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ABSTRACT 

 The human transcriptional regulatory machine utilizes hundreds of transcription 

factors which bind to specific genic sites resulting in either activation or repression of 

targeted genes. Networks comprised of nodes and edges can be constructed to model the 

relationships of regulators and their targets. Within these biological networks small 

enriched structural patterns containing at least three nodes can be identified as potential 

building blocks from which a network is organized. A first iteration computational 

pipeline was designed to generate a disease specific gene regulatory network for motif 

detection using established computational tools. The first goal was to identify motifs that 

can express themselves in a state that results in differential patient survival in one of the 

32 different cancer types studied. This study identified issues for detecting strongly 

correlated motifs that also effect patient survival, yielding preliminary results for possible 

driving cancer etiology. Second, a comparison was performed for the topology of 

network motifs across multiple different data types to identify possible divergence from a 

conserved enrichment pattern in network perturbing diseases. The topology of enriched 

motifs across all the datasets converged upon a single conserved pattern reported in a 

previous study which did not appear to diverge dependent upon the type of disease. This 

report highlights possible methods to improve detection of disease driving motifs that can 

aid in identifying possible treatment targets in cancer. Finally, networks where only 

minimally perturbed, suggesting that regulatory programs were run from evolved circuits 

into a cancer context. 
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CHAPTER 1 

INTRODUCTION 

The result of a large amount of genetic information contained within the genome 

is the requirement to regulate and express certain genes in a context-dependent manner. 

One level of control is transcriptional regulation which contain molecules called 

transcription factors (TFs) that can either activate or repress the expression level of genes 

through binding to promoter regions. This biological control system also regulates itself, 

as one TF can control the expression of one or more TFs (including itself, 

autoregulation). One method to model the landscape of TF regulation is to use a network 

that links each regulator with their targets. These gene regulatory networks (GRNs) can 

include protein coding genes, TFs, and other regulatory control elements such as 

MicroRNA. The structure of these networks show that elements can have multiple inputs 

and outputs resulting in combinatorial interactions. The interactions result in biological 

control circuits which can have the complexity to produce engineering control structures 

such as AND/OR gates and higher order feedback loops. The larger network can be 

broken down into subcomponents or functional modules. Some identified functions 

include kernels which function in building the body during embryogenesis , plug-ins 

which also regulate developmental fate, and I/O switches which activate under specific 

conditions [1], [2].  

Networks can differ between cell types due to the epigenetic regulation of the 

genome which blocks access to DNA. Cells naturally move from a point of high 

differential potential, such as stem cells, into more defined cell types like a fibroblast. 
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Changes in regulation occurs across time and space resulting in the GRN being spatially 

and temporally defined. This can be visualized by using a Waddington landscape, but in 

the context of network states [3]. There are various states of regulatory activity which can 

be more unstable than others. In the case of an unstable state that network would move 

down the landscape from a position of high potential to a valley where the network is 

more stable. A normal cell will travel along developmental trajectories that lead to a 

normal stable state. It has been hypothesized that cancer attractor states are potentials 

outside of this normal route of development. Mutations can lower epigenetic barriers and 

increase the possibility that a cell enters a cancer attractor. 

Within a GRN recurring patterns of interactions between a small number of nodes 

can denote a motif of interest. These structured groups, termed motifs, can have varied 

structures which can perform unique and complex behaviors. As described in the work by 

Uri Alon, these motifs can generally be separated into two functional network types [4]. 

The first being sensory networks. Motifs such as feed forward loops (FFLs) can appear in 

eight varieties and which their function and include sign sensitive delays or pulse 

generators. The other type of network is developmental. Feedback loops are most 

functional in this category because they can act to hold memory in a system by either 

toggling or by maintaining a permanent change in a system. Identifying and 

understanding the functionality of enriched motifs in a network can give evidence to the 

functionality of the phenotype of the cell the network is modeled from. In this assessment 

we utilize enriched motif detection in cancer and other system states to identify possible 

drivers as well as compare topologies across in a multi-disease method. 
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This study can be split into two different sections with the first utilizing motifs 

and patient data to identify disease significant motifs and the other is a more holistic 

approach which includes non-cancer data. While separate, they are built upon the same 

computational foundation which will be explained prior to computational results. We 

began our investigation with the focus on attempting to utilize motif structures in GRNs 

and attach patient survival data at the back end to identify which motifs could be a factor 

in the driving of cancerous phenotypes. Alternate approaches have been made which 

utilize transcriptional regulators to identify downstream genes affected by mutation [5]. 

These methods utilized patient survival as well as immune infiltration data to identify 

disease relevant mutations, transcription factors, and genes which were all linked using 

causal and mechanistic data. Our approach is a simplification of this to highlight the 

usage of motifs and how applicable leveraging motif detection tools are in this context of 

disease relevant regulatory structures. The second section is a bifurcation from the 

foundational pipeline that does not utilize clinical information but rather is a comparative 

approach. We pulled a variety of datasets from GEO to fit categories of having a GRN 

which has been altered by disease. An enrichment vector was generated from the output 

of the motif detector that summarized which motif types were more enriched in the 

network. We compared how similar each dataset was to an identified normal enrichment 

vector from a previous study. Finally, we performed hierarchical clustering and identified 

which datasets were disrupting the network is similar ways.   
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CHAPTER 2 

MOTIF DETECTION PIPELINE 

The ability to generate context specific GRNs from RNA expression data will 

allow us to utilize current motif detection and enrichment tools. Survival associated 

enriched motifs are excellent potential therapeutic targets. The comparative level of 

enriched motifs types may discern between a wild type, evolved network, and a perturbed 

network broken by mutations. 

 

Figure 1: Foundational Computational Pipeline 

Process begins with bulk RNA expression dataset. This can include RNA-seq or 

microarray. cMonkey2 fills a set number of clusters with co-regulated genes called 

biclusters. These biclusters are filtered by SYGNAL and additional computational tools 

are run with it. TFCascade is the GRN constructor which pulls dataset relevant TFs from 

SYGNAL. Then it feeds the filtered and focused network into one of the two motif 

detection tools which identify enriched motifs in the network. 

 

We used the SYGNAL pipeline developed by C. Plaisier et al as a method to filter 

the initial selection of TFs which to build each dataset’s GRN model [5,6]. We applied 

this established pipeline to our initial gene expression datasets to identify TFs likely to be 
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important nodes in the constructed network models. SYGNAL begins by running a 

dimensionality reduction program called cMonkey2 which mechanistically infers TFs for 

a specific dataset. These enriched TFs are organized into co-regulated gene clusters 

called biclusters. cMonkey2 constructs these biclusters by referencing a TF to target gene 

database which was generated using experimental evidence of DNA-binding to a specific 

genomic site. Using mechanistic predictions, biclusters are sorted into a predetermined 

number of biclusters. For the datasets used in this study, excluding TCGA, 3,000 initial 

genes were chosen to cluster under cMonkey2 using the mean absolute deviation function 

from the Python package Pandas. Previous usage of the cMonkey2 program identified 

that there should be on average 30 genes per biclusters. With 3,000 genes we set 200 

biclusters for the program to fill. 

The next stage in SYGNAL was filtering biclusters. The co-expression biclusters 

generated by the previous program cMonkey2, were then filtered using quality control 

metrics and informative associations. The variance explained by the first principle 

component of biclusters was used as a QC metric for bicluster co-expression. Other 

computational tools are run within the pipeline which identify correlated TFs from the 

biclusters using transcription binding motif information. These TFs are the focus for 

which our GRNs were built. It is important to note that SYGNAL had additional 

functionalities which were not used for TF selection. The most important of which is 

disease relevance. The cancer TCGA datasets were the only datasets which included 

overall survival information for disease relevance. 
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TFCascade was a Python program built specifically for this study. It utilized the 

TFBS_DB (https://tfbsdb.systemsbiology.net) [6] a current database mechanistically 

inferred TF to target gene interactions. The TFBS_DB was used to construct the 

gbmSYGNAL [6] and panImmuneSYGNAL [5] networks. We used this database to 

generate a directed GNR for a specific dataset using a list of input TFs. A directed graph 

contains edges which are modified as arrows meaning the relationship passes one 

direction. Directed graphs can still have mutual relationships between nodes exemplified 

by a two headed arrow. TFs can serve as activators or repressors in a regulatory system. 

TFCascade accounts for this by performing a Pearson correlation test between the 

regulator and the target to determine if the interaction is significant (R ≥ cutoff). We also 

use the direction of the correlation coefficient to determine if the interaction is activating 

(positive R, colored green) or repressing (negative R, colored red). The final aspect of 

this computational step is to expand the possible TF included in the network by including 

TF families [6]. TFs within the same family will have similar DNA binding motifs and 

TF family expansion provides the means to infer edges between TFs and target genes for 

TFs that currently do not have an experimentally determined binding motif. 

The final section in the computational pipeline used in this study was dedicated to 

motif detection. Two different tools were run for information about enriched motifs in the 

network. The first tool utilized on our data was FANMOD. Developed by S. Wernicke 

and F. Rasche as a fast motif detection tool when compared to the alternative tool also 

used in this study by N. Kashtan [7]. FANMOD was initially used during the cancer 

motif analysis subsection of this study. Mfinder was utilized in the motif landscape 

https://tfbsdb.systemsbiology.net/


7 
 

analysis instead to facilitate comparison with a seminal paper by Neph et al which 

described the observation of a consistent motif enrichment pattern across 41 different cell 

types[8]. Rather than identifying the specific enriched motifs from the network the 

program was used to calculate the motif enrichment Z-scores across each of the 13 

possible three node motif structures possible. This resulted in each dataset having a 

vector of enrichment and significance. Both detectors function on the basis of comparing 

random networks to the input network. One method of generating a random network is to 

switch edges between vertices, however some of these tools allow the user to specify 

specific properties of the graph to be retained during randomization. Mfinder was run 

using its default method to stay consistent with the usage from Neph’s paper. FANMOD 

was run through its command line counterpart wrapped by T. Benyamini and Yoab 

Teboulle from Tel-Aviv University. The program was run using 10,000 random networks 

and to set to regard the color of the edges during randomization. 

 Thus we leverage established computational methods to analyze transcriptional 

expression data to construct networks comprised of regulatory interactions. We then 

extract the regulatory factors from the GRN and by integration with a database of TF 

targeting create a context specific regulatory factor only subnetwork. Finally, motif 

enrichment algorithms we used to calculate the enrichment values of motifs in the context 

specific regulatory factor subnetworks, and we compare these enrichment values across 

cancers, and other normal and disease types. 
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CHAPTER 3 

CANCER MOTIFS 

The focus for this portion of the study was dedicated to identifying motifs which 

could be activated in at least two different ways and provide support for which activation 

pattern would lead to a clinically worse patient outcome. To begin, the motifs needed to 

be analyzed dynamically. The basic FANMOD motifs were only static models, which 

lacks a dimension of pseudo-time. Different approaches can be taken to approximate and 

model the potential activity based on the interactions within the motifs. Boolean networks 

have been regularly used, and their dynamics have been significantly analyzed [9]. There 

are other methods to model the dynamics of networks. The use of differential equations 

or linear approximations can be used however, the simplicity of Boolean lends itself 

better to the large number of motifs that required screening by our approach.  

 

Figure 2: Attractor Motif 

The output of a single motif picked to exemplify a feed forward loop in the context of the 

pipeline. This motif was pulled from BRCA cancer type and had a mild level of disease 

significance between the two attractor states. 

 

To model our motifs and approximate their behavior across time we identified 

attractor states to categorize the possible patterns of expression for a motif. An attractor 

A B 

D 
E 

C
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state is a Boolean steady state where the node values fix in a specific state. If there are no 

outside factors manipulating the motif, then the motif will flow down into that expression 

pattern. The example motif shown in figure 2A displays a typical feed forward loop 

which functions as a sensor where the two input nodes ERG and FLI1 turn on ELK3. If 

we assume that the combinatorial interaction of both inputs acts as an AND gate, then 

both inputs would need to be active for ELK3 to begin activation. Figure 2C shows what 

changes will occur in node activity across a time step. If the starting node activity is 

represented as 001 then at that time only FLI1 is activated. Over the next time period 

FLI1 activates ERG leading the next activity representation to be 011. In the final time 

step the output node ELK3 is receiving the required two inputs, activating the node. The 

final activity representation is 111 and with every node activated there will be no change 

over future time steps until an outside force flips one of the nodes leading the motif down 

another attractor path. In this example we can consider that the motif nodes are either all 

activated or repressed where the expression states upstream of the attractor will 

eventually flow down into one of the two attractor states. For this reason, we can 

categorize this motif as two different expression patterns for any possible combination of 

expression.  

We used gene expression data to highlight specific motif instances whose 

expression matched the network model and were associated with patient survival for 

disease relevance. First, we tested the fit for a linear regression model for each node in R 

using R2 values. The identified motifs are not isolated in expression meaning there can be 

multiple other regulation mechanisms including other TFs from the network outside the 
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motif. The results showed that the median R2 values for an edge in an enriched motif was 

below 0.4 with Mesothelioma being particularly bad (Appendix A). This shows that even 

if a motif was identified as enriched in the GRN that does not mean that motif will lead to 

a good model for expression. Some outliers can be simplified to exclude outside input 

factors due to their higher variation explained solely by the motif. However, is unclear 

how often it is expected that this will be the case. This issue combined with disease 

relevance is a current problem that has not yet been explored in these studies. 

After analyzing the consistency of our motifs, we binarized the patient gene 

expression data and identified the motif expression state for each patient. Binarization of 

data was performed in Python by clustering gene expression values into two possible 

clusters with the higher expressing cluster representing one and the lower expression 

cluster set to zero. In Figure 2D the heatmap identifies the distribution of patients based 

on their motif expression pattern stratified by cancer subtype. This example shows that 

most of the motifs were in the 000 state. If there was differential motif expression 

preference between cancer subtypes the motif activity might be further investigated for 

therapeutic potential. The second heatmap shows the categorization of motif expression 

pattern based on the possible combinatorial gate interactions and the attractor group 

(Figure 2E). In this example the attractor groups are identical, and thus all AND/OR gate 

comparisons have the same result, but this is not always the case. 

Due to the lower than expected Pearson correlation values for the edges in each 

motif we had to lower the R2 cutoff value to 0.5 to begin our search for possible disease 

relevant motifs with variable effects on patient survival. Turning back to the example in 
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Figure 2, we generated a single Kaplan-Meier plot containing sample characterizations 

for every possible motif expression pattern (Figure 2F). We identified that between the 

two attractor states there is a noticeable difference in survival drop off as the active motif 

state maintained a more rapid decline in survival. The next two survival curves represent 

the two attractor groups rather than the individual motif expression pattern states. Again, 

in this example there is no difference between the AND/OR gate types resulting in the 

same figure. The results show evidence for a possible divergence in survival between the 

attractor groups. 

This prototype pipeline for detecting cancer relevant motifs searched only three 

node motifs, and future work could explore motifs with 4 or 5 nodes. In addition, we 

could incorporate the activity (activator or repressor) in the motif enrichment analysis. 

The discovered motifs could be explained partially by linear models, and it was shown to 

be possible to have the motif state be a significant predictor of patient survival. These 

survival associated motifs are disease specific and would be of great interest in follow up 

experimental studies. In future work an important area of interests should be the 

replacement of the linear models used to determine consistency of each node’s inputs 

with a better modeling approach. Another step which identifies to identify they likely 

downstream hallmark of cancer could be added to facilitate the generation of hypotheses 

for in vitro studies. 
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CHAPTER 4 

LANDSCAPE OF MOTIFS 

Taking a more holistic approach we assessed whether the network topology was 

altered in disease states. As reviewed before, the connected structure of network motifs 

can generate different functional abilities included in the variety of feed forward loops 

and feedback loops. We aimed at encapsulating that structure information by generating a 

single vector for the frequency of each possible motif type. To simplify the number of 

possible three node motifs we ran mfinder while ignoring the color of the edges. This 

resulted in 13 different motif structure possibilities displayed in Figure 3. This method of 

GRN analysis was developed in the paper by Neph et al which compared 41 different cell 

type specific transcriptional networks [8]. The results of which identified a pattern of 

network motifs conserved across each of the cell types and sharing that same enrichment 

vector with the C. elegans neuronal connectivity network. Utilizing the networks 

generated from TCGA with other added wild type and non-cancerous disease states we 

were able to make a comparison of network construction between these different context-

specific system states. 
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Table 1: Datasets Included in Study 

The formatted table of the datasets used in the second section of this study.  

 

We hypothesized that there would be a difference in network construction for 

systems with states of disease that alter the expression of a cell, either through mutation 

or viral infection. The TCGA data allowed the possibility of having a pan-cancer study, 

however including these other systems into the analysis would yield a better picture about 

the change in network structure in the diseased samples. We categorized these network 

altering diseases as network perturbing, which generate a non-evolved cell phenotype and 

regulatory structure. Within this category we placed cancer as a definite disease, due to 

high frequency of mutations, and viral infections such as Dengue virus and HIV as 

probable diseases. Listeria was included tentatively because of its intracellular infectious 
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nature, which may manipulate the cellular expression levels and perturb the regulatory 

network. For a category to include disease states which elicit an evolved expression 

response to stress or disease we grouped acute, degenerative, and chronic diseases. 

Infections such as Staph and degeneration of Alzheimer’s Disease were estimated to not 

impact the expressive nature of the cell. The final category called wild type was included 

to serve as a control for the other datasets. We determined that wound healing, pollution 

exposure, and the C. Elegans systems were good comparators for normal cell expression 

data. Stem cell differentiation data were on hand at the time and so were included in this 

WT category as well. While we did place stem cell data in the WT category, we 

estimated possible divergence from the other WT datasets due to the nature of expression 

and functional changes during differentiation. 



15 
 

 

Figure 3A: Topology of Motifs  

Shows the 13 different motifs at the level of enrichment for each dataset. C. Elegans (top) 

represents the conserved enrichment pattern identified in a previous study. Each dataset 

has been normalized for comparative purposes. 
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Figure 3B: 

Clustering output identifies high similarity between almost every datatype. There is no 

clustering between cancerous and non-cancerous datasets as estimated.  
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Figure 3C: 

Box plot categorizing the correlation values between each dataset and the C. Elegans 

normal enrichment vector. Categories are split between cancer datasets and non-cancer 

datasets. 

 

GRN construction was modified for better comparison between the different 

datasets. One of the differences between the constructed networks was their size. 

Networks with many edges and nodes will have a larger sample space to identify 

enriched structures. The motif detector would be able to identify more motifs. If we 

estimated that some of these perturbed networks would have a portion of their motifs 

altered, then by including a larger number of common and normal motifs we hypothesize 

that the disease signal would be drown out. We attempted to limit this problem and the 

variability of network size by increasing the correlation tolerance to 0.5 then taking only 
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the top 300 correlating edges. After this small modification we ran the rest of the 

programs down the pipeline and obtained our motif enrichment data from mfinder. Two 

specific datasets had trouble with this running setup as OV, CESC, and KICH cancer 

types both contained one or more “nan” Z enrichment value for their motifs. 

The initial results from this multi-disease comparative assessment showed a 

remarkable resemblance to previous findings by Neph et al [8]. This pattern which was 

previously observed over multiple different healthy cell types was again identified here. 

The previous expectation to find deviation between perturbed networks and normal 

evolved regulatory networks did not appear is any obvious manner. We described a 

“normal” or WT pattern of enrichment using the C. Elegans enrichment vector then 

compared it to every other dataset’s enriched motifs. This identified how correlative the 

two enrichment vectors would be (Figure 3c). This was performed in Python using 

Pearson’s R correlation value. The results highlighted that both the cancer data sets, and 

the other data sets had normal motif topologies. Again, OV, CESC, and KICH were 

omitted from this figure due to poor quality motif results. Outliers in the cancer included 

LUSC, GBM, and PRAD which were all considered outliers.  

The Alzheimer’s Disease datasets appears to be slightly deviated from the normal 

enrichment vector with a correlation coefficient of 0.83 (p-value = 0.00038). One 

explanation for this is the quality of the brain samples taken. The known effect of post-

mortem samples on RNA quality is well known and its degradation is used in forensic 

pathology. However, for uses in RNA expression studies post-mortem tissue samples will 

have lower quality leading to unreliable results [10]. 
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The final analysis of this data was to perform hierarchical correlation using these 

enrichment vectors. We used the Seaborn package in Python and identified some outliers 

which were also found to be deviating from the normal motif topology. Our results again 

identified the fact that these enrichment vectors were all very similar with the few 

exceptions. LUSC and HIV3 were both the lowest scoring in terms of correlation with a 

normal motif topology and again we had identified them as deviating in this cluster 

analysis. 

The hypothesis of cancer and other possible expression altering diseases 

modifying the motif enrichment topology was not supported in this study. Instead this 

evidence shows that the previously identified topology which is conserved across cell 

types and organisms is also conserved in various kinds of diseases, including cancers 

with high mutational rates. It may be possible to expand upon this pan-disease type study 

of GRNs by comparing other network modules or performing alternate network metrics 

across each GRN. 
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CHAPTER 5 

DISCUSSION 

We utilized two approaches to characterize motifs in the context of systems with 

disease. In our first section we focused on identifying clinical and experimental 

applications of motif detection by applying disease relevance to network isolated motifs. 

We identified three issues which hampered our progress. First, many of the enriched 

motifs detected contained edges which did not correlate with the original expression data. 

Motifs with this issue are filtered out with a set threshold and were in the majority. The 

second issue is disease relevance. Our approach utilized patient survival data to identify 

differentially expressing motifs with variable survival time. Again, most of the motifs had 

states that did not have a difference in survival. The final issue encountered was simply 

about structurally functional motifs. Many of the motifs identified did not belong is the 

category of a feed forward loop or a feedback loop. Some had only one attractor state and 

others were constructed with every node positively regulating every other node. Our 

investigation did not find a perfect motif which avoided all these issues; however, we laid 

the groundwork for the first iteration of a pipeline to detect relevant motifs. Future efforts 

should include an experimental validation component. To validate a motif as a factor in 

cancer growth and progression the correct phenotypic assay would need to be selected. 

While overall survival helps apply disease relevance it does not narrow what factors of 

the hallmarks of cancer the motif may modulate. Efforts should be made to integrate 

motif states with cellular or tissue measurements of immune response, invasiveness, or 

proliferation. A simple and cancer relevant assay would be of proliferation. Utilizing a 
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gene editing method such as CRISPR to knock-down or knock-out one of the key 

regulators in a specific cancer motif we can generate a modified cancer cell line without a 

functioning oncomotif. A combination of fluorescence-activated cell sorting (FACS) and 

live cell imaging of motif node abundances can allow the real-time study of modified and 

un-modified cell populations. 

While we did not identify a significant difference between the topology of 

enriched motifs of cancerous and non-cancerous regulatory networks, we were able to 

validate the previous finding of a conserved motif topology. This suggests that the 

perturbations modulate cellular networks, but they effect cellular phenotypic changes 

through use of evolved network topology. In Chapter four we identified little or no 

difference between enriched motifs from cancer regulatory networks versus other 

regulatory network types, then these cancerous networks are being constrained by other 

factors than typical multicellular evolutionary pressures as they ignore and break 

multicellularity rules. Possible improvements and additional experimentation of this 

method of motif analysis could include a rework of network building. To generate a 

disease-oriented network, utilization of additional data could be helpful. For example, 

time series data at different levels of infection or inclusion of survival analysis into the 

SYGNAL pipeline could help secure disease relevance. This might solve the issue of 

identifying just the common parts and missing the alterations made by the disease in the 

network. 

Overall the use of motif analysis of GRNs is not yet fully actualized. There are 

many issues associated with attempting to find a solid driver within a single cancer type 
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or examining motifs in a holistic approach across many disease types. We have produced 

a first iteration pipeline for disease relevant motifs and validated previous findings across 

the landscape of motifs. With possible improvements in the study of motifs and with 

future validating experiments in vitro, more rigorous assessments can be made on the 

utilization of motifs in research. 
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APPENDIX A 

MOTIF CORRELATION WITH EXPRESSION 
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The correlation of edges and between the motif and the expression data is variable and 

depends on the dataset. This is a result of data quality as well as correct representation of 

the network with real expression data. The difference between a good quality dataset and 

a lower one can be seen between MESO, which comes from TCGA, and MESOb which 

comes from a mutually exclusive study using RNA-seq. What this figure represents for 

this study is the issue of validating detected enriched motifs. While it can depend on 

quality, most edges in motifs have a low correlation value between the regulator and 

target node. 


