped curved beam was also modeled within an open 

source finite element code from the AFRL and the nonlinear stiffness coefficients 

associated with the basis derived from Nastran were identified. The comparison of the 

AFRL code and Nastran identified coefficients provided clear support for the long-held 

perspective that a series of nonlinear coefficients identified from Nastran are not reliable, 

a conclusion also supported by checking the applicability of the symmetry relations linking 

these coefficients. 

Having determined what sets of nonlinear stiffness coefficients are reliably 

identified, several different remedies can be envisioned. In the absence of data for the 

structure considered, one approach is to proceed with the coefficients as identified. A 

second option is to zero out the coefficients which are deemed poorly identified. This is 
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the “cleaning” option that has occasionally been performed in the past. This option 

traditionally improves the stability of the NLROM for dynamic computations and has often 

improved predictions because many of the coefficients which are eliminated contribute 

little to the response. Yet, for structures such as the clamped-clamped curved beam with 

very large deflections, it is necessary to have a NLROM with a more complete set of 

nonlinear stiffness to obtain an accurate prediction, especially of the post snap-through 

behavior. In such situations, a third option is developed here to refine the nonlinear stiffness 

coefficients deemed inaccurate. In fact, two different approach of “fine tuning” of the 

NLROM stiffness coefficients were also devised and employed in connection with the 

curved beam to obtain the excellent results presented. The need to carry this effort stems 

from the high sensitivity of the NLROM response to some of the coefficients. A first tuning 

approach based on the matching of modal forces was shown to bring a significant 

improvement in the validation results, especially under static loading. However, such tuned 

NLROMs may not be stable enough under dynamic loading to give converged results. This 

is because some stiffness coefficients have been tuned to a value far away from their 

“correct” values although the error of modal forces calculated from them is small. The 

second tuning approach was devised to avoid that problem. It is based on the matching of 

the generalized displacements iq  computed by Nastran and the NLROM. This tuning 

approach was found to be better than the first one yielding stable NLROMs. 

Another key question for this investigation is the “on-line” assessment of the 

NLROM, i.e., to determine whether it is accurately capturing the response that would be 

predicted by the underlying finite element model/software. A strategy to carry out this 
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effort minimizing the number of calls to the full finite element code is proposed here. 

Preliminary results were presented to suggest in particular that the monitoring of the 

eigenvalues of the NLROM tangent stiffness matrix and of the occurrence of zeros of the 

lowest one provide a framework to (i) predict strongly nonlinear events (snap-throughs, 

buckling, solution changes) and (ii) assess whether they are accurately predicted. 

The work carried out during this investigation has demonstrated that: 

(1) the monitoring of the NLROM tangent stiffness eigenvalues provides an 

approach to detect strongly nonlinear “events” such as symmetry breaking, snap-

throughs, and global buckling that exhibit a zero eigenvalue of the tangent 

stiffness matrix, 

(2) the accuracy of the prediction of the load (static or dynamic) at which the event 

occurs can be ascertained by comparing the eigenvalues of the NLROM tangent 

stiffness matrix and its Nastran equivalent obtained for the same deflection. 

 

Based on the above findings, future work in NLROMs should focus on the 

following issues. 

(1) The continuation of improvements in the identification of the nonlinear stiffness 

coefficients. The modal displacement tuning approach has performed well but 

is computationally demanding especially when the number of modes becomes 

large. A first possible avenue for improvement is to identify the nonlinear 

coefficients by separate batches. Those which are currently well identified stay 

identified as is. The next batch would be identified under displacement 
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conditions which fit more closely the behavior of the beam. For example, 

complex displacements of the structure corresponding to linear combinations 

of the linear modes only are not very physical. Significant membrane effects 

should accompany these motions. Adding them, based on the first batch of 

identified coefficients, would likely lead to more “physical”, lower strain 

certainly, displacements. It is thought that the identified values of the second 

batch of nonlinear stiffness coefficients may then be improved. 

 

(2) A second avenue to improve the identification process would be to develop/use 

an open source nonlinear finite element code that lead to identification issues 

similar to those experienced with Nastran. From limited observations, it is 

believed that a corotational formulation may lead to similar problems. If so, 

then efforts could be focused on (i) mathematically clarifying the issue and (ii) 

if possible, develop formulation-based “correction” methods that transform the 

poorly identified coefficients into more reliable ones. 

 

(3) Revisit the hypersonic panel and the prediction of its behavior post local 

buckling. As stated in Chapter 6, a possible option is to use the global-local 

methodology adapted to NLROM using the current global modes but enriching 

the basis near the buckling zone by local modes. Past applications of this global-

local approach have focused on accounting for local defects (notch, crack) 

which are not present here so that the approach would need to be modified. 

While this approach would still necessitate a prior knowledge that a local 
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buckling would take place, it would provide a systematic framework (vs. the 

ad-hoc enrichment approach attempted here) to capture these local events. 

Considering that many hypersonic panels have stiffeners, sometimes many of 

them, it is believed that this line of work is important for future, practical 

applications. 
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