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ABSTRACT

This thesis introduces new techniques for clustering distributional data according to

their geometric similarities. This work builds upon the optimal transportation (OT)

problem that seeks global minimum cost for matching distributional data and lever-

ages the connection between OT and power diagrams to solve different clustering

problems. The OT formulation is based on the variational principle to differentiate

hard cluster assignments, which was missing in the literature. This thesis shows mul-

tiple techniques to regularize and generalize OT to cope with various tasks including

clustering, aligning, and interpolating distributional data. It also discusses the con-

nections of the new formulation to other OT and clustering formulations to better

understand their gaps and the means to close them. Finally, this thesis demonstrates

the advantages of the proposed OT techniques in solving machine learning problems

and their downstream applications in computer graphics, computer vision, and image

processing.
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Xianfeng Gu and José Bento for sharing their expertise in computational geometry

and graph theories with me and their guidance in preparing my previous papers. I

have also been lucky to collaborate with other talented people — Yonghui Fan,

Dhruman Goradia, Eric M. Reiman, Tianshu Yu, Junwei Zhang, and Wen Zhang.

None of my accomplishments would happen without them.

I spent wonderful summers with my mentors Zhixin Yan at Bosch, Wen P. Liu at

Intuitive Surgical, and Darren Platt at Amyris, who equipped me with the skills

that boosted my research. I also would like to thank all the members at the GSL

lab at ASU for their continued help. Finally, my research has been supported by

scholarships from NIH, NSF and fellowships from ASU. I am sincerely grateful.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 WASSERSTEIN CLUSTERING THROUGH POWER DIAGRAMS . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Primer on Optimal Transportation and Notations . . . . . . . . . . . . . . . . . 8

2.4 Optimal Transportation through Variational Principles . . . . . . . . . . . . 10

2.5 Connections between Variational OT and Monge OT . . . . . . . . . . . . . . 18

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Domain Adaptation on Synthetic Data . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Deforming Triangle Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.3 Applications to MR Images for Alzheimer’s Disease Analysis 26

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 REGULARIZING MONGE OPTIMAL TRANSPORTATION . . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Wasserstein Means via Variational OT . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Regularized Wasserstein Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Triplets Empowered by Class Labels . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Geometric Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Topology Represented by Length and Curvature . . . . . . . . . . . 44

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



CHAPTER Page

3.5.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 Point Set Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Skeleton Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 VARIATIONAL WASSERSTEIN BARYCENTERS FOR GEOMETRIC

CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Related Work and Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Variational Wasserstein Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Wasserstein Barycenters through Variational OT . . . . . . . . . . . 56

4.3.2 The Metric Properties of Wasserstein Barycenters . . . . . . . . . . 61

4.3.3 A Distance among Multiple Distributions . . . . . . . . . . . . . . . . . . 63

4.3.4 On Unbalanced Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.5 On the Spherical Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Geometric Clustering through VWDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Regularized K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Co-Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.3 Regularizing VWBs for Aligning Distributions . . . . . . . . . . . . . 75

4.5 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Vector Quantization and Data Compression . . . . . . . . . . . . . . . . 79

4.6.2 Multi-marginal Distributional Alignment . . . . . . . . . . . . . . . . . . 81

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

v



CHAPTER Page

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



LIST OF TABLES

Table Page

2.1 Classification Accuracy On Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Demographic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Offset Wasserstein Distances In Different Resolutions . . . . . . . . . . . . . . . . . 27

2.4 Classification Accuracy for Alzheimer’s Distance on sMRI. . . . . . . . . . . . . 29

3.1 Classification Results (%) on Office-31 W → A . . . . . . . . . . . . . . . . . . . . . . 46

vii



LIST OF FIGURES

Figure Page

2.1 (a) Power Voronoi Diagram. Red Dots Are Centroids of the Voronoi Cells,

or Clusters. The Power Distances Has an Offset Depending on the Weight

of the Cell. (b) Intersection of Adjacent Cells in 2D and 3D for Computing

Hessian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Given the Source Domain (Red Dots) and the Target Domain (Grey Dots),

the Distribution of the Source Samples Are Driven Into the Target Domain

and Form a Power Voronoi Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 SVM RBF Boundaries for Domain Adaptation. (a) Target Domain in Gray

Dots and Source Domain of Two Classes in Red and Blue Dots; (b) Map-

ping of Centroids by Using VWC; (c, d) Boundaries From VWC With

Linear and RBF Kernels; (e) K-means++ Arthur and Vassilvitskii (2007)

Fails to Produce a Model; (f) After Recentering Source and Target Do-

mains, K-Means++ Yields Acceptable Boundary; (g) D2 Ye et al. (2017);

(h) JDOT Courty et al. (2017a), Final Centroids Not Available. . . . . . . . . . . . 22

2.4 Redistribute Triangulation Based On Curvature. Original Mesh (a) Is Mapped

To A Unit Disk (b). Mean Curvature On The 3D Mesh (c) Is Copied To

The Disk (f). Design An “Augmented” Measure µ (e) On The Disk By In-

corporating Curvature C Into 2D Vertex Area A (d), e.g. µ = 0.4a+ 0.6C.

A Vertex y With a Large Curvature C, in Order to Maintain Its Original

Measure A, Will Shrink Its Own Cluster. As a Result Vertices Collapse

in High-Curvature Regions (g). Mesh Will Be Pulled Back to 3D (h) by

Inverse Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



Figure Page

2.5 The Wasserstein Distance Between the Dirac Measure Template and the

Original Image and the Time to Compute It Under Different Number of

Dirac Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 The Vibration Under Rician Noises of Three sMRI Indices -Wasserstein In-

dex (Orange), Entorhinal Cortex Thickness (Blue), and Hippocampal Vol-

ume (Green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Results From a Linear SVM Classification Between Alzheimer’s Disease and

Normal Control. The Wasserstein Index (WI) Outperforms Traditional In-

dices—Entorhinal Cortex Thickness (ECT), Hippocampal Volume (HPV),

Cortical Thickness (CT), and Brain Volume (BV). . . . . . . . . . . . . . . . . . . . . . . 30

2.8 The Scatter Plot From the Linear Regression of Wasserstein Index (WI) and

the Mini-Mental State Examination (MMSE). The Plot Suggests a Mild

Negative Correlation Between WI and MMSE. The Root Mean Squared

Error From the Linear Regression Model Is 3.55. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Matching Two Gaussian Mixtures With Ye et al. (2017) and Our

Method. Updating Both Supports and Measures May Result in Cen-

troids Not Evenly Distributed Into the Target Domain, Which Al-

though May Not Affect the Classification Boundary in This Example. . 39

3.2 Regularizing the WM by the Intra-Class Triplets Can Adapt It to Domains

That Suffer Unknown Rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 RWM Adapting Shifted Two Moons: 1st Row Performance Over Iteration

Under 45o; 2nd and 3rd Rows Performances of RWM and OTDA Under

Different Degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Sample Images From the Office-31 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



Figure Page

3.5 T-SNE Embeddings of the Office-31 Samples Before and After OTDA and

RWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Alignment of Translationally and Rotationally Shifted Bunnies After RWM

and ICP. T Indicates the Number of Iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Skeleton Layout. RWM Embeds a Pre-Defined Graph Which Relates to

the Shape of the Cloud. Numbers Indicating MSE Showing RWM Balances

Between MSE and Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Ten Random Nested Ellipses Averaged According to the Euclidean Dis-

tance (ED) and the Wasserstein Distance (WD). For a Better Visual,

We Use Euclidean Sums Instead. Compared With the Linear Program-

ming (LP) Solver, Using Our Method (VWD) Leads to a Smoother

Barycenter. Both Solvers Preserve the Topology (Rainbow Colors) of

the Ellipses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 The Triangle Inequality for Dν(µ1:3) Which Is a 3-Metric. . . . . . . . . . . . . 61

4.3 Using VWDs (Blue) and the Total Pairwise WDs (Orange) for Measur-

ing the Compactness of Multiple Probability Distributions. Left and

Right Illustrate the Case of 3 and 4 Marginals, Respectively. . . . . . . . . . . 63

4.4 Transshipment: Transporting Measures Through a Set of Discrete Re-

lays. Colors on the Measures Specify Correspondences. . . . . . . . . . . . . . . . 66

4.5 Mass Difference Over Iterations for VOT on Balanced and Unbalanced

Measures. They Follow the Same Trend and Converge at Almost the

Same Rate. The Resulting Clusters Are Exactly the Same . . . . . . . . . . . . 67

4.6 Interpolating Two Gaussian’s of Different Number of Samples by Com-

puting the VWB Results in a Mean Isotropic Gaussian. . . . . . . . . . . . . . . . 69

x



Figure Page

4.7 Interpolating Two Gaussian Distributions on a Sphere by Minimizing

the VWD. At the Same Time, We Build Sparse Connections Between

the Two Distributions via a Few Discrete Relays. . . . . . . . . . . . . . . . . . . . . . 71

4.8 Results From Different Regularization Strength λ in (4.12). Left Is

Traditional K-Means and Right Is Constrained K-Means. . . . . . . . . . . . . . 73

4.9 Time to Compute VWBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Quantizing RGB Values From 24 Bits to 4 Bits by Solving K-Means,

OT, and the WB. Solving OT Results in Smoother Images; Solving

WBs Can Cluster and Merge Colors at the Same Time. . . . . . . . . . . . . . . . 80

4.11 Aligning Three Point Clouds While Preserving Their Structure. . . . . . . . 82

4.12 Triangle Inequality for N = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



Chapter 1

INTRODUCTION

Computer engineering engages with connecting computational theories and real-

world problems by offering practical solutions with a mathematical foundation. De-

veloping reliable numerical techniques is the ultimate goal of researchers in computer

engineering. These computational techniques can be used to discover homogeneous

groups, compress data for efficient storage, and measure similarities among different

objects.

Partitioning distributional data into a fixed number of clusters according to their

geometry is a fundamental task at the core of computer engineering with enormous

applications in machine learning, computer graphics, computer vision, and image pro-

cessing. This thesis investigates the connection between optimal transportation and

geometric clustering and advances the computational methods for solving the optimal

transportation problem with the goal of offering new perspectives and directions for

solving different geometric clustering problems.

Gaspard Monge raised the optimal transportation problem more than 200 years

ago, but because of its intractability, most researchers of the community have been

following its relaxed version introduced in the 1940s by Leonid Kantorovich. While

many works, including some of the recent focus on advancing the transportation tech-

niques for aligning and clustering distributional data from Kantorovich’s perspective,

this thesis introduces techniques that solve OT problems from Monge’s perspective.

It builds upon the theoretical breakthrough in solving Monge’s OT problem and closes

the gap between Monge OT and several clustering problems. It develops the theoret-

ical connections between Monge OT and different clustering problems and explores
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the advantage of using Monge’s OT formulation over Kantorovich’s formulation on

solving these problems. The majority of the thesis has appeared in the following

publications.

• Mi, Liang, Wen Zhang, Junwei Zhang, Yonghui Fan, Dhruman Goradia, Kewei

Chen, Eric M. Reiman, Xianfeng Gu, and Yalin Wang. ”An optimal trans-

portation based univariate neuroimaging index.” In Proceedings of the IEEE

International Conference on Computer Vision, pp. 182-191. 2017.

• Mi, Liang, Wen Zhang, Xianfeng Gu, and Yalin Wang. ”Variational Wasserstein

Clustering.” In Proceedings of the European Conference on Computer Vision

(ECCV), pp. 322-337. 2018.

• Mi, Liang, Wen Zhang, and Yalin Wang. ”Regularized Wasserstein Means

Based on Variational Transportation.” In Proceedings of the AAAI Conference

on Artificial Intelligence (AAAI), 2020. (To appear)

• Mi, Liang, Tianshu Yu, Jose Bento, Wen Zhang, Baoxin Li, and Yalin Wang.

”Variational Wasserstein Barycenters for Geometric Clustering.” (In prepara-

tion).

We start with reiterating basic concepts of optimal transportation in Chapter 2

and introduce the variational principle to solve optimal transportation and the connec-

tion between OT and power Voronoi diagrams. We then discuss solving the K-means

clustering problem with variational OT and its different applications. In chapter 3,

we focus on aligning distributional data by variational OT. We present the practical

difficulties of using the vanilla variational OT to align distributions and our solution

to overcome it by inserting regularization techniques. In chapter 4, we broaden our

discussion to solving the Wasserstein barycenter problems. By doing so, we achieve

2



the full power of our clustering technique in solving optimal transportation-related

problems. We further discuss the metric properties of Wasserstein barycenters and

the advantages of our method over other OT solvers in solving geometric clustering

problems.
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Chapter 2

WASSERSTEIN CLUSTERING THROUGH POWER DIAGRAMS

In this chapter, we discuss the connection between optimal transportation (OT)

and power diagrams and how we leverage the geometric properties of OT to aggregate

distributional data according to their spatial similarities. Because OT produces the

metric called the Wasserstein distance, we name the process Wasserstein clustering.

We first present our motivation and related work on Wasserstein clustering and then

provide the preliminaries on optimal transportation and K-means clustering. We then

divide deep into the variational principle for solving semi-discrete optimal transporta-

tion, which is equivalent to solving a constrained K-means clustering problem. We

demonstrate the use of our method with different experiments.

2.1 Introduction

Aggregating distributional data into clusters has ubiquitous applications in com-

puter vision and machine learning. A continuous example is unsupervised image

categorization and retrieval, where similar images reside close to each other in the

image space or the descriptor space, and they are clustered together and form a spe-

cific category. A discrete example is document or speech analysis, where words and

sentences that have similar meanings are often grouped together. K-means Lloyd

(1982); Forgy (1965) is one of the most famous clustering algorithms, which aims

to partition empirical observations into k clusters in which each observation has the

closest distance to the mean of its own cluster. It was originally developed for solving

quantization problems in signal processing, and in the early 2000s researchers have

discovered its connection to another classic problem optimal transportation which

4



seeks a transportation plan that minimizes the transportation cost between probabil-

ity measures Graf and Luschgy (2007).

The optimal transportation (OT) problem has received great attention since its

very birth. Numerous applications such as color transfer and shape retrieval have

benefited from solving OT between probability distributions. Furthermore, by re-

garding the minimum transportation cost – the Wasserstein distance – as a metric,

researchers have been able to compute the barycenter Agueh and Carlier (2011) of

multiple distributions, e.g. Cuturi and Doucet (2014); Solomon et al. (2015), for var-

ious applications. Most researchers regard OT as finding the optimal coupling of the

two probabilities, and thus each sample can be mapped to multiple places. It is of-

ten called the Kantorovich OT. Along with this direction, several works have shown

their high performances in clustering distributional data via optimal transportation,

.e.g. Ye et al. (2017); Solomon et al. (2015); Ho et al. (2017). On the other hand,

some researchers regard OT as a measure-preserving mapping between distributions,

and thus a sample cannot be split. It is called the Monge-Brenier OT.

In this chapter, we introduce a clustering method from the Monge-Brenier ap-

proach. Our method is based on Gu et al. Gu et al. (2013) who provided a variational

solution to Monge-Brenier OT problem. We call it variational optimal transportation

and name our method variational Wasserstein clustering. We leverage the connection

between the Wasserstein distance and the clustering error function, and simultane-

ously pursue the Wasserstein distance and the K-means clustering by using a power

Voronoi diagram. Given the empirical observations of a target probability distribu-

tion, we start from a sparse discrete measure as the initial condition of the centroids

and alternatively update the partition and update the centroids while maintaining

an optimal transportation plan. From a computational point of view, our method

is solving a special case of the Wasserstein barycenter problem Agueh and Carlier

5



(2011); Cuturi and Doucet (2014) when the target is a univariate measure. Such a

problem is also called the Wasserstein means problem Ho et al. (2017). We demon-

strate the applications of our method to three different tasks – domain adaptation,

remeshing, and representation learning. In domain adaptation on synthetic data, we

achieve competitive results with D2 Ye et al. (2017) and JDOT Courty et al. (2017a),

two methods from Kantorovich’s OT. The advantages of our approach over those

based on Kantorovich’s formulation are that (1) it is a local diffeomorphism; (2) it

does not require pre-calculated pairwise distances; and (3) it avoids searching in the

product space and thus dramatically reduces the number of parameters.

2.2 Related Work

The optimal transportation (OT) problem was initially raised by Monge Monge

(1781) in the 18th century, which sought a transportation plan for matching dis-

tributional data with the minimum cost. In 1941, Kantorovich Kantorovich (1942)

introduced a relaxed version and proved its existence and uniqueness. Kantorovich

also provided an optimization approach based on linear programming, which has

become the dominant direction. Traditional ways of solving the Kantorovich’s OT

problem rely on pre-defined pairwise transportation costs between measure points,

e.g., Cuturi (2013), while recently researchers have developed fast approximations

that incorporate computing the costs within their frameworks, e.g., Solomon et al.

(2015).

Meanwhile, another line of research followed Monge’s OT and had a breakthrough

in 1987 when Brenier Brenier (1991) discovered the intrinsic connection between

optimal transportation and convex geometry. Following Brenier’s theory, Mérigot

Mérigot (2011), Gu et al. Gu et al. (2013), and Lévy Lévy (2015) developed their

solutions to Monge’s OT problem. Mérigot and Lévy’s OT formulations are non-

6



convex, and they leverage damped Newton and quasi-Newton respectively to solve

them. Gu et al. proposed a convex formulation of OT, particularly for convex domains

where pure Newton’s method works and then provided a variational method to solve

it.

The Wasserstein distance is the minimum cost induced by the optimal transporta-

tion plan. It satisfies all metric axioms and thus is often borrowed for measuring the

similarity between probability distributions. The transportation cost generally comes

from the product of the geodesic distance between two sample points and their mea-

sures. We refer to p–Wasserstein distances to specify the exponent p when calculating

the geodesic Givens et al. (1984). The 1–Wasserstein distance or earth mover’s dis-

tance (EMD) has received great attention in image and shape comparison Rubner

et al. (2000); Ling and Okada (2007). Along with the rising of deep learning in nu-

merous areas, 1–Wasserstein distances have been adopted in many ways for designing

loss functions for its superiority over other measures Lee et al. (2018); Arjovsky et al.

(2017); Frogner et al. (2015); Gibbs and Su (2002). The 2–Wasserstein distance,

although requiring more computation, are also popular in image and geometry pro-

cessing thanks to its geometric properties such as barycenters Agueh and Carlier

(2011); Solomon et al. (2015). In this paper, we focus on 2–Wasserstein distances.

The K-means clustering method goes back to Lloyd Lloyd (1982) and Forgy Forgy

(1965). Its connections to the 1, 2-Wasserstein metrics were leveraged in Ho et al.

(2017) and Applegate et al. (2011), respectively. The essential idea is to use a sparse

discrete point set to cluster denser or continuous distributional data with respect to

the Wasserstein distance between the original data and the sparse representation,

which is equivalent to finding a Wasserstein barycenter of a single distribution Cuturi

and Doucet (2014). A few other works have also contributed to this problem by

proposing fast optimization methods, e.g., Ye et al. (2017).
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In this paper, we approach the K-means problem from the perspective of optimal

transportation in the variational principle. Because we leverage power Voronoi dia-

grams to compute optimal transportation, we simultaneously pursue the Wasserstein

distance and K-means clustering. We compare our method with others through em-

pirical experiments and demonstrate its applications in different fields of computer

vision and machine learning research.

2.3 Primer on Optimal Transportation and Notations

We begin by iterating key concepts of optimal transportation (OT) and Wasser-

stein barycenters (WBs). Suppose µ, ν are Borel probability distributions supported

in Polish spaces X (x), Y(y), respectively. Let P(X ×Y) be the set of all probability

distributions on X ×Y . Then, we denote by Π(µ, ν) = {π ∈ P(X ×Y) |
∫
X dπ(x, y) =

dν(y),
∫
Y dπ(x, y) = dµ(x)} the set of all transportation maps π between µ and ν.

Thus, π is also the joint distribution of µ and ν, and dπ(x, y) specifies the mass

transported between x and y. In addition, we use c(x, y) : X × Y → R≥0 to specify

the transportation cost between x and y.

The OT problem is to minimize the total transportation cost:

min
π∈Π(µ,ν)

I1[π] =

∫
X×Y

c(x, y)pdπ(x, y),

where p ∈ [1,∞) indicates the moment of the cost function. Then, we call this

minimum the p-Wasserstein distance:

Wp(µ, ν) = inf
π∈Π(µ,ν)

(I1[π])1/p .

The above is the well-known Kantorovich’s OT formulation that admits a partial map

that splits the measure dµ(x) during transportation. In Monge’s original version, each

location x has a unique correspondence y. If we define such a map as T : X → Y ,
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then we have dπT (x, y) ≡ dµ(x)δy(T (x)) and Monge OT:

T ∗ = arg min
πT∈Π(µ,ν)

I1[πT ] ≡
∫
X
c(x, T (x))pdµ(x) (2.1)

T pushes forward µ to ν, i.e. ν = T#µ; more rigorously, for any measurable set

B ⊂ Y , ν[B] = µ[T−1(B)]. In other words, T preserves measure, or T is measure-

preserving. We direct readers to Villani (2003); Peyré et al. (2019) for more on OT.

In this paper, we compute Monge OT. In particular, we narrow our discussion to

X ,Y ⊆ Rn, c(x, y) = ‖x − y‖2, and p = 2 unless specified otherwise. Hence, we

compute W2.

The Wasserstein distance (WD) satisfies all metric properties Villani (2003). The

fréchet mean of a collection of distributions µ1:N
def
= {µi}Ni=1 w.r.t the WD is called

the Wasserstein barycenter (WB). It is the minimizer of the weighted average:

ν∗ = arg min
ν∈P(Y)

N∑
i=1

λiW2
2 (µi, ν), (2.2)

for λi ∈ [0, 1] and
∑

i λi = 1. We simplify (2.2) by assuming uniform weights and

rewrite it as

ν∗ = arg min
ν∈P(Y)

1

N

N∑
i=1

∫
Xi
‖x− T ∗i (x)‖2

2dµi(x), (2.3)

s.t. T ∗i #µi = ν is OT for all i. Suppose the barycenter ν is supported on K discrete

atoms y = {yk}Kk=1. If we fix ν(yk) and only allow updating y, then readers can

notice that (2.3) is simultaneously solving N constrained K-means problems using

the same set of centroids with fixed capacity, ν = {νk}Kk=1. T ∗i serves as the optimal

assignment function in each K-means problem. Note that T ∗i (x) is a hard assignment

that has only one target because we solve Monge OT.

To clarify notation, we use ν to denote a probability distribution, continuous or

discrete. If it is discrete, i.e., a set of Dirac measures, then we use y and ν to

denote its support and measure. yk and νk specify the support and measure of the
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kth Dirac measure. We use | · | to denote the cardinality of the discrete distribution.

To simplify our discussion, we only consider positive Dirac measures when counting

the cardinality, i.e. νk > 0 ∀ k.

Given the empirical observations {(xk, µk)} of a probability distribution X(x, µ),

the K-means clustering problem seeks to assign a cluster centroid (or prototype)

yk = y(xi) with label j = 1, ..., k to each empirical sample xi in such a way that the

error function (2.4) reaches its minimum and meanwhile the measure of each cluster is

preserved, i.e. νk =
∑

yk=y(xi)
µi. It is equivalent to finding a partitionR = {(Rk, yk)}

of the embedding space M . If M is convex, then so is Rk.

arg min
R

∑
xi

µid(xj, y(xj))
p ≡ arg min

R

K∑
k=1

∑
xi∈Rk

µid(xj, y(Rk))
p. (2.4)

Such a clustering problem (2.4), when ν is fixed, is equivalent to Monge’s OT

problem (2.1) when the support of y is sparse and not fixed because π and V induce

each other, i.e. π ⇔ V . Therefore, the solution to (2.4) comes from the optimization

in the search space P(π, y). Note that when ν is not fixed such a problem becomes the

Wasserstein barycenter problem as finding a minimum in P(π, y, ν), studied in Agueh

and Carlier (2011); Cuturi and Doucet (2014); Ye et al. (2017).

2.4 Optimal Transportation through Variational Principles

Directly computing a Monge map is highly intractable and variational methods

have been adopted by most researchers. De Goes et al. (2012); Gu et al. (2013); Lévy

(2015) offer three variational formulations. We follow Gu et al. (2013) and refer to it

as variational OT or VOT.

Suppose ν is supported on K discrete atoms y = {yk}Kk=1 ⊂ Y , that is, ν is a set

of K Dirac measures: ν = {νkδy(yk)}Kk=1. The problem becomes semi-discrete OT.

We present the variational principle for solving the optimal transportation prob-
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Figure 2.1: (a) Power Voronoi Diagram. Red Dots Are Centroids of the Voronoi Cells, or

Clusters. The Power Distances Has an Offset Depending on the Weight of the Cell. (b)

Intersection of Adjacent Cells in 2D and 3D for Computing Hessian.

lem. Given a metric space M , a Borel probability measure X(x, µ), and its compact

support Ω = supp µ = {x ∈ M | µ(x) > 0}, we consider a sparsely supported point

set with Dirac measure Y (y, ν) = {(yk, νk > 0)}, j = 1, ..., k. (Strictly speaking, the

empirical measure X(x, µ) is also a set of Dirac measures but in this paper we refer

to X as the empirical measure and Y as the Dirac measure for clarity.) Our goal

is to find an optimal transportation plan or map (OT-map), π : x → y, with the

push-forward measure π#µ = ν. This is semi-discrete OT.

We introduce a vector h = (h1, ..., hk)
′, a hyperplane on M , γk(h) : 〈m, yi〉+hk =

0, and a piece-wise linear function:

θh(x) = max{〈x, yk〉+ hk}, k = 1, ..., K.

Theorem 1. (Alexandrov Alexandrov (2005)) Suppose Ω is a compact convex poly-

tope with non-empty interior in Rn and {y1, ..., yK} ⊂ Rn are K distinct points

and ν1, ..., νK > 0 so that
∑K

k=1 νk = vol(Ω). There exists a unique vector h =

(h1, ..., hK)′ ∈ RK up to a translation factor (c, ..., c)′ such that the piece-wise linear

convex function θh(x) = max{〈x, yk〉+ hk} satisfies vol(x ∈ Ω | ∇θh(x) = yk) = νk.

Furthermore, Brenier Brenier (1991) proved that the gradient map ∇θ provides
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the solution to Monge’s OT problem, that is, ∇θh minimizes the transportation cost∫
Ω
‖x−∇θh(x)‖2. Therefore, given X and Y , h by itself induces OT.

From Aurenhammer (1987), we know that a convex subdivision associated to a

piecewise-linear convex function uh(x) on Rn equals a power Voronoi diagram, or

power diagram. A typical power diagram on M ⊂ Rn can be represented as:

Vj
def
= {m ∈M | ‖m− yk‖2 − r2

j 6 ‖m− y`‖2 − r2
i }, ∀k 6= `.

Then, a simple calculation gives us

m · yk −
1

2
(yk · yk + r2

k) 6 m · y` −
1

2
(y` · y` + r2

` ),

where m · yk = 〈m, yk〉 and wj represents the offset of the power distance as shown in

Fig. 2.1 (a). On the other hand, the graph of the hyperplane γk(h) is

Ui
def
= {m ∈M | 〈m, yk〉 − hk > 〈m, y`〉 − h`}, ∀k 6= `.

Thus, we obtain the connection between h and the power diagram: hk =
r2k−|yk|

2

2
.

We substitute M(m) with the measure X(x). In our formulation, Brenier’s gra-

dient map ∇θh : Rk(h) → yk “transports” each Rk(h) to a specific point yk. The

total mass of Rk(h) is denoted as: wj(h) =
∑

x∈Rk(h) µ(x).

Now, we introduce an energy function:

I2[h]
def
=

∫ h

0

K∑
k=1

∫
Rk
dµ(x)dhk −

K∑
k=1

νkhk, (2.5)

whose gradient,
{ ∫
Rk
dµ(x)− νk

}
k
, also integrates to

I3[h]
def
=

∫
X
θh(x)dµ(x)−

K∑
k=1

νkhk. (2.6)

The differentiability of I2 w.r.t. h has been discussed in Gu et al. (2013). Its gradient

and Hessian are then given by
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Algorithm 1: Variational Optimal Transportation

Function Variational-OT(X(x, µ), Y (y, v), ε)

h← 0.

repeat

Update power diagram V with (y,h).

Compute cell weight w(h) = {
∑

m∈Vj µ(m)}.

Compute gradient ∇I2(h) and Hessian H using Equation (2.7) and

(2.8).

h← h−H−1∇I2(h). // Update the minimizer h according to (2.9)

until |∇I2(h)| < ε.

return V,h.

end

∇I2(h) = (w1(h)− ν1, ..., wk(h)− νk)T , (2.7)

H =
∂2E(h)

∂hi∂hk
=



∑
l

∫
fil
µ(x)dx

‖yl − y`‖
, i = j, ∀l, s.t. fil 6= ∅,

−

∫
fij
µ(x)dx

‖yk − y`‖
, i 6= j, fij 6= ∅,

0, i 6= j, fij = ∅,

(2.8)

where ‖ · ‖ is the L1–norm and
∫
fij
µ(x)dx = vol(fij) is the volume of the intersection

fij between two adjacent cells. Fig. 2.1 (b) illustrates the geometric relation. The

Hessian H is positive semi-definite with only constant functions spanned by a vector

(1, ..., 1)T in its null space. Thus, I2 is strictly convex in the space of h. By Newton’s

method, we solve a linear system,
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Algorithm 2: Iterative Measure-Preserving Mapping

Function Iterative-Measure-Preserving-Mapping(X(x, µ), Y (y, ν))

repeat

V (h)← Variational-OT(x, µ, y, ν). // 1. Update Voronoi partition

yk ←
∑

x∈Vj µkxk
/∑

x∈Vj µi. // 2. Update y

until y converges.

return y, V .

end

Hδh = ∇I2(h), (2.9)

and update h(t+1) ← h(t) + δh(t). The energy I2 (2.5) is motivated by Theorem 1

which seeks a solution to vol(x ∈ Ω | ∇θh(x) = yk) = νk. Move the right-hand side

to left and take the integral over h then it becomes I2 (2.5). Thus, minimizing (2.5)

when the gradient approaches 0 gives the solution. We show the complete algorithm

for obtaining the OT-Map π : X → Y in Alg. 1. Later in the chapter, we discuss

the connection between the energy of variational OT and the classic OT problem so

that we better understand how we “variationally” minimize I2[h], (2.5), for a height

vector h and that will produce a Monge map T ∗.

We now introduce in detail our method to solve clustering problems through

variational optimal transportation. We name it variational Wasserstein clustering

(VWC). We focus on the semi-discrete clustering problem which is to find a set of

discrete sparse centroids to best represent a continuous probability measure, or its

discrete empirical representation. Suppose M is a metric space and we embody in it

an empirical measure X(x, µ). Our goal is to find such a sparse measure Y (y, ν) that

minimizes (2.4).
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We begin with an assumption that the distributional data are embedded in the

same Euclidean space M = Rn, i.e. X, Y ∈ P(M). We observe that if ν is fixed then

(2.1) and (2.4) are mathematically equivalent. Thus, the computational approaches

to these problems could also coincide. Because the space is convex, each cluster is

eventually a Voronoi cell and the resulting partition V = {(Vj, yk)} is actually a power

Voronoi diagram where we have ‖x− yk‖2− r2
j ≤ ‖x− y`‖2− r2

i , x ∈ Vj, ∀j 6= i and r

is associated with the total mass of each cell. Such a diagram is also the solution to

Monge’s OT problem between X and Y . From the previous section, we know that if

we fix X and Y , the power diagram is entirely determined by the minimizer h. Thus,

assuming ν is fixed and y is allowed to move freely in M , we reformulate (2.4) to

f(h, y) =
K∑
j=1

∑
xi∈Vj(h)

µi‖xi − yk‖2, (2.10)

where every Vj is a power Voronoi cell.

The solution to Eq. (2.10) can be achieved by iteratively updating h and y. While

we can use Alg. 1 to compute h, updating y can follow the rule:

y
(t+1)
k ←

∑
µix

(t)
i

/∑
µi, x

(t)
i ∈ Vj. (2.11)

Since the first step preserves the measure and the second step updates the measure,

we call such a mapping an iterative measure-preserving mapping. Our algorithm

repeatedly updates the partition of the space by variational-OT and computes the

new centroids until convergence, as shown in Alg. 2. Furthermore, because each step

reduces the total cost (2.10), we have the following propositions.

Proposition 1. Alg. 2 monotonically minimizes the objective function (2.10).

Proof. It is sufficient for us to show that for any t ≥ 0, we have

f(h(t+1), y(t+1)) ≤ f(h(t), y(t)). (2.12)
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Algorithm 3: Variational Wasserstein Clustering

Input : Empirical measures XM(x, µ) and YN(y, ν)

Output: Measure-preserving Map π : X → Y represented as (y, V ).

begin

ν ← Sampling-known-distribution. // Initialization.

Harmonic-mapping: M,N → Rn or Dn. // Unify domains.

y, V ← Iterative-Measure-Preserving-Mapping(x, µ, y, ν).

end

return y, V .

The above inequality is indeed true since f(h(t+1), y(t)) ≤ f(h(t), y(t)) according to

the convexity of our OT formulation, and f(h(t+1), y(t+1)) ≤ f(h(t+1), y(t)) for the

updating process itself minimizes the mean squared error.

Corollary 1. Alg. 2 converges in a finite number of iterations.

Proof. We borrow the proof for K-means. Given N empirical samples and a fixed

number K, there are KN ways of clustering. At each iteration, Alg. 2 produces a

new clustering rule only based on the previous one. The new rule induces a lower

cost if it is different than the previous one, or the same cost if it is the same as the

previous one. Since the domain is a finite set, the iteration must eventually enter a

cycle whose length cannot be greater than 1 because otherwise it violates the fact of

the monotonically declining cost. Therefore, the cycle has a length of 1 in which case

the Alg. 2 converges in a finite number of iterations.

Now, we introduce the concept of variational Wasserstein clustering. For a subset

M ⊂ Rn, let P(M) be the space of all Borel probability measures. Suppose X(x, µ) ∈

P(M) is an existing one and we are to aggregate it into k clusters represented by
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Figure 2.2: Given the Source Domain (Red Dots) and the Target Domain (Grey Dots), the

Distribution of the Source Samples Are Driven Into the Target Domain and Form a Power

Voronoi Diagram.

another measure Y (y, ν) ∈ P(M) and assignment yk = π(x), j = 1, ..., k. Thus, we

have π ∈ P(M ×M). Given ν fixed, our goal is to find such a combination of Y and

π that minimize the object function:

Yy,ν = argmin
Y ∈P (M)

π∈P (M×M)

k∑
j=1

∑
yk=π(xi)

µi‖xi − yk‖2, s.t. νk =
∑

yk=π(xi)

µi. (2.13)

(2.13) is not convex w.r.t. y as discussed in Cuturi and Doucet (2014). We

solve it by iteratively updating π and y. When updating π, since y is fixed, (2.13)

becomes an optimal transportation problem. Therefore, solving (2.13) is equivalent

to approaching the infimum of the 2-Wasserstein distance between X and Y :

inf
Y ∈P (M)

π∈P (M×M)

k∑
j=1

∑
yk=π(xi)

µi‖xi − yk‖2 = inf
Y ∈P (M)

W 2
2 (X, Y ). (2.14)

Assuming the domain is convex, we can apply iterative measure-preserving mapping

(Alg. 2) to obtain y and h which induces π. In case that X and Y are not in the

same domain i.e. Y (y, ν) ∈ P (N), N ⊂ Rn, N 6= M , or the domain is not necessarily
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convex, we leverage harmonic mapping Gu and Yau (2008); Wang et al. (2004) to

map them to a convex canonical space. We wrap up our complete algorithm in

Alg. 3. Fig. 2.2 illustrates a clustering result. Given a source Gaussian mixture (red

dots) and a target Gaussian mixture (grey dots), we cluster the target domain with

the source samples. Every sample has the same mass in each domain for simplicity.

Thus, we obtain an unweighted Voronoi diagram. In the next section, we show

examples that involve different mass. We implement our algorithm in C/C++ and

adopt Voro++ Rycroft (2009) to compute Voronoi diagrams. The code is available

at https://github.com/icemiliang/vot.

2.5 Connections between Variational OT and Monge OT

The Lagrangian duality of Monge OT (2.1) is

max
ϕ

min
T

I4[ϕ, T ]
def
=∫

X
‖x− T (x)‖2

2dµ(x) +
K∑
k=1

ϕk (dµ(x)− νk) ,
(2.15)

where ϕ = {ϕk}Kk=1. (2.15) simplifies to

max
ϕ

I4[ϕ] =
K∑
k=1

∫
R′k

(
‖x− yk‖2

2 + ϕk
)
dµ(x)−

K∑
k=1

ϕkνk, (2.16)

R′k = {x ∈ X | ‖x−yk‖2
2 +ϕk ≤ ‖x−y`‖2

2 +ϕ`,∀` 6= k} which coincides with a power

Voronoi diagram.

We prove their following connections which show that we “variationally” minimize

I2[h], (2.5), for a height vector h and that will produce a Monge map T ∗.

Proposition 2. 1. The minimum point of I2[h], (2.5), also minimizes I3[h], (2.6). 2.

Rk ≡ R′k. 3. R in I2[h], (2.5), induces the Monge map T : x→ yk. 4. Minimizing

I2[h], (2.5), is equivalent to maximizing I4[h], (2.16).
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3. R` ≡ R
′

`

Proof.

min
T
I1[T ] =

∫
X
‖x− T (x)‖2

2dµ(x) =
K∑
`=1

∫
R′`

‖x− T (x)‖2
2dµ(x),

s.t.

∫
R′`

dµ(x) = ν`, R′`
def
= {x ∈ X | T (x) = y`}.

max
ϕ

min
T
I4[ϕ, T ]

def
=

K∑
`=1

∫
R′`

‖x− T (x)‖2
2dµ(x) +

K∑
`=1

ϕ`

(∫
R′`

dµ(x)− ν`

)

=
K∑
`=1

∫
R′`

(
‖x− T (x)‖2

2 + ϕ`
)
dµ(x)−

K∑
`=1

ϕ`ν`

=
K∑
`=1

∫
R′`

(
‖x− y`‖2

2 + ϕ`
)
dµ(x)−

K∑
`=1

ϕ`ν`.

Note that R or R′ is induced by T , but we omit T in the notation for simplicity.

Suppose T ∗ is the minimizer of I4[T ], then T ∗ induces the graph R′` = {x ∈

X | ‖x − y`‖2
2 + ϕ` ≤ ‖x − yk‖2

2 + ϕk, ∀k 6= `} because otherwise there would exist

x ∈ R` such that ‖x − y`‖2
2 + ϕ` > ‖x − yk‖2

2 + ϕk and that is contradictory to the

fact that T ∗ is the minimizer. Therefore, R` ≡ R
′

` ∀ `.

Minimizing I2[h] is equivalent to maximizing I4[h].

min I3[h]
def
=

∫
X
θh(x)dµ(x)−

K∑
`=1

ν(y`)h`.

R′` = {x ∈ X | ‖x− y`‖2
2 + ϕ` ≤ ‖x− yk‖2

2 + ϕk,∀k 6= `}

Proof. Given that R` = R′`,

R` ={x ∈ X | xy` + h` ≥ xyk + hk,∀k 6= `}

R′` ={x ∈ X | ‖x− y`‖2
2 + ϕ` ≤ ‖x− yk‖2

2 + ϕk,∀k 6= `}

={x ∈ X | 2xy` − y2
` − ϕ` ≥ 2xyk − y2

k − ϕk,∀k 6= `}
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=⇒ 2h` = −y2
` − ϕ`

h` = −1

2

(
y2
` + ϕ`

)
ϕ` = −2h` − y2

`

I4[h] =
K∑
`=1

∫
R`

(
‖x− y`‖2

2 + ϕ`
)
dµ(x) +

K∑
`=1

ϕ`ν(y`)

=
K∑
`=1

∫
R`
x2dµ(x)− 2

K∑
`=1

∫
R`
xy`dµ(x) +

K∑
`=1

∫
R`
y2
`dµ(x)

− 2
K∑
`=1

∫
R`
h2
`dµ(x)−

K∑
`=1

∫
R`
y2
`dµ(x) + 2

K∑
`=1

h`ν(y`) +
K∑
`=1

y2
`ν(y`)

=− 2
K∑
`=1

∫
R`
xy`dµ(x)− 2

K∑
`=1

∫
R`
h`dµ(x) + 2

K∑
`=1

h`ν(y`) + constants

=− 2
K∑
`=1

∫
R`

(xy` + h`) dµ(x)− 2
K∑
`=1

h`ν(y`) + constants

=− 2I2[h] + constants.

Therefore, minimizing I2[h] is equivalent to maximizing I4[h].

The minimum point of I2[h] also minimizes I3[h].

Proof.

∇I3[h] =

{
∂I3[h]

∂h`

}K
`=1

=

{∫
X

∂θh
h`

dµ(x)− ν`
}K
`=1

=

{∫
R`
dµ(x)− ν`

}K
`=1

∇I2[h] =

{
∂I2[h]

∂h`

}K
`=1

=

{∫
R`
dµ(x)− ν`

}K
`=1

Therefore, ∇I2[h] = ∇I3[h]. As per proved in Gu et al. (2013), both I2[h] and

I3[h] are strictly convex which means their minimum points are ∇I2[h] → 0 or
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∇I3[h] → 0. In order to solve I3[h], we can then instead solve I2[h] for the optimal

h∗.

R in I2[h] induces the Monge map T : x→ y`

Proof.

min I2[h]
def
=

∫ h

0

K∑
`=1

∫
R`
dµ(x)dh` −

K∑
`=1

ν(y`)h`,

R` = {x ∈ X | xy` + h` ≥ xyk + hk,∀k 6= `}.

This is indeed true since R = R′ and R′ induces the Monge map.

2.6 Experiments

While the K-means clustering problem is ubiquitous in numerous tasks in com-

puter vision and machine learning, we present the use of our method in approaching

domain adaptation, remeshing, and representation learning.

2.6.1 Domain Adaptation on Synthetic Data

Domain adaptation plays a fundamental role in knowledge transfer and has ben-

efited many different fields, such as scene understanding and image style transfer.

Several works have coped with domain adaptation by transforming distributions to

close their gap with respect to a measure. In recent years, Courty et al. Courty et al.

(2014) took the first steps in applying optimal transportation to domain adaptation.

Here we revisit this idea and provide our own solution to unsupervised many-to-one

domain adaptation based on variational Wasserstein clustering.

Consider a two-class classification problem in the 2D Euclidean space. The source

domain consists of two independent Gaussian distributions sampled by red and blue

dots, as shown in Fig. 2.3 (a). Each class has 30 samples. The target domain has two

other independent Gaussian distributions with different means and variances, each
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(a)

(e)

(b) (c)

(f) (g)

(d)

(h)

Figure 2.3: SVM RBF Boundaries for Domain Adaptation. (a) Target Domain in Gray

Dots and Source Domain of Two Classes in Red and Blue Dots; (b) Mapping of Centroids

by Using VWC; (c, d) Boundaries From VWC With Linear and RBF Kernels; (e) K-

means++ Arthur and Vassilvitskii (2007) Fails to Produce a Model; (f) After Recentering

Source and Target Domains, K-Means++ Yields Acceptable Boundary; (g) D2 Ye et al.

(2017); (h) JDOT Courty et al. (2017a), Final Centroids Not Available.

having 1500 samples. They are represented by denser gray dots to emulate the source

domain after an unknown transformation.

We adopt support vector machine (SVM) with linear and radial basis function

(RBF) kernels for classification. The kernel scale for RBF is 5. One can notice that

directly applying the RBF classifier learned from the source domain to the target

domain provides a poor classification result (59.80%). While Fig. 2.3 (b) shows the

final positions of the samples from the source domain by VWC, (c) and (d) show the

decision boundaries from SVMs with a linear kernel and an RBF kernel, respectively.

In (e) and (f) we show the results from the classic K-means++ method Arthur and
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Vassilvitskii (2007). In (e), K-means++ fails to cluster the unlabeled samples into

the original source domain and produces an extremely biased model that has and

accuracy of50%. Only after we recenter the source and the target domains yields

K-means++ better results, as shown in (f).

For more comparison, we test two other methods – D2 Ye et al. (2017) and

JDOT Courty et al. (2017a). The final source positions from D2 are shown in (g).

Because D2 solves the general barycenter problem and also updates the weights of

the source samples, it converges as soon as it can find them some positions when the

weights can also satisfy the minimum clustering loss. Thus, in (g), most of the source

samples dive into the right, closer density, leaving those moving to the left with larger

weights. We show the decision boundary obtained from JDOT Courty et al. (2017a)

in (h). JDOT does not update the centroids, so we only show its decision boundary.

In this experiment, both our method for Monge’s OT and the methods Courty et al.

(2017a); Ye et al. (2017) for Kantorovich’s OT can effectively transfer knowledge be-

tween different domains, while the traditional method Arthur and Vassilvitskii (2007)

can only work after a prior knowledge between the two domains, e.g., a linear offset.

Detailed performances are reported in Tab. 2.1.

Table 2.1: Classification Accuracy On Synthetic Data

K-means++∗ K-means++r D2 JDOT VWC

Kernel Linear/RBF Linear RBF Linear RBF Linear RBF Linear RBF

Acc. 50.00 97.88 99.12 95.85 99.25 99.03 99.23 98.56 99.31

Sen. 100.00 98.13 98.93 99.80 99.07 98.13 99.60 98.00 99.07

Spe. 0.00 97.53 99.27 91.73 99.40 99.93 98.87 99.07 99.53

∗: extremely biased model labeling all samples with same class; r: after recenterd.
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2.6.2 Deforming Triangle Meshes

Triangle meshes are a dominant approximation of surfaces. Refining triangle

meshes to best represent surfaces has been studied for decades, including Shewchuk

(2002); Fabri and Pion (2009); Goes et al. (2014). Given limited storage, we prefer

to use denser and smaller triangles to represent the areas with relatively complicated

geometry and sparser and larger triangles for flat regions. We follow this direction

and propose to use our method to solve this problem. The idea is to drive the vertices

toward high-curvature regions.

We consider a genus-zero surface S2 with a boundary approximated by a triangle

mesh TS2(v). To drive the vertices to high-curvature positions, our idea, in general, is

to reduce the areas of the triangles in there and increase them in those locations of low

curvature, producing a new triangulation T ′S2(v) on the surface. To avoid computing

the geodesic on the surface, we first map the surface to a unit disk φ : S2 → D2 ⊂ R2

and equip it with the Euclidean metric. We drop the superscripts 2 for simplicity.

To clarify notations, we use TS(v) to represent the original triangulation on surface S;

TD(v) to represent its counterpart on D after harmonic mapping; T ′D(v) for the target

triangulation on D and T ′S(v) on S. Fig. 2.4 (a) and (b) illustrate the triangulation

before and after the harmonic mapping. Our goal is to rearrange the triangulation on

D, and then the following composition gives the desired triangulation on the surface:

TS(v)
φ−−→ TD(v)

π−−→ T ′D(v)
φ−1

−−−→ T ′S(v).

π is where we apply our method.

Suppose we have an original triangulation Tsub,S(v) and an initial downsampled

version TS(v) and we map them to Tsub,D(v) and TD(v), respectively. The vertex area

AD : v → a on D is the source (Dirac) measure. We compute the (square root of
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(e)

(a)

(h)

(b) (c) (d)

3D Curvature

2D Area3D Curvature

Augmented 2D Area

Original Meshes

Deformed Meshes

(g) (f)

Figure 2.4: Redistribute Triangulation Based On Curvature. Original Mesh (a) Is Mapped

To A Unit Disk (b). Mean Curvature On The 3D Mesh (c) Is Copied To The Disk (f).

Design An “Augmented” Measure µ (e) On The Disk By Incorporating Curvature C Into

2D Vertex Area A (d), e.g. µ = 0.4a + 0.6C. A Vertex y With a Large Curvature C,

in Order to Maintain Its Original Measure A, Will Shrink Its Own Cluster. As a Result

Vertices Collapse in High-Curvature Regions (g). Mesh Will Be Pulled Back to 3D (h) by

Inverse Mapping.

absolute) mean curvature Csub,S : vsub → csub on S and the area Asub,D : vsub → asub

on D. After normalizing a and c, a weighted summation gives us the target measure,

µsub,D = (1− λ) asub,D + λ csub,D. We start from the source measure (v, a) and cluster

the target measure (vsub, µsub). The intuition is the following. If λ = 0, µi,sub = ai,sub

everywhere, then a simple unweighted Voronoi diagram which is the dual of TD(v)

would satisfy Eq. (2.14). As λ increases, the clusters Vj(vj, aj) in the high-curvature

(csub,D) locations will require smaller areas (asub,D) to satisfy aj =
∑

vi,sub∈Vj µi,sub.

We apply our method on a human face for validation and show the result in
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Fig. 2.4. On the left half, we show the comparison before and after the remeshing.

The tip of the nose has more triangles due to the high curvature while the forehead

becomes sparser because it is relatively flatter. The right half of Fig. 2.4 shows

different measures that we compute for moving the vertices. (c) shows the mean

curvature on the 3D surface. We map the triangulation with the curvature onto the

planar disk space (f). (d) illustrates the vertex area of the planar triangulation and

(e) is the weighted combination of 3D curvature and 2D area. Finally, we regard area

(d) as the source domain and the ”augmented” area (e) as the target domain and

apply our method to obtain the new arrangement (g) of the vertices on the disk space.

After that, we pull it back to the 3D surface (h). As a result, vertices are attracted

to high-curvature regions. Note the boundaries of the deformed meshes (g,h) have

changed after the clustering. We could restrict the boundary vertices to move on the

unit circle if necessary. Rebuilding a Delaunay triangulation from the new vertices is

also an optional step after.

2.6.3 Applications to MR Images for Alzheimer’s Disease Analysis

We perform cross-sectional studies on sMRI to evaluate the performance of our

framework on clinical datasets. The dataset is from Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) (adni.loni.usc.edu). The cohort information is detailed in Ta-

ble 2.2. We perform 5-fold cross-validation on classification using the linear support

vector machine (SVM).

Table 2.2: Demographic Information

Group # Sex (F/M) Age MMSE

AD 146 71 / 75 74.2 ± 7.0 22.6 ± 3.1

NC 175 96 / 79 74.4 ± 7.8 29.1 ± 1.3
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Data used in this paper were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (adni.loni.usc.edu) Jagust et al. (2010) Jack Jr et al.

(2008). The ADNI was launched in 2003 as a public-private partnership, led by Prin-

cipal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to

test whether serial MRI, PET, other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early AD.

We test the performance of our algorithm w.r.t. the number of Dirac measures.

We cluster MNI152 into sparse Dirac measures and treat them as the template for

Table 2.3: Offset Wasserstein Distances In Different Resolutions

# of Dirac 171 257 515 1237 2401 4100 5695 8063 12020

Resolution 0.3 0.25 0.2 0.15 0.12 0.1 0.09 0.08 0.07

Offset WD 28.2 15.6 5.92 1.71 0.651 0.321 0.202 0.131 0.074
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computing the Wasserstein index. Inevitably, there is an offset between the original

brain template image and our template. We test the running time and this offset

under different numbers of Dirac measures, or Voronoi cells. After resampling and

harmonic mapping, MNI152 has 90, 045 samples inside a unit ball. The resolution of

the Dirac ranges from 0.4 to 0.07, corresponding to the number of cells from 171 to

12020. We report the results in Table 2.3 and Figure 2.5. All the tests were run on

a 3.40 GHz Intel i7-4770 CPU (single-core) with 8.00 GB RAM.

After resolution reaches 0.1, there is no significant improvement of the offset,

but the computational cost boosts to thousands of seconds. To trade off between

effectiveness and efficiency, we choose to use the Dirac template with a resolution of

0.1 for our following experiments. It contains 4, 100 measure points, or Voronoi cells.

We randomly select an sMRI image from our dataset to test the robustness of

our proposed index to noises. We add noises to the image, producing several noisy

samples and compute their Wasserstein indices (WIs). We expect the WIs to imply

that the noisy samples are very close to the original sample. We also study the

entorhinal cortex thickness (ECT) and hippocampal volume (HPV) for comparison.

We removed the effect of brain size when calculating ECT and HPV.

Gudbjartsson and Patz (1995) suggested that the noise existing in MR images

follows a Rician distribution. We follow Ridgway (2007) and add Rician noises to the

sMRI image. Each time we add the noise of a different level ranging from 10 to 100

with an interval of 10, producing 10 noisy images. Then, we apply our method to

these images and obtain the WIs of all the noisy images. In addition, we capture the

changes of the ECT and HPV by using FreeSurfer. To make these indices comparable

to each other, we calculate the change in percentage between each noisy image and

the original one in terms of WI, ECT, and HPV, respectively, and then compare the

relative changes under different levels of noises. We repeat the experiments for five
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times and take the average of the outcomes.

Figure 2.6 depicts the comparison. The Wasserstein index surpasses both HPV

and ECT since its change stays closer to 0, while HPV suffers from a vibration around

1% and ECT has a larger change around 2%. The upward trend of the WI also

suggests that our proposed index is sensitive to the global change of brain volumes

when the noise becomes stronger enough to have a substantial impact on the original

image. Compared with HPV under different levels of noises, the trajectory of the WD

is smoother and more steady. From the figure, we find the WI is more robust than

ECT and HPV when the noise level is low; under strong noises, ECT and HPV do

not show major changes compared with under mild noises while WI starts to diverge

from the ground truth.

To explore the practicality of our framework on sMRI images as well as its robust-

ness over large brain image datasets, we apply it to images from the ADNI cohort,

including those from 146 AD patients and 175 NC subjects, and compare the Wasser-

stein index (WI) with four frequently used single indices — average ECT, HPV,

average cortical thickness (CT), and brain volume (BV) Cuingnet et al. (2011) — in

terms of their classification accuracies. ECT, HPV, CT, and BV are measured by

FreeSurfer Fischl (2012). All the indices are calculated on the left cerebral hemisphere.

We use the linear support vector machine (SVM) as the classifier and conduct 5-

Table 2.4: Classification Accuracy for Alzheimer’s Distance on sMRI

Index Accuracy F1 Score

Wasserstein Index (WI) 80.1 83.6

Average Entorhinal Cortex Thickness (ECT) 79.1 82.0

Hippocampal Volume (HPV) 76.9 79.7

Average Corticle Thickness 73.2 76.5

Brain Volume 63.6 70.0
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Figure 2.8: The Scatter Plot From the Lin-

ear Regression of Wasserstein Index (WI)

and the Mini-Mental State Examination

(MMSE). The Plot Suggests a Mild Negative

Correlation Between WI and MMSE. The

Root Mean Squared Error From the Linear

Regression Model Is 3.55.

fold cross-validation. Figure 2.7 summarizes the classification accuracies of different

indices. Among all the indices, WI achieves the highest accuracy of 80.1% while ECT

and HPV provide 79.1% and 76.9%, respectively. Cortical thickness and brain volume

yield 73.2% and 63.6%, respectively. We also report the F1 scores in Table 2.4, which

shows that our proposed index achieves relatively balanced results.

In addition, we test the correlation between the Wasserstein index and the clinical

cognitive measure — the mini-mental state examination (MMSE) score. Figure 2.8

shows the result. The plot suggests a mild negative correlation between WI and

MMSE, that is, subjects diagnosed as AD tend to have smaller MMSEs and larger WIs

— which accords with other results. The model is significant at the 5% significance

level with p-value < 10−5. The root mean squared error is 3.55.
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2.7 Summary

Optimal transportation has gained increasing popularity in recent years thanks

to its robustness and scalability in many areas. In this paper, we have discussed its

connection to K-means clustering. Built upon variational optimal transportation, we

have proposed a clustering technique by solving iterative measure-preserving mapping

and demonstrated its applications to domain adaptation, remeshing, and learning

representations.

One limitation of our method at this point is computing a high-dimensional

Voronoi diagram. It requires complicated geometry processing, which causes effi-

ciency and memory issues. A workaround of this problem is to use gradient descent

for variational optimal transportation because the only thing we need from the di-

agram is the intersections of adjacent convex hulls for computing the Hessian. The

assignment of each empirical observation obtained from the diagram can be alterna-

tively determined by nearest neighbor search algorithms. This is beyond the scope of

this paper, but it could lead to more real-world applications.

The use of our method for remeshing could be extended to the general feature

redistribution problem on a compact 2–manifold. Future work could also include

adding regularization to the centroid updating process to expand its applicability

to specific tasks in computer vision and machine learning. The extension of our

formulation of Wasserstein means to barycenters is worth further study.
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Chapter 3

REGULARIZING MONGE OPTIMAL TRANSPORTATION

In this chapter, we discuss regularizing Monge optimal transportation. Aligning

distributional data often requires prior knowledge to be injected into the process to

satisfy additional requirements. Regularizing OT is a common technique to achieve

that. However, directly regularizing Monge OT is intractable due to two facts. One

is that we use the variational method to solve Monge OT brings difficulties to regu-

larizing it because we no longer have direct access to the OT map. The other fact is

that the Monge OT map is binary and not differentiable. We introduce a method to

work around these obstacles and regularize Monge OT maps.

3.1 Introduction

Aligning distributional data is fundamental to many problems in machine learning.

From the early work on histogram manipulation, e.g. Stark (2000), to the recent work

on generative modeling, e.g. Beecks et al. (2011), researchers have proposed various

alignment techniques which benefit numerous fields including domain adaptation,

e.g. Sun and Saenko (2016), and shape registration, e.g. Ma et al. (2016). A universal

approach to aligning distributional data is through optimizing an objective function

that measures the loss of the map between them. Regarding one distribution as the

fixed target and the other the source, the alignment process in general follows an

iterative manner where we alternatively update their correspondence and transform

the source. When the source has much fewer samples or in a lower dimension, the

process is essentially finding a sparse representation Bengio et al. (2013).

The optimal transportation (OT) loss, or the Wasserstein distance, has proved
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itself to be superiors in many aspects over several other measures Gibbs and Su

(2002); Arjovsky et al. (2017), benefiting various learning algorithms. By regarding

the Wasserstein distance as a metric, researchers have been able to compute a sparse

mean Ho et al. (2017) of a distribution, which is a special case of the Wasserstein

barycenter problem Agueh and Carlier (2011) when there is only one distribution.

While optimal transportation algorithms find the correspondence between the distri-

butions, updating the mean can follow the rule that each sample is mapped to the

weighted average of its correspondence(s) Ye et al. (2017).

In this chapter, we raise the problem of regularizing the Wasserstein means. In

addition to finding a mean that yields the minimum transportation cost, in many

cases we also want to insert certain properties so that it satisfies other criteria. A

common technique is adding regularization terms to the objective function. While

most of the existing work, e.g. Cuturi (2013); Courty et al. (2017b), focuses on regu-

larizing the optimal transportation itself, we address the mean update rule and show

the benefit from regularizing it. We introduce a new framework to compute OT-

based sparse representation with regularization. We base our method on variational

transportation Mi et al. (2018a) which produces a map between the source and the

target distributions in a many-to-one fashion. Different from directly mapping the

source into the weighted average of its correspondence Ye et al. (2017); Courty et al.

(2017b); Mi et al. (2018a), we propose to regularize the mapping to cope with specific

problems – domain adaptation and skeleton layout. The resulting mean, or centroid,

can well represent the key property of the distribution while maintaining a small

reconstruction error.
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3.2 Related Work

The Wasserstein distance is the minimum cost induced by OT. In most cases, the

cost itself may not be as desired as the map, but it satisfies all metric axioms Villani

(2003) and thus often serves as the loss for matching distributions, e.g. Ling and

Okada (2007); Arjovsky et al. (2017). Moreover, given multiple distributions, one

can find their weighted average with respect to the Wasserstein metric. This problem

was studied in McCann (1997); Ambrosio et al. (2008) for averaging two distributions

and generalized to multiple distributions in Agueh and Carlier (2011), which coins

the Wasserstein barycenter term.

A special case of the barycenter problem is when there is only one distribution,

and we want to find its sparse discrete barycenter. Because computationally it is

equivalent to the k-means problem, Ho et al. (2017) defines it as the Wasserstein

means problem. Before that, Cuturi and Doucet had discussed it in Cuturi and

Doucet (2014) along with the connection of their algorithm to Lloyd’s algorithm

in that case. Mi et al. (2018a) proposes an OT-based clustering method which is

very close to the Wasserstein means problem. Kolouri et al. (2018) also made a

contribution by discussing the sliced Wasserstein Means problem.

Our work focuses on regularizing the Wasserstein means. We obtain the mean by

mapping the sparse points into the target domain according to the OT correspon-

dence. We insert regularization into the mapping process so that the sparse points

not only have a small OT loss, but they also have certain properties induced by the

regularization terms.

Our work should not be confused with other work on regularizing OT. For example,

Cuturi (2013) introduces entropy-regularized OT where the entropy term controls the

sparsity of the map, and it was later used in Cuturi and Doucet (2014) to compute
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Wasserstein barycenters. Courty et al. (2017b) also leveraged class labels to regularize

OT for domain adaptation. Ferradans et al. (2014) proposed Sobolev norm-based

regularized OT and further regularized barycenter, and yet the regularization is still

added to the OT, not the barycenter. These works only regularize OT and then

directly update the support simply to the average of its correspondence. In this

paper, we regularize the update.

3.3 Wasserstein Means via Variational OT

A special case of the Wasserstein barycenters problem is when N = 1. In that

case, we are computing a barycenter of a single probability measure. We call it the

Wasserstein mean (WM). Beyond a special case, the barycenters and the means have

the following connection.

Proposition 3. Given a compact metric space M , a transportation cost c(·, ·) : M ×

M → R+, and a collection of Borel probability measures µi ∈ P(M), with weights

λi, i = 1, ..., N , the Wasserstein mean νm of their average measure induces a lower

Algorithm 4: Wasserstein Means

Input : µ(x) ∈ P(M) and Dirac measures {νj, yj}

t = 0.

repeat

ν(t+1) ← Update weight according to (3.3).

π(t+1) ← Compute OT with fixed y(t), ν(t).

y(t+1) ← Update support according to (3.2).

t← t+ 1.

until convergence.

return π, y, ν.
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bound of the average Wasserstein distance from the barycenter νb to them, provided

that |Ωνb | ≤ |Ωνm| ≤ k for some finite k.

Proof. Since W 2
2 (νb, ·) is convex for its metric property, according to Jensen’s inequal-

ity, we have

W 2
2 (νb,

N∑
i=1

λiµi) ≤
N∑
i=1

λiW
2
2 (νb, µi).

Then, according to Wasserstein mean’s definition,

W 2
2 (νm,

N∑
i=1

λiµi) ≤ W 2
2 (νb,

N∑
i=1

λiµi), ∀νb.

The result shows. The equal sign holds when N = 1.

We should point out that if {µi} are discrete measures, then for the barycenter to exist

we need to add the condition from Anderes et al. (2016) that |Ωνb| ≤
∑N

i=1 |Ωµi | −

N + 1, which also bounds |Ωνm| through |Ωνm| ≤
∑N

i=1 |Ωµi |.

Now, approaching Wasserstein means is essentially through optimizing the follow-

ing objective function:

min f(π, y, ν)
def
= min
π,yj ,νj

k∑
j=1

∑
yj=π(x)

µ(x)‖yj − x‖2
2,

s.t. νj =
∑

yj=π(x)

µ(x).

(3.1)

Compared to OT, solving WM w.r.t. (3.1) introduces 2 additional parameters –

measure ν and its support y. When y and ν are fixed, (3.1) becomes a classic optimal

transportation problem and we adopt variational optimal transportation (VOT) Mi

et al. (2018a) to solve it. Thus, (3.1) is minimizing the lower bound of the OT cost.

Then, it boils down to solving for y and ν. Certainly (3.1) is differentiable at all

y ∈ Rn×k and is convex. It’s optimum w.r.t. y can be achieved at

ỹj =

∫
Ωµ∩Sj xdµ(x)∫
Ωµ∩Sj dµ(x)

. (3.2)
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It is essentially to update the mean to the centroid of corresponding measures, adopted

in for example Cuturi and Doucet (2014); Ye et al. (2017); Courty et al. (2017b). The

slight difference in our method is that VOT is non-mass splitting and thus the centroid

in our case has a clear position without the need for weighting.

As discussed in Cuturi and Doucet (2014), (3.1) is not differentiable w.r.t. ν.

However, we can still get its optimum through the following observation.

Observation 1. The critical point of the function ν → f(π, ν) is where ν induces

π being the gradient map of the unweighted Voronoi diagram formed by ν’s support

y. In that case, every empirical sample µ(x) at x is mapped to its nearest yj, which

coincides with Lloyd’s algorithm.

Proof. Suppose ν induces the OT map π from every x to its nearest yj. Then, the

map π′ : x→ yj′ that satisfies any other ν ′ =
∫

Ω∩Sj′
dµ(x) will yield an equal or larger

cost
∫

Ω
‖yj − xi‖2

2dµ(xi) ≤
∫

Ω
‖yj′ − xi‖2

2dµ(xi).

Thus, we can write the update rule for ν as

ν̃(yj) =

∫
Ω∩Sj

dµ(x),

s.t. Sj = {x ∈M | ‖x− yj‖2 ≤ ‖x− yi‖2, i 6= j}.
(3.3)

Updating the three parameters π, y, and ν can follow the block coordinate de-

scent method. Since at each iteration we have closed-form solutions in the y and ν

directions, there is no need to do a line search there. We wrap up our algorithm for

computing the Wasserstein means in Alg. 4

As discussed in Cuturi and Doucet (2014), when N = 1 and p = 2, computing the

Wasserstein barycenter (in this case, the Wasserstein mean) is equivalent to Lloyd’s k-

means algorithm. The difference also occurs when we have a constraint on the weight

νj(y). Ng Ng (2000) considered a uniform weight for all Sj. Our algorithm can adapt
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to any constraint on νj ≥ 0. In this case, our algorithm is equivalent to Cuturi and

Doucet (2014), where the update of the support is equivalent to re-centering it by

our (3.2).

Complexity As we discuss in 2.4, we vectorize the computation with PyTorch

because parameters in VOT can be optimized individually and thus parallelly. Given

N empirical samples and K centroids, our implementation of OT runs O(KN) on

CPU and theoretically O(N) on GPU. The complexity added by regularization is

as follows. The complexity in 5.1 is O(K); 5.3 is O(K3) mainly from solving SVD,

but in practice, we choose a small or a constant number K ′ << K for SVD; 5.4 is

O(K) for computing curvature. Thus, the total computational complexity of RWM is

O(N)+O(K3), depending on the regularization term. We also compute the pair-wise

distances between empirical samples and centroids beforehand as in Cuturi (2013),

making the memory consumption on the level of O(KN).

Algorithm 5: Regularized Wasserstein Means

Input : µ(x) ∈ P(M), {νj, yj}

t = 0.

repeat

π(t+1) ← Compute OT π(µ, ν) with fixed y(t).

ỹ ← Compute new centroid according to (3.2).

repeat

y(t+1) ← Update centroid by optimizing (3.6).

until y(t+1) converges.

t← t+ 1.

until π and y converge.

return π, y.
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Figure 3.1: Matching Two Gaussian Mixtures With Ye et al. (2017) and Our Method.

Updating Both Supports and Measures May Result in Centroids Not Evenly Dis-

tributed Into the Target Domain, Which Although May Not Affect the Classification

Boundary in This Example.

Although both the supports y and the measures ν are variable in the Wasserstein

means problem, updating both of them complicates the optimization landscape and

even problematic in some sense. In Figure 3.1, we show a comparison between our

method and Ye et al. (2017), which updates both, on fitting a Gaussian mixture

to the target domain. The two methods lead to similar decision boundaries, but our

embedding is more evenly distributed into the target domain according to the density.

3.4 Regularized Wasserstein Means

In many problems of machine learning, the solution that comes purely from the

perspective of the mapping cost may not serve the best to represent the connection

between origins and their images, let alone overfitting. Regularization is a common

technique to introduce desired properties in the solution. In the previous section, we

talked about the Wasserstein means problem and its optimizers: OT π(ν, µ), support

y, and the measure ν(y). In this section, we detail our strategies to regularize y

along with several regularization terms that we propose to penalize the Wasserstein
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means cost. For simplicity, we fix the given ν(y) in the following arguments and only

consider π and y in the regularized Wasserstein means (RWM) problem.

We start with a general loss function:

L(π, y) = Lot(π, y) + λLreg(y),

where Lot(π, y) =

∫
Ω

‖y − x‖2
2dµ(x), where y = π(x).

(3.4)

We call the first term the OT loss or data loss. Our goal here is to explore Lreg(y) and

the use of it. Optimizing (3.4) can also follow the block coordinate descent method.

First, we fix the mean and compute the OT. Unlike in Alg. 4 where we directly update

the mean to the average of their correspondences, next, we regularize the mean to

satisfy certain properties through local minimization on (3.4).

Minimizing the OT loss Lot(π, y) w.r.t. y can be simplified to minimizing the

quadratic loss for each support, i.e. Lỹ =
∑

j ‖yj − ỹj‖2
2, since they are equivalent:∫

Sj

‖yj − x‖2
2dµ(x) = (y2

j − 2yj

∫
Sj

xdµ(x) + C1)

= ‖yj −
∫
Sj

xdµ(x)‖2
2 + C2 = ‖yj − ỹj‖2

2 + C2.

(3.5)

C1, C2 are some constants. ỹj is from (3.2) and Sj is the set in which x is mapped to

yj. It is defined by VOT as Sj = {x ∈ M |〈yj, x〉 − hj ≥ 〈yi, x〉 − hi},∀i 6= j. Thus,

we re-write (3.4) as

L(π, y) =
∑
j

‖yj − ỹj‖2
2 + λLreg(y) (3.6)

Note, that Lreg undermines the metric properties of the Wasserstein distance and

yet the distance is not our concern but the data term of the loss we designed for a

broad range of applications. We provide the general algorithm to compute regularized

Wasserstein means in Alg. 5.

Citing the convergence proof from Grippo and Sciandrone (2000), as long as we

add a convex regularization term, because π : x → y is compact and convex, our
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2-block coordinate descent-based algorithm indeed converges. In the rest of this sec-

tion, we discuss in detail several regularization terms based on class labels, geometric

transformation, and length and curvature, all of which are convex.

3.4.1 Triplets Empowered by Class Labels

We begin with a fair assumption that samples of the same class reside closer to

each other, and samples that belong to different classes are relatively far away from

each other. This behavior can be expressed by signed distances between samples.

Given that, we propose to regularize the mean update process by adding a triplet

loss, promoting intra-class connection and discouraging inter-class connections.

The triplet loss was proposed in Schroff et al. (2015), inspired by Weinberger et al.

(2009). It targets the metric learning problem which is finding an embedding space

where samples of the same desired property reside close to each other and vise versa.

In triplets, samples are characterized into three types – anchor, positive, and negative,

denoted as ya, yp, and yn. The motivation is that the anchor is closer by a margin of

α to a positive than it is to a negative:

Lreg(y) =
K∑
i

[‖yaj − y
p
j‖2

2 − ‖yaj − ynj ‖2
2 + α]+.

The overall RWM loss w.r.t. y (3.6) becomes

L(y) =
∑
j

‖yj − ỹj‖2
2 + λLtriplet(y). (3.7)

Fig. 3.2 shows an example of aligning Gaussian mixtures by (3.7). Suppose a

mixture has three components with different parameters, each belonging to a different

class shown in three colors. We rotate the mixture by a certain degree to emulate an

unknown shift and apply our method to recover the shift.

We sample the source domain 50 times and the target domain 5,000 times at

22.5o and 45o. Fig. 3.2 1st column shows the setups. The 2nd column shows the result
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22.5o

45o

67.5o

Initial MW[33] RMW JDOT [10]

Figure 3.2: Regularizing the WM by the Intra-Class Triplets Can Adapt It to Domains

That Suffer Unknown Rotations.

from computing the WM without regularization as in Mi et al. (2018a). The 3rd

column shows our result. Our method can well drive source samples into the correct

target domain. The lighter colors on the target samples in the 2nd column indicate

the predicted class by using the OT correspondence. Since our OT preserves the

measure during the mapping, we can deterministically label each unknown sample by

querying its own centroid’s class. Note, that this is equivalent to the 1NN classification

algorithm based on the power Euclidean distance Mi et al. (2018a). Only when the

weight of every centroid equals each other will the power distance coincide with the

Euclidean distance. In the last column, we show the result from Courty et al. (2017a).

It learns an RBF SVM classifier on the target samples.
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25o 93.04 96.87

45o 90.01 73.62

75o 77.97 58.97

Initial

75o

Figure 3.3: RWM Adapting Shifted Two Moons: 1st Row Performance Over Iteration

Under 45o; 2nd and 3rd Rows Performances of RWM and OTDA Under Different Degrees.

3.4.2 Geometric Transformations

While OT recovers a transformation between two domains that induces the lowest

cost, it does not consider the structure within the domains. Pre-assuming a type of the

transformation and then estimating its parameters is one of the popular approaches

to solving domain alignment-related problems, for example, in Gopalan et al. (2011);

Courty et al. (2017b). In this way, the structure of the domain can be preserved to

some extent. Let us follow this trend and assume that two domains can be matched by

a geometric transformation with modifications, that is, any transformation between

domains is a combination of a parametric geometric transformation and an arbitrary

transformation. This leads to our following strategy that we, on the one hand, reg-

ularize the mean to be roughly a geometric transformation in order to preserve the
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structure of the source domain during the mapping but on the other hand also allow

OT to adjust the mapping so that it can recover irregular transformations.

We follow Alg. 5. First, compute OT to obtain the target mean positions ỹ = π(x)

and then use the paired means {y, ỹ} to determine the parameters of a geometric

transformation T subject to ỹ = T y through a least squares estimate. Suppose

yTj = T y is the estimate purely based on the affine transformation, then, we have the

RWM loss

L(π, y) =
∑
j

‖yj − ỹj‖2
2 + λ

∑
j

‖yj − yTj ‖2
2. (3.8)

Candidates of the geometric transformations include but not limited to perspective,

affine, and rigid transformations.

We demonstrate (3.8) with two moons in Fig. 3.3. The known domain contains 200

samples in blue and red. The unknown domain is the known domain after a rotation,

sampled 10, 000 times in grey. We assume the prior is a rigid transformation. The

top row shows the result on the 45o case after several iterations. In the end, RWM

almost recovers the transformation with a small error. Top right shows accuracy

over iterations under different degrees. The 2nd row shows the result under different

degrees of rotation. We weight in OTDA-GL’s result Courty et al. (2017b) in the

3rd row showing RWM’s superiority over OTDA under large transformations and its

inferiority under small transformations. We also notice that RWM maps the samples

into the domain which OTDA fails to.

3.4.3 Topology Represented by Length and Curvature

The nature of many-to-one mapping in the WM problem enables itself to be suit-

able for skeleton layout. Consider a 3D thin, elongated point cloud. Our goal is

to find a 3D curve consisting of sparse points to represent the shape of the cloud.

The problem with directly using WM for skeleton layout is that the support is un-
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structured. Therefore, we propose to pre-define the topology of the curve and add

the length and curvature to regularize its geometry, both intrinsically (length) and

extrinsically (curvature).

We give an order of the support so that they can form a piece-wise linear curve. For

each three adjacent supports, yj−1, yj, yj+1, we fit a quadratic spline curve γ(t) of 100

points. Its length is approximated by summarizing the length segment
∫ length

0
ds =∫ 1

0
‖γ′(t)‖dt, and its curvature at the middle point yi can be approximated by the

total curvature
∫ length

0
K2(t)ds, K(t) = ‖γ′(t)×γ′′(t)‖

‖γ′(t)‖3 as in Ulen et al. (2015). Thus, the

regularization on the length and curvature can express itself as follows:

λLreg = λ1

∑
1≤i<k

g(γ′(yi)) + λ2

∑
1<i<k

l(γ′′(yi)). (3.9)

where g(·) and l(·) are some functions computed out of the length and curvature

based on y, which are both convex making (3.9) convex. We could go further and

include torsion into the term but since we do not pursue a perfectly smooth curve but

rather the reasonable embedding of the supports in the interior of the point cloud,

we have passed torsion.

In case the shape has branches, we can easily extend (3.9) considering the skeleton

as a whole when computing the OT and regularizing each branch separately. Suppose,

now, the skeleton Γ = {γj} is a set of 1-D curves. Finally, we propose the following

loss for skeleton layout:

L(π, y) =
∑
j

‖yj − ỹj‖2
2

+
∑
γ∈Γ

(
λ1

∑
1≤i<k

g(γ′(yi)) + λ2

∑
1<i<k

l(γ′′(yi))
)
.

(3.10)
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3.5 Applications

We demonstrate the use of RWM in domain adaptation (class label), point set

registration (geometric transformation), and skeleton layout (topology).

3.5.1 Domain Adaptation

We evaluate our method on the office-31 dataset Saenko et al. (2010). Office-31

consists of three subsets – Amazon, DSLR, and Webcam. We adapt from Webcam to

Amazon (W → A). The Amazon set contains 2,848 images from 31 categories. Each

category has a different number of samples from 36 to 100. The Webcam set archives

826 images from the same 31 categories, each having between 11 to 43 samples.

Fig. 3.4 shows some sample images.

We use the Decaf-fc6 and Decaf-fc7 features provided along with the dataset. Each

sample is now encoded into a vector of 4,096 dimensions. The setup is similar to

OTDA Courty et al. (2017b). We randomly select 20 samples per class from Amazon

and 10 samples per class from Webcam because the ‘ruler’ category of Webcam only

has 11 samples, and we want each class to have an equal number of samples. Then,

we normalize the weight of the sample so that the total weight from Amazon and from

Webcam are both one. Each sample is assumed to have an equal weight: Amazon

sample 1/620 and Webcam sample 1/310.

We compare RWM with OTDA and also include 1NN and the original WM as

Table 3.1: Classification Results (%) on Office-31 W → A

Feature 1NN WM OTDA RWM

Decaf-fc6 30.2±1.3 32.7±2.3 33.9±2.1 36.4±2.7

Decaf-fc7 31.3±1.9 34.6±2.2 35.8±1.5 43.2±2.6
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Figure 3.4: Sample Images From the Office-31 Dataset.

baselines. The experiments are repeated 10 times, and Tab. 3.1 summarizes the av-

eraged results. RWM outperforms other methods by a large margin. We also show

the resulting t-SNE embeddings in Fig. 3.5. From left to right are the original em-

beddings, embeddings after OTDA, and embeddings after RWM. Blue dots represent

Amazon samples and red dots Webcam samples. Numbers indicate classes. RWM

successfully cluster samples from the same class into distinguishable clusters while

OTDA, on the other hand, very well integrates the source domain into the target

domain (but with larger errors). Zoom in the pictures to see the samples of 1, ‘bike’,

and 11, ‘keyboard’.

Adapting from W to A is challenging for RWM because W has too few samples

for each class, and the target, in this case, should have even fewer samples. Adapting

from, for example, 5 samples to 10 samples is not practical because 5 samples can

hardly represent a domain. This is a limitation of Monge-based approaches. A

workaround might be augmenting the target domain, creating more samples around

the original samples, but it may not be practical either in high-dimensional spaces.

Papadakis proposed, in a recent work Papadakis (2019), a new way of solving discrete

optimal transportation by finding a few relays in between the source and the target
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Figure 3.5: T-SNE Embeddings of the Office-31 Samples Before and After OTDA and

RWM.

samples, which may bring insights to this problem of adapting too few samples. We

leave it to future work.

3.5.2 Point Set Registration

Registering point sets is key to many downstream applications such as surface

reconstruction and stereo matching. Point set registration algorithms aim to assign

correspondences between two sets of points and to recover the transformation between

them Myronenko and Song (2010). Figure 3.6 left shows a Stanford Bunny in a

grey point set and its shifted version in a colored point set after a random noisy

translation and a rotation. We apply (3.8) to recovering the transformation. With

this example, we also test our algorithm under extreme conditions when we have the

same number of empirical samples and centroids. Our algorithm RWM still produces a

one-to-one map between the two-point sets. The transformation then perfectly aligns

them while the traditional iterative closest point (ICP) algorithm fails to recover
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t = 1 t = 2 t = 5

RWM, t = 20 ICP, t = 20t = 10

Target

Source

Figure 3.6: Alignment of Translationally and Rotationally Shifted Bunnies After RWM

and ICP. T Indicates the Number of Iterations.

the transformation. The reason is that ICP assigns the correspondence based on

nearest neighbors while RWM uses OT which considers the point set as a whole when

computing the correspondence. Note, that by pre-defining the regularization as a

rigid transformation and adjusting its weight, we can perform both rigid and non-

rigid registration. In the above example, the regularization weight is λ = 10. Our

alignment technique might be further incorporated into e.g., Yang et al. (2016) for

globally optimal alignment.

3.5.3 Skeleton Layout

. Suppose we have a point cloud µ ∈ P(R3) and a graph G = (V,E) representing

the topology of the shape. Then, the problem is finding particular embeddings of the

nodes y(ν) : ν → R3 that can relate the graph to the geometry of the point cloud.

Now, consider the human shape point cloud in Fig. 3.7 top left. We initial a rough
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embedding of a graph by fixing its ends V0 ⊂ V to certain known positions yν∈V0 which

are head, hands, and feet in this example, and set the rest of nodes evenly distribute

along their branches. Our goal is to embed the nodes ν ∈ V \V0 in this R3 space by

applying (3.10). Because the weight of each centroid determines its boundaries with

other centroids, it has to be adjusted to the local density of the cloud so that all the

centroids could roughly evenly lay on the skeleton. Thus, we relax the restriction on

weight and reinstate (3.3). We update the weight by momentum gradient descent,

ν(yj)
(t+1) ← λν(yj)

(t) + (1− λ)
∫

Ω∩Sj dµ(x) to prevent it from quickly trapped into a

local minimum like k-means.

Top right of Fig. 3.7 shows our result. The skeleton successfully captures the

shape of the point cloud. Colors of the skeleton nodes based on their position in

the graph are transferred to the surface according to their OT correspondences. We

compare the result from Lloyd’s k-means algorithm and with RW in the 2nd and 3rd

columns. Equal weight of regularization is added to Lloyd’s algorithm to make it a

fair comparison. We also test our method in an extreme initial condition. As shown

in (b), our algorithm eventually recovers a coherent, correct shape, but without the

regularization, we could end up with “ill-posed” embeddings. The figure also writes

the mean square errors (MSE). Our method achieves small MSEs while maintaining

the topology. In the bottom left, we show the result from Stanford Armadillo. In the

bottom right, we show the result from Solomon et al. (2015) as the ground truth. It

regards the problem as a Wasserstein propagation problem and adopted Wasserstein

barycenter techniques to relate the samples of the cloud to the graph, which is much

heavier. The average time of 5 trials by Solomon et al. (2015) was 1,200 seconds while

ours took 15 seconds. CPU: Intel i5-7640x 4.0 GHz.
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RWMWM[41]Lloyd’sInitials

(a)

(b)

(c)

5.99

8.24 7.51

3.27 3.12

3.30 3.43

3.35

3.06

Figure 3.7: Skeleton Layout. RWM Embeds a Pre-Defined Graph Which Relates to the

Shape of the Cloud. Numbers Indicating MSE Showing RWM Balances Between MSE and

Topology.

3.6 Summary

We have talked about the Wasserstein means problem and our method to regular-

ize it. The results have shown that our method can well adapt to different problems by

adopting different regularization terms. This work opens up a new perspective to look

at the Wasserstein means problem, or the k-means problem, as well as regularizing

them.

In this paper, we adopted VOT to obtain the OT map. In general, other OT
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solvers, e.g. Sinkhorn distances, could also work in our framework. We expect further

use of regularized optimal transportation techniques on aligning distributions in high-

dimensional spaces. Future work in our line of research could also include regularizing

the barycenters.
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Chapter 4

VARIATIONAL WASSERSTEIN BARYCENTERS FOR GEOMETRIC

CLUSTERING

In this chapter, we advance our discussion to the Wasserstein barycenter prob-

lems. We generalize our methods for solving optimal transportation among multiple

distributions. We expose the metric properties of the Wasserstein barycenter and its

equivalence to pair-wise optimal transportation. We also discuss the immunity of our

variational solution to unbalanced measures and its generalization to spherical do-

mains. Finally, we showcase the use of our methods in solving a variety of geometric

clustering problems.

4.1 Introduction

0Clustering distributional data according to their spatial similarities has been

a core issue in machine learning. Numerous theories and algorithms for clustering

problems have been developed to help understand the structure of the data and to

discover homogeneous groups in their embedding spaces. Clustering algorithms also

apply to unsupervised learning problems that pass information from known centroids

to unknown empirical samples. Occasionally, researchers regard clustering as finding

the optimal semi-discrete correspondence between distributional data or vice versa.

Optimal transportation (OT) techniques have gained increasing popularity in the

past two decades for measuring the distance between distributional data as well as

aligning them together. Rooted in the OT theories, several OT-based clustering al-

gorithms have emerged in recent years as alternatives, thanks to their efficiency and

robustness. In these works, the researchers discovered the connections between dif-
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ferent clustering problems and the OT problem through the Wasserstein barycenter

(WB) formulation which computes a “mean” of one or multiple distributions. How-

ever, most of them deliver the results as soft assignments that need to be further

discretized.

In this paper, we propose to compute the Wasserstein barycenter based on Monge

OT and explore its natural connections to different clustering problems that prefer

hard assignments. We base our OT solver on variational principles and coin our

method as variational Wasserstein barycenters. We study the metric properties of

WBs and use them to explain and solve different clustering-related problems such

as regularized K-means clustering, co-clustering, and vector quantization and com-

pression. We also show its immunity to unbalanced measures and its extension to

measures on spherical domains. We discuss our method from different angles through

comparison with other barycenter methods. We show the advantages of Monge OT-

based barycenters in solving geometric clustering problems. We are among the first

few that compute Monge barycenters and discover its connections to clustering prob-

lems.

4.2 Related Work and Our Contributions

Computational clustering algorithms date back to Lloyd (1982); Forgy (1965) for

solving K-means problems. From then, researchers have proposed different formula-

tions and algorithms such as spectral clustering and density-based clustering. Mixture

modeling, especially Gaussian mixture modeling, is also considered to be a robust so-

lution to clustering problems. Hierarchical clustering and co-clustering also attracted

much attention in the machine learning community. Xu and Wunsch (2005) surveys

some classic clustering algorithms. The term “geometric clustering” appeared in the

early literature, such as Murtagh (1983); Quigley and Eades (2000), referring to clus-
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tering samples into subspaces according to their location in the metric space, usually

the Euclidean space. In Applegate et al. (2011), the authors discuss the connection

between K-means and another famous problem – the OT distance, or the Wasserstein

distance.

The transportation problem has attracted many mathematicians since its very

birth. Thanks to efficient OT solvers, e.g., Cuturi (2013), OT has become a popular

tool in machine learning with which we compare distributional data. Meanwhile, by

regarding the OT distance as a metric, we can interpolate in the space of probability

measure. McCann (1997) laid the foundation; Agueh and Carlier (2011) developed

the problem into a general scenario and coined the term “Wasserstein barycenters”.

Cuturi and Doucet (2014); Ho et al. (2017); Mi et al. (2018a) relate WBs to K-means

like clustering problems and Leclaire and Rabin (2019); Lee et al. (2019) explored the

use of OT for hierarchical clustering. Claici et al. (2018) is among the latest work on

scalable semi-discrete Wasserstein barycenters. Most of them follow Kantorovich’s

static OT; few of them follow Monge’s, or Brenier’s, dynamic version that regards

OT as a gradient flow in the probability space.

Compared to previous work, our contribution is three-fold: 1) We derive the WB

based on Monge’s OT formulation and explore its connections to different clustering

problems; 2) We prove the metric properties of our WB and propose it as a metric for

evaluating multi-marginal clustering algorithms; 3) We explore the advantages and

disadvantages of Monge WB through empirical comparison with other methods.

4.3 Variational Wasserstein Distances

We discuss computing discrete Wasserstein barycenters based on the variational

solution to Monge OT. Then, we show that the WB induces a generalized metric

among all the marginal distributions, and our method can produce an approximation
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to the exact Wasserstein distance between these marginals. We call our approximation

the Variational Wasserstein Distance, or VWD. After that, we show that VWDs are

immune to unbalanced measures, and, at last, we discuss how our method adapts to

the spherical domain.

4.3.1 Wasserstein Barycenters through Variational OT

Solving the WB problem relies on alternatively solving N OT problems and up-

dating the barycenter, ν. Eventually, ν minimizes the average WD between the

marginals and the barycenter. A discrete distribution ν consists of support and mea-

sure (y,ν) = {(yk, νk)}Kk=1. Updating both of them, e.g., in Ye et al. (2017), however,

is difficult and even troublesome in some cases (see Appendix). Some researchers refer

to these two scenarios as free-support WBs and fixed-support WBs, e.g., Cuturi and

Doucet (2014); Álvarez-Esteban et al. (2016). Free-support WBs usually imply that

the measure is fixed. In this paper, we focus on free-support WBs, only updating the

supports.

We first solve N VOT problems:

min
{hi}Ni=1

I5[{hi}]
def
=

1

N

N∑
i=1

(∫ hi

0

K∑
k=1

∫
Ri,k

dµi(x)dhi,k −
K∑
k=1

νkhi,k

)

Its derivative w.r.t. the VOT optimizer hi,k is

∇I5[hi] =

{
∂I5

∂hi,k
=

∫
Ri,k

dµi(x)− νk

}K

k=1

, (4.1)

which, in practice, can be replaced by its stochastic version,

∂I5

∂hi,k
≈
∑
x∈Ri,k

µi(x)− νk,
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where x’s are now Monte Carlo samples. Then, we can naturally adopt the gradient

descent (GD) update:

h
(t+1)
i = h

(t)
i − η∇I5[hi]. (4.2)

For completeness, we give the second-order derivative later in the chapter. Its com-

putation, however, involves integrating over the Voronoi facets and thus is intractable

in general, especially for Monte Carlo samples. To accelerate the optimization, we

adopt the momentum of the gradient in practice. We can optionally adopt modern

first-order techniques to further accelerate the process. Another thing to notice

is that since hi is directly added to the Euclidean distance to determine Ri; thus

we should scale the step size to compensate the difference in the Euclidean distance

brought by dimensionality. If we use d to denote the dimensionality, i.e. Rd, then we

scale the step size as η ← η × d.

To solve for ν∗, we rewrite the objective of the WB (2.3) as

min
ν∈P(Y)

I6[ν]
def
=

1

N

N∑
i=1

∫
Xi
‖x− T ∗i (x)‖2

2dµi(x)

=
1

N

N∑
i=1

K∑
k=1

∫
Ri,k
‖x− yk‖2

2dµi(x),

(4.3)

s.t. yk = T ∗i (x), ∀x ∈ Ri,k. The critical point of this quadratic energy w.r.t. each yk

has a closed form:

y∗k =

∑N
i=1

∫
Ri,k

xdµi(x)

N
∑N

i=1

∫
Ri,k

dµi(x)
≈
∑N

i=1

∑
x∈Ri,k xµi(x)

N
∑N

i=1

∑
x∈Ri,k µi(x)

, (4.4)

which is the center of mass of its correspondence across all measures. The latter

expression is the “stochastic” version.

The last step is to derive the update rule for the measure ν. (4.3) is not differ-

entiable w.r.t. ν. Still, we follow Cuturi and Doucet (2014); Mi et al. (2018b) and
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Figure 4.1: Ten Random Nested Ellipses Averaged According to the Euclidean Dis-

tance (ED) and the Wasserstein Distance (WD). For a Better Visual, We Use Eu-

clidean Sums Instead. Compared With the Linear Programming (LP) Solver, Using

Our Method (VWD) Leads to a Smoother Barycenter. Both Solvers Preserve the

Topology (Rainbow Colors) of the Ellipses.

directly give the critical point and include the derivation in Appendix.

ν∗k =
1

N

N∑
i=1

∫
R∗i,k

dµi(x) ≈ 1

N

N∑
i=1

∑
x∈R∗i,k

µi(x), (4.5)

where R∗i,k = {x ∈ Xi | ‖x − yk‖2
2 < ‖x − y`‖2

2 ∀` 6= k}. ν∗k coincides with the result

of Lloyd’s K-means algorithm in which the measure on each centroid accumulates all

its assigned empirical measures.

Algorithm Now that we have derived the rules for updating T and ν, we summa-
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rize our algorithm for computing the discrete Wasserstein barycenter of a collection

of measures {µi}i in Appendix. We name the resulting barycenter the variational

Wasserstein barycenter or VWB. As for the initial guess of the VWB, if not pre-

defined, we provide three options: 1) run Lloyd’s algorithm on all the marginals as

a whole and adopt the resulting K centroids; 2) uniformly sample the space Y with

K atoms; and 3) randomly choose one of the marginal. The choice of the measure

on the centroids depends on the specific application. A ubiquitous choice is uniform

Dirac measures, i.e. ν = { 1
K
δy(yk)}. In Fig 4.1, we compare the barycenter w.r.t. the

Euclidean distance and the Wasserstein distance. It suggests that by regarding the

WD as the metric, we can find a mean shape on the same manifold (if there exists

one). We also show the barycenter computed by using the classic linear programming

(LP) method as implemented in Flamary and Courty (2017). The result is roughly

the same as ours, but some centroids in there are not on the inner circle. The reason

is that LP is solving the Kantorovich OT that allows partial mapping. Consequently,

some empirical samples on the outer circles are partially mapped to the centroids

that are supposed to be on the inner circle. As a result, when updating the centroids

according to the center of the mass, some centroids on the inner circle are “dragged

outward”.

Time Our method does converge since we follow coordinate descent and every

step is convex Grippo and Sciandrone (2000), given the assumption we made in 2.3

that X ,Y ⊂ Rn, c(x, y)2 = ‖x− y‖2
2.

Memory There are in total O(K · N) variables for computing N Monge maps

{Ti}Ni=1, and O(K) variables as the support y and O(K) variables as the measure

ν. Taking into account the dimensionality, the complexity would be O(K · n), but

we omit n for simplicity. There are two ways to update the height vectors. The

first is to compute each OT problem separately; the second is to concatenate all the
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Algorithm 6: Variational Wasserstein Barycenters

Input: {µi}Ni=1, K

Initialize ν ∈ P(Y).

repeat

Compute Ti between ν and each µi by solving (4.1).

Update partition or assignment (if discrete), R, according to T .

if Free support then

Update y` ∀ ` according to (4.4)

end if

if Free measure then

Update ν` ∀ ` according to (4.5)

end if

until ν converges

minimizers and parallelize the computation on feasible hardware. The trade-off is

between the time and the memory – the memory consumption for the second option

is O(K ·N ·M).

Another source of memory consumption is the pre-computed pair-wise distance

matrices between the centroids and all the marginals. Computing pair-wise distances

beforehand is optional but preferable because it dramatically reduces the time to com-

pute VWB. The majority of the computation is to find the nearest centroid for every

empirical sample in every marginal distribution so that we can compute the total

mass for every Voronoi cell and then update the Voronoi diagrams. Pre-computing

distance matrices allows us to vectorize the computation and simultaneously deter-

mine the assignments for all the empirical samples through matrix and vector oper-

ations. Moreover, because the power distance that induces the power diagram is a
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Figure 4.2: The Triangle Inequality for Dν(µ1:3) Which Is a 3-Metric.

straight summation of the squared quadratic Euclidean distance and the ‘height’, pre-

computing a matrix of the squared quadratic Euclidean distances allow us to use it

as a placeholder for incorporating the newly updated height vector and then directly

index empirical samples with the power distance.

Code We implemented VWB in Python with PyTorch Paszke et al. (2019). The

code to reproduce the figures in this paper is at https://github.com/icemiliang/pyvot.

4.3.2 The Metric Properties of Wasserstein Barycenters

Despite the extensive studies on the metric properties of the WD over the past

century, the metric properties of Wasserstein barycenters have yet been fully explored.

Papadakis (2019); Auricchio et al. (2018) are Some pioneer work. However, they all

focus on the barycenter of two measures (N = 2). We show in the following that

the WB in general (N ≥ 2) induces a generalized metric (n-metric) among all the

marginals.

First, let us denote the total Wasserstein distance between the barycenter and all

the marginal as follows:

Dν∗(µ1:N)
def
= inf

ν∈P(Y)

1

N

N∑
i=1

W2
2 (µi, ν), (4.6)
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Then, we raise the following two propositions.

Proposition 4. Dν∗(µ1:N) is a generalized metric among µ1:N , N ≥ 2. Specifically,

Dν∗(µ1:N) satisfies the following properties.

1) Non-negativity: Dν∗(µ1:N) ≥ 0.

2) Symmetry: Dν∗(µσ1(1:N)) = Dν∗(µσ2(1:N)), where σ1(1 : N) and σ2(1 : N) are

different permutations of the set 1 : N .

3) Identity: Dν∗(µ1:N) = 0⇐⇒ µi = µj,∀i 6= j.

4) Triangle inequality: Dν∗(µ1:N) ≤
∑N

i=1Dν∗(µ1:N+1\i).

Proposition 5. The bound of the triangle inequality in Proposition 4 can be tightened

by a linear factor. Specifically, we have (N/2) Dν∗(µ1:N) ≤
∑N

i=1Dν∗(µ1:N+1\i).

If we regress to arbitrary weights, i.e.

D̂ν∗(µ1:N)
def
= inf

ν∈P(Y)

N∑
i=1

λiW2
2 (µi, ν), (4.7)

for λi ∈ [0, 1] and
∑

i λi = 1, then, this total distance D̂ν∗(µ1:N) still satisfies the

metric properties in Proposition 4 and 5. For the triangle inequality to hold, we need

to assume that λN+1 = λi in each D̂ν(µ1:N+1\i) for all i.

Proposition 6. D̂ν∗(µ1:N) is a generalized metric among µ1:N , N ≥ 2 and satisfies

all metric properties as Dν∗(µ1:N) does in Proposition 4 and 5.

We prove the above three propositions in Appendices. Figure 4.2 illustrates the

triangle inequality for Dν(µ1:3) which is a 3-metric among µ1:3.

The VWB ν∗ =
∑

k νkδy(yk) ∈ P(Y), as a special case of the WB that consists

of a set of Dirac measures, certainly inherits the metric properties since there is not

a restriction on the continuity of the support y. We write this point in the following

corollary.
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the Compactness of Multiple Probability Distributions. Left and Right Illustrate the

Case of 3 and 4 Marginals, Respectively.

Corollary 2. Suppose, ν∗ =
∑

k νkδy(yk). Then, Proposition 4 and 5 still hold for

Dν∗(µ1:N) and Proposition 6 for D̂ν∗(µ1:N). In particular, the equal signs in 1) non-

negativity and 4) inequality hold only if all µi’s and ν∗ have the same number of

supports |µi| = |ν∗| = K, ∀i ∈ {1, ..., N}.

The condition on the cardinality ensures the feasibility for all the discrete distributions

to be equal to each other.

4.3.3 A Distance among Multiple Distributions

A distance among multiple distributions can measure their compactness or close-

ness together. It is particularly useful when the distributions are embedded in topo-

logical spaces, e.g., the Wasserstein space, where we do not have exact locations but

only pair-wise connections. Computing the total pair-wise distance is a straightfor-

ward approach. With the WD as an embodiment of the distance, the summation

becomes

2

N(N − 1)

∑
i,j

W2
2 (µi, µj), ∀ 1 ≤ i < j ≤ N. (4.8)
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Its computational complexity, however, increases quadratically to the number of

marginals, i.e., O(N2). This brings hardness given the already high expense of

computing WDs. Mérigot et al. (2019) discusses linearizing the Wasserstein space

by projecting samples to the tangent space so that, instead of computing pair-wise

WDs, we can now compute the WDs from the marginals to their respective projec-

tions on the tangent spaces and then use Euclidean distances afterward. It brings

down the number of WDs from N(N − 1) to N at the expense of the linearization

error. Courty et al. Courty et al. (2018) propose to learn a vector space that approxi-

mates the Wasserstein space in terms of the pair-wise WDs to avoid computing WDs

whatsoever. These approaches are all based on the idea of finding the approximation.

We instead propose to use VWD, Dν∗(µ1:N), as an alternative that reduces the

complexity to linear to N . To differentiate these two alternatives, we refer to our for-

mulation, VWD, as a barycentric distance and refer to (4.8) as a pair-wise distance.

Fig 4.3 depicts the relationship between the original summation and our VWD. Sim-

ilar to K-means, measuring the barycentric distance is equivalent to measuring the

pair-wise distance. This conclusion comes immediately after replacing the squared

quadratic Euclidean distance in the K-means formulation to squared 2-WD. For com-

pleteness, we state this point below and include the derivation in Appendix.

Remark 1. VWD (4.6) is equivalent to (4.8).

The two approaches also connect in such a way as stated in the following propo-

sition.

Proposition 7. Suppose, ν∗ =
∑

k νkδy(yk). Then, D̂ν∗(µ1:N) is lower-bounded by

(4.8). The bound is achieved if and only if all the marginals equal to each other. For

a discrete barycenter, that also implies that |µi| = |ν∗| = K, ∀i ∈ {1, ..., N}.

Compared to the pair-wise formulation, ours also allow us to introduce non-
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uniform weights to the marginals (“nodes”), instead of to the joint distributions

(“edges”), so as to promote or demote certain marginals when computing the com-

pactness of the marginals as a whole.

When N = 2, the problem relates to a transshipment problem which is finding

the least expensive map between two probability distributions that passes through a

set of relays. Apart from the applications of optimal transshipment to trading and

networking, it has been proposed as an approximation to the true WD between the

two marginals Papadakis (2019). In this case, we are seeking an optimal relay distri-

bution that induces the minimum total transportation cost across the two marginals.

Plugging N = 2 into Proposition 7, we obtain the connection of the VWD and the

true WD for the transshipment problem as Dν∗(µ1, µ2) ≤ 1
4
W2

2 (µ1, µ2). The equal

sign holds when |µ1| = |µ2| = |ν∗|. In this case, each supporting atom of the ν∗ lies

in the middle of its two corresponding atoms in the two marginals. Papadakis (2019)

studies this case in detail from the perspective of Kantorovich OT. Fig 4.4 illustrates

the transshipment map. From the figure, we can see that our method can produce

sparse, binary correspondence which is preferable for clustering tasks.

4.3.4 On Unbalanced Measures

Distributional data are not necessarily probabilities. When their measures do

not integrate to the same total, we are solving unbalanced OT. Some researchers may

refer to unbalanced OT as generalized OT Piccoli and Rossi (2014), but in this paper,

we use the term generalized OT for OT among multiple distributions and the term

unbalanced OT for OT among two or more distributions that do not integrate to the

same total. Benamou (2003) first explored the problem. Researchers since then have

offered various formulations and perspectives to approach it, e.g., in Liero et al. (2018)

by adding f -divergences as regularizers instead of constraints on the marginalization.
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Figure 4.4: Transshipment: Transporting Measures Through a Set of Discrete Relays.

Colors on the Measures Specify Correspondences.

Most of the existing work is from the perspective of Kantorovich OT. In that case,

the constraints on the marginalization cannot be satisfied anymore, but be relaxed

to a regularizer. Here, we show that VOT, which solves Monge OT, is robust to

unbalanced measures, and subsequently, the VWD is too.

Without loss of generality, let us assume
∫
X dµ(x) = w and

∑K
k=1 νk = 1. We

denote the total mass of µ in each power Voronoi cell by wk =
∫
Rk
dµ(x); thus

w =
∑K

k=1wk. We split the problem into two cases: a special case where µ is

uniform, i.e. ν νk = 1
K

, and a more general one where νk ∈ (0, 1),
∑K

k=1 νk = 1.

We only consider non-negative νk; otherwise a zero measure effectively changes K

which complicate the problem. We copy the VOT formulation (2.5) below for ease of

reading.

I2[h]
def
=

∫ h

0

K∑
k=1

∫
Rk
dµ(x)dhk −

K∑
k=1

νkhk, (2)

Case 1: νk = 1
K
, ∀ k ∈ {1, ..., K}.

Our first intuition is that wk = 1
K
w, ∀ k is at the optimal point because that
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Figure 4.5: Mass Difference Over Iterations for VOT on Balanced and Unbalanced

Measures. They Follow the Same Trend and Converge at Almost the Same Rate.

The Resulting Clusters Are Exactly the Same .

means equal mass for all the cells, which is what νk = 1
K

seeks. The question now is

whether wk = 1
K
w indeed minimizes (2.5).

When wk = 1
K
w, the gradient ∇I2[h] =

{
wk− 1

K
}k becomes constant 1

K
(w−1) ·1.

Thus h is being translated, or lifted, at the same speed in all directions, which does not

change the graph of the piece-wise linear function θh(x) = max
k
{xyk+hk} Alexandrov

(2005); Gu et al. (2013). Given the equivalence between the graph of θh(x) and the

graph of the power Voronoi diagram as specified in (2.16), the variational energy I2[h]
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saturates to the point where wk = 1
K
w. For any other graph, or partition, such that

∃ R′k, where w′k 6= 1
K
w, we have

K∑
k=1

∫
Rk

(
‖x− yk‖2

2 + hk
)
dµ(x)

≤
K∑
k=1

∫
R′k

(
‖x− yk‖2

2 + hk
)
dµ(x).

When the optimal point is not reached yet, there exist at least two adjacent cells

k, ` such that wk > w`, the corresponding derivatives being ∂I2
∂hk

= wk− 1
K
> w`− 1

K
=

∂I2
∂h`

. The boundary which is induced by xyk + hk will be shifting to k, promoting a

relative smaller wk compared to w`.

Case 2: νk ∈ (0, 1),
∑K

k=1 νk = 1.

Similarly, wk = νkw (replacing 1
K

in Case 1 with νk) is at the optimal point of

I2[h].

Therefore, wk = 1
K
w, ∀ k ∈ {1, ..., N} indeed minimizes the total transportation

cost (2.1), whether the two distributions have the same total measure.

We illustrate the convergence in Fig 4.5. Suppose we have a Gaussian mixture

of three components having 500, 200, and 200 samples, respectively. We initialize

three centroids by K-means++ and then compute VOT from the Gaussian mixture

to the 3 centroids. The top half shows the convergence of the first trial in which

we normalize the data so that both the Gaussian mixture and the 3 centroids have

the total measure of 1; the bottom half shows the convergence of VOT on the data

without normalization, i.e., w = 900, νk = 1
3
, k = 1, 2, 3. Note that the gradient of

the VWB, (4.1), correlates to the absolute measure values. Thus, we should scale

the step size, η in (4.2), for each VOT according to the difference of the measure, i.e.

ηi/(w− 1), assuming the total for ν is 1. Fig 4.5 shows that under the same (scaled)

GD step size, VOT in two cases follows the same trend and converge to the same

map.
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Figure 4.6: Interpolating Two Gaussian’s of Different Number of Samples by Com-

puting the VWB Results in a Mean Isotropic Gaussian.

We compute the VWB of two unbalanced Gaussian distributions and show the

result in Fig 4.6. The Left Gaussian has 5k samples, and the right one has 1k samples.

Each has a diagonal covariance matrix, and the value is swapped. Each of the samples,

including the 50 samples of the barycenter, has the same weight. As we expect, the

resulting barycenter is an isotropic Gaussian distribution which is exactly what it

would be for two balanced Gaussian distributions. Different numbers of samples in

two corresponding clusters are connected through a single relay, as shown in the

figure.

In terms of VWD under unbalanced measures,

4.3.5 On the Spherical Domain

Optimal transportation on geometric domains other than the Euclidean domain

extends its applicability Solomon et al. (2015); Staib et al. (2017); Cui et al. (2019).
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Cui et al. (2019) relates the spherical power Voronoi diagram Sugihara (2002) to

OT on unit spheres and applies it to computing an area-preserving map on spheres.

Inspired by that, we study our VWD on spherical domains and its metric properties.

Let us define a new ground metric on a unit sphere, S2 × S2 → R≥0, as c(x, yk) =

− ln〈x, yk〉 and the OT distance:

W ′1 = inf
T∈ΠT (µ,ν)

I8[π]
def
= −

∫
S2

ln〈x, T (x)〉dµ(x) (4.9)

s.t.
∫
S2(ψ ◦ T )dµ(x) =

∫
S2 ψdν(y) for all non-negative ψ. Following Cui et al. (2019),

we define the power distance on a sphere as c′(x, yk) = − ln〈x, yk〉/ cos rk and thus

the power Voronoi diagram in the spherical domain Rk
def
= {x ∈ S2 |c′(x, yk) ≤

c′(x, y`),∀` 6= k}. rk is the weight of each power cell, it relates to the VOT min-

imizers by cos r = eh. Then, the derivation in 2.4 gives us the Monge map.

− ln〈x, yk〉 does not satisfy triangle inequality but the other three metric proper-

ties. Thus, W ′1 inherits those properties. We notice that the proof for Proposition 4

does not leverage the triangle inequality of the WD. Therefore, if we define the VWD

on spherical domains as the following, it is also a generalized metric.

D′ν∗(µ1:N)
def
= inf

ν∈P(Y)

1

N

N∑
i=1

W ′1(µi, ν) (4.10)

AlthoughW ′1 is not a true metric, we can still find a “mean” of multiple marginals

by minimizing the VWD as in 4.3.1. Fig 4.7 shows an example where the VWB

simultaneously partitions two Gaussian distributions on the sphere. For simplicity,

we draw connections with straight lines.

4.4 Geometric Clustering through VWDs

In this section, we further connect VWBs to several clustering problems. We

consider a fixed number of clusters, K, the quadratic Euclidean distance as the
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Figure 4.7: Interpolating Two Gaussian Distributions on a Sphere by Minimizing the

VWD. At the Same Time, We Build Sparse Connections Between the Two Distribu-

tions via a Few Discrete Relays.

ground metric, and mainly the spatial relation between samples. We refer to this

scenario as geometric clustering. We discretize the measures: ν =
∑K

k=1 νkδ[yk], µi =∑ni
j=1 µ(xj)δ[xj],∀ i ∈ {1, ..., N} for further discussion and assume that ni � K, ∀i.

4.4.1 Regularized K-Means Clustering

In light of the discovery of VWDs for unbalanced measures in 4.3.4, we now

introduce a relaxed version of the constrained K-means clustering problem. We call

it the regularized K-means problem.

The classic K-means problem has the following objective:

min
R

K∑
k=1

∑
x∈Rk

‖x− yk‖2
2, yk =

1

|Rk|
∑
x∈Rk

x, (4.11)

where |Rk| is the number of samples supported in Rk. By adding the marginal con-

straint νk =
∑

x∈Rk µ(x) with pre-defined, fixed measures {νk}Kk=1, we turn (4.11) into
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the constrained K-means problem Bradley et al. (2000); Cuturi and Doucet (2014),

or the Wasserstein Means problem Ho et al. (2017). We propose that when the total

measures do not equal, we relax such constraints and turn them into regularizers

for the clustering energy. Then, we define the objective of the regularized K-means

problem as:

min
R

K∑
k=1

∑
x∈Rk

‖x− yk‖2
2 + λ

K∑
k=1

(νk − wk)2 , (4.12)

where wk =
∑

x∈Rk µ(x). If λ = 0, (4.12) regresses to the classic K-means problem; if

λ→∞, then (4.12) becomes the constrained K-means problem which coincides with

the semi-discrete Monge OT problem. In the rest of 4.4.1, we discuss the solution

to (4.12).

When λ → ∞, using our OT solver, we can obtain the optimal height vector h∗

inducing the optimal power Voronoi diagram that produces the minimum transporta-

tion cost while satisfying the marginal constraints. When λ = 0, the solution to the

classic K-means problem comes from a regular, or an unweighted, Voronoi diagram

that is being iteratively updated until the center of every Voronoi cell matches the

center of the mass enclosed in their cells. A natural thought is to combine the two

different results because we expect that the solution to (4.12) lies in between the so-

lution to the classic K-means and the solution to the constrained K-means problem.

We prove in Appendix that the following Voronoi diagram indeed solves (4.12).

Rk =

{
‖x− yk‖2

2 +
λk

1 + λk
h∗k ≤ ‖x− y`‖2

2 +
λ`

1 + λ`
h∗`

}
(4.13)

Remark 2. (4.13) is the minimum point of (4.12).

The solution to (4.12) itself simplifies the algorithm to achieve it because we can

solve for λ = 0 and λ → ∞ separately and then directly combine them to obtain

the resulting Voronoi diagram. Still, to complete the problem formulation, we prove
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Figure 4.8: Results From Different Regularization Strength λ in (4.12). Left Is Tra-

ditional K-Means and Right Is Constrained K-Means.

in Appendix that the optimizer h, as being updated by solving VOT, monotonically

decreases (4.12).

Figure 4.8 illustrates the regularized K-means clustering results at different reg-

ularization strengths. Informally, they look like the interpolations between K-means

and constrained K-means.

4.4.2 Co-Clustering

Extending Wasserstein clustering to multiple targets induces the co-clustering

problem. In this section, we discuss the connection between co-clustering problems

and VWDs. In particular, we focus on co-clustering spatial features with the quadratic

Euclidean distance as the ground metric. In this paper, we generalize the use of the

term “co-clustering” not only for two distributions but for multiple, N ≥ 2.

Given multiple domains, the goal of co-clustering is to simultaneously partition

all the domains to 1) minimize the pair-wise variance in the same cluster in each

domain and 2) minimize the pair-wise variance for the same cluster across domains.

By doing so, we presume that all the domains have the same structure and the same
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orientation – they are only shifted by a translation. The objective is as follows:

min
Ri

I9[Ri]
def
=

N∑
i=1

K∑
k=1

1

2|Ri,k|
∑

x,x′∈Ri,k

‖x− x′‖2
2

+
K∑
k=1

∑
1≤i<j≤N

λi,j,k
|Ri,k|+ |Rj,k|

∑
x∈Ri,k
x′∈Rj,k

‖x− x′‖2
2.

where |Ri,k| is the number of samples in Ri,k; λi,j,k ∈ {0, 1} specifies the correspon-

dence of the clusters across different domains. Thus,
∑

i λi,j,k = 1 and
∑

j λi,j,k = 1.

Similarly to K-means, we can simplify the pairwise variance with the mean of each

cluster at each domain, αi,k:

min
Ri

I9[Ri] ≡
N∑
i=1

K∑
k=1

∑
x∈Ri,k

‖x− αi,k‖2
2

+
K∑
k=1

N∑
i=1

∑
j 6=i

λi,j,k
∑
x∈Ri,k

‖x− αj,k‖2
2.

(4.14)

where αi,k = 1
|Ri,k|

∑
x∈Ri,k x is the cluster center for each cluster at each domain.

The first term of (4.14) is solving N K-means problems. The second term is solving

N(N − 1) K-means problems but with the cluster centroids at other domains. Thus,

we can further simplify the problem into:

min
Ri

I9[Ri] ≡
N∑
i=1

K∑
k=1

∑
x∈Ri,k

N∑
j=1

‖x− αj,k‖2
2 (4.15)

Solving (4.15) involves alternatively updating partition {Ri}i and the centroid

{αi,k}i,k. When updating {Ri}i with fixed {αi,k}i,k, we can rewrite (4.15) as

I11[Ri] =
N∑
i=1

K∑
k=1

∑
x∈Ri,k

[
x−

[
N∑
j=1

αj,k

]]2

+ C

def
=

N∑
i=1

K∑
k=1

∑
x∈Ri,k

(x− α̂k)2 + C.

(4.16)

C is some constant. Thus, we convert co-clustering to N K-means problems with the

same set of centroids.
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Then, we can naturally impose a constraint on the weights, i.e
∫
Ri,k

dµi(x) =

νk, ∀i, k, to turn the problem into a VWB problem which is also an N constrained K-

means problem. Note, that it is trivial to extend it into a generalized VWB problem,

by instead inserting the weighted constraint into the main objective as we did in 4.4.1.

4.4.3 Regularizing VWBs for Aligning Distributions

For all the domains to have the same structure and orientation is a strong under-

lying assumption in 4.4.2 that limits our method from solving real-world problems.

Here we further discuss regularizing the clustering process so that we can also re-

cover the shift in the orientation should there be any. And we show the process is

equivalently aligning marginal distributions altogether.

In addition to purely clustering feature domains according to Wasserstein losses,

we can regularize the correspondences based on prior knowledge. Inspired by Alvarez-

Melis et al. (2019); Mi et al. (2018b); Lee et al. (2019), we regularize the correspon-

dence by global invariances under the widely accepted assumption that different re-

lated distributional data share the same structure but may differ by orientation in

their embedding spaces. Directly regularizing Monge correspondences is highly in-

tractable because we use the variational method and thus do not have direct access to

the map. The other variable of our clustering process is the centroids each of which is

being updated to the critical point, which is the center of mass of its correspondences.

Thus, a natural thought is regularizing the centroid update to follow an isometry that

preserves the structure of the domain. However, because each marginal may have its

own orientation and because isometry is invertible, we transform all the marginals

toward a common “barycenter”. An isometry consists of a translation and rotation.

Estimating the translation can be easily done by shifting the center of mass. Then,

the problem boils down to estimating the rotation.
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Suppose we have a collection of marginal distributions µ1:N that share the same

structure and differ by orientation in Rn. Thus, there exists a rotation Ri,j between

µi and µj. Given a canonical origin, all Ri,j’s belong to the same rotation group

SO(n)
def
= {R ∈ Rn×n | RTR = RRT = In}. Now, we vectorize our notation. We use

Xi ∈ RNi×n to denote the support of the Monte Carlo samples of µi and Y ∈ RK×n to

denote the support of ν. We use Ri to denote the rotation from µi to ν∗. Computing

VOT from µi to ν produces the partition of Xi into K clusters each with its center

of mass. Let us denote the centers as Yi ∈ RK×n which is a function Yi (Xi, Y |Ri)

where Ri is the VOT partition. Then, we have Y ∗ = RiYi, assuming ν∗ share the

same structure with all µi’s. A rotation group is closed w.r.t. composition. Thus,

Ri,j = RT
j Ri. The problem now is to achieve ν∗ which narrows down to Y ∗ because

we fix the measures on the support.

Finally, we are ready to introduce the objective function:

min
Y,{Ri}Ni=1

=
1

N

N∑
i=1

‖Y −RiYi‖2, s.t. Ri ∈ SO(n)

where Yi = Yi (Xi, Y ;Ri) =

∫
Ri,k

xdµi(x)∫
Ri,k

dµi(x)
.

(4.17)

We alternatively solve for the optimal support of the barycenter, Y , and associated

rotation for each marginal, Ri. We use VWB to solve for Y as in 4.3.1. Once we

obtain the center of mass for all marginals, {Yi}Ni=1 and Y , we then use singular value

decomposition (SVD) to solve for the rotation. The correspondences between {Yi}Ni=1

and Y comes from the nature of using a common set of centroids to clustering multiple

targets.

4.5 Numerical Evaluation

We evaluate our algorithm from two perspectives – timing and approximation error

– against 1) the number of dimensions and 2) the number of centroids. We skip the
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evaluation of the performance against the number of marginals because, as discussed

in 4.3.1, we can either solve for all the VWB variables as a whole which increases the

time in the same way as the number of centroids does or solve for each OT problem

separately which increases the time linearly to the number of marginals. As for the

approximation error, we only test for two marginals because the numerical difference

between the pair-wise WD among multiple marginals and VWD has a less practical

use. We include the results from linear programming (LP) and the Sinkhorn algorithm

as implemented in the POT library Flamary and Courty (2017) as baselines. For the

timing, we include a comparison between using one core of a CPU (Intel Core i5-8400

CPU @ 2.80GHz) and a GPU (NVIDIA GeForce RTX 2070). The experiments for

testing the approximation error are run either on CPU or GPU, whichever is faster

according to the timing experiments.

For all the experiments, we randomly generate two isotropic Gaussian distribu-

tions, each having 10, 000 samples. We set the means of the two distributions to differ

by n−0.5, and the diagonal values of both the covariance matrices to be 0.02×n−0.5. A

simple calculation would show that the exact WD between these two Gaussians is “1”.

The small variances are inherited from previous experiments in 4.3.3 to keep the two

distributions separate from each other for better visualization. For each experiment,

we record the results from 5 trials.

For each trial, we early-stop the OT after 100 iterations to save the overall time.

Fig. 4.9 shows the average time for updating the OT optimizer for one iteration. The

top row and the bottom row show the time for CPU and GPU, respectively; the top

1st column and 2nd column show the time for different K’s and n’s, respectively.

(a) reflects a quadratic relationship between the time and K using CPU, which

matches our expectation. (c) indicates that, in general, K does not have a significant

impact on the run time when we parallelly update the height vectors for the power
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Figure 4.9: Time to Compute VWBs

Voronoi diagrams using GPU. However, as K increases, there is a slight incremental

trend. We suspect the reason being related to the implementation of matrix opera-

tions in PyTorch and also the capacity of our GPU. We leave more comprehensive

experiments to the future with more computational resources. By comparing the

absolute time in (a) and (c), we find that computing VWB on GPUs is hugely ben-

eficial when K > 32. (b) and (d) indicate that the number of dimensions, if it is

not high enough (≤ 1024), does not have a substantial impact on the running time

of our method. This is also expected because we use Monte Carlo samples and then

vectorize all the computation. Similarly, when the number of dimensions is very high,

matrix operations might be slower due to memory management issues.

Although computing VWB on GPUs saves time on a large-scale dataset, trans-
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mitting data between GPU memory and hard drive usually takes a significant amount

of time. In practice, that could have a certain impact on choosing between GPU and

CPU.

4.6 Applications

We demonstrate the use of variational Wasserstein barycenters for image com-

pression and point cloud registration.

4.6.1 Vector Quantization and Data Compression

Lloyd’s K-means algorithm was initially proposed for vector quantization and has

been a fundamental choice and baseline for data compression. It centers at using

fewer samples to approximate the entire distribution. In light of the connection

between VOT and K-means, we propose to use VOT to compress distributional data

in Rn and use VWBs to summarize multiple distributions and potentially compress

the summary at the same time. In this case, the VWD quantitatively measures the

compression error.

By using VOT, we obtain a surjection from each domain to the barycenter. Be-

cause we optimize over the height vector hi (4.2), given empirical samples and the

barycenter, we can fully recover the surjection by only using hi at the negligible ex-

pense of computing the power distance as in (2.16). In this way, for a barycenter of

size K of N empirical distributions each having M samples, we reduce the burden

for storing the barycenter and the correspondence from O(NMK), as it would be

for Sinkhorn distance-based or LP-based methods, to O(NK). This is particularly

useful when M is large and when we need to store multiple interpolations between

marginals.

Furthermore, with the VWB, we do not even need the original distributions to

79



O
ri
gi
n
al

K
-m

e
an

s

V
O
T

V
W
B

Si
n
kh

o
rn

Figure 4.10: Quantizing RGB Values From 24 Bits to 4 Bits by Solving K-Means,

OT, and the WB. Solving OT Results in Smoother Images; Solving WBs Can Cluster

and Merge Colors at the Same Time.

parameterize the compression maps because our method is based on the geometry of

the data and given the height vector hi and barycenter supports y we can uniquely

partition each original domain with a power Voronoi diagram Ri; or, equivalently,

the graph of the piece-wise linear function θh(x) = max
k
{xyk + hk}.

We demonstrate the use of our method with quantizing the RGB colors of three

images into a fixed number of clusters, or bins. See Figure 4.10 for the results. The
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top row shows the original images of dimension 1282 × 3 whose pixels are embedded

in the RGB color space X = {x ∈ R3 | ‖x‖∞ ≤ 1}. Our goal is to compute, for

example, K = 16 centroids that partition all the pixels into their clusters, so that we

reduce the storage for each pixel from 24 bits to 4 bits.

From the second row downward, we show the quantization result from K-means,

Sinkhorn OT, and our VOT. Clearly, OT techniques better distribute the centroids

so that each quantized color roughly has the same number of pixels, resulting in a

smoother image. Sinkhorn OT and VOT deliver very similar results, but the soft

assignments from Sinkhorn OT require further discretization for clustering and quan-

tization purposes.

The second row in Figure 4.10 shows the resulting images of using Lloyd’s K-

means(++) algorithm, and the third row shows the results of using our VOT solver.

Compared to Lloyd’s, VOT well distributes the centroids into the pixel domain, re-

sulting in a smoother transition from color to color. The correspondences in the color

space we show in Appendix also confirm this. Finally, we simultaneously merge and

compress the colors from all three images by using VWB. The last row shows the

resulting images sharing the same color distribution that only consists of 16 discrete

centroids. It has the same W2 to each original color distribution (marginal). In Ap-

pendix, we further show the results that comes from the centroids having different

W2’s to each marginals, i.e. λi 6= 1
N

in (4.6).

4.6.2 Multi-marginal Distributional Alignment

Aligning distributional data plays an essential role in many machine learning prob-

lems. We have seen enormous discussions in the past literature on aligning two dis-

tributions. In recent years, more researchers focus on aligning multiple distributions

simultaneously to find a common anchor, and it has potentials on domain adaptation
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Figure 4.11: Aligning Three Point Clouds While Preserving Their Structure.

and generative modeling in a more general setting, e.g., Cao et al. (2019). Here we

demonstrate the use of our method by registering multiple point clouds.

After we partition each domain into K clusters as we discussed in 4.4.3, the center

of mass for each cluster is a linear average. Rotation is a linear operation. Therefore,

applying the rotation to all the samples of each marginal distribution creates the same

movement as to the centers of masses. In this way, we can align multiple marginal

distributions altogether. Fig. 4.11 shows an example where we align three kittens,

each in a different position and orientation. The top half shows the final barycentric

centroids depicted in red dots in the middle that roughly lie in the center of the three

original kittens and with a “averaged” orientation. The bottom four sub-figures

show the process of the alignment. After 8 iterations of updating the centroids and

the orientation of the marginals, eventually, all the marginals are perfectly aligned

together with the centroids.

82



We are given three Kittens off by an unknown rigid transformation. Our goal

is to interpolate, by computing a regularized Wasserstein barycenter, a new Kitten

in between that is rigid to the original Kittens, and the amount of translation and

rotation is linear to the weights of the two original Kittens.

The marginal Kittens each have 7, 805 sample points. We assume all the sam-

ples have equal weights. They are apart from each other by a rigid transformation

composed by a random translation and a random rotation.

The barycenter Kitten w.r.t. the VWD (variational Wasserstein distance) has

780 supporting Dirac measures. The regularization strength, λ, is 10. One of the

post-processing options to transport all the samples from the marginals is that for

each sample, find its nearest 3 or more cluster centers and use inverse barycenter

coordinates to find its new location on the target Kitten in the middle.

4.7 Discussion

We conclude this chapter by discussing the advantages and disadvantages of VWBs

and several future directions.

Algorithms solving K-means like clustering problems are in general sensitive to

initial choices. Typical solutions include using a subset of samples and spreading the

seeds across the domain, e.g., K-means++. We tried the results from K-means++ as

the initial choice for our barycenters and also tried a pre-defined Gaussian distribution

whose mean is the average of the means of the marginals as prior knowledge. We did

not find visible differences.

Monge maps between discrete measures may not exist, e.g. transporting 3 Dirac

points {1
3
δ[xj]}3

j=1 to 2 Dirac points {1
2
δ[yj]}2

k=1. In this case, splitting the mass be-

comes necessary Wang et al. (2013). Moreover, there might be multiple solutions,

and variational solvers cannot recover any of them. An example is transporting
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{1
2
δ[x1 = (0,−1)], 1

2
δ[x2 = (0, 1)]} to {1

2
δ[y1 = (1, 0)], 1

2
δ[y2 = (2, 0)]}. There exist

two one-to-one maps but VOT cannot recover either because the target measures

cannot be distinguished by the piece-wise linear function θh(x) = maxk{xyk +hk}, in

2.4. Therefore, when dealing with stochastic GD, having sufficient samples to repre-

sent the domain is key to stabilize VWBs. Luckily, increasing the empirical samples

adds little computational burden if we parallelly update the correspondence for each

empirical according to its nearest neighbor. On the other hand, Sinkhorn iteration-

based OT methods produce soft correspondences that unavoidably result from the

entropic regularization, making them robust for discrete measures. Occasionally, the

soft correspondences are even desirable because they make the correspondences differ-

entiable Cuturi et al. (2019); Monge correspondences, however, are basically permu-

tations which are not differentiable. In summary, our VWB producing Monge maps

is suitable for clustering or partitioning problems that require binary, sparse corre-

spondence while Sinkhorn distance-based barycenters have been tested in numerous

applications in machine learning for producing robust interpolations.

There are several future directions: 1) In the current implementation, we use

exhaustive search to find the nearest centroid for each empirical sample, which takes

about 80% of our run time. A faster alternative for nearest neighbor search based

on the power distance, which is not a Minkowski distance, will significantly reduce

the run time of the VWB; 2) Whether VWBs or WBs for unbalanced measures still

induce a generalized metric deserves an answer; 3) Whether our discussion still holds

for 1 ≤ p < 2 and p > 2 deserves an answer; 4) Another branch of computing Monge

OT is the multi-scale approach, e.g., Mérigot (2011); Schmitzer (2016); Gerber and

Maggioni (2017). It also partitions the target domain into sub-domains. Computing

barycenters with multi-scale OT for clustering purposes is worth exploring.
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4.8 Appendix

Critical Point of VWBs w.r.t. {ν`}K`=1:

∇I5[hi] =

{
∂I5

∂hi,`
=

∫
Ri,`

dµi(x)− ν`

}K

`=1

,

h
(t+1)
i = h

(t)
i − η∇I5[hi].

y∗` =

∑N
i=1

∫
Ri,`

xdµi(x)

N
∑N

i=1

∫
Ri,`

dµi(x)
≈
∑N

i=1

∑
x∈Ri,` xµi(x)

N
∑N

i=1

∑
x∈Ri,` µi(x)

,

ν∗` =
1

N

N∑
i=1

∫
R∗i,`

dµi(x) ≈ 1

N

N∑
i=1

∑
x∈R∗i,`

µi(x),

We update ν` so that Ri ∀ i induced by the optimal T ∗i forms an unweighted

Voronoi diagram where each empirical sample x is mapped to its nearest y` w.r.t.

the quadratic Euclidean distance. Now, by contradiction, suppose we update ν` in

such as way that the OT map does not form an unweighted Voronoi diagram, i.e.,

T ′i 6= T ∗i . Then, there must be some sample x that is mapped to some yk 6= y` which is

not the nearest centroid. In this case, the total transportation cost increases because

‖x− yk‖2
2 > ‖x− y`‖2

2. Therefore, the minimum total cost w.r.t. ν` is achieved when

ν` induces the OT map that forms an unweighted Voronoi diagram. When we update

ν`, we only need to construct an unweighted Voronoi diagram according to the current

supports y and assign the total mass within each cell to its corresponding support.

This Voronoi diagram itself is also the OT map, like Lloyd’s algorithm.

Derivatives of VWBs.

min
{hi}Ni=1

I5[ν]
def
=

1

N

N∑
i=1

(∫ hi

0

K∑
`=1

∫
Ri,`

dµi(x)dhi,` −
K∑
`=1

ν(y`)hi,`

)
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The gradient of I5[h] is

∇I5[h] =

{{
∂I5

∂hi,`

}K
`=1

}N

i=1

=


{∫
Ri,`

dµi(x)− ν(y`)

}K

`=1


N

i=1

.

The Hessian of I5[h] is then

H =

(
∂2I5[h]

∂hi,`∂hj,k

)
=



∑
k

∫
fi,`,k

µ(x)dx

‖y` − yk‖
, i = j, ∀k, s.t. fi,`,k 6= ∅,

−

∫
fi,`,k

µi(x)dx

‖y` − yk‖
, i = j, fi,`,k 6= ∅,

0, i 6= j.

where fi,`,k = Ri,` ∩Ri,k.

This is a very sparse matrix since variables from different VOT problem, i, j, are

excluded from each other, and in each VOT problem, one power Voronoi cell is only

adjacent to a few other cells.

Dν∗(µ1:N)
def
= inf

ν∈P(Y)

1

N

N∑
i=1

W2
2 (µi, ν),

Proposition 8. Dν∗(µ1:N) is a generalized metric among µ1:N , N ≥ 2. Specifically,

Dν∗(µ1:N) satisfies the following properties.

1) Non-negativity: Dν∗(µ1:N) ≥ 0.

2) Symmetry: Dν∗(µσ1(1:N)) = Dν∗(µσ2(1:N)), where σ1(1 : N) and σ2(1 : N) are

different permutations of the set 1 : N .

3) Identity: Dν∗(µ1:N) = 0⇐⇒ µi = µj,∀i 6= j.

4) Triangle inequality: Dν∗(µ1:N) ≤
∑N

i=1Dν∗(µ1:N+1\i).

Proof. The first three properties are the immediate result of the metric nature of the

Wasserstein distance.
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1) Non-negativity: Dν∗(µ1:N) ≥ 0.

Since W2
2 (µi, ν

∗) ≥ 0 ∀ i, Dν∗(µ1:N) is obviously not negative. The equal sign

holds when W2
2 (µi, ν

∗) = 0 ∀ i. When that happens, µi = ν∗ for all i. It also implies

that all marginals are equal to each other, i.e. µi = µj, ∀ i 6= j.

2) Symmetry: Dν∗(µσ1(1:N)) = Dν∗(µσ2(1:N))

This is true since summation is symmetric. Because the order does not matter,

we use Dν∗(µ1:N) to omit it.

3) Identity: Dν∗(µ1:N) = 0⇐⇒ µi = µj,∀i 6= j

This is true, according to our discussion in 1).

4) Triangle inequality: Dν∗(µ1:N) ≤
∑N

i=1Dν∗(µ1:N+1\i)

We split the proof into two cases: N = 2 and N > 2.

N = 2. Suppose we have three probability distributions µ1, µ2, µ3 and their pair-

wise WBs ν(12)∗, ν(23)∗, ν(31)∗. According to McCann (1997), ν(12)∗ is on the geodesic

between µ1 and µ2 and thusW2(µ1, ν
(12)∗) =W2(µ2, ν

(12)∗) = 1
2
W2(µ1, µ2). Similarly,

W2(µ2, ν
(23)∗) = W2(µ3, ν

(23)∗) = 1
2
W2(µ2, µ3) and W2(µ3, ν

(31)∗) = W2(µ1, ν
(31)∗) =

1
2
W2(µ3, µ1). Thus, Dν∗(µ1:2) = 1

4
W2

2 (µ1, µ2), Dν∗(µ2:3) = 1
4
W2

2 (µ2, µ3), andDν∗(µ3:1) =

1
4
W2

2 (µ3, µ1). According to triangle inequality,W2
2 (µ1, µ2) ≤ W2(µ1, µ2)+W2(µ1, µ2),

then

Dν∗(µ1:2) ≤ Dν∗(µ2:3) +Dν∗(µ3:1)

Figure 4.12 reveals the triangle inequality for N = 2. Suppose µ1:3 are three

marginals and µ4:6 are the corresponding Wasserstein barycenters of each two marginals.

To ease the reading, we temporarily use Wi,j to represent WDs between marginals

µi,j. It is straightforward to show that W1,4 +W2,4 ≤ W2,5 +W3,5 +W1,6 +W3,6.

This is indeed true. First, W1,6 +W3,6 +W3,5 ≥ W1,6 +W5,6 ≥ W1,5, thanks to the

triangle inequality of the Wasserstein distance. Then, W1,5 +W2,5 ≥ W1,4 +W2,4

because of the definition of the Wasserstein barycenter where the barycenter induces
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Figure 4.12: Triangle Inequality for N = 2.

the minimum of the total Wasserstein distance between the marginals which in this

case are µ1 and µ2 .
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Chapter 5

CONCLUSION

In this thesis, we present a family of new transportation techniques for geometric

clustering. We developed new computational methods to solve optimal transportation

problems. Our methods built upon the variational principle and advanced the algo-

rithmic development on regularizing Monge optimal transportation and the Monge

Wasserstein barycenter problems. The natural connections we discovered between

Monge problems and geometric clustering enables our methods to perform various

tasks. We evaluated our methods from different perspectives and demonstrated their

flexibility and reliability in remeshing, domain adaptation, vector quantization, point

cloud registration, and medical image analysis.

Our variational approach closes the gaps between the Monge formulation and sev-

eral clustering problems that have been exploited from the perspective of the Kan-

torovich optimal transportation formulation. It also opens up several new directions

for future work. We are extending our methods to clustering distributional data with

hierarchical structures. It is worth exploring computing Monge optimal transporta-

tion and Wasserstein barycenters on general manifolds with Riemannian metrics by

defining generalized power Voronoi diagrams. We also expect more discussions on the

metric properties of multi-marginal optimal transportation for unbalanced measures

to generalize our framework.
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Wang, W., D. Slepčev, S. Basu, J. A. Ozolek and G. K. Rohde, “A linear optimal
transportation framework for quantifying and visualizing variations in sets of im-
ages”, International journal of computer vision 101, 2, 254–269 (2013).

95

http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/


Wang, Y., X. Gu, T. F. Chan, P. M. Thompson and S.-T. Yau, “Volumetric harmonic
brain mapping”, in “Biomedical Imaging: Nano to Macro, 2004. IEEE International
Symposium on”, pp. 1275–1278 (IEEE, 2004).

Weinberger, K. Q. et al., “Distance metric learning for large margin nearest neighbor
classification”, Journal of Machine Learning Research 10, Feb, 207–244 (2009).

Xu, R. and D. Wunsch, “Survey of clustering algorithms”, IEEE Transactions on
neural networks 16, 3, 645–678 (2005).

Yang, J. et al., “Go-icp: A globally optimal solution to 3d icp point-set registration”,
IEEE TPAMI , 11, 2241–2254 (2016).

Ye, J., P. Wu, J. Z. Wang and J. Li, “Fast discrete distribution clustering using
Wasserstein barycenter with sparse support”, IEEE Transactions on Signal Pro-
cessing 65, 9, 2317–2332 (2017).

96


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	WASSERSTEIN CLUSTERING THROUGH POWER DIAGRAMS
	Introduction
	Related Work
	Primer on Optimal Transportation and Notations
	Optimal Transportation through Variational Principles
	Connections between Variational OT and Monge OT
	Experiments
	Domain Adaptation on Synthetic Data
	Deforming Triangle Meshes
	Applications to MR Images for Alzheimer's Disease Analysis

	Summary

	REGULARIZING MONGE OPTIMAL TRANSPORTATION
	Introduction
	Related Work
	Wasserstein Means via Variational OT
	Regularized Wasserstein Means
	Triplets Empowered by Class Labels
	Geometric Transformations
	Topology Represented by Length and Curvature

	Applications
	Domain Adaptation
	Point Set Registration
	Skeleton Layout

	Summary

	VARIATIONAL WASSERSTEIN BARYCENTERS FOR GEOMETRIC CLUSTERING
	Introduction
	Related Work and Our Contributions
	Variational Wasserstein Distances
	Wasserstein Barycenters through Variational OT
	The Metric Properties of Wasserstein Barycenters
	A Distance among Multiple Distributions
	On Unbalanced Measures
	On the Spherical Domain

	Geometric Clustering through VWDs
	Regularized K-Means Clustering
	Co-Clustering
	Regularizing VWBs for Aligning Distributions

	Numerical Evaluation
	Applications
	Vector Quantization and Data Compression
	Multi-marginal Distributional Alignment

	Discussion
	Appendix

	CONCLUSION

	REFERENCES


