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ABSTRACT 

 

Traumatic injuries are the leading cause of death in children under 18, with head 

trauma being the leading cause of death in children below 5. A large but unknown number 

of traumatic injuries are non-accidental, i.e. inflicted. The lack of sensitivity and specificity 

required to diagnose Abusive Head Trauma (AHT) from radiological studies results in 

putting the children at risk of re-injury and death. Modern Deep Learning techniques can 

be utilized to detect Abusive Head Trauma using Computer Tomography (CT) scans. 

Training models using these techniques are only a part of building AI-driven Computer-

Aided Diagnostic systems. There are challenges in deploying the models to make them 

highly available and scalable.  

The thesis models the domain of Abusive Head Trauma using Deep Learning 

techniques and builds an AI-driven System at scale using best Software Engineering 

Practices. It has been done in collaboration with Phoenix Children Hospital (PCH). The 

thesis breaks down AHT into sub-domains of Medical Knowledge, Data Collection, Data 

Pre-processing, Image Generation, Image Classification, Building APIs, Containers and 

Kubernetes. Data Collection and Pre-processing were done at PCH with the help of trauma 

researchers and radiologists. Experiments are run using Deep Learning models such as 

DCGAN (for Image Generation), Pretrained 2D and custom 3D CNN classifiers for the 

classification tasks. The trained models are exposed as APIs using the Flask web 

framework, contained using Docker and deployed on a Kubernetes cluster.  

The results are analyzed based on the accuracy of the models, the feasibility of their 

implementation as APIs and load testing the Kubernetes cluster. They suggest the need for 
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Data Annotation at the Slice level for CT scans and an increase in the Data Collection 

process. Load Testing reveals the auto-scalability feature of the cluster to serve a high 

number of requests. 



  iii 

DEDICATION  

   

To Mom for her relentless belief in me. 

To Dad for his love for Pediatrics. 

To my brother for his companionship and support. 

And finally, to this institution for the opportunity. 



  iv 

ACKNOWLEDGMENTS  

   

I would first like to express my sincere gratitude to my co-chairs, Dr. Javier Gonzalez-

Sanchez and Dr. Ashraf Gaffar, and Dr. Lois Sayrs from Phoenix Children Hospital, for 

their continuous guidance and support which made this work possible. Throughout the 

course of the thesis, they have helped me navigate academic and logistics problems and 

constantly shared their constructive feedback with me. 

I would like to thank Dr. Michael Findler for agreeing to be part of my committee, 

reviewing my work and providing feedback. I would like to also thank many collaborators 

who have helped me throughout the project, in particular, Bethany Sussman, for helping 

me with the data acquisition, Jon Plasencia, for his guidance on the project and, Jonathan 

Turner, for all his help with the logistics of the data. I would also like to thank Jodie and 

Anas for their help in the study. 

Last but not the least, I would like to thank my family who have always been a 

constant support and my friends in Tempe who have helped me remain sane amongst all 

the chaos happening around. 



  v 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ................................................................................................................. vii  

LIST OF FIGURES .............................................................................................................. viii  

CHAPTER 

1 INTRODUCTION  ................................................................................................. 1  

Challenges ......................................................................................................... 3 

Problem to be Addressed .................................................................................. 4 

Proposed Solutions and Contribution ............................................................... 6 

Evaluation Plan .................................................................................................. 7 

Document Roadmap .......................................................................................... 8 

2 BACKGROUND MEDICAL KNOWLEDGE ..................................................... 9  

Literature ............................................................................................................ 9 

Comparing Abusive and Accidental Head Trauma........................................ 11 

Subdural Hematoma ........................................................................................ 14 

Retinal Hemorrhages ....................................................................................... 16 

Other Features Presented in AHT ................................................................... 18 

3 KEY CONCEPTS  ................................................................................................ 19  

Domain Modeling ........................................................................................... 19 

Computer Vision and Image Processing ........................................................ 22 

Deep Learning in Computer Vision ................................................................ 23 

Convolutional Neural Network ....................................................................... 26 

Generative Adversarial Network .................................................................... 29 



  vi 

CHAPTER               Page 

Transfer Learning ............................................................................................ 30 

Machine Learning Deployment ...................................................................... 32 

Containerization Using Docker ....................................................................... 34 

Container Orchestration Using Kubernetes .................................................... 35 

4 IMPLEMENTATION  .......................................................................................... 38 

The Domain Model ......................................................................................... 38 

Data Collection ................................................................................................ 40 

Data Pre-processing ......................................................................................... 43 

Image Generation Using GANs ...................................................................... 47 

Image Classification ........................................................................................ 53 

Building APIs Using Flask, Docker and Kubernetes ..................................... 61 

5 RESULTS AND ANALYSIS .............................................................................. 69 

Results of Trained Classifiers ......................................................................... 69 

Results of Trained DCGAN ............................................................................ 76 

Load Testing the Kubernetes Cluster .............................................................. 81 

6 CHALLENGES, CONCLUSION AND FUTURE SCOPE ............................... 85 

Challenges ....................................................................................................... 85 

Conclusion ....................................................................................................... 86 

Future Scope .................................................................................................... 87 

 

REFERENCES  ...................................................................................................................... 89



  vii 

LIST OF TABLES 

Table Page 

1.       Classification Results of Different Models ............................................................ 70 

2.       Load Testing Using Siege ...................................................................................... 82 



  viii 

LIST OF FIGURES 

Figure Page 

1.       The Domain Modeling Hypothesis .......................................................................... 6 

2.       The Brain Anatomy Demonstrating Subdural Hemorrhage ................................. 15 

3.       SDH in CT Slice ..................................................................................................... 15 

4.       Anatomy of the Eye ................................................................................................ 16 

5.       Normal Fundus ....................................................................................................... 17 

6.       Non-specific Retinal Hemorrhage ......................................................................... 17 

7.       Domain Model in Software Development ............................................................. 21 

8.       Computation Inside a Node and a 4-layer ANN ................................................... 24 

9.       Machine Learning Versus Deep Learning ............................................................. 25 

10.     Input Image Encoded into Three Channels ........................................................... 26 

11.     Architectural Overview of Convolutional Neural Network .................................. 27 

12.     Overview of Convolution Operation ..................................................................... 28 

13.     Max Pooling Operation .......................................................................................... 28 

14.     Architectural Overview of DCGAN ...................................................................... 30 

15.     Transfer Learning ................................................................................................... 31 

16.     A CI/CD Pipeline for Deploying Machine Learning Models ............................... 33 

17.     Docker Containers Versus Virtual Machines ........................................................ 35 

18.     An Architectural Overview of Kubernetes (K8s) .................................................. 36 

19.     Domain Intersection for Modeling AHT ............................................................... 39 

20.     Domain Map of AHT ............................................................................................. 40 

21.     Folder Structure of Deidentified Data Downloaded from PACS ......................... 42 



  ix 

Figure Page 

22.     Reading DICOM File Using PyDicom .................................................................. 44 

23.     Deleting Patient Information from DICOM Files ................................................. 44 

24.     A DICOM Slice in Brain, Subdural and Bone Window ....................................... 46 

25.     Code Snippet to Convert the Slices into Three Channels ..................................... 47 

26.     32x32 Input Image for DCGAN ............................................................................ 48 

27.     Generator Configuration for 32x32 DCGAN ........................................................ 49 

28.     Discriminator Configuration for 32x32 DCGAN ................................................. 50 

29.     Training Images for 128x128 DCGAN ................................................................. 51 

30.     Generator Configuration for 128x128 GAN ......................................................... 52 

31.     Discriminator Configuration for 128x128 GAN ................................................... 52 

32.     Code Snapshot of 3D Classifier ............................................................................. 54 

33.     Densenet121 Configuration ................................................................................... 55 

34.     DenseNet121 Used as the Base Model and Feature Extractor.............................. 56 

35.     InceptionV3 Configuration .................................................................................... 57 

36.     InceptionV3 Used as the Base model and Feature Extractor ................................ 57 

37.     Resnet Family Configuration Details .................................................................... 58 

38.     Resnet50 Used as Base Model and Feature Extractor ........................................... 59 

39.     Model Configuration for Custom 2D Classifier .................................................... 60 

40.     Architecture Diagram of the Web Application ..................................................... 63 

41.     Snapshot of the Landing Page with Upload DICOM and Generate Image .......... 64 

42.     Snapshot of the display_options Page with Predict and View Options ................ 64 

43.     Snapshot of result_2dcnn Page Displaying Prediction Results ............................ 65 



  x 

Figure Page 

44.     Snapshot of window_view Page Displaying Slices after Windowing .................. 66 

45.     Snapshot of gan_view Page Displaying Generated Images .................................. 66 

46.     Package Diagram of the Web Tool ........................................................................ 67 

47.     Model Accuracy for 2D Custom Classifier ........................................................... 71 

48.     Model Loss for 2D Custom Classifier ................................................................... 71 

49.     Model Accuracy for 2D Classifier with Resnet50 Base ....................................... 72 

50.     Model Loss for 2D Classifier with Resnet50 Base ............................................... 72 

51.     Model Accuracy for 2D Classifier with Densenet121 Base ................................. 73 

52.     Model Loss for 2D Classifier with Densenet121 Base ......................................... 73 

53.     Model Accuracy for 2D Classifier with InceptionV3 Base .................................. 74 

54.     Model Loss for 2D Classifier with InceptionV3 Base .......................................... 74 

55.     Model Accuracy for 3D Custom Classifier ........................................................... 75 

56.     Model Loss for 3D Custom Classifier ................................................................... 75 

57.     Images Generated after Epoch 1 ............................................................................ 77 

58.     Images Generated after Epoch 30 .......................................................................... 77 

59.     Images Generated after Epoch 50 .......................................................................... 78 

60.     Images Generated after Epoch 80 .......................................................................... 78 

61.     A Randomly Generated Image after Epoch 80 ...................................................... 79 

62.     Generator and Discriminator Loss During Training for 128x128 DCGAN ......... 79 

63.     Grid of 170 Images Generated after 200 Epochs .................................................. 80 

64.     Load Testing the Landing Page ............................................................................. 82 

65.     Load Testing the generate_new_images Page ....................................................... 83 



  xi 

Figure Page 

66.     Load Testing the predict_2dcnn Page .................................................................... 84 

 



  1 

CHAPTER 1 

INTRODUCTION 

 

Abusive head trauma (AHT) can be defined as an inflicted injury to brain or skull 

due to intentional impact or violent shaking (Paul et al. 195).  In 2009, the American 

Academy of Pediatrics endorsed the nomenclature “abusive head trauma” (AHT) as the 

most comprehensive term describing the constellation of injuries to the brain and spine that 

result from inflicted head injuries to infants and children (Christian et al. 1409). AHT 

affects 14-40 cases per 100,000 live births (Fanconi et al. 1023; Sieswerda-Hoogendoorn 

et al. 617; Hobbs et al. 952; Keenan et al. 621). An estimated 18-25% of children diagnosed 

with AHT die, and up to 80% of survivors will live with significant lifelong physical, 

developmental, and emotional sequelae (Currie et al. 111; Damashek et al. 735; Glaser 97; 

Springer et al. 517). AHT is associated with the highest risk of death in infants (Springer 

et al. 517) and toddlers under 4 years of age (Palusci et al. 25). The actual incidence of 

AHT is unknown since it is clinically difficult to differentiate from accidental head trauma 

except in the most serious, near fatal or fatal patients. Patients may present with symptoms 

that are non-specific to head trauma such as lethargy, vomiting and fussiness. As much as 

31% of children with AHT may be misdiagnosed on initial visit (Letson et al. 36). 

Establishing a correct diagnosis requires taking into account all the clinical aspects of the 

case, radiological studies and caregiver’s story of how the injury happened. A wrong 

diagnosis means putting the child’s life in risk of re-injury or death. In a study done by 

(Hettler et al. 602), 80% of deaths could have been prevented in the study group if AHT 

could have been diagnosed earlier.  
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Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) are common 

diagnostic tools to investigate the likelihood of AHT in a hospital. If pediatric patients 

present in anther medical setting, providers typically refer patients to a hospital where these 

diagnostic tools can be used. Radiologic indications are well-described for AHT and 

include seizures, multiple subdural hematoma (SDH) over convexity, subarachnoid and 

subaxial hemorrhages, posterior fossa SDH, hypoxic ischemic injury (HII) and edema 

(Kemp et al. 1103; Feldman et al. 636). However, Kemp (Kemp et al. 1103) suggest relying 

on SDH as a radiologic finding associated with AHT only when presenting with 

unexplained traumatic head injury, where no explanation has been provided or the 

explanation provided did not match the injury pattern. There are few significant differences 

in imaging and clinical characteristics between non-fatal injured and fatal injured patients 

(Sarnaik et al. 302). Fatal injured AHT patients demonstrate more bleeding on CT scans 

(Rolfes et al. 30).   

Few radiologic findings are specific to AHT. Moreover, radiologists require 

specialized training in child abuse and neglect to be able to correctly identify radiologic 

features of AHT. To date, few hospitals in the US have the experience and expertise to 

provide definitive diagnoses of AHT. Radiologists with specialized training to detect AHT 

consider a number of key features such as the amount of blood, tissue death, age of the 

blood, and the estimated amount of force required to incur the observed injury. With the 

advent of Machine Learning, specifically deep learning algorithms, there is a promise of 

replicating radiologic findings of the most knowledgeable and experienced pediatric 

neurological radiologists but perhaps also provide a diagnosis earlier, with fewer features 

to prevent subsequent injury and death. 
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Deep Learning algorithm, specifically, Convolutional Neural Networks (CNN) 

have performed really well on Computer Vision Tasks such as Image Classification, Image 

Segmentation and Object Detection. Its use in the medical field for Computer Aided 

Diagnosis has shown really good results in applications (Mcbee et al. 1472) such as lesion 

detection in chest X-rays (Detection of tuberculosis, pleural effusion, cardiomegaly, 

mediastinal enlargement) (Bar et al. 294; Lakhani et al. 574), lung nodules classification 

in chest X-rays (Nibali et al. 1799; Ciompi et al.), classification of tumors in mammograms 

(Huynh et al.), brain MRI segmentation (Moeskops et al. 1252; Akkus et al. 449), 

hemorrhage detection using CT scans (Kuo et al. 22737; Grewal et al.), etc. Deep Learning 

algorithms are able to detect features from data automatically which has helped in their 

widespread use. Increasing the number of layers leads to extraction of more subtle features 

which gives better results.  

 

1.1 Challenges 

Despite the advantages of Deep Learning algorithms, medical data is currently 

underutilized in healthcare settings for predictive analytics. There are multiple reasons for 

this, starting with the proprietary nature of the data which under HIPAA is not easily 

accessed outside of medical research. Medicine has now incorporated more formal 

informatics triaging for advanced clinical professionals but there remains a lag. Healthcare 

data is collected for clinical purposes and not necessarily research purposes; often data 

from clinical systems needs to be extracted and reformatted to make it usable for research 

purposes, a time-consuming and potentially expensive process. A major obstacle is the 

amount of data required my Deep Learning algorithms and machine learning in general. 
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Often a medical condition, even if fairly frequent, may still take years to collect sufficient 

number of cases or require a collaboration of hospitals to jointly contribute data, a daunting 

prospect with numerous legal obstacles regarding data sharing and security of propriety 

personal health information. Even if sufficient imaging data were collected, the computer 

hardware and software requirements are not typically available in medical settings unless 

the research is funded by a major health funding source such as NIH. Another obstacle is 

expertise required to execute DL algorithms. Even national Hospitals and Healthcare 

networks may not have the technological expertise, and would likely require collaboration 

among hospitals, researchers and engineers. All of these obstacles have hindered 

advancement of research in area of Computer Aided Diagnosis. 

 

1.2 Problem to be Addressed 

This thesis serves as a first attempt at solving all the stages of a novel medical task, i.e., 

Detection of AHT in pediatric patients, using Deep Learning. The work includes building 

a production ready software capable of holding the Deep Learning algorithm which can be 

used as a screening tool for all head trauma cases of children less than two years by 

healthcare professionals.  

With the goal of building a software capable of classifying Accidental Head Trauma 

from Abusive Head Trauma, the thesis model the classification task domain. The modeling 

hypothesis is inspired from modeling the problem of detecting Skin Cancer (“IBM Watson 

Cognitive Service for Visual Recognition”). The work considers the modelling task divided 

into levels arranged in a stack (one on top of the other) as shown in Figure 1.  
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• The base level (Level 1) refers to the classification task done by humans. It means 

that the features in an image are differentiable by human eye. An example would 

be a dermatologist being able to detect lesions in skin images easily. The images in 

Level 1 have clear demarcations in features which make them easy to detect.  

• Level 2 refers to classification done by Machine Learning (or Deep Learning 

algorithms). The feature detection in Level 2 is hard for human eye but easy for 

Deep Learning algorithms. An example would be work done by (Esteva et al. 115) 

using Deep Neural Networks. CNNs (algorithm used for classification of images) 

consist of Convolution and Pooling layers which are responsible for feature 

detection. The learnt features are later passed through a Fully Connected Network 

for final result.  

• Level 3 adds extra visual cues to the data and feed the data to Deep Learning 

algorithms. Visual Cues refer to feature engineering and image annotations on 

complex images. The feature identification part is usually done by domain experts 

(e.g. radiologists for medical data). Recent studies have shown CNNs and GANs 

(Generative Adversarial Network) being used for feature annotation in images.  

• Level (Level 4) is the top level and includes other cues (such as natural language 

reports about the image, information about the image) which would help in the 

modelling task. Electronic Health Records, Patient information, etc., can be used 

with the images for building ensemble networks capable of classification task with 

high accuracy.  
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Figure 1: The Domain Modeling Hypothesis 

 

1.3 Proposed Solutions and Contribution 

The thesis models the domain of AHT, and subsequently, Traumatic Brain Injury (TBI) 

and test the modeling hypothesis for Level 2. The modelling helps in understanding the 

problem domain and its components. This leads to building of robust Deep Learning 

models for classification and generation of CT scans. The thesis also proposes a production 

ready web tool which holds the models. The work can be used by the healthcare 

professionals at PCH for screening all the TBI patients less than two years of age. Finally, 

the work will also lay down a foundation for further research and collaboration between 

researchers at ASU (Arizona State University) and PCH.   

The thesis starts with Data Gathering for classification task which itself was a 

challenge. The data was procured from PACS (Picture Archiving and Communication 

System) at PCH. A major contribution to thesis was Data Anonymization, Cleaning and 
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Organization (done at PCH by the author due to HIPPA compliances). The success of Deep 

Learning lies behind massive amount of data and computing power. Due to availability of 

limited data from PCH, the work proposes use of Generative Adversarial Networks 

(GANs) for data augmentation and synthesis. The classification models are built using 

state-of-the-art pre-trained architectures and the results are compared.  

Additionally, a big part of the thesis is bridging the gap between model 

development and its deployment as a production level software. The work investigates the 

use of container orchestration framework, specifically Kubernetes, for high availability and 

scalability of the model. Finally, the models are deployed on a web tool which can be 

accessed using a web browser. 

The work gives an overview of AHT, its incidence, clinical and radiological 

interpretations. It discusses the challenges faced in a hospital environment for carrying out 

research when patient data is involved. A literature survey of existing work in the area of 

Computer Aided Diagnosis and Radiology is also discussed.  

 

1.4 Evaluation Plan 

The evaluation of the proposed solution includes:  

• Evaluation of the Deep Learning Models: The classification models are tested based 

on the binary accuracy generated when the models are fitted on the validation data 

set. The hyperparameters of the models are updated based on the test result. 

• Evaluation of the Software tool: Unit testing, Integration testing and Alpha testing 

are done based on best practices in Software Engineering. The Kubernetes cluster 

is load tested using Siege (a tool to test simulated traffic on Kubernetes cluster).  



  8 

1.5 Document Roadmap 

The rest of the thesis is structured into the following sections: 

• Chapter 2 establishes the context of AHT by summarizing the Medical Background 

in detail.  

• Chapter 3 describes the literature review of the key concepts used in the thesis. 

• Chapter 4 provides an in-depth review of the implementation details of the Deep 

Learning models and the software architecture. 

• Chapter 5 evaluates and analyzes the results using the evaluation plan. 

• Chapter 6 provides detail about the challenges faced, the conclusion and the scope 

for future work. 
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CHAPTER 2 

BACKGROUND MEDICAL KNOWLEDGE 

 

Abusive Head Trauma (AHT) refers to child abuse resulting in head injuries. It is the 

leading cause of death in children below the age of two from traumatic injuries. It is 

estimated that 20 out of every 10000 infant hospital admits are due to abusive head trauma. 

The number is not an accurate reflection of the incidence since AHT is often under-

recognized and under-reported (Frasier et al.; Runyan and Desmond 112; Keenan et al. 

621). A common problem with diagnosing Abusive Head Trauma is lack of gold-standard 

medical test which increases the burden of physicians. They have to consider multiple 

factors such as history of the patient, history provided by the caregiver (which might be 

skewed or misleading) and radiological studies. Since AHT patients are at a greater risk of 

re-injury or death, a confirmed diagnosis can save lives. But an incorrect diagnosis can lead 

to distress in family, emotional trauma and legal issues. Generally, multiple departments 

(Radiologists, ER specialists, Surgeons, Child Services Workers, etc.) work in tandem to 

come with a confirmed diagnosis of AHT. 

 

2.1 Literature 

AHT is also called Inflicted Head Trauma, Inflicted Pediatric Neurotrauma, and Non-

accidental Head Trauma (Frasier et al.; Christiamn et al. 1409). The distinction between 

AHT and Accidental Head Trauma is minimal. The patients are usually brought into the 

Emergency Department with clinical symptoms of injuries or bruises from household falls 

(seldom poorly explained by the caregiver), respiratory distress or seizure disorders, or 
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more non-specific symptoms such as crying, vomiting or irritability. Patients with non-

specific symptoms and lack of external trauma are more likely to go un-diagnosed (Jenny 

et al. 621). A study presented by (Talvik et al. 782) stated that there is a high correlation 

between crying in babies and AHT. Infants below the age of 1 year are at a higher risk of 

AHT with median age of patients being 2 months – 6 months (Hettler et al. 602; Reece et 

al. 11; Keenan et al. 621; Herman et al. 65). This coincides perfectly with the peak crying 

age in children.  

There are multiple challenges faced by physicians when tasked with diagnose AHT 

in patients. The first and most important challenge is the presentation of the history of 

trauma by caregivers. Since most of the diagnosed AHT patients are infants, the history of 

trauma is provided by the parents and which is often misleading or skewed. The physicians 

have to rely on patient evaluations and studies and then corroborate with the history 

provided by the caregiver. Another challenge faced by diagnostic clinicians is that they do 

not use validated screening tools for diagnosing AHT. Most hospitals are not ‘pediatric-

focused”; they see considerably more adult than pediatric patients.  A study conducted by 

(Jenny et al. 621) found that 54 out of 173 (31.2%) cases were missed by Physicians as 

AHT and were later diagnosed by a different physician with mean time to correct diagnosis 

being 7 days. It also stated that 4 out 5 deaths in the study group could have been prevented 

with a correct diagnosis from the beginning. 

Radiology plays a vital role in establishing a correct diagnosis of suspected AHT. 

One of the first tests to perform if AHT is suspected, is, a Computer Tomography (CT) 

scan. It is often chosen because it does not require sedation and the vast majority of patients 

who report an injury typically describe some type of “fall”. CT is the best diagnostic tool 
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to identify any possible fractures and underlying any intracranial pathology (Sieswerda-

Hoogendoorn et al. 617). Even though CT scans involve a high dose of radiation, pediatric 

radiologists follow APA and radiologic guidelines for suggested doses which are as low as 

possible for pediatric patients. The radiologist can identify conditions such as hemorrhage, 

hematoma, midline shifts, etc. Magnetic Resonance (MR) scans are less common 

especially if a fracture is found via CT and no underlying symptoms or conditions (such as 

loss of consciousness, lethargy, vomiting, and seizures) indicates head swelling or tissue 

impairment. The interpretation of the scans requires a radiologist trained in child abuse and 

pediatric radiology. However, the radiologist does not typically use additional clinical 

information on the patient to complete the report. The report acts as an important evidence 

for the diagnosis of AHT (Sieswerda-Hoogendoorn et al. 617).  

 

2.2 Comparing Abusive and Accidental Head Trauma 

Distinguishing Abusive Head Trauma from Accidental Head Trauma is a challenging task 

even for trained specialists. Even though incidence of features such as Subdural 

Hematoma, Retinal Hemorrhages, Cerebral Edema/ Ischemia, Apnea, etc., are very high in 

AHT cases when compared to Accidental Head Trauma, a definitive diagnosis is still very 

difficult due to lack of a gold standard testing process (Piteau et al. 315; Kemp et al. 1103; 

Hymel et al. 1537; Cowley et al. 290). Hospitals have been working on establishing 

concrete markers for the diagnosis of AHT and distinguishing them from Accidental 

Trauma. (Amagasa et al. 265) conducted a study to identify the definitive markers of AHT 

in Japanese population and how the markers differentiate AHT from Accidental Head 

Trauma. The study had 166 clinical cases in total where 57 cases were Definite AHT, 24 
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were suspected AHT and 85 were accidental cases. Radiological studies, clinical notes and 

outcomes were compared between the groups. The study found that clinical symptoms such 

as retinal hemorrhages and bruising were higher for the AHT group when compared to the 

accidental group while the scalp findings had an opposite incidence. The CT reports 

revealed the prevalence of Subdural Hematoma and cerebral edema/ ischemia to be higher 

in the AHT group while Skull fractures and Epidural Hematoma were more prevalent in 

the accidental group. Even though the study establishes concrete markers for AHT, the 

results could not be generalized since the age distribution of the AHT study participants 

was significantly higher when compared to countries such as USA. Another interesting 

find of the study was the absence of clinical findings (present in other studies) such as 

bruising or rib fractures in the AHT group. The study also concluded that presence of 

Subdural Hematoma without injuries to skull (from an impact) is highly suggestive of 

AHT.  

 (Bechtel et al. 165) conducted a study at Yale New Haven Children’s Hospital to 

determine the clinical features in pediatric cases of age below 2 years which differentiate 

AHT from Accidental Head Trauma. The study group consisted of 87 cases divided into 

15 AHT cases and 72 Accidental Head Trauma cases. The primary measure was dilated 

ophthalmic retinal scans to look for retinal hemorrhages while the secondary measure was 

using CT scans to look for intracranial injury, skull fractures or bleeds. The patient’s mental 

status and clinical presentations (such as occurrence of seizures or convulsions) was also 

taken into account. The study found out that the AHT group was more likely to have 

Subdural Hematomas while presence of Epidural or Subarachnoid Hemorrhages, and, 

Skull fractures were even in both the groups. 60% of AHT group had retinal hemorrhages 
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while only 10% of the Accidental Head Trauma group had them. Seizures and Abnormal 

Mental Status was more common in the AHT group. Presence of Scalp hematomas were 

more common in Accidental Head Trauma group when compared to AHT group.  

 Retinal Hemorrhages are the hallmarks of AHT in pediatric patients. However, 

these cannot be diagnosed without an ophthalmological consult which occur for only a 

handful of patients highly suspected of AHT. The consult happens only after a child is 

admitted; therefore, children discharged from the Emergency Department would never 

have the opportunity to receive the consult. A literature survey done by (Kemp et al. 1103) 

checked the evidence behind the neurological features associated with AHT and how they 

are different for Non-AHT cases. In total, the data from 2353 patients from 21 studies were 

selected which was divided into 893 cases of AHT and remaining 1460 cases of Non-

Abusive Head Trauma. A clear association between Subdural Hemorrhage and AHT was 

defined from the studies. These hemorrhages were frequently multiple (in closed head 

injuries) and present in the posterior fossa and the interhemispheric fissure. Extradural 

hemorrhages were associated with Non-AHT. Hypoxic Ischemic Injuries and cerebral 

edema were significantly associated with AHT. Most of the findings were derived from 

CT studies but MRIs would be preferred in future because of its increased sensitivity. 

Clinical features such as retinal hemorrhages, apnea, rib bruises and fractures and absence 

of skull fractures (but presence of intracranial injury) was confirmed in an earlier literature 

study by the same author (Reading 150). It is worthwhile noting that milder forms and early 

detection of AHT is not aided by clinical features such as Retinal Hemorrhages, etc. 

 The markers derived from the studies listed above can be identified as clinical 

presentations or derived from radiological studies (such as CT scans). Understanding these 
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features and their presentation helps in understanding the domain of AHT and, 

subsequently, Traumatic Brain Injury (TBI). 

 

2.3 Subdural Hematoma 

Subdural Hematoma (SDH) (also called Subdural Hemorrhage) is the collection of blood 

in the subdural space. The subdural space lies between the meningeal layer of dura and 

sub-arachnoid layer which is attached using tight joints. Bridging veins from dura to sub-

arachnoid layer may cause bleeding and strip the two layers, filling with blood. This 

collection of blood is referred to Subdural Hematoma (Salazar et al.). Figure 2 explains the 

anatomy of brain and highlights the Dura area and Subdural Hemorrhage.  

 The occurrence of SDH vary with the age of the patient. For infants, SDH is an 

indicator of non-Accidental Trauma while for neonates or newborns, these are associated 

with delivery labour. The incidence for these cases is very less. For other population, SDH 

are result of high blunt force trauma such as Motor Vehicle collisions. In patients with 

AHT, SDH is presented with other symptoms such as altered neurological status, 

coagulopathy, cerebral atrophy, cysts, or bruises, etc. 

 A confirmed diagnosis of Subdural Hematoma requires a CT scan (and in some 

cases, an MRI scan). Figure 3 demonstrates the presence of SDH in a CT slice. It can be 

seen on the left part of the brain in the CT slice.  
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Figure 2: The Brain Anatomy Demonstrating Subdural Hemorrhage; Source: Case 

courtesy of Dr Matt Skalski, Radiopaedia.org, rID: 21542 

 

 

 

Fig 3: SDH in CT Slice; Source: Case courtesy of Assoc Prof Frank Gaillard, 

Radiopaedia.org, rID: 35891 
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2.4 Retinal Hemorrhages 

The eyeball is made up of 3 layers, namely, sclera, choroid, and, retina (as observed from 

transversion section). Sclera is the white outermost layer of the eyeball used to provide 

attachment for the muscles that control the eye movement. Choroid is the middle layer used 

for regulating the eyeball temperature. It also provides blood flow to the retinal layers. 

Retina is the innermost layer used for vision (Hansen et al. 671). The retina itself is 

multilayered. Blood in the initial retinal layer (preretinal), within the layers (intraretinal) 

or in the last retinal layer (sub-retinal) are called as retinal hemorrhages. Figure 4 clearly 

demonstrates the anatomy of the eye and shows the three layers of the eyeball.  

 

 

Figure 4: Anatomy of the Eye; Source: Blausen.com staff (2014). “Medical gallery of 

Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. 

 

 Retinal Hemorrhage are mainly caused by head trauma (such as blow to the head 

from accidents), hypertension, and, blockage in retinal vein. They are diagnosed by an 

ophthalmologist by performing a dilated fundoscopy with indirect ophthalmoscopy. The 

test is often indicated for children with intracranial hemorrhages to diagnose AHT (Levin 
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et al. 376). Figure 5 shows a normal fundus after fundoscopy while Figure 6 shows 

presence of Retinal Hemorrhage in the fundus after the fundoscopy.  

  

 

Figure 5: Normal Fundus; Source: Image Credit Laura S. Plummer, MD. 

 

 

 

Figure 6: Non-specific Retinal Hemorrhage; Source: Image Credit Laura S. Plummer, MD. 

 

 Although retinal scans are informative, they are not widely used as a diagnostic tool 

since they require an ophthalmological consult and available only for highly suspicious 

cases. This is the reason why they have not been used in the research.  
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2.5 Other Features Presented in AHT 

Other features which are observed in children diagnosed with Abusive Head Trauma are 

Cerebral edema, skull fracture with Intracranial Injury and Apnea. Cerebral Edema is the 

swelling of brain due to lack of blood supply which constricts the amount of oxygen in 

Brain Tissues. They are often presented with SDH in AHT cases.  

Skull fractures are fractures in the cranial bone surrounding the brain (the skull). 

They are caused by direct blow to the head (from collisions or accidents). Skull fracture in 

children are often indicative of Abuse if there is no history of accidents. They can be 

diagnosed using an X-ray or CT scan.  

Apnea is a condition where the breathing mechanism ceases and the movement of 

respiration muscles halts (“Apnea”). Apnea is a classical marker to distinguish AHT from 

accidental head trauma indicating high association of apnea with AHT cases. 
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CHAPTER 3 

KEY CONCEPTS 

 

This chapter illustrates the key concepts and methods required to understand the work 

completed in the thesis. The chapter starts with introducing the concept of Domain 

Modeling, and then, talks about the field of Computer Vision and Image Processing. A 

brief introduction to Deep Learning in Computer Vision is provided, and then the key 

architectures, namely, Artificial Neural Network, Convolutional Neural Network and 

Generative Adversarial Network are explained. The chapter also talks about use of Transfer 

Learning and then moves onto Deploying Machine Learning Models using Docker and 

Kubernetes.  

 

3.1 Domain Modeling 

The thesis proposes a model for the problem domain of Abusive Head Trauma in Pediatric 

Patients using Deep Learning Techniques. According to (“What is the Domain Model”), a 

domain model is an organized and structured knowledge of the problem, representing 

important concepts and challenges of the problem domain, and identifying the relationship 

among the entities within the specified domain. A simplification would be scoping the 

problem domain, understanding the challenges and providing hypothesis for the challenges 

(backed by experiments). AHT domain is modeled based on existing literature on Deep 

Learning use cases in Healthcare, and, provides hypothesis to the problems in the domain 

using Software Design. 
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 With the explosion of big data and abundant computing power, there has been a 

paradigm shift in the way problems are solved. Traditionally, building applications 

involved deducing rules from requirements which governed the application and 

subsequently encoding them as source code. But with the advent of Artificial Intelligence, 

there is a move towards automation and solving problems using the historical data and its 

underlying properties (Khomh et al. 81). Some interchangeable words often used for these 

techniques are Artificial Intelligence (AI) and Machine Learning (ML). Artificial 

Intelligence is an umbrella term used to define building systems with intelligent 

capabilities, while Machine Learning is a set of learning techniques where machines learn 

from data without being programmed explicitly. Healthcare is a promising industry for AI 

with use cases in Computer Aided Diagnosis, Electronic Health Records, etc. Computer 

Aided Diagnosis refers to assistive systems which help doctors in diagnosis of a disease 

using medical images (“Computer-aided Diagnosis”). Deep Learning (DL), a subset of 

Machine Learning (ML), is thoroughly being used for building the diagnosis assistive 

systems. DL algorithms are capable of extracting features from medical images which are 

not visible to the human eye and using them for diagnosis.  

 Solving a novel problem requires a thorough understanding of the domain, its 

components and the challenges. This is where domain modeling proves to be really helpful. 

It is an essential step in design of any system (using traditional techniques or AI). The 

domain is the description of the problem being explored. It provides sufficient information 

on the background of the problem, existing literature and the impact of the problem. It 

breaks down the problem into entities/ components with each entity having a specific use 

and meaning. These entities can be represented as abstractions of smaller problems in the 
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domain. It is important that the domain is scoped, and the problem is defined. The solution 

to the problem described by the domain, is the model (“What is the Domain Model”). It is 

an explanation to the different entities of the domain. The model provides solutions using 

hypotheses and experiments to these components (which may be abstractions of smaller 

problems) or specific and structured knowledge about these entities. The knowledge can 

be later used for designing systems which represent the domain model. Such design 

technique is called as Domain Driven Design (DDD).  

Formally, DDD is defined as a model driven approach to designing software 

application representing the target application domain, its entities and relationships in form 

of Domain Model, which is used to design the application architecture (Rademacher et al. 

230). Figure 7 perfectly encapsulates the Domain Driven Design process where, the 

Domain model is embedded in the Software Development Process. Once a clean Domain 

Model is ready, it can be applied to the surrounding use cases and then the infrastructure 

can be built for those use cases. 

 

 

Figure 7: Domain Model in Software Development; Source: (Grzybek “Attributes of Clean 

Domain Model.”) 
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3.2 Computer Vision and Image Processing 

Computer Vision (CV) is a field of Computer Science and Artificial Intelligence related to 

helping computers “see” and “analyze” real world objects through multimedia inputs such 

as images and videos (Brownlee “A Gentle Introduction to Computer Vision”). 

Understanding the image means understanding the objects in the image or understating the 

image, as a single entity. Image Processing consist of set of techniques used to create new 

images from original input images by modifying them. Modification may include cropping 

images, changing resolution, changing color scheme, altering image angles, removing 

noise, etc. 

 Computer Vision, sometimes also referred to as visual recognition problems, is an 

evolving field which utilize Image Processing techniques (sometimes as a pre-cursor) to 

understand complex images and extract features. The domain of Medical Image Analysis 

is a Computer Vision Task since it requires computers to understand medical imaging 

modalities such as Computer Tomography (CT) scans, Magnetic Resonance Imaging 

(MRI), Positron Emission Tomography (PET) scan, etc. CV is still a challenging field (due 

to inherent complexity of the input images) with new research being published every day. 

Computer Vision and Pattern Recognition (CVPR), a top conference for Machine Learning 

and Computer Vision, reported a 56% increase in paper submissions from 2018 to 2019 

(“General Welcome and the Organizing Committee”). 

 Computer Vision applications for Medical Image Analysis task include Image 

Classification, Image Segmentation, Image Detection, Image Generation and Image 

Translation. Some popular use cases where CV is used extensively are Self-driving and 
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Autonomous Vehicles, Object Character Recognition (OCR), Face Detection and 

Recognition, Video Surveillance, Motion Capture, etc.  

 

3.3 Deep Learning in Computer Vision 

Deep Learning is a subset of Machine Learning algorithms related to Artificial Neural 

Network (ANN). ANN is a Machine Learning and Data Mining technique, loosely inspired 

from human brain and its workflow.  

 The below figure (Figure 8 (b)) gives an overview of an ANN and computation in 

the nodes for each layer. Neural Networks are loosely based on human neurons. The first 

layer is called the input layer (i) responsible for feeding in the data. The last layer is the 

output layer (l) which gives the result (or prediction) of the algorithm. All the layers in 

between input and output layers are called as hidden layers (j, k). Most ANNs have a 

forward and backward pass. They are trained by feeding in historical labeled data (known 

outputs to each input). This type of training is referred to as Supervised Learning.  

Each layer consists of computation units called nodes (represented by circles in the 

picture) in Figure 8 (a). Nodes are interconnected in nature, i.e., the output of one node is 

fed into input of all the nodes in the next layer. The inputs to each node (equivalent of 

synapses in a human neuron) have a weight associated with them. The weights can be 

thought of as the importance of the input in the final result computation. Figure 8 (a) gives 

an overview of the computation inside a node (including the summation operation and the 

activation of the result).  
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Figure 8: a) Computation Inside a Node b) A 4-layer ANN; Source: (Vieira et al. 58) 

 

In the forward pass, the weights are multiplied with the input values and 

summarized. After the summation operation, the value is fed through an activation function 

(to introduce non-linearity) which decides whether an input should be passed along or not. 

The computation is run along till the output node. The output nodes calculate the predicted 

result. The predicted output is compared with the original expected output using a cost 

function and error minimization algorithms such as gradient descent. An error is generated 

using cost function and the goal here is to minimize the error. In the backward pass, the 

error is fed backwards in the network using a process called backpropagation. The idea 

here is to update the weights using the propagated error using optimization algorithms. 

Once the error has been backpropagated, the ANN does another forward pass to calculate 



  25 

the output. The process of forward and backward pass keeps repeating until the loss is 

minimized and weights are adjusted to the optimal level. The trained model can then be 

used to make predictions on new data. 

 Neural Networks (NN) have been around for a long time with the first model based 

on Human neurons, McCulloch-Pitts model, being published in 1943. Machine Learning 

has come a long way since then. Traditional ML algorithms required Feature Extraction as 

a pre-cursor to training the model. Feature Extraction was an expensive technique which 

often required expert domain knowledge. With the availability of cheap computing power 

and rich datasets, Deep Learning was able to extract features from data automatically using 

“deep-layers” in the NN (as shown in figure 9). This led to tremendous growth in the field 

of Machine Learning with research pivoting towards Deep Learning instead of Traditional 

Machine Learning techniques. It is worthwhile noting that the power behind Deep Learning 

lies in the availability of a large amount of input data to learn the features from and 

computing power to train the models.  

 

 

Figure 9: Machine Learning Versus Deep Learning; Source: (“A.I. Technical”) 

 



  26 

3.4 Convolutional Neural Network 

Computer Vision tasks require Deep Neural Networks to use digital inputs such as images 

or videos; one of the most frequently used architectures is Convolutional Neural Network 

(CNN). One of earlier works on CNN was published by Kunihiko Fukushima in 1980, with 

a landmark paper being published in 1998 by the pioneers in the field of AI (Lecun et al. 

2278), which introduced the LeNet-5 architecture to classify digits. But the credit for 

helping CNNs to utilize their full potential goes to (Krizhevsky et al. 84) who won the 2012 

ImageNet challenge. ImageNet is an image classification challenge to classify over 1.5 

million images in over 1000 classes. Since 2012, all the winners of the ImageNet 

competition have used a CNN like architecture.  

 The input to a CNN is an image (or an array of images for 3D models) in pixel 

format distributed over three input channels, Red, Green and Blue (RGB) or Greyscale. 

Figure 10 illustrates how images are encoded to provide input to CNN.  

 

 

Figure 10: Input Image Encoded into Three Channels; Source: (Saha) 
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The main operations in a CNN are Convolution and Max Pooling. The idea is to 

learn high level and low-level representations/features from the images. Each image is 

passed through a series of convolution layers with kernels and pooling layers. The multiple 

convolution and pooling layers are used as feature extractors. The network is then 

connected to a Fully Connected Neural Network (FCN) which performs the target task of 

classification or segmentation. Figure 11 gives an overview of the CNN architecture. 

 

 

Figure 11: Architectural Overview of Convolutional Neural Network; Source: (Prabhu) 

 

The convolution layer is used to extract features from the input image using kernels 

or filters. Kernels can be thought of as feature extractors (represented as a matrix). The 

convolution operation requires matrix multiplication of the input image and the filter. The 

depth of the filter is the depth of the image (number of channels). Different filters can be 

used to extract different features from the input image in the same layer (such as image 

blurring, sharpening, edge detection, etc.). A feature map is generated by sliding the filter 

over the entire image. The feature maps are then passed through activation function (e.g. 

ReLU in Figure 11) to introduce non-linearity. Figure 12 represents the feature maps.  
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Figure 12: Overview of Convolution Operation; Source: (Prabhu) 

 

The pooling layer reduces the size of feature maps while keeping the important 

information intact using max pooling or average pooling. This helps in decreasing the 

computational power required to process all the feature maps. Only the dominant features 

are kept while the non-dominant features are discarded. Figure 13 represents the max 

pooling operation.  

 

 

Figure 13: Max Pooling Operation; Source: (Prabhu) 

 

 The output is then flattened and fed to a fully connected layer with a Softmax 

activation function (if the target task is classification). Backpropagation is used for training 
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the network and building the model. Some state-of-the-art CNN architectures used in the 

thesis are ResNet50, DenseNet121 and InceptionV3.  

 

3.5 Generative Adversarial Network 

Another interesting use case of Computer Vision is Image Generation. Generative 

Adversarial Networks (GAN) were introduced in 2014 by Ian Goodfellow (Goodfellow et 

al.). Since then, GANs have been an area of extensive research with recent papers by 

NVIDIA (Karras et al.), showing state-of-the-art results in image generation.  

The idea behind GANs is using two competing neural networks, a generator and a 

discriminator, which are adversaries. The job of the generator is to generate original-like 

images while the job of the discriminator is to identify whether the generated images are 

real or fake. During the training of GAN, the goal of the generator is to become better and 

better at fooling the discriminator while the goal of the discriminator is to get better at 

identifying whether the generated image is real or fake. Figure 14 illustrates the 

architecture of a Deep Convolutional GAN (DCGAN) (Radford et al.).  

The input to the generator is random noise and it uses De-convolutional operations 

(using Transpose operation) for upsampling (increasing the dimension of) the noise. The 

generator never gets to see the original input images. The discriminator gets to see both the 

original images as well as images generated by the generator. The generated image as well 

as the ground truth (original) image is fed into the discriminator and it returns a probability 

whether an image is real or not. The discriminator uses simple convolution operations to 

check the authenticity of the images. The feedback is sent to the generator which tries to 

improve its images. Both the networks are adversaries which are in a constant battle to 
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improve themselves and minimize their losses. The thesis uses DCGAN for generating 

Brain CT slices as a method for data generation. 

 

 

Figure 14: Architectural Overview of DCGAN; Source: (Suh et al.) 

 

3.6 Transfer Learning 

Transfer Learning is a ML knowledge transfer process wherein knowledge and features 

from models trained on a large dataset (such as ImageNet) can be used to solve a new 

problem. Deep Learning models such as CNN use the initial model layers as feature 

extractors. The initial layers learn top level and abstract features such as edges, colors, 

shapes, etc. The subsequent deeper layers learn the lower level and minute details of the 

dataset. Figure 15 encapsulates the process of Transfer Learning. 

 ImageNet (Deng et al. 248), is a large hierarchical database containing over 14 

million images belonging to over 20,000 classes. State-of-the-art CNNs have been trained 

on ImageNet whose knowledge can be used to solve other Computer Vision problems. The 

trained CNNs are available as pre-trained models for public use. Some pre-trained model 

used as feature extractors in this thesis are ResNet50 (He et al. 770), DenseNet121 (Huang 
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et al. 2261), and InceptionV3 (Szegedy et al. 2818). The architectures of these models are 

discussed in the next chapter.  

 

 

Figure 15: Transfer Learning; Source: (Sarkar) 

 

 Transfer Learning solves the problem of unavailability of a large-scale annotated 

dataset usually required to train models from scratch. It is extensively used in domains such 

as Natural Language Processing for creating word embeddings and representations, in 

Computer vision for tasks such as Object Detection, Localization and Segmentation, and 

Speech and Audio processing for segmenting samples from a song, etc. (Devlin et al.) and 

(Cer et al.) are some examples employing use of transfer learning to train state-of-the-art 

word and sentence encoding models. (Tan et al. 270) categorized deep transfer learning 

into four categories, namely, Instance Based learning, Mapping Based learning, Network 

based learning and Adversarial based learning.  

 Even though Transfer Learning is extensively being experimented with to solve 

different problems, the results in the field of Medical Image Analysis have not been as 

good as other fields. This is mainly because of lack of an ImageNet like database for pre-

training models on Medical Images. The pre-trained models on ImageNet do not work very 
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well on medical images since the Medical images (CT images, MR images, PET images, 

X-rays) have a very different structure from natural images. (Chen et al.) proposed 

MedicalNet, a set of pre-trained 3D models trained on Medical Images from multiple 

sources. (Zhou et al. 384) proposed Model Genesis, a set of autodidactic models for 

medical image analysis, trained in a self-supervised fashion.  

 

3.7 Machine Learning Deployment 

Once a Machine Learning model is trained, the next step in the ML pipeline is to deploy 

the model in a scalable fashion. Businesses employ Machine Learning engineers and Data 

Scientists to train accurate models and then ship the model to Software Engineers for 

hosting them as production level software. Since the models are often retrained using batch 

training (training model with available data and then deploying it) or real-time training 

(continuous retraining of models with real time data), a well-established, quick prototyping 

and fast turnaround Continuous Integration and Continuous Delivery pipeline (CI/CD) has 

to be in place. Moreover, since the number of use cases for ML are increasing rapidly, and 

hence the model users, there is a need for these models to be highly available and scalable 

so that they can support the high number of requests. Figure 16 illustrates a CI/CD pipeline 

built using Microsoft Azure Services.  

Python is the most widely used language for prototyping Machine Learning models. 

The availability of multi-purpose libraries along with a wide-open source community 

makes it really easy to build and test ML models (Matthews "6 Reasons Why Python Is 

Suddenly Super Popular"). The ML models are commonly stored as Pickle or Json files 

which can be loaded using the common ML libraries such as Keras (“Keras: The Python 
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Deep Learning Library.”), Scikit-learn (“Scikit-learn.”), etc. One of the most common way 

of serving a model as part of a production level software is exposing it as a micro-service, 

implemented as a RESTful API (Application Programming Interface). The microservice 

architecture is a great alternative to monolith systems, breaking down the structure into 

groups of services which are loosely coupled, highly scalable, independent and owned by 

a single team, and have a specific utility. This type of architectural pattern gives 

organizations the flexibility to add new functionalities as services in a rapid fashion (“What 

Are Microservices?”). REST (Representational Style Transfer) is an architectural style to 

design and build these services. These services can be built using different programming 

languages and backend servers such as Python (Flask or Django backend), Java, etc.  

 

 

Figure 16: A CI/CD Pipeline for Deploying Machine Learning Models Using Microsoft 

Azure Components; Source: (Marktab) 

 

In order for the models (services embedded in an application) to be used by the 

external world, the services are deployed on a web server exposed by a domain name. The 
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deployment process includes encapsulating the application with its dependencies as a 

container. These containers are essentially a snapshot of the application along with its 

dependencies. The containers are deployed to a web server such as Azure Container 

Registry (by Microsoft) or Elastic Container Registry (by Amazon) which can host these 

containers. Kubernetes, a container orchestration mechanism, is used to scale these 

containers based on the application traffic. Each cloud provider has their own version of 

Kubernetes for deploying the containers at scale. As evident from the process, serving the 

ML models efficiently, involves building them using best Software Engineering and 

Design practices. 

 

3.8 Containerization Using Docker 

The motivation behind containerization comes from being able to run an application on 

any Linux based server without worrying about the dependencies of the application. 

Docker bundles the application along with required libraries, configurations and other 

dependencies into a container which can be run on on-premise servers or public cloud. It 

essentially employs virtualization for running multiple independent containers by sharing 

the OS resource between each container (Connor “What Is Docker Container”). Figure 17 

explains how Virtual Machines (VMs) are different from Docker containers. 

Docker consists of a Docker Engine, responsible for building docker images, and 

Docker Hub, for sharing the images on different Container registries. The first step to using 

containerization with Docker is to write a Dockerfile listing the dependencies which need 

to be bundled together and how to run the application once the dependencies are copied. 

Once the Dockerfile is written, Docker images can be built using the command line 
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interface of Docker Engine. A Docker Image is a snapshot of the container which can be 

spun up on a Linux server or Windows server (using virtualization).  

 

 

Figure 17: Docker Containers Versus Virtual Machines; Source: (Mouat et al.) 

 

Containers make any application highly portable. Different teams can work on 

different parts of the same project and each part can live in a container. This significantly 

decreases the deployment time and helps in iterating over changes more quickly.  

 

3.9 Container Orchestration Using Kubernetes 

Kubernetes (K8s) is an open-source container orchestration manager used for managing 

and deploying containers at scale (“Production-Grade Container Orchestration.”). It was 

initially announced by Google in 2014 as an open source project to decouple application 

containers from the systems they run on (Mcluckie “Containers, VMs, Kubernetes and 

VMware”). Since then, Kubernetes has been used by all the companies which are looking 

for deploying and managing containers in scale (Bernstein 81). The major cloud providers, 
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such as Amazon, Microsoft and Google, have rolled out a “managed” version of their 

Kubernetes service which essentially manages the cluster load automatically. The thesis 

uses Amazon’s Elastic Container Registry for deploying container to the Kubernetes 

cluster. Figure 18 provides a high-level picture of the different components of Kubernetes 

architecture. 

 

 

Figure 18: An Architectural Overview of Kubernetes (K8s); Source: (“What Is Kubernetes 

- Learn Kubernetes from Basics.”) 

 

A Node is a worker machine in Kubernetes using hardware (VMs or physical 

system) for computation. The physical systems can be a server in server farms and a virtual 

machine can be systems on a cloud platform. A Pod is a wrapper around one or more 

containers which are deployed to a single node. The containers in a pod share the same 

CPU resources among them and can communicate with each other easily. The pods can be 

replicated to support scalability and availability. Multiple pods can exist in a node. Nodes 
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pool their resource together to form Clusters.  Nodes can handle load between them within 

a cluster (to ensure high availability even if a node is killed).  

The worker nodes (where pods are running) are controlled by the master node using 

kubelet. kubelet ensures that the containers are running inside pods in a node and sends 

their health back to the master node. kube-proxy is a network proxy running on each node 

used to perform network routing. It exposes the worker nodes to the internet. A user can 

interact with the master node via a Web UI or kubectl which is the Kubernetes command 

line interface. 

Pods can be created inside a Kubernetes cluster using Deployment which is a 

template for deploying containers and their replicas. The containers inside the pods are 

made available to the internet using Service which specifies the visibility of the pod. 

Ingress Controllers or Load Balancers can be used to communicate with a Service inside 

a pod (Sanche “Kubernetes 101”). 

Some other features of Kubernetes include Automated Pod scheduling, Horizontal 

scaling (increasing the number of pods) and Load Balancing, and Auto scalable 

infrastructure. The availability of automatic scaling is the main reason why Kubernetes has 

been used in the thesis for deploying the trained models as APIs. 



  38 

CHAPTER 4 

IMPLEMENTATION 

 

This chapter explains the implementation details of the research conducted as part of the 

thesis. The chapter starts with describing the Domain Model designed for the problem 

statement. Each subsequent section explains the implementation methodology of a sub-

domain. The Data Collection strategy at Phoenix Children Hospital is described and the 

data preprocessing techniques are explained. The experiment setup for training Generative 

Adversarial Networks for Image Generation and 2D and 3D Convolutional Neural 

Networks for Image Classification are later illustrated. Finally, the chapter explains the 

process used to deploy the trained models as APIs using Flask, Docker and Kubernetes.  

 

4.1 The Domain Model 

One of the contributions of the thesis is modeling the domain of Abusive Head Trauma 

using AI techniques. Solving any novel problem requires background knowledge of the 

problem and its different components. Once this knowledge is acquired, the problem can 

be broken down into smaller sub-problems which are easier to solve. One can compare this 

to the famous “Divide and Conquer” strategy used to solve multiple puzzles in the field of 

computing. This research explains the domain of Abusive Head Trauma (and subsequently 

Traumatic Brain Injury), gives background knowledge on differentiating AHT from Non-

AHT cases, and breaks the problem into sub-domains of Data Collection, Data Pre-

processing, Image Synthesis, Image Classification, Building APIs, Containerization using 

Docker, and its orchestration using Kubernetes. Figure 19 demonstrates the intersection of 
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domains of Medical Knowledge, Deep Learning and Software Engineering used in 

modeling the domain. 

 

 

Figure 19: Domain Intersection for Modeling AHT 

 

 A domain map is generated using the knowledge derived from the Domain 

Intersection (as shown in Figure 19) and the Domain Modeling hypothesis for 

Classification task (as shown in Figure 1). Figure 20 illustrates the domain map of Abusive 

Head Trauma. AHT domain has been divided into six sub-domains encompassing Medical 

Knowledge, Deep Learning and Software Engineering. Each subdomain is divided into 

sub-areas representing significant entities, problems and experiments to solve the problem. 

The first domain, Medical Knowledge, has been described in detail in Chapter 2. Each 

subsequent section describes the sub-domains and their implementations. 



  40 

 

Figure 20: Domain Map of AHT 

 

4.2 Data Collection 

This research was completed in accordance with all federal, state and hospital policy under 

the Health Insurance Portability and Accountability Act (HIPAA). Data used in this 

research was collected under Phoenix Children’s hospital Institutional Review Board (IRB) 

09-055 and completed under Phoenix Children’s Hospital Institutional Review Board 

(IRB) 17-015. The data was extracted from the Forensic Registry and includes all pediatric 

patients <17 years of age who presented in the PCH Emergency Department or transferred 

to PCH from another medical setting between 2010-2016 with any head injury suspicious 

of physical abuse. In total, 804 patient injuries met the study criteria for inclusion. The 

primary goal of the study is to build a tool which use AI techniques on Computer 
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Tomography (CT) images to classify whether the scans belong to patient with Abusive 

Head Trauma or Accidental Head Trauma. The tool would be used for screening all 

pediatric patients in Emergency Department who present with any head trauma or 

suspicion of head trauma based on symptoms (seizures, lethargy, loss of consciousness, 

etc.). 

 AT PCH, the child protection team (CPT), is made up of clinicians, social workers 

and forensic specialists; and members of the state child protection agency and members of 

law enforcement meet weekly to perform a comprehensive forensic evaluation of patients 

referred to the CPT based on suspicion of physical abuse. The team after reviewing all of 

the available medical information coupled with other agency information, makes a 

determination on whether the injury is presumed or determined “Probable Abuse”. If the 

medical information is not sufficient to rule out an accidental trauma, the patient’s forensic 

determination is “Undetermined”. If the medical information is sufficient to rule out 

inflicted injury, the injury as determined “Probable Not Abuse”. Since this study only 

included pediatric patients with head trauma and Potential AHT (regardless of any other 

injuries the patient might have been inflicted, the study population was labelled as follows: 

presumptive or determined AHT, Non-AHT and Undetermined. The patient data was 

stored in the hospital PACS (Picture Archiving and Communication system) and was not 

deidentified.  In order to use the PACS images, the PACS data was de-identified and 

labelled using a subject ID key match. Data extracted from the forensic registry and 

maintained for purposed of analysis under PCH 17-015 was used to label PACS image data 

as AHT, Non-AHT and Undetermined. The data for each patient was downloaded 

manually (in batches of 15 – 30) from PACS into a PCH computer. Due to security issues, 
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the data for each patient had to be downloaded manually using the subject ID after 

deidentification. For validation of labelling, each subject ID was matched to an MRN 

maintained in a screening log and then to a data table containing the AHT labels to confirm 

the label. Since there was no way to download only the CT studies of a patient, the 

downloaded information contained all the radiological (including CT, X-ray, radiological 

reports, etc.). The folder structure was complex in nature. Figure 21 illustrates the folder 

structure. 

 

 

Figure 21: Folder Structure of Deidentified Data Downloaded from PACS 

 

The base folder had five sub-folders called AHT_folder_num which represented 

patient MRNs from five different data dictionaries. Each AHT folder had multiple batches 
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of data in sub-folders called Export_number.  Each export had two additional folder before 

containing the patient studies called IMediaExport and DICOM. The DICOM folder 

contained the patient studies (15 – 30) in each DICOM folder. For each patient, the folder 

STD_number represented the study number (one or more for each patient). For each study, 

the subfolders SER_number represented series of the study. The series indicated the type 

of imaging for the patient (such as skeletal x-ray, CT with Slice thickness 3mm, CT with 

bone window, etc.). Each series contained the imaging in DICOM format. DICOM (Digital 

Imaging and Communications in Medicine) is an internationally accepted medical imaging 

standard which contain imaging results, study information and patient information in form 

of metadata. All the DICOM images in the series were deidentified before downloading 

from PACS. So, the next step was CT image selection. 

 

4.3 Data Pre-processing 

Data Anonymization was a challenging part due to the volume of the data and presence of 

all imaging modalities in the Patient folders. The total size of the data was ~252 Gigabytes. 

So, data-preprocessing had to be done in chunks. A virtual Linux server was built with high 

memory (16 Gigabytes) for faster reading of data.  

 

4.3.1 Data Anonymization 

An anonymization script was written in Python which read all the DICOM one by one and 

extracted the DICOM fields. A DICOM file can be read in Python using the PyDicom 

library (“Pydicom Documentation.”). Figure 22 demonstrates the code snapshot for reading 

DICOM files.  
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Figure 22: Reading DICOM File Using PyDicom; Source: (“Pydicom Documentation.”) 

 

Once all the DICOM files in a series were read for a patient, the patient name, 

patient date of birth, patient id, study date and time, and accession number were replaced 

by dummy values. An excel map was updated with the original patient information and the 

newly created dummy patient information for future reference. Figure 23 demonstrates the 

code snapshot for reading DICOM and deleting patient information.  

 

 

Figure 23: Deleting Patient Information from DICOM Files; Source: (“A Multi-Platform 

DICOM Toolbox for Academic Radiologists.”) 
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4.3.2 Brain CT Anatomical Plane and Slice Thickness Selection  

The next step was to select only the image modality which belonged to a Brain CT series 

from the multiple series of scans present for each patient. For Brain CT modality, the series 

of scans with slice thickness of 3 mm were selected. Only the axial planes were persevered 

for the series. This was done to ensure a standardized dataset. Series with Bone windows 

was also dropped from the dataset. A data-preprocessing script was written to achieve all 

of the above tasks. The DICOM files per series per patient were read one by one. The Slice 

thickness metadata tag was extracted and if the value of Slice thickness was 3.00, the series 

were preserved. The slices also had a comment metadata field which described the type of 

windowing (bone or brain) and imaging modality (X-ray or CT) for the series. If the 

comment contained words, “Brain” and “CT”, the slices were preserved. These slices were 

then stored to a different location in the anonymized patient id folder.  

 After this process, the data contained 171 patients with AHT label and 207 patients 

with Non-AHT label. The total number of slices for each patient ranged from 26 to 45. The 

slice thickness for each slice was 3 mm and each slice contained only the brain window. 

The size of the pixel array for each size was 512x512.The data was then transferred to a 

laptop with a GPU (NVIDIA RTX 2060) for building and training the deep learning 

models.  

 

4.3.3 Viewing the Slices in the Right Window 

Windowing is a technique used by radiologists to highlight certain voxels of a brain CT for 

correct diagnosis. It is sometimes also referred to as Contrast enhancement. It is achieved 

by changing the Window Width (WW) and Window Level/Center (WL).  WW is the 
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measure of range of CT number an image can store. WL is the midpoint of the range of CT 

numbers stored (Murphy “Windowing (CT)”). Windowing is useful to detect certain 

abnormalities such as subdural hematoma (which is more visible in subdural window). The 

thesis uses three window settings, namely brain window (WW:80 WL:40), subdural 

window (WW:130-300 WL:50-100) and bone window (WW:2800 WL:600) (Murphy). 

Each slice is converted into each of these windows and then the windows are fused together 

as three channels of the image (Brain-Subdural-Bone channel) (Reppic “Gradient & 

Sigmoid Windowing.”). Figure 24 shows a slice in all the three different windows. 

 

 

Figure 24: A DICOM Slice in Brain, Subdural and Bone Window; Source: (Reppic 

“Gradient & Sigmoid Windowing.”) 
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Some pathologies are more prominent in some window settings. Figure 24 shows 

Subdural Hematoma (indicated by red arrows in the bottom-left slice) being clearly visible 

in the Subdural Window setting. Since the most prominent CT markers of AHT are 

Subdural Hemorrhage, Cerebral Edema and Skull fracture, each slice is converted into the 

brain, subdural and bone window and fused together as three channels (just like RGB 

channel for a color image). Figure 25 demonstrates the code for the same. 

 

 

Figure 25: Code Snippet to Convert the Slices into the Three Channels 

 

4.4 Image Generation Using GANs 

A major problem in building Deep Learning models for Medical images is unavailability 

of large amount of labeled data. GANs have been effective in generating new images which 
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are from the same distribution as the training images. DCGAN is used to generate new 

image slices from the three channel (brain-subdural-bone) input images. Two different 

image dimensions are generated using DCGAN, 32x32 and 128x128. Higher dimension 

images could not be generated due to GPU memory limitations.  

 

4.4.1 DCGAN for 32x32 images  

The DCGAN to generate 32x32 image takes a 32x32 image as training input. The code is 

implemented in Keras. Figure 26 shows an example input file of shape 32x32, plotted using 

matplotlib.  

 

 

Figure 26: 32x32 Input Image for DCGAN 

 

The GAN was compiled on Adam Optimizer with a learning rate of 0.001 and beta1 

of 0.5 for both the generator and discriminator. The loss function was binary crossentropy 

and it was trained for 80 epochs on batch size of 16. The results are discussed in the next 

chapter.  
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The generator for DCGAN consists of dense layer, followed by Convolution and 

Deconvolution layers with LeakyReLU activations. Dropout and Batch Normalization are 

added to increase robustness of the model. Figure 27 explains the configuration of the 

generator where the columns represents the layer, the output shape and the parameters.  

 

 

Figure 27: Generator Configuration for 32x32 DCGAN 

 



  50 

 The discriminator consists of multiple convolution layers (with dropout, batch 

normalization and LeakyReLU activation) and a dense layer (with sigmoid activation) as 

output layer to generate a probability. The numpy array is the 32x32 image with 3 channels. 

Figure 28 explains the configuration of the discriminator where the columns represents the 

layer, the output shape and the number of parameters. 

 

 

Figure 28: Discriminator Configuration for 32x32 DCGAN 
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4.4.2 DCGAN for 128x128 Images 

The DCGAN to generate 128x128 images was implemented in PyTorch. The GAN was 

trained on 128x128 images with three channels (brain-subdural-bone). Figure 29 shows a 

subset of training images of size 128x128. 

 

 

Figure 29: Training Images for 128x128 DCGAN 

 

The GAN was trained for 200 epochs using Adam optimizer with learning rate of 

0.0001 and beta1 of 0.9. The loss function was binary crossentropy and the batch size was 

8. The results are discussed in the next chapter.  

 The generator consists of Deconvolution layers with Batch Normalization and 

ReLU activation. The last layer consists of a Tanh activation. It takes a torch tensor of size 

(3, 128, 128) as input (128x128 images with three channels: brain-subdural-bone). The 

Generator layer wise configuration is demonstrated by Figure 30.  

The discriminator consists of convolution layers with batch normalization and 

LeakyReLU activation. The last layer has a sigmoid activation function to generate the 

probability of image being real. It takes a tensor of shape (100, 128, 128). The 

Discriminator layer wise configuration is demonstrated by Figure 31. 
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Figure 30: Generator Configuration for 128x128 GAN 

 

 

Figure 31:  Discriminator Configuration for 128x128 GAN 
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4.5 Image Classification 

This thesis includes experiments to classify CT scans into AHT and Non-AHT classes 

without any image segmentation techniques and slice level labels. 2D and 3D classifiers 

are built using CNN based architecture. The results are evaluated using binary accuracy, 

validation accuracy and validation loss.  

 

4.5.1 3D Classifier 

A Brain CT scan consists of multiple slices with each slice representing a cross section 

area of the brain. Radiologists use all the slices of the CT scan in order to make a diagnosis 

since it is possible that an abnormality is identified in a set of specific slices. 3D classifiers 

use all the slices as a patient input (shape: number of slices, row, col, channels). This helps 

them leverage the knowledge from the entire set of images as whole and use 3D kernels to 

extract features. 2D classifiers are unable to leverage the context from adjacent inputs. 3D 

classifiers are more resource intensive because of the large input so a lot of network tuning 

is required to train the model in the GPU memory.  

 A custom 3D classifier was written in Keras. The classifier consisted of 3D 

convolution layers with kernel size of (3, 3, 3) and relu activation. 3D pooling was used to 

reduce the output size of convolution layers. Batch Normalization and Dropout was used 

to increase robustness of the model and reduce any overfitting. Two dense layers were 

added in the end with the last layer having a softmax activation function to predict the 

probabilities of both the classes. The number of slices as input is 37. The model was trained 

on 132 Probable Abuse patients and 167 Probable Non Abuse patients and validated on 35 

patients of each class. The model was compiled using a RMSProp optimizer with learning 
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rate of 0.0001. The loss function was binary crossentropy and the model was evaluated 

using binary accuracy, validation accuracy and validation loss. The model was trained for 

100 epochs with a batch size of 8. Figure 32 demonstrates the code snapshot for the 

classifier’s configuration. The results of the classifier are discussed in the next chapter.  

 

 

Figure 32: Code Snapshot of 3D Classifier 

 

4.5.2 2D Classifiers 

2D classifiers are computationally less expensive than 3D classifiers. They are generally 

used when slice-level label is available since it is possible that all the slices are not 

representative of the class. Since slice-level label was unavailable and data annotation was 

too costly at this instance, all the slices belonging to AHT patients were merged and saved 

as png files after windowing. The same was done to all the slices belonging to Non-AHT 

patients. In total, the dataset consisted of 6179 slices for AHT patients and 7400 slices for 
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Non-AHT patients. After data augmentation, the 2D models were trained on 10864 images 

and tested on 2715 images. Three pretrained models were used, namely, DenseNet121, 

ResNet50 and InceptionV3. In the experiments, the pretrained models (on ImageNet) were 

used as feature extractors.  

 

4.5.2.1 Using DenseNet121 

DenseNet (Densely Connected Convolutional Neural Network) was introduced at CVPR 

2017 and achieved state of the performance on image classification datasets. It required 

less training parameters relative to other models at the time. Figure 33 explains the 

configuration of DenseNet family. 

 

 

Figure 33: Densenet121 Configuration; Source: (“PyTorch.”) 

 

The model is connected to a series of Dense layers with Batch Normalization and 

Dropout with relu activation. The last dense layer has a softmax activation to predict the 
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probabilities of each class. The model is compiled with Adam optimizer (learning rate of 

0.0001), binary crossentropy loss and evaluated using binary accuracy, validation accuracy 

and validation loss metrics. The model is trained for 50 epochs with a batch size of 16. The 

input image size is (224, 224, 3). Figure 34 shows the final model configuration with 

columns representing Layer type, Output shape and number of parameters. 

 

 

Figure 34: DenseNet121 Used as the Base Model and Feature Extractor 

 

4.5.2.2 Using InceptionV3 

The pretrained model InceptionV3 was released by Google at CVPR 2016. The model 

consists of 42 layers and was runner up at the ILSVRC (ImageNet Large Scale Visual 

Recognition Competition). The configuration details of InceptionV3 are explained in the 

Figure 35 with each column representing the layer type, the stride value and the input size 

of the layer.  
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Figure 35: InceptionV3 Configuration; Source: (“PyTorch.”) 

 

 

 

Figure 36: InceptionV3 Used as Base Model and Feature Extractor 

 

The base model (as shown in Figure 36) is followed by a series of Dense layers 

(with relu activation) and dropouts. The last dense layer has a softmax activation to predict 
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the probabilities of each class. The input image size is (224,224,3) and the training is done 

in batches of 16. Data Generators are used to augment images and feed them to the model. 

The model is compiled with Adam optimizer (with a learning rate of 0.0002) and the loss 

is calculated using the binary crossentropy loss function. The model is trained for 50 epochs 

and evaluated on the binary accuracy, validation accuracy and validation loss metrics.  

 

4.5.2.3 Using ResNet50  

As the name suggests, Resnet50 has a depth of 50 layers. It was originally trained on over 

1 million images and 1000 classes. It was the winner of 2015 ILSVRC challenge. Figure 

37 illustrates the configuration details of the Resnet family. 

 

 

Figure 37: Resnet Family Configuration Details; Source: (“PyTorch.”) 

 

The pretrained model is followed by two Dense layers (with relu activation) and 

dropouts. The output layer is a Dense layer with softmax activation. Images are fed using 

Keras’s ImageDataGenerator function which is capable of splitting data into train and 
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validation sets. The input image has dimension (224, 224, 3). The model is compiled using 

RMSprop optimizer with learning rate of 0.0002. The loss function chosen is binary 

crossentropy. The model is trained for 50 epochs and evaluated on the binary accuracy, 

validation accuracy and validation loss metric. The configuration details are explained in 

Figure 38 with each column representing the layer type, the output shape and the number 

of parameters. 

 

 

Figure 38: ResNet50 Used as Base Model and Feature Extractor 

 

4.5.2.4 Using 2D custom classifier 

A custom 2D classifier is written in Keras to compare the performance with the pretrained 

models used. Keras’s ImageDataGenerator is used to augment the training using rotation, 

shear, zoom and flipping. The data generator creates batches of images to train and validate 

the model. The batch size used is 16. The model consists of a four Convolution layers with 

Pooling, dropout and Batch Normalization in between. Three Dense layers are added with 

dropouts. All the layers except the last dense layer have relu activation functions. The last 
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dense layer is the output layer with softmax activation to predict the probabilities of the 

classes. The model is compiled using RMSprop optimizer with a learning rate of 0.0002. 

The loss function used is binary crossentropy. The model is trained for 80 epochs and is 

evaluated using binary accuracy, validation accuracy and validation loss metric. The 

configuration details are explained in Figure 39 with each column representing the layer 

type, the output shape and the number of parameters. 

 

 

Figure 39: Model Configuration for Custom 2D Classifier 
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4.6 Building APIs Using Flask, Docker and Kubernetes 

Flask is a python-based web framework used widely for rapid prototyping of applications 

(“Flask.”). The thesis uses the micro-service architecture to build APIs using Flask. Three 

functional APIs are built based on three sub-domains of the thesis: Data Pre-processing, 

Image Synthesis and Image Classification. A fourth API is built to upload the slices 

provided by the user as input. The development was done in PyCharm (“PyCharm.”) IDLE 

using Python (version 3.6). Conda Package manager (“Conda.”) was used to create a virtual 

environment and isolate all the dependencies of the project.  

 

4.6.1 System Architecture  

The overall architecture of the web tool is demonstrated in the Figure 40. AWS Dynamo 

is used as the database for the application. It is a fully managed NoSQL database which is 

well integrated with other components of the AWS Ecosystem. The files (CT slices) 

uploaded by the user are stored in a S3 bucket. S3 is a highly scalable and available object 

storage service offered by AWS. The Flask application communicates with S3 and Dynamo 

using AWS python client called Boto3. Dynamo contains the mapping to the unique user 

identifier and the S3 path where their uploaded files are stored.  

Each time a user accesses the web tool, a unique identifier is generated for the user. 

The user can then upload the CT slices to either view them in the correct window setting 

or predict the occurrence of AHT. The uploaded slices are then stored in S3 and the dynamo 

table is updated with the right mapping. Once the files are uploaded, the user can select the 

use case, which is either view the slices in the right window or get the prediction results. 

For both the use cases, the S3 bucket path is retrieved from the dynamo table using the user 
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identifier as the key. Once the S3 path is available, the CT slices are downloaded and 

processed using Python scripts. Since Flask is a lightweight framework, it is not advisable 

to store CT slices inside the application memory. Moreover, the AWS cloud components 

are highly scalable in nature and have low latency. 

Flask itself comes with a small server which can be used for local testing, but it is 

not advisable to use it in production setting. A real web server is needed to handle a large 

amount of requests. This is where NGINX and uWSGI comes into play. NGINX is a web 

proxy server which handles the client requests. The requests are transferred to uWSGI 

using UNIX sockets. uWSGI is a Web Server Gateway Interface capable of handling 

multiple requests at a time. It is capable of invoking a callable object within Flask 

application to sever the requests. 

Docker is the de-facto choice of container used throughout industry. A Docker 

Image is created for the web application using a Dockerfile. The external package 

requirement is managed using a requirements.txt file which can be explicitly stated in the 

Dockerfile. Once the docker image is created, it is pushed to a container registry. The 

container registry of choice is Amazon ECR (Elastic Container Registry). AWS-Command 

Line Interface is used to upload the Docker image to ECR.  

Kubernetes is becoming an industry standard for managing a large number of 

complex containers on the cloud. It makes deployment and scaling of container simple. 

The thesis uses Amazon EKS (Elastic Kubernetes Service) because of its smooth support 

and low latency with other AWS components in the ecosystem. In order to deploy the 

container at scale, a Kubernetes cluster is created. Kubectl, the native Kubernetes command 

line interface is used for communicating with the cluster. Once the cluster is created, the 
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container is launched into the cluster pods using a Kubernetes deployment. The pods are 

not exposed to the outside world and in order to connect with them, a Kubernetes service, 

called load balancer is used. The load balancer exposes the pods with an external IP 

address. The External IP is used to communicate with the web tool (running inside the pod) 

from Internet. 

 

 

Figure 40: Architecture Diagram of the Web Application 

 

4.6.2 User Interface 

The web tool has a user interface built using HTML and CSS. Once on the landing page 

(as shown in Figure 41), the user has two options to select, either upload the CT Dicoms 

and get redirected to the next page, or, using the Image Generation option to generate Brain 

CT images using DCGAN. Multiple DICOM images can be chosen at once and uploaded. 

Upon clicking the upload button, a post request is submitted to the upload_files API. The 

request contains the CT slices as data. The user is then redirected to the display_options 

page (as shown in Figure 42).  
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Figure 41: Snapshot of the Landing Page with Upload DICOM and Generate Image  

 

 

 

Figure 42: Snapshot of the display_options Page with Predict and View Options 
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Upon clicking the predict button, a POST request is submitted to the predict_2dcnn 

API with the user identifier generated in the landing page as the request parameter. A 

database call is made to retrieve the S3 bucket path containing the stored CT slices, the 

slices are fetched and then fed into the trained model for the prediction. The API returns 

the probability for each image of falling into the AHT and Non-AHT class as demonstrated 

in Figure 43.  

 

 

Figure 43: Snapshot of result_2dcnn Page Displaying Prediction Results 

 

Upon clicking the Brain-Subdural-Window button on display_options page, a GET 

call is made to the show_windows API with the user identifier as the request parameter. 

Again, a dynamo call is made to retrieve the S3 bucket path containing the stored CT slices, 

the CT slices are fetched and then fed into multiple data preprocessing functions to generate 
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the final images in the right window setting. The response object of API contains the 

images and displayed on window_view page (as shown in Figure 44).  

 

 

Figure 44: Snapshot of window_view Page Displaying Slices After Windowing 

 

 

 

Figure 45: Snapshot of gan_view Page Displaying Generated Images 
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If the user selects the generate images option in the landing page, a GET call is 

made to the generate_new_images API to generate new images using the DCGAN. A grid 

of images is generated and returned as the response object. The grid is displayed in the 

gan_view webpage as shown in Figure 45. 

 

4.6.3 Packages and Libraries 

A modular approach to programming has been followed while building the web tool. The 

programs are broken into multiple functions with each function responsible for a single 

task. The APIs make use of the functions for processing data. Functions with similar usage 

have been abstracted into segregated into separate python files to give more meaning to the 

files. Three packages have been created, namely, models, trained_models (which is a sub-

package of models) and templates. Figure 46 shows the packages. 

 

 

Figure 46: Package diagram of the Web Tool 

 

The trained model package contains the 2D trained model and trained generator of 

DCGAN. The models package contains data preprocessing helper functions. The template 

package contains the html files and static css files. Other helper functions are present in 

independent python scripts in the base directory along with the main.py file which is the 

starting point of the web application.  
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Writing code from scratch was simply not possible for all the functionalities due to 

complexity involved in handling Medical Data and training models. Furthermore, using 

libraries minimizes time spent in writing code from scratch. It also helped in making the 

application more production ready. The Data-Preprocessing steps used libraries such as 

PyDicom (to read Dicom scans), Numpy (for handling numerical arrays), Matplotlib (for 

making graphs and plotting images) and PIL (pillow for image analysis). The Deep 

Learning models are trained using Keras, Tensorflow and PyTorch. Boto3 was used to 

interact with AWS components and Json was used for data conversion. Flask library was 

used to create the web application werkzeug to extract files from POST requests. All the 

libraries helped in building the web tool more robust. 
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CHAPTER 5 

RESULTS AND ANALYSIS 

 

This chapter provides a review and analysis of the results obtained from running the 

experiments described in the previous chapter. The chapter is divided into three parts, the 

results of trained classifiers, the results of trained GANs and the results of load testing the 

Kubernetes cluster where the web tool resides.  

 

5.1 Results of Trained Classifiers 

2D classifiers were trained on AHT and Non-AHT labels. Since the slice level label was 

not available, the 2D classifiers were trained on all the slices using the patient level label. 

The 2D models were trained on 10864 images and tested on 2715 images. Each image was 

first converted into the Brain-Subdural-Bone window and then resized to 224x224. All the 

slices for each class were stacked and read using Keras’s ImageDataGenerator. The Pre-

trained models were used as feature extractors and then connected to classifier. 

Hyperparameter tuning was done for each model and best hyperparameters were selected 

for comparison with other models.  

3D classifiers were trained on AHT and Non-AHT Patient level label. For each 

patient, the first 37 slices were selected for training and testing, and the dataset consisted 

of 167 Probable Abuse and 202 Probable Not Abuse patients. It was then divided into 

testing and validation set (80-20) split and then converted to numpy arrays which served 

as input to 3D classifier. Table 1 summarizes the performance of the 2D and 3D 

classification models. 
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Table 1 

Classification Results of Different Models 

 

Model Type 

 

 

Binary 

Accuracy 

 

Validation 

Accuracy 

 

Loss 

 

Optimizer 

 

2D custom model 

 

0.5429 

 

0.5435 

 

2.87571 

 

RMSprop 

 

2D Pretrained Model 

with Resnet50 

0.6566 0.5435 0.53523 RMSprop 

 

 

 

2D Pretrained Model 

with Densenet121 

0.9068 0.6236 0.31526 Adam 

 

 

 

2D Pretrained Model 

with InceptionV3 

0.5674 0.5443 0.61241 Adam 

 

 

 

3D Custom Model 0.5574 0.5625 0.6175 RMSprop 

 

 

Table 1 demonstrates that the 2D and 3D classifier do not perform well on the 

available dataset with few models overfitting the training data.  

 

5.1.1 2D Classifier Results 

For each 2D classifier, the corresponding accuracy and loss graph is presented. They 

illustrate the performance of the classifier during the training process. Each 2D classifier 

is trained for 80 epochs with the hyperparameters selected after tuning the models. The 

input to each classifier was an image (slice) of size 224x224.  
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Figure 47: Model Accuracy for 2D Custom Classifier 

 

 

 

Figure 48: Model Loss for 2D Custom classifier 

 

As visible by the graphs in Figure 47 and Figure 48, the 2D custom classifier does 

not overfit the data but performs poorly. It is unable to learn new features as evident from 

the binary as well as the validation accuracy. The train loss is almost constant since no new 

features are being learned and the output is always random (as validated from the testing 

loss).  
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Figure 49: Model Accuracy for 2D Classifier with Resnet50 Base 

 

 

 

Figure 50: Model Loss for 2D Classifier with Resnet50 Base 

 

For ResNet50 pretrained model, the model accuracy graph (Figure 49) is indicative 

of the model learning new features in the starting epochs but starting to overfit the data in 

the later epochs. The training loss is decreasing throughout the graph due to overfitting of 

the model while the validation loss is almost constant (as shown in Figure 50) as no new 

generalized feature is learned by the model.  
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Figure 51: Model Accuracy for 2D Classifier with Densenet121 Base 

 

 

 

Figure 52: Model Loss for 2D Classifier with Densenet121 Base 

 

The Densenet121 base model overfits the most when compared to the other trained 

models. Training accuracy of over 90% is achieved but the validation accuracy remains 

low (but higher than other models). The training loss can be seen constantly decreasing 

with the increase in number of iterations while the validation accuracy varying quite a bit 

as evident from Figure 51 and Figure 52.  
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Figure 53: Model Accuracy for 2D Classifier with InceptionV3 Base 

 

 

 

Figure 54: Model Loss for 2D Classifier with InceptionV3 Base 

 

The IncetionV3 pretrained models performs similarly as the other models but does 

not overfit the data. The training and validation accuracy do not change a lot and the 

training loss is almost constant as evident from Figure 53 and Figure 54.  
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5.1.2 3D Classifier Results 

The 3D classifier model achieved a training accuracy of 0.5743 and validation accuracy of 

0.5000 at the end of 100 epochs. Figure 55 and Figure 56 demonstrate the accuracy and 

loss during training.  

 

 

Figure 55: Model Accuracy for 3D Custom Classifier  

 

 

 

Figure 56: Model Loss for 3D Custom Classifier  
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5.1.3 Remarks 

The models were trained on a RTX 2060 GPU with up to 6 GB of available memory. The 

poor training accuracy for 2D and 3D models is due to multiple reasons with the first being 

unavailability of slice level labels. The range of slice for each patient is between 15 – 45 

with average number of slices being 37. Each slice describes a different cross-section of 

the brain and all the slices for a patient are not reflection of the class label. This leads to 

discrepancy in the training data. Since Image Annotations are very costly and medical 

image annotation require hours of a radiologist, the thesis conducted experiments using the 

patient level labels.  

Another reason for the poor results is the limited amount of data. Deep Learning 

techniques require a large amount of data to learn generalized features. Since the data set 

was limited, data augmentation techniques were used to increase the data, but they were 

not true reflection of the original data. One of the reasons to perform GAN experiments 

was to check the viability of using their results for data synthesis.   

The last reason for low performance could be the use of small batch sizes for 

training. Since the GPU has limited memory, training was conducted using small batch 

sizes and batch gradient descent was used. 

 

5.2 Results of Trained DCGAN 

Two different images sizes were generated using DCGANs: 32x32 and 128x128. Below 

are the results of the experiments.  

 

 



  77 

5.2.1 32x32 DCGAN 

The DCGAN was trained on a batch size of 16. Figures 57, 58, 59 and 60 demonstrate 

results during training and Figure 61 shows a newly generated image after training.  

 

 

Figure 57: Images Generated after Epoch 1 

 

 

Figure 58: Images Generated after Epoch 30 
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Figure 59: Images Generated after Epoch 50  

 

 

 

Figure 60: Images Generated after Epoch 80 

 



  79 

 

Figure 61: A Randomly Generated Image after Epoch 80 

 

5.2.2 128x128 DCGAN 

The DCGAN was trained for 200 epochs with a batch size of 8. The Generator and 

Discriminator loss was visualized throughout the training process. Since generator and 

discriminator are adversaries in nature, both the losses remain constant in order to become 

better at what they do. Figure 62 shows the loss and Figure 63 shows a grid of images 

generated after training. 

 

 

Figure 62: Generator and Discriminator Loss During Training for 128x128 DCGAN 
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Figure 63: Grid of 170 Images Generated after 200 Epochs 
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5.2.3 Remarks 

GANs are notoriously hard to train and tuning the hyperparameters is a daunting task. Even 

a slight change of a single hyperparameter may result in the loss becoming zero rapidly. 

Images with better contrast can be generated by refining the training data and increasing 

the batch size. The training data used had all the slices of the patients. Some of the initial 

slices do not display a relevant information and contain only the skeletal part of the head. 

Those slices can be removed to increase the quality of the images. Also, using higher 

dimension images will lead to learning better features from the images. Since the GPU 

memory was limited, images of higher dimensions could not be trained.  

 

5.3 Load Testing the Kubernetes Cluster 

The Kubernetes cluster is tested using Siege. It is an open source command line tool used 

for load testing. It tests the cluster by simulating traffic with a configurable number of 

users. 

 The cluster consists of a Node group created using EC2 instances. There default 

node size is 1 with up to 5 nodes available during high load. Each EC2 instance is of type 

m5.large and a disk size of 20 Giga Bytes for each node.  

 Once the web tool (contained using Docker and stored in ECR) is deployed, it has 

to be exposed using Load Balancers so that it is accessible by internet. Load Balancers are 

created based on the Virtual Private Cloud and spin up the default number of instances.  

Three load tests are run in siege, namely, test the landing page, test the 

generate_new_images page and test the predict_2dcnn page. The results are displayed in 

Table 2 and explained later.  
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Table 2 

Load Testing Using Siege 

 

Page 

 

 

Transactions 

 

Availability 

 

Throughput 

 

Failed 

Transactions 

 

Landing Page 

 

3008 

 

100% 

 

89% 

 

0 

 

 

Generate New 

Images 

25 100% 57% 0 

 

 

Predict Model 0 0 0 15 

 

 

 

The landing page is load tested by adding 50 concurrent users with a delay of 1 

second. The results demonstrate that the site is available 100% time with a throughput of 

89%. Since the landing page is a static in nature, all the transactions are successful, and the 

cluster does not have to auto-scale (Horizontal scaling is sufficient). The results of the test 

are visible in Figure 64. 

 

 

Figure 64: Load Testing the Landing Page 
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The generate_new_images page is load tested by adding 50 concurrent users with 

a delay of 1 second. The results demonstrate that the page is available 100% time with a 

throughput of 57% (as evident from Figure 65). The number of transactions is very few 

compared to the landing page because of the time to complete the API request. For each 

API request, the Generator model is loaded which itself is time consuming. Nevertheless, 

the pods are able to auto-scale (horizontal scaling) to satisfy the requests.  

 

 

Figure 65: Load Testing the generate_new_images Page 

 

The predict_2dcnn page is load tested by adding 5 concurrent users with a time 

delay of 15 seconds. The results show (as evident from Figure 66) that the site becomes 

unavailable after being unable to serve the number of requests. This is due to the calls 

happening in the backend. In order to use the predict function, multiple packages are loaded 

and then the model is read and compiled. This itself takes ~120 seconds. Also, the size of 

the model and packages are big, and all of these are loaded for every request which puts a 

load on the pod resources. Once the model is compiled, it is able to serve the requests. But 

the load testing tool times out the request if the responses are not received within 200 

seconds.  
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Figure 66: Load Testing the predict_2dcnn Page 

 

Few steps which can be taken to scale predict_2dcnn function are increasing the 

resources for each pod, adding node groups to support cluster scaling, and hosting the 

model at an online repository (such as S3 bucket) which makes it easier to be loaded. It is 

worthwhile noting that the services are very expensive in terms of cost per use and they 

quickly stack up if the services are not controlled.  
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CHAPTER 6 

CHALLENGES, CONCLUSION AND FUTURE SCOPE 

 

This chapter illustrates the challenges faced while working on the research project with 

Phoenix Children Hospital as a volunteer researcher. A conclusion to the research work as 

part of the thesis is provided along with the next steps to complete the research study as 

part of the PCH IRB.  

 

6.1 Challenges 

The thesis was carried out with PCH and involved deidentified patient image. A great deal 

of work had to be completed by hospital clinical staff and researchers prior to the start of 

this study. All the work had to be conducted meeting strict regulatory standards and the 

requirements of the PCH IRB. There were multiple challenges regarding the logistics of 

accessing data, strict hospital security issues and attaching available labels. Starting with 

meeting the logistics of access to the data, I had to become credentialed for research at 

PCH as a student learner and as a volunteer researcher. This process took almost a month 

since it involved an extensive background check. Since the data was stored in the PACS 

system, the data had to be extracted from PACS while meeting the strict information 

technology security requirements of the hospital information system and the limitations of 

the PCH available hardware. My site liaison, Dr. Lois Sayrs, facilitated several significant 

meetings to increase our ability to access the data and store it for analysis. PCH provided 

the study with a separate HIPAA-compliant server to maintain initial data for de-

identification for labelling. PCH also permitted deidentified data to be migrated to a secure 
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HIPAA-compliant partitioned space on a ASU supercomputer to facilitate data analysis. 

Once the credentialing was done, the data download was started. PACS system does not 

allow a large amount of data (over 10 Gigabytes) to be downloaded at once. So, the data 

had to be downloaded in batches. This process itself took over two weeks.  

 Another challenge was transferring data to a computer with GPU capabilities so 

that the processing could be faster. The security team at the hospital had to be involved to 

make sure the data did not contain any patient information. Also, since the size of the data 

itself was very large (~250 GiB), it was a challenge from transfer perspective.  

 The last major challenge is unavailability of slice level labels. Currently, the dataset 

contains labels (AHT versus Non-AHT) at the patient level where each patient has a slice 

range of 26-45. Dr. Sayrs assisted with labelling by confirming the data table before the 

table was matched to the subject ID for image data. All of the slices for each patient are 

not reflective of the label (some slices may contain irrelevant or confusing information). 

This is the main reason why the classification models showcase poor results.  

 

6.2 Conclusion 

The aim of the thesis was to model the domain of Abusive Head Trauma and divide it into 

different sub-domains. It served as a first attempt to solve all the stages of a novel medical 

problem using AI techniques and Best Software Engineering practices. Within the scope 

of the thesis, the Data Collection was completed and different strategies for Data Pre-

processing were explored. A set of experiments were conducted to train Classification and 

Generative models. The results of these experiments concluded the need for slice level 

labels, image annotations and an increase in the available dataset.  
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 The thesis also explored strategies for deploying trained models at scale by 

exposing them as APIs. These APIs were written in Python using Flask Backend and then 

contained using Docker. The container was then deployed using Kubernetes and auto 

scaled on Amazon’s EKS platform. The testing results from Siege concluded the need for 

horizontal and vertical auto-scaling of the cluster keeping in mind the costs associated with 

it. 

 

6.3 Future Scope 

Since this thesis is only a first pass at the problem of Detection of AHT, and this would be 

an ongoing project at PCH, a lot of work lies ahead. The starting point for future work 

should be Data Annotation. The thesis has established the need for slice level labels. 

Abusive Head Trauma itself is not a pathology which can be seen in CT scans, but it is 

inferred from a set of pathologies (such as SDH and Skull Fractures) which are seen on CT 

scans. Therefore, it is necessary to use segmentation techniques for data annotation at the 

slice level. If SDH can be segmented (and bounding box can be created), it can greatly 

enhance the results of the classifiers. Moreover, the annotations will help classifiers 

distinguish between the right pathologies. Models such as U-Net can be used for 

segmentation task. In order to generate slice level labels, techniques such as Self-

supervised learning and Weakly supervised learning can be used. This would greatly 

reduce the amount of work required if manual slice labeling is done.  

 To build a more scalable infrastructure for machine learning models (specifically 

AHT model), cloud Machine Learning frameworks such as SageMaker (by AWS) can be 

utilized. This would decrease the model load time and would provide much faster results. 
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Another methods worth looking into are Kubeflow for Machine Learning and TensorFlow 

Servings.  

 As part of the ongoing PCH IRB, the above-mentioned strategies would be used to 

derive the next steps while going forward with the study. 
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