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ABSTRACT 

Whilst linear mixed models offer a flexible approach to handle data with multiple sources 

of random variability, the related hypothesis testing for the fixed effects often encounters 

obstacles when the sample size is small and the underlying distribution for the test 

statistic is unknown. Consequently, five methods of denominator degrees of freedom 

approximations (residual, containment, between-within, Satterthwaite, Kenward-Roger) 

are developed to overcome this problem. This study aims to evaluate the performance of 

these five methods with a mixed model consisting of random intercept and random slope. 

Specifically, simulations are conducted to provide insights on the F-statistics, 

denominator degrees of freedom and p-values each method gives with respect to different 

settings of the sample structure, the fixed-effect slopes and the missing-data proportion. 

The simulation results show that the residual method performs the worst in terms of F-

statistics and p-values. Also, Satterthwaite and Kenward-Roger methods tend to be more 

sensitive to the change of designs. The Kenward-Roger method performs the best in 

terms of F-statistics when the null hypothesis is true. 
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1     Background of Study 

1.1     Introduction to Linear Mixed Models 

Linear mixed models (LMMs) are useful in analyzing data with multiple sources 

of random variability and particularly handy in settings where repeated measurements are 

made in a longitudinal study. LMMs are an extension of standard linear models, 

involving a mixture of linear functions of fixed effects and random effects. These two 

types of effects are distinguished based on how they change among observations. While 

fixed effects remain constant, random effects may vary across observations (Kreft and De 

Leeuw, 1998). Such random variation is often addressed by the serial correlation and the 

cluster correlation. Serial correlation is present when the units are repeatedly measured 

over a time- or space-varying stochastic process (Diggle et al., 2002). Cluster correlation 

occurs when the observations are grouped in a variety of ways, such as repeated random 

sampling of subgroups or repeated measuring of the same units (Rencher and Schaalje, 

2008). The general setting of a linear mixed model can be expressed in a matrix form, 

y X Zu= b+ +e , 

where y  is a vector of responses with mean y X= bE( ) , X  is a matrix of known constants 

for fixed effects, b  is a vector of unknown fixed effects, Z  is a matrix of known constants 

for random effects, u  is a vector of unknown random effects with u ~ 0,  G q1N[ ( )] , e  is a 

vector of unknown random errors with ~ 0,  Re 2N[ ( )]θ , and q1  and q2  are vectors of 

variance parameters. Assuming ( ,  )¢ ¢¢ =q q q1 2 , the covariance matrix of y  is 

ZGZ R¢S= + . 
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The parameters in the mixed model can be estimated by either the maximum 

likelihood (ML) approach or the restricted maximum likelihood (REML) approach. In the 

case of large samples, the ML approach is usually robust against mild violations of the 

assumptions and gives estimators that are asymptotically consistent and efficient (Hox et 

al., 2018). However, when estimating the variance components, the ML approach does 

not take into account the loss of degrees of freedom resulting from the estimation of the 

fixed effects (West et al., 2015). The result is that the ML estimators are biased with 

smaller variances, especially when the sample size is small (Searle et al., 2006). On the 

other hand, the REML approach, taking into account the loss of degrees of freedom, is 

considered a better way with respect to the estimation of the variance components 

(Snidjers and Bosker, 1999). The REML estimators of the variance components are also 

invariant to the value of b  and less sensitive to the outliers in the data, compared to the 

ML estimators (McCulloch et al., 2008). In view of these preferable characteristics, the 

REML approach is chosen over the ML approach in this study and will be adopted into 

the simulations in the later chapter. 

1.2     Issues with Inferences for Fixed Effects 

The REML approach (Patterson and Thompson, 1971; Harville, 1977) provides 

essential estimators that are used to derive the F-test statistic for the fixed effects in the 

mixed model. Ŝ , an estimator of the covariance matrix S , is the inverse of the Hessian 

matrix of the restricted log likelihood function. Given Ŝ , the estimated generalized least 

squares estimator of b  can be obtained as 
1 1ˆ ˆ ˆ(X X) X y- - -¢ ¢b = S S  and if X  is full rank 

the approximate covariance matrix of b̂  can be expressed as 
1 1ˆ ˆ(X X)- -¢b = Scov( ) . 
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Extending the theorem of the general linear hypothesis test (Rencher and Schaalje, 2008), 

we obtain that for a known full-rank ×q p  matrix L  whose rows define the estimable 

functions of b , 
ˆLb  approximately distributes as 

1ˆL ,  L(X X) L- -¢ ¢b SN [ ]q  and 

1 1ˆ ˆˆ(L L ) [L(X X) L ] (L L )- - -¢ ¢ ¢b- b S b- b  is approximately 
2 ( )qc . Further with that (1) 

1 1ˆ[L(X X) L ]- - -¢ ¢S  is formed as Kd
w

, where w  is a central chi-square random variable 

with d  degrees of freedom, and that (2) 
ˆ ˆ(L L ) K(L L )¢b- b b- b  follows a (most-likely 

noncentral) chi-square distribution with q  degrees of freedom; a test statistic for the 

hypothesis 0H : Lb = t  can be derived as an F-test statistic (Rencher and Schaalje, 2008), 

1 1ˆ ˆ ˆ ˆˆ(L t) K(L t) (L t) [L(X X) L ] (L t)- - -¢ ¢ ¢ ¢b- b- b- S b-== qF
w d q

. 

Nevertheless, these inferences are not universally satisfactory for small samples. 

In most cases of small samples, especially with complex models consisting of unbalanced 

datasets and complicated covariance structures, the distribution of the test statistic is 

unknown and the p-values cannot be computed exactly. In this regard, the estimation of 

the denominator degrees of freedom (DDF) becomes the most critical issue on 

conducting an approximate F-test and providing informative inferences (Schaalje et al., 

2002). As of today, a number of DDF approximation methods have been developed 

(Schluchter and Elashoff, 1990; Fai and Cornelius, 1996; Kenward and Roger, 1997) and 

a variety of research has been done in examining the performance of these methods 

(Tietjen, 1974; Li and Redden, 2015; Luke, 2016). Yet, besides the variability inherent in 

the data and the research questions, the development of software packages assisting the 
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mixed-model computation further brings uncertainty and unknown into research and 

practice. Therefore more studies using software packages on how the DDF approximation 

methods perform under different research designs especially with complex settings are 

required to provide insights for future theoretical development and industrial practice. 

In this study, we aim to investigate the five commonly-used DDF approximation 

methods (residual, containment, between-within, Satterthwaite, and Kenward-Roger) that 

are available in SAS and to conduct simulations to evaluate their performance with a 

relatively complicated model and different sample structure and missing-data proportion. 

Specifically, in Chapter 2 we review the theoretical background of each method to lay the 

foundations for our study; in Chapter 3 we present the results of our simulations with a 

mixed model including random intercept and random slope and under the effects of 

imbalance and sample structure; and finally in Chapter 4 we conclude with a discussion 

of our results and the area worth further exploration. 
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2     Denominator Degrees of Freedom Approximations 

2.1     Residual Method 

The residual method is the simplest method, in which all of the tests are 

performed using the residual degrees of freedom XZ−N rank( ) , where N  is the total 

sample size, X  is the matrix of known constants for fixed effects, and Z  is the matrix of 

known constants for random effects. Only for independent and identically distributed 

designs this method provides correct denominator degrees of freedom; ignoring the 

covariance structure of the model, this method only performs well in large-sample 

situations where the asymptotic distributions provide good approximations (Schaalje et 

al., 2002). Although in this study our main focus is correlated data in small-sample 

situations, we include this method in our simulations to see how the F-statistics, DDF, 

and p-values it gives may differ from the other methods. 

2.2     Containment Method 

The containment method is to search through the random effects that syntactically 

contain the fixed effects of interest (based on the statement syntax defining the random 

effects), compute their contributions to the XZrank( ) , and assign the minimum of these 

rank contributions as the DDF. If no such random effects can be found or no random 

effects are clearly stated to contain the fixed effects of interest, the DDF is set equal to 

the residual degrees of freedom (West et al., 2015). Schaalje et al. (2002) note that the 

containment method is considered to give exact DDF when the design is balanced, there 

is no structure in the R  matrix (the covariance matrix of unknown random errors), and the 

nested fixed-random syntax is clearly stated; otherwise this method may provide 

adequate approximate results. 
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2.3     Between-Within Method 

The between-within (B-W) method proposed by Schluchter and Elashoff (1990) is 

to divide the residual degrees of freedom into between-subject and within-subject 

portions, and then assign the DDF: (1) by the within-subject degrees of freedom, if the 

fixed effects change within any subject; or (2) by the between-subject degrees of freedom, 

otherwise. Exceptionally for cases that multiple within-subject effects including 

classification variables are present, the within-subject degrees of freedom are further 

partitioned into components that correspond to the subject-by-effect interactions (SAS 

Institute, 2017). The between-within method is considered to provide exact DDF for 

balanced repeated-measure designs involving a covariance structure of compound 

symmetry; in other cases, this method may give approximate results at best and can be 

unpredictable sometimes (Schaalje et al., 2002). 

2.4     Satterthwaite Method 

The Satterthwaite method is to obtain an approximate small-sample distribution of 

1 1ˆ ˆˆ(L t) [L(X X) L ] (L t)- - -¢ ¢ ¢b- S b-=F
q

 to develop a test for 0H : L = tβ . The 

distribution of F is assumed to approximately follow an F distribution with numerator 

degrees of freedom q  and unknown denominator degrees of freedom n . Fai and Cornelius 

(1996) proposed a method for multi-degree-of-freedom tests in unbalanced split-plot 

designs. As presented by Rencher and Schaalje (2008), this method involves a spectral 

decomposition of 
1 1ˆ[L(X X) L ]- - -¢ ¢S  to yield 

1 1ˆP [L(X X) L ] P D- - -¢ ¢ ¢S = , where 

D   1 2 m= diag( , , , )l l l  is the diagonal matrix of eigenvalues and P p ,  p , ,  p1 2 m= ( )  is 

the orthogonal matrix of normalized eigenvectors of 
1 1ˆ[L(X X) L ]- - -¢ ¢S . With this 

  6 



decomposition, Q = qF  can be written as a sum of q approximate independent squared t-

variables, 

ˆ¢
å å i

2
2i

i=1 i=1i

( )= =p Lβq q

Q tnl
, 

where ¢ip  is the i-th eigenvector with the respective eigenvalue il  and in  is the 

approximate degrees of freedom for the i-th single degree of freedom t-test (Rencher and 

Schaalje, 2008). 

The values of in ’s  are computed by repeatedly applying a method for single 

degrees of freedom contrasts (Giesbrecht and Burns, 1985). Following Satterthwaite’s 

premise (1941), this method assumes that for a single-degree-of-freedom test of 

0H : ¢c = 0β , where c  is a vector of constants, the test statistic  

1

ˆc
ˆc (X X) c- -

¢b

¢ ¢S
=t  

approximately follows a t distribution with unknown degrees of freedom of  . It also 

suggests that   can be approximated as 

1

1

ˆc (X X) c
ˆc (X X) c

- -

- -

¢ ¢S
¢ ¢S

22[ ]
var[ ]

  . 

The denominator of this expression can be estimated using the multivariate delta method 

proposed by Lehmann (1999). Since a squared t-variable with degrees of freedom in  is an 

F-variable with degrees of freedom 1 and in ,  

æ ö æ öç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷è ø è øå å å åi i i

2 i

i=1 i=1 i=1 i=1 i

= t = = [ ( )] =
2

q q q q

1, 1,E(Q) E E F E Fn n n

n
n -

. 
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Furthermore,  n  can be found by the relationship 
-1F = q Q , which approximately 

distributes as q,F n . 

E(Q)E(F) = =
q 2

n
n-

 and the Satterthwaite DDF can be obtained as 

)
é ùæ ö æ öç ÷ ç ÷ê ú= ç ÷ ç ÷ê úç ÷ ç ÷ç ÷ ç ÷è ø è øê úë û

å åi i

i=1 i=1i i

2 2
2 2

q qE(Q)= q
E(Q) q

n n
n

n n
-

- --
. 

2.5     Kenward-Roger Method 

Similar to the Satterthwaite method, the Kenward-Roger (K-R) method is to 

approximate a small-sample F distribution. First of all, this method implements 

adjustments for two sources of bias in 
1 1ˆ[L(X X) L ]- - -¢ ¢S , an estimator of the covariance 

matrix of 
ˆLb  for small samples. The first source of bias, the variability in ŝ , is adjusted 

using an approximation given by Kackar and Harville (1984); the second source of bias, 

the small sample bias, is adjusted using a method proposed by Kenward and Roger 

(1997). Both of these adjustments are based on a Taylor series expansion around s

(McCulloch et al., 2008). Rencher and Schaalje (2008) specify the form of the adjusted 

approximate covariance of 
ˆLb , 

1 1 1
ˆ ˆL

ˆ ˆL (X X) (X X) G P P (X X) L- - - - - -
b b

ì üé ùï ïï ïê ú¢ ¢ ¢ ¢S = S + S - S Sí ýê úï ïï ïë ûî þ
åå*

ij ij i j
i=0 j=0

2 ( )
m m

s , 

where ijs  is the (i, j)-th element of ˆ
ˆ

sS , 

1ˆ ˆˆG X X
-S S¢= Sij 2 2
i i

¶ ¶
¶s ¶s

 and 

1ˆ
P X X

-S¢=i 2
i

¶
¶s

. 

The Kenward-Roger method then assumes that for the test 0H : L = tβ , the test 

statistic, 

ˆL
ˆ ˆˆ(L ) (L )

b
¢b S b*

KR= = δF* δF
q

, 
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approximately distributes as an F distribution with two adjustable constants, a scale factor 

δ  and the denominator degrees of freedom n . Based on a second-order Taylor series 

expansion of ˆL
ˆ

b
S*

 around s  and the conditional expectation relationships KRE( )F  and 

KRvar( )F  are yielded approximately (Schaalje et al., 2002). By further equating KRE( )F  

and KRvar( )F  to the mean and variance of an F distribution to solve for δ  and n , the 

results (Rencher and Schaalje, 2008) can be obtained as  

+ 2
1

q
q

n
g

=2+
-

 

and 

-KR

=
E( )( 2)

δ
F

n
n

, 

where 

KR
2

KR

var( )
2E( )

F
F

g = . 
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3     Simulation 

3.1     Settings 

 To see how each method of the denominator degrees of freedom approximations 

handles a relatively complicated mixed model, in the simulation we introduce a model of 

time points with random intercept and random slope, 

2
ij 0 1 ij 2 ij 0i 1i ij ijY = t t t +g +g +g +b +b e , 

   i = 1, 2,..., n; j = 1, 2,...,m,  

where ijY  is the j-th observation for the i-th factor level; 0g  is the intercept for the fixed 

effects; 1g  is the slope for the time fixed effects; 2g  is the slope for the time-square 

(timesq) fixed effects; 0ib  is the random intercept that distributes as  
0

2
bN(0, )s ; 1ib  is the 

random slope that distributes as s 
1

2
bN(0, ) . ije  is the noise identically independently 

distributed as  2N(0, )s .   

Our simulations are conducted through a combination of code in R and SAS 

(Appendix A, B, C) using the REML approach and the unstructured type of covariance 

components. We have three types of setting variables as follows: 

Table 1 

Simulation Setting Variables 

No. Type Setting Variables 

1 Sample structure (n m)´  ´ ´ ´(20 3), (20 6), (10 6)  

2 Slopes for time and timesq  1 2( )g , g  (0, 0), (0.05, 0.05), (0.1, 0.1), (0.5, 0.5)  

3 Proportion of missing data  0% (balanced), 5%, 10%, 20% 
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There are several steps of how we conduct the simulation: first of all, for each 

type of the sample structure, we modify Adriaenssens’ R code (2015) to generate 500 sets 

of random variables for each setting of slopes for time and timesq. We then use the 

Sample command in R to randomly omit certain amount of values in the dataset and 

fulfill the requirements of the missing-data proportion. For each dataset generated from 

each of the 48 setting-variable combinations in total, we use the Proc Mixed statement in 

SAS to run the mixed model by five DDF approximation methods (residual, containment, 

between-within, Satterthwaite, and Kenward-Roger). Finally, we export the results for 

each method and plot F-statistic quantile-quantile (Q-Q) plots, DDF boxplots, and p-

value histograms to get insights on each method’s performance. 

3.2     Results 

This section is divided into five parts with respect to the five methods of 

denominator degrees of freedom approximations. In each part, we first analyze the F-

statistic Q-Q plots with  1 2( ) = (0, 0)g , g . Then we evaluate the DDF boxplots with 

different settings of sample structure, slopes, and missing-data proportion. Last, we look 

into the p-value histograms to conclude with the change of power across different designs. 

Note that we only present figures for results that are representative of their category or 

particularly deviant from the common pattern of their category. 

3.2.1     Residual Method 

 3.2.1.1     F-Statistic Q-Q Plots. Given that when the slopes of time and timesq 

equal to (0, 0) in the model, we have a central F distribution for the test statistic. It is 

assumed that in the case with  1 2( ) = (0, 0)g , g , the empirical F-statistics computed by the 

DDF approximation methods should be very similar to the theoretical F-statistics. 
  11 



Looking into Figure 1 below, we observe that this is very likely the case for balanced 

designs with only a few outliers out of 500 data. However, as the proportion of missing 

data increases, the deviance between the empirical F-statistics and the theoretical F-

statistics goes up.  

Figure 1 

Residual F-Statistic Q-Q Plots Highlighted with 20 3´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 
          Unbalanced (10%) 

 

          Unbalanced (20%) 
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 This positive relationship between the imbalance proportion and the F-Statistic 

deviance also applies to the case of 20 3´  timesq effects. Further looking into Figure 2 

below, we observe that a different pattern is present when we have more time points (six 

compared to three) nested within each factor levels.  

Figure 2 

Residual F-Statistic Q-Q Plots Highlighted with 20 6´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 
          Unbalanced (10%) 

 

          Unbalanced (20%) 
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The difference between the empirical F-Statistic and the theoretical F-Statistic 

becomes smaller for the datasets with larger proportion of missing values. This change of 

pattern is present for ´20 6  timesq effects and ´10 6  time and  timesq effects as well.  

 3.2.1.2     DDF Boxplots. The DDF distribution is robust across different slopes. 

Figure 3 

Residual DDF Boxplots Highlighted with 20 3´  Time Effects 

            g g
1 2

( , ) = (0, 0)  

 

             g g
1 2

( , ) = (0.05, 0.05)  

 
             g g

1 2
( , ) = (0.1, 0.1)  

 

             g g
1 2

( , ) = (0.5, 0.5)  
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As showed in Figure 3 on the previous page, the distribution of DDF is very concentrated 

with no observable extreme values. As the proportion of missing data increases, the mean 

of DDF decreases. Similar trend can be found for 20 3´  timesq effects, ´20 6  time and 

timesq effects, and 10´6  time and timesq effects. 

3.2.1.3     P-Value Histograms. First, the case with  1 2( ) = (0, 0)g , g  is as follows: 

Figure 4 

Residual P-Value Histograms for 20 3´   (0, 0) Time Effects 
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With slopes equal to zero, the percentage of p-values less than 0.05a =  should be around 

5%. In Figure 4 on the previous page, the mean percentage for the four designs with 

different proportion of missing data is 6.9%. Since in each trial of the hypothesis test the 

result is either rejecting or not rejecting the null hypothesis, we apply the normal 

approximation of binomial distribution to obtain a confidence interval for the percentage: 

0.05 0.950.05 1.96 (3.09%,  6.91%)
500
´

± = . 

Since the mean 6.9% is within the confidence interval, we conclude that the residual 

method performs well for 20 3´  time effects with   1 2( ) = (0, 0)g , g . Further computing the 

means for the rest of the designs, we get a full table of mean percentages as follows: 

Table 2 

Residual Mean Percentage for 1 2( ) = (0, 0)g , g  

No. Sample Structure Effect Type Mean Percentage (%) 

1 20 3´  Time 6.9 

2 20 3´  Timesq   7.1* 

3 20´6  Time 5.3 

4 20´6  Timesq 5.8 

5 10´6  Time 5.1 

6 10´6  Timesq 4.7 

*beyond the confidence interval of (3.09%, 6.91%) 

Note there is one mean falling beyond the confidence interval. The sample structure of 

20 3´  gives the greatest mean percentages for both time and timesq effects among all. 
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 Furthermore, we look into the trend across different settings of slopes. It is 

reasonable that the higher slopes we set for the effects, the more power we should get in 

terms of rejecting the null hypothesis. Figure 5 below shows a typical trend of power 

across different slopes. We also observe another trend that under the same setting of 

slopes, the power for time effects tends to be less than the one for timesq effects. 

Figure 5 

Residual P-Value Histograms for 20 3´  Unbalanced (5%) Timesq Effects 

                 g g
1 2

( , ) = (0, 0)  

 

                   g g
1 2

( , ) = (0.05, 0.05)  

 
                  g g

1 2
( , ) = (0.1, 0.1)  

 

                  g g
1 2

( , ) = (0.5, 0.5)  

 

  17 



3.2.2     Containment Method 

 3.2.2.1     F-Statistic Q-Q Plots. Looking into the results for the containment 

method, we observe a trend similar to the residual method: the more proportion of 

missing data, the larger deviance between empirical and theoretical F-Statistics (Figure 6).  

Figure 6 

Containment F-Statistic Q-Q Plots Highlighted with 20 3´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 
          Unbalanced (10%) 

 

          Unbalanced (20%) 
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The exception occurs when we increase the number of time points nested within 

each of the factor levels from three to six. As presented in Figure 7 below, the F-Statistic 

deviance with the largest 20% of missing data is relatively small compared to others.  

Figure 7 

Containment F-Statistic Q-Q Plots Highlighted with 20 6´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 
          Unbalanced (10%) 

 

          Unbalanced (20%) 
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However, the average F-Statistic deviance becomes larger as we further decrease 

the number of factor levels from 20 to 10 (Figure 8). Even in the case with balanced data, 

there is a significant deviance between the empirical and the theoretical F-Statistics. 

Figure 8 

Containment F-Statistic Q-Q Plots Highlighted with 10 6´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 

          Unbalanced (10%) 

 

          Unbalanced (20%) 
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3.2.2.2     DDF Boxplots. There are two kinds of patterns in the DDF distribution. 

First, for the time effects with a sample structure of 20 3´  (upper left in Figure 9), there is 

a small deviance among means across different missing-data proportion. Yet the range 

increases as the proportion goes up. For the timesq effects (upper right in Figure 9), the 

mean decreases as the proportion increases. 

Figure 9 

Containment DDF Boxplots Highlighted with 1 2( ) = (0.05, 0.05)g , g  

            ´20 3 Time Effects  

 

              ´20 3 Timesq Effects  

 

            ´20 6 Time Effects

 

             ´20 6 Timesq Effects  
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Second, for the time effects with a sample structure of ´20 6  (lower left in Figure 

9 on the previous page), the DDF distribution is very concentrated and the mean is almost 

the same across different proportion of missing values. This pattern is also present for the 

time effects with a sample structure of ´10 6 . Moreover, for the timesq effects with a 

sample structure of ´20 6  (lower right in Figure 9); the DDF distribution is still 

concentrated, but the mean decreases as the missing-data proportion increases. This 

pattern is present for the timesq effects with a sample structure of ´10 6  as well. 

3.2.2.3     P-Value Histograms. First of all, we obtain the mean percentages of p-

values less than 0.05a =  across different missing-data proportion as follows: 

Table 3 

Containment Mean Percentage for 1 2( ) = (0, 0)g , g  

No. Sample Structure Effect Type Mean Percentage (%) 

1 20 3´  Time 5.7 

2 20 3´  Timesq 5.2 

3 20´6  Time 4.0 

4 20´6  Timesq 5.7 

5 10´6  Time 2.8 

6 10´6  Timesq 4.5 

*beyond the confidence interval of (3.09%, 6.91%) 

Note there is no mean percentage falling beyond the confidence interval. Compared to the 

previous mean percentage of 7.1% for the time effects with a sample structure of 20 3´  , 

this result suggests that the containment method performs better than the residual method 

in terms of percentages of p-values less than 0.05 with  1 2( ) = (0, 0)g , g . 
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Further looking into the p-values across different settings of slopes, we observe a 

trend similar to the residual method. Figure 10 below shows an increasing trend of power 

across different slopes. The power for time effects also tends to be less than the one for 

timesq effects with the same setting of slopes. 

Figure 10 

Containment P-Value Histograms for 20 3´  Unbalanced (5%) Timesq Effects 
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3.2.3     Between-Within Method 

 3.2.3.1     DDF F-Statistic Plots. First, we observe that the previous positive 

relationship between the missing-data proportion and the F-Statistic deviance is present 

for 20 3´  time and timesq effects when the slopes for time and timesq equal to (0, 0), as 

illustrated in Figure 11 below. 

Figure 11 

B-W F-Statistic Plots Highlighted with 20 3´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 
          Unbalanced (10%) 

 

          Unbalanced (20%) 
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 Nonetheless, when we increase the number of time points nested within each 

factor level from three to six, the deviance between the empirical and the theoretical F-

Statistics becomes smaller as the proportion of missing values increases (Figure 12). This 

pattern also applies to the cases of ´20 6  timesq effects and ´10 6  time and timesq effects. 

Figure 12 

B-W F-Statistic Plots Highlighted with 20 6´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 

          Unbalanced (10%) 

 

          Unbalanced (20%) 
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 When we further decrease the number of factor levels, we observe that the F-

Statistic deviance growing along with the missing-data proportion becomes smaller 

(Figure 13) compared to the previous cases with the sample structure of ´20 3  and ´20 6 . 

Figure 13 

B-W F-Statistic Plots Highlighted with 10 6´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 
          Unbalanced (10%) 

 

          Unbalanced (20%) 
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3.2.3.2     DDF Boxplots. The DDF distribution with respect for each type of 

missing-data proportion is robust regardless of the kind of effects. There is a universal 

trend for the B-W method that the DDF mean decreases as the missing-data proportion 

increases. The small amount of outliers presented with the sample structure of ´20 3  in 

Figure 14 below does not exist for the cases of ´20 6  and ´10 6  sample structure. 

Figure 14 

B-W DDF Boxplots Highlighted with 1 2( ) = (0.05, 0.05)g , g  

            ´20 3 Time Effects  

 

              ´20 3 Timesq Effects  

 

            ´20 6 Time Effects  

 

             ´20 6 Timesq Effects  
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3.2.3.3     P-Value Histograms. First, we obtain the mean percentages of p-values 

less than 0.05a =  across different missing-data proportion: 

Table 4 

B-W Mean Percentage for 1 2( ) = (0, 0)g , g  

No. Sample Structure Effect Type Mean Percentage (%) 

1 20 3´  Time 6.4 

2 20 3´  Timesq 6.8 

3 20´6  Time 5.3 

4 20´6  Timesq 5.8 

5 10´6  Time 5.0 

6 10´6  Timesq 4.6 

*beyond the confidence interval of (3.09%, 6.91%) 

Note there is no mean percentage falling beyond the confidence interval. This result 

suggests that the B-W method performs better than the residual method in terms of 

percentages of p-values less than 0.05 with  1 2( ) = (0, 0)g , g . Nevertheless, the majority of 

mean percentages here is greater than the ones produced by the containment method. 

 A typical trend is shown in Figure 15 on the next page: As the slopes for time and 

timesq effects increase, the power also increases. This trend is present in all of the 

designs regardless of the type of effects, sample structure or missing-data proportion. 

However, the percentage of p-values less than 0.05a =  given by the B-W method tends 

to be greater than the one given by the containment method. 
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Figure 15 

B-W P-Value Histograms for 20 3´  Unbalanced (5%) Timesq Effects 
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3.2.4     Satterthwaite Method 

 3.2.4.1     F-Statistic Q-Q Plots. First of all, we observe a positive relationship 

between the F-Statistic deviance and the missing-data proportion. This pattern occurs 

with the residual, containment and B-W method as well. Further comparing the results in 
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Figure 6 on p.18 and those in Figure 16 below, we can see that the way data scatter by the 

containment method is very similar to the way by the Satterthwaite method. This 

similarity holds for the majority of the F-Statistic Q-Q plots of these two methods. 

Therefore, it may suggest a similar way these two methods handle data when the slopes 

for time and timesq are set to be zero. 

Figure 16 

Satterthwaite F-Statistic Q-Q Plots Highlighted with 20 3´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 

          Unbalanced (10%) 

 

          Unbalanced (20%) 
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The F-Statistic deviance for the case with 20% missing values gets smaller as 

more time points are set to be nested within each factor level. This change, illustrated in 

Figure 17 below, occurs in the same kind of designs by residual, containment and B-W 

methods as well. 

Figure 17 

Satterthwaite F-Statistic Q-Q Plots Highlighted with 20 6´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 
          Unbalanced (10%) 

 

          Unbalanced (20%) 
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The F-Statistic deviance, especially for the extreme values, decreases as we 

further increase the number of factor levels (Figure 18). Yet compared to Figure 17, some 

deviance may actually become larger, such as the case with 5% missing data. 

Figure 18 

Satterthwaite F-Statistic Q-Q Plots Highlighted with 10 6´  Time Effects 
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          Unbalanced (20%) 
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3.2.4.2     DDF Boxplots. Previously the DDF boxplots presented for the residual, 

containment and B-W methods often share only two kinds of patterns across different 

designs. Contrarily for the Satterthwaite method, we discover that with each type of 

sample structure ( ´20 3 , ´20 6  and ´10 6 ), the DDF boxplots show different patterns 

with respect to the type of effects, slopes and missing-data proportion.  

 First of all, in Figure 19 on p.34, we observe that the DDF distribution for the 

time effects and the timesq effects is quite similar. The mean DDF is also similar with 

respect to the slopes and missing-data proportion. The mean decreases as the proportion 

of missing values increases. 

 Second, in Figure 20 on p.35, the difference between the DDF distributions for 

the time effects and the timesq effects is quite distinguishing. On one hand, the 

distribution for the time effects is relatively scattered around similar means. The range 

also decreases as the missing-data proportion increases. On the other hand, the 

distribution for the timesq effects is relatively concentrated. The mean decreases as the 

missing-data proportion increases. 

Finally, in Figure 21 on p.36, the difference between the time effects and the 

timesq effects is also present. However, compared to the case in Figure 20, the 

distributions for both time and timesq effects are all more scattered. There are also more 

outliers. This result may be due to the decrease in the number of factor levels (from 20 to 

10). Nonetheless, the means follow the same fashion in Figure 20.  
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3.2.4.3     P-Value Histograms. We first obtain the mean percentages of p-values 

less than 0.05a =  across different missing-data proportion as follows: 

Table 5 

Satterthwaite Mean Percentage for 1 2( ) = (0, 0)g , g  

No. Sample Structure Effect Type Mean Percentage (%) 

1 20 3´  Time 5.7 

2 20 3´  Timesq 5.3 

3 20´6  Time 5.2 

4 20´6  Timesq 5.7 

5 10´6  Time 4.9 

6 10´6  Timesq 4.5 

*beyond the confidence interval of (3.09%, 6.91%) 

Note there is no mean percentage falling beyond the confidence interval. This result 

indicates that the Satterthwaite method performs well in the case of  1 2( ) = (0, 0)g , g . The 

different settings of effects and sample structure do not significantly influence the power 

generated by the Satterthwaite method. 

 A trend of increasing power of rejecting the null hypothesis is present as 

illustrated in Figure 22 on the next page. This applies to all the cases of different effects, 

sample structure and missing-data proportion. In addition, the power is generally larger 

for the timesq effects than for the time effects, especially in the cases with 5% and 10% 

missing values. 
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Figure 22 

Satterthwaite P-Value Histograms for 20 3´  Unbalanced (5%) Timesq Effects 
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3.2.5     Kenward-Roger Method 

 3.2.5.1     F-Statistic Q-Q Plots. Previously there is a positive relationship 

between the F-Statistic deviance and missing-data proportion for the case of ´20 3  

sample structure by the residual, containment, B-W and Satterthwaite methods. 
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Nevertheless, here such relationship is not as clear (Figure 23). The deviance between the 

empirical and the theoretical F-Statistics for the case with 20% missing data (lower right 

in Figure 23) is the smallest among all the DDF approximation methods. This result is 

also present in the case for the ´20 3  timesq effects. 

Figure 23 

K-R F-Statistic Plots Highlighted with 20 3´  Time Effects 

       Balanced 

 

          Unbalanced (5%) 

 

          Unbalanced (10%) 

 

          Unbalanced (20%) 
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 There is no significant difference between the Q-Q plots with the ´20 3  sample 

structure and the ones with the ´20 6  sample structure. Increasing the number of time 

pointes nested within each factor level does not make much difference in this case like it 

does in the previous cases with the other DDF approximation methods. 

Figure 24 

K-R F-Statistic Q-Q Plots Highlighted with 20 6´  Time Effects 
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          Unbalanced (5%) 

 

          Unbalanced (10%) 

 

          Unbalanced (20%) 
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 Nonetheless, when we further decrease the number of factor levels, an overall 

smaller F-Statistic deviance can be observed in Figure 25 below. The influence on the F-

Statistic deviance by decreasing the number of factor levels is greater than by increasing 

the number of time points for the K-R method. 

Figure 25 

K-R F-Statistic Q-Q Plots Highlighted with 10 6´  Time Effects 
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          Unbalanced (20%) 
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3.2.5.2     DDF Boxplots. The patterns we discover from the K-R method are 

similar to those from the Satterthwaite method. Contrary to the other methods that give 

robust DDF across different settings of slopes, sample structure and missing-data 

proportion, the Satterthwaite method and the K-R method are relatively sensitive to the 

change of designs and settings. 

 First of all, the patterns of DDF boxplots for the K-R method with ´20 3  sample 

structure (Figure 26 on p.43) are quite similar to the ones for the Satterthwaite method 

(Figure 19 on p.34). There is a trend of decreasing mean DDF as the proportion of 

missing values increases. In addition, a certain amount of outliers is present and scatters 

in a similar fashion for the K-R method and the Satterthwaite method. 

 Second, in Figure 27 on p.44, the patterns, although differ between the time and 

timesq effects, are similar to the way they vary from the Satterthwaite method. The DDF 

distribution is more concentrated for the timesq effects than for the time effects. While 

the means for the time effects stay almost the same across different missing-data 

proportion, the means for the timesq effects decreases as the proportion increases.  

 Finally, in Figure 28 on p.45, there is relatively a longer tail among the DDF 

distributions for the time effects, compared to the case with ´20 6  sample structure. 

There is almost no difference between the results from the K-R method and from the 

Satterthwaite method. However, note that for the cases with ´20 6  and ´10 6  sample 

structure, the DDF distribution is more scattered compared to the case with ´20 3  sample 

structure. It may indicate that increasing the number of time points nested within each 

factor level increases the variability for the K-R and Satterthwaite methods. 
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3.2.5.3     P-Value Histograms. First, we compute the mean percentages of p-

values less than 0.05a =  across different missing-data proportion as follows: 

Table 6 

K-R Mean Percentage for 1 2( ) = (0, 0)g , g  

No. Sample Structure Effect Type Mean Percentage (%) 

1 20 3´  Time 5.4 

2 20 3´  Timesq 5.3 

3 20´6  Time 5.2 

4 20´6  Timesq 5.7 

5 10´6  Time 4.7 

6 10´6  Timesq 4.5 

*beyond the confidence interval of (3.09%, 6.91%) 

Note there is no mean percentage falling beyond the confidence interval. This result 

shows that the K-R method performs well in the case with  1 2( ) = (0, 0)g , g  regardless of 

the different settings of effects and sample structure. 

 A universal trend of increasing power through the increase in the slopes for the 

time and timesq effects is present, as exemplified in Figure 29 on the next page. 

Additionally, similar to the previous results from the other methods, the power for the 

timesq effects tends to be greater than the one for the time effects, especially in the cases 

with 5% and 10% missing values. 
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Figure 29 

K-R P-Value Histograms for 20 3´  Unbalanced (5%) Timesq Effects 
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4     Conclusion 

4.1     Discussion of Simulation Results 

In this study, we aim to evaluate the performance of residual, containment, 

between-within, Satterthwaite, and Kenward-Roger methods of denominator degrees of 

freedom approximations in small-sample situations. We conduct simulations on a mixed 

model consisting of random intercept and random slope and look into the deviance 

between empirical and theoretical F-statistics, the distribution of denominator degrees of 

freedom, and the patterns of p-values. There are three major findings in our study: 

(1) In the case where the null hypothesis is true, the Kenward-Roger method 

performs the best in terms of the deviance between the empirical and theoretical F-

statistics. Moreover, regardless the type of methods, the deviance between the empirical 

and theoretical F-statistics tends to become smaller by increasing the number of 

observations nested within each factor level. 

(2) While the other methods give denominator degrees of freedom that are robust 

across different settings of the sample structure, the Satterthwaite and Kenward-Roger 

methods are relatively sensitive to the change of designs. In particular, the variability in 

the computation and outcome goes up when the number of observations nested within 

each factor level increases.  

(3) The residual method performs the worst among the five methods in terms of p-

values. In addition, the power for the timesq effects tends to be greater than the one for 

the time effects in our simulation model. 
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4.2     Area for Future Exploration 

One interesting thing to note is that in the process of developing our simulation, 

we tried out the Satterthwaite and Kenward-Roger methods (the only two approximation 

methods available) in R and discovered a difference between the denominator degrees of 

freedom produced by R and by SAS. With the SAS command type=UN, the covariance 

structure in R and SAS should be equivalent and the results should be quite similar. 

However, out of 100 data in total, there are averagely 2 cases of exceptions for every 

setting-variable combination. In the exceptional cases, there is a significant difference 

between the denominator degrees of freedom generated by the lmer function in R and the 

Proc Mixed procedure in SAS. The difference ranges from 1 to 29, while the average 

difference for the majority of data is around 0.05. This type of extreme differences tends 

to occur when R produces particular large or small values. 

 Further looking into the exceptional cases with extreme values, we observed that 

in R it shows warning messages about failing to converge, whereas in SAS the 

convergence criteria is always met. Additionally, in the exceptional case in R where the 

same warning messages popping up for both of the Satterthwaite and Kenward-Roger 

methods, Satterthwaite method tends to produce particular large or small values that are 

quite different from the values produced by SAS, while Kenward-Roger method may 

produce values that are very similar to SAS. So we conclude that the effect of the 

convergence problem in R varies between Satterthwaite and Kenward-Roger methods. 

 We then tried to change the optimizers in R (optimizer=Nelder_Mead, 

method=nlminb, method=L-BFGS-B), which is one of the common solutions for 

convergence problems. Yet all of the optimizers fail to converge and produce even more 
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extreme values. Since the difference between R and SAS is not our focus in this study, 

we did not go further. Future research may be developed based on this finding and 

provide more insights on the application of software packages for linear mixed models 

and the possible issues that should be addressed for their algorism. 
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APPENDIX A 

PSEUDOCODE FOR DATA SIMULATION 
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Install and load packages lme4, lmerTest, and car 

Initialize variables se, ti, ti_sq, group, individual, and group_individual 

Create a vector (design) to store the four design types 

Set omitted_value <－group_individual*design 

 

Create folders for the results produced 

Create a vector (design_name) to store the names of the four designs 

 

For a=1 to the length of design 

#Create a loop to generate time 

  Set k=1 

  Create time as an empty vector 

  For i=1 to group 

    For j=1 to individual 

      Place j in the kth element of time 

      k=k+1 

 

  #Create a loop to generate timesq 

  Set k_sq=1 

  Create timesq as an empty vector 

  For i=1 to group 

    For j=1 to individual 

      Place j*j in the k_sq th element of timesq 
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      k_sq=k_sq+1 

 

#Create a loop for 500 datasets 

  Set seed (se) 

  For i=1 to 500 

    Call the function as.formula to set the model that the data should follow 

    Set the predictor variables 

    Set the fixed effect parameters 

    Set the random effect structure 

    Simulate data using the parameters above by calling the simulate function 

    Set up missing values by calling sample function 

    Sort the result by ID and format 

    Export the data as txt 
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APPENDIX B 

PSEUDOCODE FOR MIXED MODELING 
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Create datasets to store results 

Set up macro variable RunModel 

Initialize dataset Allresult 

Initialize rep 

Do i=1 to 500 

Read in the output generated by R 

/*Process model*/ 

/*Repeat the following procedure for the five models within the do-loop*/ 

Use proc mixed procedure to process mixed modeling by residual method 

Use ods output to store the output to the dataset result_R 

/*Subset the results for time and timesq into two datasets*/ 

Create two datasets subresult_R_time and subresult_Rtimesq to store the subset data 

If (effect ==“time”) 

  Store the output to subresult_R_time 

Else  

  Store the output to subresult_R_timesq 

/*Update the data*/ 

Create result_R_time to store the output of time produced by residual method 

Save the subset output in subresult_R_time into result_R_time 

Create result_R_timesq to store the output of time produced by residual method 

Save the subset output in subresult_R_timesq into result_R_timesq 

Drop the temporary datasets subresult_R_time and subresult_R_timesq 

/*End of the do-loop*/ 

  57 



/*Export datasets to csv files*/ 

Use proc export procedure to export output of result_R_time 

Use proc export procedure to export output of result_R_timesq 

Use proc export procedure to export output of result_C_time 

Use proc export procedure to export output of result_C_timesq 

Use proc export procedure to export output of result_B_time 

Use proc export procedure to export output of result_B_timesq 

Use proc export procedure to export output of result_S_time 

Use proc export procedure to export output of result_S_timesq 

Use proc export procedure to export output of result_K_time 

Use proc export procedure to export output of result_K_timesq 
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APPENDIX C 

PSEUDOCODE FOR PLOT GENERATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  59 



Set simulation variables se, ti, ti_sq, group, individual, and group_individual 

Create a vector (design) to store the four design types 

Set omitted_value <－group_individual*design 

 

Create a vector (design_name) to store the names of the four designs 

Create folders to store plots 

Create a data frame to store DDF for boxplots 

Create data frames to store p-values for histograms 

 

For a=1 to the length of design 

  Read in the outputs generated by SAS 

  Set up Q-Q plot if (ti==0 and ti_sq==0) 

    #Set up Q-Q plots for time 

    Calculate the mean of DDF and assign it to avg 

    Assign the generated F-statistics to EmpiricalF 

    Use qqPlot method to plot Q-Q plots with parameters avg and EmpiricalF 

    dev.off() 

    #Set up Q-Q plots for timesq 

Calculate the mean of DDF and assign it to avg 

    Assign the generated F-statistics to EmpiricalF 

    Use qqPlot method to plot Q-Q plots with parameters avg and EmpiricalF 

    dev.off()  

 

  60 



  #Extract data for boxplots 

  Create data_temp to temporarily store the extracted read-in data 

  Use cbind to extract the read-in data and save it into data_temp 

  Use rbind to update the data in data_box 

  #Extract data for histograms 

  Use cbind function to extract and combine data by the five methods 

 

#Plot and export boxplots for each method 

Use jpeg() function to create a jpeg file 

Use boxplot function to plot the data 

dev.off()  

 

#Plot and export histograms for each method 

Use jpeg() function to create a jpeg file 

Use par() function to partition the window into 2 by 2 

Use hist() to plot for the histograms of balanced design 

Use hist() to plot for the histograms of unbalanced (5%) design 

Use hist() to plot for the histograms of unbalanced (10%) design  

Use hist() to plot for the histograms of unbalanced (20%) design 

dev.off()  
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