
Feature Extraction from Multi-variate Time Series and Resource-Aware Indexing

by

Sicong Liu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2020 by the
Graduate Supervisory Committee:

K. Selçuk Candan, Chair
Hasan Davulcu

Maria Luisa Sapino
Mohamed Sarwat

ARIZONA STATE UNIVERSITY

May 2020

ABSTRACT

In the presence of big data analysis, large volume of data needs to be systematically

indexed to support analytical tasks, such as feature engineering, pattern recognition,

data mining, and query processing. The volume, variety, and velocity of these data

necessitate sophisticated systems to help researchers understand, analyze, and dis-

cover insights from heterogeneous, multidimensional data sources. Many analytical

frameworks have been proposed in the literature in recent years, but challenges to

accuracy, speed, and effectiveness remain hence a systematic approach to perform

data signature computation and query processing in multi-dimensional space is in

people’s interest. In particular, real-time and near real-time queries pose significant

challenges when working with large data sets.

To address these challenges, I develop an innovative robust multi-variate fea-

ture extraction algorithm over multi-dimensional temporal datasets, which is able

to help understand and analyze various real-world applications. Furthermore, to an-

swer queries over these features, I develop a novel resource-aware indexing framework

to approximately solve top-k queries by leveraging onion-layer indexing in conjunc-

tion with locality sensitive hashing. The proposed indexing scheme allows people to

answer top-k queries by only accessing a bounded amount of data, which optimizes

big data small for queries.

i

To my grandparents

ii

ACKNOWLEDGMENTS

I would like to first thank my advisor, Dr. K. Selçuk Candan for his support and

guidance on my PhD work through this journey. He has lead a great example of

being a research scientist and he has helped me build habbits of being a life long hard

working researcher. I am grateful to have him as my PhD advisor.

I would like to thank all my committee members with heart and soul, Dr. Hasan

Davulcu, Dr. Maria Luisa Sapino and Dr. Mohamed Sarwat for their insightful

guidance and comments on my research. I cannot finish my thesis and complete my

work without their help.

I would like to thank all the researchers and engineers that I work with through

the past years, including Tony Ma my manager from Apple internship, Yuanyuan

Tian and Fatma Ozcan, my mentor and my manager from IBM Almaden, Fangqiu

Han, Matthias Boehm, Ruocheng Guo, Jia Yu and many more. It’s people like them

help me stand on the shoulders of giants. I am thankful for entire Emitlab members

that helped and guided me during my study at ASU, especailly Jung Hyun Kim,

Silvestro Poccia and Hans Behrens.

Pursuing a PhD degree is a difficult process and I am grateful for Marilyn Zellet,

Simon and Critina Bently who has supported me since the very beginning of this

journey, and Christafer Suddarth who has supported me at the most difficult times.

I want to give special thanks to Caleb Lepisto and Steve Chiapelli who have always

been encouraging me through the past years. I’m very grateful for my coach Zachary

Moran, who has encouraged and challenged me mentally and physically at the most

critial momements.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Time Series . 1

1.1.1 Uni-variate Time Series . 2

1.1.2 Multi-variate Time Series . 3

1.1.3 Robust Multi-variate Temporal Features (RMT) 7

1.2 Analytical Systems Based on RMT Algorithm . 7

1.3 Retrieval Tasks in Multi-Dimensional Space . 13

1.3.1 Top-K Query Processing in Multi-dimensional Space. 14

1.4 Thesis Outline . 18

2 BACKGROUND AND RELATED WORK . 19

2.1 Time Series Feature Extraction And Similarity Measures 19

2.2 Locality Sensitive Hashing . 24

2.3 Layer-based indexing and Query Processing . 27

3 RMT FEATURES . 29

3.1 Introduction . 29

3.2 MMTS Model . 30

3.3 Temporal and Variate Smoothing . 32

3.3.1 Temporal Smoothing . 33

3.3.2 Variate Smoothing . 34

3.3.3 Combined Time and Variate Smoothing 36

3.4 Step 1: Scale-space Construction . 37

iv

CHAPTER Page

3.5 Step 2: Identifying MVTS Feature Candidates . 38

3.6 Step 3: Eliminating Poor RMT Feature Candidates 40

3.7 Step 4: RMT Feature Descriptor Creation . 41

3.8 RMT Feature Set of a Multi-Variate Time Series 44

3.9 Time Series Matching using RMT Features . 45

3.9.1 Alignment of Feature Pairs . 45

3.9.2 Feature Significance . 47

3.9.3 Overall Feature Matching Score . 47

3.9.4 Identifying Candidate Matching Pairs . 48

3.9.5 Inconsistency Pruning of Candidate Pairs 48

3.9.6 RMT-Based Multi-variate Time Series Matching Score 51

3.10 Evaluation . 52

3.10.1 Settings . 52

3.10.2 Discussion of the Results . 56

3.11 Experiments With Additional DataSets And Algorithms 61

3.11.1 Experiments with Additional Data Sets . 61

3.11.2 Experiments with Additional Algorithms 63

3.12 Conclusion . 66

4 RMT FEATURES BASED SYSTEMS . 68

4.1 Problem Definition. 68

4.2 Notes2 . 70

4.2.1 Networks-of-Traces for Epidemic Simulations 72

4.2.2 Disease Spread Simulation Understanding and Analysis 73

4.2.3 Networks-of-Traces (NT) Feature Extraction 74

v

CHAPTER Page

4.2.4 Robust Feature Detection . 75

4.2.5 Feature Search and Alignment . 77

4.2.6 Evaluation . 78

4.2.7 Conclusion . 80

4.3 EpiDMS . 81

4.3.1 Epidemic Simulations . 82

4.3.2 Challenges . 84

4.3.3 System Overview . 87

4.4 SimDMS . 88

4.4.1 Introduction . 89

4.4.2 Challenge . 90

4.4.3 System Overview . 92

4.5 DataStorm-FE . 93

4.5.1 Introduction . 94

4.5.2 Challenge . 94

4.6 Conclusion . 96

5 ONION-LSH FOR TOP-K QUERY PROCESSING . 97

5.1 Introduction . 97

5.2 Problem Definition. 97

5.3 Onion-LSH (OLSH) for Approximate top-k Processing 99

5.3.1 Overview of Onion Indexing . 99

5.3.2 OLSH: LSH Indexing of Onion Layers . 100

5.3.3 Accuracy/Resource Trade-offs in OLSH. 104

5.3.4 OLSH Design Criteria . 108

vi

CHAPTER Page

5.3.5 Overview of OLSH . 108

5.4 Experimental Evaluation . 111

5.4.1 Datasets . 112

5.4.2 Evaluation Criteria . 115

5.4.3 OLSH and Competitors . 115

5.5 Results . 116

5.5.1 Overview . 117

5.5.2 Impact of Different Dimensionalities . 118

5.5.3 Impact of the Data Distribution. 119

5.5.4 Impact of Different Values of k . 120

5.5.5 Impact of Different Values of m . 120

5.5.6 Impact of Per-Layer Hash Count (κ) . 120

5.5.7 Impact of Different Data Cardinalities . 121

5.5.8 Impact of the Index Budget. 121

5.5.9 Impact of the Hash Collision Parameter (ψ). 122

5.5.10 Results with Real Data Sets . 123

5.6 Experiments with Competitors and Data Setups 123

5.6.1 Branch-And-Bound Ranked Search . 124

5.6.2 Evaluation Criteria . 125

5.7 Experiments with Alternative Layer Indexing Approach 126

5.8 Alternative Mathematical Optimizationand with Model Revision . . . 128

5.9 Conclusion . 130

6 PARTITION-LSH FOR TOP-K QUERY PROCESSING 140

6.1 PLSH for Approximate top-k Processing . 140

vii

CHAPTER Page

6.1.1 Norm Based Partition . 142

6.1.2 Partition Importance Learning . 142

6.1.3 Accuracy/Resource Trade-offs in PLSH . 148

6.1.4 PLSH Design Criteria - Resource Allocation Revised 151

6.1.5 Overview of PLSH . 151

6.2 Conclusion . 153

7 CONCLUSION . 159

REFERENCES . 161

viii

LIST OF TABLES

Table Page

3.1 Matching And Pruning Configuration . 53

3.2 # of Feature Pairs Before and After Pruning . 60

3.3 Accuracies For Multi-Dimensional Extensions of RPM 65

3.4 Accuracies Of Jaccard And Cosine From SAX. 66

4.1 Target Feature Parameters . 79

4.2 Average Confusions For Different Simulations . 79

5.1 Layer Contributions Of Different Onion Layers For Top-5 Retrieval 108

5.2 Experimental Parameters . 111

5.3 Result Of 200K Cardinality Target Redundancy 2 Default κ 112

5.4 Result Of 200K Cardinality Target Redundancy 2 Different κ 113

5.5 Result Of 200K Cardinality Target Redundancy 2 Top-25 114

5.6 Result Of 200K Cardinality Max Target Rank . 117

5.7 Result Of Different κ For Various Resources Usage 117

5.8 Result Of Different Cardinalities . 119

5.9 Result Of Different Degree Of Redundancies . 122

5.10 Result Of Different Collision Parameter Values . 123

5.11 Result Of Real-Life Data Target Redundancy 4 . 124

5.12 Result Of Different Dimension With Various Redundancy Parameters . . 126

5.13 Memory Cost For Different Dimensions . 126

5.14 Recall of Different Dimension Of Different Algorithms 127

5.15 Memory Cost For Different Dimension Redundancy 4 127

5.16 Recall For Different Top-k Queries . 128

5.17 Recall For Different Top-k Queries 4D Redundancy 4 130

5.18 Total Amount Of Hash Used For Different Top-k Queries 131

ix

Table Page

5.19 Recall For Different Top-k Queries For Reverse Hashing 131

5.20 Total Amount of Hash Used For Reverse Hashing . 132

6.1 Symbols Used In Analysis . 141

6.2 Total Amout Of Hash Used For Different Top-k Queries 153

x

LIST OF FIGURES

Figure Page

1.1 Multi-Variate Time Series . 4

1.2 Multi-Variate Time Series Event Scope . 6

1.3 NOTES2 Layers . 8

1.4 EpiDMS System Framework . 10

1.5 SIMDMS System Framework . 12

1.6 DataStorm Framework . 13

2.1 Time Series Representations . 24

2.2 Onion Layers 2-D . 27

3.1 Multi-Variate Features of Various Sizes . 32

3.2 Scale-Space Construction . 33

3.3 Gaussian Smoothing Process . 34

3.4 Graph Smoothing Process . 34

3.5 Scope Boundary Conflicts . 49

3.6 RMT Feature Pairs . 50

3.7 Top-5 Matching Statistics . 56

3.8 Alternative Feature Matching And Pruning . 58

3.9 Average Number of Feature Pairs . 59

3.10 Feature Discovery and Octave Management . 59

3.11 Multi-Variate Time Series of Motion Capture Data 61

3.12 Accuracy of RMT and DTW . 67

4.1 Simulation Trace Exploration Interface of NOTES2 71

4.2 Incidence Representation Of Multi-Variate Features 74

4.3 Centers Of Features Using Different Networks . 80

4.4 Simulation Ensembles Characteristics . 91

xi

Figure Page

4.5 SimDMS System Overview . 92

5.1 Inner Product Similarity And Collision Probability 103

5.2 Partitions Of Data Points Among Onion Layers . 105

5.3 Result Of Different κ For Various Data Types . 135

5.4 Result Of Different Cardinality From Various Data Types 136

5.5 Actual Layer Weight And Learned Layer Weight . 138

5.6 Slicing Beta Distribution For Layer Weight Learning 139

6.1 Norm Partition Framework For Top-k Retrieval . 142

6.2 Yahoo!Music Data Norm Distributio . 143

6.3 Ground Truth Bin Partition Distribution . 145

6.4 Slicing Beta Distribution For Partition Weight Learning 148

xii

Chapter 1

INTRODUCTION

It is now the era of big data, a large volumne of which needs to be indexed adequiately

and systematically to support information retreival tasks including pattern recogni-

tion, data structure mining and top-k query processing etc. Hence sophisticated

system/framework is in need to help researchers understand, analyze and discover

the relationships of hetergenous data. For instance, one would like to analyze the

semantic meaning of human motion and would like to retrive top-k most similar mo-

tions based on a given query of interest. Moreover, the data and/or query might

come in streaming manner which introduces challenges about how to incrementally

maintain indexing schemes to achieve performance guarantee including query accu-

racy and efficiency. In real world data in multi-dimensional space is often associated

with temporal information hence makes it time-series data, for instance, data from

weather forecast, stock market, medical ECG etc. Essentially a time series data is a

series of data points indexed in timely order, such as a sequence taken at successive

equally spaced points in time. Time series can be a univariate time series is a series

of data with a single time-dependent variable whereas a multi-variate time serires

has more than one time-dependent variable such that each variable might depend not

only on its past values but also has some dependeny on other variables.

1.1 Time Series

A time series is a series of data points indexed in time order which embeds obser-

vations with temporal information and is ubiquitous in the presence of Internet-of-

Things(IoT). Analysis and exploration tasks of time series such as prediction, cluster-

1

ing, classification, sub-sequence matching and similarity search often require proper

indexing structure for various types of time series data under different application sce-

narios. Here I will first address the challenges and common strategies in uni-variate

time series indexing then discuss the difficulties and techniques in the presence of

multi-variate time series. Then I will introduce the proposed RMT feature based

indexing.

1.1.1 Uni-variate Time Series

A time series T is an ordered list of observations: T = (t1, t2, . . . , tm) where

1, 2, . . . , m represent time steps, which can also be viewed as dimensions. To index

T the major challenge lies in the precense of dimensionality with timely order. A

common approach is to reduce the dimensionality of a given time series data record

either through global or local features or aggregation based representation methods.

More specifically,

• patterns and features are able to describe the salient properties of the data

and they often contain less volume compared to the original data T hence can

be used for indexing Candan and Sapino (2010a). Popular approaches include

extraction of global features of the times series, for instance, spectral proper-

ties quantified using a transformation (Discrete Cosine or Wavelet Transforms).

Global fingerprints for example, can also be leveraged for indexing puroses, for

instance correlations, transfer functions, variate clusters and spectral proper-

ties Li et al. (2010) that can be computed using SVD or eigen-decompositions.

Alternatively, it has been noticed in research community that repeated pat-

terns of interest can also describe the behvior of a given time series data record

T hence can be studied for indexing. These repeated patterns are commonly

known as motifs which again can be searched and computed for idnexing purpose

2

Esling and Agon (2012); Mohammad and Nishida (2009). Local features or fea-

tures carry localized temporal information of interest, can also be leveraged for

time series indexing. Popular approaches include landmarks Perng et al. (2000),

shaplets Rakthanmanon and Keogh (2013); Ye and Keogh (2009), snippets

Wang and Candan (2010), longest common subsequences (LCSS) Vlachos et al.

(2006). Candan et al. (2012b) has been proposed in the past for comput-

ing salient local features, which are robust against noice. Additionally, RPM

Wang et al. (2016a) and STS3 Peng et al. (2016a) are two recent methods that

search informative patterns that serve indexing purposes.

• A popular aggregation based method is Symbolic Aggregate approXimation

(SAX) Lin et al. (2003a) which is based on Piecewise Aggregate Approximate

(PAA) Keogh et al. (2001): the design of PAA relies on the fact that time series

data can be approximated by segmenting the sequences into equi-length sub-

sections and recording the corresponding mean value, which is simple and quick

to obtain. In SAX, a uni-variate time series is first transformed into its PAA

representation with a fixed window size. Afterwards, each sub-sequence mean

is quantized over a symbolic alphabet through a Gaussian filter that takes into

account the minimum and maximum values from the time series of interest.

1.1.2 Multi-variate Time Series

With the notion of uni-variate time series discussed above, the multi-variate

counter part can be represented as: Y (t) =< T1(t), T2(t), . . . , Tn(t) > where n is

the number of variates. A straightfoward indexing technique for multi-variate time

series is that one can treat each and every variate independently, apply the uni-variate

indexing scheme then aggregating them together. This method will introduce am-

3

biguity at later phase when performing similarity search, ranking or classification

tasks since pair-wise variate comparison has to be enforced and how to combine and

aggregate similarity or score across different variates can introduce overhead cost.

Tasks such as effective search and analysis of multi-variate time series often re-

quires more complicated tools or systems, with monitoring and understanding the

temporal evolution of complex phenomena.

!"##$

!%#$

#$

%#$

"##$

"%#$

"
$

&
'
$

%
(
$

)
%
$

"
"
*
$

"
+
"
$

"
,
'
$

"
'
(
$

&
&
%
$

&
%
*
$

&
)
"
$

*
#
'
$

*
*
(
$

*
,
%
$

*
'
*
$

+
&
"
$

+
+
'
$

+
(
(
$

%
#
%
$

%
*
*
$

%
,
"
$

%
)
'
$

,
"
(
$

,
+
%
$

,
(
*
$

(
#
"
$

(a) Sample motion data (b) Sensors

Figure 1.1: A multi-variate time series, tracking 62 sensors, created by body motion
capture Mocap (2001)

In presence of multiple aspects of recorded sensory data, researchers often face

a complex sequence, as seen in Figure 1.1 which is a multi-variate time series of 62

variates from a gesture dataset (MoCap Mocap (2001)). The variates do not show

the same trend, but often there are subgroups of variates evolving together. Treating

them as uni-variate time series and aggregating them together might not be sufficient

enough to completely understand the pattern.

Operations such as clustering and indexing of multi-variate time series are in need,

yet these tasks can be difficult due to the nature of the data:

• time series can be extremely large: i.e. the recording of a temperature in a room

4

every five minutes for one year.

• time series can be affected by noise.

• There can bemissing or anormaly subsequences within multi-variate time series.

External knowledge such as how the variates are connected can be leveraged to ex-

tra local features that invovle multiple variates, to describe temporcal characteristics

potentially at multiple scales. These features can thus be indexed to represent mult-

variate time series. Given these observations including variate relationships that are

nkown a priori, multi-variate time series can be described as Y =< Y (t), R > where R

represents dependency/correlation among individual variate. By leveraging the rela-

tionships in between different variates, Wang et al. (2014b) proposed a multi-variate

feature extraction technqiue: as in Candan et al. (2012b), it also (a) smoothes the

data to generate different version of the input object corresponding to different scales;

(b) compares neighboring points both in time and scale to identify regions where the

gradients are sufficiently large. SIFT-like features descriptors Lowe (2004a) are then

extracted to support indexing and search.

To understand the pattern and analyze the relationships among data, a well-

known approach is to learn models that contain a label indicating the ground truth

information. During pattern learning phase, current State-of-Art methods over

time series, such as Dynamic Time Warping (DTW) Bemdt and Clifford (1994);

Chen and Ng (2004), Symbolic Aggregate Approximation (SAX) Lin et al. (2003a);

Sakoe and Chiba (1978); Keogh (2002), focus on uni-variate time series data includ-

ing feature extraction Patel et al. (2002), indexing and corresponding retrieval tasks.

Many real-world scenarios, however, generate and/or consume multi-variate time se-

ries, such as IoT sensor data from heterogeneous sources, human motion sensors etc.

A common method is to treat each and every variate independently using the ap-

5

proaches for uni-variate time series and perform aggregations afterwards to achieve

the analysis for the multi-variate counter-part. Such methods would ignore the im-

portant correlation among variates when performing feature extraction and indexing

tasks at the beginning. Moreoever, points of interest or features of time series of-

ten spatial and temporal scopes which can also have multiple scales. For instance,

Figure 1.2 depicts the spatial and temporal scope of a point of interest that invovles

multiple variates for energy building: one event of interest occurs invovles sensor 1, 6,

7 and another invovles sensor 3, 4, and 8, which indicates their spatial group within

a building; each of these two events also has temporal scopes respecitvely indicating

the duration of the patterns.

!"#$%#&'!()"*

!
"
#
$
%
&
'(#
)
"
*

+,-"

!"#$%&'()*+%$"

(a) Spatial Scope (b) Temporal Scope

Figure 1.2: Multi-variate time series event of interest with scope information

Hence a novel framework to help experts adequately and systematically search for

and interpret multi-variate observations is in need.

6

1.1.3 Robust Multi-variate Temporal Features (RMT)

To solve these research challenges I introduce Robust Multi-variate Temporal

(RMT) Features of Multi-variate Time Series Liu et al. (2018) which aims at de-

veloping data models and algorithms to detect features that are robust against noise

and can be indexed for efficient and accurate retrieval as well as for supporting data

exploration and analysis. More specifically, I first observe that multi-variate time

series often carry localized multi-variate temporal features that are robust against

noise Lowe (2004a). I then argue that these multi-variate temporal features can be

extracted by simultaneously considering, at multiple scales, temporal characteristics

of the time-series along with external knowledge, including variate relationships that

are known a priori Wang et al. (2014b). Generally speaking, features detected by

RMT share the following properties:

• they are more effective local-feature sets that can be identified if the aspects of

time and data can be considered independently, which leads to features with

heterogeneous scales along time and variates.

• these local features that involve multiple variates can help researchers better in-

terpret data which considers the variate-relationships for indexing constructions

of various tasks, supporting decision making department Poccia et al. (2017);

Liu et al. (2016, 2015) all of which will be introduced in the following sections.

1.2 Analytical Systems Based on RMT Algorithm

With the concept of RMT features, researchers could design and leverage the

model and algorithms to help decision making systems detect and analyze the pat-

tern from large volumes of data. One major data exploration scenario is to analyze

diffusion process of infectious diseases which requires the insights of demographic

7

data, contact networks, age-specific contact rates, mobility networks and health-care

and control intervention data and models. I explore how to leverage RMT features

and corresponding techniques to build systems to solve real-world problems. I in-

troduce NOTES2: Networks-of-Traces for Epidemic Spread Simulations to help with

decision making and intervention against infectious diseases which require analysis

of large volumes of data including demographic data, contact networks, age-specific

contact rates, mobility networks, and health-care and control intervention data and

models. More specially, NOTES2 supports analysis and indexing of simulation data

sets as well as parameter and feature analysis, including identification of unknown

dependencies across the input parameters and output variables spanning the different

layers of the observation and simulation data. It aims at assisting experts and helping

them explore existing simulation trace data sets. Figure 1.3 depicts different layers

of NOTES2 framework.

Figure 1.3: Differnt layers from NOTES2 framework

More specifically, the networks-of-traces(NT) data refers to:

8

• Network Layers: An epidemic simulation requires one or more layers of net-

works, from local and global mobility patterns to contact networks.

• Disease Models: it describes the epidemiological parameters relevant to a sim-

ulation and the parameter dependencies necessary in the computation of the

disease spread.

• Simulaiton Traces: For a given disease study, researchers and decision mak-

ers often perform multiple simulations, each corresponding to different sets of

assumptions (disease parameters or models) or context (e.g. spatiotemporal

context, outbreak conditions, interventions).

• Disease Observation Traces: These include real-world observations relating to

particular epidemic, including the spread and severity of the disease and obser-

vations about other relevant parameters, such as the average length of recovery

or percentage of infectious individuals that undergo pharmaceutical treatment.

• External Interventions: In an outbreak, public health and disease control agen-

cies implement various medical or social interventions, quarantines and/or

school closures.

Carefully calibrated large-scale computational models of epidemic spread are be-

ing increasingly used for generating forecasts of the spatialtemporal progression of

epidemics at different spatial scales and assessing the likely impact of different in-

tervention strategies. In such real-life scenarios, experts often lack of a systematic

analytical tool to study the pattern and indexing scheme for simulation ensembles,

hence I extend NOTES2 to EpiDMS: Data Management and Analytics for Deci-

sion Making from Epidemic Spread Simulation Ensembles. EpiDMS is designed to

solve the challenges posed by the management and analysis of simulation ensembles

9

stemming from large-scale computational model especially when dealing with mul-

tiple inter-dependent parameters, spanning multiple layers and geo-spatial frames,

affected by complex dynamic processes operating at different resolutions. Moreover,

it helps solve the problems that arise from the need to generate, search, visualize, and

analyze in a scalable manner which invovles large volumes of epidemic simulation en-

sembles and observations during the progression of an epidemic. EpiDMS aims to

fill an important gap in decision making during health-care emergencies and enabling

critical services with significant economic and health impact.

!
"
#
$
%
&'
(
)
*+
%
,
,
(
-&

.
)
/
01
2
'2
*+
%
,
,
(
-&

#,'3'4

!"&#-)/0*+'5%0/&'()*!)6')#2*7+8!9:

#,'+&(-#

;/-/5#&#-*/)<*

9(<#0*.)/012'2

=#/&%-#*!"&-/$&'()*

/)<*>)<#"')6

#,'?%)

@%#-1*/)<*+#/-$A

B0%2&#-')6*/)<*

B0/22'C'$/&'()

Figure 1.4: EpiDMS system framework

EpiDMS shown as Figure 1.4 is proposed and designed to solve the challenges

posed by the management and analysis of simulation ensembles stemming from large-

scale computational model especially when dealing with multiple inter-dependent

parameters, spanning multiple layers and geo-spatial frames, affected by complex

dynamic processes operating at different resolutions. This problem is compounded

10

by the need to generate near real-time decision-making assessments as the situation in

the field changes, which may require the generation of ensembles consisting of 1000s

of simulation sets in order to capture a comprehensive range of plausible transmission

and control scenarios. EpiDMS also helps solve the problems that arise from the need

to generate, search, visualize, and analyze in a scalable manner which invovles large

volumes of epidemic simulation ensembles and observations during the progression

of an epidemic. This system framework aims to fill an important gap in decision

making during health-care emergencies and enabling critical services with significant

economic and health impact.

Simulations that are data- and model-driven may track 100s or 1000s of interde-

pendent parameters, spanning multiple layers and spatial-temporal frames, affected

by complex dynamic processes operating at different resolutions. Because of the size

and complexity of the data and the varying spatial and temporal scales at which

the key processes operate, experts often lack the means to analyze results of large

simulation ensembles, understand relevant processes, and assess the robustness of

conclusions driven from the resulting simulations. Moreover, data and models dy-

namically evolve over time requiring continuous adaptation of simulation ensembles.

To solve these problems, SIMDMS: Data Management and Analysis to Sup-

port Decision Making through Large Simulation Ensembles is introduced as

an extension of EpiDMS: it aims to address the key challenges underlying the creation

and use of large simulation ensembles and enables (a) execution, storage, and indexing

of large ensemble simulation data sets and the corresponding models; and (b) search,

analysis, and exploration of ensemble simulation data sets to enable ensemble-based

decision support. SIMDMS shown in Figure 1.5, shares similar architecture with

EpiDMS.

Obtaining and leveraging simulations remains challenging due to parameter track-

11

Figure 1.5: SIMDMS system framework

ing and large number of unknowns, hence decision makers usually need to generate

ensembles of stochastic realizations, requiring 10s-1000s of individual simulation in-

stances. The situation on the ground evolves unpredictably, requiring continuously

adaptive simulation ensembles. To address those challenges from a more general point

of view, I and my research team developed DataStorm-FE: A Data- and Decision-Flow

and Coordination Engine for Coupled Simulation Ensembles, as shown in Figure 1.6,

which extends the application scenarios from epidemics to more general cases: nat-

ural disasters. DataStorm-FE is introduced for creating and maintaining coupled,

multi-model simulation ensembles, which also enables end-to-end ensemble planning

and optimization, including parameter-space sampling, output aggregation and align-

ment, state and provenance data management, to improve the overall simulation pro-

12

cess. It also aims to work eciently, producing results while working within a limited

simulation budget, and incorporates a multivariate, spatiotemporal data browser to

empower decision-making based on these improved results.

Figure 1.6: DataStorm system framework and data flow

1.3 Retrieval Tasks in Multi-Dimensional Space

To further explore queries and information retrieval over data in multi-dimensional

space, I extend my reserach topic from multi-variate time series data to multi-

dimensional data indexing Fagin et al. (2001); Heo et al. (2010); Gionis et al. (1999);

Borzsony et al. (2001); Papadias et al. (2005); Tan et al. (2001); Papadias et al.

(2003) for analysis such as top-k query processing which is critical and remains chal-

lenging in many decision support applications under different sceanrios.

13

1.3.1 Top-K Query Processing in Multi-dimensional Space

My research then extends to the topic of indexing and query processing for data in

multi-dimensional space, especially for retrieval tasks such as top-k query processing.

A naive and straightfoward approach to answer top-k query is to sequantially scan

all database objects, compute and combine the scores, sort and output top-k most

promising results. An alternative method is to leverage the join operation within

relational database management system (RDBMS): map the query into a join query

that joins the output from single-attribute queries, and then sorts the joined results

based on combined scores. Neither of the two approahces scale well w.r.t number

of attributes (dimensions) and database size. In this section, I will first discuss

the existing optimziations to answer top-k queries then I will briefly introduce my

proposed framework.

Existing algorithms, especially within popular RDBMS have made optimziations

to process top-k queries from various aspects such as query model design, how to ac-

cess data, ranking function, etc Ilyas et al. (2008). Some popular approahces include:

• Both Sorted and Random Access: In this case, top-k processing strategies as-

sume the availability of both sorted and random access among all data resources.

One of the well-adapted algorithms TA Fagin et al. (2003). It leverages bound

information such that it first scans multiple lists representing different rankings

of the same set of objects. An upper bound score threshold T is maintained

for the overall score of unseen objects, where it is computed by applying the

scoring function to the partial scores of the last seen objects in different lists.

T is updated together with the scores of seen objects, every time a new object

appears in one of the lists. This algorithm terminates when T is smaller than

the k-th most promising score from the output. TA algorithm assumes the

14

costs of different access methods are the same and it does not have a restric-

tion on the number of random accesses to be performed, which can potentially

be expensive. Alternatively, Fagin et al. (2003) discussed a method, Combined

Algorithm (CA) that assumes the costs of access methods can be different and

comes up with a ratio between the costs of different accesses.

• No Random Access: In this case, top-k processing strategies consider the under-

lying sources only with sorted access to data objects according to their scores.

NRA Fagin et al. (2003) discussed above is a typical example, which leverages

bound information as well to achieve top-k retrieval. which receives a set of

sorted lists (each represents sorted attributes) and searches for top-k answers

by exploiting only sorted accesses. It may not report the exact object scores

since it produces top-k answers using bounds computed over the exact scores.

• Generic (Arbitrary) Ranking Function: In some scenario it is unncessary or

sometimes infeasible to define a ranking function. Instead, users can simply

establish a relationship which can be arbitrary simply to inform the system

which data object is preferrable over the other. For instance, skyline queries

Borzsony et al. (2001) can fall into this category: it returns a set of points that

are not dominated by any other point across all dimensions. The dominance-

relationship can be arbitrary across each and every dimension (data attribute).

• Approximate Query Processing: RDBMS is often used for exact query pro-

cessing yet with careful design of algorithms and frameworks, the model can

be leveraged to answer approximate queries: either as a trade-off in between

query accuracy and query processing time, or over incomplete data with a per-

formance guarantee. For instance, Theobald et al. (2004) adapts TA algorithm

Fagin et al. (2003) to fit into the scenario of approximate query processing by

15

associating probabilistic guanratees with top-k answers. Additionally, in the

presence of high dimensional data, known as the curse-of-dimensionality, re-

trieval queries such as top-k processing, becomes computationally difficult, also

good enough top-k result sets are often sufficient instead of exact ones in a timely

response manner. Taking these into consideration, Locality Sensitive Hashing

(LSH) Indyk and Motwani (1998) is proposed to solve nearest neighbor, which

can be extended to answer top-k query as well.

Because of the inherent cost of top-k query processing, several indexing, optimization

and approximation techniques has been explored. Among them, Locality Sensitive

Hashing (LSH) Gionis et al. (1999); Gan et al. (2012); Datar et al. (2004) has been

proved to be an efficient and effective tool for indexing and query processing. In

real life, however, researchers often face limited computation resources such as RAM,

CPU, etc. Furthermore, information such as data distribution and clustering from

data itself can provide critical insights of how to leverage limited resources effectively.

To address these challenges discussed above, I introduce a novel indexing struc-

ture, OLSH: Onion-LSH with Layer-Aware Resource Allocation for Ap-

proximate Top-K Query Processing to approximately answer top-k queries in

multi-dimensional space. More specifically, the indexing structure relies on the well-

known Onion technique Chang et al. (2000) to organize the data in layers of convex-

hulls to produce top-k results incrementally. Distinctly from the prior work, however,

to improve efficiency and reduce data access, data in each layer is stored in Locality

Sensitive Hashing (LSH) buckets that enable approximately accurate retrieval of the

relevant data elements from each layer in a faster retrieval manner. One key chal-

lenge with this approach is that under LSH scheme Neyshabur and Srebro (2015);

Shrivastava and Li (2014) there is often a trade-off between available hashing re-

sources and the accuracy. Moreover, the accuracy guarantees that conventional LSH

16

schemes provide are often formulated as a function of the distance from the query

in the multi-dimensional space as opposed to the number of top results returned. I

complement the OLSH index structure with a layer-aware (LA) resource allocation

strategy, which takes into account the distribution of the data and the number of

results required to allocate the available hashing resources among the storage layers.

More specifically, OLSH is distinct from the prior work such that:

• To improve efficiency and reduce data access, data in each layer is stored in LSH

buckets that enable approximately accurate retrieval of the relevant data ele-

ments from each layer. One key challenge with this approach is that under LSH

there is often a trade-off between available hashing resources and the accuracy.

• The accuracy guarantees that conventional LSH schemes provide are often for-

mulated as a function of the distance from the query in the multi-dimensional

space as opposed to the number of top results returned.

As dimensionality goes up, however, convex hull computation of Onion technique

becomes computational infeasible. To tackle the case of high dimensionality and

potential streaming data and queries with limited hash resources using LSH indexing,

I introduce a LSH framework PLSH, based on a partition strategy using the l2

norm of data such that database is pre-processed into different bins. To answer top-

k queries, candidates from different bins need to be calcualted and yet data from

different bins vary. To quantify this approach, the proposed framework first learn the

statistics by leveraging a set of test queries, to see the distribution of ground truth

results across different bins; it then learns the distribution to represent the weight

or contribution, followed by resource allocation strategy to distribute limited hash

resources such that the more contribution a bin has, the more computation resource

it should be allocated. In a nutshell, the main contributoin of PLSH are in two fold:

17

• An efficient partition strategy that helps deal with data in high-dimensional

space with performance guarantee

• A data driven statistics learning progress based on queries, to help direct the

resource allocation process

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 describes related works

in the literature. I then discuss the RMT feature extraction framework in Chapter 3,

followed by RMT-based frameworks and systesms in Chapter 4. In Chapter 5 and 6

I formulate the tasks of solving top-k retrieval problems in multi-dimensional space

using approximate indexing scheme with limited computation resources. Finally I

conclude my thesis in Chapter 7.

18

Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, I will introduce the literature of time series representation and in-

dexing, including the challenges people are facing as well as the background on query

processing in high dimensional space, especially for answering top-k queries.

2.1 Time Series Feature Extraction And Similarity Measures

The analysis and exploration of time series often start with extraction of patterns

and features that describe salient properties of the data. Popular approaches in the

literature include extraction of global features of the time series (such as spectral

properties quantified using a transformation; e.g. Discrete Cosine or Wavelet Trans-

forms) and the use of these global features (which describe properties of the time series

as a whole) for indexing Candan and Sapino (2010a). In Papadimitriou et al. (2005)

the authors proposed SPIRIT, this approach discovers patterns from multiple time

series streaming. The authors proposed to identify correlations and hidden variables

among the multiple time series by applying Principal Component Analysis, in order

to summarize the entire set of streams and provide useful means in efficient forecast-

ing. The SPIRIT also satisfies the important requirements of an efficient streaming

pattern discovery procedure scaling linearly with the number of time series, adapting

to changes and being automatic. In Ji et al. (2007) the authors proposed a feature-

extraction algorithm that extracts minimal distinguishing sub-sequences that can be

used as features. Correlations, transfer functions, variate clusters, and spectral prop-

erties De Silva et al. (2010).

SVD and similar eigendecompositions can be used for extracting global finger-

19

prints of multi-variate time series data Li et al. (2010). The analogous analysis op-

eration on a tensor, which can be used to represent temporal evolution of multi-

modal data, is known as tensor decomposition Kolda and Bader (2009). Both matrix

and tensor decomposition operations, as well as other techniques, such as probabilis-

tic techniques (such as Dynamic Topic Modeling, DTM Blei and Lafferty (2006)),

and AutoRegressive Integrated Moving-Average (ARIMA) based analyses (which

separate a time series into autoregressive, moving-average, and integrative compo-

nents for modeling and forecasting Mills and Mills (1991)) are expensive. Several re-

searchers noticed that significant amount of waste in processing and exploration can

be avoided if the attention is directed towards parts of a given time series that are

likely to contain interesting patterns Candan et al. (2012b); Mohammad and Nishida

(2009). One way to achieve this involves searching for frequently repeating pat-

terns; this is commonly known as the motif search problem Esling and Agon (2012).

Most of the common approaches for motif search involve incrementally moving (or

shifting) a fixed-length time window starting from the beginning of the given time

series. For each window interval a temporal signature (such as SAX words Lin et al.

(2003a)) is generated (to speed up the matching of subsequences) and frequent sub-

sequences are discovered using different indexing and hashing algorithms and lever-

aging pruning techniques for eliminating non-promising subsequences Yankov et al.

(2007). Other local features of uni-variate time-series include landmarks Perng et al.

(2000), perceptually important points (PIP) Chung et al. (2001), patterns Batal et al.

(2012), shapelets Rakthanmanon and Keogh (2013); Ye and Keogh (2009), snip-

pets Wang and Candan (2010), longest common subsequences (LCSS Vlachos et al.

(2006)), and motif-based schemes (which search for frequently repeating temporal

patterns) Castro and Azevedo (2010). Morchen in Mörchen (2003) proposed using

DFT (Discrete Fourier Transform) and DWT (Discrete Wavelet Transform) for fea-

20

ture extraction because in DWT both temporal properties and frequencies are pre-

served whereas in DFT only frequency-based aspects are preserved Li et al. (2005).

In Aggarwal (2002), higher frequency feature generated from DWT illustrates global

features whereas lower frequency features denotes local features on temporal axis.

PCA-Similarity Factor Krzanowski (1979) and EROS (Extended Frobenius norm)

Yang and Shahabi (2004), that use matrix factorization techniques, such as singular

vector decomposition (SVD) and principle component analysis to transform the input

time series in equi-length time series allowing the usage of cosine similarity over them.

Applications of SVD and DTW for various multimedia tasks, such as similarity search,

classification, recognition, and watermarking, include Jin and Prabhakaran (2011a);

Kim and Prabhakaran (2011b); Li et al. (2007a); Mehta et al. (2013a). In Ji et al.

(2007), authors proposed a feature-extraction algorithm that extracts minimal dis-

tinguishing subsequences that can be used as features. uni-variate time series often

carry localized temporal features which can be used for efficient search and analy-

sis, in Candan et al. (2012b), authors developed an sDTW algorithm for extracting

salient local features (that are robust against various types of noise) of uni-variate

time series and showed that these can help align similar time series more efficiently

and effectively. RPM Wang et al. (2016a) and STS3 Peng et al. (2016a) are two

recent approaches that also seek informative patterns from uni-variate time series.

In Wang et al. (2014c), the authors, starting from the sDTW idea, proposed to ex-

tract and use SIFT Lowe (1999a, 2004a)-like robust multi-variate temporal features

to determine similarity between multi-variate time series. Assuming that a relation

across variates of a multi-variate time series exists, one RMT feature describes one

sub-sequence of a multi-variate time series (for both temporal and dependency) al-

lowing fast similarity search.

Various similarity (distance) metrics are proposed and applied afterwards to com-

21

pute pair-wise similarity (distance) score such that tasks such as pattern match-

ing, top-k retrieval, etc, can be realized. Euclidean distance and, more generally

Lp-norm measures, were among the first used to determine the similarity between

two time series. They require that the time series being compared are of same

temporal length and, since they assume strict synchrony among time series, they

are not suitable when two time series can have different speeds or are shifted in

time Chen (2005); Keogh and Ratanamahatana (2005). Other measures that require

equal length and perfect synchrony across time series include cosine and (Pearson’s)

correlation similarity Salton and McGill (1983). In contrast, edit distance Kruskal

(1983) measures aim to determine the minimum sequence of edit operations that are

required to measure similarity. In 70s Sakoe Sakoe and Chiba (1978) and then in

mid 90s, Berndt Bemdt and Clifford (1994) proposed dynamic time warping (DTW)

technique to find an optimal alignment between two given (time-dependent) sequences

under certain restrictions. Intuitively, DTW considers all possible warping paths that

can warp (or transform) one series into the other and picks the warping path that

has the lowest cost. DTW has found wide acceptance and last two decades have

seen several innovations Chen and Ng (2004); Keogh and Ratanamahatana (2005);

Ding et al. (2008); Keogh (2002); Rakthanmanon et al. (2012). For example, while

the original DTW is not metric (does not satisfy triangular inequality) Chen and Ng

(2004) proposed an extended version of DTW that satisfies triangular inequality.

Most of the above algorithms, including DTW, are initially designed for comparing

uni-variate time series. More recently, various extensions of DTW have been proposed

for multi -dimensional time series Sanguansat (2012); Poccia and Garg (2017). The

most prevalent of these are the vectorized and independent extensions. In vectorized

DTW, a multi-variate time series is considered as a sequence of vectors, where the

length of vector is equal to number of variates in the time series. The DTW algorithm

22

is then applied using the distances among these vectors instead of differences in sig-

nal amplitude. In independent DTW, however, each variate is treated independently

from the others and DTW is applied separately to each; finally, these independent

DTW distances are added to compute the overall distance between the given pair of

multi-variate series.

An alternative approach to the above techniques is to extract features from the

given time series and use these features to compute similarity/distance instead of

the original series. We provided a detailed discussion of the related work on global

and local features in the previous section. Ji et al. (2007), for example, proposed a

feature-extraction algorithm that extracts minimal distinguishing subsequences that

can be used as features. Morchen in Mörchen (2003) proposed using DFT (Dis-

crete Fourier Transform) and DWT (Discrete Wavelet Transform) for feature ex-

traction. PCA-Similarity Factor Krzanowski (1979) and EROS (Extended Frobenius

norm) Yang and Shahabi (2004), that use matrix factorization techniques, such as

singular vector decomposition (SVD) and principle component analysis, have also

been proposed to transform the input multi-variate time series into equal length

and then apply cosine similarity over them. Applications of SVD and DTW for

various multimedia tasks, such as similarity search, classification, recognition, and

watermarking, include Jin and Prabhakaran (2011b); Kim and Prabhakaran (2011a);

Li et al. (2007b); Mehta et al. (2013b); Shuai et al. (2017). Figure 2.1 shows a clas-

sification of all the possible uni-variate representations.

In terms of multi-variate time series, widely adopted approaches often apply fea-

ture extraction process first over each and every variate respectively then aggregate

points of interest from single variates to arrive at a representation for multi-variate

counterparts. This method, however, failed to capture the relationship among differ-

ent variates to represent more meaningful features which carry (a) scope information

23

Figure 2.1: A taxonomy of the time series representations Lin et al. (2003a)

(b) multiple scales. For instance, as shown in Figure 1.2 users can query events of

interest with different scopes and/or scales and to answer this type of queries, novel

approaches are in need.

Wang et al. (2014b) proposed to extract and use SIFT Lowe (1999b, 2004b)-like

robust multi-variate temporal features to determine similarity between time series.

I then extend the approach with more general scale-space construction and pruning

techniques to obtain better classification performances. The general framework is

named RMT for both papers, but the underlying techniques here are significant ex-

tensions of Wang et al. (2014b): In particular, Wang et al. (2014b) utilizes a special

case of our proposed generalized scale-space construction and pruning techniques,

where only diagonal scale space is considered. In my work, however, I argue (and ex-

perimentally show) that, in general, using a more complete scale-space can be more

effective. While Wang et al. (2014b) considers only one scheme for time series match-

ing using RMT features, my work introduces several alignment measures (including

for alignment of features pairs and measuring feature significance) and provides a

detailed study of the impact of these measures on the classification accuracies.

2.2 Locality Sensitive Hashing

As we discussed in the introduction, as the data dimensionality gets higher, the

performance of multi-dimensional index structures to support nearest neighbor search

24

gets negatively effected. Locality Sensitive Hashing (LSH) presents an alternative that

often scales better than traditional index structure, but achieves this performance gain

through relaxation of the exact retrieval requirement.

Initially proposed in Indyk and Motwani (1998); Gionis et al. (1999), LSH uses

hash functions to map high dimensional data to lower dimensional representations

such that the similarity relationships among data elements are preserved. Intuitively,

data elements that are similar in high dimensional space are likely to be similar to

each other in the lower dimensional representations. This is often formulated in the

form of an (r, c)-Near Neighbors problem: every point p that lies within a distance of

r from query point q should be reported with a probability guarantee of at least 1− δ

(where δ is a user-specified error probability), whereas points lie beyond distance of

c × r, for some c > 1, from the query point q should have a very low probability of

being reported in the result set. The higher the success probability, the higher is the

accuracy for the results:

Definition 1 A hash function family H is said to be (r, c, P1, P2)-sensitive if it sat-

isfies all the following conditions for any two points x and y in a data set D ⊂ Rd:

• if |x− y| ≤ r, then Pr[h(x) = h(y)] ≥ P1 and

• if |x− y| > cr, then Pr[h(x) = h(y)] ≤ P2.

Here c is the approximation ratio, P1 and P2 are probabilities, typically c >

1 and P1 > P2 to guarantee the hashing scheme to work. In general, the lower

dimensional representations are obtained through random projections. For instance,

in the original LSH scheme for Euclidean distance, a given vector v is hashed using

the function ha,b(v) =
a.v + b

w
, where a is a d−dimensional random vector with values

generated independently from the standard normal distribution and b is a real number

chosen uniformly from [0, w), such that w is the width of the hash bucket Datar et al.

25

(2004). Various other LSH hash families Indyk and Motwani (1998); Wang et al.

(2014a); Neyshabur and Srebro (2015); Shrivastava and Li (2014); Sun et al. (2014);

Huang et al. (2018) have been explored for different distances or similarities, including

lp distance (LSH with p−stable distributions).

The LSH scheme indexes all data into hash tables: data points are mapped to

buckets based on their hash values and LSH searches for near items via hash table

lookups. Such bucketing may, however, lead to misses as well as false positives. Given

a distance metric and a corresponding LSH family, LSH data structures control their

precision and recall by using multiple independently chosen hash functions organized

into several hash layers: intuitively, conjunctively combined hashes within each hash

layer reduce false positives where disjunctively combined layers of hash functions help

avoid misses. To control false positives, basic LSH concatenates 1 κ hash functions

(h1(x), . . . (hκ(x)) to create a compound hash function g(x) = (h1(x), . . . hκ(x)) for a

single hash layer. The output of this compound hash function identifies a bucket ID

in a hash table. As the number of hash functions in layer increases, the false positive

rate drops, but (as a side effect) the recall also suffers. In order to improve the recall

rate, LSH creates L hash layers (tables) g1, g2, . . . , gL each consisting of κ hash func-

tions. At each layer, the corresponding hash functions are concatenated to associate a

single combined hash value for each data object and L hash tables are constructed to

index the buckets corresponding to individual hash layers. During query processing,

items lying in (or near) the corresponding L hash buckets are retrieved as potential

answers to the given query. Various bucket organization schemes, including query and

data distribution aware techniques, have been proposed to help reduce the data re-

dundancy, while providing accurate retrieval Lv et al. (2007); Nagarkar and Candan

1Note that, traditionally, the number of hash functions in a given layer is denoted using k;
however, since in this paper we use k to denote the number of results for the query, we use κ for the
number of hashes.

26

!

"#

"$
"%

"&

"'

"(

")

"*

"+

"#,

"#$
"##

Figure 2.2: Onion layers in 2-dimensions

(2018); Zhang et al. (2010); Joly and Buisson (2008); Liu et al. (2014); Bawa et al.

(2005); Gao et al. (2015); Gan et al. (2012); E2L (1999).

2.3 Layer-based Indexing and Query Processing in Multi-dimensional Space

The skyline Borzsony et al. (2001) of a d-dimensional dataset contains the points

that are not dominated by any other point on all dimensions. A point dominates

another if it is as good or better in all dimensions and better in at least one dimension

and the skyline operator is cruicial for applications that invovle multi-criteria decision

making. There are a few variations of skyline queries Papadias et al. (2005), including

skyband query : similar to K-nearest neighbor queries, a K-skyband query reports the

set of points which are dominated by at most K points such that K represents the

thickness of a skyline with K = 0 corresponding to a conventional skyline.

The Onion technique Chang et al. (2000) is a layer-based indexing structure (Fig-

ure 2.2) designed to answer top-k quereis. More specifically input data is partitioned

into convex-hull layers in multi-dimensional space, such that the outermost layer is

the convex hull for the entire dataset, the second outermost layer is the convex hull

for the dataset minus the data in the outermost layer, and so on. Geometrically

the partitioned structure looks like an onion, with layers corresponding to peels and

27

it guarantees that the optimal value for any linear preference function can always

be found at one or more its vertices. The property of outer layers enclosing innter

ones geometrically guarantee that given a top-k query, the Onion indexing structure

searches for the top result in the outermost layer and searches the 2nd best result in

the two outermost layers, up to the k outermost layers combined for the top-k search.

28

Chapter 3

ROBUST MULTI-VARIATE TEMPORAL (RMT) FEATURES OF

MULTI-VARIATE TIME SERIES

3.1 Introduction

In this section, we discuss data models and algorithms to detect local, robust multi-

variate temporal (RMT) features of multi-variate time series. Recently, in Wang et al.

(2014b), authors proposed a multi-variate feature extraction technique, which con-

sidered the relationships and dependencies between the individual uni-variate time-

series that make up the multi-variate series. The local, robust multi-variate temporal

(RMT) features are extracted leveraging known correlations and dependencies among

the variates. As in Candan et al. (2012a), for uni-variate series, Wang et al. (2014b)

also (a) smoothes the data to generate different version of the input object corre-

sponding to different scales and (b) compares neighboring points both in time (or in

x and y dimensions) and scale to identify regions where the gradients are large. As

in Lowe (2004b), SIFT-like feature descriptors are extracted to support search.

What makes the problem of extracting local features from multi-variate series

difficult, however, is that the concepts of neighborhood, gradient, and smoothing

are not well-defined in the presence of multiple variates. In Wang et al. (2014b),

authors argued that this difficulty can be overcome by leveraging metadata (known

correlations and dependencies among the variates in the time series) to define neigh-

borhoods, support data smoothing, and construct scale spaces in which gradients

can be measured. Based on this observation, authors proposed topology-sensitive

smoothing and topology-sensitive gradient computation techniques to identify local

29

features of multi-variate time series at different time/variate scales. In this section, I

show that unlike Wang et al. (2014b) (where the time and variate scales are shrank

and expanded together), more effective local-feature sets can be located if we allow

for the time and variate aspects of the multi-variate time series to be considered in-

dependently from each other – leading to multi-variate features with heterogeneous

time- and variate-scales.

3.2 Metadata-Enriched Multi-Variate Time Series (MMTS) Model

Before describing the process through which we extract RMT features, we first

introduce the metadata-enriched, multi-variate time series model underlying the pro-

posed approach. We present a metadata-enriched multi-variate time series (MMTS)

model which minimizes the assumptions that need to be made about the data struc-

ture:

Definition 2 (Metadata-Enriched Multi-Variate Time Series (MMTS)) A

metadata-enriched multi-variate (MM) time series is a four-tuple Y = (V,M,Y,D),

• V is a set of variates,

• M = {M1, . . . ,Mm} is a set of metadata modalities, where each modality Mi

describes how the corresponding subset Vi ⊆ V of variates are related to each

other,

• Y is a (d1 + d2 + . . .+ dm)× l data matrix, where

– l is the temporal length of the multi-variate time series,

– di = |Vi|, and

– cells of the matrix Y take values from the data domain D. ⋄

30

As defined above, each variate is associated with a modality metadata describing

how it is related with other variates. In this paper, without loss of generality, we

consider graph-organized (G) representation of variate modalities: Each modality, i,

has an associated graph Gi(Vi, Ei,Wi) that relates the variates Vi of the given mode.

Depending on the application, the graph maybe directed or undirected and weights

may have distance or similarity semantics. If the underlying graph is unweighted,

then for all ek ∈ Ei, Wi(ek) = 1.

Note that graph-based description of variate relationships is a common

way of modeling temporal dynamics of multi-variate time series Eichler (2006);

Harvey and Koopman (1997); Silva et al. (2010). Note also that, while the meta-

data describes the relationship between the variates, this relationship may or may

not have causal impact on the observed temporal characteristics of the data:

Definition 3 (Metadata-Defined Variate Causality Model) Let us assume

that we have metadata M that describe the relationship between the variates in the

data. Given M, under the variate causality model, we have Y[t] = RMY[t−1]+ ~E(t),

where Y[t] is a column vector extracted from Y and corresponds to the observations

at time t, RM is a (row-normalized) matrix defining how the values of Y at time

t− 1 impact the values of Y at time t, and ~E is a multi-variate time series denoting

independent, external inputs. ⋄

Intuitively, RM is a matrix describing how the values of one variate are impacted

by the past values of the variates in the data. Alternatively, RM may be a matrix

describing the relationships among simultaneous observations:

Definition 4 (Metadata-Defined Variate Correlation Model) Let us assume

that we have metadata M that describe the relationship between the variates in the

data. Given M, under the variate correlation model, we have a matrix RM such that

31

!
"
#
$"
%
&
'
(

)*&(

!"#$%&'()*+'%

,-"+)%&'()*+'%

!"#$

%
&
'
(&
)
#
*
$

!"#$%&"'

()$*'#'+#&,"'-#&)#$"'."$'

!"#$%&"'

()$*'#'./#++'-#&)#$"'."$'

(a) Different lengths (b) Different numbers of variates

Figure 3.1: Multi-variate features can be of different sizes (in this example, the
multi-variate series represent temperature readings in a floor split into zones)

RM[i, j] = Φ(Y[∗, i],Y[∗, j]) ∈ [0, 1]. Here Y[∗, i] and Y[∗, j] are rows corresponding

to observations for variates i and j, respectively, and Φ is an application specific

similarity function. ⋄

Here, Φ may be computed by comparing (recent) historical data of the time series or

may reflect available domain knowledge, such as the distance of the sensors recording

the variates or known relationships parameters.

It is important to note that the algorithms presented in the paper are applica-

ble under both of the above models 1 and we use the matrix RM to denote both

relationships.

3.3 Temporal and Variate Smoothing of Multi-Variate Time Series

Let Y = (V,M,Y,D) be a metadata-enriched multi-variate time series, as de-

fined in previous Section. The first step in identifying multi-variate features of Y

is to generate a scale-space representing versions of the given multi-variate series

with different amounts of details. As shown in Figure 3.2, the scale-space, Y, of Y

is obtained through iterative smoothing across both time and variate relationships,

1Thus, without loss of generality, we sometimes focus on the dependency model and, other times,
use the correlation model.

32

starting with an initial smoothing parameter Σ0 = 〈σtime,0, σvar,0〉 and iteratively in-

creasing the smoothing degree up to Σmax = 〈σtime,max, σvar,max〉, obtaining differently

smoothed versions of the time series.

The values of Σ0 and Σmax control the sizes of the smallest and largest features

sought in the data. In the rest of this section, we will first describe temporal and

variate smoothing techniques. We will then describe optimizations to reduce the cost

of the scale-space construction step of the process. For each of the techniques, we will

also discuss the relationship among Σ0, Σmax, and the sizes of the features identified.

!"#$

!"

#"

$"

%"

&"

'"

7"

8"

Y, multivariate time series

 "#$

 $

!$

"$

!$
#$

$$

%$

%$

!"

#"

$"

%"

&"

'"

7"

8

low-resolution

multivariate time series

H,dependency graph

 !"$!#$%&&((##$'!%

#
$
&
)
(
"
!
%
%&
&
(
(
#
#
$'
!
%

 "#$!$

"$

#$

!$

$$

%$

&$

%$

%

! %

%

aggregated multivariate

time series

low-resolution

dependency graph

 !"

"!"
#!"

 $

!$

"$

 $

#$

$$

%$

!$

 !"

"!"
#!"

aggregated multivariate

time series

 !"

"!"

#!"

 "#$

low-resolution

dependency graph

 $

!$

"$

 $
#$

$$

%$

!$

H,dependency graph

Figure 3.2: Scale-space construction through smoothing in time and variates

3.3.1 Temporal Smoothing

Let Y = (V,M,Y,D) be a metadata-enriched multi-variate time series and let

Yv = Y[∗, v] be a uni-variate time series corresponding to one of its variates. Let Y
(σ)
v

indicate a version of the uni-variate time series, Yv, smoothed through convolution

with the Gaussian function, G(t, σ) = 1√
2πσ

e
−t2

2σ2 , with temporal smoothing parameter

σ (Figure 3.3). Given this, Y(time,σ) = (V,M,Y(time,σ),D), is a version of the multi-

variate time series, Y, where each row of Y(time,σ) is a uni-variate time series smoothed

33

t-3 t-2 t-1 t t+1 t+2 t+3

Figure 3.3: Gaussian smoothing of a
uni-variate series for time instant, t

c

a

d

b

e

f

g

h

i

l

k

j

+1-hop +2-hop +3-hop-1-hop-2-hop

n

p

m

o

-3-hop

Figure 3.4: Graph smoothing for a
node

with temporal smoothing parameter σ, independently of the other uni-variate series.

Temporal Scope: Let us consider a time instant t on which we are applying Gaus-

sian smoothing with parameter σ. Since, under Gaussian smoothing, 3 standard

deviations (i.e. 3σ both directions) would cover ∼ 99.73% of the contributions to the

smoothed values, we can define the corresponding temporal scope as a time interval,

centered at t, of length 6σ; in other words, we have scopeT (t, σ) = [t−3σ, t+3σ). Con-

sequently, if the temporal length of a multi-variate time series is L, then we must have

σtime,max ≤ L/6. Similarly, since we expect that the smallest feature should involve a

time instant and at least its two immediate neighbors, we also have σtime,0 ≥ 2/6.

Octaves of Temporal Smoothing: Let σ1 and σ2 be two smoothing parameters.

The parameter σ2 is said to be an octave larger than σ1 if σ2 = 2σ1. σ2 defines

features twice as large as σ1 by using a Gaussian smoothing parameter twice as large.

3.3.2 Variate Smoothing

As described above, the temporal smoothing process relies on a convolution op-

eration that leverages the temporal ordering of the time instants in the series. The

challenge is that a similar total order does not necessarily exist among the variates –

therefore, the definition of variate smoothing is not as straightforward.

34

Gaussian Smoothing of Graph-Organized Variates: Let Y = (V,M,Y,D) be

a metadata-enriched multi-variate time series, where the metadata M is graph-

structured; i.e., there is a graph G(V,E,W) that relates the variates, V , of the data.

Let us further define frwdG(vl, δ) and bkwdG(vl, δ), as the forward and backward

neighbors of variate vl ∈ V at a distance ≥ (δ−0.5) and < (δ+0.5) on G. Intuitively,

frwdG() and bkwdG() functions order all the variates into a partial order relative to

the variate vl.

Given the partial order defined by the frwdG() and bkwdG() functions and a non-

negative smoothing parameter σ, we then obtain the Gaussian smoothed version,

Y(var,σ) of the matrix Y as follows: Let Y[t] be a column vector extracted from Y

corresponding to the observations at time t. Then, for all vl, we have Y(var,σ)[t, l]

equal to

AV G

vh∈
frwdG(vl,0)

∪
bkwdG(vl,0)

Y[t, h]

+

∞
∑

δ=1

G(δ, σ)

(

AV G
vh∈frwdG(vl,δ)

Y[t, h]

)

+

∞
∑

δ=1

G(δ, σ)

(

AV G
vh∈bkwdG(vl,δ)

Y[t, h]

)

.

Figure 3.4 shows how we apply Gaussian smoothing over a relationship graph.

The lower half of the figure shows a variate a and its forward and backward k-hop

neighbors in the relationship graph. As shown in the upper half of the figure, when

identifying the contributions of the variate on a, Gaussian smoothing is applied along

the hop distance. Since at a given hop distance there may be more than one variate,

all the variates at the same distance have the same degree of contribution and the

degree of contribution gets progressively smaller as we get away from the variate for

which the smoothing is performed.

Variate Scope under Gaussian Smoothing: Similarly to the temporal scope, we

define the variate scope corresponding to variate vl at smoothing level σ as

35

scopeV (vl, σ) = {vl} ∪

⋃

δ≤3σ

frwdG(vl, δ)

 ∪

⋃

δ≤3σ

bkwdG(vl, δ)

 .

The variate smoothing parameters, σvar,0 and σvar,max, must be selected such

that for each variate vl, σvar,0 includes its immediate (one hop) graph neighbors,

forward neighbors(vl) and backward neighbors(vl) on G, and the value of δ corre-

sponding to σvar,max should be compatible with the diameter of the graph G.

Octaves of Gaussian Variate Smoothing: Let σ1 and σ2 be two Gaussian graph

smoothing parameters. Under Gaussian smoothing, the graph smoothing parameter

σ2 is said to be an octave larger than σ1 if σ2 = 2σ1.

3.3.3 Combined Time and Variate Smoothing

Given the definitions of temporal and variate smoothing functions, we now define

combined time and variate smoothing of metadata-enriched multi-variate time series:

Definition 5 (TV-Smoothing of a Multi-Variate Time Series) Let

Y = (V,M,Y,D) be a metadata-enriched multi-variate (MM) time series.

Recall that Y is a (d1+d2+ . . .+dm)× l data matrix, where l is the temporal length of

the multi-variate time series, di = |Vi|, and Y takes values from the data domain D.

For a given smoothing parameter, Σ = 〈σtime, σvar〉, the TV-smoothed version, Y{Σ},

of the multi-variate time series, Y, is defined as Y{Σ} =
(

Y(time,σtime)
)(var,σvar)

,

• Y(time,σtime) is a version of Y where each row (i.e., each uni-variate time series)

is temporally smoothed with smoothing parameter σtime, independently from the

rest; and

• X(var,σvar) is a version of X where each column (i.e., time instant) is smoothed

with smoothing parameter σvar, using the variable relationships and modalities

described by the metadata M. ⋄

36

3.4 Step 1: Scale-space Construction for Multi-Variate Time Series

As we have seen in Section 3.3, given a metadata-enriched multi-variate time

series, Y = (V,M,Y,D), first step in identifying multi-variate features of Y is to

generate a scale-space representing versions of the multi-variate series with different

amounts of details. In this paper, we consider two types of scale-spaces: diagonal and

full scale-spaces, described below.

Diagonal Scale-Spaces: Let Σ0 = 〈σtime,0, σvar,0〉 be the user provided smallest

temporal and variate smoothing parameters and let l indicate the total number of

layers in the scale space. An l-layer diagonal state space, Ydiag, is defined as a set

of data matrices {Y0, . . . ,Yl}, where Yi = Y{〈σtime,0 × ki, σvar,0 × ki〉}, for some

scaling parameter k > 1. Note that, in this case, we have σtime,max = σtime,0 × kl and

σvar,max = σvar,0 × kl. This will generate only the diagonal entries in the scale-space

shown in Figure 3.2.

Full Scale-Spaces: In contrast, the complete scale-space shown in Figure 3.2 is

generated as follows: Let

• Σ0 = 〈σtime,0, σvar,0〉 be the smallest temporal and variate smoothing parame-

ters,

• L = 〈ltime, lvar〉 indicate the number of temporal and variate smoothing layers,

and

• K = 〈ktime,, kvar〉 be scaling parameters for temporal and variate smoothings.

An L-layer full state space, Yfull, is defined as a set of data matrices

〈Y0,0, . . . ,Yi,j, . . . ,Yltime,lvar〉, where Yi,j = Y{〈σtime,0 × kitime, σvar,0 × kjvar〉}. In this

case, we have σtime,max = σtime,0 × kltime

time and σvar,max = σvar,0 × klvarvar .

Optimization: Time and Variate Subsampling: In the process described above, the

37

multi-variate time series is incrementally smoothed both in time and relationships,

halving details at each octave. We note that, once the details have been halved at

an octave boundary, performing the feature extraction operation at the same level

detail is going to be wasteful. To avoid such waste, we subsample the multi-variate

time series at octave boundaries (Figure 3.2). More specifically, at temporal octave

boundaries (where temporal details have been halved) we drop one out of every two

consecutive temporal observations, reducing the size of the data by half. Similarly,

at variate octave boundaries (where variate relationship details have been halved) we

reduce the numbers of variates by half by applying a variate clustering algorithm 2 .

3.5 Step 2: Identifying Multi-Variate Temporal Feature Candidates

Building on the observation Lowe (2004a); Candan et al. (2012b) that robust lo-

calized features are often located where the differences between neighboring regions

(possibly in different scales) are large, we seek RMT features of the given multi-

variate time series at the local extrema of the scale space defined by the difference-

of-smoothing (DoS) series. Naturally, the DoS generation and feature identification

process will be slightly different depending on whether a diagonal or full scale-space

is used.

Local Extrema in Diagonal Scale-Spaces: An l-layer diagonal state space of a

metadata-enriched multi-variate time series, Y = (V,M,Y,D), is defined as a set of

data matrices {Y0, . . . ,Yl}, where Yi = Y{〈σtime,0 × ki, σvar,0 × ki〉}, for some scaling

parameter k > 1. Given this, we create the corresponding DoS by considering a

sequence of difference matrices {D0, . . . ,Dl−1}, where Di = |Yi+1 − Yi| . We detect

RMT feature candidates by seeking the local maxima and minima of the resulting

2In the experiments reported in During experimentation, I use a k-means algorithm, where k is
equal to the half of the number of variates, based on the distances among sensors on the underlying
sensor-distance graph

38

DoS: each variate-time-scale (VTS) triple, 〈v, t, s〉, is compared to its neighbors (both

in time and variate relationships) in the same scale as well as the scales above and

below, and the triple is selected as a candidate only if it is close to being an extremum;

i.e., each 〈v, t, s〉 is compared against its 26 (= 33 − 1) neighbors in time, scale, and

variate relationships 3 . More specifically, for each 〈v, t, s〉, we compare Ds[v, t] against

max

Ds−1[v, t− 1] Ds[v, t− 1] Ds+1[v, t− 1]

Ds−1[v, t] Ds+1[v, t]

Ds−1[v, t+ 1] Ds[v, t+ 1] Ds+1[v, t+ 1]

FDs−1[v, t− 1] FDs[v, t− 1] FDs+1[v, t− 1]

FDs−1[v, t] FDs[v, t] FDs+1[v, t]

FDs−1[v, t+ 1] FDs[v, t+ 1] FDs+1[v, t+ 1]

BDs−1[v, t− 1] BDs[v, t− 1] BDs+1[v, t− 1]

BDs−1[v, t] BDs[v, t] BDs+1[v, t]

BDs−1[v, t+ 1] BDs[v, t+ 1] BDs+1[v, t+ 1]

,

where FDs[v, t] =
(

FDs

)

[v, t], BDs[v, t] =
(

BDs

)

[v, t], and F and B are two ma-

trices describing forward and backward relationships among variates. Intuitively, FD

accounts for the combined DoS values of the forward neighbors and BD accounts

for the combined DoS values of the backward neighbors of v. We declare the triple,

〈v, t, s〉, a candidate if the corresponding DoS value, Ds[v, t], is greater than Θ% of

the maximum of its 26 scale-neighbors in DoS, for some user provided Θ ∼ 100.

Local Extrema in Full Scale-Spaces: As seen earlier, an L-layer full state space,

Yfull, is defined as a set of data matrices 〈Y0,0, . . . ,Yi,j, . . . ,Yltime,lvar〉, where Yi,j =

Y{〈σtime,0 × kitime, σvar,0 × kjvar〉}. Given this, for each s = 〈i, j〉 pair, we can define

three differences:

Dt
i,j = |Yi+1,j − Yi,j| , Dv

i,j = |Yi,j+1 − Yi,j| , and Dt,v
i,j = |Yi+1,j+1 − Yi,j | .

3The number of neighboring triples may be less than 26 if the triple is at the boundary in terms
of time, scale, or variate relationship graph.

39

Local extrema are then identified by considering each variate-time-scale (VTS) triple,

〈v, t, s〉, and comparing max(Dt
i,j ,D

v
i,j,D

t,v
i,j) to 78 (= 3× 26) neighboring triples 4 of

〈v, t, s〉 in time, scale, and relationships for each of the Dt, Dv, and Dt,v. We finally

declare the triple, 〈v, t, s〉, a candidate if the corresponding DoS value, Ds[v, t], is

greater than Θ% of the maximum of its 78 neighbors in DoS.

3.6 Step 3: Eliminating Poor RMT Feature Candidates

: Local extrema of DoS can include candidate triples that are poorly localized.

In order to identify whether a triple 〈v, t, s〉 is well or poorly localized in the scale-

space, we can consider the principal curvatures at the point 〈v, t, s〉 of the scale-

space generated earlier: a poorly defined peek in the difference-in-smoothing will

have a large principal curvature in the scale space in one direction, but a small one in

the perpendicular direction. Consequently, as was observed in Harris and Stephens

(1988); Lowe (2004a), we can search for well-localized candidates by considering the

ratio of the eigenvalues of the 2×2 Hessian matrix, which describes the local curvature

of the scale-space in terms of the second-order partial derivatives.

Given the above observation, the major challenge, in this case, is to define and

compute the partial derivatives for metadata enhanced multi-variate time series to

obtain the Hessian matrix we seek. More specifically, for each VTS triple, 〈v, t, s〉,

we need to construct a 2× 2 time/variates Hessian matrix, DTV
v,t,s =

DT,T DT,V

DV,T DV,V

,

• DT,T = DTDT is the second derivate along time for the triple 〈v, t, s〉,

• DV,V = DVDV is the second derivative along “variate relationships” for 〈v, t, s〉,

• DT,V = DTDV is the partial derivative along time of the partial derivate along

4The number of neighboring triples may be less than 78 if the triple is at the boundary in terms
of time, scale, or variate relationship graph.

40

variate relationships of the triple 〈v, t, s〉, and

• DV,T = DVDT is the partial derivative along variate relationships of the partial

derivate along time of the triple 〈v, t, s〉.

In this paper, we propose to estimate the derivatives along time and variate relation-

ships by taking differences of neighboring sample points:

DT (v, t, s) = Ys[v, t+ 1]− Ys[v, t− 1],

DV (v, t, s) =

(FYs[v, t]− BYs[v, t]) for directed relationships

(FYs[v, t]− Ys[v, t]) for undirected relationships

Here, FYs and BYs, account for the (weighted) averages of the forward and back-

ward variate neighbors at the corresponding scale: i.e., FYs[v, t] =
(

FYs

)

[v, t] and

BYs[v, t] =
(

FYs

)

[v, t], where (as was discussed in the previous section) F and B

are two matrices describing forward and backward relationships among variates.

Once the Hessian matrix, DTV
v,t,s, is constructed for the triple 〈v, t, s〉, whether

the triple is poorly localized can be checked using eigenvalue-based tech-

niques Harris and Stephens (1988); Lowe (2004a). Note that derivatives (with respect

to time) will be high at the boundaries of time (i.e., the beginning and end of the

time series). Similarly, in directed variate relationship graphs, source and sink nodes

are likely to have large derivatives with respect to the relationship space. Since many

of these triples at the boundary of time and relationship do not correspond to real

features of the data, but are essentially boundary noises, such candidate triples are

removed even if they are well-localized.

3.7 Step 4: RMT Feature Descriptor Creation

For data objects that can be represented as 2D matrices (such as images), Lowe

(2004a) proposed that a gradient histogram based descriptor around the given point

41

〈x, y〉 on the matrix could be constructed by computing a gradient for each element

in the neighborhood of the point Lowe (2004a). The resulting gradients are then

quantized into c orientations. Finally a 2a × 2b grid is superimposed on the neigh-

borhood region centered around the point and the gradients for the elements that fall

into each cell are aggregated into a c-bin gradient histogram. This process leads to

a feature descriptor vector of length 2a× 2b × c. In Candan et al. (2012b), we have

shown that gradient histograms (created from data vectors instead of data matrices)

are also effective in describing temporal features of uni-variate time series. In the

case of multi-variate time series, however, we cannot directly apply the above tech-

niques. Instead, we first need to construct an extractor matrix to enable the gradient

extraction process.

Extractor Matrix: LetY be a scale space defined over the given metadata-enriched

multi-variate time series and the VTS triple, 〈v, t, s〉, be an RMT feature identified

from Y. The multi-variate feature defined by a variate-time-scale triple, 〈v, t, s〉, has

an associated scope, defined by the scale, s, in which it is identified. The pair, 〈v, t〉,

forms the center of the feature in time and variates. Given this feature center, under

scale, s, which corresponds to temporal and variate smoothing parameter pair, Σ =

〈σtime, σvar〉, the temporal and variate scopes of the feature are computed respectively.

As we have also seen in Section 3.3, observations closer in time and relationships

to the triple will have significantly larger contributions to the feature than the points

closer to the boundaries of the scope. Therefore, to identify gradients across time and

variate relationships, we first construct an N -step aggregation series:

Definition 6 (N-Step Aggregation Series) For directed variate relationships, we

define the N-step aggregation series corresponding to scale s as follows:

For −N < a ≤ N ,

42

Ws[a] =

if a > 0
(

F aYs

)

if a = 0 Ys

if a < 0
(

BaYs

)

,

where, as before, F and B are two matrices describing forward and backward rela-

tionships among variates. Similarly, in the case of undirected variate relationships,

we define the N-step aggregation series, such that for 0 ≤ a ≤ N we have

Ws[a] =

if a > 0
(

F aYs

)

if a = 0 Ys. ⋄

Once the N -step aggregation series are obtained, we can then construct the ex-

tractor matrices from which the feature descriptors will be obtained:

Definition 7 (Extractor Matrix) Let 〈v, t, s〉 be a VTS triple on the scale space.

In the case of directed variate relationships, we define the corresponding extractor

matrix as a 2N×2M matrix, Xv,t,s, such that for −N < a ≤ N and −M < b ≤ M , we

have Xv,t,s[a, b] =
(

Ws[a]
)

[v, t+ b]. In the case of undirected variate relationships, we

define the extractor matrix as a (N+1)×2M matrix, Xv,t,s, such that for −N < a ≤ N

and 0 ≤ b ≤M , we have Xv,t,s[a, b] =
(

Ws[a]
)

[v, t+ b]. ⋄

The values of N and M should be selected to cover the scope of the feature.

Descriptor Extraction Given this extractor matrix, Xv,t,s, the feature descriptor

is created as a c-directional gradient histogram of this matrix, sampling the gradient

magnitudes around the salient point using a 2a×2b grid (or 2a×b grid for undirected

relationship graphs) superimposed on the matrix, Xv,t,s. To give less emphasis to

gradients that are far from the point 〈v, t〉, a Gaussian weighting function is used to

reduce the magnitude of elements further from 〈v, t〉.

This process leads to a feature descriptor vector of length 2a×2b× c (or 2a× b× c

for undirected graphs). The descriptor size must be selected in a way that reflects

43

the temporal characteristics of the time series; if a multi-variate time series contains

many similar features, it might be more advantageous to use large descriptors that can

better discriminate: these large descriptors would not only include information that

describe the corresponding features, but would also describe the temporal contexts

in which these features are located.

3.8 RMT Feature Set of a Multi-Variate Time Series

Given the above, the RMT features of a metadata-enriched multi-variate (MM)

time series, Y = (V,M,Y,D), with respect to the parameters

• Σ0 = 〈σtime,0, σvar,0〉; i.e., the smallest temporal and variate smoothing param-

eters,

• L = 〈ltime, lvar〉; i.e., the number of temporal and variate smoothing layers, and

• K = 〈ktime,, kvar〉; i.e., the scaling parameters for temporal and variate smooth-

ings,

is defined as a set, F , where each feature, f ∈ F , extracted from Y, is a pair of the

form, f = 〈pos, ~d〉:

• pos = 〈v, t, s〉 is a VTS triple denoting the position of the feature in the scale-

space of the multi-variate time series, where v is the index of the variate at

which the feature is centered, t is the time instant around which the duration of

the feature is centered, and s is the temporal/variate smoothing scale in which

the feature is identified. Note that this triple also defines the temporal and

variates scopes of the RMT feature.

• ~d is a vector of length 2a×2b× c for directed relationship graphs and 2a× b× c

for undirected graphs, as described in the previous section.

44

Note that this set contains RMT features of potentially different sizes. In particular,

we have σtime,min = σtime,0, σvar,min = σvar,0, σtime,max = σtime,0 × kltime

time , σvar,max =

σvar,0 × klvarvar , and these define the minimum and maximum temporal and variate

scopes of the features identified from the given multi-variate time series.

3.9 Time Series Matching using RMT Features

This feature set can be used for various applications, including alignment, index-

ing, and classification of multi-variate series. Let us be given two metadata-enriched

multi-variate (MM) time series, Y1 and Y2, and their feature sets F1 and F2. We

rely on the alignments of the feature pairs in F1 and F2 to measure how well these

two series match each other.

3.9.1 Alignment of Feature Pairs

Let f1 = 〈〈v1, t1, s1〉, ~d1〉 and f2 = 〈〈v2, t2, s2〉, ~d2〉 be two RMT features in F1 and

F2, respectively. When matching f1 and f2, we consider how well aligned as well as

how important these two features are.

Temporal Alignment of a Pair of Features

Two features are said to be temporally aligned if their temporal scopes overlap sig-

nificantly and temporal centers are close.

Definition 8 (Temporal Overlap) Let [ts1, te1) denote the temporal scope of the

first feature defined by t1 and the temporal smoothing parameter corresponding to the

feature scale s1. Similarly, let [ts2, te2) denote the temporal scope of the first feature

defined by t2 and the feature scale s2. We define the temporal overlap score of the two

features as OverlapT (f1, f2) =
min(te1,te2)−max(ts1 ,ts2)
max(te1,te2)−min(ts1,ts2) . ⋄

45

Definition 9 (Temporal Center Proximity) We define temporal proximity score

as ProxT (f1, f2) = 1− |t1−t2|
maxLength

, where maxLength is the length of time series. ⋄

Given these, we define temporal alignment score as follows:

Definition 10 (Temporal Alignment) We define the temporal alignment score of

the two features as AlignT (f1, f2) =
OverlapT (f1,f2)+ProxT (f1,f2)

2
. ⋄

Variate Alignment of a Pair of Features

Two features are said to be variate aligned if their variate scopes overlap significantly:

Definition 11 (Variate Alignment) Let scope(v1, σvar,1) denote the variate scope

of the first feature defined by parameter σvar,1 corresponding to feature scale s1. Simi-

larly, let scope(v2, σvar,2) be the variate scope of the second feature. We define the vari-

ate alignment score of the two features as AlignV (f1, f2) =
scope(v1,σvar,1)∩scope(v2,σvar,2)
scope(v1,σvar,1)∪scope(v2,σvar,2) .

⋄

Descriptor Alignment of a Pair of Features

Two features are said to be descriptor aligned if their descriptor vectors are similar

to each other:

Definition 12 (Descriptor Alignment) We define the descriptor alignment score

of the two features as AlignD(f1, f2) = sim(~d1, ~d2) or as AlignD(f1, f2) =
(

1 +

∆(~d1, ~d2)
)−1

for a given similarity, sim(), or distance, ∆(), function. ⋄

Amplitude Alignment of a Pair of Features

Two features are said to be amplitude aligned if the average amplitudes of the time

series within the corresponding feature scopes are similar to each other:

46

Definition 13 (Amplitude Alignment) We define the amplitude alignment score

as AlignA(f1, f2) =
(

1+ |ampl1−ampl2|
)−1

, where ampl1 and ampl2 are the average

amplitudes of the time series, Y1 and Y2, within the scopes of f1 and f2. ⋄

3.9.2 Feature Significance

Scope Significance of a Given Pair of Features

The size of temporal and variate scopes may impact the significance of a feature.

Definition 14 (Temporal Scope Significance) The combined temporal scope sig-

nificance of f1 and f2 is defined as SigT (f1, f2) =
σtime,1+σtime,2

2
, where σtime,1 and

σtime,2 are the two temporal smoothing parameters corresponding to temporal scales,

s1 and s2. ⋄

Definition 15 (Variate Scope Significance) The combined variate scope signifi-

cance of f1 and f2 is defined as SigV (f1, f2) =
σvar,1+σvar,2

2
, where σvar,1 and σvar,2 are

the two variate smoothing parameters corresponding to feature scales, s1 and s2. ⋄

3.9.3 Overall Feature Matching Score

Given the above, the overall matching score of two features is a combination of

the individual measures of alignment and importance:

Definition 16 (Overall Feature Matching Score) We define the overall match-

ing score, match(f1, f2), of the two features as

µ

AlignD(f1, f2), AlignT (f1, f2), AlignV (f1, f2), AlignA(f1, f2),

SigT (f1, f2), SigV (f1, f2), SigC(f1, f2)

,

where µ is a merge function that combines the individual scores. ⋄

47

While there exist different merge functions (such as min, max, avg, product), in

the experiments reported we use product, which approximates the boolean operator

and when individual scores are zeros and ones Candan and Sapino (2010b).

3.9.4 Identifying Candidate Matching Pairs

Given a query time series, Yq, and a data series, Yd, and their feature sets Fq

and Fd, the next step is to identify a set P ⊆ Fq × Fd of candidate feature pairs

• ∀fq,i ∈ Fq ∃fd,j ∈ Fd s.t. 〈fq,i, fd,j〉 ∈ P (i.e., for each query RMT feature on

the query object, at least one matching feature on the data object is located),

• ∀〈fq,i, fd,j〉, 〈fq,h, fd,k〉 ∈ P (fq,i = fq,h) → (fd,j = fd,k) (i.e., for each query

RMT feature on the query object, at most one matching feature on the data

object is located), and

• ∑

〈fq,i,fd,j〉∈P match(fq,i, fd,j) is maximized.

It is easy to see that, for each query feature, P contains one and only one matching

data feature and since we aim to maximize the overall matching score, the set P can

be obtained by considering each feature fq,i ∈ Fq and selecting the feature fd,j ∈ Fd

with the maximum match(fq,i, fd,j) value. The feature pairs in P obtained this way

may not be mutually consistent and such inconsistencies need to be eliminated.

3.9.5 Inconsistency Pruning of Candidate Pairs

Intuitively, we call a set of feature matchings temporally consistent if the corre-

sponding features are similarly ordered in both time series. Figure 3.5 shows several

temporal inconsistencies, where temporal scope boundaries of matching features are

not similarly ordered in two time series. We define temporal consistency as follows:

48

Figure 3.5: Example scope boundary conflicts: blue lines mark corresponding start-
ing points of the matching scopes, red lines mark the corresponding end points

Definition 17 (Temporal Consistency) Let us be given two metadata-enriched

multi-variate (MM) time series, Y1 and Y2, and their feature sets F1 and F2. Let

p1 = 〈f 1
1 , f

1
2 〉, p2 ∈ 〈f 2

1 , f
2
2 〉 ∈ P be two candidate feature pairs and boundsab =

{tsab , teab} be the start and end points of the temporal scope of feature fab for a, b ∈

{1, 2}. We call p1 and p2 temporally consistent if and only if

• for all pairs of end points t1i , t
1
j ∈ bounds11 ∪ bounds12 in the first pair, we have

(
(

t1i > t1j
)

→
(

t2i 6< t2j
)

) ∧ (
(

t1i < t1j
)

→
(

t2i 6> t2j
)

),

where t2i , t
2
j ∈ bounds21 ∪ bounds22 are the two end points in the second pair

corresponding to t1i and t1j ; and

• for all pairs of end points t2i , t
2
j ∈ bounds21∪ bounds22 in the second pair, we have

(
(

t2i > t2j
)

→
(

t1i 6< t1j
)

) ∧ (
(

t2i < t2j
)

→
(

t1i 6> t1j
)

),

where t1i , t
1
j ∈ bounds11 ∪ bounds12 are the two end points in the first pair corre-

sponding to t2i and t2j . ⋄

Figure 3.6 provides an example with inconsistent matches: here we see that the

matching process identified some very distant pairs of RMT features as matches.

Note also that there are many matching pairs that cross each other in time, implying

temporal features that are differently ordered in time in two time series. To improve

the accuracy of the matching process, we need to eliminate such inconsistencies. The

outline of the process to eliminate inconsistencies is as follows

49

(a) Pairs of matching RMT features (b) Remaining pairs of matches

Figure 3.6: (a) Candidate RMT feature pairs for two multi-variate time series, and
(b) the remaining subset of matching RMT feature pairs after inconsistency pruning

1. For each pair, 〈f1, f2〉 ∈ P of matching features, we compute a dominance score,

dom(f1, f2), as

ρ

AlignD(f1, f2), AlignT (f1, f2), AlignV (f1, f2), AlignA(f1, f2),

SigT (f1, f2), SigV (f1, f2), SigC(f1, f2)

.

Note that this dominance score may, but is not required to, be the same as the

overall matching score discussed in Section 3.9.3.

2. We next initialize an empty set (R) to collect the committed consistent feature

pairs and two empty lists (list1 and list2) to keep track of their temporal scopes:

i.e., we set R = ∅, list1 = ⊥, and list2 = ⊥.

3. Next, we consider all pairs of matching features in P in descending order of their

dominance scores. Let 〈f1, f2〉 ∈ P be the pair we are currently considering.

(a) Temporal consistency verification: Let 〈ts1, te1〉 and 〈ts2, te2〉 be the tem-

poral scopes of f1 and f2, respectively

i. We attempt to insert the ts1 and te1 into list1 ordered in increasing

order of time; similarly we attempt to insert ts2 and te2 into the list,

list2, also ordered in increasing order of time.

ii. Let rank(ts1), rank(ts2), rank(te1), and rank(te2) be the correspond-

ing ranks of the time points in their respective time ordered lists.

50

iii. If rank(ts1) = rank(ts2) and rank(te1) = rank(te2), then we confirm

the insertion and we keep the pair 5 .

iv. Else, we drop the pair 〈f1, f2〉 and eliminate the corresponding scope

boundaries from the lists list1 and list2.

(b) If the candidate pair 〈f1, f2〉 has not been dropped due to temporal incon-

sistency, then insert the pair in R: i.e., R → R∪ {〈f1, f2〉}.

Note that the reason why the feature pairs are considered in descending order of dom-

inance scores is that, when an inconsistency is identified, the most recently considered

pair –which is less dominant (relatively less aligned, smaller, and less similar) –can

be eliminated without affecting the already committed boundaries.

3.9.6 RMT-Based Multi-variate Time Series Matching Score

Given two metadata-enriched multi-variate (MM) time series, Y1 and Y2, and

their feature sets F1 and F2, the above process results in a set R(F1,F2) =

{〈f1,i, f2,i〉}, where f1,i ∈ F1 and f2,i ∈ F2, respectively. We define the overall match-

ing score, score(Y1,Y2), of the two multi-variate series, using this set of matching

feature pairs:

∑

〈f1,f2〉∈R(F1,F2)

φ

AlignD(f1, f2), AlignT (f1, f2), AlignV (f1, f2), AlignA(f1, f2),

SigT (f1, f2), SigV (f1, f2), SigC(f1, f2)

,

where φ is a combined scoring function.

5The process is slightly more complex in that there can be exceptions where the ranks are different,
but time values are the same. We also confirm the insertion in these special cases.

51

3.10 Evaluation

In this section, we present experiment results that assess the efficiency and ef-

fectiveness of the robust multi-variate temporal (RMT 6) feature extraction algo-

rithms. In our preliminary work Wang et al. (2014b), we had shown that the diagonal

scale-space based RMT features (Section 3.4) are more effective in partial time series

search and classification tasks than alternative techniques, including SVD, where we

created a single fingerprint for each multi-variate time series using the SVD trans-

formation; and DTW, where distances were computed directly using dynamic time

warping Chen et al. (2015). In the appendix, we also consider SAXLin et al. (2003b)

DTW, which provides time savings over DTW, possibly at the expense of accuracy.

Therefore, instead of replicating the experiments reported in Wang et al. (2014b), we

focus on the impact of full scale-space based RMT (Section 3.4) features with respect

to the use of diagonal scale space based RMT (Section 3.4) and also investigate the

impacts of the alternative matching and inconsistency removal strategies described

in Section 3.9, within the context of a motion recognition task.

3.10.1 Settings

Hardware/Software

In order to ensure results are comparable to those reported in Wang et al. (2014b), all

experiments were run on the identical set up, with 4-core Intel Core i5-2400 3.10GHz

machines with 8GB RAM, running 64-bit Windows 7 Enterprise, using Matlab.

6RMT source code is available at EmitLab-ASU (2017).

52

Table 3.1: (a) Default configuration and (b) alternative matching/pruning strategies

(a) Default configuration

RMT

iterations, L 6

of octaves, o 3

initial smoothing for time, σtime,0 2.8

initial smoothing for

relationships,σvar,0

0.5

candidate pruning threshold, ω⊤ 10

descriptor size, 2a × 2b× c (4× 4× 8 =) 128

relationship reduction algorithm k-means

SVD

degree of energy preservation 95%

(b) Matching/pruning strategies

TO Temporal overlap (Defini-

tion 8)

TP Temporal proximity (Defini-

tion 9)

TA Temporal alignment (Defini-

tion 10)

VA Variate alignment (Defini-

tion 11)

DA Descriptor alignment (Defini-

tion 12)

AA Amplitude alignment (Defini-

tion 13)

TS Temporal scope significance

(Definition 14)

VS Variate scope significance

(Definition 14)

Data Set

For the experiments in this section, we use the Mocap time series data set Mocap

(2001): The data set consists of movement records from markers placed on subjects’

bodies as they perform 8 types of tasks. We use ASF/AMC format where the original

coordinate readings are converted into 62 joint angles data. We treat readings for each

joint angle as a different uni-variate time series. The hierarchical spatial distribution

(e.g. left foot, right foot, left leg, etc.) of the joint angles on the body is used to

create the underlying correlation matrix used as metadata 7 .

We consider additional data sets in the online appendix.

7Note that this provides an intentionally rough metadata, enabling us to observe accuracy of
RMT features under imperfect domain knowledge

53

Evaluation Metrics

For evaluating accuracy, we use take-one-out methodology with the following crite-

ria: (a) top-5 precision: the number of series, among the nearest 5 results, that are

of the same class of movement as the query series, and (b) top-‖c‖ precision: the

number of series, among the nearest ‖c‖ results (where ‖c‖ is the size of the move-

ment class containing the query series) that are of the same class as the query series.

The first measure reflects how effective a particular approach is for nearest-neighbor

classification, whereas the second measure reflects how well defined the classes.

In addition, we also report pairwise matching times for the alternative approaches.

Note that since we are using top-5 and top-‖c‖ classification, the classification time

is a function of the value of ‖c‖, the number of labeled data in the training data set,

and the pairwise matching time. To ensure that the efficiency different algorithms

can be compared independently of the value of ‖c‖ and the training data set, in the

paper, we report the pairwise matching time as an indicator of the classification cost.

Alternative RMT Features

We consider different types of RMT features:

• diagonal scale-space based RMT (DIA): This is the version of the RMT fea-

tures studied in our prior work. As described in Section 3.4, these features are

extracted only by considering the diagonal scales of the scale space; in other

words, the features’ temporal and variate scopes grow in synch to each other.

• full scale-space based RMT (FULL): This is the version of the RMT features

proposed in this paper. As described in Section 3.4, these are extracted by

considering all scales of the scale space; features’ temporal and variate scopes

grow independently from each other, enabling heterogeneously shaped features.

54

• hybrid RMT (HYB): We also consider hybrid feature sets, where diagonal scale-

space features and full scale-space features are combined. Note that due to

the feature candidate elimination strategy described in Section 3.6, feature set

obtained using the full scale-space is not necessarily the superset of the features

obtained using the diagonal scale-space. This hybrid strategy re-introduces

the diagonal scale-space features which may have been eliminated due to some

features in the non-diagonal scales of the space.

• diagonal scale-space based RMT - alt. 2 (DIA2): Note that diagonal scale-space

based RMT features can be obtained either by using only the diagonal scales of

the scale-space as described in Section 3.4, or can be obtained by selecting the

subset of the full scale-space based RMT features such that the temporal and

variate scales are the same. We refer to this second alternative as DIA2.

Table 3.1(a) provides the outline of the default parameter configuration and describes

how these parameters are varied in the experiments.

Alternative Alignment Strategies

In this section, we experiment with the various temporal and variate alignment met-

rics presented in Section 3.9.1 and listed in Table 3.1(b). When needed, for combining

these measures in Table 3.1(b), we use multiplication as the merge function. In ad-

dition, we consider two alignment strategies: (a) all octaves alignment (AoA): Under

this strategy, any two pair of features can be considered for alignment irrespective of

their scales. (b) same octave alignment (SoA): Under this strategy, only those pairs

of features that have the same time and variate octaves are considered for alignment.

55

!"#$%

!%

!"&%

!"'%

!"(%

!")%

!"*%

!"+%

!"$%

!",%

!"#%

&%

-./% 0122% 345% 67-% -./% 0122% 345% -89%

:;%<=>?@A% <=>?@A%

/
BB
C
?=
BD
%

(a) Average top-5 precision (%)

Average Pairwise Matching Time

Non-paired Paired

RMT SVD RMT DTW

0.18s 0.003s 0.19s 0.38s

(c) Matching time (in seconds)

Average Top-5 Precision (%)

Non-paired Paired

Class num RMT SVD RMT DTW

climb 18 58.9 52.2 85.6 68.9

dribble 14 32.9 28.6 87.1 84.3

jumping 30 100 82.0 100 100

running 19 100 100 100 100

salsa 30 50.0 59.3 100 87.1

soccer 6 43.3 30.0 93.3 96.7

walk 36 100 89.4 100 100

walk (un-

even)

76.1 100 58.7 100 98.7

Average 184 76.9 69.0 97.4 93.3

Confidence

Interval

72.8-

80.8%

65.2-

72.8%

96.5-

98.3%

91.7-

94.9%

(b) Per-class top-5 precision

Figure 3.7: Top-5 matching accuracy and matching time – default configuration: de-
scriptor alignment (DA) based feature matching and DA based inconsistency pruning
and overall score computation

Alternative Inconsistency Elimination (Pruning) Strategies

In this section, we also consider the impact of the measures presented in Table 3.1

on inconsistency elimination process (Section 3.9.5). In addition, we consider two

pruning strategies: (a) all octaves pruning (AoP): Under this strategy, any two pairs

of features can be considered inconsistent irrespective of their scales. (b) same octave

pruning (SoP): Under this strategy, only those pairs of features that have the same

time and variate octaves can be considered inconsistent.

3.10.2 Discussion of the Results

Overview

Figure 3.7(a) compares classification accuracy of RMT using 8 classes with 184 mo-

tions in the Mocap dataset against alternative approaches:

56

• variate-paired alignment: This is the default configuration where we assume

that the pairing of the variates in the query and in the database are known in

advance. DTW requires that this pairing is known. In the case of RMT, we

leverage the pairing information by ignoring feature matches during the feature

alignment phase unless at least 50% of the variates are common. As we see in

Figure 3.7, paired RMT provides the best overall accuracy.

• non-variate-paired alignment: Both SVD and RMT can operate without requir-

ing pairing of the variates. Given two multi-variate time series, SVD uses the

decomposed series rather than the series themselves, thus it does not require

the series to be variate paired. Similarly, RMT can be implemented in such a

way that variate alignments are completely ignored during the matching phase.

As we see in Figure 3.7, non-paired RMT works better than SVD – and thus is

applicable when pairing information is not available. While SVD supports fast

matching, the accuracy is significantly lower to render it a feasible approach.

Note that Figure 3.7(b) also includes confidence intervals for the accuracies of

various techniques. As we see here, RMT’s confidence intervals do not overlap with

the other techniques’ accuracy confidence intervals, providing additional evidence for

the advantage of using RMT features. Moreover, the confidence intervals of RMT are

significantly tighter than the confidence intervals of other techniques, again providing

evidence that RMT is more robust than the other approaches.

Figure 3.7(a) shows that, as expected, we obtain highest accuracy when we con-

sider the full scale space. It is also important to note that in these experiments we

have not leverage RMT feature significance (FS) to boost matching accuracy. Un-

like DTW, RMT can further boost accuracy through relevance feeback and other

(semi-)supervised learniing techniques.

57

!"#$%

!"

!#$%"

!#%"

!#&%"

'"

((")(*+,")(*-,")(*-.")(*((")(")(")(*-(")(*-/")(*+(")("

((")(*+,")(*-,")(*-.")(*((" ((")(")(*-(")(*-/")(*+(")(*(("

&'()*%
%

+,-./%%

(0123%4))-,')5%67/'.8%

(a) top-5 precision

!"#$%

!"

!#$%"

!#%"

!#&%"

'"

((")(*+,")(*-,")(*-.")(*((")(")(")(*-(")(*-/")(*+(")("

((")(*+,")(*-,")(*-.")(*((" ((")(")(*-(")(*-/")(*+(")(*(("

&'()*%
%

+,-./%

(0123)3%4))-,')5%67/'.8%

(b) top-‖c‖ precision

Figure 3.8: The impact of the alternative feature matching and inconsistency prun-
ing strategies – full (FULL) feature set, same octave alignment (SoA), and same
octave pruning (SoP)

Impact of Alternative Feature Matching and Inconsistency Pruning

As we have seen in Section 3.9 and Table 3.1, one can use several strategies to match

features across multi-variate time series and prune inconsistencies. For the results

above, as the default configuration, we considered descriptor alignment (DA) based

feature matching, inconsistency, pruning and overall score computation. While the

best strategy is application dependent, as we see in Figure 3.8, in this application,

RMT is able to achieve high accuracy by using descriptor alignment (DA) for feature

matching, inconsistency pruning, and overall score computation. The result also

shows that considering additional criteria, such as temporal or variate alignment, is

not necessary (and can, in fact, be harmful) in this particular application.

58

!"

!#"

!##"

#" #$!" #$%" #$&" #$'" #$(" #$)" #$*" #$+" #$," !"

-
".
/"
/0
1
23
40
5"

67734178"

69:$"-"./";0123405"<=.52"=43>?>:@"95$"2.=A("67734178"

!"#"$!"#%$!"#&$!%#"$!%#%$!%#&$!&#"$!&#%$!&#&$

Figure 3.9: Average number of feature pairs for the alternatives considered in Fig-
ure 3.8. Here TiVj refers to query features (remaining after inconsistency pruning)
that are of time octave i and variate octave j

!"#$%

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

!"(!#

!")!#

!"*!#

!"+!#

!",!#

$"!!#

-./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./#

-.-# 0.-# -.-# 0.-# -.-# 0.-# -.-# 0.-#

12-# 12-%# 3455# 678#

&'()*%+,,-./,0%123/45%

!"!#

!"$#

!"%#

!"&#

'"!#

()*# +)*# ()*# +)*# ()*# +)*# ()*# +)*# ()*# +)*# ()*# +)*# ()*# +)*# ()*# +)*#

()(# +)(# ()(# +)(# ()(# +)(# ()(# +)(#

,-(# ,-(.# /011# 234#

!"#$%&'(()*+(,&-./01+23&

!"#$!%$&

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

!"(!#

!")!#

!"*!#

!"+!#

!",!#

$"!!#

-./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./#

-.-# 0.-# -.-# 0.-# -.-# 0.-# -.-# 0.-#

12-# 12-%# 3455# 678#

'()*+,+&-,,./0,1&234056&

!"#$%

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

!"(!#

!")!#

!"*!#

!"+!#

!",!#

$"!!#

-./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./# -./# 0./#

-.-# 0.-# -.-# 0.-# -.-# 0.-# -.-# 0.-#

12-# 12-%# 3455# 678#

&'()*+*%,++-./+0%12345/67%

Figure 3.10: Impact of feature discovery and octave management – using descriptor
alignment (DA) for feature matching, inconsistency pruning, and overall scoring

This shows that the RMT feature descriptors are highly informative. This is

further confirmed by Figure 3.9, where we see the average number of (post-pruning)

matching feature pairs for the alternative strategies considered in Figure 3.8. As we

see in this Figure, a higher number of matching feature pairs does not translate into

more accurate matches. This indicates that the resulting RMT features are highly

informative and a small number of feature pairs at different scales and shapes are

sufficient to characterize different types of motion.

59

Table 3.2: # feature pairs before and after inconsistency pruning for the optimal
configuration in Figure 3.10

Before inconsistency pruning After inconsistency pruning

DIA 952.2 21.5

FULL 1252.1 48.2

HYB 2204.3 56.3

Impact of the Feature Discovery and Octave Management Strategies

For the default results presented above, we leveraged full (FULL) feature set with

same octave alignment (AoA) and same octave pruning (SoP) strategies. In Fig-

ure 3.10, we study the impact of these strategies in further detail. As we see in this

figure, the default configuation indeed leads to highest accuracy: Firstly, as expected,

feature matches and inconsistencies need to be considered at each octave scale sepa-

rately. Secondly, the figure shows that the full scale space provide more information

than the diagonal scale space – in fact, extending the FULL feature set with diagonal

features (i.e., using the HYB strategy) does not lead to any better results than just

using the FULL or DIA feature sets.

This is further studied in Table 3.2, which shows the average matching # feature

pairs, before and after inconsistency pruning, for the optimal configuration in Fig-

ure 3.10. As we see here, inconsistency pruning eliminates a large number of feature

pairs. We also see that the hybrid option (HYB), has more feature pairs than both

DIA and FULL, but, as we have seen Figure 3.10, these additional feature pairs do

not contribute to the accuracy.

60

!"##$

!%#$

#$

%#$

"##$

"%#$

"
$

&
'
$

%
(
$

)
%
$

"
"
*
$

"
+
"
$

"
,
'
$

"
'
(
$

&
&
%
$

&
%
*
$

&
)
"
$

*
#
'
$

*
*
(
$

*
,
%
$

*
'
*
$

+
&
"
$

+
+
'
$

+
(
(
$

%
#
%
$

%
*
*
$

%
,
"
$

%
)
'
$

,
"
(
$

,
+
%
$

,
(
*
$

(
#
"
$

Figure 3.11: A multi-variate time series capturing body movement: the structure
of the human body relates the positions of the body sensors during motion capture

3.11 Experiments With Additional DataSets And Algorithms

3.11.1 Experiments with Additional Data Sets

Many time series data sets are (a) multi-variate, (b) interrelated, and (c) multi-

resolution: For the experiments reported in this paper, we used several multi-variate

data sets that (a) offer the ability to leverage supporting metadata and (b) offer

ground truth that can be used for evaluation purposes. The Mocap data sets used in

the experiments in Section 3.10 represented human movement in the form of multi-

variate time series (Figure 3.11, Mocap (2001)). In this section, we also consider two

additional multimedia data sets:

The Australian sign language data 8 includes sign gestures captured using a glove-

based capture system. The capture data includes 100 per second tracking for all five

fingers for both hands: each position tracker provides six degrees of freedom (roll,

pitch, yaw, x, y, and z). The data set contains 95 signs, with 27 examples per sign.

This data set has 22 variates (11 per hand) and contains a total of 2565 (= 95× 27)

multi-variate time series of average time length, 57. We associated with this data set

a metadata file that considers the positions of the fingers within each hand. For this

data set we set σtime,0 to 0.5 (proportional to the average length of the series relative

to Mocap - but sufficiently large that the temporal scope of the smallest feature

8https://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs+(High+Quality)

61

covers more than one time instant). Note that ASL data set is selected because it is

a relatively synchronized data set where Euclidean based measures perform well.

The Bird Song data set 9 contains Mel-frequency cepstral coefficient (MFCC)

features for different bird calls. Intuitively, each MFCC coefficient captures short-

term power spectrum of a sound for a given frequency band. The MFCC bands

are equally spaced on the Mel scale (indicating that they are judged to be of equal

distance from each other by listeners). The data set contains 13 MFCC coefficients

(i.e., variates) for 154 bird calls of 8 classes, with the average time length of 397 time

stamps. We associated with this data set a metadata file that records which MFCC

co-efficient is neighbor to which other MFCC coefficients. For this data set we set

σtime,0 to 1.6 (proportional to the average length of the series, relative to Mocap).

Figure 3.12 shows top-5 accuracies and matching times for paired RMT,

DTWBemdt and Clifford (1994), and SAXLin et al. (2003b) DTW. SAX (Symbolic

Aggregate approXimation Lin et al. (2003b)) is a symbolic representation for time se-

ries, which provides a lower-bound for distance measurements such as dynamic time

warping and in general can be computed faster than traditional DTW. Here we also

provide SAX 10 as a baseline competitor. We set the parameters for SAX represen-

tation: use 10 symbols11 for representations and 20 segments for each multi-variate

time series. Since DTW can be made faster by considering narrower bands Keogh

(2002); Sakoe and Chiba (1978) (rather than the whole sequences), we also consider

accuracies and execution time for different DTW band sizes. As an approximation

method, the performance of SAX shares a similar behavior as DTW method.

We can see in this figure that, while it may help make DTW process faster,

placing a significant band length constraint (≤ 80%) on DTW may reduce accuracy

9http://www.xeno-canto.org/explore/taxonomy

10http://www.cs.ucr.edu/ eamonn/SAX.htm

62

(for Mocap and bird song data sets, which are less temporally synchronized than

the ASL data set). Most importantly, the figure shows that while SAX’s accuracy

widely fluctuates from one data set to the other, RMT provides consistently better

(and overall the best) top-5 accuracies, at a matching time cost comparable to DTW.

These results indicate that, whenever (even rough) metadata relating the variates is

available, RMT can leverage this information to improve classification accuracy.

3.11.2 Experiments with Additional Algorithms

In the previous sections, we compared the proposed RMT algorithm to approaches

that are based on SVD, DTW, and SAX-based feature extraction. In this section, we

consider two recent systems, namely RPM Wang et al. (2016b) and STS3 Peng et al.

(2016b), that provide parameter selection and hyper-parameter estimation function-

alities for uni-variate time series matching and time-series classification tasks; in

particular, both use training data to learn feature patterns as well as contextually

relevant hyper-parameters.

For both of these techniques, we obtained original code from the authors. However,

since both of these approaches were originally designed for uni-variate time series data,

we revised their code to account for multi-variate series as follows:

• RPM Wang et al. (2016b) creates SAX sequences and grammar rules for uni-

variate time series from each class. More specifically, RPM concatenates all uni-

variate time series from the same class in the training data and then extracts

and selects SAX symbol sequences that are most representative for this given

class. RPM then uses Sequitur to learn the context free grammars from the

SAX representations as the grammar induction rules to represent this class.

Given the output of this process, it uses SVM classifier for classification tasks.

63

Since in this paper, we consider multi-variate time series data, we modified the

original implementation to account for the existence of multiple variates. The

training phase stays the same: RPM generates a grammar pattern for each

variate. We concatenate all variate pattern vectors from the same class into one

vector and use these concatenated pattern vectors from testing data for the SVM

classifier. In order to ensure that RPM results and other results presented in

our paper are comparable, we set the same SAX parameters as it was described

in our manuscript: 20 SAX segments for each multi-variate time series data

elements and up to 10 symbols for grammar rule-based representations.

• Instead of concatenating all uni-variate time series from the same class together,

STS3 Peng et al. (2016b) learns patterns (sets of cell IDs) for every time series

of each class. During testing phase, it computes sets of cells for testing data

and it uses Jaccard similarity between training and testing data to assign class

labels for the testing class.

Once again, the original STS3 algorithm is designed for uni-variate time series.

Therefore, we modified the implementation such that it extracts sets of cells for

each variate of class per training data element and aggregates the final Jaccard

similarities for each pair of corresponding variates between two multi-variate

time series to measure time series similarity.

RPM Wang et al. (2016b) provides classification through SVM, whereas the code

of STS3 Peng et al. (2016b) provided by the authors is designed for 1-NN matching.

Therefore, to be fair to STS3, in Table 3.3, we provide 1-NN accuracy for RMT

(rather than 5-NN and ‖c‖-NN accuracies as reported elsewhere in this paper).

As the results in the table shows, the accuracy of RPM is lower than that of RMT,

especially for the BirdSong data set, which results in significaanly lower accurcy, Note

64

Data set RPM Acc. (SVM) STS3 Acc. (1-NN) RMT Acc. (1-NN)

MoCap 0.847 0.078 0.989

BirdSong 0.436 0.145 0.481

ASL N/A 0.234 0.715

Table 3.3: Accuracies for the multi-dimensional extensions of RPM Wang et al.
(2016b) and STS3 Peng et al. (2016b) algorithms

that, we are not able to report RPM accuracy results for the Australian Sign Language

(ASL) dataset because there are multiple variates from various classes with values all

zero and these cannot be used to generate grammar rules for classification. The table

also shows that STS3 performs significantly worse than both RPM and RMT. While,

unlike RPM, STS3 is able to handle the ASL data, it still provides very low accuracy

due to the existence of these highly non-discriminating variates.

We note that the reason why STS3 performs rather poorly on multi-variate time

series may be due to the way these algorithms learn patterns or the way they compare

the series (or both). In order to better understand the underlying reason, we also

considered a simple strategy that creates SAX symbols as in RPM, but uses Jaccard

similarity of the resulting SAX term vectors for similarity computation as in STS3.

More specifically, we counted the frequencies of each SAX symbol within an uni-

variate vector and summed up the resulting weighted Jaccard similarities among

variate pairs to obtain the similarity between two multi-variate time series: let ~s and ~t

represent the symbol frequency vectors for two time series, S and T ; the corresponding

weighted Jaccard similarity is computed as

simJacc(S, T) =
‖~s‖1 + ‖~t‖1 − ‖~s− ~t‖1
‖~s‖1 + ‖~t‖1 + ‖~s− ~t‖1

,

where ‖∗‖1 represents norm-1 for the corresponding vector. Furthermore, as a control

scenario, we also considered the cosine similarity between the two vectors.

65

Data set Jaccard SAX Acc. (1-NN) Cosine SAX Acc. (1-NN) RMT Acc. (1-NN)

MoCap 0.826 0.782 0.989

BirdSong 0.357 0.305 0.481

ASL 0.525 0.504 0.715

Table 3.4: Accuracies for the multi-dimensional extensions of Jaccard and cosine
similarity based extensions of SAX

The results under the same evaluation conditions are presented in Table 3.4. This

rather simple technique, based on SAX features matched using Jaccard similarity,

approaches to that of RPM (on MoCap and BirdSong data sets where RPM results

are available) and significantly improves over that of STS3; however results are still

not as good as the RMT accuracies. Moreover, when using cosine similarity, matching

accuracy slightly drops under that of the Jaccard similarity, indicating that STS3 is

using a good measure for matching, but the core problem is that the underlying

pattern extraction scheme cannot be directly expanded for multi-variate series.

3.12 Conclusion

Many time series data sets are (a) multi-variate, (b) interrelated, and (c) multi-

resolution. These include motion and gesture data, as described in this paper, as well

as data from other domains. We presented a metadata-enriched multi-variate time

series model, in which a dependency/correlation model relates the individual variates

to each other. Recognizing that multi-variate temporal features can be extracted

by simultaneously considering, at multiple scales, differences among individual vari-

ates along with the dependency/correlation model that relates them, we developed

algorithms to detect robust multi-variate temporal (RMT) features that are multi-

resolution and invariant against various types of noise. Experiments confirmed that

the RMT features are highly effective in multi-variate series search and classification.

66

!"#$%

!"#&%

!"'!%

!"

!#$"

!#%"

!#&"

!#'"

("

!)" (!)" $!)" *!)" %!)" +!)" &!)" ,!)" '!)" -!)" (!!)"

(
))
*
+,
)-
%

./0%1,23%4567%

89),:;%<8/%=>"%./0%())*+,)-%?@5AB%35C7+72A%./0%D,23>E%

./0"12345+6" 78/12345+6" 9:;"./012345+6"

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

!)" %!)" &!)" '!)" (!)" $!)" *!)" +!)" ,!)" -!)" %!!)"

!
"
#$
%
&'
(
)*
+
,
)-
.,
$/
0)

123)4"'5)6&7,)

!8$"9:);!2)<./)123)2&+,)-=&#%)5&>,?,'#)123)@"'5.0)

./0" 12/" 345"./0"

(a) accuracy (Mocap) (b) matching time (Mocap)

!"##$

!"#%$

!"&'$

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!+" $!+" %!+" &!+" '!+" (!+")!+" *!+" ,!+" -!+" $!!+"

(
))
*
+,
)-
$

./0$1,23$4567$

(489$:;/$<="$./0$())*+,)-$>?5@A$35B7+72@$./0$C,23=D$

./0"12345(6" 78/12345(6" 9:;"./012345(6"

!"

!#!!!$"

!#!!!%"

!#!!!&"

!#!!!'"

!#!!("

!#!!($"

!)" (!)" $!)" *!)" %!)" +!)" &!)" ,!)" '!)" -!)" (!!)"

!
"
#$
%
&'
(
)*
+
,
)-
.,
$/
0)

123)4"'5)6&7,)

869:);!2)<./)123)2&+,)-=&#%)5&>,?,'#)123)@"'5.0)

./0" 12/" 345"./0"

(c) accuracy (ASL) (d) matching time (ASL)

!"#$%

!"&'%
!"#(%

!"

!#$"

!#%"

!#&"

!#'"

!#("

!)" $!)" %!)" &!)" '!)" (!)" *!)" +!)" ,!)" -!)" $!!)"

)
**
+
,-
*.
%

/01%2-34%5678%

2"593:;%<=0%>?"%/01%)**+,-*.%@A6BC%46D8,83B%/01%E-34?F%

./0"12345(6" 78/12345(6" 9:;"./012345(6"

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#!("

!#!)"

!*" $!*" %!*" &!*" '!*" (!*")!*" +!*" ,!*" -!*" $!!*"

!
"
#$
%
&'
(
)*
+
,
)-
.,
$/
0)

123)4"'5)6&7,)

4/68'(9):!2);./)123)2&+,)-<&#%)5&=,>,'#)123)?"'5.0)

./0" 12/" 345"./0"

(e) accuracy (Bird Song) (f) matching time (Bird Song)

Figure 3.12: (a,c,e) top-5 accuracies for RMT of DTW for different bands (note:
0% band length corresponds to traditional Euclidean distance) and (b,d,f) matching
times: for all experiments, the smallest RMT feature is set to be 5% of the average
time series in the data set.

67

Chapter 4

RMT FEATURES BASED SYSTEMS

4.1 Problem Definition

With the concept of RMT features, researchers could design and leverage the

model and algorithms to help decision making systems detect and analyze the pat-

tern from large volumes of data. One major data exploration scenario is to analyze

diffusion process of infectious diseases which requires the insights of demographic

data, contact networks, age-specific conatct rates, mobility networks and health-care

and control intervention data and models. We propose Networks-Of-Traces for

Epidemic Spread Simulations (NOTES2)model and system which aim at assist-

ing experts and helping them explore existing simulation trace datsets. It supports

analysis and indexing of simulation data as well as parameter and feature analy-

sis including identification of unknown dependencies across the input parameters and

output variable spanning the different layers of observation and simulation data. More

specifically, the networks-of-traces(NT) data refers to:

• Network layers: An epidemic simulation requires one or more layers of networks,

from local and global mobility patterns to contact networks.

• Disease models: it describes the epidemiological parameters relevant to a sim-

ulation and the parameter dependencies necessary in the computation of the

disease spread.

• Simulaiton traces: For a given disease study, researchers and decision mak-

ers often perform multiple simulations, each corresponding to different sets of

68

assumptions (disease parameters or models) or context (e.g. spatiotemporal

context, outbreak conditions, interventions).

• Disease observation traces: These include real-world observations relating to

particular epidemic, including the spread and severity of the disease and obser-

vations about other relevant parameters, such as the average length of recovery

or percentage of infectious individuals that undergo pharmaceutical treatment.

• External interventions: In an outbreak, public health and disease control agen-

cies implement various medical or social interventions, quarantines and/or

school closures.

An extended system tool is proposed as EpiDMS: Data Management and

Analytics for Decision Making from Epidemic Spread Simulation Ensem-

bles. We argue that the management and analysis of simulation ensembles stemming

from large-scale computational models poses challenges particularly when dealing

with multiple inter-dependent parameters, spanning multiple layers and geo-spatial

frames, affected by complex dynamic processes operating at different resolutions.

This problem is compounded by the need to generate near real-time decision-making

assessments as the situation in the field changes, which may require the generation

of ensembles consisting of 1000s of simulation sets in order to capture a comprehen-

sive range of plausible transmission and control scenarios. In this work we propose

the epidemic simulation data management system (epiDMS) which was developed

to address the challenges that arise from the need to generate, search, visualize, and

analyze in a scalable manner, large volumes of epidemic simulation ensembles and ob-

servations during the progression of an epidemic. EpiDMS aims to fill an important

gap in decision making during health-care emergencies and enabling critical services

with significant economic and health impact.

69

Later on we extend the framework to support data processing to fit in more general

cases and we propose SIMDMS: Data Management and Analysis to Support

Decision Making through Large Simulation Ensembles and DataStorm-FE:

A Data- and Decision-Flow and Coordination Engine for Coupled Simu-

lation Ensembles, both of which aim to address the key challenges underlying the

creation and use of large simulation ensembles and enables

• execution, storage and indexing or lage ensemble simulation datasets and the

corresponding models

• search, analysis and exploration of ensemble simulation datasets to enable

ensemble-based decision support.

4.2 Notes2

Decision making and intervention against infectious diseases require analysis of

large volumes of data, including demographic data, contact networks, age-specific

contact rates, mobility networks, and health-care and control intervention data and

models. In this paper, we present our Networks-Of-Traces for Epidemic Spread Simu-

lations (NOTES2) model and system which aim at assisting experts and helping them

explore existing simulation trace data sets. NOTES2 supports analysis and indexing

of simulation data sets as well as parameter and feature analysis, including identi-

fication of unknown dependencies across the input parameters and output variables

spanning the different layers of the observation and simulation data.

Real-time and continuous analysis and decision making for infectious disease un-

derstanding and intervention involve multiple aspects, including (i) estimating trans-

missibility of an epidemic disease, such as influenza Abubakar et al. (2012); (ii) fore-

casting the spatio-temporal spread of pandemic disease at different spatial scales

70

Figure 4.1: Simulation trace exploration interface of NOTES2

Merler et al. (2011); (iii) assessing the effect of travel controls during the early stage

of the pandemic Colizza et al. (2007); (iv) predicting the effect of implementing school

closures Wu et al. (2010); and (v) assessing the impact of pharmaceutical interven-

tions on pandemic disease Ferguson et al. (2005); Deodhar et al. (2014) through sim-

ulations. While highly modular and flexible epidemic spread simulation software,

such as GLEaMviz gle (2019) and STEM STEM (2016), exist, these suffer from two

major challenges that prevent real-time decision making:

• Data and model complexity: A sufficiently useful disease spreading sim-

ulation tool requires models, including demographic data, social contact net-

works, age-specific contact rates, local and global mobility patterns of individ-

uals Balcan et al. (2009); Merler and Ajelli (2014), epidemiological parameters

for the infectious disease (e.g., infectious period), and control intervention data

and models. Moreover, these dynamically evolve over time due to preventive ac-

tions taken by individuals and public health interventions, requiring continuous

adaptation.

• Complexity of the simulation and observation data: Epidemic simula-

tions track 10s or 100s of inter-dependent parameters, spanning multiple layers

and geo-spatial frames, affected by complex dynamic processes operating at dif-

71

ferent resolutions. Moreover, generating an appropriate ensemble of stochastic

epidemic realizations may require multiple simulations, each with different pa-

rameters settings corresponding to slightly different, but plausible, scenarios.

Thus, running and interpreting simulation results (along with the real-world

observations) to generate timely actionable results are difficult.

I propose Networks-Of-Traces for Epidemic Spread Simulations (NOTES2) to as-

sist experts in exploring large simulation ensembles (Figure 4.1). The NOTES2 sys-

tem supports

• analysis and indexing of simulation data sets, including extraction of salient

multi-variate temporal features from the inter-dependent parameters, spanning

multiple layers and spatial-temporal frames, driven by complex dynamic pro-

cesses operating at different resolutions.

• parameter and feature analysis, including identification of unknown dependen-

cies across the input parameters and output variables spanning the different

layers of the observation and simulation data.

4.2.1 Networks-of-Traces for Epidemic Simulations

If effectively leveraged, models reflecting past outbreaks, existing simulation traces

obtained from simulation runs, and real-time observations incoming during an out-

break can be collectively used for better understanding the epidemic’s characteristics

and the underlying diffusion processes, forming and revising models, and performing

exploratory, if-then type of hypothetical analyses of epidemic scenarios.

There are five major types of data associated to epidemic spread simulations.

• Network layers: An epidemic simulation requires one or more layers of networks,

from local and global mobility patterns to contact networks.

72

• Disease models, describing the epidemiological parameters relevant to a sim-

ulation and the parameter dependencies necessary in the computation of the

disease spread.

• Simulation traces: For a given disease study, researchers and decision mak-

ers often perform multiple simulations, each corresponding to different sets of

assumptions (disease parameters or models) or context (e.g. spatio-temporal

context, outbreak conditions, interventions).

• Disease observation traces: These include real-world observations relating to

particular epidemic, including the spread and severity of the disease and obser-

vations about other relevant parameters, such as the average length of recovery

or percentage of infectious individuals that undergo pharmaceutical treatment.

• External interventions: In an outbreak, public health and disease control agen-

cies implement various medical or social interventions, quarantines and/or

school closures.

We collectively refer to these data (network layers, disease models, simulation

traces, observation traces, and interventions) as the networks-of-traces (NT) data.

4.2.2 Disease Spread Simulation Understanding and Analysis

Epidemic spread simulations are complex. However, parameter dependencies and

the network structures of the layers (e.g. mobility, social contact networks) are im-

plicitly evident in the simulation traces and these carry temporal features (that may

correspond to major changes in the underlying networks and/or temporal dynam-

ics) that are robust against noise. The detection of these robust multivariate fea-

tures constitutes the first step towards leveraging the NT data for understanding

73

Figure 4.2: Each row corresponds to a time series of incidences for a sample epidemic
simulation and each dot corresponds to the center of an identified multivariate feature

epidemics’ characteristics and the diffusion processes, revising models, and perform-

ing exploratory, if-then type of hypothetical analyses of epidemic scenarios.

4.2.3 Networks-of-Traces (NT) Feature Extraction

An NT data trace is multi-variate and the analysis of the relevant processes re-

quires multi-variate temporal features spanning multiple inter-dependent trace pa-

rameters. Intuitively, a robust temporal feature in a multi-variate time series cor-

responds to a multi-variate segment of the series which significantly differs from its

neighborhood. The multi-variate segment is represented by a center, 〈µt, µv〉, and a

scope, 〈σt, σv〉. Intuitively, µt marks the center of the segment in time and σt is the

corresponding time interval. On the other hand, µv is one or more nodes/variates

of the graph on which the segment is centered and σv denotes all the graph vertices

covered by the segment.

Figure 4.2 shows an epidemic simulation heatmap, where each row corresponds to

a different state. In the figure, centers of identified features are highlighted by white

dots. The figure also expands one of these robust features (tail end of the epidemic on

a set of neighboring states): the center, 〈µt = 125, µv = {TX}, is marked with a blue

dot and its scope, 〈σtime = [111, 139], σv = {AR,LA,NM,OK, TX}〉, is visualized

74

using rectangles.

4.2.4 Robust Feature Detection

Let Y (t) = 〈Y1(t), ..., Ym(t)〉 be a multi-variate trace, from time t = 1 to t = n. As

in Lowe (2004c), we detect stable multi-variate features at the extrema of the scale

space. However, unlike Lowe (2004c) (which operates on images with two ordered

dimensions; i.e., rows and columns of pixels), extracting multi-variate features of the

simulation trace Y (at various temporal and variate scales) requires detecting local

maxima and computing gradients relative to not only the (ordered) time dimension,

but also to the underlying variate graph.

Time-and-Variate Smoothing. We construct the scale space of Y (t) (corresponding

to the versions of the series smoothed at different temporal and variate scales) relying

on the following time-and-variate smoothing process:

• Let Yi(t, st) indicate a version of uni-variate series, Yi, smoothed with parameter

st: Yi(t, st) = G(t, st) ∗ Yi(t), where ∗ is convolution in t and G(t, st) is the

Gaussian. Let Y (t, st) = 〈Y1(t, st), .., Ym(t, st)〉 be a version of Y , where each

uni-variate series is independently smoothed.

• Let us also define the variate smoothing function, S(R, sv, X) = [G(0, sv)I +

∑∞
(j=1) 2 × G(j, sv)R

j]X , where (a) R is an m ×m matrix describing the vari-

ate dependencies, (b) X = 〈X1, ..., Xm〉 is a m-vector, and (c) sv is a variate

smoothing parameter. Since G(j, sv) approaches 0 quickly as j increases, the

smoothing term in front of X can be approximated by a finite summation.

The time-and-variate smoothed version of Y (t, s) at scale s = 〈st, sv〉 is defined

as Y(t, s) = (H1(s); ...;Ht(s)), where Ht(s) = S(H, sv, Y (t, st)) is the version of

Y (t, st) = 〈Y1(t, st), ..., Ym(t, sT)〉, variate-smoothed at scale sv at time instant, t.

75

Iterative Scale Space Construction. We construct the scale space by incrementally

smoothing Y (both in time and variates) starting from an initial scale s0 = 〈st,0, sv,0〉.

Let Yi(t, s) be a time-and-variate smoothed version of Yi(t) at scale s = 〈st, sv〉.

Given a pair, k = 〈kt, kv〉, of time and variate scale multipliers, we add the three

scale-space neighbors (or ss-neighbors) of Yi(t) into the scale space:

Yi(t, k ◦t s) ≡def Yi(t, 〈kt × st, sv〉),

Yi(t, k ◦v s) ≡def Yi(t, 〈st, kv × sv〉), and

Yi(t, k ◦t,v s) ≡def Yi(t, 〈kt × st, kv × sv〉).

The process continues iteratively until maximum temporal and variate scales

(bounded by the length of the simulation trace and the number of variates) are met.

Local Extrema Detection. For detecting extrema, for each Yi(t, s) in the constructed

scale space, we compute

Dt
i(t, s) = abs(Yi(t, s)−Yi(t, k ◦t s)),

Dv
i (t, s) = abs(Yi(t, s)−Yi(t, k ◦v s)),

Dt,v
i (t, s) = abs(Yi(t, s)−Yi(t, k ◦t,v s)).

Local extrema are identified by considering each 〈i, t, s〉 triple and comparing

max(Dt
i(t, s), D

v
i (t, s), D

t,v
i (t, s)) against the 78 ss-neighbors of 〈i, t, s〉 in terms of

time (before, same time, after), variates (impacting, same variate, impacted by), and

scales (smaller, same scale, larger). Poorly defined extrema (i.e., an extremum that

has a large principal curvature in one direction but a small one in the perpendicular

direction) are eliminated.

Feature Descriptor Creation. Let us be given a triple 〈i, t, s〉. Let also N and M be

two integers such that N ∼ 3σt and M ∼ 3σv. We create the local feature descriptor

corresponding to this triple using a 2N × 2N matrix W : Let Y(i,s) be the time series

76

Yi at scale s; then, for all −N < a ≤ N and −N < b ≤ N , W [a, b] is defined as

follows: (a) if b > 0, W [a, b] = (RbY(i,s))[t + a]; (b) if b = 0, W [a, b] = Y(i,s)(t + a),

and (c) if b < 0, W [a, b] = (R−1)bY(i,s))[t + a].

Finally, we construct a (2u× 2v × c)-dimensional descriptor for the triple 〈i, t, s〉

in the form of a gradient histogram based on the matrix, W : we sample c gradient

magnitudes on the descriptor using a 2u × 2v grid superimposed on the matrix, W .

A Gaussian weighting function is used to reduce the magnitude of elements further

from the center.

4.2.5 Feature Search and Alignment

Features extracted from a networks-of-traces data play important roles in the

NOTES2 system. Here, we discuss how the similarity between two triples, 〈i1, t1, s1〉

and 〈i2, t2, s2〉, and the corresponding descriptors, desc1 and desc2, are computed in

NOTES2. Depending on the use context, feature similarity has three major compo-

nents:

• Descriptor alignment: Since the feature descriptors are gradient histograms,

their similarity is measured through a histogram similarity function (in the

experiments, we use inverse of Euclidean distance).

• Temporal alignment: For temporal alignment between two features, we consider

both the distance between the temporal centers of the features as well as the

degree of overlap between the temporal scopes of the features.

• Variate alignment: For variate alignment, we consider both the distance be-

tween the variates in the underlying relationship graph as well as the degree of

overlap between the variates within the scopes of the two features.

77

Depending on the application, we also consider alignments of (a) the average am-

plitudes and (b) sizes of the temporal and variate scopes of the two triplets. These

various components of feature similarity are combined using a similarity merge func-

tion, such as max, min, or product based on the desired matching semantics.

4.2.6 Evaluation

To assess whether the features extracted from epidemic simulations truly reflect

the underlying variate networks, we created a set of simulations, using the STEM

simulator, based on the US border network, where there is an edge between states if

they share a border, and air network, which is a clique. For a given pair of transmission

and recovery rates, we created 51 simulations (of length 213 units of time) assuming

a different US state as the ground zero and recorded incidence rates 1 . We then

extracted three sets of features from each simulation, using parameters in Table 4.1,

and assuming different connectivity structures:

• Border network (BN): For this case, we used the border network denoting states

sharing borders.

• Air network (AN): In this case, features are extracted assuming the air network

(which is a clique).

• Random network (RN): In this case, a random graph (with the same number

of edges as the border network) is used for extracting features.

Given these features and their descriptors, we then computed the confusion for a

simulation with ground zero state, gzi, as confusion(gzi) = AV Ggzj 6=gzi
sim(gzi,gzj)

sim(gzi,gzi)
.

Here the similarity, sim(gzi, gzj), between two simulations with ground zero states,

1Unless otherwise stated, we use the default STEM parameters

78

Table 4.1: Target feature parameters

min target feature length ∼ 5 time units

max target feature length ∼ 40 time units

min target feature size ∼ 2 hops

max target feature size ∼ 10 hops

descriptor size 32 (= 2× 2× 8)

Table 4.2: Average confusions for simulations with different transmission and re-
covery rates (death and birth rates are 0). Features are extracted assuming different
network structures

T.Rate R.Rate BN AN RN

1.0 0.5 0.35 0.36 (1.14×) 0.44 (1.28×)

0.75 0.5 0.23 0.25 (1.06×) 0.32(1.37×)

0.25 0.5 0.37 0.63 (1.73×) 0.49 (1.33×)

1.0 0.25 0.44 0.45 (1.02×) 0.54 (1.23×)

0.75 0.25 0.39 0.45 (1.14×) 0.48 (1.23×)

0.5 0.25 0.29 0.34 (1.15×) 0.39 (1.32×)

gzi and gzj, is defined as
∑

f∈features(gzi) sim(f, bestmatchj(f)). where bestmatchj(f)

is the best matching feature to f in the simulation with ground zero state, gzj. Tem-

poral alignment parameters were set to be equal; αt = βt = 0.5. Variate alignment

parameters were set to αv = 0 and βv = 0.1, to avoid penalizing the wrong network

alternative. We use the product merge function to combine alignment scores.

Intuitively, large confusion implies poor differentiation power and, if the feature

extraction process is effective, then we expect that (a) the overall confusion will be the

lowest when using features extracted based on a network reflecting the underlying dis-

ease propagation, and (b) confusion will be the highest when we use an inappropriate

network for feature extraction. Table 4.2 presents results for different transmission

and recovery rates. As we see in this table, using the border network for feature

79

(a) features extracted using the border network

(b) features using the air network (clique) (c) features using a random network

Figure 4.3: Centers of features extracted using different networks (source = “NJ”,
trans. rate = 0.75 and rec. rate = 0.5)

extraction leads to least amount of confusion. Moreover, these results conform to

our expectations listed above and Figure 4.3 helps see why: the (clique structured)

air network ignores disease transmissions through land borders (especially when the

transmission rate is too small for the flights to have a big impact on the epidemic’s

diffusion) and, thus, misses useful features. Random networks, on the other hand,

result in significant noise.

4.2.7 Conclusion

In this paper, we presented our networks-of-tracesmodel, which accounts for layers

of disease networks (from local and global mobility patterns to contact networks),

80

disease models, simulation and observation traces, and external interventions. The

Networks-of-Traces for Epidemic Spread Simulations (NOTES2) system, based on

this model, aims to assist experts in exploring large simulation trace data sets, through

networks-of-traces feature analysis.

4.3 EpiDMS

The potential for pandemics to rapidly generate morbidity, mortality, and eco-

nomic impact around the world has highlighted the need to develop quantitative

frameworks for supporting public health decision-making in near real-time. For in-

stance, the 2003 SARS coronavirus (Severe Acute Respiratory Syndrome) emergency,

which originated in China and spread to 29 countries, generated important nosoco-

mial outbreaks in several regions by August 2003 Chowell et al. (2003). More recently,

the 2009 A/H1N1 influenza pandemic originating in Mexico rapidly spread around

the globe via the airline network and reached 20 countries with highest volume of

passengers arriving from Mexico within a few weeks of epidemic onset Khan et al.

(2009). Importantly, the economic impact associated with a pandemic similar to the

2009 A/H1N1 influenza pandemic has been estimated to cost the global economy

between 360 billion and 4 trillion SWI (2019) for the first year of virus circulation.

Large-scale computational transmission models of infectious disease spread are in-

creasingly becoming part of the toolkit to carry out inferences on the spread and

control of infectious diseases. Examples of real-time analyses of epidemics supported

by large-scale transmission models include:

• estimating transmissibility of an epidemic disease, such as influenza,

• forecasting the spatio-temporal evolution of pandemics,

• assessing the effect of travel controls during the early epidemic phase,

81

• predicting the effect of school closures in mitigating disease spread,

• assessing the impact of reactive vaccination strategies,

These analyses, however, require access to, integration, and analysis of models and

large volumes of data, including datasets from diverse sources in order to parame-

terize demographic characteristics, contact networks, age-specific contact rates, mo-

bility networks, and health-care and control interventions. In this paper, we argue

that, if effectively leveraged, existing simulation analyses and real-time observations

generated during an outbreak can be collectively used for better understanding the

transmission dynamics and refining existing models. At the same time, these model

simulations are useful for performing exploratory, if-then type of hypothetical analy-

ses of epidemic scenarios in order to address critical questions including: (a) Can we

identify and classify key events (e.g., epidemic peak timing, likely epidemic duration)

during an infectious disease outbreak from large simulation ensembles? (b) Can we

compare and summarize a large number of epidemic simulations and observations

under different epidemiological scenarios? (c) Can we discover latent relationships

and dependencies among disease dynamics and social parameters?

4.3.1 Epidemic Simulations

Global epidemic spread can be characterized via simulation through networks

of multiple (local and global) scales: individuals within a subpopulation may be

infected through local contacts during a localized outbreak. These infected individuals

then may seed the infection in other regions, starting a new outbreak. Thus, large-

scale epidemic simulation systems (e.g., GLEaM gle (2019)and STEM STEM (2016))

are required to leverage models and data at different spatial scales. These include

social contact networks, local and global individual mobility patterns, location-specific

82

control interventions, and epidemiological characteristics of the infectious disease:

• The population model for a global epidemic simulation system can be based,

for example, on the Gridded Population of the World project by the Socio-

Economic Data and Applications Center (SEDAC) SED (2019), which has a

resolution of 15 × 15 minutes of arc.

• Mobility models can include long-range air travel mobility data, from the Inter-

national Air Transport Association and the Official Airline Guide and/or short-

range commuting patterns between adjacent subpopulations. High-resolution

demographic and age-specific contact data has become available for a num-

ber of countries including the US Germann et al. (2006), and South-East Asia

Longini Jr.et al. (2005) while age-specific contact rates have been derived from

population surveys for a number of European countries Mossong et al. (2008).

Large-scale computational transmission models, parameterized with high vol-

ume air traffic data and country-level seasonality factors, are being increasingly

used to assess the global transmission patterns of emerging infectious diseases

and the effectiveness of control measures.

• Epidemic models allow the user to specify epidemiological parameters that are

specific of the infectious disease (such as transmissibility and seasonality), ini-

tial outbreak conditions (e.g. seeding characteristics of the epidemic and the

immunity profile of the subpopulation), and the timing, type and intensity of

intervention measures. While the disease model can be specific to the type of

infection, the parameters of a typical model (the modified Susceptible-Latent-

Infectious-Recovered model described in Van den Broeck et al. (2011)) include

(a) the infection rate of contracting illness when an individual interacts with an

infectious person; (b) infection rate scaling factors for asymptomatic infectors

83

and treated infectors; (c) average length of the latency period (in which the

individual is infected, but not infecting); (d) probability of symptomatic vs.

asymptomatic infections; (e) change in the travelling behavior after the onset of

symptoms; (f) average length of recovery; (g) percentage of infectious individu-

als that undergo pharmaceutical treatment; and (h) impact (e.g. on the length

of the infectious period) of the treatment.

The output of a simulation is a multi-variate time series, which tracks for each spa-

tial location (such as the US states) the simulation values of each output parameter,

such as the number of infected individuals.

4.3.2 Challenges

While large-scale epidemic simulation systems such as GLEaM gle (2019) or STEM

STEM (2016) represent very powerful and highly modular and flexible epidemic

spread simulation systems, their power for real-time decision making could be en-

hanced by addressing the following challenges: (a) Complexity of the simulation and

observation data. A sufficiently useful disease spreading simulation system requires

models, including social contact networks, local and global mobility patterns of in-

dividuals, and epidemiological parameters for the infectious disease (e.g., infectious

period). Epidemic simulations track 10s or 100s of inter-dependent parameters, span-

ning multiple layers and geo-spatial frames, affected by complex dynamic processes

operating at different resolutions. Moreover, an ensemble of stochastic epidemic re-

alizations may include 100s or 1000s of simulations, each with different parameters

settings corresponding to slightly different, but plausible, scenarios. As a consequence,

running and interpreting simulation results (along with the real-world observations)

to generate timely actionable results pose challenges. (b) Dynamicity of the real-

world observations. A major challenge in using data- and model-driven computer

84

simulations for predicting geo-temporal evolution of epidemics for managing health

emergencies, such as the 2014-15 Ebola epidemic in West Africa, is that the data,

models, and the underlying model parameters dynamically evolve over time. This

necessitates continuous analyses and interpretations of the incoming data and adap-

tation of the networks and models. Therefore, simulation ensembles may need to be

continuously revised and refined as the situation on the ground changes: (a) revi-

sions involve incorporating the real-world observations as well as updated probability

surfaces into existing simulations to alter their outcomes; (b) refinements involve

identifying new simulations to run based on the changing situation on the ground to

provide trustable recommendations. As the situation on the ground and intervention

mechanisms evolve, the sampling strategies for the input parameter spaces have to be

varied (by eliminating irrelevant scenarios and considering new scenarios or varying

the likelihood of old scenarios) in such a way that more accurate simulation results

are obtained where it is more relevant.

In order to have a significant impact on disease control and to devise validated

epidemic response strategies within a realistic time frame, public health authorities

need to adequately and systematically interpret observations, understand the pro-

cesses driving epidemic outbreaks, and assess the robustness of conclusions driven

from simulations. Because of the volume and complexity of the data, the varying

spatial and temporal scales at which the key transmission processes operate and

relevant observations are made, public health experts could benefit from novel deci-

sion support systems. Therefore, tools that help (a) executing large-scale simulation

ensembles under a large number of diverse hypotheses/scenarios, and (b) analysis,

exploration, interpretation, and visualization of large simulation ensembles (aligned

with the real-world observations) to generate timely actionable results are critically

needed for understanding the evolution patterns of the outbreaks (including estimat-

85

ing transmissibility, forecasting the spatio-temporal spread at different spatial scales,

assessing the cost and impact of interventions, including travel controls, at various

stages of the epidemic) and supporting real-time decision making and hypothesis

testing through large scale simulations.

The key characteristics of data and models relevant to data-intensive simulations

include the following: (a) voluminous, (b) multi-variate, (c) multi-resolution, (d)

multi-layer, (e) geo-temporal, (f) inter-connected and inter-dependent, and (g) often

incomplete/imprecise. Moreover, data and models dynamically evolve over time, due

to control actions taken by individuals and public health interventions, requiring

continuous adaptation and re-modeling. The novel epiDMS software framework aims

to address the key challenges underlying large epidemic spread simulations, which,

today, hinder real-time and continuous analysis and decision making during ongoing

outbreaks. The services provided by epiDMS include:

• storage and indexing of large ensemble simulation data sets and the correspond-

ing models; and

• search and analysis of ensemble simulation data sets to enable ensemble-based

decision support.

The target user group for epiDMS include a range of public health researchers and

decision makers. While creation of models for ensemble simulations and query formu-

lation require moderate infectious disease modeling experience, epiDMS also provides

parameterized queries and other interactive user interfaces to enable decision makers

with minimal experience to explore large ensemble simulations.

86

4.3.3 System Overview

The epidemic simulation data management system for managing the data and

models for data-driven real-time epidemic simulations consists of three major com-

ponents (Figure 4.5):

• Epidemic ensemble execution engine (epiRun) takes as input an epidemic model,

mobility/connectivity models, interventions, and outbreak conditions (such as

ground zero), and creates an epidemic ensemble by sampling the disease param-

eter space and executing simulations using an external simulation engine. Note

that epiRun is not specific to any disease model or simulation engine and can

wrap as a black-box software component: any epidemic simulation engine as

long as it provides command line invocation. The epidemic model (formulated

in the format specific to the simulation engine), the selected input parameter

values, and the simulation results (i.e., time series for each output variable) then

become inputs for the epidemic data and model store (epiStore), described next.

• Epidemic data and model store (epiStore) stores, and indexes the relevant data

and metadata sets. The data and models relevant for modeling large-scale

epidemics include the following:

– Network layers: An epidemic simulation requires one or more layers of net-

works, from local and global mobility patterns to social contact networks.

– Disease models, describing the epidemiological parameters relevant to a

simulation and the parameter dependencies necessary in the computation

of the disease spread.

– Simulation time series: For a given disease study, researchers and decision

makers often perform multiple simulations, each corresponding to different

87

sets of assumptions (disease parameters or models) or context (e.g. spatio-

temporal context, outbreak conditions, interventions).

– Disease observations: These include real-world observations that arise in

near real-time relating to a particular epidemic, including the spread and

severity of the disease and observations about other relevant parameters,

such as the average length of recovery or percentage of infectious individ-

uals that undergo pharmaceutical treatment.

EpiStore captures simulation metadata (simulation model, parameter values, connec-

tivity graphs) and simulation outputs (time series) and provides data analysis (such as

clustering, classification, event extraction) to support decision-making. Once again,

epiStore is not specific to any disease model or simulation ensembles generated by a

specific simulation engine: it can read and store models and simulation results pro-

duced by any epidemic simulation engine as long as data wrappers that convert data

and metadata into internal epiStore representation are available. Epidemic ensem-

ble query, visualization, and exploration module (epiViz) provides a web-based query

and result visualization interface to support user interaction and exploratory decision

making through simulation ensembles. Query specification language is also model

independent, in the sense that the system does not make any assumptions regard-

ing what the input and output parameters of the simulations are once imported into

epiStore, parameters of any model can be queried, visualized, and explored.

4.4 SimDMS

Data- and model-driven computer simulations are increasingly critical in many

application domains. These simulations may track 100s or 1000s of inter-dependent

parameters, spanning multiple layers and spatial-temporal frames, affected by com-

88

plex dynamic processes operating at different resolutions. Because of the size and

complexity of the data and the varying spatial and temporal scales at which the key

processes operate, experts often lack the means to analyze results of large simulation

ensembles, understand relevant processes, and assess the robustness of conclusions

driven from the resulting simulations. Moreover, data and models dynamically evolve

over time requiring continuous adaptation of simulation ensembles. The simDMS

platform aims to address the key challenges underlying the creation and use of large

simulation ensembles and enables (a) execu- tion, storage, and indexing of large en-

semble simulation data sets and the corresponding models; and (b) search, analysis,

and exploration of ensemble simulation data sets to enable ensemble-based decision

support.

4.4.1 Introduction

Data- and model-driven computer simulations are increasingly critical in many

application domains.

• Epidemic Simulation Ensembles: For example, for predicting geo-temporal evo-

lution of epidemics and assessing the impact of interventions, experts often rely

on epidemic spread simulation software such as (e.g., GLEaM gle (2019) and

STEM STEM (2016)). The GLEaM simulation engine, for example, consists

of three layers: (a) a population layer, (b) a mobility layer which includes

both long-range air travel and short-range commuting patterns between adja-

cent subpopulations, and (c) an epidemic layer which allows the user to specify

parameters (such as reproductive number and seasonality) for the infectious dis-

ease, initial outbreak conditions (e.g. seeding of the epidemic and the immunity

profile of the subpopulation), and intervention measures.

89

• Building Energy Simulation Ensembles: Similarly, effective building energy

management, leading to more sustainable building systems and architectural

designs with monitoring, prioritization, and adaptation of building components

and subsystems, requires large data-driven simulations involving (a) location

and climate information for the city in which the building is located, (b) building

construc- tion information, such as building geometry and surface constructions

(including exterior walls, interior walls, partitions, floors, ceilings, roofs, win-

dows and doors), (c) building use information, including the lighting and other

equipment (e.g. electric, gas, etc.) and the number of people in each area of the

building, (d) building thermostatic control information, including the tempera-

ture control strategy for each area, (e) heating, ventilation, and air conditioning

(HVAC) operation and scheduling information, and (f) central plant informa-

tion for specification and scheduling of boilers, chillers, and other equipment.

EnergyPlus software, for example, relies on the description of a building’s phys-

ical make-up and associated mechanical and other systems including time-step

based simulation for many energy-related building parameters.

4.4.2 Challenge

While, in most cases, very powerful simulation software exist, using these simula-

tion software for decision making faces several significant challenges: (a) Creating cor-

rect simulation models is a costly operation, and it is often the case that the designed

simulation models are incomplete or imprecise. (b) Also, the execution of a simulation

can be very costly, given the fact that complex, inter-dependent parameters affected

by complex dynamic processes at varying spatial and temporal scales have to be taken

into account. (c) A third major source of cost is the simulation ensemble analysis:

because of the size and complexity of the data and the varying spatial and temporal

90

Figure 4.4: Simulation ensembles are (a) multi-variate, (b) multi-modal (temporal,
spatial, hierarchical, graphical), (c) multi-layer, (d) multi-resolution, and (e) inter-
dependent (i.e., observations of interest depend on and impact each other)

scales at which the key processes operate, experts often lack the means of analyzing

results of large simulation ensembles, understanding relevant processes, and assessing

the robustness of conclusions driven from the resulting simulations. As visualized

in Figure 4.4, the key characteristics of the simulation data sets include the follow-

ing: (a) multi-variate, (b) multi-modal (temporal, spatial, hierarchical, graphical), (c)

multi-layer, (d) multi-resolution, and (e) inter-dependent (i.e., observations of interest

depend on and impact each other). In particular, simulations may track 100s or 1000s

of inter-dependent parameters, spanning multiple layers and spatial-temporal frames,

affected by complex dynamic pro- cesses operating at different resolutions. Moreover,

generat- ing an appropriate ensemble of stochastic realizations may require multiple

simulations, each with different parameter settings corresponding to slightly different,

but plausible, scenarios. As a consequence, running simulations and interpreting sim-

ulation results (along with the real-world observations) to generate timely actionable

results are difficult. We argue that these challenges can be significantly alleviated

using a data-driven approach that addresses the following fundamental questions:

• Given a large parameter space and fixed budget of simulations, can we decide

91

which simulations to execute in the ensemble? Can we revise the ensemble as

we receive a stream of real world observations?

• Can we compare a large number of simulation ensembles and observations (un-

der different parameter settings) to identify their similarities and differences?

Can we analyze one or more simulation ensembles to discover patterns and

relationships between input parameters, key events/interventions, and simula-

tion outcomes? Can we discover key events and summarize a large simulation

ensemble to highlight these events? Can we classify these key events?

• Can we search and explore simulation ensembles based on the underlying key

events or the overall simulation similarities? Can we keep track of the most

relevant and most outlier simulations in an ensemble as we receive a stream of

real world observations?

4.4.3 System Overview

spatial & temporal scales.

3. simDMS Architecture

E
x
e

c
u

ti
o

n
 S

u
p

p
o

rt

epiStore

epiViz

A
n

a
ly

s
is

 S
u

p
p
o

rt

Feature Extraction

& Indexing
Query & Search

Clustering &

Classification

Parameter & Model

Analysis

epiRun

External Simulation Engines (STEM/Energy+)

Figure 4.5: simDMS system overview

Figure 4.5 depicts an overview of SIMDMS system which aims at assisting users

to explore large simulation ensembles. In particular, it supports:

92

• analysis and indexing of simulation data sets, including extraction of salient

multi-variate temporal features from inter-dependent parameters (spanning

multiple layers and spatial-temporal frames, driven by complex dynamic pro-

cesses operating at different resolutions) and indexing of these features for effi-

cient and accurate search and alignment;

• parameter and feature analysis, including identification of unknown dependen-

cies across the input parameters and output variables spanning the different

layers of the observation and simulation data. These, and the processes they

imply, can be used for understanding and refining the parameter dependencies

and models.

4.5 DataStorm-FE

Data- and model-driven computer simulations are increasingly critical in many

application domains. Yet, several critical data challenges remain in obtaining and

leveraging simulations in decision making. Simulations may track 100s of parame-

ters, spanning multiple layers and spatial-temporal frames, affected by complex inter-

dependent dynamic processes. Moreover, due to the large numbers of unknowns, de-

cision makers usually need to generate ensembles of stochastic realizations, requiring

10s-1000s of individual simulation instances. The situation on the ground evolves

unpredictably, requiring continuously adaptive simulation ensembles. We introduce

the DataStorm framework for simulation ensemble management, and demonstrate its

DataStorm-FE data- and decision-flow and coordination engine for creating and main-

taining coupled, multi-model simulation ensembles. DataStorm-FE enables end-to-

end ensemble planning and optimization, including parameter-space sampling, output

aggregation and alignment, and state and provenance data management, to improve

the overall simulation process. It also aims to work efficiently, producing results

93

while working within a limited simulation budget, and incorporates a multivariate,

spatiotemporal data browser to empower decision-making based on these improved

results.

4.5.1 Introduction

Data- and model-driven computer simulations are increasingly critical in many

application domains. For example, when predicting the evolution of epidemics and

assessing the impact of interventions, experts often rely on epidemic models and sim-

ulation software, such as GLEaM gle (2019) and STEM STEM (2016), and simulation

ensemble tools, such as EpiDMS Liu et al. (2016). Similarly, data-driven computer

simulations for disaster preparedness and response can play a key role in predicting

the evolution of disasters and effectively managing emergencies through intervention

measures.

4.5.2 Challenge

Yet, several critical data challenges remain in obtaining and leveraging simulations

in decision making. Disaster simulations, for example, need to track 100s of inter-

dependent parameters, spanning multiple models and geo-spatial frames, affected by

complex inter-dependent dynamic processes operating at different resolutions. This is

a major challenge due to overlapping and cascading processes, especially when involv-

ing multi-hazard scenarios where one hazard (e.g. flooding) is the gateway to the next

(e.g. an epidemic). Yet, today’s silo-based, de-coupled simulation engines assume that

disaster, population dynamics, transportation, and disease/epidemic simulations are

not integrated, failing to provide an end-to-end view of the disaster and preventing

timely and informed decision making.

Moreover, due to the large number of unknowns, decision makers usually need

94

to generate ensembles of stochastic scenarios, requiring 10s or 1000s of individual

simulation instances, each with different parameter settings corresponding to distinct

plausible scenarios. Yet, while existing simulation systems provide decision support

for well-specified scenarios, when decision making and knowledge discovery in the

presence of incomplete information are considered, there is little support for simula-

tion ensemble planning, optimization, and management. In particular, execution of

simulation ensembles can be very costly, which leads to simulation budget constraints

restricting the number of simulations one can include in an ensemble. To support ef-

fective decision making, one must answer the question “Given a parameter space

and a fixed simulation budget, which simulation instances we should the ensemble

include in order to obtain models with good fit and low complexity?” In addition,

since simulation context can dynamically and unpredictably evolve over time (due to

for example how a disaster develops and the preventive and reactive actions taken

by individuals), continuous adaptation of simulation ensembles is necessary. In par-

ticular, as the data arrives in a streaming fashion, simulation ensembles need to be

continuously revised and refined as the situation on the ground changes: (a) revisions

involve incorporating real-world observations as well as updated probability densities

into existing simulations to alter their outcomes; (b) refinements include identify-

ing new simulations to run, incorporating the changing situation on the ground to

support improved decision-making.

My research team introduces the DataStorm framework for creation, storage, anal-

ysis, and exploration of coupled, multi-model simulation ensembles. At the core

of DataStorm is the DataStorm-FE data- and decision-flow engine and coordina-

tion engine for creating and maintaining coupled, multi-model simulation ensembles.

DataStorm-FE provides a means for coordinating data- and decision- flows among

partially-connected simulation engines, and enables end-to-end ensemble planning

95

and optimization (including parameter-space sampling, output aggregation and align-

ment, continuous data streaming, and state and provenance data management) to

improve the predictive accuracy of the overall end-to-end simulation process within

a limited simulation budget.

Additionally, DataStorm provides a decision support infrastructure for results

obtained by DataStorm-FE, permitting users to query, explore, or visualize relevant

data to facilitate the decision-making process.

4.6 Conclusion

Those platforms mentioned above provide metadata and event-driven analysis and

visualization of simulation ensembles to assist decision makers to query and explore

ensemble simulations and decide strategies such as which additional simulations to

execute, which route people can use to evaculate civilians and what actions need to

be taken to minimize the impact of natural disasters.

96

Chapter 5

OLSH: ONION-LSH FOR APPROXIMATE TOP-K QUERY PROCESSING

5.1 Introduction

So far we have discussed information retrieval tasks of multi-variate time series

such as pattern matching and classification by leveraging the novel feature extraction

process. The motivation is to answer small queries from relatively big data by access-

ing a small amount of information from the data, the idea of which can be extended to

top-k query processing in multi-dimensional space. Therefore, I propose a framework

which first learns the structure (importance) of each portion of data, followed by a

hashing process for the purpose of fast retreival in later phase, with limited hashing

resources. I will first address the problem, then I will go over the proposed OLSH

framework and how it can answer top-k queries in high dimensional space.

Essentially the intuition is to deal with a large quantity of big data with limited

computation resources such as RAM by accessing a bounded amount of small data,

which leads to the motivation of making big data small for queries. The methods

developed upon this principle is that not all data contributes equally to the final

result set hence not all data is necessary for answering queries.

5.2 Problem Definition

Given a database, D, which contains data points that belong to a d-dimensional

non-negative space 1 , S(= Rd
≥0), we define a top-k user preference query, as a vector,

q, belonging to S, such that the user is seeking a resulting set, R ⊆ D, of objects

1In this paper, to ensure the monotonicity of the queries relative to the data, we assume that
both data and query vectors have all non-negative components.

97

where |R| = k and

∀p1∈R∄p2∈D\R q.p1 < q.p2.

Note that, when processing queries approximately, the result set R may not satisfy

the above constraint. In that case, we define the accuracy, acc(R, q) of the result set

R relative to the query q as

acc(R, q) = 1− |M(R, q)⊖M(Ropt, q)|
k

,

where Ropt is an accurate solution to the top-k problem, M(X, q) indicates the multi-

set of matching scores between the query q and elements of the set X , and ⊖ indicates

the difference operator for multi-sets. The corresponding error rate is defined as

δ(R, q) = 1− acc(R, q).

Based on the above, we formulate the index structure design problem we are aiming

to address in this paper as follows: Given

• a database, D, which contains data points that belong to a multi-dimensional

space, S,

• a user preference query, q, defined as a vector in the space S,

• a memory budget, B, and

• a bound, m, on the maximum rank to be supported,

our goal is to create an index structure, such that

• the memory footprint of the index structure is less than B and

• for a top-k query, with k ≤ m, the corresponding error rate is minimized.

In addition to these, we also wish that the index structure leads to as little data access

as possible during the execution of the top-k query.

98

5.3 Onion-LSH (OLSH) for Approximate top-k Processing

As we briefly introduced in Section 5.1, here, we propose a novel Onion-LSH

(OLSH) index structure to approximately solve top-k queries. At the highest level,

OLSH relies on the Onion technique Chang et al. (2000), to organize the data in

layers of convex-hulls, which we refer to as o-layers, to produce top-k results. Unlike

prior works, however, to reduce the amount of data access, each o-layer is further

organized into (inner product based) LSH layers, referred to as h-layers.

In LSH based retrieval schemes, there is an inherent trade-off between available

hashing resources and the accuracy. Since basic LSH does not provide error guar-

antees for top-k retrieval results (but instead targets accuracy guarantees based on

distances), in this section, we discuss how to control this trade-off using an accuracy

model that relates accuracy target with the number of h-layers created. We further

complement the proposed OLSH index structure with a layer-aware (LA) resource al-

location strategy, which takes into account the distribution of the data, the number,

k, of results required, and the user’s target accuracy, to allocate available hashing

resources among the available o-layers.

5.3.1 Overview of Onion Indexing

The Onion technique Chang et al. (2000) is a layer-based data organization to

solve the top-k search problem: the data in the multi-dimensional space are parti-

tioned to convex-hull layers. More specifically, the outermost layer is the convex hull

for the entire data set, the second outermost layer is the convex hull for the data set

minus the data in the outermost layer, and so on.

Onion leverages the geometric properties of the convex hull, which guarantees that

the optimal value for any linear preference function (which can be represented in the

99

form of an inner product between a query and data vectors) will always be found at

one (or more) of its vertices. Given a top-k query, the Onion technique searches for

the top result in the outermost layer, searches the 2nd best result in the two outermost

layers, and so on, up to the k outermost layers combined for the last (kth) data object

in the result. Figure 2.2 provides an example. Here the data is partitioned into four

onion layers: the outermost layer consists of points O1 ={p1, p2, p3, p4 }; the second

outermost layer includes points O2 ={p5, p6, p7}; the next layer has O3 ={p8, p9,

p10}, and the very last layer includes two points, O4 ={p11, p12}. Given a query, q, to

obtain top-2 results, we would first find the top-ranked entry among {p1, p2, p3, p4 } in

the outermost layer and we would then find the next result among {pj |j = 1, 2, . . . , 7},

combining the two outermost layers.

One major challenge with the basic Onion technique is that, for large data sets,

the number of elements in the outermost layers can also be large and this can lead

to a large number of candidates to be considered to identify the actual top-k objects.

Heo et al. (2010) proposed a combination of layer-approach and the list-based ones,

where within each layer, the data is organized in a way that leverages a list-based

ranked-data enumeration approach, typically Fagin et al. (2003). OLSH, instead,

relies to an LSH based organization of data in onion layers to help scale to higher

dimensional spaces.

5.3.2 OLSH: LSH Indexing of Onion Layers

Let Oi ⊆ D be an onion layer (or o-layer). OLSH organizes the data on this

o-layer into LSH data buckets, in a way that provides approximate search for objects

matching the query, q. More specifically, for ith o-layer, we pick two parameters, κi

and Li, that control the precision and recall, respectively, for that layer. As discussed

in Section 2.2, concatenating κi independently selected hash functions will help reduce

100

the number of false positives. More specifically, the data in Oi are partitioned into

buckets using the combined hash function. We refer to each such grouping of κi

hash functions as a hash-layer (or h-layer) of the corresponding Onion layer. In order

to reduce the misses, we then create Li many such h-layers and union the results

obtained from each of the corresponding buckets, the idea being that if a result is

missed by an individual h-layer, it is less likely that it will be missed simultaneously

by multiple h-layers.

Definition 18 (OLSH Index) Let us consider a data set, D, indexed using OLSH

for top-k search for k ≤ m. Let us denote the set of data points in the ith Onion layer

(o-layer) as Oi. Let us further denote the number of hash layers (h-layers) and the

number of hashes per h-layer for the ith Onion layer as Li and κi as before.

We represent this OLSH index with a 5-tuple 〈m,O,K,L,H〉, where O =

{O1, . . . , Om}, K = {κ1, . . . , κm}, L = {L1, . . . , Lm}, and H is a suitable hash family.

⋄

As we have seen in Section 2.2, the hash family, H, used for mapping the data into

hash buckets needs to be compatible with the underlying distance/similarity function.

LSH families have been explored for different distances or similarities, including lp dis-

tance (LSH with p−stable distributions), Hamming distance, Jaccard coefficient, and

so on Indyk and Motwani (1998); Datar et al. (2004); Neyshabur and Srebro (2015);

Shrivastava and Li (2014); Huang et al. (2018). Since, for top-k queries considered

in this paper, the degree of match between the query, q, and the data point, p, is

defined based on their inner (or dot) product, for OLSH we need a hashing scheme

that supports inner product search.

LSHs for Inner Product Search: Given an Onion layer, Oi, the problem we are

facing is to organize the data into h-layers in a way to efficiently answer a query, q,

101

described in terms of linear weights on data attributes. In particular, we are looking

for a point, ri ∈ (O1∪ . . .∪Oi), that has a large inner product with the query vector,

q, but was not returned as a result for any of the outer i− 1 o-layers:

ri = argmax
x∈((O1∪...∪Oi)\{r1,...,ri−1})

q.x

This indicates that we need a locality sensitive hash function that will provide accu-

racy guarantees under inner product similarity.

In the original LSH formulation Indyk and Motwani (1998); Motwani et al.

(2006), the locality sensitive hash function is symmetric in the sense that the same

hash function is applied to both data objects p and query object q; moreover, p and

q are points in the same vector space. Shrivastava and Li (2014) argued that there is

no symmetric locality sensitive hash function which can maximize the inner product

for the entire vector space. The authors also showed, however, that when queries

are normalized and data vectors are bounded, an asymmetric hash function, which

applies two different hash functions to data and query objects, can be developed to

answer such inner product based queries. Neyshabur and Srebro (2015) has shown

that under certain conditions, one can also develop a symmetric locality sensitive

hash function with performance guarantees. In particular, when both query and data

vectors are bounded inside unit sphere (i.e., when ||x|| ≤ 1, where x is a query or

data vector), there does exists a parameter-free, universal, symmetric LSH.

Note that, in our problem context, given a vector, q, the norm ||q|| does not affect

the outcome. Therefore, we can rescale all vectors in the data set without changing

the argmax. Thus, in designing OLSH, we rely on a symmetric hash function, which

first applies the following transformation, from the original vector space into a 2D-

space, to the (data or query) vector, x,

P (x) = [x;
√

1− ||x||22],

102

!

!"#$

!"$

!"%$

&

!"# !$%&'# !$%'# !$%('# ! !"#$!"$!"%$ &

'
(
))*
+*
(
,
-
.
/(
0
1
0
)
23

41)56-(7-8"9

:1)56-(7-2;6-*,,6/-</(=5>2-4+"-'())*+*(,-

./(010*)*23

'?@@ABA?C-

DECFG

Figure 5.1: Inner product similarity vs collision probability

and then hashes the vector with the following random mapping into the binary al-

phabet Γ = [±1]:

hα(x) = sign(αTP (x)), (5.1)

by picking a spherical random vector α ∼ N (0, I) Neyshabur and Srebro (2015).

Accuracy Guarantee of a Single Hash Function: As we discussed earlier, LSH-

based index structures utilize multiple hash functions from the same hash family to

match the accuracy guarantees that the user or the application requires. This, how-

ever, necessitates quantifying the collision probability of a query and a data point for

a single hash function. Neyshabur and Srebro (2015) provided the following collision

probability for the symmetric hash function introduced above:

Pr[hα(P (q)) = hα(P (x))] = 1− cos−1(q.x)

π
.

Since we have normalized q such that ‖q‖ = 1 and also scaled the data vectors such

that ‖x‖ ≤ 1, we have −1 ≤ q.x ≤ 1, this in general leads to the (blue) curve shown

in Figure 5.1.

The shape of this collision probability curve poses two challenges for our top-k

retrieval problem. First of all, we are given a monotonic query, q, which is constrained

to have non-negative values in all data dimensions. As described in Section 5.2, in

this paper, we assume that the data set is constrained to have non-negative values

103

for all attributes. Given these, the inner product between a query, q, and a data

vector, v, will inherently have a non-negative value and, consequently, the collision

probability between query and data points will be greater than 0.5 (see Figure 5.1).

Consequently, false positive rates are likely to be high and, in order to keep the

number of redundant points that need to be considered as candidates low, we need

be especially careful in selecting the number, κ, of hash functions to be concatenated

in a given hash layer. Secondly, as we see on the rightmost corner of the curve, the

collision probability drops sharply as the value of q.x moves away from a perfect

match with 1.0 score, before stabilizing in a more linear pattern. This also indicates

that we need to select the number, L, of h-layers carefully to ensure that the top-k

retrieval accuracy is maintained sufficiently high.

5.3.3 Accuracy/Resource Trade-offs in OLSH

In traditional LSH, the collision probability for a given hash layer is computed as

ψκ, where ψ is the collision probability (say for a given distance/similarity target)

and κ is the number of hash functions concatenated in that layer. This is because

hash functions are selected independently and, for any object to appear in the result

of a given hash layer, it needs to collide with the query for all κ hash functions in

the layer. The collision rate for the entire LSH index (consisting of L hash layer) is,

then, 1− (1− ψκ)L, since the only way a data object will fail to appear in the result

is if it does not collide with the query for any of the L layers.

In the case of OLSH, not all Onion layers contribute to the result set of a top-k

query equally. We therefore need to formulate the accuracy measure in a way that

takes into account the contribution of different Onion layers to the final result:

• As we discussed earlier, the top ranked result will certainly reside on the outer-

most o-layer, the second best result will be in one of the two outermost o-layers

104

!

"

#!

#"

$!

! " #! #" $! $"

%
&'
(&
)
*
+*
&,
'
-.
+/
&0
1#
!
!
!
2

3.-'.& 4*567

!"#$""%#&'()"*+,"-'&#'"./0+,"

12&3456"2/(/")&7+"4"89:

8.+-9'7764*+6:

;'7764*+6:

<.-('7=

(a) 3D data sets

!

"!

#!!

#"!

$!!

! " #! #" $! $"

%
&'
(&
)
*
+*
&,
'
-.
+/
&0
1#
!
!
!
2

3.-'.& 4*567

!"#$""%#&'()"*+,"-'&#'"./0+,"

12&3456"2/(/")&7+"4"89:

8.+-9'7764*+6:

;'7764*+6:

<.-('7=

(b) 7D data sets

Figure 5.2: Partitioning of data points among Onion layers, for three sample data
sets with different data distributions

and so on. This indicates that outer o-layers are, in general, more critical since

(ignoring the data distribution) they are likely to contribute more to top-k

result.

• On the other hand, as we see in Figure 5.2, the sizes of the layers often de-

pend on their depths and the dimensionality of the data. This implies that,

unless we consider the data distribution across the Onion layers when assigning

the resources, deeper layers, which do not produce many top-k results, may

nevertheless produce a large number of useless candidates.

We next study the accuracy resource trade-offs in OLSH design.

Resource Consumption: Let us consider a data set, D, indexed using an OLSH

index O = 〈m,O,K,L,H〉 as formalized in Definition 18. The data elements corre-

sponding to an Onion layer have to be indexed once for each of the corresponding

hash layers. Consequently, the total resource consumption of the OLSH index, O,

can be computed as

resource(O) ∼
m
∑

i=1

Li × |Oi|.

Number of Enumerated Candidates: Let ρi denote the average bucket size for a

given h-layer in the ith Onion layer. Then, the number, cand(O, k), of enumerated

105

candidates for a top-k query (k ≤ m) is such that

k
∑

i=1

ρi ≤ cand(O, k) ≤
k

∑

i=1

Li × ρi.

Note that the value of ρi depends on the number, |Oi|, of data elements in the

o-layer, the distribution of these points in the space, the properties of the hash family

H, as well as the number κi of hash functions per h-layer. In particular, let avgi

be the average inner product among the points in Oi; given this, we can associate

an average per-hash function collision probability ψavg,i to the pairs of points in the

Onion layer (see Figure 5.1). Given this collision probability, we can compute the

average non-empty bucket size, ρne,i, as follows:

ρne,i = 1 + ψκiavg,i × (|Oi| − 1).

Intuitively, for any non-empty bucket, there is at least one data object plus
(

ψκiavg,i × (|Oi| − 1)
)

many other data points that collide with it in the given h-layer.

Note, however, that in general, there is nothing that guarantees that a top-k

query, q, will hit a non-empty bucket. Therefore, when computing ρi we need to take

into account also empty buckets. In particular, since the hash function we utilize for

inner-product search is binary (see Equation 5.1 in Section 5.3.2), given κi, we can

create up to 2κi hash buckets, which (assuming non-biased data distribution within

o-layers), would give us

ρi =
|Oi|
2κi

.

This implies that if 2κi > |Oi|, on the average, each h-layer will produce less than 1

result, independently of the underlying collision probability. If, however, 2κi ≪ |Oi|,

this will increase the average bucket size (and the average non-empty bucket size)

resulting in a large number, cand(O, k), of candidates. Since only a small number,

k, out of these candidates can be true results, ideally, we should have 2κi ∼ |Oi| or,

equivalently, κi ∼ log2(|Oi|).

106

Error Rate: To compute the error rate for OLSH under a given parameter setting,

O = 〈m,O,K,L,H〉, we need to consider that the different onion layers (a) are

allocated potentially different amount of resources and (b) have different contributions

to the result set of the top-k query. In particular, we have seen that highest ranked

result is guaranteed to come from the outermost layer and, in general, ith onion layer

have the potential to contribute to any layer at depth i or more. While this intuitively

implies that the outer layers are likely to be more important, we also need to consider

the fact that inner layers tend to have more points on them (as we have seen in

Figure 5.2). This is visualized in Table 5.1: the outermost Onion layer is guaranteed

to produce the top ranked result. However, when we consider the lower ranked results,

the chance that a deeper Onion layer may contribute becomes non-zero. Thus, when

computing the likelihood of the ith Onion layer to produce the hth rank result, we

need to consider the size of the ith o-layer relative to the sum of the sizes of all o-layers

up to (and including) the hth o-layer. Let us consider a data set partitioned into m

outermost Onion layers. Given a top-k query (k ≤ m), the likelihood of the Onion

layer i to produce the hth rank result can be computed as

ci,h =

0 if h < i

|Oi|
∑h

j=1
|Oj |

else

Note that this formulation does not assume any information about the distribution

of data across Onion layers, other than their sizes relative to each other. In practice,

more precise likelihoods might be obtained through data and query statistics. Having

quantified the likelihood of the Onion layer i to produce the hth rank result for a given

top-k query, q, we can then compute the expected error rate for a given OLSH index

O = 〈m,O,K,L,H〉 for this query as follows:

err(O, k) =
1

k
×

k
∑

h=1

h
∑

i=1

(

ci,h ×
(

(1− ψκii)Li
))

,

107

Table 5.1: Expected layer contributions of different Onion layers to different ranks
in top-5 retrieval

o-layer 1 o-layer 2 o-layer 3 o-layer 4 o-layer 5

rank1 1 NA NA NA NA

rank2
|O1|∑

2

j=1
|Oj |

|O2|∑
2

j=1
|Oj|

NA NA NA

rank3
|O1|∑

3

j=1
|Oj |

|O2|∑
3

j=1
|Oj|

|O3|∑
3

j=1
|Oj |

NA NA

rank4
|O1|∑

4

j=1
|Oj |

|O2|∑
4

j=1
|Oj|

|O3|∑
4

j=1
|Oj |

|O4|∑
4

j=1
|Oj|

NA

rank5
|O1|∑

5

j=1
|Oj |

|O2|∑
5

j=1
|Oj|

|O3|∑
5

j=1
|Oj |

|O4|∑
5

j=1
|Oj|

|O5|∑
5

j=1
|Oj|

where ψi is the per-hash function success probability for the hash functions used to

index the ith onion layer.

5.3.4 OLSH Design Criteria

Given the resource and accuracy trade-offs formalized in the above section, we

can then restate the OLSH index design criteria as follows: Let D be a data set. An

OLSH index, O = 〈m,O,K,L,H〉, to answer top-k queries for this data set must

satisfy the following:

minimize err(O, m)

subject to resource(O) ≤ resourcemax,

where resourcemax is the maximum resource allocated for the OLSH index. In ad-

dition, we would like to keep the number, cand(O, k), of candidate results produced

during the processing of top-k queries (k ≤ m) as low as possible.

5.3.5 Overview of OLSH

In Algorithms 1 through 3, we present the pseudo-codes for construction and use

of the OLSH index structures for top-k query processing.

Constructing OLSH: Algorithms 1 and 2 present the outline of the process through

which we create an OLSH index for a given data set D. As we see in Algorithm 1, the

108

Algorithm 1 Construct OLSH

Input: database D, maximum rank m, budget B, hash family, H

Output: OLSH index structure, O

1: O = OnionLayerPartition(D, m)

2: K = AssignPerLayerHashCounts(O, m, H)

3: L0 = SolveNonLinear(O, K, m, B, H)

4: L = ReviseLayers(O, m, B, K, L0, H)

5: return O = computeHashTables(m, O, K, L, H)

process takes as input, in addition to a data set, the maximum rank to be supported

as well as a suitable hash family. The first step of the algorithm is to extract the m

outermost Onion layers from the given data set 2 . In the second step, we compute

the per-layer hash counts for each Onion layer, based on the corresponding number

of data elements.

In the third step, we solve the optimization problem formulated in the previ-

ous subsection. Note that the OLSH design problem is non-linear as the relationships

among κi, Li, and the ith layer contribution to the error term are non-linear. The prob-

lem is somewhat simplified when, as discussed in Section 5.3.3, we fix κi = log2(|Oi|)

to minimize the number of candidates – in this case, the numbers, Li, of hash layers

for the different Onion layers are the only unknowns in the optimization problem.

Nevertheless, the problem remains non-linear even when after fixing κi and, conse-

quently, we need a non-linear solver to obtain an OLSH design for the given problem

setting. In our implementation, we use Mathematica’s numeric optimizer, NMinimize,

to solve this problem. However, given the non-linear nature of the problem, obtaining

2If the data set does not produce m Onion layers, the top-k search algorithm is suitably modified
to deal with this case. For simplicity, we ignore this special case here.

109

an optimal solution is not feasible. Instead, we seek an approximate solution to the

problem by fixing the number of iterations for the optimizer. This, however, poten-

tially leads to sub-optimal designs, where not all available resources are utilized to

bring down the error rate. To tackle this problem, after obtaining an initial design

O0 = 〈m,O,K,L0,H〉, we incrementally improve the design by allocating new hash

layers to different onion layers in a way that maximally improves the accuracy. We

achieve this by computing, for each Onion layer i, a per-layer resource demand term

demand(Oi) = |Oi|

and a degree of potential for improvement

potential0(Oi) = err(O0)− err(O(i‡+1)
0),

where Li,0 is the hash layer assignment for Onion layer i based on the initial solution

O0 and err(O(i‡+1)
0) is the error one would observe if the hash layer assignment for

Onion layer i is incremented by one:

err(O(i‡+1)
0) =

1

k
×

k
∑

h=1

h
∑

i=1

(

ci,h ×
(

(1− ψκii)Li,0+1
))

.

Given these two terms, for improvement, we select the layer i with the largest potential

among those layers with resource demands that are less than the available resources,

demand(Oi) ≤ resourcemax − resource(O0),

and we increase the number of hash layers assigned to this onion layer by one. This

gives us a revised resource allocation, O1 = 〈n,O,K,L1,H〉. The process, then, is

repeated (as shown in Algorithm 2) until the resources have been used up such that

no more improvements is possible.

Top-k Search with OLSH: The outline of the top-k search process is given in

Algorithm 3. As we see here, the algorithm starts with the first Onion layer and

110

Table 5.2: Experimental parameters (default values are highlighted in bold)

Parameter Tested values

Data cardinality 100K, 200K, 500K,

1M, 1.5M, 2M

Data dimensionality 2, 3, 4, 5, 6, 7

Data distribution Independent (Ind),

Correlated (Cor),

Anticorrelated (Anti)

Max. rank (m) 25, 50

Target data redundancy (r) 2, 3, 4

Collision probability (ψ) 0.65, 0.75, 0.85

Per h-layer num hashes (κ) default = log2(|Oi|),

default + 3, default -

3, uniform

fetches the top-k results, since that layer can potentially contribute up to k elements

to the results set. Then, the algorithm visits the deeper Onion layers one-by-one and,

from each, it pulls as many results as it can potentially contribute to the result set; in

particular, since ith Onion layer can produce at most the ith best result in the result

set, from that layer, the algorithm fetches k − i+ 1 best results relative to the given

query, q. The final result is than obtained by combining partial results from the k

outermost layers and selecting the best k out of them.

5.4 Experimental Evaluation

In this section, we evaluate the effectiveness of the proposed OLSH hashing scheme

for top-k query processing and the underlying layer-aware (LA) resource allocation

technique. For these evaluations, we use both synthetic datasets (where we control the

111

Recall (top-25 query)

Anticorrelated Correlated Independent

OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU

w/o Revision 95.1 83.5 81.2 93.3 90.4 89.8 86.3 70.1 72.6

w Revision 97.7 N/A 81.2 93.5 N/A 91.3 89.6 N/A 72.6

Num Candidates (top-25 query)

Anticorrelated Correlated Independent

OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU

w/o Revision 6747.3 7482.2 6880.1 4253.2 4990.7 4779.4 3926.8 5203.7 5378.4

w Revision 7067.2 N/A 6880.1 4253.5 N/A 4882.9 4043.8 N/A 5378.4

Recall

Num Candidates
(top-25 query)

Anticorrelated Correlated Independent

OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU

w/o Revision 0.0141 0.0112 0.0118 0.0219 0.0181 0.0188 0.0220 0.0135 0.0135

w Revision 0.0138 N/A 0.0118 0.0220 N/A 0.0187 0.0222 N/A 0.0135

Num Candidates

|O1∪O2∪...∪O25|
(top-25 query)

Anticorrelated Correlated Independent

OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU OLSH LSH-MU LSH-SU

w/o Revision 7.1% 7.9% 7.2% 6.7% 7.8% 7.5% 3.7% 4.9% 5.1%

w Revision 7.4% N/A 7.2% 6.7% N/A 7.7% 3.8% N/A 5.1%

Table 5.3: Recall and # of candidates considered for different distributions (200K
objects, target redundancy 2, default κ)

data distribution and dimensionality) and real data sets with different characteristics.

All experiments were executed on Linux machines with 8 CPUs and 32 GB RAM,

running Ubuntu 16.04.

5.4.1 Datasets

Synthetic Data

As synthetic data, we use the standard benchmarks for top-k and preference queries

Borzsony et al. (2001). Table 5.2 provides an overview of the parameters (cardinality,

112

Recall (top-25 query)

Anticorrelated Correlated Independent

OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

2D 92.6 93.3 97.6 99.2 96.2 90.4

3D 96.6 81.0 97.2 92.3 90.2 80.2

4D 97.7 81.2 93.5 91.3 89.6 72.6

5D 90.5 65.5 91.0 88.2 80.3 56.4

6D 64.1 33.7 83.7 76.9 75.6 34.8

7D 31.7 19.4 72.5 65.2 48.4 27.2

Num Candidates (top-25 query)

Anticorrelated Correlated Independent

OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

2D 577.0 611.2 320.8 366.6 557.2 502.2

3D 2426.0 2139.1 1471.9 1441.6 2089.0 2277.8

4D 7067.2 6880.1 4253.5 4882.9 4043.8 5378.4

5D 10471.6 12141.8 11458.6 11692.9 5582.5 8503.7

6D 8445.6 11981.5 12355.5 12818.0 6364.9 6199.6

7D 7586.6 9946.0 12470.3 12244.2 6476.9 7577.0

Recall

Num Candidates
(top-25 query)

Anticorrelated Correlated Independent

OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

2D 0.1604 0.1527 0.3041 0.2706 0.1727 0.1800

3D 0.0398 0.0378 0.0661 0.0640 0.0432 0.0352

4D 0.0138 0.0118 0.0220 0.0187 0.0222 0.0135

5D 0.0087 0.0046 0.0079 0.0075 0.0144 0.0066

6D 0.0076 0.0028 0.0068 0.0060 0.0119 0.0056

7D 0.0042 0.0020 0.0058 0.0053 0.0075 0.0036

Table 5.4: Recall and # of candidates considered for different κ strategies (200K
objects, target average redundancy 2)

dimensionality, and distribution) we considered in the experiments.

Real Data

In addition to synthetic data sets described above, we have also considered two real

data sets, commonly used as benchmarks in top-k and preference queries. The NBA

113

Recall

Anticorrelated Correlated Independent

OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

top-1 99.4 94.6 99.1 97.5 94.6 85.4

top-2 99.4 93.9 99.2 97.7 94.5 83.6

top-5 99.3 90.9 97.8 96.4 93.6 80.0

top-10 99.1 87.2 95.6 93.6 92.6 76.9

top-25 97.7 81.2 93.5 91.3 89.6 72.6

Num Candidates

Anticorrelated Correlated Independent

OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

top-1 390.2 243.4 129.8 88.9 331.7 108.4

top-2 1122.4 460.8 253.9 201.3 751.0 278.6

top-5 2446.3 1234.0 840.8 763.3 1424.6 760.1

top-10 3796.7 2442.3 1966.6 1519.5 2167.3 1348.5

top-25 7067.2 6880.1 4253.5 4882.9 4043.8 5378.4

Table 5.5: Recall and # of candidates considered for different top-k queries (200K
objects, target average redundancy 2, index designed for up to top-25 retrieval)

3 dataset consists of regular season statistics of NBA players that played at least

ten minutes in a given season, from the 1951-1952 season to the 2017-2018 season.

This dataset has 23338 unique elements with seven attributes each: minutes played,

total points, field goals attempted, free throws attempted, total rebounds,

total assists, and total personal fouls. The HOUSE 4 dataset contains

10717764 records, each holding six values that represent an American family’s ex-

penditures in gas, electricity, water, heating, insurance, and property tax

between 2013 and 2017.

3https://www.basketball-reference.com

4https://www.ipums.org

114

5.4.2 Evaluation Criteria

Our primary performance metric is recall (which we want to keep as close to 100%

as possible), but we also report the number of candidates retrieved during the process

(which we aim to keep as low as possible). For both synthetic and real-life datasets,

we pick 1000 random queries for evaluation. Each experiment configuration was run

5 times (each with a different random hashing) and we report average.

5.4.3 OLSH and Competitors

Our goal is to evaluate the effectiveness of the proposed OLSH hashing scheme

for top-k query processing; therefore, we have implemented OLSH and its under-

lying resource allocation schemes. To obtain the Onion layers through convex hull

computation, we use the C++ implementation provided by Barber et al. (1996). To

solve the optimization problem we formulate in this paper, we use the numerical op-

timization tool, NMinimize, of Mathematica (with differential evolution method run

for 3000 iterations by default). For the default scenario, with m = 25, the optimiza-

tion process underlying the computation of the layer-aware (LA) resource allocations

takes ∼ 110 seconds. For m = 35, the time cost is ∼ 146 and, for m = 50, the process

takes ∼ 216 seconds, indicating that the complexity of the optimization cost is linear

in the number of Onion layers. Note that this step is applied only once, during the

index design time; therefore this has no impact on top-k query processing cost.

For inner product search, we adopt SIMPLE-LSH hash fam-

ily Neyshabur and Srebro (2015), implemented in C++. When evaluating the

searchLSHOnionLayer() function in Algorithm 3 for a given query, for each hash

layer, we visit up to one nearby bucket (based an Hamming distance) to create a

candidate set whose size is as close as possible to the number specified in Line 3 of

115

the algorithm.

The OLSH design parameters considered in our evaluations are shown in Table 5.2.

As we see here, we have considered OLSH indexes designed for two different maximum

ranks (m = 25 and = 50). We also considered several alternative target redundancies:

when the target redundancy is r, this means that we allocated sufficient memory for

the index structure to store each object in the index structure (i.e., in the outermost

m onion layers of the data) r many times. We have also varied the number of per

hash layer hash functions: as discussed in Section 5.3.3, for the ith Onion layer, we

set the default value of the κi to log2(|Oi|) – to see the effectiveness of this default

setup, we also consider larger (default + 3) and smaller (default − 3) values of κi,

along with a uniform allocation scheme which allocates the same κ value (maximum

of all κi) for all Onion layers.

To assess the effectiveness of the proposed Onion layering, we consider two al-

ternative strategies: In LSH-MU, we take the maximum available hash resources

(based on the target redundancy) and partition it uniformly among the Onion layers.

In LSH-SU, we also uniformly partition the available resources among the Onion lay-

ers, but in this case, instead of considering the maximum available hash resources, we

consider the amount of resources used by OLSH under the same conditions. Note that

when OLSH uses all available resources under the given target redundancy, LSH-MU

and LSH-SU strategies work similarly.

5.5 Results

We now present and discuss the results. We start with a general overview of the

results based on the default setup.

116

Recall (top-k query)

Anticorrelated Correlated Independent

OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

k:25,m:25 97.7 87.9 93.7 88.0 83.5 72.1

k:50,m:50 94.4 85.9 90.7 89.3 79.8 73.8

Num Candidates (top-k query)

Anticorrelated Correlated Independent

OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

k:25,m:25 8081.3 9567.7 5482.3 5914.3 6344.0 7911.7

k:50,m:50 23492.1 26162.9 17083.9 18379.4 15831.9 17041.1

Table 5.6: Recall and # of candidates considered for index structures designed for
different maximum target rank (200K objects, target average redundancy 2)

Recall (top-25 query)

Anticorrelated Correlated Independent

κ OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

default 97.7 81.2 93.5 91.3 89.6 72.6

def.-3 98.5 90.8 97.7 96.8 93.3 83.7

def.+3 91.9 65.5 91.0 88.7 77.8 60.7

uniform 93.6 77.1 89.0 90.0 77.1 68.4

Num Candidates (top-25 query)

Anticorrelated Correlated Independent

κ OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

default 7067.2 6880.1 4253.5 4882.9 4043.8 5378.4

def.-3 12494.3 12098.8 8098.9 6185.5 7864.5 10102.8

def.+3 4537.1 3325.6 3153.9 3293.5 3401.6 3601.5

uniform 5257.7 6983.4 4696.0 5254.9 4828.7 4777.0

Table 5.7: Recall and # of candidates considered for different κ assignment strategies
(200K objects, target average redundancy 2)

5.5.1 Overview

We start the discussion of the results with Table 5.3, which presents recall and

number of candidates enumerated for the default scenario, under different data dis-

tributions. In the table, we also consider the impact of the layer revision step (which

distributes the hash resources remaining) after the optimization among the Onion

layers, presented in Section 5.3.5 (Algorithm 2). As we see in the table, under all

117

data distributions, OLSH provides significantly higher accuracies than both LSH-MU

and LSH-SU strategies. The table also shows that OLSH is able to benefit from the

layer revision process – indicating that we are able to address the loss of performance

due to the approximate nature of the numeric non-linear optimizer. It is, however,

important to see that, OLSH is able to provide better accuracies even without relying

on layer revision.

What is especially impressive is that OLSH is able to achieve this without sig-

nificantly increasing the number of candidates enumerated – in fact, in many cases,

OLSH enumerates less candidates than both competitors. This trade-off is easiest to

see in the rows of the table which reports the expected amount of recall gained per

candidate enumerated during the query processing (i.e. recall/num candidates). As

the corresponding two rows show, OLSH provides a significantly higher per-candidate

recall gain than the alternative schemes. Moreover, as the last two rows illustrate,

the OLSH index considers only a fraction (3− 8%) of the data that reside in the first

25 Onion layers of the data set to achieve this high accuracy.

Due to space constraints in the rest of the paper, we report results only for the

LSH-SU competitor.

5.5.2 Impact of Different Dimensionalities

Table 5.4 shows the accuracies and the number of candidates for data with differ-

ent dimensionalities. As we see here, all algorithms suffer in terms of their accuracies.

However, as expected, the OLSH index is significantly more robust than the alterna-

tive strategy in the presence of higher dimensional data sets. This is especially visible

when we consider per-candidate recall gain, which remains significantly more robust

for OLSH than the competitor as the number of dimensions increases; moreover, this

robustness is especially strong for the two data sets (anticorrelated and uniform) that

118

Recall (top-25 query)

Anticorrelated Correlated Independent

|D| OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

100K 93.6 75.2 91.6 90.0 89.4 72.2

200K 97.7 81.2 93.5 91.3 89.6 72.6

500K 97.7 87.9 93.7 88.0 83.5 72.1

1M 97.5 93.3 93.6 91.4 85.9 78.0

1.5M 98.7 92.6 94.5 91.5 90.2 79.6

2M 98.1 92.8 93.7 91.6 88.3 77.2

Num Candidates (top-25 query)

Anticorrelated Correlated Independent

|D| OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

100K 6143.1 7109.1 4522.8 3661.9 3876.9 4307.7

200K 7067.2 6880.1 4253.5 4882.9 4043.8 5378.4

500K 8081.3 9567.7 5482.3 5914.3 6344.0 7911.7

1M 11191.8 9862.8 6640.2 5607.2 8139.6 8439.4

1.5M 11851.1 11389.3 6150.9 6771.1 8219.6 9848.1

2M 11180.1 12550.1 7166.7 5913.6 9446.3 9734.2

Table 5.8: Recall and # of candidates considered for different data sizes (target
average redundancy 2)

tend to be more difficult in higher dimensions.

5.5.3 Impact of the Data Distribution

We also see in Table 5.4 that, while in lower dimensions the data distribution is

not very critical, as the number of dimensions increases, OLSH as well as the two

competitors provide their highest accuracies in correlated data, whereas accuracies

are lower in anti-correlated and independent data. This is because, when the data

is correlated, most points are clustered, and LSH search is able to identify sufficient

candidates from each hash-layer, without having to rely on a large data redundancy

(reminder: the default target data redundancy in the index structure is only 2).

119

5.5.4 Impact of Different Values of k

Table 5.5 presents accuracy and number of candidate results for varying values of

k. As expected, the index structures are able to provide higher accuracies when k is

small and the accuracy suffers as k increases (due to a higher number of opportunities

for misses). However, the results presented in the table also indicate that OLSH is

significantly more robust as the corresponding drop in accuracy is much lower than

the drop in accuracy of the competitor, for the same increase in the value of k.

5.5.5 Impact of Different Values of m

As discussed in Section 5.2, the OLSH index structure is designed for a given

maximum target rank value, m, by identifying the corresponding Onion layers and

allocating hash resources to each Onion layer. In Table 5.6, we consider top-k queries

on index structures designed with different maximum ranks. As we see in the table,

OLSH remains the best alternative (both in terms of accuracy and the number of

candidates produced) under different values of m.

5.5.6 Impact of Per-Layer Hash Count (κ)

We next consider the impact of the number, κ, of hashes concatenated per hash-

layer. As discussed in Section 5.3.3, for the ith Onion layer, we set κi to log2(|Oi|).

In Table 5.7, we consider the impacts of larger and smaller values of κ. As we see

here, under the proposed κ assignment strategy OLSH is able to provide a very high

accuracy (∼ 90% and above). As expected, using a smaller value of κ can further

improve the accuracy (by reducing the likelihood of misses in hash layers), however,

this comes with a significant jump (almost doubling) in the number of candidates

that are enumerated. In other words, the proposed κ assignment strategy provides

120

an effective trade-off between accuracy and the redundant work. This is further

confirmed in Figure 5.3, where we visualize the accuracy vs. number of candidates

trade-off in the form of XY-charts: the proposed κ assignment strategy (marked using

dotted circles) provides a recall that is larger than would be expected purely based

on the number of candidates considered (note that the dotted circles, marking the

proposed κ strategy, lie above the corresponding trend curves in all the charts).

5.5.7 Impact of Different Data Cardinalities

As we see in Table 5.8, the above observations also hold for different input data

sizes: OLSH performs significantly better than the competitor, for all data sizes con-

sidered. It is also important to note that as the data size increases, we see an increase

in accuracy due to the densification of the space, but this does not reflect on the num-

ber of candidates considered: when the input data size increases 20X, from 100K to

2M , the increase in the number of candidates is only <2X for the anticorrelated and

correlated data sets and ∼3X for the independent data set. Figure 5.4 presents the

information in an alternative format: as we see here, OLSH index structure indeed

provides an overall better tradeoff between recall and number of candidates produced

for all data sizes considered.

5.5.8 Impact of the Index Budget

In Table 5.9, we study the impact of the index budget, in terms of the average

data redundancy that the index allows. As we see here, as the data redundancy

increases, the recall also increases, but (as expected) with a corresponding increase in

the number of candidates that need to be considered. It is important, however, to note

that OLSH provides a better accuracy and a better accuracy/number of candidates

trade-off under different target redundancies.

121

Recall (top-25 query)

Anticorrelated Correlated Independent

r OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

2 97.7 81.2 93.5 91.3 89.6 72.6

3 99.3 93.7 96.9 93.6 92.0 82.8

4 99.5 95.8 98.8 96.3 95.7 84.8

Num Candidates (top-25 query)

Anticorrelated Correlated Independent

r OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

2 7067.2 6880.1 4253.5 4882.9 4043.8 5378.4

3 9952.2 9906.3 4291.8 5889.9 6100.0 6196.6

4 11315.1 12793.2 5958.9 7065.2 7735.5 7632.6

Recall

Num Candidates
(top-25 query)

Anticorrelated Correlated Independent

r OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

2 0.0138 0.0118 0.0220 0.0187 0.0222 0.0135

3 0.0100 0.0095 0.0226 0.0159 0.0151 0.0134

4 0.0088 0.0075 0.0166 0.0136 0.0124 0.0111

Table 5.9: Recall and # of candidates considered for different degrees of redundan-
cies in the OLSH index (200K objects)

5.5.9 Impact of the Hash Collision Parameter (ψ)

As we have discussed in Sections 5.3.2 and 5.3.3, the accuracy of OLSH is a

function of the per-hash collision probability, ψ and this value is greater than 0.5 for

positive data and queries. Consequently, the value of this parameter has an impact

on the layer-aware resource allocation. Table 5.10 considers results for three values

of ψ between 0.5 and 1.0. As we see in this table, using large values of ψ in the

design may lead to reductions in accuracy as, in that case, the layer-aware resource

allocation might be done under overly optimistic assumptions. However, we also see

that OLSH provides higher accuracy than the competitor under all parameter values

considered. The table also shows that, for all data distributions, setting the value of

ψ to 0.75 enables OLSH to provide the best accuracy vs. work trade-off.

122

Recall (top-25 query)

Anticorrelated Correlated Independent

ψ OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

0.65 96.8 84.3 96.6 92.6 86.0 75.0

0.75 97.7 81.2 93.5 91.3 89.6 72.6

0.85 96.4 81.6 94.2 90.5 75.6 68.2

Num Candidates (top-25 query)

Anticorrelated Correlated Independent

ψ OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

0.65 6244.9 6953.3 4916.6 4888.6 5393.0 4823.0

0.75 7067.2 6880.1 4253.5 4882.9 4043.8 5378.4

0.85 7585.9 7866.9 5898.6 5012.3 3653.6 4517.1

Recall

Num Candidates
(top-25 query)

Anticorrelated Correlated Independent

ψ OLSH LSH-SU OLSH LSH-SU OLSH LSH-SU

0.65 0.0155 0.0121 0.0196 0.0190 0.0159 0.0155

0.75 0.0138 0.0118 0.0220 0.0187 0.0222 0.0135

0.85 0.0127 0.0104 0.0160 0.0181 0.0207 0.0151

Table 5.10: Recall and # of candidates considered for different collision parameter
values in the OLSH index (200K objects)

5.5.10 Results with Real Data Sets

Finally, Table 5.11 presents results with the two real data sets, HOUSE and NBA.

As we see in this table, also on these two real data sets, OLSH provides consistent

higher accuracy than LSH-SU. Moreover, especially for large values of k, OLSH is

able to provide better accuracy than LSH-SU even though it enumerates significantly

smaller number of candidates.

5.6 Experiments with Competitors and Data Setups

In this section I discuss the performance using our approach with alternative meth-

ods both exact and approximate ones such as naive linear scan, threshold algorithm

and RTree approach built using Branch and Bound concept. I show the comparison

123

Recall (top-k query)

HOUSE (6D) NBA (7D)

OLSH LSH-SU OLSH LSH-SU

top-1 69.9 34.9 76.1 70.8

top-2 47.6 28.3 69.0 64.4

top-5 26.6 16.2 62.5 68.3

top-10 26.5 17.4 64.2 66.9

top-25 23.4 17.3 70.1 63.3

Num Candidates (top-k query)

HOUSE (6D) NBA (7D)

OLSH LSH-SU OLSH LSH-SU

top-1 478.9 206.6 166.0 231.2

top-2 613.1 340.8 291.0 342.0

top-5 1424.3 802.3 531.1 953.4

top-10 1756.0 2094.0 1026.3 1602.9

top-25 2783.4 6278.1 2079.0 2827.4

Table 5.11: Recall and # of candidates considered for real data (target average
redundancy 4, default κ)

not only the recall accuracy, but also the runtime and indexing memory cost, as well

as data accesses for certain algorithms.

5.6.1 Branch-And-Bound Ranked Search

The competitors shown as to the proposed OLSH methods are benchmark ap-

proahces, yet do not consider the concept of making big data small for queries, which

treats each portion of data equally. I have implemented in-memory version of RTree

approach described in , and more specifically, for RTree approach it leverages the

minimal bounding region (MBR) in multi-dimensional space for top-k dot product

query retrieval. Let d denote the dimensionality of data, M be the minimal bound

region (MBR) then I set the i−th coordinate (dimension) of a point p to the upper or

lower bound on this axis with query q to be monotone, li, hi represent the lower and

higher bound of a bound region of p. The algorithm shown in 4 describes a possible

124

score of a point p, which will be leveraged for answering top-k queries.

Given the proof and observations, Branch-and-bound Ranked Search (BRS) is

described in 5, which traverses the R-Tree nodes in descending order of their maxscore

values and maintains the set of entries in the nodes accessed so far in a heap H , sorted

also in descending order in their maxscore. At each step, the algorithm de-heaps the

entry having the largest maxscore. If it is a leaf entry, the corresponding data

point is guaranteed to have the largest score, among all the records that have not

been reported yet. On the other hand, for each de-heaped intermediate entry, the

algorithm visits its child node and puts all its entries into the heap. Once there are k

objects in the result set, the algorithm terminates. BRS algorithm has been proved

to be optimal since it visits the smallest number of nodes to correctly answer any

top-k query. More intuitively, BRS algorithm accesses only the nodes whose MBRs

intersect the search region (the maxscore of any other node must be smaller than

k-th element in the result set S). Note that his is a approximate algorithm even

though it leverages RTree indexing structure, and I have implemented based on the

description of the algorithm with RTree indexing structure 5 .

5.6.2 Evaluation Criteria

Considering OLSH, the primary performance metric is recall, which the desired

value is 100%. As the performance is from a mix of both exact and inexact solutions,

I also report the memory cost which should be as low as possible while keeping the

recall at desired values. These run time statistics are gathered based on 1000 random

generated queries.

As we can see, BRS is more effective with correlated data due to the creation of

minimal bounding region (MBR). Yet OLSH can leverage different hash redundancy

5https://github.com/nushoin/RTree

125

Recall

Anticorrelated Correlated Independent

BRS OLSH(2) OLSH(4) BRS OLSH(2) OLSH(4) BRS OLSH(2) OLSH(4)

2 99.90 97.35 99.83 100.00 98.93 99.63 100.00 91.68 98.07

3 79.30 92.23 99.18 100.00 96.98 99.66 99.70 89.11 99.04

4 88.80 91.28 99.38 100.00 99.29 99.85 98.40 85.04 98.59

5 18.90 84.75 98.31 100.00 98.80 99.99 99.90 83.81 99.00

6 22.60 83.51 85.54 100.00 92.08 98.46 69.30 77.41 87.13

7 15.20 50.62 84.78 100.00 81.09 92.94 39.30 57.09 84.18

Table 5.12: Recall for different dimensions (200K objects, target average redundancy
2 and 4, index designed for up to top-25 retrieval)

Memory Cost (KB)

Anticorrelated Correlated Independent

BRS OLSH(4) BRS OLSH(4) BRS OLSH(4)

2 20912 NA 21104 NA 21044 NA

3 23604 8460 23744 5788 23744 11908

4 26420 29400 26360 24320 26360 24320

5 29120 52364 28856 46244 28608 53720

6 31264 55648 31112 57016 31312 54704

7 36716 54280 36392 55400 36776 54644

Table 5.13: Memory Cost for different dimensions (200K objects, target average
redundancy 4, index designed for up to top-25 retrieval)

budget to improve recall accuracy and OLHS does not have to index entire dataset,

whereas BRS tree-based approach has to index entire dataset which leads to fixed

amount of memory and not as flexible as OLSH.

5.7 Experiments with Alternative Layer Indexing Approach

The proposed resource allocation approach is desgiend to allow different layer

indexing frameworks to plugin and execute. There can be alternative approaches

to build layer indexing structure for layer-aware resource allocation strategies, for

instance, Skyline, which is a popular method to answer top-k and is analogous to

the layers created using Onion technique. The Skyline Borzsony et al. (2001) of a d-

126

Recall

Anticorrelated Correlated Independent

Count(M) BRS OLSH(2) OLSH(4) BRS OLSH(2) OLSH(4) BRS OLSH(2) OLSH(4)

0.2 88.80 91.28 99.38 100.00 99.29 99.85 98.40 85.04 98.59

0.5 79.30 93.88 99.75 100.00 93.55 99.72 98.30 94.30 99.07

1 89.70 93.25 99.70 100.00 96.45 99.74 98.30 90.52 99.50

1.5 84.40 94.26 99.94 100.00 97.70 99.96 98.50 90.28 99.50

2 82.00 89.34 99.83 100.00 93.54 99.55 98.80 90.88 99.51

Table 5.14: Recall for different dimensions (200K objects, target average redundancy
2 and 4, index designed for up to top-25 retrieval)

Memory Cost (KB)

Anticorrelated Correlated Independent

Count(M) BRS OLSH(4) BRS OLSH(4) BRS OLSH(4)

0.2 26420 29400 26360 24320 26360 24320

0.5 62728 44248 62528 28568 62528 47784

1 122984 58084 122856 32056 123044 61408

1.5 183560 67492 183824 34208 183440 74412

2 243820 73800 243820 37416 243760 82224

Table 5.15: Memory Cost for different dimensions (200K objects, target average
redundancy 4, index designed for up to top-25 retrieval)

dimensional dataset contains the points that are not dominated by any other point on

all dimensions. A point dominates another if it is as good or better in all dimensions

and better in at least one dimension and the skyline operator is cruicial for applica-

tions that invovle multi-criteria decision making. More specifically, data points from

outer skyline layers dominate those from inner layers. This layer sturcture can be

applied to answer top-k queries and is analogous to the concept of layers created by

Onion technique. Hence I decide to test the performance of this alternative approach

to see the effectiveness of how it can be used in presence of resource allocation. I

name this layer structures created by Skyline with LSH indexing as SLSH.

Following the same criteria as mentioned above, the primary performance metric

is recall (which we want to keep as close to 100% as possible), as well as the number

of candidates retrieved during the process.

127

Recall (top-25 query 4D)

Anticorrelated Correlated Independent

OLSH SLSH OLSH SLSH OLSH SLSH

0.2 99.69 99.76 97.72 99.97 96.12 99.76

0.5 99.96 99.91 97.31 99.92 97.88 99.85

1 99.96 99.96 98.16 99.7 98.11 99.95

1.5 99.92 99.96 99.55 99.93 97.43 99.98

2 99.94 99.95 97.02 99.78 98.47 99.99

Recall (top-25 query 200K Datasize)

Anticorrelated Correlated Independent

OLSH SLSH OLSH SLSH OLSH SLSH

2 100 99.99 99.58 100 98.87 99.89

3 99.7 100 98.38 99.97 96.3 99.98

4 99.69 99.76 97.72 99.97 96.12 99.76

5 99.85 97.1 100 100 99.98 100

6 97.47 76.51 98.43 100 93.46 99.13

7 85.24 26.62 91.54 100 86.99 99.06

Table 5.16: Recall for different top-k queries (target average redundancy 4, index
designed for up to top-25 retrieval)

A sample result output for this setup is as shown in Table 5.16 with default average

redundancy 4. By using Skyline as layer for resource allocation, SLSH is able to pro-

vide competitive recall accuracies as OLSH, especially for Correlated and Independent

data type due to the dominance nature from Skyline creation. For Anti-Correlated

data type, Skyline dominance relationship failed to capture the dominanting points

that are not along the axises which leads to poor performance in terms of recall

accuracy expecially when the dimensionality increases.

5.8 Alternative Mathematical Optimizationand with Model Revision

As discussed in previous sections and Equation 5.3.4, given a fixed amount of

hashing resources, the proposed framework is to intelligently re-distribute it among

each layer and perform top-k retreival efficiently. Alternatively people can be also in-

terested in the case where, given a desired total error rate errorinput as threshold, how

128

to minimize the total hashing resources needed. By using the similar notations and

mathematical setups as mentioned earlier, the alternative or the reverse optimization

can be summarized as:

minimize resource(O)

subject to err(O, m) ≤ errinput,

An optimization problem as shown in Equation 5.8, however, would require a more

precise model. The layer weight model mentioned before, as shown in Table ?? is

able to capture the layer importance when hashing resource is limited and eventually

generate relatively high recall accuracy, where contributions of each onion layer toward

the final top-k result set are considered only based on the number of data elements on

a given onion layer. As the convex hull already provides us the knowledge that, top-

1 result certainly comes from the outer most layer, top-2 results come from the two

outer most layers, etc, the order of onion layer index matters, and should be taken into

consideration. Since Equation 5.8 leverages the reverse of the original optimization

from Equation 5.3.4, I call the OLSH using reverse optimization concept as ROLSH.

For example, as shown in Figure 5.5, the actual recall diverges from the layer

weight model we introduced previously: the actual recall values across k layers follow

a beta distribution whereas the learned model for layer weight follows a linear mono-

tonic decreasing pattern. To model the layer weight in a more precise manner, I first

execute a sample query set to generate the recall accruacy at each Onion layer, which

can be leveraged to represent the actual layer contribution: the higher recall accuracy

from an onion layer, the more important it is for the top-k result set. Following the

recall distribution across k layers, the pattern can be fit into a beta distribution to

represent layer weight which is then be leveraged for layer aware resource allocation.

Figure 5.6 depicts the process of computing layer weight by slicing beta distribution

to calculate the weight for each onion layer.

129

Recall

Anticorrelated Correlated Independent

Count(M) OLSH ROLSH OLSH ROLSH OLSH ROLSH

0.2 99.38 71.6 99.85 77.22 98.59 86

0.5 99.75 67.48 99.72 84.14 99.07 78.3

1 99.7 80.02 99.74 88.56 99.5 78.66

1.5 99.94 70.68 99.96 85.7 99.5 69.97

2 99.83 75.44 99.55 84.52 99.51 69.19

Table 5.17: Recall for different top-k queries (4D target average redundancy 4,
ROLSH error 0.3, index designed for up to top-25 retrieval)

Experimental studies have shown the efficiency and effectiveness of the updated

layer weight model by fixing a desired input error rate to minimize the total resources.

I present the results of using various hashing resource redundancy (# of times data

gets redplicated) with origin maths (given a limited amount of resources, the goal is

to minimize the total error across OLSH, as shown in Equation 5.3.4). Table 5.17,

Table 5.18, Table 5.19 and Table 5.20 indicate the results that once the total error

rate is fixed, ROLSH can minimize hashing resources accordingly. As shown in the

sample experimental study, the total amount of hash used for ROLSH is smaller than

the one used by OLSH, hence in general we can see a lower accuracy rate from ROLSH

compared to the ones generated using OLSH.

By leveraing the updated model with layer weight calculated from Beta distribu-

tion, the overall error rate from OLSH captures the input desired error rate (0.3 in

this case) with lower hash cost as shown in Table ?? and Table ??, which depicts

the total of data elements indexed using the LSH framework and the comparison of

hash used between OLSH and ROLSH.

5.9 Conclusion

As mentioned above, I discussed a novel Onion-LSH (OLSH) index structure to

approximately solve top-k inner product queries. In particular, OLSH indexing frame-

130

Total Hash Used

Anticorrelated Correlated Independent

Count(M) Elements OLSH ROLSH Elements OLSH ROLSH Elements OLSH ROLSH

0.2 95149 380552 132087 63751 254905 76841 105366 422194 161709

0.5 152082 609035 209582 86334 346209 121861 169673 678658 239359

1 206860 829423 278030 103972 415699 132799 232022 930347 319206

1.5 244585 979742 319055 116284 465163 138820 275450 1100803 341285

2 275400 1100991 355907 123335 493860 173600 310299 1243443 394198

Table 5.18: Total amount of hash used for different top-k queries (4D, index designed
for up to top-25 retrieval)

Recall

Anticorrelated Correlated Independent

OLSH ROLSH OLSH ROLSH OLSH ROLSH

2 99.83 94.13 99.63 98.42 89.70 98.07

3 99.18 89.92 99.66 91.95 79.12 99.04

4 99.38 71.60 99.85 77.22 86.00 98.59

5 98.31 73.64 99.99 98.37 85.92 99.00

6 85.54 87.59 98.46 85.25 80.62 87.13

7 84.78 90.15 92.94 85.80 88.18 84.18

Table 5.19: Recall for different top-k queries (200K objects, target average redun-
dancy 4, ROLSH error 0.3, index designed for up to top-25 retrieval)

work combines the Onion-based data layering with (angular) LSH-based indexing for

efficient data access. Since, when using LSH, there is a trade-off between the available

hashing resources and the accuracy, I also proposed a top-k based accuracy model

and complement the proposed OLSH index structure with a layer-aware (LA) re-

source allocation strategy, which takes into account the distribution of the data, and

the number, k, of results required to allocate available hashing resources among the

Onion layers of the index structure. Experimental results with real and synthetic

benchmarks showed that that the proposed OLSH technique achieves the target ac-

curacy rates within given resource budget under different scenarios. I also provide

sample results of SLSH, where layer index structures are created using Skyline. The

results have shown that SLSH follows a similar pattern as OLSH, both of which indi-

131

Total Hash Used

Anticorrelated Correlated Independent

Count(M) Elements OLSH ROLSH Elements OLSH ROLSH Elements OLSH ROLSH

2 1962 7922 3908 857 3424 1566 2027 8158 3922

3 20869 83525 33434 10931 43700 15996 20869 33434 34934

4 95149 380552 132087 63751 254905 76841 105366 422194 161709

5 188619 752448 317994 166630 668389 214514 192858 767888 334808

6 200000 799991 592958 200000 799993 269745 199998 800559 579663

7 200000 803080 1225236 200000 806067 13780685 199995 799918 1150792

Table 5.20: Total amount of hash used for different top-k queries (200K objects,
target average redundancy 4, ROLSH error 0.3, index designed for up to top-25
retrieval)

cate that by learning the structure of input data, one can achieve top-k query retrieval

effectively and efficiently. Additionally, I also show the OLSH with reverse mathamti-

cal optimization setup, which is to minimize the total hash resources allocated given

a desired error rate input. In a nutshell, results have shown the effectiveness and

efficiency of the proposed framework under various setups.

132

Algorithm 2 ReviseLayers

Input: Onion layers O, maximum rank m, budget B, per-layer hash

counts, K, initial layer assignment L0, hash family, H

Output: Revised layer assignment, L

1: resources = ComputeResources(O, L0)

2: L = L0

3: BestLayer = ∞

4: Available = B− resources

5: while (Available > 0) and (BestLayer 6= ⊥) do

6: BestPotential = -1

7: BestLayer = ⊥

8: Used = 0

9: for 1 ≤ i ≤ m do

10: potentiali = ComputePotential(O, m, K, L, H)

11: demandi = Size(Oi)

12: if (demandi ≤ Available) and (potentiali > BestPotential) then

13: BestPotential = potentiali

14: BestLayer = i

15: Used = demandi

16: end if

17: end for

18: if BestLayer 6= ⊥ then

19: L = incrementOnionLayer(L, BestLayer)

20: Available = Available - Used

21: end if

22: end while

23: return L 133

Algorithm 3 Top-K Search

Input: OLSH index, O, a top-k query q

Output: result set R

1: TempRes = ∅

2: for 1 ≤ i ≤ k do

3: Resi = searchLSHOnionLayer(q, O, i, k − i+ 1)

4: TempRes= pickBest(TempRes ∪ Resi, k)

5: end for

6: return R = TempRes

Algorithm 4 Algorithm For Computing max score For Monotone Functions

Algorithm get maxscore (M = (l1, h1, l2, h2, ..., ld, hd), q)

1: Initiate a point p whose coordinates are not decided yet

2: for i = 1 to d do /* examine each dimension in turn */

3: if q is increasinly monotone on this dimension then

4: the i-th coordinate of p is set to hi

5: else the i-th coordinate of p is set to li

6: end if

7: end for

8: return q(p)

134

!"

!#

$"

$#

%"

%#

&"

&#

'""

" (""")""" !""" %""" '"""" '(""" ')"""

*
+
,-
..

/0123-4565-7+8

9476,:;;+.-7+5

<=>?

=>?@>A

=64+-;2 2B<=>?C

=64+-;2 2B=>?@>AC

!"

!!

#$

#%

#&

#"

#!

'$$

$ %$$$ &$$$ "$$$!$$$ '$$$$

(
)
*+
,,

-./001+2343+5)6

1788),+5)3

9:;<

:;<=;>

:42)+80 0?9:;<@

:42)+80 0?:;<=;>@

!!

"#

"!

$#

$!

%#

%!

&#

&!

'##

(###)### "### %### '#### '(###

*
+,
--

./012,3454,6*7

Independent
89:;

9:;<:=

953*,>1 1?89:;@

953*,>1 1?9:;<:=@

Figure 5.3: Recall vs. # of candidates for different κ assignment strategies – κ =
log2(|Oi|) based solutions are highlighted (200K objects, target average redundancy
2)

135

!"

!#

$"

$#

%"

%#

&"

&#

'""

" (""")""" !""" %""" '"""" '(""" ')"""

*
+
,-
..

/0123-4565-7+8

9476,:;;+.-7+5

<=>?

=>?@>A

=64+-;2 2B<=>?C

=64+-;2 2B=>?@>AC

!"

!!

!#

#$

#%

#&

#'

#(

#)

$ %$$$ &$$$ '$$$ ($$$)$$$ *$$$ "$$$!$$$

+
,
-.
//

012334.5676.8,9

4:;;,/.8,6

<=>?

=>?@>A

=75,.;3 3B<=>?C

=75,.;3 3B=>?@>AC

!!

"#

"!

$#

$!

%#

%!

&#

&!

'### (### "### %###)####)'###

*
+
,-
..

/0123-4565-7+8

945+:+45+47

;<=>

<=>?=@

<64+-A2 2B;<=>C

<64+-A2 2B<=>?=@C

Figure 5.4: Recall vs. # of candidates for different data sizes – each dot corresponds
to a different data size (200K objects, target average redundancy 2)

136

Algorithm 5 Algorithm BRS

Algorithm get maxscore (M = (l1, h1, l2, h2, ..., ld, hd), q)

1: Initiate the candidate heap H /*H takes entires in the form (REntry, key) and

manages them in descending order of key (REntry is an entry in RTree)*/

2: Initiate a result set S with size k

3: load the root of RTree

4: for each entry e in the root do

5: e.maxscore = get maxscore(e.MBR, q)

6: insert (e, e.maxscore) into H

7: end for

8: while (S contains less than k objects) do

9: he = de-heap(H)

10: if he is a leaf entry then

11: add he to S

12: if S contains k tuples then

13: return S

14: end if

15: else

16: for every entry e in he.childnode do

17: e.maxscore=get maxscore(e.MBR, q)

18: insert(e, e.maxscore) into H

19: end for

20: end if

21: end while

22: return q(p)

137

!

!"!#

!"$

!"$#

!"%

!"%#

$ % & ' # () * + $! $$ $% $& $' $# $($) $* $+ %! %$ %% %& %' %#

,
-
./
0
1

234-56789-:

234-56,-./016;.<15.=>1.?8

%;6@34-56A-./01 %;63B1>3@6@34-56A-./01

�

!"!#

!"$

!"$#

!"%

!"%#

!"&

!"&#

$ % & ' # () * + $! $$ $% $& $' $# $($) $* $+ %! %$ %% %& %' %#

,
-
./
0
1

234-56789-:

234-56,-./016;.<15.=>1.?8

&;6@?9-A-96A34-56B-./01 &;63C1>3A6A34-56B-./01

�

!"#

!"$

!"%

!"&

!"'

!"(

$ % & ' () * + #! ## #$ #% #& #' #(#) #* #+ $! $# $$ $% $& $'

,
-
./
0
1

234-56789-:

234-56,-./016;.<15.=>1.?8

&;6@?9-A-96A34-56B-./01 &;63C1>3A6A34-56B-./01

Figure 5.5: Actual Layer Weight vs. Learned Layer Weight Distribution

138

Figure 5.6: Slicing Beta Distribution For Layer Weight Learning

139

Chapter 6

PLSH: PARTITION-LSH FOR APPROXIMATE TOP-K QUERY PROCESSING

Previously I have presented OLSH, a technique based on Onion technique which first

creates layers then apply resource allocation to minimize the total error across all the

onion-layers with Locality Sensitive Hashing (LSH) indexing structure applied among

each onion-layer created. This approach, however, faces a crucial challenge that Onion

layer creation process is computationally infeasible when the dimensionality of data

increases, i.e. dimension reaches 100. To address this challenge with performance

guarantee in presence of high-dimensional data set, I propose PLSH: a partition based

LSH approach that first paritions data into different bins based on their l2 norm;

afterwards, within each bin, I apply LSH bucket indexing structure for fast top-k

retrival tasks. Each bin would contribute k candidates and a re-ranking process is

applied afterwards. In this case, the importance or weight of each bin will be revised

compared to the previous OLSH approach such that resource allocation process can

be executed given a limited hashing resources.

6.1 PLSH for Approximate top-k Processing

In this section, we discuss the proposed PLSH index structure to approximately

solve top-k queries. At the highest level, PLSH first partitions data based on their l2

norm values then learn the importance of each partition from sample queries. Distinct

from prior works, to reduce the amount of data access, each data within each partition

is further organized into (inner product based) LSH layers, referred to as h-layers.

In LSH based retrieval schemes, there is an inherent trade-off between available

hashing resources and the accuracy. Since basic LSH does not provide error guar-

140

antees for top-k retrieval results (but instead targets accuracy guarantees based on

distances), in this section we discuss how to control this trade-off using an accuracy

model that relates target with the number of h-layers created. Furthermore, we com-

plement the proposed PLSH index structure with a partition-aware (PA) resource

allocation strategy, which takes into account the distribution of data across different

partitions based on sample queries with the number k, of the results required, and the

user’s target accuracy, to allocate available hashing resources among the partitions.

The following table depicts the symbols used within this manuscript.

Table 6.1: Symbols Used in Analysis

Symbol Description

D input dataset

Q sample query set

K hash code set

m num of partitions

P partition set

~w partition weight vector

k results of interest

B hash resource budget

L hash layers

dim dimensionality of data

Beta(α, β) beta distribution

cdf(i) cumulative density function at index i

given a Beta(α, β)

141

1 2 … m

min norm max norm

m*k candidates

re-rank

final k results of interest

Figure 6.1: Norm Partition Framework for Top-k Retrieval

6.1.1 Norm Based Partition

For each data entry from a dataset D, ∀di ∈ D, i = 1, 2, . . . , n is firstly partitioned

into m chunks based on l2 norm value ||di|| =
√

∑dim

j=1 dj. Considering both norm

and angle information, to answer top-k results for a given query, each partition would

contribute up to k candidates, hence m× k in total.

The larger norm range a partition represents, the more likely the candidates cal-

culated from it will be contributed to the final result set of top-k query. Meanwhile,

since the angle between a query and a data entry also contains crucial information

for ranking a dot product value, it makes sense to take both l2 norm and the angle in

multi-dimensional space into consideration when assigning weight to different parti-

tions. Without prior knowledge, we design a framework to learn partition weight on

the fly using sample queries, which will be discussed in the following section.

6.1.2 Partition Importance Learning

In this section we discuss how to calculate the weight of each partition, based on

which the distribution of hash resources can be realized.

Given a dataset di ∈ D, i = 1, 2, . . . , n and number of desired partitions m, let

normmax and normmin denote the max and min norm of the norm, we adopt equal-

width partition strategy such that each chunk will cover the data norm range in

142

Algorithm 6 PLSH Index Building

Input: database D, # of partitions m, sample queries set Q

Output: P , ~w

1: P = NormBinPartition(D, m)

2: ~w = LearnPartitionWeight(D, m, P)

3: K = AssignPerPartitionHashCounts(P, m, H)

4: L0 = SolveNonLinear(P, K, m, B, H)

5: L = RevisePartitions(P, m, B, K, L0, H)

6: return P = computeHashTables(m, P, K, L, H)

Figure 6.2: Yahoo!Music Data Norm Distribution (192D)

normmax − normmin

m
. Without loss of generality, we assume that data is normalized

within [0, 1] along each dimension, hence normmin = 0 and normmax =
√
dim. Let

p1, p2, . . . , pm denote the m partitions, we have normpi − normpi−1
= normpi+1

−

normpi.

To learn the partition importance, one intuition is that partitions which contain

more data should have large weight for resource allocation since it has larger proba-

bility to generate top-k query result candidates. The results of dot product, however,

143

also considers angle between query and data. For instacne, as shown in Figure 6.2,

data that resides in the long tail of the norm distribution can contribute to the top-k

result set considering both norm and angle information even though data cardinal-

ity is relatively smaller. Moreover, partition weight can also be query dependent

such that top-k results are generated from a specific partition of data hence making

weight-assigning process non-trivial. To learn the importance for each partition, I

first execute sample queries to decide the contribution of each partition to the final

top-k result sets. One example is shown in Figure 6.3, where I first partition data

into 40 bins, then execute the sample queries to calculate top-25 result distribution.

Note that:

• Each partition pi, i = 1, 2, . . . , m generates k candidates using LSH indexing

scheme then re-ranking those m × k candidates to generate final k results to

return

• Let Q denote the sample query set, to learn the distribution one would expect

||Q‖ ×k data elements as output results as each qi, i = 1, 2, . . . ‖Q‖ outputs k

results of interest.

As shown in Figure 6.3, those returned results of interest can be modeled using

Beta-Distribution 1 : values within each bin represents the number of results that

belong to the norm range. With the distribution information calculated in Figure 6.3,

I then proceed to calculate the parameters α, β for Beta-Distribution. To make the

model learning process meaningful, sufficient amount of queries should be included

in Q. Afterwards, we leverage Beta-Distribution to calculate weight of each partition

for hash resource allocation and in the following sections I will introduce different

strategies to compute the weight for each pi.

1https://en.wikipedia.org/wiki/Beta distribution

144

(a) Yahoo!Music 192D Top-25 (b) 100D Top-25

Figure 6.3: Ground Truth Bin Partition Distribution

Equal-Width Weight Calculation

Given Beta(α, β) learned from previous step, we can now proceed to assign weight

or importance for each partition pi to intelligently allocate hash resources. It is

straight foward to adopt equal wdith (EW) stategy from the parition approach where

that each partition represents the same norm range interval. Let cdf denote the

cumulative density function for Beta(α, β) and the weight wi for partition pi can be

calculated as shown in Equal 6.1:

wi = cdf(i+ 1)− cdf(i) (6.1)

Essentially it represents that a straightforward approach to compute weight ~w for

partition P .

Equal-Depth Cardinality (EDC) Weight Calculation

One of the alternative strategy for weight computation is to partition the data based

on l2 norm such that each partition pi, i = 1, 2, . . . , m contains the same cardinality,

namely equal depth cardinality (EDC) approach. The intuition is to ”slice” the curve

145

of the learned Beta(α, β) with equal cardinality in each partition pi, the weight or

importance of pi is different since the different portions of the data share various con-

tribution to the final top-k result set. By leveraging EW partition, let normEW denote

the output of EW partition approach such that each partition represents the same

norm range interval, the EDC partition strategy is described as shown in Algorithm

7. We first sort the data based on its norm values, then uniformly split (UniSplit)

data into m partitions. From line 5 to line 14, the algorithm computes the data norm

boundaries of PEDC from UniSplit w.r.t those from normEW so that the weight values

wEDC can be computed using cdf functionality from Beta(α, β). Essentially EDC

leverages EW to learn weight for each pi, i = 1, 2, . . . , m and repartition the data.

Equal-Depth Probability (EDP) Weight Calculation

Additionally, we also provide equal depth weight learning strategy w.r.t probability of

each chunk: data is re-partitioned into different chunk such that each chunk of data

represents equal probability interval w.r.t Beta(α, β) learned in the previous steps.

The algorithm is described as Algorithm 8:

More specifically, the algorithm first computes and sorts norm of D. This is the re-

partition strategy that each chunk shares the same weight from the Beta(α, β), hence

each chunk of data would contribute 1/m amount of weight given m total chunks.

Line 7 to 15 shows how to re-partition data using prob step: it first identifies the

normindex index given Beta(α, β) and cumulative probability. Afterwards it rounds

the normindex to get the integer index to retrieve the norm bound from normEW , and

identify current norm of interest at line 11. It re-partitions the data based on current

norm of interest, then updates parameters for next round of iterations.

EDC and EDP partition strategies can be shown in Figure 6.4 so that:

• For EDC, the cardinality within each parition should be the same: let cardi

146

denote the data elements that in the i − th partition and we have card1 =

card2 = card3, . . . ,= cardm

• For EDP, the probability w.r.t probability densitity function of Beta(α, β) is

the same, such that p2 − p1 = p3− p2 = . . . ,= pm − pm−1

With the partition strategies discussed above, let pi ⊆ D be an partition (or p-

partition). PLSH organizes the data on this p-partition into LSH data buckets, in

a way that provides approximate search for objects matching the query, q. More

specifically, for ith p-partition, we pick two parameters, κi and Li, that control the

precision and recall, respectively, for that partition. As discussed in Section 2.2,

concatenating κi independently selected hash functions will help reduce the number

of false positives. More specifically, the data in pi are partitioned into buckets using

the combined hash function. We refer to each such grouping of κi hash functions as a

hash-layer (or h-layer) of the corresponding partition . In order to reduce the misses,

we then create Li many such h-layers and union the results obtained from each of

the corresponding buckets, the idea being that if a result is missed by an individual

h-layer, it is less likely that it will be missed simultaneously by multiple h-layers.

Definition 19 (PLSH Index) Let us consider a data set, D, indexed using PLSH

for top-k search for k ≤ m. As before, let us denote the set of data points in the

ith partition (p-partition) as Pi. Let us further denote the number of hash layers

(h-layers) and the number of hashes per h-layer for the ith partition as Li and κi as

before.

We represent this PLSH index with a 5-tuple 〈m,P,K,L,H〉, where P =

{P1, . . . , Pm}, K = {κ1, . . . , κm}, L = {L1, . . . , Lm}, and H is a suitable hash family.

⋄

147

1 2 3

Figure 6.4: Slicing Beta Distribution for Partition Weight Learning

As we have seen in Section 2.2, the hash family, H, used for mapping the data into

hash buckets needs to be compatible with the underlying distance/similarity function.

LSH families have been explored for different distances or similarities, including lp dis-

tance (LSH with p−stable distributions), Hamming distance, Jaccard coefficient, and

so on Indyk and Motwani (1998); Datar et al. (2004); Neyshabur and Srebro (2015);

Shrivastava and Li (2014); Huang et al. (2018). Since, for top-k queries considered

in this paper, the degree of match between the query, q, and the data point, p, is

defined based on their inner (or dot) product, for PLSH we need a hashing scheme

that supports inner product search.

6.1.3 Accuracy/Resource Trade-offs in PLSH

In traditional LSH, the collision probability for a given hash layer is computed as

ψκ, where ψ is the collision probability (say for a given distance/similarity target)

and κ is the number of hash functions concatenated in that layer. This is because

hash functions are selected independently and, for any object to appear in the result

148

of a given hash layer, it needs to collide with the query for all κ hash functions in

the layer. The collision rate for the entire LSH index (consisting of L hash layer) is,

then, 1− (1− ψκ)L, since the only way a data object will fail to appear in the result

is if it does not collide with the query for any of the L layers.

In the case of PLSH, however, not all partitions contribute to the result set of a

top-k query the same way. We therefore need to formulate the accuracy measure in a

way that takes into account the contribution of different partitions to the final result:

• As discussed earlier, the larger norm and the samller angle a data element has

towards a given query q, the more probability it will be returned in the final

result list. To answer top-k query, we partition data into m partitions and

within each partition we calculate k candidates

• The algorithm then learns the importance of each partition after executing

sample queries Q: the more data elements returned as top-k results reside in

a given parititon, the more weight or importance that partition would have,

hence more hashing resources should be allocated to that partition.

We next study the accuracy resource trade-offs in PLSH design.

Resource Consumption

Let us consider a data set, D, indexed using an PLSH index P = 〈m,P,K,L,H〉 as

formalized in Definition 19. The data elements corresponding to an partition have to

be indexed once for each of the corresponding hash layers. Consequently, the total

resource consumption of the OLSH index, P, can be computed as

resource(P) ∼
m
∑

i=1

Li × |Pi|.

149

Error Rate

To compute the error rate for PLSH under a given parameter setting, P =

〈m,P,K,L,H〉, we need to consider that the different onion layers (a) are allocated

potentially different amount of resources and (b) have different contributions to the

result set of the top-k query.

In particular, to answer top-k queries using m partition, we have seen that each

one would contribute k candidates, as shown in Figure 6.1. Additionally, based on the

ground truth top-k distribution across those partitions, example shown as Figure 6.3,

the parititons with more data should have more weight or importance, hence more

hashing resources should be allocated to them. More specifically, we have quantified

those weights by leveraing three partitions strategies, namely EW,EDC and EDP ,

described in Algorithm 7 and Algorithm 8, hence we have the weight wi for each

partition Pi. Thus we can proceed to quantify the total error rate across all partitions

for top-k query processing:

Let us consider a data set partitioned into m partitions. Given a top-k query, the

likelihood of the partition i to produce top-k results can be represented as wi.

Having quantified the likelihood of the Pi to produce the resulsts for a given top-

k query, q, we can then compute the expected error rate for a given PLSH index

P = 〈m,P,K,L,H〉 for this query as follows:

err(P, k) =
m
∑

i=1

(

wi ×
(

(1− ψκii)Li
))

,

where ψi is the per-hash function success probability for the hash functions used

to index the ith onion layer.

150

6.1.4 PLSH Design Criteria - Resource Allocation Revised

Given the resource and accuracy trade-offs formalized in the above section, we

can then restate the PLSH index design criteria as follows: Let D be a data set.

An PLSH index, P = 〈m,P,K,L,H〉, to answer top-k queries for this data set must

satisfy the following:

minimize err(P, m)

subject to resource(P) ≤ resourcemax,

where resourcemax is the maximum resource allocated for the PLSH index. In ad-

dition, we would like to keep the number, cand(P, k), of candidate results produced

during the processing of top-k queries (k ≤ m) as low as possible.

6.1.5 Overview of PLSH

In Algorithms 6 through 10, we present the pseudo-codes for construction and use

of the PLSH index structures for top-k query processing.

Constructing PLSH

Algorithms 6 and 9 present the outline of the process through which we create an

PLSH index for a given data set D. As we see in Algorithm 6, the process takes

as input, in addition to a data set, the maximum rank to be supported as well as a

suitable hash family. The first step of the algorithm is to extract the m partitions, the

top-k search algorithm is suitably modified to deal with this case. In the second step,

we compute the per-layer hash counts for each partition, based on the corresponding

number of data elements.

In the third step, we solve the optimization problem formulated in the pre-

vious subsection. Similarly to OLSH, after obtaining an initial design P0 =

151

〈m,P,K,L0,H〉, we incrementally improve the design by allocating new hash layers

to different partitions in a way that maximally improves the accuracy. We achieve

this by computing, for each partition Pi, a per-layer resource demand term

demand(Pi) = |Pi|

and a degree of potential for improvement

potential0(Pi) = err(P0)− err(P(i‡+1)
0),

where Li,0 is the hash layer assignment for partition Pi based on the initial solution

P0 and err(P(i‡+1)
0) is the error one would observe if the hash layer assignment for Pi

is incremented by one:

err(P(i‡+1)
0) =

m
∑

i=1

(

wi ×
(

(1− ψκii)Li,0+1
))

.

Given these two terms, for improvement, we select the layer i with the largest potential

among those layers with resource demands that are less than the available resources,

demand(Pi) ≤ resourcemax − resource(P0),

and we increase the number of hash layers assigned to this onion layer by one. This

gives us a revised resource allocation, P1 = 〈n,P,K,L1,H〉. Similar to OLSH, the

process is repeated (as shown in Algorithm 9) until the resources have been used up

such that no more improvements is possible.

Top-k Search with PLSH

The outline of the top-k search process is given in Algorithm 10. For each partition,

the algorithm fetches top-k results as each partition can potentially contribute to k

elements to the final result set given a query q. The final result is than obtained by

152

Recall

Anticorrelated Correlated Independent

Count(M) EW EDC EDP EW EDC EDP EW EDC EDP

0.1 9.52 99.9 80.59 33.86 99.7 39.99 5.49 98.54 89.98

0.5 9.48 99.1 93.79 12.15 98.3 51.53 3.00 94.92 93.37

1 9.44 96.39 93.66 21.89 99.5 99.93 4.86 90.99 89.27

2 4.68 97.32 92.14 38.68 96.43 93.66 2.12 90.48 89.85

Table 6.2: Total amount of hash used for different top-k queries (100D target average
redundancy 2, index designed for up to top-25 retrieval)

combining partial results from the m partitions and selecting the best k out of them.

The overall process is analogous to that of OLSH, with modifications on resource

allocation learned from beta distribution over different partitions and candidate set

generation during search process.

Sample Results

As shown in the sample result, by leveraing hash redundancy 2, learning the beta

distribution to assign layer weight, we can achieve high recall accuracy for top-k

data retrieval. In general, when each partition contains equal amount of data (EDC

partition strategy) output performs the others since the other two strategies face data

skewness: to fill equal norm range width or equal probability slicing, the imbalanced

data distribution would undermine the indexing and retrieval process when assigning

hash budget.

6.2 Conclusion

As shown above, I proposed a novel framework Partition-LSH index structure to

approximately solve top-k inner product queries, which is analogous to OLSH but to

153

handle the situation where the dimensionality of data is high, i.e. 100 such that creat-

ing convex hull or Skyline layers is computationally infeasible. I proceed to partition

the data based on its l2 norm values and learn the importance of each partition to

allcoate limited hash resources. The result has shown effectiveness of parition-aware

resource allocation strategy for high dimensional data, which shows data indexing

scheme with learned properties can significantly improve query accuracy.

154

Algorithm 7 EDC Partition

Input: D, m, Beta(α, β), normEW

Output: PEDC, ~wEDC

1: NormList = CalculateNorm(D)

2: SortedNormList = SortNorm(NormList)

3: PEDC, normPEDC
= UniSplit(D, m)

4: EDC list = ∅

5: for 1 ≤ i ≤ m do

6: maxcur = max(normPEDCi
)

7: for 1 ≤ i ≤ m do

8: if normEWi
≤ maxcur ≤ normEWi+1

then

9: norm range = normEWi+1
− normEWi

10: normi = normEWi
+maxcur/(norm range)

11: end if

12: add normi into EDC list

13: end for

14: end for

15: for 1 ≤ i ≤ m do

16: wEDCi
= cdf(EDC list(i+ 1))− cdf(EDC list(i))

17: end for

18: return PEDC, ~wEDC

155

Algorithm 8 EDP Partition

Input: D, m, Beta(α, β), normEW

Output: PEDP , ~w

1: NormList = CalculateNorm(D)

2: SortedNormList = SortNorm(NormList)

3: prob step =
1

m

4: cur prob = prob step

5: PEDP = ∅

6: prenorm = 0

7: for 1 ≤ i ≤ m do

8: pi = Identify Partition Index(Beta(α, β), m, cur prob)

9: plow = floor(pi), phigh = ceil(pi)

10: lownorm = EWplow , highnorm = EWphigh

11: targetnorm = lownorm + (pi − plow) ∗ (highnorm − lownorm)

12: PEDPi
= FindDataIndex(prenorm ≤ NormList ≤ targetnorm)

13: ~wi = cur prob

14: cur prob = cur prob + prob step

15: end for

16: return PEDP , ~w

156

Algorithm 9 ReviseLayers

Input: Partition P, # of partitions m, budget B, per-layer hash counts,

K, initial layer assignment L0, hash family, H

Output: Revised layer assignment, L

1: resources = ComputeResources(P, L0)

2: L = L0

3: BestLayer = ∞

4: Available = B− resources

5: while (Available > 0) and (BestLayer 6= ⊥) do

6: BestPotential = -1

7: BestLayer = ⊥

8: Used = 0

9: for 1 ≤ i ≤ m do

10: potentiali = ComputePotential(P, m, K, L, H)

11: demandi = Size(Pi)

12: if (demandi ≤ Available) and (potentiali > BestPotential) then

13: BestPotential = potentiali

14: BestLayer = i

15: Used = demandi

16: end if

17: end for

18: if BestLayer 6= ⊥ then

19: L = incrementPartition(L, BestLayer)

20: Available = Available - Used

21: end if

22: end while

23: return L

157

Algorithm 10 Top-K Search

Input: PLSH index, P, a top-k query q

Output: result set R

1: TempRes = ∅

2: for 1 ≤ i ≤ k do

3: Resi = searchLSHPartitions(q, P, i, k − i+ 1)

4: TempRes= pickBest(TempRes ∪ Resi, k)

5: end for

6: return R = TempRes

158

Chapter 7

CONCLUSION

The main goal of this dissertation is to design and develop efficient indexing scheme

and algorithm framework for multi-dimensional data so that experts can better in-

terpret data for decision making. Particularly, I look at two different models: a)

multi-variate time series, b) high dimensional data indexing and querying processing

with limited computational resources. More specifically, for multi-variate time series,

it can be interrelated with multi-resolution which includes motion and gesture data.

In thesis, I presented a metadata-enriched multi-variate time series model, where a de-

pendency/correlation model relates the individual variates to each other. Recognizing

that multi-variate temporal features can be extracted more effectively by simultane-

ously considering, at multiple scales, differences among individual variates along with

the dependency/correlation model that relates them, I further developed algorithms

to detect robust multi-variate temporal (RMT) features that are multi-resolution, lo-

cal, and invariant against various types of noise. Later on I leverage RMT algorithm

to build system framework to detect multi-variate time series features for predicating

the diffusion process of diseases and the impact of natural disasters.

In tems of high dimensional data indexing and query processing, I presented a

novel Onion-LSH(OLSH) index sturcutre to approximately solve top-k inner product

queries, which combines the Onion-based data layering with angular LSH-based in-

dexing for efficient data access. As there is a trade-off between the available hashing

resources and the accuracy, I propose a top-k based accuracy model, with a layer-

aware resource allocation strategy which takes into account the distribution of data

and the layer contribution to the final result set. I also show the alternative layer in-

159

dexing by using Skyline, as SLSH. Moreoever, as OLSH and SLSH leverages the fixed

amount of hash budget and minimizes the total amount of error, I also proposed to

reverse the optimization process, with the total error as input and minimize the total

hash resource across k layers. Last but not least, I also proposed an algorithm when

dimensionality is high i.e. 100, a situation where generating convex hull for Onion

indexing or Skyline layers creation is computational infeasible. I adopted the parti-

tion strategy based on l2 norm of data elements then proceed to learning the weight

of each partition, to achieve partition-aware resource allocation intelligently leverag-

ing the total hash resources available. Experimental results with real and synthetic

benchmarks showed that that the proposed OLSH technique achieves the target ac-

curacy rates within given resource budget under different scenarios. The results have

shown that SLSH follows a similar pattern as OLSH, both of which indicate that by

learning the structure of input data, one can achieve top-k query retrieval effectively

and efficiently. In a nutshell, results have shown the effectiveness and efficiency of

data indexing scheme with learned properties of data.

160

REFERENCES

“Exact euclidean lsh”, http://www.mit.edu/~andoni/LSH/, accessed: 2018-03-09
(1999).

“GleamViz”, ”http://www.gleamviz.org/simulator/” (2019).

“Socioeconomic data and applications center (sedac)”,
http://sedac.ciesin.columbia.edu., accessed: 10 May 2016 (2019).

“The swine flu outbreak and its global economic impacts”,
http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-mckibbin,
accessed: 10 May 2016 (2019).

Abubakar, I., P. Gautret, G. W. Brunette, L. Blumberg, D. Johnson, G. Poumerol,
Z. A. Memish, M. Barbeschi and A. S. Khan, “Global perspectives for prevention of
infectious diseases associated with mass gatherings”, The Lancet infectious diseases
(2012).

Aggarwal, C. C., “On effective classification of strings with wavelets”, in “Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining”, pp. 163–172 (ACM, 2002).

Balcan et al., D., “Seasonal transmission potential and activity peaks of the new
influenza a(h1n1): a monte carlo likelihood analysis based on human mobility”,
BMC Medicine 7, 45 (2009).

Barber, C. B., D. P. Dobkin and H. Huhdanpaa, “The quickhull algorithm for con-
vex hulls”, ACM Transactions on Mathematical Software (TOMS) 22, 4, 469–483
(1996).

Batal, I., D. Fradkin, J. Harrison, F. Moerchen and M. Hauskrecht, “Mining recent
temporal patterns for event detection in multivariate time series data”, in “Proceed-
ings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining”, pp. 280–288 (ACM, 2012).

Bawa, M., T. Condie and P. Ganesan, “Lsh forest: Self-tuning indexes for simi-
larity search”, in “Proceedings of the 14th International Conference on World
Wide Web”, WWW ’05, pp. 651–660 (ACM, New York, NY, USA, 2005), URL
http://doi.acm.org/10.1145/1060745.1060840.

Bemdt, D. J. and J. Clifford, “Using dynamic time warping to find patterns in time
series”, (1994).

Blei, D. M. and J. D. Lafferty, “Dynamic topic models”, in “Proceedings of the 23rd
international conference on Machine learning”, pp. 113–120 (ACM, 2006).

Borzsony, S., D. Kossmann and K. Stocker, “The skyline operator”, in “Data Engi-
neering, 2001. Proceedings. 17th International Conference on”, pp. 421–430 (IEEE,
2001).

161

http://www.mit.edu/~andoni/LSH/
http://www.gleamviz.org/simulator/
http://sedac.ciesin.columbia.edu.
http://www.brookings.edu/research/interviews/2009/05/04-swine-flu-mckibbin
http://doi.acm.org/10.1145/1060745.1060840

Candan, K. S., R. Rossini, M. L. Sapino and X. Wang, “sdtw: Computing dtw
distances using locally relevant constraints based on salient feature alignments”,
PVLDB 5, 11, 1519–1530 (2012a).

Candan, K. S., R. Rossini, X. Wang and M. L. Sapino, “sdtw: computing dtw dis-
tances using locally relevant constraints based on salient feature alignments”, Pro-
ceedings of the VLDB Endowment 5, 11, 1519–1530 (2012b).

Candan, K. S. and M. L. Sapino, Data management for multimedia retrieval (Cam-
bridge University Press, 2010a).

Candan, K. S. and M. L. Sapino, Data Management for Multimedia Retrieval (Cam-
bridge University Press, New York, NY, USA, 2010b), ISBN-10:0521887399, ISBN-
13: 978-0521887397, May 31, 2010.

Castro, N. and P. Azevedo, “Multiresolution motif discovery in time series”, in “Pro-
ceedings of the 2010 SIAM international conference on data mining”, pp. 665–676
(SIAM, 2010).

Chang, Y.-C., L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo and J. R. Smith, “The onion
technique: indexing for linear optimization queries”, in “ACM Sigmod Record”,
vol. 29, pp. 391–402 (ACM, 2000).

Chen, L., Similarity Search over Time Series and Trajectory Data, Ph.D. thesis,
University of Waterloo (2005).

Chen, L. and R. Ng, “On the marriage of lp-norms and edit distance”, in “VLDB”,
(2004).

Chen, Y., E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen and G. Batista, “The ucr
time series classification archive”, www.cs.ucr.edu/~eamonn/time_series_data/
(2015).

Chowell, G., P. W. Fenimore, M. A. Castillo-Garsow and C. Castillo-Chavez, “Sars
outbreaks in ontario, hong kong and singapore: the role of diagnosis and isolation
as a control mechanism”, Journal of theoretical biology (2003).

Chung, F.-L., T. C. Fu, R. Luk and V. Ng, “Flexible time series pattern matching
based on perceptually important points”, (2001).

Colizza, V., A. Barrat, M. Barthelemy, A. Valleron and A. Vespignani, “Modeling
the worldwide spread of pandemic influenza: baseline case and containment inter-
ventions”, PLoS Comput Biol 4, 1 (2007).

Datar, M., N. Immorlica, P. Indyk and V. S. Mirrokni, “Locality-sensitive hashing
scheme based on p-stable distributions”, in “Proceedings of the twentieth annual
symposium on Computational geometry”, pp. 253–262 (ACM, 2004).

De Silva, A., R. J. Hyndman and R. Snyder, “The vector innovations structural
time series framework: a simple approach to multivariate forecasting”, Statistical
Modelling 10, 4, 353–374 (2010).

162

www.cs.ucr.edu/~eamonn/time_series_data/

Deodhar et al., S., “An interactive, web-based high performance modeling environ-
ment for computational epidemiology”, ACM TMIS 5, 2, 7:1–7:27 (2014).

Ding, H., G. Trajcevski, P. Scheuermann, X. Wang and E. Keogh, “Querying and
mining of time series data: Experimental comparison of representations and dis-
tance measures”, VLDB pp. 1542–1552 (2008).

Eichler, M., “Granger causality and path diagrams for multivariate time series”, Jour-
nal of Econometrics (2006).

EmitLab-ASU, “Rmt code”, Available upon request (2017).

Esling, P. and C. Agon, “Time-series data mining”, ACM Computing Surveys (CSUR)
45, 1, 12 (2012).

Fagin, R., A. Lotem and M. Naor, “Optimal aggregation algorithms for middleware”,
in “PODS”, pp. 102–113 (2001).

Fagin, R., A. Lotem and M. Naor, “Optimal aggregation algorithms for middleware”,
Journal of computer and system sciences 66, 4, 614–656 (2003).

Ferguson, N., D. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iam-
sirithaworn and D. Burke, “Strategies for containing an emerging influenza pan-
demic in southeast asia”, Nature 534, 7046 (2005).

Gan, J., J. Feng, Q. Fang and W. Ng, “Locality-sensitive hashing scheme based on
dynamic collision counting”, SIGMOD ’12 (2012).

Gao, J., H. Jagadish, B. C. Ooi and S. Wang, “Selective hashing: Closing the gap
between radius search and k-nn search”, KDD ’15 (2015).

Germann, T., K. Kadau, I. Longini Jr. and C. Macken, “Mitigation strategies for
pandemic influenza in the united states”, Natl Acad Sci U S A 103, 15 (2006).

Gionis, A., P. Indyk and R. Motwani, “Similarity search in high dimensions via
hashing”, in “Proceedings of the 25th International Conference on Very Large Data
Bases”, VLDB ’99, pp. 518–529 (Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999), URL http://dl.acm.org/citation.cfm?id=645925.671516.

Harris, C. and M. Stephens, “A combined corner and edge detector.”, Fourth Alvey
Vision Conference pp. 147–151 (1988).

Harvey, A. and S. Koopman, “Multivariate structural time series model”, in “System
Dynamics in Economic and Financial Models”, pp. 269–296 (John Wiley and Sons,
1997).

Heo, J.-S., J. Cho and K.-Y. Whang, “The hybrid-layer index: A synergic approach
to answering top-k queries in arbitrary subspaces”, in “Data Engineering (ICDE),
2010 IEEE 26th International Conference on”, pp. 445–448 (IEEE, 2010).

163

http://dl.acm.org/citation.cfm?id=645925.671516

Huang, Q., G. Ma, J. Feng, Q. Fang and A. K. H. Tung, “Accurate and fast asym-
metric locality-sensitive hashing scheme for maximum inner product search”, in
“Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining”, KDD ’18 (2018).

Ilyas, I. F., G. Beskales and M. A. Soliman, “A survey of top-k query processing
techniques in relational database systems”, ACM Computing Surveys (CSUR) 40,
4, 11 (2008).

Indyk, P. and R. Motwani, “Approximate nearest neighbors: towards removing the
curse of dimensionality”, in “Proceedings of the thirtieth annual ACM symposium
on Theory of computing”, pp. 604–613 (ACM, 1998).

Ji, X., J. Bailey and G. Dong, “Mining minimal distinguishing subsequence patterns
with gap constraints”, in “KAIS”, (2007).

Jin, Y. and B. Prabhakaran, “Knowledge discovery from 3d human motion streams
through semantic dimensional reduction”, ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMM) 7, 2, 9 (2011a).

Jin, Y. and B. Prabhakaran, “Knowledge discovery from 3d human motion streams
through semantic dimensional reduction”, ACM Transactions on Multimedia Com-
puting, Communications and Applications 7, 2 (2011b).

Joly, A. and O. Buisson, “A posteriori multi-probe locality sensitive hashing”, in
“Proceedings of the 16th ACM International Conference on Multimedia”, MM ’08
(2008).

Keogh, E., “Exact indexing of dynamic time warping”, in “VLDB”, pp. 406–417
(2002).

Keogh, E., K. Chakrabarti, M. Pazzani and S. Mehrotra, “Dimensionality reduction
for fast similarity search in large time series databases”, Knowledge and information
Systems 3, 3, 263–286 (2001).

Keogh, E. and C. A. Ratanamahatana, “Exact indexing of dynamic time warping”,
KAIS (2005).

Khan, K., J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Mac-
donald, J. Liauw, A. Chan et al., “Spread of a novel influenza a (h1n1) virus via
global airline transportation”, New England journal of medicine (2009).

Kim, D. and B. Prabhakaran, “Motion fault detection and isolation in body
sensor networks”, Pervasive and Mobile Computing 7, 6, 727–745, URL
https://doi.org/10.1016/j.pmcj.2011.09.006 (2011a).

Kim, D.-J. and B. Prabhakaran, “Motion fault detection and isolation in body sensor
networks”, Pervasive and Mobile Computing 7, 6, 727–745 (2011b).

Kolda, T. G. and B. W. Bader, “Tensor decompositions and applications”, SIAM
review 51, 3, 455–500 (2009).

164

https://doi.org/10.1016/j.pmcj.2011.09.006

Kruskal, J. B., “An overview of sequence comparison: Time warps, string edits, and
macromolecules”, SIAM Review 25, 2, 201–237 (1983).

Krzanowski, W., “Between-groups comparison of principal components”, Journal of
the American Statistical Assoc. (1979).

Li, C., S. Zheng and B. Prabhakaran, “Segmentation and recognition of motion
streams by similarity search”, ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM) 3, 3, 16 (2007a).

Li, C., S. Q. Zheng and B. Prabhakaran, “Segmentation and recognition of motion
streams by similarity search”, ACM Trans. Multimedia Comput. Commun. Appl.
3, 3, URL http://doi.acm.org/10.1145/1236471.1236475 (2007b).

Li, L., B. A. Prakash and C. Faloutsos, “Parsimonious linear fingerprinting for time
series”, Proceedings of the VLDB Endowment 3, 1-2, 385–396 (2010).

Li, T., S. Ma and M. Ogihara, “Wavelet methods in data mining”, in “Data Mining
and Knowledge Discovery Handbook”, pp. 603–626 (Springer, 2005).

Lin, J., E. Keogh, S. Lonardi and B. Chiu, “A symbolic representation of time se-
ries, with implications for streaming algorithms”, in “Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery”,
pp. 2–11 (ACM, 2003a).

Lin, J., E. Keogh, S. Lonardi and B. Chiu, “A symbolic representation of time series,
with implications for streaming algorithms”, in “Proceedings of the 8th ACM SIG-
MOD Workshop on Research Issues in Data Mining and Knowledge Discovery”,
DMKD ’03, pp. 2–11 (ACM, 2003b).

Liu, S., Y. Garg, K. S. Candan, M. L. Sapino and G. Chowell-Puente, “Notes2:
Networks-of-traces for epidemic spread simulations”, in “Workshops at the Twenty-
Ninth AAAI Conference on Artificial Intelligence”, (2015).

Liu, S., S. Poccia, K. S. Candan, G. Chowell and M. L. Sapino, “epidms: data
management and analytics for decision-making from epidemic spread simulation
ensembles”, The Journal of infectious diseases 214, suppl 4, S427–S432 (2016).

Liu, S., S. R. Poccia, K. S. Candan, M. L. Sapino and X. Wang, “Robust multi-variate
temporal features of multi-variate time series”, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM) (2018).

Liu, Y., J. Cui, Z. Huang, H. Li and H. T. Shen, “Sk-lsh: An efficient index structure
for approximate nearest neighbor search”, Proc. VLDB Endow. 7, 9, 745–756, URL
http://dx.doi.org/10.14778/2732939.2732947 (2014).

Longini Jr.et al., I., “Containing pandemic influenza at the source”, Science 309,
5737 (2005).

165

http://doi.acm.org/10.1145/1236471.1236475
http://dx.doi.org/10.14778/2732939.2732947

Lowe, D. G., “Object recognition from local scale-invariant features”, in “Computer
vision, 1999. The proceedings of the seventh IEEE international conference on”,
vol. 2, pp. 1150–1157 (Ieee, 1999a).

Lowe, D. G., “Object recognition from local scale-invariant features”, in “Proceedings
of the International Conference on Computer Vision”, ICCV ’99 (1999b).

Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, Interna-
tional journal of computer vision 60, 2, 91–110 (2004a).

Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, Int. J. Com-
put. Vision 60, 2, 91–110 (2004b).

Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, Int. J. Com-
put. Vision 60, 2 (2004c).

Lv, Q., W. Josephson, Z. Wang, M. Charikar and K. Li, “Multi-probe lsh: Efficient in-
dexing for high-dimensional similarity search”, in “Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases”, VLDB ’07, pp. 950–961 (VLDB En-
dowment, 2007), URL http://dl.acm.org/citation.cfm?id=1325851.1325958.

Mehta, S., R. Nallusamy, R. V. Marawar and B. Prabhakaran, “A study of dwt
and svd based watermarking algorithms for patient privacy in medical images”,
in “Healthcare Informatics (ICHI), 2013 IEEE International Conference on”, pp.
287–296 (IEEE, 2013a).

Mehta, S., R. Nallusamy, R. V. Marawar and B. Prabhakaran, “A study of DWT
and SVD based watermarking algorithms for patient privacy in medical images”, in
“ICHI’13”, pp. 287–296 (2013b), URL https://doi.org/10.1109/ICHI.2013.41.

Merler, S. and M. Ajelli, “The role of population heterogeneity and human mobility
in the spread of pandemic influenza.”, Proc Biol Sci. 277, 1681 (2014).

Merler, S., M. Ajelli, A. Pugliese and N. Ferguson, “Determinants of the spatiotem-
poral dynamics of the 2009 h1n1 pandemic in europe: implications for real-time
modelling.”, PLoS Comput Biol. 7, 9 (2011).

Mills, T. C. and T. C. Mills, Time series techniques for economists (Cambridge
University Press, 1991).

Mocap, “Cmu mocap data set”, Http://mocap.cs.cmu.edu/ (2001).

Mohammad, Y. and T. Nishida, “Constrained motif discovery in time series”, New
Generation Computing 27, 4, 319 (2009).

Mörchen, F., “Time series feature extraction for data mining using dwt and dft”,
(2003).

Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, M. Massari,
S. Salmaso, G. S. Tomba, J. Wallinga, J. Heijne, M. Sadkowska-Todys, M. Rosinska
and W. J. Edmunds, “Social contacts and mixing patterns relevant to the spread
of infectious diseases”, PLoS Med 5, 3 (2008).

166

http://dl.acm.org/citation.cfm?id=1325851.1325958
https://doi.org/10.1109/ICHI.2013.41

Motwani, R., A. Naor and R. Panigrahi, “Lower bounds on locality sensitive hash-
ing”, in “Proceedings of the Twenty-second Annual Symposium on Computational
Geometry”, SCG ’06, pp. 154–157 (ACM, New York, NY, USA, 2006), URL
http://doi.acm.org/10.1145/1137856.1137881.

Nagarkar, P. and K. S. Candan, “PSLSH: an index structure for efficient execution
of set queries in high-dimensional spaces”, in “CIKM”, pp. 477–486 (ACM, 2018).

Neyshabur, B. and N. Srebro, “On symmetric and asymmetric lshs
for inner product search”, in “Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learn-
ing - Volume 37”, ICML’15, pp. 1926–1934 (JMLR.org, 2015), URL
http://dl.acm.org/citation.cfm?id=3045118.3045323.

Papadias, D., Y. Tao, G. Fu and B. Seeger, “An optimal and progressive algorithm
for skyline queries”, in “Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data”, pp. 467–478 (ACM, 2003).

Papadias, D., Y. Tao, G. Fu and B. Seeger, “Progressive skyline computation in
database systems”, ACM Transactions on Database Systems (TODS) 30, 1, 41–82
(2005).

Papadimitriou, S., J. Sun and C. Faloutsos, “Streaming pattern discovery in multiple
time-series”, in “Proceedings of the 31st international conference on Very large data
bases”, pp. 697–708 (VLDB Endowment, 2005).

Patel, P., E. Keogh, J. Lin and S. Lonardi, “Mining motifs in massive time series
databases”, in “Proceedings of IEEE International Conference on Data Mining”,
ICDM ’02, pp. 370–377 (2002), December.

Peng, J., H. Wang, J. Li and H. Gao, “Set-based similarity search for time series”, in
“Proceedings of the 2016 International Conference on Management of Data”, pp.
2039–2052 (ACM, 2016a).

Peng, J., H. Wang, J. Li and H. Gao, “Set-based similarity search for time series”,
in “Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016”,
edited by F. Özcan, G. Koutrika and S. Madden, pp. 2039–2052 (ACM, 2016b),
URL http://doi.acm.org/10.1145/2882903.2882963.

Perng, C.-S., H. Wang, S. R. Zhang and D. S. Parker, “Landmarks: a new model
for similarity-based pattern querying in time series databases”, in “Proceedings of
16th International Conference on Data Engineering (Cat. No. 00CB37073)”, pp.
33–42 (IEEE, 2000).

Poccia, S. R. and Y. Garg, “On the effectiveness of distance measures for similarity
search in multi-variate sensory data: Eectiveness of distance measures for similarity
search”, in “ICMR’17”, pp. 489–493 (2017).

167

http://doi.acm.org/10.1145/1137856.1137881
http://dl.acm.org/citation.cfm?id=3045118.3045323
http://doi.acm.org/10.1145/2882903.2882963

Poccia, S. R., M. L. Sapino, X. C. Sicong Liu, Y. Garg, S. Huang, J. H. Kim, X. Li,
P. Nagarkar and K. S. Candan, “SIMDMS: Data management and analysis to
support decision making through large simulation ensembles”, in “EDBT’17”, pp.
582–585 (2017).

Rakthanmanon, T., B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia and E. Keogh, “Searching and mining trillions of time series subsequences
under dynamic time warping”, in “KDD”, (2012).

Rakthanmanon, T. and E. Keogh, “Fast shapelets: A scalable algorithm for dis-
covering time series shapelets”, in “proceedings of the 2013 SIAM International
Conference on Data Mining”, pp. 668–676 (SIAM, 2013).

Sakoe, H. and S. Chiba, “Dynamic programming algorithm optimization for spoken
word recognition”, in “Acoustics, Speech and Signal Processing, IEEE Transactions
on”, (1978).

Salton, G. and M. J. McGill, Introduction to Modern Information Retrieval (1983).

Sanguansat, P., “Multiple multidimensional sequence alignment using generalized
dynamic time warping”, 8, 10, 668–678 (2012).

Shrivastava, A. and P. Li, “Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips)”, in “Advances in Neural Information Processing Systems”,
pp. 2321–2329 (2014).

Shuai, L., C. Li, X. Guo, B. Prabhakaran and J. Chai, “Motion capture with ellip-
soidal skeleton using multiple depth cameras”, IEEE Trans. Vis. Comput. Graph.
23, 2, 1085–1098, URL https://doi.org/10.1109/TVCG.2016.2520926 (2017).

Silva, A., R.J.Hyndman and R.Snyder, “The vector innovations structural time series
framework: A simple approach to multivariate forecasting.”, Statistical Modelling
10, 4, 353–374 (2010).

STEM, “Spatiotemporal epidemiological modeler”, Https://www.eclipse.org/stem/
(2016).

Sun, Y., W. Wang, J. Qin, Y. Zhang and X. Lin, “Srs: Solving c-approximate nearest
neighbor queries in high dimensional euclidean space with a tiny index”, Proc.
VLDB Endow. 8, 1, 1–12, URL http://dx.doi.org/10.14778/2735461.2735462
(2014).

Tan, K.-L., P.-K. Eng and B. C. Ooi, “Efficient progressive skyline computation”, in
“VLDB”, vol. 1, pp. 301–310 (2001).

Theobald, M., G. Weikum and R. Schenkel, “Top-k query evaluation with probabilis-
tic guarantees”, in “Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30”, pp. 648–659 (VLDB Endowment, 2004).

168

https://doi.org/10.1109/TVCG.2016.2520926
http://dx.doi.org/10.14778/2735461.2735462

Van den Broeck, W., C. Gioannini, B. Gonçalves, M. Quaggiotto, V. Colizza and
A. Vespignani, “The gleamviz computational tool, a publicly available software to
explore realistic epidemic spreading scenarios at the global scale”, BMC infectious
diseases (2011).

Vlachos, M., M. Hadjieleftheriou, D. Gunopulos and E. Keogh, “Indexing multidi-
mensional time-series”, The VLDB Journal 15, 1, 1–20 (2006).

Wang, J., H. T. Shen, J. Song and J. Ji, “Hashing for similarity search: A survey”,
CoRR abs/1408.2927, URL http://arxiv.org/abs/1408.2927 (2014a).

Wang, X. and K. S. Candan, “Relevant shape contour snippet extraction with meta-
data supported hidden markov models”, in “Proceedings of the ACM International
Conference on Image and Video Retrieval”, pp. 430–437 (ACM, 2010).

Wang, X., K. S. Candan and M. L. Sapino, “Leveraging metadata for identifying local,
robust multi-variate temporal (rmt) features”, in “Data Engineering (ICDE), 2014
IEEE 30th International Conference on”, pp. 388–399 (IEEE, 2014b).

Wang, X., K. S. Candan and M. L. Sapino, “Leveraging metadata for identifying local,
robust multi-variate temporal (RMT) features”, in “Data Engineering (ICDE),
2014 IEEE 30th International Conference on”, pp. 388–399 (IEEE, 2014c).

Wang, X., J. Lin, P. Senin, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen and
S. Frankenstein, “Rpm: Representative pattern mining for efficient time series
classification.”, in “EDBT”, pp. 185–196 (2016a).

Wang, X., J. Lin, P. Senin, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen
and S. Frankenstein, “RPM: representative pattern mining for efficient time
series classification”, in “Proceedings of the 19th International Conference on
Extending Database Technology, EDBT 2016, Bordeaux, France, March 15-
16, 2016, Bordeaux, France, March 15-16, 2016.”, pp. 185–196 (2016b), URL
https://doi.org/10.5441/002/edbt.2016.19.

Wu et al., J., “School closure and mitigation of pandemic (h1n1) 2009, hong kong”,
Emerg Infect Dis 16, 3 (2010).

Yang, K. and C. Shahabi, “A pca-based similarity measure for multivariate time
series”, in “MMDB”, pp. 65–74 (ACM, 2004).

Yankov, D., E. Keogh, J. Medina, B. Chiu and V. Zordan, “Detecting time series
motifs under uniform scaling”, in “Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining”, pp. 844–853 (ACM,
2007).

Ye, L. and E. Keogh, “Time series shapelets: a new primitive for data mining”, in
“Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining”, pp. 947–956 (ACM, 2009).

169

http://arxiv.org/abs/1408.2927
https://doi.org/10.5441/002/edbt.2016.19

Zhang, W., K. Gao, Y.-d. Zhang and J.-t. Li, “Data-oriented locality sensi-
tive hashing”, in “Proceedings of the International Conference on Multime-
dia”, MM ’10, pp. 1131–1134 (ACM, New York, NY, USA, 2010), URL
http://doi.acm.org/10.1145/1873951.1874168.

170

http://doi.acm.org/10.1145/1873951.1874168

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Time Series
	1.1.1 Uni-variate Time Series
	1.1.2 Multi-variate Time Series
	1.1.3 Robust Multi-variate Temporal Features (RMT)

	1.2 Analytical Systems Based on RMT Algorithm
	1.3 Retrieval Tasks in Multi-Dimensional Space
	1.3.1 Top-K Query Processing in Multi-dimensional Space

	1.4 Thesis Outline

	2
	2.1 Time Series Feature Extraction And Similarity Measures
	2.2 Locality Sensitive Hashing
	2.3 Layer-based indexing and Query Processing

	3
	3.1 Introduction
	3.2 MMTS Model
	3.3 Temporal and Variate Smoothing
	3.3.1 Temporal Smoothing
	3.3.2 Variate Smoothing
	3.3.3 Combined Time and Variate Smoothing

	3.4 Step 1: Scale-space Construction
	3.5 Step 2: Identifying MVTS Feature Candidates
	3.6 Step 3: Eliminating Poor RMT Feature Candidates
	3.7 Step 4: RMT Feature Descriptor Creation
	3.8 RMT Feature Set of a Multi-Variate Time Series
	3.9 Time Series Matching using RMT Features
	3.9.1 Alignment of Feature Pairs
	3.9.2 Feature Significance
	3.9.3 Overall Feature Matching Score
	3.9.4 Identifying Candidate Matching Pairs
	3.9.5 Inconsistency Pruning of Candidate Pairs
	3.9.6 RMT-Based Multi-variate Time Series Matching Score

	3.10 Evaluation
	3.10.1 Settings
	3.10.2 Discussion of the Results

	3.11 Experiments With Additional DataSets And Algorithms
	3.11.1 Experiments with Additional Data Sets
	3.11.2 Experiments with Additional Algorithms

	3.12 Conclusion

	4
	4.1 Problem Definition
	4.2 Notes2
	4.2.1 Networks-of-Traces for Epidemic Simulations
	4.2.2 Disease Spread Simulation Understanding and Analysis
	4.2.3 Networks-of-Traces (NT) Feature Extraction
	4.2.4 Robust Feature Detection
	4.2.5 Feature Search and Alignment
	4.2.6 Evaluation
	4.2.7 Conclusion

	4.3 EpiDMS
	4.3.1 Epidemic Simulations
	4.3.2 Challenges
	4.3.3 System Overview

	4.4 SimDMS
	4.4.1 Introduction
	4.4.2 Challenge
	4.4.3 System Overview

	4.5 DataStorm-FE
	4.5.1 Introduction
	4.5.2 Challenge

	4.6 Conclusion

	5
	5.1 Introduction
	5.2 Problem Definition
	5.3 Onion-LSH (OLSH) for Approximate top-k Processing
	5.3.1 Overview of Onion Indexing
	5.3.2 OLSH: LSH Indexing of Onion Layers
	5.3.3 Accuracy/Resource Trade-offs in OLSH
	5.3.4 OLSH Design Criteria
	5.3.5 Overview of OLSH

	5.4 Experimental Evaluation
	5.4.1 Datasets
	5.4.2 Evaluation Criteria
	5.4.3 OLSH and Competitors

	5.5 Results
	5.5.1 Overview
	5.5.2 Impact of Different Dimensionalities
	5.5.3 Impact of the Data Distribution
	5.5.4 Impact of Different Values of k
	5.5.5 Impact of Different Values of m
	5.5.6 Impact of Per-Layer Hash Count ()
	5.5.7 Impact of Different Data Cardinalities
	5.5.8 Impact of the Index Budget
	5.5.9 Impact of the Hash Collision Parameter ()
	5.5.10 Results with Real Data Sets

	5.6 Experiments with Competitors and Data Setups
	5.6.1 Branch-And-Bound Ranked Search
	5.6.2 Evaluation Criteria

	5.7 Experiments with Alternative Layer Indexing Approach
	5.8 Alternative Mathematical Optimizationand with Model Revision
	5.9 Conclusion

	6
	6.1 PLSH for Approximate top-k Processing
	6.1.1 Norm Based Partition
	6.1.2 Partition Importance Learning
	6.1.3 Accuracy/Resource Trade-offs in PLSH
	6.1.4 PLSH Design Criteria - Resource Allocation Revised
	6.1.5 Overview of PLSH

	6.2 Conclusion

	7

	REFERENCES

