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ABSTRACT

Reliable operation of modern power systems is ensured by an intelligent cyber layer

that monitors and controls the physical system. The data collection and transmission

is achieved by the supervisory control and data acquisition (SCADA) system, and

data processing is performed by the energy management system (EMS). In the recent

decades, the development of phasor measurement units (PMUs) enables wide area

real-time monitoring and control. However, both SCADA-based and PMU-based

cyber layers are prone to cyber attacks that can impact system operation and lead

to severe physical consequences.

This dissertation studies false data injection (FDI) attacks that are unobservable

to bad data detectors (BDD). Prior work has shown that an attacker-defender bi-

level linear program (ADBLP) can be used to determine the worst-case consequences

of FDI attacks aiming to maximize the physical power flow on a target line. How-

ever, the results were only demonstrated on small systems assuming that they are

operated with DC optimal power flow (OPF). This dissertation is divided into four

parts to thoroughly understand the consequences of these attacks as well as develop

countermeasures.

The first part focuses on evaluating the vulnerability of large-scale power systems

to FDI attacks. The solution technique introduced in prior work to solve the ADBLP

is intractable on large-scale systems due to the large number of binary variables. Four

new computationally efficient algorithms are presented to solve this problem.

The second part studies vulnerability of N −1 reliable power systems operated by

state-of-the-art EMSs commonly used in practice, specifically real-time contingency

analysis (RTCA), and security-constrained economic dispatch (SCED). An ADBLP is

formulated with detailed assumptions on attacker’s knowledge and system operations.

The third part considers FDI attacks on PMU measurements that have strong
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temporal correlations due to high data rate. It is shown that predictive filters can

detect suddenly injected attacks, but not gradually ramping attacks.

The last part proposes a machine learning-based attack detection framework con-

sists of a support vector regression (SVR) load predictor that predicts loads by ex-

ploiting both spatial and temporal correlations, and a subsequent support vector

machine (SVM) attack detector to determine the existence of attacks.
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Chapter 1

INTRODUCTION

1.1 Overview

With integration of real-time monitoring, sensing, communication and data pro-

cessing, electric power systems are becoming increasingly efficient and intelligent.

This integration is accomplished by the supervisory control and data acquisition

(SCADA) systems and energy menagement systems (EMS). SCADA monitors the

physical system and collects measurements, which includes voltage and current mag-

nitudes, line power flows, as well as bus power injections, and then send them to

control center. However, these measurements are affected by noise, and some of them

may be missing when transmitting from sensors to SCADA, or from SCADA to control

center. Due to the incompleteness and inaccuracy of the measurements, state esti-

mation (SE) is utilized to estimate the system operating states (voltage magnitudes

and angles) from measurements with sufficiently high accuracy. This estimate along

with the sub-sequential data processing, optimization and communication, make the

real-time control of the power system achievable. Moreover, phasor measurement

units (PMUs) have been widely deployed in power systems for monitoring, protec-

tion, and control purposes in the past decade. Since PMUs can directly measure the

system states with high sampling rate and accuracy, they have the potential to play

a significant role in real-time power system SE and dynamic security assessment.

However, similar to all computer network integrated systems, the integration of

the cyber layer communication and control also makes power systems more vulnera-

ble to cyber-attacks, which can compromise the measurements, states, topology and
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generator dynamics, resulting in serious physical consequences or even system failure.

cyber-attacks against the communication and computing infrastructure of the moni-

toring and control systems of electric power systems have become a growing concern

[1, 2]. In recent years, several incidents have shown that cyber-attacks can have severe

physical consequences, and power system is vulnerable to these attacks due to lack

of detection and protection schemes. Some of these incidents are briefly discussed

below, as the motivation of this research.

• In August 2003, a line outage in Ohio was not noticed by the system operator for

a sufficient period of time, resulting in a wide area blackout involving parts of

the northeastern and midwestern of United States as well as Ontario of Canada,

affecting 55 million people. The power was not restored in 4 days until the

blackout cost 4 to 10 billion dollars loss [3]. One of the most important reason

was identified as ”the inadequate situational awareness” [3], which indicates

that a similar incident caused by a cyber attack can have severe consequences

due to lack of detection and alarm system.

• In 2007, Idaho National Laboratory performed the Aurora test, in which a

computer virus intentionally switched a diesel generator’s circuit breaker on

and off rapidly. As a result, the generator can be out of synchronization and

damaged [4]. This tests demonstrated that power system can be overtaken by

computer virus that can result in physical consequences.

• In 2012, the Industrial Control Systems Cyber Emergency Response Team re-

vealed that the number of reported cyber attacks was growing and an increasing

number of companies who have access to power grid was becoming the cyber

attack targets [5]. The U.S. Department of Energy reported that from 2011 to

2014, 362 reports of physical or cyber attacks that interrupted power services
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were received from electric utilities [6]. Based on a Department of Homeland

Security record, 161 cyber attacks were targeting on the energy sector in 2013,

compared to just 31 in 2011 [6], accounting for 60% of all cyber attacks on

cyber-physical systems.

• In 2015, a regional power outage took place in Ukraine, which was cause by a

third party’s illegal entry into the computer and SCADA system of a electricity

distribution company, disconnecting 7 substations for 3 hours. Later, three

other distribution companies were attacked, resulting in several outages that

caused approximately 225 thousand customers to lose power through various

area [7]. This attack alarms the power engineers the necessity of defending

functionality in power system.

• In 2018, the Department of Homeland Security released a report indicating

that Russian operatives have gained access to American electric, nuclear, water,

aviation, and critical manufacturing sectors [2]. Though no attacks are actually

launched, power engineers should be aware of the potential threats and prepare

responses in advance.

Figure 1.1 illustrates the number of DHS recorded cyber incidents on the energy

sector in the recent decade [8]. It can be seen that the energy sector is under contin-

uous attack and even though the number reduced after 2013, it could be because the

attackers are becoming increasingly intelligent that they are not found by the defense

system.

From the list above and figure 1.1, it is obvious that the cyber layer of the power

system is vulnerable to cyber attacks, and adversaries are actively attempting to

attack the power system. Therefore, it is crucial to evaluate system vulnerability

to credible attacks before they happen, and develop techniques to detect potential

3



Figure 1.1: DHS Recorded Cyber Incidents on the Energy Sector

attacks and protect the system. Assessing and evaluating consequences of possible at-

tacks is extremely instructive to system operators, and understanding the procedures

for potential attacks is important to the secure operation of the power system. Specif-

ically, this dissertation focuses on false data injection (FDI) attacks, which involves

a malicious adversary replacing a subset of measurements with counterfeits.

1.2 Literature Review

Cyber security on power systems has gained much interest during the last decade.

Since it is impossible to review all of them, this dissertation focuses on unobservable

FDI attacks. FDI attacks have been studied for several years to evaluate system

vulnerability. It has been shown that FDI attacks can be designed to target system

states [9], [10], [11], system topology [12], [13], generator dynamics [14], and energy

markets [15]. [9] first introduces a class of FDI attacks on DC SE that is unobservable

to the control center. It shows that an attacker with sufficient system knowledge and

computational capability can maliciously inject false data without being detected by

4



existing bad data detection techniques. In [10], the trade-off between attacker’s ef-

fort to maximize the attack intensity and minimize the detection rate is discussed.

[11] studies FDI attacks on AC SE and demonstrates the knowledge needed for such

attacks. [15] demonstrates the impacts of FDI attacks on electric power markets,

characterized by the change in locational marginal price. [16] introduces unobserv-

able FDI attacks against AC SE that can lead to line overflow. [17] demonstrates that

FDI attacks can cooperate with topology attacks to make the on/off status of a line

unobservable to control center. Many existing work evaluating the worst-case attack

consequences involve solving attacker-defender bi-level linear programs (ADBLPs),

wherein the first level models the attacker’s objective and limitations (e.g., number

of measurements to change), while the second level models the system response under

attack via DC optimal power flow (OPF). Examples include attacks that cause line

overflows [18], locational marginal price (LMP) changes [19], operating cost increases

[20] and sequential outages [21]. The authors of [22] analyzes the physical conse-

quences when the attacker only has limited information, and [23] and [24] focus on

cyber-physical coordinated attacks. The authors of [25] propose an ADBLP to find

FDI attacks that add or drop contingency pairs with minimum attack effort, and an-

alyze the economic effect of such attacks on LMPs. Rahman et al. [26] demonstrate

several case studies to showcase the impact of FDI attacks on contingency analysis,

but their approach is not optimization-based, which means that it does not consider

worst-case scenarios. Both [25] and [26] consider simplified security-constrained eco-

nomic dispatch (SCED) as system response, but the only addition of their SCED to

DCOPF is the contingency case line power flow constraints modeled using DC line

outage distribution factors (LODFs), while other SCED constraints such as reserve

and ramp rate constraints are not considered.

Techniques to solve ADBLPs with applications to power systems have been stud-
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ied in [27, 28], but are limited to scenarios with the same objective for both lev-

els, and hence, their techniques cannot be applied to either the problem in [18] or

its generalization for large power systems. An ADBLP can be reformulated as a

mathematical program with equilibrium constraints (MPEC) [29] by replacing the

second level by its Karush-Kuhn-Tucker (KKT) conditions. However, MPECs are

non-convex and hard to solve efficiently in general [30]. Many heuristics have been

applied to MPECs involving reformulations and relaxations [31, 32, 33], but they

typically require non-linear programs and/or proprietary solvers. Moreover, they do

not guarantee optimality, convergence, nor speed. The MPEC from the ADBLP can

be further reformulated as a mixed-integer linear program (MILP) by rewriting the

complementary slackness constraints as mixed-integer constraints. As the system size

increases, this MILP becomes harder to solve due to the increasing number of binary

variables. As the system model becomes more complicated, the number of binary

variables also increases due to the increasing number of constraints.

As to cyber-attacks on PMUs, the authors of [34, 35] classify the potential cyber-

attacks on PMUs as communication link damage attacks, denial of service attacks,

data spoofing attacks including GPS spoofing attacks, and FDI attacks. PMU protec-

tion and attack detection have gained much interest during the last decade. In [36],

Kim and Tong introduce a protection scheme by placing secure PMUs to simultane-

ously ensure observability and prevent FDI attacks. However, as PMUs are also prone

to attacks, their approach cannot thwart FDI attacks when PMU measurements are

compromised by attackers. The authors of [37] propose a decentralized FDI attack

detection approach based on the Markov graph of bus voltage angles. The drawback

of this approach is that it may not perform well when the system experiences a distur-

bance. An expectation-maximization based detector is introduced by Lee and Kundur

in [38] to detect FDI attacks on PMUs, but it only assumes DC power flow model
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and requires the bus power injections to be known. Using measurements obtained

from deployed PMUs in the grid, [39] and [40] illustrate the low-rank nature of PMU

data when it is structured in a matrix. Utilizing this low-rank observation, [41, 42]

propose a low-rank decomposition (LRD) based detector to detect FDI attacks on

PMU measurements, but [43, 44] propose two different FDI attack schemes that can

bypass the LRD detector.

Various attack detection techniques have been presented in the literature. In [45],

the authors propose a multivariate Gaussian-based anomaly detector trained using

correlation features of micro phasor measurement units (µPMUs), but this detector

requires installation of µPMUs in the system. Liu et al. [46] detect and identify

attacks using reactance perturbation, but this method only works when the attacker

has limited resources. The authors of [21] attempt to mitigate FDI attacks using

a tri-level optimization approach, and the authors of [47] try to identify FDI at-

tacks by monitoring abnormal load deviations and suspicious branch flow changes.

However, they both only focus on attacks that cause line overflows. In [48], a fi-

nancially motivated FDI attack model is analyzed and a robust incentive-reduction

strategy is proposed to deter such attacks by protecting a subset of meters. More

generally, machine learning techniques are also deployed in detecting FDI attacks.

For example, [49] proposes supervised and semi-supervised machine learning algo-

rithms to detect FDI attacks by exploiting the relationships between statistical and

geometric properties of attack vectors employed in the attack scenarios. A deep rein-

forcement learning-based approach is proposed to detect FDI attacks in [50]. In [51],

three machine learning techniques are introduced for attack detection, namely near-

est neighbor, semi-supervised one class SVM, and replicator neural network. These

three algorithms compare estimated loads with historical loads and use thresholding

to determine the existence of FDI attacks.
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1.3 Dissertation Objectives

This dissertation focuses on vulnerability analysis of power systems to unobserv-

able FDI attacks and detection techniques. It has been shown in many existing work

that these attacks can be designed with an ADBLP and cause physical/economic

consequences. They can re-distribute the loads by changing SCADA measurements,

to trigger generation re-dispatches that result in physical overflow, cost increase, etc.

However, the results are only demonstrated for small systems with tens of buses. In

practice, power systems are typically very large. Evaluating the vulnerability of large

power systems requires solving large-scale optimization problems within reasonable

amount of time, but the optimization problems can be difficult to solve due to the in-

creasing computational burden as the system size scales. Therefore, the first objective

of this dissertation is to explore scalable optimization techniques to solve the ADBLP

on large-scale power systems, to allow for vulnerability assessment of significantly

larger systems (i.e. thousands of buses). In particular, we focus on unobservable FDI

attacks that aim to maximize the physical power flow on a target line after re-dispatch

[18].

Another drawback of the prior work is that they consider only DCOPF as the

system response. However, modern power systems typically do not operate with

merely DCOPF, but rather operate with more complicated functions including real-

time contingency analysis (RTCA) and SCED to ensure N−1 reliability. We found in

our experiments that the attacks introduced in [18] fail to cause overflows on systems

operating with RTCA and SCED. This observation leads to another question: can

attacks designed with complete knowledge of operations lead to more consequences?

Note that answering this question inherently focuses on very strong attackers, as in

general there is no universally adopted formulation of SCED, and we assume the
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attacker knows the SCED formulation for the particular system that it is attacking.

Our goal of modeling such strong attackers is to understand whether the grid is

resilient to such worst-case attacks.

Moreover, as an increasingly important component of this infrastructure, PMUs

are also prone to cyber-attacks. Therefore, it is of great importance to evaluate the

vulnerability of PMUs against potential cyber-attacks as well as to develop preemptive

countermeasures. In the third part of this dissertation, finite impulse response (FIR)

predictive filters are proposed to detect FDI attacks on PMU measurements leveraging

their high temporal correlations. In addition, gradually ramping FDI attacks that can

avoid detection by predictive filters are also proposed.

Finally, the last goal of this dissertation is to develop techniques to effectively de-

tect the attacks as the first step to thwart them. Unobservable FDI attacks alter mea-

surement data, resulting in loads redistributed among the buses, which in turn leads

to generation dispatch changes that cause physical/economic consequences. These

attacks belong to a broader class of attacks called load redistribution (LR) attacks.

Leveraging historical load data that are available to system operators, we develop

machine learning-based attack detection framework to determine the existence of LR

attacks.

1.4 Outline of Dissertation

The remainder of this dissertation is organized as follows.

Chapter 2 describes the prior work on unobservable line overflow FDI attacks [18],

including state estimation, the assumptions on system operation as well as attacker’s

knowledge and capability, the attack design ADBLP formulation, and the solving

technique.

In Chapter 3, four computationally efficient algorithms to solve the attack design
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ADBLP are introduced, namely row generation (RG), row and column generation

(RCG), cyber-physical difference maximization (DM), and modified Benders’ decom-

position (MBD). RG reduces the number of binary variables in the MILP converted

from the attack design ADBLP by reducing the number of line limit constraints,

while RCG does so by fixing the output of non-marginal generators. RG provides

the optimal solution, and RCG provides a lower bound on the physical power flow of

the target line. DM yields both an upper bound and a lower bound by maximizing

the difference between the cyber and physical power flows on the target line. MBD

reformulates the ADBLP into a single level optimization problem leveraging duality

theory, and then decompose this problem to iteratively solve it. MBD provides a

lower bound, but it can be applied to any ADBLP.

In Chapter 4, FDI attack consequences are evaluated on N − 1 reliable power

systems. We showcase that attacks designed without considering EMS operations in-

cluding RTCA and SCED do not cause the physical consequences intended by the at-

tacker. Given this observation, we propose an ADBLP modeling SCED as the system

response, assuming an extremely strong attacker who has perfect knowledge of EMS

operations including RTCA and SCED. Simulation results on the synthetic Texas

system with 2000 buses show that the resulting attacks can cause post-contingency

overflows.

In Chapter 5, we evaluate the vulnerability of PMUs against FDI attacks as well

as develop preemptive countermeasures. Two types of predictive filters, namely three-

sample quadratic prediction algorithm (TSQPA), and data-driven five-sample predic-

tive (FSP) filter, are tested to detect FDI attacks on PMU measurements utilizing

their high temporal correlations. We demonstrate that these predictive filters can be

applied to detect FDI attacks if they are suddenly injected into the system. However,

attacker can gradually ramp up the magnitude of the attack and avoid detection.
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In Chapter 6, we propose an attack detection framework consists of a support vec-

tor regression (SVR)-based load predictor and a support vector machine (SVM)-based

attack detector. The SVR load predictor is learned from historical data capturing

both spatial and temporal correlations between loads in the system. The SVM attack

detector leverages loads predicted by the SVR load predictor to determine the exis-

tence of attacks. It is trained using randomly generated attacks aiming to maximally

explore the attack space, and tested on two intelligently designed attacks, namely line

overflow attacks and cost maximization attacks.
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Chapter 2

PRIOR WORK: UNOBSERVABLE LINE OVERFLOW FDI ATTACKS

In this chapter we describe the unobservable line overflow FDI attacks proposed in

[18]. This involves the simplified power system operation procedure is introduced, as

well as the mathematical formulation for SE and the attack model. Throughout, it is

assumed that there are nb buses, nbr branches, ng generators, and nm measurements

in the system.

2.1 Simplified Power System Operation

SCADA

Generation 

Dispatch
Physical System

Create false 

data

Data Processing by Attacker

Cyber attack

Optimal 

Power Flow

State 

Estimator

Load 

Estimator

Figure 2.1: Real-time Power System Operation with Attack.

Figure 2.1 demonstrates the simplified power system operation flowchart and how

an FDI attack is applied on the system. Without attacks, the power system operates

as follows. SCADA collects measurement data from meters and sensors in the physical

system, and sends them to state estimator for SE. The state estimator consists of 5
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units: topology processor, observability analysis unit, state estimation (SE) unit, bad

data detector (BDD), and bad data eliminator. Topology processor determines the

current system topology based on breaker status and measurements. Observability

analysis is then performed to check whether the system is fully observable, and if

it is not, several observable islands will be identified. The system operator then

performs SE according to the topology information and measurement data. Bad

data detector is utilized to check the existence of bad measurements, and if there

exists any bad measurements, the bad data eliminator identifies and filters them.

SE is performed again and the solution is achieved until no bad data exists. The

SE solution is used to compute the power flow of the system, which subsequently

yields the estimated loads of the system. The estimated load information is passed to

OPF for optimal generation dispatch. If the state vector is maliciously changed with

intelligently designed attack vector, it can result in wrong dispatch that can lead to

economic loss, serious physical consequences, or even system failure. For tractability

of optimization problems, we focuses on the DC power flow model and DC SE, but

the attacks introduced in this research can also be performed against AC SE as in

[18].

2.2 State Estimation

The DC measurement model is given by

z = H1x+ e (2.1)

Topology information is estimated and observability analysis is performed before

the state estimation process to check whether the system is fully observable. The

weighted least-square (WLS) method is utilized to solve the SE problem, and the
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solution is given by [9]

x̂ = (HT
1 R
−1H1)

−1HT
1 R
−1z (2.2)

where x̂ is the estimated system state vector.

Bad measurements may be introduced to SE due to various reasons such as meter

failure, large communication noise, and cyber attacks. Classical BDD detects large

errors in measurement data based on measurement residual [52]. The measurement

residual is a vector defined as z−H1x̂, which is the difference between observed mea-

surements and estimated measurements. The l2-norm of the residual is used to detect

the existence of any bad data, by comparing with a threshold. This comparison is

basiclly a χ2 test, where the threshold is determined through a hypothesis test with

a significance level determined by z. If the l2-norm of the residual is greater than the

threshold, bad data is considered to be present, and measurement with the largest

residual will be eliminated. SE is re-run without eliminated measurements to detect

and remove any more bad data, until no bad data exists in the measurement vector.

Note that traditional bad data detectors cannot necessarily detect FDI attacks. In-

deed, unobservable attacks, as defined below, cannot be detected by any bad data

detector based on measurement residuals.

2.3 Unobservable Attack Model

To launch unobservable FDI attacks, the attacker is assumed to have the following

knowledge and capabilities:

1. The attacker has full system topology information via power transfer distribu-

tion factors (PTDF).

2. The attacker has knowledge of load distribution, generation costs, generation

limits, and line thermal limits of the system.
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3. The attacker has control of the measurements in a subset S of the network.

As discussed in [18], in the absence of noise, an attack is defined to be unobservable

when there exists an nb×1 attack vector c 6= 0 such that for all i, the measurement z̄i

modified by the attacker satisfies z̄i = zi +H1ic, where H1i denotes the ith row of H1.

Given an attacker with control of the measurements in S, it can execute this attack

with attack vector c if H1ic has non-zero entries only in S. Thus, with the limited

ability, the attacker can launch an unobservable attack by modifing the measurements

using the following rule

z̄i =


zi ,

zi +H1ic ,

i /∈ IS

i ∈ IS
(2.3)

where IS denotes the set of measurements inside S.

Given an attack vector c, the following procedure produces a subgraph S that,

if controlled by the attacker, can execute an unobservable attack. For an attack

vector c, load buses (i.e., buses with load) corresponding to non-zero entries of c are

denoted as center buses. Given an attacker vector c, the subgraph S controlled by

the adversary is constructed using the following algorithm introduced in [11]:

1. Let S be the set of all center buses.

2. Extend S by including all branches and buses adjacent to center buses.

3. If any bus on the boundary of S is a non-load bus (i.e., no load is present),

extend S by including all branches and buses adjacent to this bus.

4. Repeat step 3 until all boundary buses are load buses.

Constructing S with this method ensures that only measurements inside S can be

modified by the attacker. The system operator will see the results of this unobservable
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attack as load changes at load buses within S, while the total load of the system

remain unchanged.

2.4 DC Optimal Power Flow

DCOPF is a linear approximation of ACOPF around voltage magnitude V = 1 and

voltage angle θ = 0, neglecting the line resistance and shunt reactance. In contrast to

the B -θ method used in [18], DCOPF is formulated using PTDF in this dissertation.

This will eliminate the voltage angle variable and have only the generation dispatch

PG as the variable. The DCOPF problem using PTDF is formulated as follows:

minimize
PG

CG (PG) (2.4)

subject to∑ng

g=1 PGg =
∑nb

i=1 PDi (2.5)

−Pmax 6 PTDF(GBPG − PD) 6 Pmax (2.6)

Pmin
G 6 PG 6 Pmax

G
(2.7)

where the variable:

PG is ng × 1 vector of generation dispatch

and the parameters:

PD is the nb × 1 vector of active load at each bus;

GB is the nb × ng generator to bus connectivity matrix;

CG is the cost function of the generation vector;

Pmax is the nbr × 1 vector of line thermal limits;
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Pmax
G , Pmin

G are ng × 1 vectors of upper and lower generation limits, respectively;

The objective (2.4) is to minimize the total generation cost. Constraint (2.5)

ensures the total system generation equals total load. Constraints (2.6) and (2.7)

models the line thermal limits and generation limits, respectively.

2.5 Attack Design ADBLP Formulation

In [18], an FDI attack against state estimation that leads to overflow on a target

line is introduced. Subsequent to the attack, the system operator re-dispatches the

system generation, leading to an overload on a target line. Modeling such attacks

leads to formulation of an ADBLP in which the first level models the attacker’s ability

and limitations, while the second level models the system response to the attack via

DCOPF. The ADBLP is formulated as follows

maximize
c

Pl − σ ‖c‖1 (2.8a)

subject to

P = PTDF(GBP
∗
G − PD) (2.8b)

‖c‖1 ≤ N1 (2.8c)

− LSPD ≤ Hc ≤ LSPD (2.8d)

{P ∗G} = arg

{
min
PG

CG (PG)

}
(2.8e)

subject to∑ng

g=1 PGg =
∑nb

i=1 PDi (λ) (2.8f)

−Pmax ≤ PTDF(GBPG − PD +Hc)

≤ Pmax (F±)
(2.8g)
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Pmin
G ≤ PG ≤ Pmax

G (α±) (2.8h)

where the variables are:

c attack vector, nb × 1;

P vector of physical line power flows, nbr × 1 ;

Pl physical power flow of target line l, scalar;

PG, P
∗
G vectors of generation dispatch variables and optimal generation dispatch

solved by DCOPF, respectively, both are ng × 1 ;

λ dual variable of the load balance constraint;

F±, α± dual variable vectors of line limits and generation limits, respectively;

and the parameters are:

LS load shift factor, in percentage;

PD vector of real loads, nb × 1;

N1 l1-norm limit, scalar;

H dependency matrix between power injection measurements and states, nb×

nb;

GB generators to buses connectivity matrix, nb × ng;

CG generation cost vector, ng × 1;

Pmax line limits vector, nbr × 1;

Pmin
G , Pmax

G generation limits vectors, both ng × 1;
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σ penalty of the norm of attack vector c, scalar.

In (2.8a), the penalty factor σ is a small positive number to limit the attack size;

constraint (2.8b) is the physical power flow equation; constraint (2.8c) models the

attacker’s limited resources. Ideally, l0-norm should be used to precisely capture the

sparsity of c, but for tractability reasons we use the l1-norm as a proxy. Constraint

(2.8d) limits the percentage of load changes at each bus to avoid detection. DCOPF

(2e)–(2h) models the system response to the attack.

The following modifications can re-formulate the non-linear problem (2.8) into an

equivalent MILP as in [18]:

1. Introduce a slack variable s to linearize the l1-norm constraint in (2.8c) as

c ≤ s, −c ≤ s,
∑
i∈Lload

si ≤ N1 (2.9)

where Lload is the set of load buses. This modification simplifies the objective

(2.8a) to

maximize
c,s

Pl − σ
∑
i∈Lload

si (2.10)

2. Use the KKT optimality conditions (see [53]) to replace the second level DCOPF

as constraints (2.8f)–(2.8h), and

0 =∇ [CG(PG)] +∇(

ng∑
g=1

PGg −
nb∑
i=1

PDi) · λ

+∇ [±PTDF(GBPG − PD +Hc)− Pmax] · F±

+∇ (PG − Pmax
G ) · α+ +∇

(
Pmin
G − PG

)
· α− (2.11a)

0 ≤ F±, α± (2.11b)

0 = diag(F±) [PTDF(GBPG − PD +Hc)∓ Pmax] (2.11c)
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0 = diag(α+) (PG − Pmax
G ) (2.11d)

0 = diag(α−)
(
Pmin
G − PG

)
(2.11e)

where constraint (2.11a) is the partial gradient optimal condition, (2.11b) is the

dual feasibility constraint, and (2.11c)–(2.11e) are the complementary slackness

conditions.

3. Introduce binary variables δ±F , δ
±
α and a large constant M to linearize the com-

plementary slackness conditions as

δ±F ∈ {0, 1}
nbr , δ±α ∈ {0, 1}ng (2.12a) F± ≤Mδ±F

Pmax ∓ PTDF(GBPG − PD +Hc) ≤M(1− δ±F )
(2.12b)


α± ≤Mδ±α

Pmax
G − PG ≤M(1− δ+α )

PG − Pmin
G ≤M(1− δ−α ).

(2.12c)

The full problem is then converted to a single level MILP with objective (2.10),

and constraints (2.8b), (2.8d), (2.8f)–(2.9), (2.11a)–(2.11b), and (2.12). Henceforth,

we refer to this optimization problem as the original MILP with P ∗l as its optimal

objective value. As MILPs are in general NP-hard, guarantees on polynomial time

solutions cannot be provided. Note that in the last modification, 2(nbr + ng) binary

variables are introduced to the original MILP. As the system network size scales,

the number of lines and generators in the system increases rapidly due to the high

interconnection level of the system. Hence, the number of binary variables also in-

creases rapidly, resulting in an increased computational burden. It has been found

experimentally that on the IEEE 118-bus system, the original MILP fails to converge

in a reasonable length of time using solver GUROBI, as demonstrated in Table 2.1.
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Table 2.1: Computational Efficiency Comparison

Test System 24-bus 118-bus Polish (2383-bus)

# of binary variables 142 480 6446

Average solving time 5s >24h >24h

We have found experimentally that it fails to find a solution in a reasonable length of

time on the IEEE 118-bus system using solver GUROBI, as demonstrated in Table

2.1. On the Polish system with even more binary variables, it is expected to take

even longer to solve. Applying this optimization problem directly to evaluate the

vulnerability of actual systems with thousands of buses to worst-case FDI attacks is

intractable.
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Chapter 3

COMPUTATIONALLY EFFICIENT ALGORITHMS TO SOLVE ATTACK

OPTIMIZATION PROBLEMS

In this section, we introduce four computationally efficient algorithms to solve

the attack optimization problem on large-scale power systems. The first algorithm is

denoted row generation for line limit constraints (RG). This algorithm identifies and

eliminates extraneous line limit constraints, reducing the number of binary variables in

the MILP. If it converges, the optimal objective P
∗(RG)
l solved with RG is guaranteed

to be equal to the optimal objective of the original MILP. However, as the system

size scales, even though the number of binary variables associated with line limit

constraints is significantly reduced, the number of binary variables associated with

generation limit constraints is still large enough to make the problem hard to solve.

We have found experimentally that RG works efficiently for the IEEE 118-bus system,

but it fails to converge in a reasonable length of time for the Polish system with 2383

buses.

Thus, similar to RG, we introduce our second algorithm, denoted row and column

generation for line and generator limit constraints (RCG), in which we further reduce

the number of binary variables by eliminating generation limit constraints in addition

to line limit constraints. RCG gives a feasible solution, but the solution can be sub-

optimal. Thus, the resulting objective value P
∗(RCG)
l is a lower bound on P ∗l .

Our third algorithm, denoted cyber-physical-difference maximization (DM), evalu-

ates system vulnerability without directly modeling the system response. This reduces

to a linear program, whose optimal solution can be used to derive both a lower bound

P
∗(DM,lb)
l and an upper bound P

∗(DM,ub)
l on P ∗l .

22



Finally, our fourth algorithm is denoted modified Benders’ decomposition for bi-

level linear programs (MBD), which iteratively solves the original bi-level problem

without converting it to an MILP. Due to the non-convexity of the bi-level optimiza-

tion problem, MBD gives a feasible solution, whose corresponding objective value

P
∗(MBD)
l is a lower bound on P ∗l . We proceed to introduce each algorithm in detail.

3.1 Row Generation for Line Limit Constraints

Row and column generation techniques are useful in solving large-scale linear pro-

grams. For constraints of the form Ax ≤ b, row generation retains only a subset

of constraints (rows of A), and column generation retains only a subset of variables

(columns of A). We iteratively add only those constraints and variables that are

needed [54] [55]. These techniques help reduce the size of matrix A, and hence ac-

celerate the solving process. Similar techniques have been used by power system

operators for large-scale optimization problems, including unit commitment and se-

curity constrained economic dispatch (SCED) [56]. In our problem, these techniques

allow us to reduce the number of binary variables.

The original MILP can be solved with less number of δ±F by modeling only critical

lines (i.e., lines operating at over 90% of their ratings). If the cyber power flow of

a line is beyond its limit, we say this line has cyber overflow. If there are any post-

attack cyber overflows, the line limit constraints for those lines are added back to the

attack optimization problem (new rows generated). If this algorithm terminates, the

solution is guaranteed to be optimal (i.e. P
∗(RG)
l = P ∗l ) because no constraints are

violated.
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Algorithm 1 Row generation for line limit constraints (RG)

1. Perform DCOPF for the whole system with no attack.

2. Let Q be the set of critical lines.

3. Remove the constraints corresponding to line k from (2.8g), (2.11a)–(2.11b),

(2.12a), and (2.12b) for all k /∈ Q.

4. Solve the reduced problem, and compute the cyber power flow of the system

using the optimal dispatch P
∗(RG)
G .

5. If cyber overflows exist, add all lines with cyber overflow to Q, and go back to

3).

6. Let P
∗(RG)
l be the optimal objective value of RG.

3.2 Row and Column Generation for Line and Generator Limit Constraints

RCG further reduces the number of binary variables by reducing generator limits.

Since load changes are limited by constraint (2.8d), it is likely that in response to

these load changes, only a subset of all generators (denote as marginal generators)

will re-dispatch. RCG removes the generator limits of non-marginal generators and

treats their outputs as constants. In addition to the re-included line limits in RG,

non-marginal generators with changed dispatch after the attack are added to the set

of marginal generators (new columns generated). This ensures the system response

to the attack predicted by the attacker is correct.

Since it does not search the full feasible space by holding some entries of PG as

constants, RCG is not guaranteed to yield the optimal solution for the original MILP.

However, it always provides a feasible solution, and hence, P
∗(RCG)
l is a lower bound
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Algorithm 2 Row and column generation for line and generator limit constraints

(RCG)

1. Perform DCOPF for the whole system with no attack.

2. Let Q be the set of critical lines as defined in RG.

3. Let R be the set of generators g where Pmin
Gg < PGg < Pmax

Gg .

4. Remove the constraints corresponding to line k and generator g from (2.8g)–

(2.8h), (2.11a) and (2.12a)–(2.12c) for all k /∈ Q and all g /∈ R.

5. Solve the reduced problem to find the resulting generation dispatch P
∗(RCG)
G and

optimal attack vector c∗RCG.

6. Use c∗RCG to run post-attack DCOPF (2.8e)–(2.8h) to find system operator’s

corresponding dispatch P post
G .

7. For all g that P
∗(RCG)
Gg 6= P post

Gg , if they belong to R, go to 8); Otherwise add

them to R and go back to 4).

8. Use P
∗(RCG)
G to calculate the cyber power flows.

9. If cyber overflows exist, add all lines with cyber overflow to Q, and go back to

4).

10. Let P
∗(RCG)
l be the optimal objective value of RCG.

on P ∗l .
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3.3 Cyber-Physical-Difference Maximization

The DM algorithm maximizes the post-attack power flow difference between phys-

ical and cyber power flows. Both lower and upper bounds on P ∗l can be derived using

DM. Moreover, this algorithm can be applied efficiently on large systems as it only

involves solving an LP.

Algorithm 3 Cyber-physical-difference maximization (DM)

1. Solve the following optimization problem and let c∗DM be the optimal solution.

maximize
c,s

− PTDFl(Hc) (3.1)

subject to (2.8b), (2.8d), (2.9).

2. Obtain the upper bound:

P
∗(DM,ub)
l := Pmax

l − PTDFl(Hc
∗
DM) (3.2)

where PTDFl is the lth row of the PTDF matrix.

3. Perform post-attack DCOPF (2.8e)–(2.8h) with c = c∗DM to find post-attack

dispatch P post
G .

4. Obtain the lower bound:

P
∗(DM,lb)
l := PTDFl(GBP

post
G − PD). (3.3)

The following theorem proves the DM algorithm.

Theorem 1. The upper and lower bounds from the DM algorithm satisfy

P
∗(DM,lb)
l ≤ P ∗l ≤ P

∗(DM,ub)
l . (3.4)
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Moreover, if the post-attack cyber power flow of the target line is at its limit, then

P
∗(DM,ub)
l = P

∗(DM,lb)
l = P ∗l .

Proof. The post-attack physical power flow on target line l is given by

P physical
l = PTDFl(GBP

post
G − PD). (3.5)

This is a feasible solution, and hence, is a lower bound on P ∗l . Given an attack vector

c, the post-attack cyber power flow on l is given by

P cyber
l = PTDFl(GBP

post
G − PD +Hc)

= P physical
l + PTDFl(Hc). (3.6)

Since the cyber power flow cannot exceed its limit,

P cyber
l = P physical

l + PTDFl(Hc) ≤ Pmax
l . (3.7)

Thus, we have

P physical
l ≤ Pmax

l − PTDFl(Hc). (3.8)

Therefore, since the optimization problem in (3.1) maximizes the second term in (3.8),

P
∗(DM,ub)
l as computed in (3.2) is an upper bound on P ∗l . If P cyber

l = Pmax
l , substituting

this relationship into (3.5) and (3.6) proves P
∗(DM,ub)
l = P

∗(DM,lb)
l = P ∗l .

3.4 Modified Benders’ Decomposition Algorithm to Solve ADBLPs

ADBLPs with different objectives in the two levels are in general non-convex. The

authors of [18] solve their ADBLP by replacing the second level defender’s problem

by its KKT conditions and then convert the problem into an MILP, but this approach

does not apply to large-scale systems due to the numerical difficulty brought on by

large number of binary variables. To the best of our knowledge, there are no exist-

ing techniques to solve large-scale ADBLPs efficiently. In this section, we introduce
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a modified Benders’ decomposition (MBD) algorithm to solve ADBLPs. Benders’

decomposition [57] is an iterative approach to solve linear programs in a distributed

manner [58]. It is a popular technique to solve optimization problems of large size

or with complicating variables. It is also effective in solving complex optimization

problems such as stochastic programs and mixed-integer linear programs. In Ben-

ders’ decomposition, an optimization problem is decomposed into two sub-problems,

wherein variables of each sub-problem are treated as constant in the other. The two

sub-problems are solved iteratively until the solution converges. Our MBD algorithm

modifies the classic Benders’ decomposition algorithm to apply it on any ADBLP.

An ADBLP takes the following form (dual variable of the defender’s problem is

in parentheses):

minimize
u

cT1 u+ dT1 v
∗ (3.9a)

subject to

A1u ≥ b1 (3.9b)

v∗ = arg{min
v

dT2 v} (3.9c)

subject to

A2u+ A3v ≥ b2 (β) (3.9d)

where u and v are the attacker’s and defender’s decision variables, respectively. The

defender has no control on u, and hence, u in (3.9d) is treated as a constant in the

defender’s problem. The attacker does not directly control v, but it controls v∗ by

changing u, assuming it has knowledge of the defender’s objective and constraints.

The attack optimization ADBLP (4.1) fits in the form of (3.9) where the attack

vector c is represented by u and SCED variables PG, RG, P , and Pk are represented

by v. In the attacker’s objective function, cT1 u represents the term −σ ‖c‖1, and dT1 v
∗

represents the term Pl,kt in (2.8a). Equality constraints can be equivalently written
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as two inequality constraints. For example, (2.8f) can be written as

1TPG ≥ 1TPD (3.10a)

−1TPG ≥ −1TPD (3.10b)

which fits the form of (3.9d). One can similarly map all the constraints in (4.1) to

those in (3.9).

The defender’s problem (3.9c)–(3.9d), which represents the system response (SCED)

to a fixed attack vector, has the following dual problem (note that u is treated as

constant here since it is the fixed attack vector from the attacker’s problem):

maximize
β

βT (b2 − A2u) (3.11a)

subject to AT3 β = d2 (3.11b)

β ≥ 0. (3.11c)

By weak duality [53], for any feasible primal/dual pair, the dual objective value is

always less than the primal one:

βT (b2 − A2u) ≤ dT2 v. (3.12)

Since the defender’s problem is a linear program, it satisfies strong duality. That is,

any feasible point (v, β) that satisfies

βT (b2 − A2u) ≥ dT2 v (3.13)

is an optimal solution to it. Therefore, constraints (3.9d), (3.11b), (3.11c), and (3.13)

guarantee the optimality of the defender’s problem, and hence, can be used to convert

the ADBLP to a single level problem as:

minimize
u,v,β

cT1 u+ dT1 v (3.14a)

subject toA1u ≥ b1 (3.14b)
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A2u+ A3v ≥ b2 (3.14c)

AT3 β = d2 (3.14d)

βT b2 − βTA2u− dT2 v ≥ 0 (3.14e)

β ≥ 0. (3.14f)

The bilinear term βTA2u in (3.14e) is non-convex and hard to solve. To overcome this

difficulty, Benders’ decomposition is utilized to decompose this optimization problem

into two problems, with u as the variable for the master problem (MP) and v, β as

the variables for the slave problem (SP). The MP takes the following form:

minimize
u,α

cT1 u+ α (3.15a)

subject toA1u ≥ b1 (3.15b)

where α is a variable introduced to represent dT1 v, which will then be updated by

adding cuts. The SP is given by:

minimize
v,β

dT1 v (3.16a)

subject to βT b2 − dT2 v − βTA2u ≥ 0 (δ) (3.16b)

A3v ≥ b2 − A2u (γ) (3.16c)

AT3 β = d2 (λ) (3.16d)

β ≥ 0. (3.16e)

At the optimal solution of the SP given by (3.16), we have

dT1 v
∗ = γT b2 + λTd2 − γTA2u. (3.17)

An optimality cut can be added to the MP by taking the right hand side of (3.17):

α ≥ γT b2 + λTd2 − γTA2u. (3.18)
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Note that (3.18) is in the MP, and therefore, u is again a variable. If the SP is

infeasible with a given u, slack variables si, i = 1, 2, 3, can be introduced to all of the

SP constraints to solve the relaxed SP:

minimize
v,β,si

dT1 v (3.19a)

subject to βT b2 − dT2 v − βTA2u+ s1 ≥ 0 (δ̂) (3.19b)

A3v + s2 ≥ b2 − A2u (γ̂) (3.19c)

AT3 β + s3 = d2 (λ̂) (3.19d)

β ≥ 0. (3.19e)

where si, i = 1, 2, 3 are the slack variables introduced to ensure feasibility of the

relaxed SP. Then, instead of an optimality cut (3.18), a feasibility cut is added to the

MP:

0 ≥ γ̂T b2 + λ̂Td2 − γ̂TA2u. (3.20)

The MP and SP can then be solved iteratively, with the MP updating u and the SP

updating cuts in each iteration.

Solving the SP is equivalent to solving the second level SCED under attack

(2.8e)−(4.1o), while the dual variables of the SP provide information on the objective

function (2.8a). Since each cut is formulated linearly on the u domain, adding cuts to

the MP does not affect its convexity. Thus, MBD is guaranteed to converge in a finite

number of iterations [59]. However, due to the non-convexity of the original bi-level

optimization problem, global optimal solution cannot be guaranteed [60]. Therefore,

the optimal objective value obtained by MBD, P̂ ∗l,kt , is a lower bound on P ∗l,kt , the

global optimal objective.
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Algorithm 4 Modified Benders’ Decomposition for Bi-level Linear Programs (MBD)

1. Set the iteration number j = 1 and let u(0) = 0.

2. Solve the SP (3.16) with u = u(j−1).

3. If the SP is infeasible, solve the relaxed SP (3.19) and obtain (γ̂(j), λ̂(j)), then

add a feasibility cut of form (3.20) to the MP. Otherwise, solve SP (3.16) to get

(v(j), β(j), γ(j), λ(j)), and add an optimality cut of form (3.18) to the MP.

4. Solve the MP with added cuts and obtain the solution (u(j), α(j)).

5. If |d
T
1 v

(j)−α(j)

α(j) | < ε, stop. The optimal objective value is obtained as cT1 u
(j) +

dT1 v
(j). Otherwise, let j = j + 1 and go to step 2).

3.5 Simulation Results

In this section, we present numerical results using the algorithms described in

Sec. 3.1 - ??. Two test systems are used, namely the IEEE 118-bus system and

the Polish system with 2383 buses. The topologies of the IEEE 118-bus system and

the Polish system are shown in Figure 3.1 and 3.2, respectively. Before attack, the

IEEE 118-bus system and the Polish system have 7 and 17 critical lines, and 15

and 6 marginal generators, respectively. We exhaustively target all critical lines to

assess the vulnerability of these two systems. The l1-norm limit N1 is chosen with

increment 0.1 in the range [0.1, 1] for the 118-bus system, and [0.1, 2] for the Polish

system. Throughout, Matlab, Matpower, and the Gurobi solver are used to perform

the simulations. All tests are conducted using a 3.40 GHz PC with 32 GB RAM.
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Figure 3.1: IEEE 118-bus System Topology

3.5.1 Computational Efficiency

The decrease in the number of binary variables characterizes the computational

efficiency improved by RG and RCG. Table 3.1 illustrates a comparison of the average

number of binary variables when applying the original MILP, RG, and RCG. Since

we are unable to verify the convergence of RG for the Polish system, the number of

binary variables on RG for this system is an estimate. This table demonstrates that

both RG and RCG can greatly reduce the number of binary variables compared to

the original MILP, and therefore significantly improve the computational efficiency.
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Table 3.1: Comparison of the Average Number of Binary Variables

Test System Original MILP RG RCG

118-Bus 480 122 45

Polish 6446 688 87

Table 3.2 illustrates the statistics of the computation time for several target lines

using the proposed algorithms with 10% load shift. For each target line, each algo-

rithm is tested for the full range of N1 values stated above. We note that RCG is more

efficient than RG since it requires fewer binary variables. DM is the most efficient

algorithm as it only involves solving an LP. Note that the number of iterations for

MBD varies for different parameter choices (target line, N1, and LS), resulting in a

large variation in computation time.

3.5.2 Results on Maximal Physical Power Flows

Fig. 3.3 illustrates the maximal physical power flows with LS = 10% on target

lines 104 and 141 of the IEEE 118-bus system. It demonstrates a comparison of the

bounds found by RCG, DM and MBD to the optimal solution provided by RG.

Note that for target line 104 with any N1, all four algorithms yield the optimal

solution. For target line 141, we see that P
∗(MBD)
l < P

∗(DM,lb)
l < P

∗(RG)
l = P

∗(RCG)
l <

P
∗(DM,ub)
l , illustrating that P

∗(DM,lb)
l and P

∗(DM,ub)
l are not always tight bounds on

P ∗l . RCG provides the optimal solution for all target lines we have considered in the

118-bus system.

The maximal power flows with 10% load shift for target lines 292, 24, and 1816

of the Polish system are illustrated in Fig. 3.4. Note that RG is intractable on the

Polish system. For target line 292, all three algorithms yield the optimal solution in
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Table 3.2: Statistics of Computation Time with 10% Load Shift

Target line Algorithm Max (s) Min (s) Avg (s) Med (s)

37 of 118-bus

RG 7.53 0.95 3.33 1.9

RCG 1.25 0.34 0.76 0.69

DM 0.5 0.43 0.47 0.45

MBD 1.88 1.57 1.63 1.59

24 of Polish

RCG 46.36 3.40 20.39 13.67

DM 15.75 1.91 8.09 8.58

MBD 12.26 10.46 11.40 11.58

292 of Polish

RCG 76.34 27.47 39.29 33.69

DM 16.77 1.91 7.02 6.10

MBD 1846.2 9.86 358.73 10.31

the range N1 ∈ [0.1, 1.6], i.e., P
∗(DM,ub)
l = P

∗(DM,lb)
l = P

∗(RCG)
l = P

∗(MBD)
l , but not for

the remaining N1. For target line 24, MBD yields the tightest lower bound; while for

target line 1816, DM provides the tightest lower bound.

3.5.3 Results on Attack Resources

Fig. 3.5 illustrates the relationship between maximal power flow and l0-norm

of the attack vector (i.e. the number of center buses in the attack) versus the l1-

norm constraint N1 for target line 292 of the Polish system, with different load shift

constraints. As N1 increases, so does the l0-norm of the attack, indicating that l1-

norm is a valid proxy for l0-norm for our problem. If a larger load shift is allowed,
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Figure 3.3: The Maximal Power Flow vs. the l1-norm Constraint (N1) with Target
Line (a) 104, and (b) 141 of IEEE 118-bus System. LS=10%.

the maximal power flow on target line increases, but the resulting l0-norm decreases.

This indicates a trade-off between load shift and attacker’s resources: as the attacker

attempts to avoid detection by minimizing load changes, it will require control over a

larger portion of the system to launch a comparable attack. Similar results are also

obtained on the IEEE 118-bus system.

3.5.4 Line Vulnerability

Since the objective of the attack is to maximize the physical power flow on a

target line, it is intuitive that congested lines are more vulnerable to this attack. We

have found experimentally that almost every congested line can be overloaded. One
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Figure 3.4: The Maximal Power Flow vs. the l1-norm Constraint (N1) with Target
Line (a) 292, (b) 24, and (c) 1816 of the Polish System. LS=10%.

exception is line 176 in the IEEE 118-bus system. This is because line 176 is a radial

line: it is the only line connected to a bus with a generator and no load. The line

limit constraint in the OPF (2.8g) ensures that no possible dispatch could cause the

line power flow to exceed the limit, even if based on counterfeit loads. In fact, any

line with this radial configuration is immune to the proposed attack; moreover, these

radial lines represent the only exceptions to our finding that congested lines can be

overloaded. We have also found that lines that are not congested pre-attack may still

be vulnerable to this attack, such as line 141 in the IEEE 118-bus system (Fig.3.3(b))
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Figure 3.5: (a) The Maximal Power Flow and (b) l0-norm of the Attack Vector vs.
the l1-norm Constraint (N1) for Target Line 292 of the Polish System with Different
Load Shift.

and line 2110 in the Polish system (Fig. 3.6).

3.5.5 Impact of Overall Congestion on Vulnerability

In the above, we have shown that virtually all critical or congested lines are

vulnerable to overload. However, the extent of the vulnerability depends on several

factors, such as the overall congestion of the system. This phenomenon is illustrated

in Fig. 5, which shows the worst-case attack for line 292 of the Polish system under

different overall congestion levels. This overall congestion is adjusted by uniformly

changing the line ratings for all lines. Note that higher line ratings mean a less

congested system. As shown in Fig. 5, as the overall congestion level increases, the

maximal power flow on the target line also increases, even though the line is equally

39



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0
9 6
9 9

1 0 2
1 0 5
1 0 8
1 1 1

 l 1 - n o r m  C o n s t r a i n t  N 1  ( r a d ) 

 

Ma
xim

al 
Po

we
r F

low
 (%

)

Figure 3.6: The Maximal Power Flow vs. the l1-norm Constraint (N1) for Target
Line 2110 of the Polish System. LS=10%.

congested before attack in each case.
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Figure 3.7: The Maximal Power Flow vs. the l1-norm Constraint (N1) for Target
Line 292 of the Polish System under Different Congestion Levels. LS=10%.

3.6 Conclusion

Four computationally efficient algorithms are introduced to evaluate the vulner-

ability of large-scale power systems to FDI attacks. Cyber-physical difference max-

imization (DM) can provide an upper bound of the severity of the attacks. Row

generation (RG) and row and column generation (RCG) reduce the number of binary

variables according to the number of critical lines and marginal generators. As the

system size increases, the number of critical lines and marginal generators also in-
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creases. Thus, there may still be a large number of binary variables in RG and RCG,

making the attack optimization problem hard to solve in real time. However, MBD

can still be applied efficiently since it only involves solving linear programs, making

it more powerful in assessing large-scale system vulnerabilities. Furthermore, MBD

can be easily applied to any attacker-defender bi-level linear programs. It has the

flexibility to evaluate system vulnerability even with additional constraints such as

ramp rate constraints, security constraints, and reserve constraints that are common

in modern power system operations. Making use of these algorithms, we have also

found that all critical lines are vulnerable to the proposed attacks, with the exception

of radial lines with a specific configuration. Moreover, systems with higher overall

congestion are more vulnerable.

Our proposed vulnerability assessment algorithms can be helpful in making the

system more resilient in the following ways. Using this analysis, the system operators

can identify specific lines of vulnerability, and the severity of the attacks. Certain

preventive actions can be taken to prevent successful attacks. For example, if the

system operators find that a line can have overflow under attack, they could artifi-

cially reduce the line limit to keep the attack from being successful. Measurements

around vulnerable lines can be encrypted to prevent them from being modified. In

our optimization problem, the load shift constraint characterizes the detectability

of the attack, indicating that load abnormally detectors can help system operators

distinguish between natural load changes and possible cyber attacks based on load

redistribution.
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Chapter 4

VULNERABILITY ASSESSMENT OF N − 1 RELIABLE POWER SYSTEMS TO

FDI ATTACKS

4.1 EMS Operation

In this dissertation, we consider an EMS with three core functions operating in

the order of SE, RTCA, and SCED. The EMS operating structure is illustrated in

Fig. 4.1. Power system measurement data collected by SCADA are sent to SE, which

estimates the complex voltages after eliminating noise and bad measurements. Given

the generator set points, SE also estimates the load values in the system. Modern

power systems typically require N − 1 reliability, i.e., the system must operate with

no violations if a contingency occurs (one of the system components, generators or

branches, is out of service). RTCA simulates one power flow under each contingency

k. We say a branch has a warning if its power flow is above a threshold η but

less than its limit, while a branch has a violation if its power flow exceeds its limit.

Note that in base case, the limit is the long-term line rating, while in contingency

case it is the short-term rating. Each warning and violation generates one line limit

constraint to be modeled in SCED. In contingency cases, these constraints are called

security constraints. SCED takes all these constraints and solves an optimization

problem to determine the most economic generation dispatch that ensures N − 1

reliable operation.
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Figure 4.1: EMS Operation with SE, RTCA, and SCED.

4.2 Consequences of Attacks Designed with DCOPF on N − 1 Reliable System

In this section, we demonstrate that attacks designed without considering RTCA

and SCED (as in many existing literatures) do not cause expected physical con-

sequences on systems operated as outlined in Fig. 4.1. The attacker’s capability

assumptions and the attack design ADBLP are adopted from Chapter 2. Again, the

attacker is assumed to have knowledge of: (i) the complete network topology (includ-

ing line parameters and ratings) and load information, and (ii) the cost, capacity,

and operational status of all generators in the system. We have already seen from

Chapter 3 that if the system re-dispatches using DCOPF, the attacks designed with

ADBLP (2.8) can cause physical overflows.

However, modern EMSs typically operate as outlined in Fig. 4.1. Thus, the

attacker cannot accurately predict the system response by solving ADBLP (2.8), and

the re-dispatch after attack may not cause expected consequences. We have found in

our experiments that attacks designed with DCOPF cannot cause any overflows on

the synthetic Texas system operating with RTCA and SCED even in the peak load

scenario. To illustrate this, consider the following example from our experiments.
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The attacker continuously monitors the system operating status, and at the peak

load hour, it observes that the most critical branch is transformer “tx-3083-3082”

with a power flow of 76.72%. It selects this branch as the target and uses (2.8) (that

is, modeling the system response via DCOPF) to obtain the attack vector c as well

as the predicted physical power flow. It finds that the predicted flow exceeds the

rating. Hence, it creates false measurements z̄ = h(x̂ + c) to launch an attack. The

system estimates loads from z̄, and performs RTCA and SCED to find the optimal

generation dispatch (details of RTCA and SCED are given in Sec. 4.4). Applying

the new dispatch on the real loads yields the actual physical power flows. Fig. 4.2

illustrates a comparison between the attacker’s predicted physical power flows and

the actual flows on this target branch as a function of load shifts LS, with N1 = 2.

5 10 15 20

Load shift (%)

70

80

90

100

110

120

P
hy

si
ca

l P
ow

er
 F

lo
w

 (
%

)

Actual
Predicted

Figure 4.2: Consequence of Attacks Designed with DCOPF on N − 1 Reliable
Synthetic Texas System, N1 = 2.

From this figure, we can see that the attacker predicted power flows exceed the

rating of the branch for every load shift, but the actual flows are not affected. This

is because in the pre-attack DCOPF solution, the target branch is congested. The

attack redistributes the loads in the system, making it appear that the flow on this
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branch is reduced. The higher the load shift, the more the reduction on the flow.

Thus, DCOPF will re-dispatch the generations to increase the flow on this branch,

making it congested again. This will overload the branch in the physical system,

since the real loads are not changed. However, SCED models more constraints than

DCOPF does, and this branch is congested in neither base case nor contingency cases.

The load redistribution caused by the attack does not affect any binding constraints

in SCED, and hence, has no effect on the re-dispatch. We have experimented on the

5 branches with highest base case flows, and observed similar consequences.

4.3 Attacker Assumptions

Among all unobservable FDI attacks, the most dangerous ones are those with seri-

ous physical consequences. In this report, we focus on a class of unobservable attacks

where the attacker maliciously changes the SCADA measurements to maximize the

power flow on a target line, and possibly cause overflow. The authors of [18] introduce

an ADBLP to determine the worst-case unobservable line overflow attack, wherein

the first level models the attacker’s objective and limitations, while the second level

models the system response via DCOPF. Assuming the attacker has knowledge of

(i) the complete network topology (including line parameters and ratings) and load

information, and (ii) the cost, capacity, and operational status of all generators in

the system, the authors show that unobservable attacks found using this optimization

successfully result in generation re-dispatches that cause line overflows on the IEEE

RTS 24-bus system.

However, modern power systems typically do not use DCOPF to re-dispatch the

generation, but rather operates as outlined in Sec. 4.1. An attacker who gains

knowledge of EMS operations has an advantage to accurately predict the system

response. In other words, if the attacker is able to perform the same RTCA and
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SCED as the system does, it can design attacks that maximize the consequences.

This is a stronger assumption than that in [18], because in addition to having access

to the database of the control center, now the attacker further knows the algorithms

and assumptions used by the system. While this is a stronger requirement, it is

valuable to understand how the system is resilient against such strong adversaries

through this worst-case approach.

In RTCA, the attacker needs to know the power flow algorithm used to get the

same post-contingency flows on all lines, as well as the threshold η as described in

Sec. 4.1, to determine the security constraints to be included in SCED. In SCED, the

attacker should know how the system models the constraints, as different system op-

erators may implement SCED differently. We assume the attacker has full knowledge

of RTCA and SCED implementation in the EMS, in particular:

1. Contingency ratings of the branches;

2. Loss handling method;

3. Ramp rates and reserve costs of all generators;

4. Reserve policy and requirements;

5. Criteria to determine which base case line limits are to be modeled. This can

be the same threshold as η in post-contingency case, but can also be different;

6. Branch flow calculation method in both base case and contingency case;

7. Load shedding policy and costs.

While it seems unrealistic to gain such knowledge, it is not entirely impossible, since

such complex systems involve sophisticated (even nation-state) attackers that can

exploit or have access to insider knowledge [7, 61]. Again, this is the worst-case
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assumptions, and therefore, resilience of the system to such worst-case attacks can

serve as an upper bound on risks to the system operations.

4.4 ADBLP to Find Worst-case Attack on N − 1 Reliable Systems

In this section, we introduce an ADBLP similar to that in [18] to find worst-case

line overflow attacks. The first level models the attacker’s objective and limitations,

while the second level models the system response via SCED. We focus on RTCA

that simulates branch contingencies (excluding radial branches), and reports corre-

sponding security constraints to SCED. Contingency k indicates that branch k is out

of service. The attacker is assumed to be able to perform RTCA and pick a target

line l to maximize its power flow when target contingency kt occurs, and possibly

create overflow. Without loss of generality, we assume the flow on l is positive; if it

is not the case, its absolute value can be maximized. In the formulation below we

assume the attacker aims to maximize post-contingency power flow on the target line,

but the base case power flow can also be maximized. Since SCED is DC, the voltage

magnitudes are all considered to be 1 p.u., and hence, c is an nb× 1 attack vector on

the voltage angles.

The ADBLP takes the following form:

maximize
c

Pl,kt − σ ‖c‖1 (4.1a)

subject to

Pl,kt = OTDFlkt(GBP
∗
G − PD) (4.1b)

‖c‖1 ≤ N1 (4.1c)

− LSPD ≤ Hc ≤ LSPD (4.1d)

{P ∗G} = arg

{
min

PG,RG,P,Pk

CG (PG) + CRRG

}
(4.1e)
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subject to∑ng

g=1 PGg =
∑nb

i=1 PDi (4.1f)

P̄ = P0 + PTDF(GB(PG − PG0) +Hc) (4.1g)

P̄k = Pk0 + OTDFk(GB(PG − PG0) +Hc) (4.1h)

+ LODFk · PTDFk ·Hc, ∀k

− Pmax ≤ P̄ ≤ Pmax (4.1i)

− Pk,max ≤ P̄k ≤ Pk,max,∀k (4.1j)

PG ≥ max{PG0 −MGTh, PG,min} (4.1k)

PG ≤ min{PG0 +MGTh, PG,max} (4.1l)

0 ≤ RG ≤MGTr (4.1m)

PG +RG ≤ PG,max (4.1n)∑ng

g=1RGg ≥ PGg +RGg ,∀g (4.1o)

where the variables are:

c attack vector, nb × 1;

P̄ , P̄k vectors of monitored line cyber power flows in base case and under contin-

gency k, respectively;

Pl,kt physical power flow on target line l under target contingency kt;

PG power output of generators, ng × 1;

RG spinning reserve of the generators, ng × 1;

and the parameters are:

σ penalty of the l1-norm of attack vector c;
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GB generators to buses connectivity matrix, nb × ng;

OTDFk outage transfer distribution factor matrix under contingency k;

OTDFlk lth row of OTDFk;

N1 attack vector l1-norm limit;

LS load shift factor, in percentage;

H dependency matrix between power injection measurements and states, nb×

nb;

PD vector of real loads, nb × 1;

CG generation cost vector, ng × 1;

CR reserve cost vector, ng × 1;

P0, Pk0 vectors of pre-SCED monitored line power flows in base case and under

contingency k, respectively;

PG0 pre-SCED generator outputs, ng × 1;

PTDF power transfer distribution factor matrix;

PTDFk kth row of PTDF;

LODFk line outage distribution factors of monitored lines under contingency k;

Pmax vector of base case line limits;

Pk,max vector of line limits under contingency k;

PG,min generation lower limits vector, ng × 1;
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PG,max generation upper limits vector, ng × 1;

MG ramp rates of all generators, ng × 1;

Th look-ahead time for one period SCED;

Tr time for spinning reserve requirement.

Expression in (4.1a) captures the attacker’s objective of maximizing the power

flow on line l under target contingency kt, and the penalty factor σ is a small positive

number to limit the attack size; constraint (4.1b) is the calculation of the power flow

on line l under target contingency kt; (4.1c) models the attacker’s limited resources.

Ideally, l0-norm should be used to precisely capture the sparsity of c, but for tractabil-

ity reasons we use the l1-norm as a proxy. Constraint (4.1d) limits the percentage of

load changes at each bus to avoid detection.

SCED (4.1e)-(4.1o) models the system response to the attack. The objective of

the operator (4.1e) is to minimize the total cost, consisting of generation cost and

reserve cost; constraint (4.1f) is the power balance equation; (4.1g) is the cyber power

flow of the base case monitored lines. Note that this constraint is only modeled for the

lines whose pre-SCED power flow is greater than the threshold η, i.e., |P0/Pmax| ≥ η.

This is under the assumption that the line flows will not change dramatically after

the SCED re-dispatch, due to the ramping constraints of the generators. Similarly,

(4.1h) is the cyber power flows on monitored lines under each contingency k, where

|Pk0/Pk,max| ≥ η. Here we assume the base case and contingency case monitoring

thresholds are the same. In the right hand side of (4.1h), the first term is the pre-

SCED post-contingency flows; the second term is the change of the flows as a result

of re-dispatch and false loads; the third term represents the amount of power on

the monitored lines resulting from the effect of false loads on the contingency line k,
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which is not considered in Pk0. Constraints (4.1i) and (4.1j) are the line limits in base

case and contingency case, respectively. The active power limits in both base case

and contingency cases, Pmax and Pk,max, are approximated from the MVA ratings and

reactive flows on the branches by

Pmax =
√
S2
max − [max(Qfrom, Qto)]2 (4.2)

Pk,max =
√
S2
k,max − [max(Qk,from, Qk,to)]2 (4.3)

where Smax and Sk,max are branch long-term and short-term ratings, respectively;

Qfrom and Qto are the base case reactive branch flows at the ”from” end and ”to”

end, respectively; Qk,from and Qk,to are those flows in contingency cases. Constraints

(4.1k) and (4.1l) are the ramping limits; (4.1m) is the reserve limit; (4.1n) is the

generation limit. Though the RTCA does not simulate generator contingencies, in

SCED it is required that when a generator is out, the reserves of all other generators

are sufficient to cover the output of the lost generator. We assume the SCED does

not include a load shedding policy.

4.5 Simulation Results and Discussion

In this section, we present physical consequences through simulations of the at-

tacks designed using the ADBLP described in Sec. 4.4. We use the synthetic Texas

system with 2000 buses, 3210 branches, and 432 generators [62]. The topology of

this system is illustrated in Fig. 4.3. The inputs to the ADBLP described in Sec.

4.4 are obtained from OpenPA [63], a Java-based EMS simulation platform that we

developed in collaboration with our industry collaborators IncSys [64] and PowerData

[65]. A screen shot of the simulation platform is shown in Fig. 4.4. Without attack,

the system is operating at steady-state, which means that SCED does not change

the generation dispatch between each EMS loop. In the base case power flow solu-
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tion, the total losses among the system is 2% of the net load. We assume the SCED

handles losses by uniformly increasing all loads by this percentage. RTCA simulates

contingencies of all branches whose end bus voltages are both at least 100 kV, except

radial branches. Prior to attack, RTCA reports no base case warnings nor violations,

and 25 post-contingency warnings. We exhaustively design attacks targeting each of

those 25 contingency case warnings and test the attack consequences. In our simula-

tions, the short-term branch limit is assumed to be 115% of the long-term limit, i.e.,

Sk,max = 115% × Smax; the warning threshold η = 90%; MBD convergence tolerance

ε = 5× 10−5; SCED look ahead time Th = 15 minutes; spinning reserve time Tr = 10

minutes. The ADBLP is solved using Matlab with solver CPLEX on a 3.4 GHz PC

with 32 GB RAM.

Figure 4.3: Synthetic Texas System Topology.
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Figure 4.4: Java-based EMS Simulation Platform.

4.5.1 Approach for Attack Implementation and System Vulnerability Assessment

Fig. 4.5 illustrates the implementation of the attack and the vulnerability as-

sessment approach. For simplicity, we assume that the real loads remain unchanged

during the attack period. The physical system behavior and the SCADA measure-

ment collection are simulated by solving an AC power flow. The true measurements

z1 from the power flow solution are acquired by the attacker to estimate the states

(denoted x̂1). It then performs AC power flow-based RTCA to achieve the security

constraints and solves the attack design ADBLP to find the attack vector c. Recall

that the second level of the ADBLP is a SCED in response to the attack, and by

solving it the attacker obtains an estimate on the maximal physical power flow on the

target line, which is the optimal objective P̂ ∗l,kt . To implement the designed attack,

the attacker then constructs false measurements z̄1 = h(x̂1 + c) and injects z̄1 to the

system SE instead of the true measurements z1. Again, only the measurements in the

attack subgraph S are changed. Since the generator outputs are known to the system,
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the false measurements will cause the SE to estimate a set of false loads. RTCA and

SCED are then performed by the system to determine the new optimal generation

dispatch P ∗G in response to the false loads. Once the generators re-dispatch, the at-

tacker again acquires the true measurements z2, and estimates the new states x̂2. It

then sends z̄2 = h(x̂2 + c) to the system SE to estimate new false loads. The system

operator again runs RTCA with the new false loads and observes the cyber power

flow P̄l,kt . However, the new dispatch applied on the physical system, will maximize

the physical power flow on target line l under target contingency kt, and possibly

cause overflow. The true physical power flow, Pl,kt , is obtained by running RTCA

with the new dispatch and real loads.
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Figure 4.5: Attack Implementation and System Vulnerability Assessment Approach.
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4.5.2 Results on Maximal Physical Power Flows

Fig. 4.6 compares physical power flow P̂ ∗l,kt predicted by the attacker, the true

power flow Pl,kt in the physical system, as well as the power flow (cyber) seen by the

system operator P̄l,kt , as a function of the l1-norm constraint N1. These power flows

are plotted as percentage values relative to the active power limit Pl,k,max calculated

using (4.3). The attacker’s goal is to maximize the power flow on line ‘ln-2025-2055’

when line ‘ln-2054-5236’ is out of service.
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Figure 4.6: Comparison of Attacker Predicted, Physical, and Cyber Power Flows on
Line ‘ln-2025-2055’ under Contingency ‘ln-2054-5236’, (a) LS = 10%; (b) LS = 20%
.

When the load shift LS = 10%, P̂ ∗l,kt and Pl,kt increase as N1 increases. This indi-

cates that the attacks are effective: they successfully cause post-contingency overflows
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that cannot be seen by the system operators. When LS = 20%, similar results are

observed, but P̂ ∗l,kt and Pl,kt are not monotonically increasing as N1 increases. This

suggests that the MBD algorithm provides sub-optimal solutions, because as N1 in-

creases, the constraints are relaxed, and the optimal solution for a larger N1 should

be at least that of a smaller N1. Maximal power flow is higher when a larger load

shift is allowed. With LS = 20%, N1 = 0.2, the power flow is higher than that

when LS = 10%, N1 = 2, which indicates that in this case load shift is the dominant

constraint.

The true physical power flow Pl,kt is slightly lower than the attacker predicted

physical power flow P̂ ∗l,kt . One possible reason for this phenomenon is that the attacker

is solving a DC approximation of an AC system, and the reactive power flow may

change after attack. This could result in a difference in Pl,k,max before and after

attack. Another possible reason is that the false measurements z̄1 injected by the

attacker cause a different set of security constraints than those that the attacker used

to solve the attack design ADBLP. The attacker generates the security constraints

by running RTCA using the true measurements, but those constraints generated by

the system RTCA are based on the false measurements after attack. As a result,

the system SCED solution may be different than the attacker predicted re-dispatch.

One approach for the attacker to prevent this situation is to run its own RTCA using

the false measurements and include any newly appeared security constraints into the

attack design ADBLP, until there are no more new security constraints. However,

this approach has no convergence guarantee, and could be too time-consuming to

launch the attack in real-time.

Note that in order for the attacks to actually cause post-contingency violations

requires a particular contingency to occur. Thus, the attacker has to create the target

contingency itself, or gain insider knowledge about when the contingency is likely to
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occur. Both are plausible for sophisticated attackers. More aggressively, the attacker

can aim to create base case overflows, but the N − 1 reliable constraints may push

the system to operate conservatively. In the synthetic Texas system, there is no

branch whose base case power flow is higher than η prior to the attack. Thus, to

cause base case overflow, the attacker has to shift a tremendous amount of load that

may easily trigger an alarm at the control center. Moreover, a large load shift will

move the system operating condition dramatically with high probability, and thereby

create new security constraints that are not considered when designing the attack.

Thus, the consequences of the attack become unpredictable for the attacker. We

have attempted to design a base case attack targeting branch ‘ln-7058-7095’ that has

the highest base case power flow in percentage, but no overflow can be found with

LS = 90% and N1 = 20. With LS = 100% and N1 = 20, the attacker’s predicted

power flow reaches 102.29%, but the false measurements create 3197 warnings and

24773 violations at the RTCA solution.

4.5.3 Results on Attack Resources

Fig. 4.7 illustrates the relationship between maximal power flow and l0-norm of

the attack vector (i.e. the number of center buses in the attack) versus the l1-norm

constraint N1 for target line ‘ln-2025-2055’ under contingency ‘ln-2054-5236’, with

different load shift constraints. As N1 increases, so does the l0-norm of the attack,

indicating that l1-norm is a valid proxy for l0-norm for our problem. If a larger load

shift is allowed, the maximal power flow on target line increases, but the resulting

l0-norm may decrease for the same N1. This indicates a trade-off between load shift

and attacker’s resources: as the attacker attempts to avoid detection by minimizing

load changes, it will require control over a larger portion of the system to launch a

comparable attack.
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Figure 4.7: Comparison of the l0-norm of the Attack Vector for Target Line ‘ln-
2025-2055’ under Contingency ‘ln-2054-5236’.

4.5.4 Comparison of Physical and Cyber RTCA results

Fig. 4.8 compares the physical and cyber RTCA results after the re-dispatch

resulting from an attack on target line ‘ln-2025-2055’ under contingency ‘ln-2054-

5236’ with load shift LS = 10%, N1 = 2. The cyber post-contingency power flows on

the x-axis represent what the system operator observes, while the y-axis represents

the post-contingency power flows in the physical system. There is no point beyond

100% of the x-axis, which indicates that the system operator sees no post-contingency

violation after the attack. Therefore, the attack successfully spoofed the operator that

the system is in a secure state, while in reality, the target line has a 112.2% post-

contingency overflow. In addition, there are four post-contingency violations that are

caused by the same attack, even though they are not the attacker’s targets.
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Figure 4.8: Comparison of the Physical and Cyber RTCA Results after Re-dispatch.

4.5.5 Statistical Results on Attack Consequences

As mentioned at the beginning of Sec. 3.5, we exhaustively tested attacks targeting

the 25 branches with post-contingency warnings. The designed attacks successfully

cause overflows on 8 out of the 25 target branches. Table 4.1 gives the statistical

results on attack consequences of these 8 branches. We derived attacks using l1-norm

constraints in the range from N1 = 0.2 to N1 = 2. The table shows the resulting

ranges in maximal power flow and l0-norm of the attack vector c across this range.

The load shift constraint LS = 10%. The prefix ‘ln’ indicates a transmission line

and ‘tx’ indicates a transformer. From the maximal power flow range, we can see

that some branches are more vulnerable than others, as they have higher overflows.

Thus, the system operators can identify critical lines and critical contingencies for
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attack protection purposes. For example, they can artificially reduce the line limit

to keep the attack from being successful. Measurements around vulnerable branches

can be encrypted to prevent them from being modified. In our ADBLP, the load

shift constraint characterizes the detectability of the attack, indicating that load

abnormally detectors can help system operators distinguish between natural load

changes and possible cyber attacks based on load redistribution.

Table 4.1: Statistical Results on Maximal Physical Power Flow and l0-norm of the
Attack Vector with N1 ∈ [0.2, 2]

Target Contingency
Max PF (%) ‖c‖0

N1=0.2 N1=2 N1=0.2 N1=2

ln-6188-7305 ln-7058-7095 101.92 105.08 133 442

ln-6240-6287 ln-6141-6239 102.43 106.76 137 314

ln-7233-7251 tx-6063-6062 105.41 107.90 156 485

ln-1003-1055 ln-3046-3078 102.80 102.94 163 520

ln-2025-2055 ln-2054-5236 107.98 111.00 90 461

ln-2070-5237 ln-2054-5236 101.35 104.35 90 461

ln-1003-1055 ln-1004-3133 102.43 102.56 160 513

ln-7059-7407 ln-7058-7406 100.38 102.24 154 488

4.6 Conclusion

We have evaluated the vulnerability of N − 1 reliable power systems to unobserv-

able FDI attacks via the physical consequences of such attacks. Such N − 1 reliable

systems are assumed to be operated by an EMS consisting of SE, RTCA, and SCED.
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The attacker injects intelligently designed false measurements to the SE that bypass

the bad data detector, and cause the SE to estimate false loads. The SCED re-

dispatch resulting from the false loads leads to the power flow on a target line (picked

by the attacker) to be maximized.

We have also highlighted the knowledge required by the attacker to design such

attacks. In the worst case, the attacker can perform exactly the same RTCA and

SCED as the system does, and hence, can approximately predict the system response

to the attacks. Designing these attacks involves solving an ADBLP modeling the

precise SCED as the system response. The designed attacks can successfully cause

post-contingency overflows on target branches. Moreover, they may create more

violations on branches other than the target one.

62



Chapter 5

UNOBSERVABLE FDI ATTACKS ON PMU MEASUREMENTS

In this chapter, we study unobservable FDI attacks against PMU measurements

through their implications, and propose FIR predictive filters to detect these attacks.

5.1 PMU-based Linear State Estimation

Throughout our analysis, we assume that the power system is completely observ-

able by PMUs. A PMU placed at a bus measures the complex voltage of that bus,

and complex currents on all branches connected to it, typically at a rate of 30 sam-

ples per second [66]. These measurements are linear functions of the states, i.e., the

complex bus voltages. Let p be the number of buses (states), and n be the number

of PMU measurements in the power system, the PMU measurement vector at each

time instant, i, is given by

wi = HJxi + ei =

I ′
Y

xi + ei, (5.1)

where wi is the n×1 measurement vector; xi is the p×1 vector of true states (complex

voltages); ei is an n × 1 additive Gaussian noise vector whose covariance matrix

R = diag[σ2
1, σ

2
2, . . . , σ

2
n]; HJ is the n × p measurement Jacobian matrix, consisting

of I ′, the reduced identity matrix with only rows corresponding to PMU buses; and

Y , the dependency matrix between available current measurements and states. The

weighted least squares estimate of xi, x̂i, is given by[52]

x̂i = (HT
J R
−1HJ)−1HT

J R
−1wi. (5.2)
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The conventional residue-based BDD performs chi-square test on the residue vector

ri,S = wi −HJ x̂i (5.3)

to detect bad measurements. Note that the subscript S denotes state estimation;

we introduce this notation in an effort to distinguish measurement residue resulting

from state estimation from those resulting from using predictive algorithms that we

introduce in Sec. 5.3.

5.2 FDI Attack Model on PMU Measurements

Suppose an attacker can change measurements in a set S by controlling a subset

of PMUs. At each time instant, i, it can replace wi with

w̄i = wi + di, (5.4)

where the non-zero entries of the measurement attack vector di are all within S. An

attack is defined to be unobservable [9] to the conventional residue-based BDD if

di = HJci, (5.5)

where the ci is the state attack vector. Substituting (5.4) and (5.5) into (5.2) yields

the estimated states x̄i under attack

x̄i = x̂i + ci. (5.6)

The residue vector under attack

r̄i,S = w̄i −HJ x̄i

= wi + di −HJ x̂i −HJci = wi −HJ x̂i (5.7)

is the same as that without attack. Therefore, attacks in the form of (5.5) cannot be

detected by the conventional BDD.
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5.3 Three Sample-based Quadratic Prediction Algorithm (TSQPA)

The residue-based BDD discussed in Sec. 5.2 does not consider temporal corre-

lations in PMU data to detect an anomaly. To validate the quality of the incoming

measurements, Gao et al. in [67] investigate temporal correlations in PMU data to

find the relationship between the past, present, and future measurements. In par-

ticular, they prove that for loads changing at a constant power factor, the complex

voltage phasor follows a quadratic trajectory. Applying auto-regressive modeling on

a quadratic trajectory, they show that the vector of complex voltages at the next time

instant can be predicted using the present and past states as follows:

x(i|i−1) = 3xi−1 − 3xi−2 + xi−3, (5.8)

where x(i|i−1) denotes the predicted value of the complex voltage at time instant i,

when the voltages at instants i− 3 through i− 1 are known. The authors in [67] also

test the performance of TSQPA for detecting dynamic events such as the opening

of transmission lines and short-circuit faults. Robustness of TSQPA for analyzing

system events for different load models has been demonstrated in [68], while it was

used for conditioning and validating real PMU data in [69]. However, the effective-

ness of TSQPA in detecting anomalies or cyber-attacks in PMU measurements has

not been investigated yet. TSQPA is emerging as a basis for real-time PMU data

monitoring by some US power utilities, and therefore, it is important to evaluate its

effectiveness in detecting cyber-attacks. To this end, we use TSQPA as a detector to

detect anomalies due to cyber-attacks in the following way.

Applying (5.8) on estimated voltages x̂i gives the predicted voltage x̂(i|i−1). An

observation residue ri,T (where the subscript T stands for TSQPA) at the ith time

instant can be obtained as:

ri,T = x̂(i|i−1) − x̂i (5.9)
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If the magnitude of the observed residue ri,T exceeds a threshold, then a cyber-attack

detection is declared.

Finally, as a point of comparison, we also consider a higher order data-driven

predictive filter, for which we similarly calculate residues to detect attacks. Details

of such a filter will be given in Sec. 5.6.1.

5.4 Attack Implementation

5.4.1 False Measurement Creation

We assume that the system performs DCOPF based on the measurements ob-

tained at every five minutes [70]. After the system re-dispatches at time instant

i = 0, the attacker solves the ADBLP (2.8) to obtain the state attack vector c, and

then uses c to create false measurements. Although the loads at time instant i = 0

may be different than those at the fifth minute when the system re-dispatches again,

it is reasonable to assume that they will not change dramatically. Hence, the attack

vector solved at i = 0 is expected to have similar consequences to the one solved using

loads at the fifth minute. Once the state attack vector c is obtained, the attacker can

form a measurement attack vector d to create false measurements w̄. However, it is

unrealistic for the attacker to be omniscient and omnipotent. Thus, as mentioned in

Sec. 5.2, we assume the attacker only controls a subset of PMUs, whose measure-

ments are in S. Given c, an attack subgraph can be constructed as in [11], consisting

only of PMUs under the attacker’s control. Note that here c is the outcome of the

ADBLP (2.8), and hence is an attack vector on voltage angles. The measurement at-

tack vector directly formed as d = HJc will cause loads appearing at non-load buses,

and possibly raise alarm at the control center. Therefore, the attacker has to solve

for the final state attack vector c̃ that ensures the power injections at non-load buses

66



remain unchanged, using the Newton-Raphson method as described in [16]. Once c̃

is obtained, the measurement attack vector can be constructed as d = HJ c̃.

5.4.2 Attack Strategies

We consider the following two strategies for the attacker to inject false measure-

ments:

(1) Sudden attack. At any time instant on or before the fifth minute, the attacker

injects d, the measurement attack vector computed at i = 0+, and keeps injecting d

afterwards. Without loss of generality, we focus on the situation where d is injected

at the fifth minute. Denoting i as the sample number, the fifth minute is i = 9000

assuming PMU outputs at 30 samples/sec. The false measurements in a sudden

attack are given by

w̄i =

 wi, i < 9000

wi + d, i ≥ 9000
. (5.10)

A sudden attack will cause the system to re-dispatch according to the false loads,

and maximize the physical power flow on the target branch. However, as we will

demonstrate in Sec. 5.6, sudden attacks can be detected by predictive filters such as

TSQPA.

(2) Ramping attack. In this strategy, the attacker gradually increases the attack

magnitude during the first five-minute interval, starting at i = 1, ensuring d is injected

at the fifth minute, and keeps injecting d afterwards. The false measurements in a

ramping attack are given by

w̄i =

 wi + i
9000
· d, i < 9000

wi + d, i ≥ 9000
. (5.11)

At t = 5 mins, the false measurements in ramping attack are identical to those in

sudden attack, and hence, have the same consequences. Sec. 5.6 will illustrate that
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predictive filters have more difficulty detecting ramping attacks due to the slow change

across the 5 minute interval.

5.5 Generation of Synthetic Load Profile at PMU Time Scale

To verify the proposed FDI attacks against PMU-based system operations, a real-

istic testbed is required; specifically, the PMU measurements used to test the BDDs

must reflect realistic operating conditions. In our tests, we achieve this by simulat-

ing the dynamics of the IEEE 118 bus system with time varying loads and primary

generation control. The bus-level time-series load data for this test system is gener-

ated based on a real PMU dataset that was provided by a large utility company in

the southwest of the US. The approach we adopted to create realistic load profiles

is mainly based on the work described in [71]. The authors present a data-driven

algorithm to learn from a real dataset the spatial and temporal correlation between

system loads and use the learnt model to generate new synthetic data that retains

the same characteristics. In [71], the approach is demonstrated on SCADA-based,

hourly load data. In this section, we detail how this technique was adapted to the

learning and generation of load profiles at PMU data speeds.

The utility company provided us with one week worth of PMU data for a group

of neighboring substations. From the voltage and current measurements of each bus

and line, we compute the loads of two substations, one at the 500kV level and one

at 230kV level. Each time-series is 168 hours long, sampled at 30 samples/sec. From

these two data streams we can learn the behavior of loads at different voltage levels

and subsequently map them to the loads of the IEEE 118 bus system according to

their voltage levels. For our simulations, we generated load data at each bus for 10

minutes. The load profile generation procedures can be found in [71], and are briefly

described below.
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The time-series load data for one consecutive week is broken into segments of

length of 10 minutes stacked to form a load matrix P . We then factorize the load

matrix P using singular value decomposition (SVD) as P = UΣV T . The rows of V T ,

constitute the basis of the load matrix and they correspond to archetypal temporal

profiles. The synthetic loads will be generated by taking linear combinations of a

subset of the first f load basis (first f rows of V T ). Define approximations of P using

first f load bases as P̂ = U f × Σf × V fT , where U f indicates the first f columns

of U , Σf the first f columns and rows of Σ, and V f the f first columns of V . By

varying the value of f (corresponding to the number of basis vectors to be used) and

measuring the root mean squared error (RMSE) between P and P̂ we can determine

an appropriate f . In Fig. 5.1, the error is plotted as a function of the number of

basis vectors used. It can be seen that the error decreases rapidly up to f = 10 and

then it slowly reaches zero when all the basis vectors are used. For this reason, the

first 10 temporal profiles are used in the generation of the synthetic load profiles.

Figure 5.1: RMSE between P and P̂ as a Function of the Number of Basis Used.

A new matrix of load profiles for n buses can then be generated as:

Pnew = U10
newΣ10V 10T (5.12)

where Pnew, U10
new ∈ Rn×10 is a matrix of coefficients randomly sampled from the

distributions learnt from the columns of U , and Σ10 and V 10T represent the first 10
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singular values and first 10 temporal profiles obtained from the original PMU load

data. To account for the spatial correlation which exists between neighboring loads,

the model is modified as follows:

Pnew = (DU10
new)Σ10V 10T = U ′10newΣ10V 10T (5.13)

where D ∈ Rn×n, and each entry di,j of D is given by:

di,j =


1, if i = j

e−2disti,j , if disti,j ≤ 3 and i 6= j

0, otherwise.

(5.14)

and disti,j is the minimum number of branches between buses i and j. Overall, this

relation was experimentally derived in [71] and was adapted to the system for which

we designed the synthetic loads.

5.6 Numerical Results

5.6.1 Experiment Setup

We use the IEEE 118-bus system in our simulations. The PMU placement scheme

is obtained from [72]. The following steps are required before we can test the perfor-

mance of predictive filters for attack detection:

1. Synthetic load profile generation: Using the model in (5.13) on the 500kV and

230kV loads, we generate individual load profiles for 10 minutes for the loads

in the IEEE 118 bus system according to their nominal voltage. Fig. 5.2 shows

the synthetic load profiles generated for two adjacent loads. As expected, they

show a similar pattern over 10 minutes.

2. Synthetic PMU measurements generation: Based on the synthetic loads, dy-

namic simulations are run in PSLF [73] and voltage and current data are sam-
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Figure 5.2: Synthetic Load Profiles Generated for Two Neighboring Buses.

pled 30 times per second to represent the PMU measurements. For adding noise

to the synthetic PMU measurements we investigate the observation residues

computed by TSQPA in the real PMU data obtained from the utility. The

noise in the synthetic measurements are added in proportion to the noise in real

data such that it results in similar observation residue for a no-attack scenario.

The noise in magnitude and angle are selected from a Gaussian distribution of

zero mean and 0.01% standard deviation, which ensures the total vector error

(TVE) to be within 1% [74].
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3. False measurements creation: A state attack vector c is obtained by solving

the attack design ADBLP with 10% load shift constraint. We then follow the

procedure described in Sec. 5.4 to create the measurement attack vector d, and

subsequently the false measurements w̄ for both sudden attack and ramping

attack. The generation re-dispatch caused by the false measurements will lead

to 30% overflow on branch 54 (bus 30-38) and 22% overflow on branch 37 (bus

8-30).

4. Data-driven five-sample predictive (FSP) filter: Based on the real PMU mea-

surements that we received from the utility, we perform a moving window linear

regression to learn the best coefficients of a five-sample predictive filter. This

predictive filter is given by

x(i|i−1) =0.9186xi−1 + 0.0196xi−2 + 0.0438xi−3

+ 0.0058xi−4 + 0.0122xi−5. (5.15)

5.6.2 Attack Detection using Predictive Filters

We now investigate whether intelligently designed FDI attacks can be detected

by predictive filters. The hypothesis of detecting an attack is that the observation

residue in the presence of an attack would increase. Note that these attacks cannot

be detected by the χ2-based BDD currently employed in the power systems. False

measurements resulting from sudden and ramping attack, as well as attack-free mea-

surements at two buses of the IEEE 118 bus system are illustrated in Fig. 5.3. It can

be seen that the measurements of both attack strategies are identical after 5 minutes

(9,000 samples). Fig. 5.3(a) shows a relatively large attack, where the attack mag-

nitude on the real part of the voltage at bus 8 at the fifth minute is 0.0141 per unit,

while Fig. 5.3(b) shows a small attack at bus 40 where the attack magnitude to the
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real part of the voltage is merely 0.0017 per unit.
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Figure 5.3: Examples of False Measurements at (a) Bus 8; and (b) Bus 40

Fig. 5.4 demonstrates the observation residues when applying the predictive filters

on measurements with sudden attack. Both TSQPA and FSP give a large residue at

the fifth minute when the attack is injected, indicating that they are both able to

detect sudden attacks. Moreover, they can detect both the attacks at bus 8 and bus

40, even though the attack magnitude at bus 40 is much smaller.

Fig. 5.5 illustrates the observation residues obtained by applying predictive filters

on measurements with ramping attack. The residues do not increase because the

attack magnitude at each time instant is too small. These observations indicate that
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Figure 5.4: Sudden Attack Detected by Predictive Filters

gradually ramping attacks can avoid detection by the selected predictive filters.

5.7 Conclusion

In this chapter, we applied two predictive filters to detect FDI attacks against

PMU measurements that are unobservable by the conventional measurement residue-

based bad data detector. We first created synthetic load profiles at PMU time scale

that capture both temporal and spatial correlations. Using these synthetic load pro-

files, we then generated synthetic PMU measurements by running dynamic simula-

tions. Subsequently, we designed test FDI attacks via a bilevel optimization approach,

and created two sets of unobservable false measurements, one for sudden attack and
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Figure 5.5: Ramping Attack Undetected by Predictive Filters

the other for ramping attack. Finally, the false measurements are tested through a

theoretically derived and a data-driven predictive filter, to see whether they can de-

tect the attacks. The observation residues obtained from the two predictive filters for

both attack strategies indicate that sudden attacks can be detected by predictive fil-

ters, while ramping attacks cannot, because the ramping attack magnitudes between

time instants are smaller than those of the sudden attack.
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Chapter 6

UNOBSERVABLE FDI ATTACK DETECTION VIA SUPPORT VECTOR

MODELS

From Chapter 3 - 5, we see that large-scale power systems, N − 1 reliable power

systems, and PMU measurements are vulnerable to FDI attacks. Therefore, it is cru-

cial to develop countermeasures to thwart these attacks, which require the detection

of the attacks as a first step. The false measurements created by the attacker results

in false estimation of the loads in the system that appears as loads are re-distributed

among the buses, which in turn mislead the system to incorrectly re-dispatch gen-

eration that cause consequences. Load redistribution (LR) is the reason that these

attacks can affect system operations, regardless of the size of the system, functions

in EMS, or which measurement system is used (SCADA/PMU). Unobservable FDI

attacks are essentially LR attacks.

In this chapter, we introduce an LR attack detection framework based on sup-

port vector models by leveraging the historical load information commonly available

to system operators. Unlike most existing approaches in the literature, our method

determines the existence of LR attacks directly through the estimated loads, without

requiring installations of new devices nor protection of specific measurements. When

an LR attack occurs, the estimated loads obtained from the SE results are different

from the true loads, but the net loads are the same. Thus, if accurate load predic-

tions are available, the existence of LR attacks can be determined by comparing the

predicted and estimated loads. Moreover, if an LR attack is detected, the predicted

loads can be directly used to re-dispatch generation instead of using the estimated

loads. By doing this, the attack consequences can be temporarily mitigated, giving
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operators time to perform other corrective actions.

In particular, we propose a support vector regression (SVR) [75] based load predic-

tor to accurately predict loads, and a subsequent support vector machine (SVM) [76]

based attack detector that compares the predicted and observed loads to detect LR

attacks. Our choice of this modular design aims to separate the prediction and clas-

sification, so that each module can be independently enhanced (e.g., using additional

features) and also replaced by other methods, as seen fit. Support vector models are

optimization-based machine learning approaches that can be used for both regression

and classification purposes. There are many different machine learning methods, and

we choose support vector models for the following reasons: (i) they are mature meth-

ods that have been proven to be effective for various regression/classification tasks

in power systems, including transient stability assessment [77], component outage

estimation [78], and state estimation [79]; (ii) they are analytically developed models

with fewer and easier to tune parameters compared to many other machine learning

methods, e.g., neural networks.

SVR has been widely used for load prediction in electric power systems. In [80], a

short-term load forecasting algorithm is proposed combining SVR and particle swarm

optimization. The authors of [81] proposes a SVR model that predicts very short

term loads using weather data and day ahead predicted loads as features. Similar

features along with additional time-related features are used to train a SVR model

that predicts short term and mid term loads in [82]. In [83], Azad et al, predict the

daily peak load using the historical peak load consumption and the corresponding

temperature and relative humidity. Chong et al, propose a K-step ahead prediction

using SVR in [84].

Proposed SVR Load Predictor: The aforementioned references focus on predict-

ing the net load utilizing temporal correlation. To the best of our knowledge, we
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are one of the first to predict loads at each bus using SVR, leveraging both spatial

and temporal correlations between all the loads in the system. Features selected for

the SVR predictor include historical load values of all loads chosen at distinct time

intervals prior to the target time (e.g., one hour before, one day before, etc.) as

well as the specific time information (e.g., month, weekday/weekend). This choice

allows for conveniently using the same features to predict loads at different buses as

the temporal features for all loads implicitly capture the spatial correlations among

them.

Proposed SVM Detector: SVM is a supervised learning approach to solve classifi-

cation problems, based on learning separating hyperplanes. Our approach using SVR

to detect attacks largely mirrors existing approaches; our key contribution is in how

we generate the training data needed to learn the SVM model to classify accurately

over a large class of attacks. We now describe the dataset and our approach to train

and test the two models.

Dataset: We train and test our models using the publicly available PJM metered

zonal load data [85]. We map each of the 20 zones of the PJM data to a load bus in

the IEEE 30-bus system, leveraging the fact that there are 20 loads in this system.

Training and Testing: To apply SVM on attack detection, it is necessary to create

training data in both classes, namely normal and attacked data. The SVR predicted

loads and the true loads (assuming trustworthy historical data) naturally form the

normal data. For the attacked data, we propose a novel approach that generates

random LR attacks in order to maximally explore the attack space, and thereby

enhance accuracy in detecting any LR attack. Each of these attacks alters a random

number of loads, and a Gaussian distribution is used to generate the deviation of

each load from its true value. The severity of the attacks is controlled by varying the

maximum deviation percentage over all loads. Our approach also guarantees the net
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load change is 0 to satisfy the constraints of LR attacks. We use 80% of the data for

training, and the remaining 20% for testing.

In addition to the random attacks, we also generate two types of intelligently

designed LR attacks, namely cost maximization (CM) and line overflow (LO) attacks,

to test the effectiveness of our SVM attack detector. CM attacks aim to maximize

the operation cost [20]; and LO attacks attempt to overflow a target transmission

line [18]. These two types of attacks are designed through optimizations to maximize

their economic/physical consequences.

Our results show that the proposed attack estimation-detection framework can

effectively predict and detect both random and intelligently designed LR attacks.

Moreover, we illustrate that using the SVR predicted loads to re-dispatch when at-

tacks are detected can significantly reduce the attack consequences.

The key contributions of this chapter are as follows:

1. We propose an LR attack detection framework consisting of an SVR load pre-

dictor and a subsequent SVM attack detector. This modular design enables separate

enhancement of each block, and also provides sufficiently accurate predicted loads for

attack mitigation purposes.

2. The SVR predictor leverages both temporal and spatial correlations within the

historical load data to allow for prediction of bus-level loads. Through training and

testing the proposed SVR predictor on the PJM metered load data [85], we show that

it can accurately predict every load in the system.

3. Utilizing the SVR predicted loads, we train the SVM detector using normal

data and random LR attacks designed to maximally explore the attack space.

4. The performance of the detection framework is tested on random attacks as

well as two types of intelligently designed LR attacks. These attacks aim to cause

economic/physical consequences. Our simulation results show that our detection
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framework can significantly reduce the impact of LR attacks.

6.1 Load Redistribution Attacks

6.1.1 Load Redistribution (LR) Attacks and Unobservable False Data Injection

(FDI) Attacks

Definition 1: LR attacks are a class of cyber-attacks that redistribute loads among

the buses, while keeping the net load unchanged. The false loads in an LR attack

PD,Atk satisfies

PD,Atk = PD + ∆PD, (6.1)∑
i

∆PDi = 0, (6.2)

where PD is the true load vector, ∆PD is the load change caused by attack, and i is

the load index.

Definition 2: The load shift τ is defined to be the largest load change in percentage

of the true loads:

τ = max
i

∣∣∣∣∆PDiPDi

∣∣∣∣× 100%. (6.3)

We use τ as an intrinsic metric to characterize the detectability of LR attacks. We

found that it is trivial to detect attacks with sufficiently large τ , because load devi-

ations far from true values are suspicious. Thus, an attacker is likely to limit τ to

avoid detection by this metric. In this dissertation, we only consider LR attacks with

τ ≤ 20%.

The most common way to generate LR attacks is through unobservable FDI at-

tacks against power system state estimation. Under DC power flow assumption1, the

true measurement vector z, consisting of the line power flow and bus power injection

1For simplicity, we focus on DC power flow settings, but our work can be generalized to AC cases

as in [18].
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measurements, is given by

z = Hθ + e, (6.4)

where θ is the state vector (voltage angles), H is the dependency matrix between

measurements and states, and e is the noise vector. Note that here we use θ instead

of x to represent the states to avoid confusion in common SVR/SVM formulations,

where x represents a data sample.

Recall that a false measurement vector z̄ created with state attack vector c,

z̄ = H(θ + c) + e, (6.5)

is unobservable to the conventional bad data detector embedded with SE, because it

is not distinguishable from the true measurements if the true states were (θ + c).

Let B be the dependency matrix between bus power injections and states, and let

PG be a given generation vector, then the bus power injections without attack can be

expressed as

PG − PD = Bθ. (6.6)

With attack, the false injections are given by

PG − PD,Atk = B(θ + c). (6.7)

Substituting (6.6) into (6.7) yields the load change vector

∆PD = PD,Atk − PD = −Bc. (6.8)

Note that since 1TB = 0T , the net load change is
∑
i

∆PDi = −1TBc = 0. Thus,

given a generation dispatch, an unobservable FDI attack leads to an LR attack.

6.1.2 Intelligently Designed LR Attacks

Although an attacker can inject arbitrary c as long as it controls the measurements

corresponding to all non-zero entries of Hc, its goal will be to maliciously choose c
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so that the resulting false loads can mislead the system re-dispatch to cause physical

and/or economical consequences. We define these attacks as intelligent attacks, whose

consequences can be maximized by solving ADBLPs. In this dissertation, we con-

sider two specific intelligent attacks to test the robustness of our proposed detector,

namely cost maximization (CM) attacks [20] and line overflow (LO) attacks [18]. The

ADBLPs to find the worst case consequences of LO attacks considered here is again

(2.8), and for CM attacks we only need to replace the objective function of (2.8) to

be the generation cost.

As stated earlier, we want to train the SVM detector using random attacks and

test its performance on intelligently designed attacks. The reason that we choose

these two types of intelligent attacks is because they tend to re-distribute the loads

in different directions. To illustrate this, consider the example shown in Figure. 6.1.

There are two buses in this small system, and each of then has a generator and a load.

We assume both the generators have generation limits far more than the amount of

load in the system. One transmission line is connecting these two buses with a limit of

100 MW. The generator at bus 1 is cheaper with a cost of $50/MWh, while generator

2 is twice as expensive. Load at bus 1 is 100MW and load at bus 2 is 200MW. The

most economic dispatch is PG1 = 200MW, PG2 = 100MW, where the line is congested

with power flow P12 = 100MW and the cost is 50 × 200 + 100 ∗ 100 = 20k$/h. We

assume the attacker can redistribute at most 10MW of load.

Under LO attacks, the attacker wants to maximize the power flow on the trans-

mission line. Since the line is congested, it has to shift loads in order to make the

line appear not congested, so that the system would redispatch to push more power

through the line. Therefore, it needs to shift 10MW of load from bus 2 to bus 1.

When the system performs load estimation, it finds that loads have changed and the

line is no longer congested, so that it will redispatch to make generator 1 generate
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Figure 6.1: Illustrative Example Explaining Why CM and LO Attacks Tend to
Redistribute Loads in Different Direction.

an extra 10MW while decrease the output of generator 2 by 10MW, because it is

cheaper to do so. However the loads in the physical system never changed. As a re-

sult, the generations would be PG1 = 210MW, PG2 = 90MW, and the line flow would

be P12 = 110MW, which is greater than the line limit of 100MW. However, we notice

that in this case the generation cost 50× 210 + 100 ∗ 90 = 19.5k$/h is actually lower

because the dispatch violates the line limit constraint compared to the attack-free

case. This indicates that, in this case if the attacker wants to maximize the genera-

tion cost, it must redistributed reversely by moving 10MW from bus 1 to bus 2. This

way, the system would see that the load has changed and there is an overflow. Thus,

the system would redispatch generation to be PG1 = 190MW, PG2 = 110MW, increas-

ing the cost to 50 × 190 + 100 ∗ 110 = 20.5k$/h. One can notice that since the true

loads never changed, the power flow on the line in this case becomes P12 = 90MW

which is less than the limit. In this example, one can see that CM and LO attacks re-

distribute loads in completely opposite direction. In an interconnected power system

with multiple congestion lines and generation limit, the CM and LO attacks may not

redistribute the loads in completely opposite direction, but they will certainly move

to different directions.

83



6.2 Proposed Attack Detection Framework

Figure 6.2 illustrates the structure of our proposed LR attack detection framework.

During the real-time operation, features are selected from the historical load data until

the current time step to capture both spatial and temporal correlations. Loads at the

next time step are then predicted by the SVR load predictor using these features. One

SVR model is trained for each load using the same features. Subsequently, the SVM

attack detector takes the predicted loads and loads estimated after SE to determine

the existence of LR attacks.

For detecting attacks, it should suffice to skip the SVR load predictor and plug all

SVR features into the SVM to perform classification. However, in this dissertation

we include the SVR for the following two reasons. The first one is that we aim to not

only find an attack detection technique, but also have a corrective mechanism when

attacks are detected. Using the (accurate) predicted loads to perform control actions

when attacks are flagged provides time to locate the attacked measurements without

causing severe consequences. The second reason is for easier scaling of the proposed

models to large-scale power systems. Without the SVR predictor, the number of

features used in SVM classifier will be very large, making it difficult to train and

perform real-time classifications. With the SVR predictor in place, the SVM detector

only needs the predicted and observed load values as features, making it useful for

large-scale systems.

6.2.1 The SVR Load Predictor

Given data samples xj ∈ Rp, j = 1, 2, 3, ...,m and target values y ∈ Rm, an SVR

attempts to find the best parameters wr and br to fit |yj − wT
r φ(xj) − br| ≤ ε by
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Figure 6.2: Structure of the Proposed LR Attack Detection Framework.

solving the following optimization problem [75]:

minimize
wr,br,ζj ,ζ′j

1

2
wT
rwr +M

n∑
j=1

(ζj + ζ ′j) (6.9a)

subject to yj −wT
r φ(xj)− br ≤ ε+ ζj (αj) (6.9b)

wT
r φ(xj) + br − yj ≤ ε+ ζ ′j (α′j) (6.9c)

ζj, ζ
′
j ≥ 0,∀j, (6.9d)

where ε is the regression tolerance, ζj, ζ
′
j are slack variables to allow for outliers, M

is the penalty factor for outliers, αj, α
′
j are dual variables, and φ(·) is a function that

implicitly maps the data samples to a higher dimensional space. The dual formulation

has a smaller number of variables and allows for applying the kernel trick:

minimize
α,α′

1

2
(α− α′)TQ(α− α′) (6.10a)

+ ε1T (α+ α′)− yT (α− α′)

subject to 1T (α− α′) = 0 (6.10b)

0 ≤ αj, α
′
j ≤M,∀j (6.10c)
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where Q is a positive semi-definite matrix, and Qij = Q(xi,xj) = φ(xi)
Tφ(xj) is the

kernel. Once the optimal solutions (α∗,α′∗) are obtained, the regression value ynew

of a new data sample xnew can be computed as

ynew =
n∑
j=1

(α∗j − α′∗j )Q(xj,xnew). (6.11)

To accurately predict the load values, many different features can be used, includ-

ing time, weather, temperature, location, and load type (residential/commercial/industrial).

Intuitively, it would be the best if we use all the features to perform the prediction,

but many of them are unavailable, and some of them may be redundant. The features

used in the SVR load predictor also depend on the available dataset. For example,

the time step of the prediction depends on how frequently the historical load data

are recorded. For the specific dataset we use in this research, we select time infor-

mation and historical load values at several time points relative to the target time

to capture the temporal correlation, and load values at the same time points for all

loads to capture the spatial correlation. Details of selected features for the SVR load

predictor will be given in Section 6.3.1.

6.2.2 The SVM Attack Detector

Given data samples uj ∈ Rq, j = 1, 2, 3, ...n and a vector of class labels v ∈

{1,−1}n, an SVM attempts to find the decision boundary with the maximal margin

to best classify uj by solving the following optimization problem [76]:

minimize
wm,bm,λj

1

2
wT
mwm + C

n∑
j=1

λj (6.12a)

subject to vj(w
T
mφ(uj) + bm) ≥ 1− λj (βj) (6.12b)

λj ≥ 0,∀j. (6.12c)
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Similar to the SVR formulation in (6.9), λj is a slack variable to allow for outliers,

C is its penalty factor, and βj is the dual variable. Again, applying the kernel trick,

the dual formulation is used:

minimize
β

1

2
βTQβ − 1Tβ (6.13a)

subject to vTβ = 0 (6.13b)

0 ≤ βj ≤ C, ∀j. (6.13c)

Note that here Qij = vivjQ(ui,uj) = vivjφ(ui)
Tφ(uj). Once the optimal solution β

is acquired, the label vnew for a new input data sample unew can be obtained by

vnew = sgn(
n∑
j=1

vjβ
∗
jQ(uj,unew)) (6.14)

where sgn(·) is the sign function. The features in uj include the SVR predicted loads,

the observed loads, and the same time information used in the SVR.

6.2.3 Generating Random LR Attacks to Train the SVM

We train the SVM detector using normal data and randomly designed LR attacks.

The SVM detector trained using random attacks is expected to maximally explore

the space of LR attacks, and hence, perform well in detecting any LR attacks. Given

true loads PD, the false loads PD,Atk in these random attacks are acquired using (6.1),

PD,Atk = PD + ∆PD. Thus, finding PD,Atk is equivalent to finding ∆PD. In each

attack, we assume the attacker changes K loads at random, whose indices form a set

K, so that ∆PK(k) indicates the load change of the kth attacked load, k = 1, 2, . . . , K.

The load changes of these attacked loads, denoted γ, can be arbitrary. However,

according to the LR attack property (6.2), they must be constrained to have a 0 sum.

Thus, we model γ with a joint Gaussian distribution with 0 mean and covariance
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matrix Γ:

γ ∼ N (0,Γ) (6.15)

γk = ∆PK(k). (6.16)

Given a load shift τ , the diagonal entries of Γ must satisfy

Γkk = V ar(γk) = (
1

2
τPK(k))

2,∀k (6.17)

to ensure that the probability of |γk| ≤ τPK(k) is 95%, because the probability of

deviating beyond 2×standard deviation in a Gaussian distribution is 5%. Recall

that the load changes caused by a valid LR attack must satisfy (6.2), which can be

rewritten as ∑
i

∆PDi =
∑
k

∆PK(k) = 1Tγ = 0. (6.18)

Eq. (6.18) is equivalent to

E[(1Tγ)2] = E[1TγγT1]

= 1TΓ1

= 0. (6.19)

Finding a valid γ is equivalent to finding a positive semidefinite matrix Γ that satisfies

(6.17) and (6.19). Since Γ is a covariance matrix, it must be positive semidefinite:

Γ � 0. (6.20)

Any Γ satisfying (6.17), (6.19) and (6.20) would suffice for our application. Finding Γ

is equivalent to solving a semidefinite program with arbitrary objective, constrained

by (6.17), (6.19) and (6.20). The procedure to acquire false loads PD,Atk is summarized

in Alg. 5. Varying the attack hour h, load shift τ , and number of attacked loads K,

we can find feasible Γ to obtain γ using (6.15), and subsequently create an arbitrary
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number of false loads PD,Atk using (6.1). Note that for specific combinations of h, τ,K,

and K, sometimes no feasible Γ can be found, but we can simply re-run Alg.5 with

different inputs. Since (6.15) is drawing γ randomly from a Gaussian distribution,

the resulting real load shift τr of PD,Atk may be different than the input τ . We keep

drawing γ until τr ≤ τ . The false loads created are then used to generate data samples

to train and test the SVM detector.

Algorithm 5 Generating random LR attack false loads

Input: h, K, τ

Output: PD,Atk

1. Obtain the true loads PD at hour h.

2. Randomly select K loads to attack and let K denote the set of indices of the

attacked loads.

3. Find a Γ satisfying (6.17), (6.19) and (6.20) with τ,K,K, and PD. This can be

done by solving a semidefinite program with arbitrary objective, constrained by

(6.17), (6.19) and (6.20). If no feasible Γ can be found, terminate.

4. Draw the non-zero load changes γ from N (0,Γ) and obtain false loads PD,Atk

using (6.1).

5. Calculate the real load shift τr of PD,Atk using (6.3). If τr > τ , go to step 4).

Otherwise, terminate.

6.3 Numerical Results

We use the publicly available PJM zonal hourly metered load data [85] from 2015

through 2018 for 20 transmission zones as the historical data to train and test our LR
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attack detection framework. In order to conveniently create intelligently designed LR

attacks as described in Section 6.1.2, we map each zone to a load bus in the IEEE 30-

bus system, leveraging the fact that there are 20 loads in this system. The mapping

relationship is adopted from [51], and all load values are multiplied by a scaling factor

of 1.308 × 10−3 to obtain a system with moderate amount of congestion. Table 6.1

describes the mapping rules between load indices, PJM zones, and bus indices. The

SVR and SVM models are implemented in Python using the Scikit-learn package

[86]. The random, CM and LO attack creation are implemented in Matlab with

solver Gurobi. All experiments are conducted on a 2.7 GHz CPU with 32 GB RAM.

Table 6.1: Mapping Rules between Load Indices, PJM Zones, and Bus Indices

Load Zone Bus Load Zone Bus

1 DOM 2 11 PL 17

2 AE 3 12 PN 18

3 JC 4 13 PE 19

4 CE 7 14 RECO 20

5 AEP 8 15 ATSI 21

6 DPL 10 16 DUQ 23

7 PS 12 17 BC 24

8 DEOK 14 18 ME 26

9 PEP 15 19 EKPC 29

10 DAY 16 20 AP 30
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6.3.1 The SVR Load Predictor Performance

In this section, we provide details on training and testing the SVR load predictor.

As mentioned above, given the hourly load data we have, our SVR load predictor aims

to accurately predict the load values at hour h + 1 when the current hour is h. The

features we use include time information and historical load values up to hour h. We

select month (mo), hour (hr), and weekday/weekend (wd) as the time information

features, t = [mo,wd, hr]. Note that hr here is the wall clock time, for example,

hr = 14 for 2 PM, and is different than h, which is a unique point in time. Here

we only distinguish between weekdays and weekends since loads tend to be similar

during weekdays, i.e., wd = 1 for weekdays and wd = 2 for weekends. The temporal

correlation of each load is captured by including its historical values, at hour h and

s previous hours; and at hour hr and hr+ 1 of d previous days, as features. For load

i, the load value features f i are given by

f i = [P h
i , P

h−1
i , ..., P h−s

i , P h−24d
i ,

P h−24d+1
i , ..., P h−24

i , P h−23
i ]. (6.21)

To capture the spatial correlations, we concatenate the load value features of all the

loads.

The multi-output SVR load predictor is achieved by solving one SVR optimization

problem (6.9) for each load. In our experiments, we trained three SVR models to

justify the contribution of capturing spatial correlations, as well as to see the influence

of different selected features. Model 1 predicts each load using only time information

t and its own load value features. A data sample used in Model 1 to predict load i is

given by

xj,i = [t,f i]∀i. (6.22)
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Model 2 and 3 use t and f i,∀i, as features to predict all loads. A data sample in

these two models is given by

xj = [t,f 1,f 2, ...fnl
], (6.23)

where nl is the number of loads in the system. In Model 2, s = 3 and d = 2; and

in Model 3, s = 4 and d = 3. The ground truth yj,i = P h+1
i is the true load value

at hour h + 1 for load i. Table 6.2 presents some properties of the three tested

SVR models. Comparing Models 1 and 2, we can see the influence of considering

spatial correlations in addition to temporal correlations, as these two models use the

same temporal features, but Model 2 additionally uses the features of all the loads to

capture spatial correlations.

Table 6.2: Statistics of SVR Models

Model s d m p Training time (h)

1 3 2 35011 11 1.927

2 3 2 35011 163 4.234

3 4 3 34987 223 33.324

The dimension of the data matrix X,m× p, and target value matrix Y ,m× nl,

depend on the values of s and d. For example, for Model 2, s = 3 and d = 2, the

length of f i is given by

nf = s+ 1 + 2d = 8. (6.24)

The resulting data sample length p = 3 + 20 × nf = 163. Since we use load values

of previous d = 2 days as features, the start hour of our data is 01/03/2015, 0 AM.

The end hour is 12/31/2018, 10 PM because for 12/31/2018, 11 PM, we do not have

ground truth values of its next hour. In each of the four years, the hour when daylight
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saving time ends has two load values with identical time stamps, and we approximate

the load value at this hour by taking the average of those two values. As a result, the

number of data samples for the SVR load predictor is

m = (365× 3 + 366− d) ∗ 24− 1− 4 = 35011. (6.25)

The target values for hour h are the metered loads of the 20 zones at hour h + 1.

Thus, for each data sample of length p = 163, the SVR outputs a vector of length

20 as prediction. We use the first 26253 data samples in year 2015 through 2017 to

train the SVR load predictor and use the remaining 8758 data samples in 2018 to

test its performance. The resulting training data matrix Xtrain is of size 26253× 163,

training target value matrix Y train is of size 26253× 20, testing data matrix Xtest is

of size 8758× 163, and the testing target value matrix Y test is of size 8758× 20. The

dimensions of these matrices for other models can be similarly determined.

For each model, the training data matrixXtrain contains all data from 2015 - 2017,

and data in 2018 are used as Xtest. Each column of Xtrain is scaled to zero mean

and unit variance, and each column of Xtest is scaled using the mean and variance of

the corresponding column in Xtrain. The same split and scaling are performed on Y

to obtain Y train and Y test as well. The parameters in training the SVR models are

chosen as ε = 10−2 and M = 100. The radial basis function (RBF) kernel

Q(xi,xj) = −σ‖xi − xj‖2 (6.26)

is used with σ = 10−2. Applying the trained SVR predictor on Xtrain and Xtest yields

the predicted loads Ŷ train and Ŷ test, respectively.

Two metrics are used to evaluate the performance of the SVR load predictor,

namely root mean square error (RMSE) and mean absolute percentage error (MAPE).

RMSE measures the square root of the average squared error for each load, and hence
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the unit is MW. MAPE measures on average how much the predicted loads deviate

from their true values in percentage. These metrics for each load i are calculated as

RMSEtest,i =

√√√√ 1

m

m∑
j=1

(Y test,i,j − Ŷ test,i,j)2 (6.27)

MAPEtest,i =
1

m

m∑
j=1

∣∣∣∣∣Y test,i,j − Ŷ test,i,j

Y test,i,j

∣∣∣∣∣ (6.28)

where Y test,i is the ith column of Y test. These metrics are used to evaluate the

performance of the SVR load predictor on testing data.

Figure 6.3 illustrates the RMSE and MAPE for the SVR models. RMSE values

largely depend on the load values itself, for example, load 5 has the largest RMSE

value because it is the biggest load in the system. From Figure 6.3(b) we can see that

the MAPE for most loads are around 1%, and MAPE for load 19, the most difficult

load to predict, is around 2%. Comparing these quantities for Models 1 and 2, we can

see that they are both smaller for Model 2. Recall that the difference between Models

1 and 2 is that Model 2 considers all prior loads, while Model 1 only includes the prior

data at the load of interest. This result indicates that considering spatial correlations

does improve the performance of the SVR load predictor. Comparing Models 2 and

3, it can be concluded that including too much historical data as features decreases

the accuracy of the SVR load predictor. Besides, it can be seen from Table 6.2 that

using too many features makes it extremely slow in training the SVR model. Thus,

in the following sections, Model 2 is adopted to generate predicted loads used by the

SVM attack detector.

In addition, we benchmark the performance of our SVR predictor against three

commonly used regression techniques, namely least-squares (LS), ridge regression,

and LASSO, in terms of RMSE and MAPE. Least-squares is pure linear regression.

Ridge regression is least-squares linear regression with regularization on the l2-norm

94



0 2 4 6 8 10 12 14 16 18 20

Load index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

SE
 (M

W
)

Model1
Model2
Model3

0 2 4 6 8 10 12 14 16 18 20

Load index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
AP

E 
(%

)

Model1
Model2
Model3

(a)

(b)

Figure 6.3: Performance of the SVR Models on Testing Data under Two Metrics:
(a) RMSE, and (b) MAPE.

of the coefficients, while LASSO regularizes on the l1-norm. Least-squares attempts

to solve

minimize
w,b

∑
j

(yj −wTxj − b)2. (6.29)

With regularization, ridge regression aims to find the optimal solution to the following

optimization problem

minimize
w,b

∑
j

(yj −wTxj − b)2 + ρr‖w‖22, (6.30)
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while LASSO solves

minimize
w,b

∑
j

(yj −wTxj − b)2 + ρl‖w‖1, (6.31)

where ρr and ρl are regularization parameters for ridge regression and LASSO, re-

spectively.

Figures 6.4 and 6.5 illustrate the RMSE and MAPE, respectively, on testing data

Xtest of our SVR predictor (Model 2), least-squares, ridge regression, and LASSO.

All models are trained in Scikit-learn using the same training data Xtrain. Ridge

regression and LASSO regularization parameters are ρr = ρl = 1. It can be seen

that the SVR model outperforms the other three regression approaches, because it is

capable of performing non-linear regression, while the other three can only find linear

relationships.
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Figure 6.4: RMSE of SVR, Least-squares, Ridge Regression, and LASSO.

6.3.2 The SVM Attack Detector Performance on Random Attacks

The outputs of the SVR load predictor are used as input features of the SVM

attack detector. Depending on the existence of attack, input data samples of the
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Figure 6.5: MAPE of SVR, Least-squares, Ridge Regression, and LASSO.

SVM are given by

uj = [mo,wd, hr, P̂D, PD], if vj = −1, (6.32a)

uj = [mo,wd, hr, P̂D, PD,Atk], if vj = 1, (6.32b)

where vj = −1 indicates that there is no attack, and vj = 1 otherwise. The predicted

loads P̂D of m = 35011 hours, along with their ground truth values PD and time

information, yield 35011 normal data samples for the SVM detector in the form of

(6.32a). The length of each data sample q = 3 + 20 × 2 = 43. The normal data

matrix Unormal is of size 35011 × 43. We randomly select 80% of these vectors for

training and the remaining 20% for testing. We create 105 attacked data samples in

the form of (6.32b) using Alg. 5, resulting in U attack of size 105 × 43 with real load

shift τr ranging from 1% to 20%. From now on, we omit the subscript in τr for easier

presentation.

We obtain different SVM models to compare their performances by varying the

penalty factor C and τmin (the minimal τ used in the training data). The normal

data in the training data matrix U train are the same for all models, i.e., the same

80% of Unormal. The attacked data in U train include 80% of attacked data samples
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with τ ≥ τmin. The testing data U test consists of the remaining 20% of attacked data

that are not used in training with all load shifts, and are the same for all models.

For each model, every column of training data matrix U train is scaled to zero mean

and unit variance, and the same scaling is performed to the testing data. The kernel

function used in the SVM detector is also the RBF kernel in the form of (6.26), but

this time σ is calculated as σ = 1/q (this is the “scale” option in Scikit-learn).

Figure 6.6 illustrates the effect of τmin on missed detection rate and false alarm

rate. The false alarm rate is calculated by applying the detector on all m = 35011

normal data samples, including both training and testing. The parameter C is fixed at

1000. τmin controls the amount of attacked training data. For instance, if τmin = 3%,

U train contains 80% of attacks with τ ≥ 3%, but does not contain any attack with

τ < 3%. Intuitively, attacks with higher τ are further away from the normal data

than those with lower τ . Thus, a detector trained with a low τmin will have a high

false alarm rate, as the SVM is trying to find a decision boundary between normal

data and attacks with small load shift. However, it should perform better in detecting

attacks with small τ than detectors trained with large τmin. In Figure 6.6, the blue

lines indicate the missed detection rate of attacks with certain load shift τ , and

the red line shows the false alarm rate. It can be seen that as τmin increases, the

false alarm rate decreases, but the missed detection rate increases for attacks with

small load shifts. This observation justifies the intuition discussed above, indicating

that τmin is indeed a trade-off between false alarm rate and detection probability for

small attacks. Note that for attacks with large τ , the effect of τmin is insignificant.

For testing attacks with extremely small τ , the missed detection rates are very high

even with small τmin, because these attacks are in principle very difficult to detect.

However, these attacks are also unlikely to cause severe consequences. From Figure

6.6, we can see that τmin = 3% is a good choice for our dataset.
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Figure 6.6: Effect of Minimum Training Load Shift τmin. False Alarm Rate and
Missed Detection Rate When Testing Random Attacks are Each Plotted as A Func-
tion of τmin. Data is Shown for C = 1000.

The parameter C trades off misclassification of training examples against sim-

plicity of the decision boundary. A small C makes the decision boundary smooth,

while a large C aims at classifying all training samples correctly. Therefore, detector

with large C is expected to have a better performance. However, a large C allows

for fewer outliers, making it harder to solve the SVM optimization problem (6.12),

so the training time increases. Figure 6.7 shows the performance of models trained

with different C on testing random attacks while fixing τmin = 3%. The larger C

is, the higher detection probability we can achieve. This model performs well on

attacks with large τ , and the detection probability almost achieves 100% starting at

τ = 7%. System operators can similarly vary τmin and C to obtain SVM model with

satisfactory performance, in terms of false alarm rate and missed detection rate.

6.3.3 The SVM Attack Detector Performance on Intelligently Designed LR Attacks

In this section, we evaluate the performance of the trained SVM detector on cost

maximization (CM) and line overflow (LO) attacks. According to the previous section,

here we choose SVM parameters C = 2000 and τmin = 3% to balance false alarm rate
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Figure 6.7: Effect of Outlier Penalty Factor C on Testing Random Attack Detection
Probability. Data is Shown for τmin = 3%.

and missed detection. The procedures to generate these attacks are described as

follows. On the IEEE 30-bus system, we first perform base case DCOPF for each

hour in year 2015 through 2018 using the true loads. At hour h, if there are at least

2 lines whose power flows are greater than 80% of their ratings, we say those lines

are critical lines, and h is a critical hour. The total number of critical hours is found

to be 8038. We focus on critical hours because the false loads are likely to cause

congestions at those times, which in turn change the generation dispatch to have

consequences. For each critical hour, we solve optimization problem (2.8) 20 times

(replacing the objective to be generation cost) to obtain attack vector c fo CM attacks

with τ = 1%, 2%, . . . , 20%. For each critical line, we solve (2.8) 20 times to obtain c

for LO attacks, also with τ = 1%, 2%, . . . , 20%. Every non-zero c is used to construct

false load vector PD,Atk as in (6.8). If a PD,Atk makes the DCOPF infeasible, it is

discarded. The total number of false loads for CM attacks and LO attacks are 113031

and 343135, respectively.

Figure 6.8(a) illustrates the detection probability versus the load shift τ on CM

and LO attacks. For both attacks, the detection probabilities almost achieve 100%
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Figure 6.8: Detection Probability on CM and LO Attacks as A Function of Load
Shift τ . (a) All Attacks, and (b) Attacks with Consequences. Data is Shown for
τmin = 3% and C = 2000.

when τ ≥ 4%. For attacks with τ = 3%, the detector performance drops to 97%

for LO attacks, but it is still perfect in detecting CM attacks. Comparing with the

performance on random attacks as shown in Figure 6.7, it can be seen that intelligently

designed attacks are easier to detect than random attacks.

Figure 6.8(b) illustrates the detection probability versus load shift τ on CM and

LO attacks with consequences. CM attacks with consequences are those that increase

the operating cost by more than 1%. LO attacks with consequences are those result

in physical overflows. Comparing Figures 6.8(a) and 6.8(b), it can be seen that the
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detector performs even better on attacks with consequences.

6.3.4 Attack Mitigation

If LR attack is flagged by our detection framework, the simplest way to mitigate

the attacks is to temporarily use the loads output by the SVR load predictor for

re-dispatching purposes. To test the mitigation performance using this method, we

compare the worst consequences of intelligently designed attacks with and without

our detection framework.

In order to obtain the consequences, we run DCOPF three times using different

loads. Under normal operation, running DCOPF with true loads PD,normal yields the

attack-free generation dispatch PG,normal. Using attacked loads PD,Atk to run DCOPF

gives attacked dispatch PG,Atk. Applying PG,Atk on true loads PD,normal yields attacked

line flows PL,Atk = PTDF(PG,Atk−PD,normal). When an attack is detected, the system

runs DCOPF using the SVR predicted loads PD,SVR and the resulting dispatch is

PG,SVR. The corresponding line flows are given by PL,SVR = PTDF(PG,SVR−PD,normal).

Figure 6.9(a) illustrates the mitigation results for CM attacks. The word “maxi-

mum” on the y-axis indicates the worst consequence among all attacks with each load

shift τ . The red line indicates the maximum cost increase without using our proposed

detection framework, calculated as aT (PG,Atk−PG,normal) (recall that a is the genera-

tion cost vector). When an attack is detected, the resulting cost increase is obtained

by aT (PG,SVR − PG,normal). When the detector fails to detect an attack, the cost in-

crease is the attack consequence aT (PG,Atk−PG,normal). Thus, for each load shift, if all

attacks are detected, the data point on the blue line is given by aT (PG,SVR−PG,normal).

Otherwise, it is max[aT (PG,Atk−PG,normal), a
T (PG,SVR−PG,normal)]. Similar procedure

is performed to create Figure 6.9(b) for LO attacks. The red line is obtained by

taking the maximum P l
L,Atk for each load shift (line l is the target line). The blue line
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is obtained by P l
L,SVR if all attacks are detected, and max[P l

L,Atk, P
l
L,SVR] otherwise.

Figure 6.9 illustrates the attack mitigation results for (a) CM attacks and (b) LO

attacks. For each load shift, the points on the red lines indicate the worst consequence

as a result of attack, and the points on the blue lines indicate the worst consequence

with our attack detection framework. Points on the blue line are obtained by taking

the maximum of two quantities: (i) resulting worst consequence if re-dispatch using

SVR predicted loads when attack is flagged; and (ii) the worst attack consequence

when the detector fails. From Figures 6.9(a), we can see that for load shift τ ≥ 3%,

the increases in operation cost are significantly reduced by using SVR predicted loads

when an attack is flagged. For LO attacks, the overflows are significantly reduced

for load shift τ ≥ 4%. The largest cost increase caused by CM attacks that are not

detected is 8.17% (at τ = 2%), and the largest overflow caused by LO attacks that

are not detected is 3.96% (at τ = 3%). Thus, even though our detector fails to detect

a small number of attacks, their consequences are minor. Note that at τ = 1%, using

the SVR predicted loads leads to larger overflow due to inaccurate predictions, but

the overflow is still very small. Therefore, the consequences of LR attacks can be

successfully mitigated using the SVR predicted loads, which gives operators time to

take other corrective actions.

6.4 Conclusion

A machine learning based load redistribution (LR) attack detection framework is

proposed. This detection framework consists of a support vector regression (SVR)-

based load predictor and a support vector machine (SVM)-based attack detector.

The SVR load predictor is trained using features selected from historical load data to

capture both spatial and temporal correlations. The prediction results indicate that

the SVR load predictor can accurately predict loads at all buses. The SVM attack
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Figure 6.9: Mitigation Results of (a) CM Attacks and (b) LO Attacks.
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detector is trained using randomly generated LR attacks, and is shown to be effective

in detecting both randomly generated and intelligently designed attacks, especially

those with consequences. Using the proposed attack detection framework, system op-

erators can make control decisions based on the predicted loads when attack is flagged

to mitigate the consequence of the attacks. It also gives operators time to find the

source of the attacks. Future work will include finding attack localization techniques

that help system operators identify the loads and/or meters that are modified by the

attacker.
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