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ABSTRACT

The analysis focuses on a two-population, three-dimensional model that attempts to ac-

curately model the growth and diffusion of glioblastoma multiforme (GBM), a highly in-

vasive brain cancer, throughout the brain. Analysis into the sensitivity of the model to

changes in the diffusion, growth, and death parameters was performed, in order to find a

set of parameter values that accurately model observed tumor growth for a given patient.

Additional changes were made to the diffusion parameters to account for the arrangement

of nerve tracts in the brain, resulting in varying rates of diffusion. In general, small changes

in the growth rates had a large impact on the outcome of the simulations, and for each pa-

tient there exists a set of parameters that allow the model to simulate a tumor that matches

observed tumor growth in the patient over a period of two or three months. Furthermore,

these results are more accurate with anisotropic diffusion, rather than isotropic diffusion.

However, these parameters lead to inaccurate results for patients with tumors that undergo

no observable growth over the given time interval. While it is possible to simulate long-

term tumor growth, the simulation requires multiple comparisons to available MRI scans

in order to find a set of parameters that provide an accurate prognosis.
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1. Introduction

Glioblastoma multiforme (GBM), one of the most aggressive types of brain cancer, is

often fatal and difficult to treat, with most patients surviving for less than two years after

diagnosis (Stupp 2005). Current therapy consists of a thorough surgical resection followed

by radiotherapy, along with adjuvant temozolomide or carmustine (Stupp 2005). While

therapy can extend the survival time of a patient, GBM is resistant to medical treatments

such as chemotherapy or surgical resections for a number of reasons. Because of the highly

diffusive nature of GBM, surgical resections are ineffective even though they may relieve

pressure-induced symptoms. Resections are particularly ineffective in highly diffusive tu-

mors, where a total resection may remove as little as 12 percent of the total cancer pop-

ulation (Murray 2003). Furthermore, GBM tumors regularly reappear at the boundary of

the resection even when brain tissue beyond the rim of the visible tumor is excised (Han

2019). While a total resection may offer some survival benefit, surgery may only increase

a patient’s survival by about two months (Han 2019, Murray 2003). Chemical treatments,

such as chemotherapy, are similarly ineffective for other reasons. In addition to the difficul-

ties provided by the blood-brain barrier, the heterogeneity of the tumors provides a natural

drug resistance that must be accounted for in order to effectively treat all types of cancer

cell present. Furthermore, it has been observed that cancer cells outside the main tumor

do not appear to undergo mitosis, limiting the effectiveness of radiation therapy and other

”cell-cycle-dependent” treatments (Murray 2003). Other treatments, such as oral steroids,

may be prescribed to treat neurological issues resulting from edema, but analysis infers

that steroids are not associated with an increase in survival time (Petrelli 2020). How-

ever, survival times can be extended by an average of 2.5 months if patients who undergo

chemotherapy are also prescribed temozolomide, with a two-year survival rate of 26.5%

for patients receiving temozolomide and radiotherapy as opposed to 10.4% with just radio-

therapy (Stupp 2005). As a result of these difficulties, long-term survival for a patient is
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rare, even with early detection and treatment.

Like other gliomas, GBM diffuses throughout the brain in a highly invasive manner.

While there can be significant variance with regard to tumor growth and diffusion rates,

rat experiments show that glioma cells can appear throughout the central nervous system

within seven days (Murray 2003, Rutter 2017). In humans, while a majority of the tu-

mor cells are located in the tumor core, the surrounding enhancing rim is capable of rapid

growth, and lower numbers of tumor cells are capable of diffusing even further beyond the

enhancing rim. As an example, if the area of a detectable tumor on the edge of the brain

possesses a diameter of 3cm, there may potentially be cancer cells that have diffused as

far as the corpus callosum (Murray 2003). Even with the use of MRI imaging, the density

of the cancer cell population and the rate of diffusion beyond the tumor can only be esti-

mated, with some works hypothesizing that only 94 percent of the total cancer population

is observable in T1 and T2 MRIs (Swanson 2008).

The highly lethal nature of GBM cancer, as well as the ineffectiveness of these treat-

ments, have inspired a number of of mathematical models which aim to provide accurate

tumor growth and diffusion dynamics. Variants on the Fisher-Kolmogorov equation (ini-

tially proposed as a model for genetic drift in a population) were first suggested as models

for GBM growth by J. D. Murray, with the original Fisher-Kolmogorov model given by the

following (Fisher 1937):

∂c

∂t
= ∇ · (D∇c) + ρc

(
1− c

K

)
, (1)

where D represents the rate of diffusion, c(x, t) represents the tumor population at time t

and location x, ρ represents the growth rate, and K represents the carrying capacity. The

Fisher-Kolmogorov model (and variations on it) are capable of accurately representing the

diffusivity of GBM, as well as recurrence near the resection as typically observed in patient
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MRIs (Murray 2003). Furthermore, the model produces a traveling-wave solution with

velocity 2
√
Dρ, which matches the observed linear increase in the radius of an observable

tumor over time. Given that the traveling-wave speed details how fast the cancer progresses,

the growth and diffusion parameters have a large impact on the survival time of the patient,

and can be approximated by comparing available patient MRIs (Murray 2003). Thus, an

accurate estimation of ρ and D for a given patient is necessary in order to model tumor

growth over time.

Other works that have made use of the Fisher-Kolmogorov model aimed to estimate

the survival time of a patient depending on ρ, D, and the extent of surgical resection, and

found that the velocity of tumor growth (as defined above) can accurately predict survival

time in a patient, with the ratio having a nonlinear effect on the associated T1 and T2

radii. Calculations of the ratio D/ρ varied over a wide range, but there was no significant

variation between patients that had been prescribed steroids and patients that had not had

steroids. Similarly, they found no significant variation in the ratio D/ρ between patients

with no resections, partial resections, or full resections (Swanson 2008).

Earlier analyses were based on a variety of ‘virtual treatments’ included no/partial resec-

tions (grouped together due to similar survival times), full resections, and resections 125%

past the observable tumor’s radii, with the survival times of these virtual treatments com-

pared with the patient’s actual survival time. Survival time for the virtual cases was calcu-

lated by finding the time required for the tumor to grow to a radius of 3cm (Swanson 2008).

While some other works estimate survival time based on an average lethal tumor radius of

3cm, the actual lethal radius for a given patient can fall within a large range, and many

other works have found no relation between tumor size and survival time (Murray 2003,

Swanson 2008). The comparison found that, for their sample of patients, survival times

were longer for patients with total resections as opposed to partial/no resections. However,

comparisons with the virtual data suggest the increased survival times for patients with to-
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tal resections is partially accounted for by the fact that some of the total resection patients

had smaller tumors to begin with, and total resections may provide an increase in survival

time of only 17.1 weeks, suggesting that the ’better’ patients are typically chosen for total

resections. However, the analysis in question relied on pre-op MRI scans with no second

set of MRIs available. The paper notes that a second set of MRIs would allow the analysis

to rely on exact values, rather than estimations, of the individual values ρ and D.

Other authors have built on model 1 by including the effect of radiation therapy in or-

der to model tumor growth under treatment (Rockne 2008). To account for the effect of

radiation therapy on cancer cell populations, Rockne et al. (2008) produced the following

model:

∂c

∂t
= ∇ · (D(x)∇c) + ρc−R(x, t)c (2)

Here, R(x, t) represents the effect of radiation therapy at time t and location x. While

model 2 suggests that D(x) may vary spatially, the analysis focuses only on the isotropic

case, where the rate of diffusion remains constant in all directions. As a result, there is no

preferred direction of travel, with diffusion mainly dictated by Brownian motion. Analysis

was performed on virtual tumors, which were allowed to grow to 10-20mm in size before

radiation therapy was included, then for an additional 100 days afterwards. While the pa-

rameters D = 1.43 cm2/year and ρ = 16.25/year remained constant between simulations,

treatment schedules and dose distributions varied between simulations. While the analysis

found that radiation treatments on a daily basis (the conventional treatment) are much more

effective than treatments given several times per day, it is unknown if these results remain

true for various values of D and ρ. Additionally, analysis was not performed on a virtual

tumor following a resection.
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While previous works have approximated tumor growth rates and survival times rel-

atively accurately, there are some factors that have not been considered (Murray 2012,

Swanson 2008). For example, the Fisher-Kolmogorov equation does not include a death

term to account for radiation therapy or other treatments and while later works may ana-

lyze a model with such a death term, they do not necessarily consider the toxicity or space-

limiting effects of necrotic cells on the growth/diffusion of cancer cells (Rockne 2008).

Necrosis is a defining feature of GBM, particularly for tumors with high growth and low

diffusion parameters. Thus, an inclusion of a death term that replicates necrosis could cap-

ture an important aspect of GBM growth without overly complicating the model (Murray

2003). Additionally, most works do not analyze the growth of GBM under treatment, and

while some works make note of the impact of the brain’s geometry on the rate of diffu-

sion, or allow D to vary depending on whether diffusion occurs in white or gray matter,

only isotropic diffusion is considered, with the additional assumption that tumor expansion

is symmetric (Han 2019, Murray 2003, Rockne 2008). In reality, the rate of diffusion is

highly directionalized. Since the brain is made up of nerve tracts, it is likely that, for a

given voxel, cancer cells in the region will move along the nerve tracts, rather than across

them. To account for the varying arrangement of the nerve tracts, the diffusion rate would

need to vary with respect to the direction of diffusion. Given the fact that some models

have shown the wavespeed 2
√
Dρ dictates survival time, while others have shown the rate

of diffusion to be more important than the rate of proliferation or necrosis in determining

survival time, it seems prudent to consider a model with anisotropic diffusion to capture

these characteristics of the brain (Mahan 2013, Murray 2003, Swanson 2008). Further-

more, previous works typically did not have access to a series of MRIs, requiring estimates

of parameters that could be measured directly by comparing a patient’s MRIs (Swanson

2008). While a simple model that accurately approximates the data is ideal, the inclusion

of anisotropic diffusion and a death term that accounts for necrosis and quiescence may be
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more accurate than previous models while remaining relatively simple, and such a model

would be even more accurate if several patient MRIs were available to directly measure the

patient’s parameters.

The next section details the model used for our analysis, as well as the method used to

estimate the growth and diffusion parameters for several patients. For a given set of best-

guess parameters, we include the results of the simulation for both short and long intervals

of time. These results are directly compared with the patient’s MRI scans (if available) in

order to determine the model’s ability to mimic the patient’s observed tumor growth with

our chosen set of parameters.
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2. Model and Method

The following model was chosen for analysis because it accounts for cancer cell quies-

cence and the fact that living cancer cells are inhibited by the presence of quiescent cells,

due to a limited amount of space. Furthermore, the model can be used for patients who are

undergoing treatment, and previous analysis of the model has shown that the parameters

can be estimated analytically from one or two patient MRIs (Han 2019).

2.1 Model

Our model for the growth of GBM cancer is governed by the following reaction-diffusion

equations:

∂p

∂t
= ∇ ·

[(
D(x)p

p+ q

)
∇(p+ q)

]
+ g̃(w)p− δ̃(w)p (3)

∂q

∂t
= ∇ ·

[(
D(x)q

p+ q

)
∇(p+ q)

]
+ δ̃(w)p (4)

with

w = 1− p− q.

The model supposes there are two types of cancer cells: proliferative cells and quiescent

cells, with cell densities at time t and location x given by p(x, t) and q(x, t), respectively.

Here, g̃(w)p represents the growth rate of the proliferative cells, while δ̃(w)p represents the

quiescent rate. For the purposes of this model, necrotic cells are considered quiescent cells,

even though not all quiescent cells are considered necrotic (Han 2019). As proliferative

cells become quiescent cells (but not vice versa), the growth rate for the quiescent cells

is equal to the quiescent rate for the proliferative cells, with no corresponding death rate.

The birth and quiescent rates are both dependent on the variable w, which represents the

availability of some limiting quantity (such as space or nutrients) and is hereafter referred

to as the growth factor. Since p+ q takes values between 0 and 1, so does the growth factor

w. Additionally, the constraints on p+q allow the model to account for limited proliferative
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cell growth due to the presence of quiescent cells. Furthermore, we note g̃(w) = ρg(w),

where ρ represents the growth rate with maximum growth factor and g(w) = B(w;αg, βg).

Here, B(w;α, β) represents the beta cumulative density function with shape parameters

α and β. In our case, αg = 1 and βg = 3. Similarly, we have δ̃(w) = kδ(w), with k

representing the death rate with no growth factor and δ(w) = 1 − B(w;αδ, βδ). In our

case, we have αδ = 2, βδ = 2. The shape parameters αg = 1, βg = 3, αδ = 2, and βδ = 2

allow for an analytical estimation of ρ, k, and D, but there are other choices for the shape

parameter values that still allow for identifiable parameters (Han 2019).

The following contraints are placed on g(w) and δ(w) to make the model biologically

reasonable:

g̃′(w) ≥ 0, δ̃′(w) ≤ 0, g̃(1) ≥ δ̃(1) = 0, δ̃ ≥ g̃(0) = 0. (5)

The constraints on the growth and quiescence functions implies that the rate of growth

decreases with decreasing growth factor while the rate of quiescence increases. The con-

straints in 5 allow us to ensure 0 ≤ p+ q ≤ 1 for all t. Furthermore, the contraints account

for the growth rate slowing in the presence of quiescent cells due to a lack of space (Han

2019).

The diffusion terms in Equations 3 and 4 are best described as cross diffusion terms,

where the concentration of one cancer cell population can cause a flux in the other popula-

tion (Han 2019). Furthermore, these diffusive terms assume there is no change in D with

respect to the direction of diffusion. A variant of the model, which does not assume the

diffusion is isotropic, is considered later in the text.

Han’s analysis of the model attempted to use a traveling-wave solution to approximate

the growth and diffusion of a tumor by considering the model in one spatial dimension:
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∂p

∂t
=

∂

∂x

[(
Dp

p+ q

)
∂

∂x
(p+ q)

]
+ ρg(w)p− kδ(w)p (6)

∂q

∂t
=

∂

∂x

[(
Dq

p+ q

)
∂

∂x
(p+ q)

]
+ ρg(w)p− kδ(w)p (7)

Han (2019) concluded that the asymptotic speed of the traveling wave solution matches the

minimum speed with c = cmin = 2
√
ρ̂, with ρ̂ = ρ/k. To approximate the parameters of the

model from a set of given MRI data, three radii were derived: R0, R1, and R2, representing

(respectively) the radius of the inner necrotic core, the radius to the edge of the enhancing

rim, and the radius to the edge of the edema. These are used to calculate L1 = R1 − R0

and L2 = R2 −R1.

For a patient with two sets of pre-treatment MRI scans available for comparison, param-

eters are estimated by calculating

L1 =
2
√
Dρ

k

∫ w+
1

w−
1

dz

dw
dw, (8)

L2 =
2
√
Dρ

k

∫ w−
1

w2

dz

dw
dw, (9)

f(p̂) =
L1

L2

. (10)

From L1, L2, and f(p̂), ρ̂ can be computed analytically, which is then used to find the

remaining parameters.

If only a single set of MRI images are available, parameters were estimated by supposing

that, for 0 ≤ t ≤ t∗, quiescence is negligible and proliferative cells grow exponentially,

and for t > t∗, the tumor grows as a traveling wave with speed 2
√
ρD. If

Ri = t∗

√
4Dρ− 4D

t∗
ln

(
ai(4πDt∗)3/2

p0

)
(11)
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and R1 and R2 are the radii at t = t∗, then

R1 −R∗1
2
√
ρD

=
R2 −R∗2
2
√
ρD

. (12)

Together with Equations 8 and 9, ρ̂ can be estimated (Han 2019).

The results of Han’s analytical analysis (2019) suggest that parameters can generally be

accurately estimated, but L2 may be inaccurate for small values of ρ̂, likely due to the as-

sumption that c = 2
√
ρ̂ is large. Furthermore, there is considerable variation among the

estimated parameters between patients, with values of D ranging from 0.0687 to 1.2791,

values of ρ ranging from 0.1652 to 0.2624, and values of k ranging from 0.0106 to 0.7819,

which matches the observations of other works, some of which observed up to a 10-fold

variation in the growth and diffusion parameters (Murray 2003, Rockne 2008, Swanson

2008). The diffusion coefficient plays a large role, both in the linearized wave head and the

characteristic length (where its square root scales the space), while the scale-invariant part

of the wave profile is determined by the form of the birth and death functions. Lastly, pre-

vious analysis of the model suggests that there is likely some variation in these parameters

over time, requiring frequent reference to available MRI sets in order to provide accurate

tumor growth.

2.2 Method

Our analysis focuses on six parameters that relate to the growth rate ρ, the quiescent

rate k, and the diffusion rate in different regions of the brain. Two of these parameters

are related to the growth rate ρ: ρ1 refers to the growth rate in the white matter and ede-

matous regions of the brain, while ρ2 refers to the growth rate in the gray matter regions,

as well as the enhancing rim and the tumor core. The other three parameters relate to the

quiescent rate k: k1 corresponds to the rate of quiescence in the white matter, gray matter,

and edematous regions of the brain, while k2 and k3 correspond to the quiescent rate in
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the enhancing rim and the tumor core, respectively. The sixth parameter, D, determines

the rate of diffusion everywhere in the brain. In doing so, we make two assumptions: the

rate of diffusion is ten times as high for proliferative cells in comparison to quiescent cells

regardless of where diffusion takes place, and the rate of diffusion is twice as high in white

matter as it is anywhere else for both cell types. More specifically, we let the value of D

correspond to the rate of diffusion in white matter for the quiescent cells, then calculate the

rate of diffusion for quiescent cells in regions other than white matter as D/2, the rate of

diffusion in white matter for proliferative cells as 10D, and the rate of diffusion for prolif-

erative cells in regions other than white matter as 5D (Murray 2003). Simulations are run

with appropriate values for the given parameters.

2.2.1 Preprocessing

The analysis focuses on ten patients whose MRIs have been provided by the Barrow

Neurological Institute. Previous analysis of some of these patients in 2D indicated a model

of this type has the capability to predict future tumor growth (Eikenberry 2009). To prepare

the simulations, the patients’ MRI scans have been fit to a standardized brain space via the

MATLAB software package Statistical Parametric Mapping 12, with the use of the default

standard brain (SPM 2020). For reference, the MRI scans and the standardized brain are

split into voxels that are 1mm3 in size. While mapping every patient to the same brainspace

allows for easier comparisons between MRI scans and between patients, there is naturally

some error that occurs when warping a patient MRI to a standardized brain space. The

warping error is more pronounced in patients with tumors large enough to cause mass effect

within the brain. However, while this may be visually noticeable in some patients, it is hard

to quantify how much error to expect when mapping patients to a standard brainspace.

Afterwards, segmentations of the two comparison MRIs are created manually in Slicer

3D (Kikinis 2014). For a given patient, segmentations are created for the tumor core, the

enhancing rim, the edema, and (if necessary) the resection. Tumor core, enhancing rim,
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and resection segmentations are created using T2 scans, while the edema is created with

a T1 scan. In some cases, T2 MRI scans are not available for a given day. In such cases,

the edema can not be accurately approximated, and is thus left out of the error calculations.

The segmentations of the first set of MRIs are used to initialize the simulation on a per

voxel basis. Each voxel in the simulation can be labelled as belonging to the tumor core,

the enhancing rim, or the edema, with initial proliferative tumor cell populations of 0.99,

0.5, and 0.01, respectively. Alternatively, voxels in the region indicated by the resection

segmentation are relabelled as CSF, preventing any growth, with the end result being an

imposed cell population of 0 in the region (Swanson 2008). Unlabelled voxels are assumed

to have no tumor cell population at the start of the simulation. The segmentations of the

second set of MRIs are used for error calculations, as detailed later in the results section.

2.2.2 Isotropic Versus Anisotropic Diffusion

Two variants of the code are used to perform these simulations with either isotropic or

anisotropic diffusion. To accurately model the anisotropic diffusion needed, a variant on

the original isotropic diffusion code references a set of diffusion tensor values to adjust the

rate of diffusion in any given direction. To create a gradient vector that is an appropriate

size for the corresponding diffusion tensor, a 27-point stencil is used to calculate derivatives

in the x, y, and z directions, although not all points are used to calculate these derivatives.

The anisotropic diffusion code differs from the isotropic diffusion code, which uses all

points in the 27-point stencil to calculate derivatives in the x, xy, xz, y, yz, z, and xyz

directions. While the use of a 27-point stencil may be computationally expensive, the

increased accuracy allows for a timestep that 8/3 times larger than with a 7-point stencil.

Both the isotropic and anisotropic code calculated the diffusion term with the use of a finite

difference method, as described in Appendix I.

For the anisotropic code, diffusion tensor data from DTI-TK was used to calculate the

diffusion term (Zhang 2018). As with the patient MRIs, the diffusion tensor data was
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Table 1. The initial parameter values for the isotropic and anisotropic simulations, for all
patients.

Version ρ1 ρ2 k1 k2 k3 D
Isotropic 0.04 0.02 0.01 0.02 0.04 0.04
Anisotropic 0.04 0.02 0.01 0.02 0.04 4.00

mapped to a standardized brain space via SPM12 (“SPM - Statistical Parametric Map-

ping”). Afterwards, negative values in the diffusion tensor data were set to 0, to ensure all

diffusion tensors remained positive definite. Analysis of the eigenvalues of these diffusion

tensors suggests they are indeed positive definite, with a maximum eigenvalue of 0.00329.

2.2.3 Implementation

The simulations were implemented in Fortran. Given the existence of the growth and

quiescence terms, the PDE equations that define the model as defined in Equations 3 and

4 are fairly stiff and require the use of a PDE solver that is capable of handling separate

terms either explicitly or implicitly. The simulations detailed in our paper utilize irkc.f to

handle the diffusion terms explicitly and the growth/quiescence terms implicitly. Here, the

explicit terms are computed with a couple of second-order Runge-Kutta-Chebyshev meth-

ods, while the implicit terms are handled by solving a large number of uncoupled systems

via a modified Newton method with the use of the Jacobian of the implicit terms and an

LU decomposition of an iteration matrix (Shampine 2006). While irkc.f also automatically

adjusts the timestep according to the local truncation error, the simulations performed also

specified a maximum timestep to ensure the simulation remains accurate over long peri-

ods of time. A more detailed explanation of irkc.f and its implementation is provided in

Appendix II.

We first analyse the simulation’s sensitivity to the diffusion, growth, and death rates on

a case-by-case basis. For all patients, an initial simulation is performed with the parameter

values given in Table 1. Furthermore, for the isotropic diffusion code, the initial diffusion

parameter value is set to D = 0.04, while the anisotropic diffusion code uses an initial
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parameter value of D = 4.0. Given that the diffusion tensor values used by the anisotropic

diffusion code are noticeably lower than 1 (with maximum values around 0.004), a given

parameter value for D would result in much slower diffusion in the anisotropic case when

compared to the isotropic simulations. Hence, the anisotropic case requires a larger value

of D to compensate. The initial run is followed by a sequence of “experimental” runs, in

which parameters are varied one at a time. The difference between the initial run and the

experimental runs are used to determine the rate of change with respect to each of the five

parameters. The sensitivity of the simulation to these parameters can be inferred from the

maximum rate of change. A high rate of change for a parameter suggests that perturbations

in the parameter result in large differences in the outcome of the simulation, which in turn

suggests that alterations in the given parameter may result in a more accurate simulation.

2.2.4 Finding the Best-fit Parameters

We utilize the Matlab function fminsearch to alter two or three parameters at a time in

order to improve the accuracy of the simulation, with initial parameters as specified above.

To determine the error, the simulation is run for a period of time equal to the number of

days between the beginning MRI scans and the next available set of MRIs. Each voxel

may be classified as belonging to the edema, the enhancing rim, or the tumor core at the

end of the simulation, depending on the end time tumor cell population. These voxels are

then compared with a segmentation corresponding to the end date T1 and T2 MRI scans of

the patient in order to determine what percentage of the simulation accurately classifies the

tumor voxels, with the Jaccard index representing the error. If S ∩R represents the number

of tumor voxels that are classified the same between the simulation and the patient’s actual

tumor, and S ∪ R represents the total number of voxels that are classified as tumor voxels

(either by the simulation or the MRI segmentations), the Jaccard index is computed as

J = 1− S ∩R
S ∪R

, (13)
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with a low J value indicating a high amount of overlap between simulation and segmen-

tation voxel classifications. Thus, fminsearch aims to decrease J in order to increase the

accuracy of the simulation.

Including the edema in the error calculations may lead to inaccurate results with regard

to approximating the tumor size or shape. Generally, steroids are prescribed to patients

experiencing moderate to severe edema-related symptoms, or patients who are undergoing

antitumor therapy that may increase edema (Petrelli 2020). Furthermore, the model isn’t

fully capable of simulating edema dynamics, and does not explicitly model the dynamics of

cerebral spinal fluid. As such, an accurate approximating of the edema may not be possible.

Thus, a version of the error evaluation which relies only on the tumor core and enhancing

rim segmentations is used to find a second set of best-fit parameters that does not consider

edema. In some patients, such as 028, the second comparison set of MRIs does not contain

enough tumor core or enhancing rim to estimate the best-fit parameters without considering

the edema, thus the results are omitted from the results section.

Furthermore, the fminsearch code has only been allowed to run simulations for 48 CPU

hours to find the best parameters. As a result, the code is more likely to produce accurate

parameters for patients with fewer days between simulations, where fminsearch would be

able to complete its parameter evaluation before the 48 hour CPU deadline. Conversely,

patients with much longer time intervals between MRIs are, to some degree, less easily

approximated with fminsearch. Many patients may still be accurately approximated for

time intervals up to around 150 days, but fminsearch will require a more generous time

limit for patients with time intervals of over 200 days. However, increasing the number

of CPU hours fminsearch is allowed to search for parameters may limit the practicality of

estimating patient parameters numerically. While an overly generous CPU time limit may

not be a relevant concern for a post-mortem analysis, a more analytical approach (or more

frequent MRIs) may be necessary for a living patient.
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These best-fit parameters are then used to analyse the long-term growth of the simulated

tumor over a period of several months, although the simulations may not run over several

months all at once. Analysis is done by starting a simulation with initial conditions corre-

sponding to the first set of usable MRI scans, then simulating tumor growth over a period

of 100 days. The end results are then saved as a set of segmentations, which are then used

to set the initial conditions for the next 100 day simulation. The choice of 100 days per

simulation is arbitrary, and any time interval that does not allow the computational error to

grow up to unacceptable levels can be used. For each patient, the final number of days from

the first set of MRIs is determined by the time interval between the starting MRIs and some

set of MRIs taken several months afterwards. If such a set is available, then the long-term

simulations are run up to that point. Some patients did not have a set of comparison MRIs

available several months after the initial MRI scans, so these patients have long-term runs

up to a time period roughly equivalent to the other patients. In our case, patients with no

long-term comparison MRIs have long-term runs 250 days out from the starting MRIs.

16



Table 2. The maximum rate of change in the total tumor cell population p + q for the
isotropic simulation, with respect to ρ1, ρ2, and D, for each patient.

Patient ∂(p+q)
∂ρ1

∂(p+q)
∂ρ2

∂(p+q)
∂D

011 2.8504 · 106 2.1963 · 106 6.1983 · 105

018 1.0887 · 106 1.7210 · 105 7.6658 · 104

019 6.9390 · 105 4.4887 · 105 1.2703 · 104

026 7.2762 · 105 4.4493 · 105 1.4371 · 105

028 5.0140 · 105 5.2096 · 105 1.2002 · 105

029 1.6360 · 106 1.3412 · 106 7.3128 · 105

030 1.1499 · 105 3.3968 · 104 9.7022 · 103

036 3.8945 · 106 1.8110 · 106 8.5342 · 105

039 1.7057 · 106 1.3965 · 105 6.5091 · 104

045 7.5584 · 105 1.5825 · 105 1.0315 · 105

3. Results

3.1 Parameter Sensitivity Analysis

Tables 2 through 5 contain the results of the parameter sensitivity analysis for the

isotropic and anisotropic simulations. While multiple simulations with differing values for

each parameter were tested, the table contains only the highest rate of change in the total tu-

mor cell population p+ q from the initial simulation from any of the perturbed simulations.

All test simulations required that the test parameter value differed from the initial parameter

value by at least .001. Variations were made in the following parameters: ρ1, which refers

to the growth rate in the white matter and edematous regions of the brain; ρ2, which refers

to the growth rate in the gray matter regions as well as the enhancing rim and the tumor

core; k1, which corresponds to the rate of quiescence in the white matter, gray matter, and

edematous regions of the brain; k2, which corresponds to the quiescent rate in the enhanc-

ing rim; k3, which corresponds correspond to the quiescent rate in the tumor core; and D,

which determines the rate of diffusion everywhere in the brain. In general, variations in the

quiescence parameters produced negligible changes in simulation outcomes compared to

variations in the proliferative and diffusion parameters. These results are discussed in more

detail in the next section.
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Table 3. The maximum rate of change in the total tumor cell population p + q for the
isotropic simulation, with respect to k1, k2, and k3, for each patient.

Patient ∂(p+q)
∂k1

∂(p+q)
∂k2

∂(p+q)
∂k3

011 8.1125 · 105 5.8276 · 105 7.6679 · 106

018 1.9190 · 101 1.9787 · 101 2.0310 · 101

019 3.1895 · 101 2.8945 · 101 3.6388 · 101

026 3.1618 · 104 6.7815 · 104 4.8656 · 101

028 2.1424 · 104 1.6690 · 104 9.1650 · 100

029 3.4390 · 103 2.5073 · 103 5.6807 · 104

030 1.0484 · 10−1 9.8832 · 10−6 3.1626 · 10−6

036 2.1374 · 103 2.5807 · 103 7.0142 · 103

039 4.2625 · 100 2.1121 · 10−7 1.6897 · 10−7

045 2.2868 · 102 2.5834 · 102 2.7792 · 102

Table 4. The maximum rate of change in the total tumor cell population p + q for the
anisotropic simulation, with respect to ρ1, ρ2, and D, for each patient. Results are shown
for the anisotropic diffusion simulations.

Patient ∂(p+q)
∂ρ1

∂(p+q)
∂ρ2

∂(p+q)
∂D

011 3.0229 · 106 1.3092 · 105 1.3005 · 103

018 6.9569 · 105 6.4475 · 104 2.1530 · 102

019 6.3770 · 105 1.1246 · 105 3.1874 · 101

026 1.9408 · 105 1.3832 · 105 4.5100 · 102

028 2.0917 · 105 7.6429 · 104 2.9677 · 102

029 1.4229 · 105 3.8524 · 104 4.2280 · 102

030 1.7280 · 105 7.9960 · 103 4.7867 · 101

036 3.4829 · 106 2.0755 · 105 1.6793 · 103

039 1.6441 · 106 2.6467 · 104 2.8098 · 102

045 8.0233 · 106 1.3033 · 107 6.5014 · 105
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Table 5. The maximum rate of change in the total tumor cell population p + q for the
anisotropic simulation, with respect to k1, k2, and k3, for each patient.

Patient ∂(p+q)
∂k1

∂(p+q)
∂k2

∂(p+q)
∂k3

011 1.9740 · 105 1.7374 · 106 7.7349 · 106

018 3.3791 · 100 1.1194 · 103 6.076 · 10−1

019 2.2337 · 10−1 7.7582 · 10−1 8.4232 · 10−1

026 2.1475 · 104 5.8631 · 105 6.6508 · 100

028 1.4070 · 104 3.5741 · 105 3.2115 · 10−1

029 7.3850 · 102 3.8974 · 103 1.4851 · 104

030 1.0093 · 100 9.8832 · 10−6 3.5638 · 10−3

036 6.2077 · 102 1.0498 · 104 4.3991 · 103

039 1.4219 · 101 4.1213 · 10−3 6.5940 · 10−3

045 1.6258 · 107 1.4780 · 107 1.8581 · 107

3.2 Best Fit Parameters

3.2.1 With Edema

Tables 6 and 7 contains the best-fit parameters for each patient as determined by fmin-

search, along with the error J for the given set of parameters, for the cases where the error

evaluation included the edema. Here, J indicates what percentage of the simulated and

actual tumors’s voxel classifications do not match, with lower values suggesting a larger

overlap between the simulated tumor’s classification and the corresponding patient MRI’s

segmentations. J take values between 0 and 1, with 1 indicating all simulation voxels are

incorrectly classified and 0 indicating all simulation voxels perfectly match the segmenta-

tions. For some patients, the MRI sets used for error analysis may not contain any scans

that allow for accurate edema or enhancing rim approximations. As such, patients whose

incomplete datasets prevent fminsearch from finding best-fit parameters are marked with

an asterisk.

3.2.2 Without Edema

Tables 8 and 9 contains the best-fit parameters for each patient, along with the error

J for the given set of parameters, for the cases where the error evaluation disregarded the

edema. As before, J indicates what percentage of the simulated and actual tumors’s voxel
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Table 6. Best-fit parameters for each patient, together with the associated error, for the
isotropic diffusion simulations. Error evaluations included the edema for these cases. A
low value for J indicates a large overlap between the simulation results and the compar-
ison MRI classifications. Patients marked with an asterisk indicate cases where the error
evaluation did not find a set of parameters with any overlap with the segmentations.

Patient ρ1 ρ2 D J
011 0.0190 0.0239 0.0439 0.6963
018 0.0160 0.0191 0.004 0.2171
019* 0.0400 0.0200 0.040 1.0000
026 0.0010 0.0224 3.5e-04 0.6593
028 0.0014 0.0209 0.0165 0.8612
029 0.0475 0.0203 0.0030 0.8932
030 0.0620 0.0270 0.0620 0.9815
036 0.0405 0.0238 0.0200 0.9367
039 0.0360 0.0205 0.0280 0.5173
045 0.0678 0.0222 0.0552 0.5135

Table 7. Best-fit parameters for each patient, together with the associated error, for the
anisotropic diffusion simulations. Error evaluations included the edema for these cases. A
low value for J indicates a large overlap between the simulation results and the compar-
ison MRI classifications. Patients marked with an asterisk indicate cases where the error
evaluation did not find a set of parameters with any overlap with the segmentations.

Patient ρ1 ρ2 D J
011 0.0302 0.0146 31.80 0.5779
018 0.0360 0.0200 0.400 0.0832
019* 0.0400 0.0200 4.000 1.0000
026 0.0434 0.0010 1.150 0.5763
028 0.0400 0.0200 1.000 0.8516
029 0.0395 0.0198 2.800 0.7643
030 0.0540 0.0350 4.300 0.9976
036 0.0120 0.0220 1.200 0.8185
039 0.0500 0.0310 6.200 0.5759
045 0.1020 0.0197 24.60 0.5212
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Table 8. Best-fit parameters for each patient, together with the associated error, for the
isotropic diffusion simulations. Error evaluations disregarded the edema in these cases. A
low value for J indicates a large overlap between the simulation results and the compar-
ison MRI classifications. Patients marked with an asterisk indicate cases where the error
evaluation did not find a set of parameters with any overlap with the segmentations.

Patient ρ1 ρ2 D J
011 0.0333 0.0126 0.0060 0.6804
018 0.0140 0.0280 0.0040 0.1327
019 0.1550 0.0193 0.1020 0.9337
026 0.0399 0.0200 0.1375 0.6373
028* 0.0400 0.0200 0.0400 1.0000
029 0.0405 0.0230 0.0200 0.9183
030* 0.0400 0.0200 0.0400 1.0000
036 0.0440 0.0310 0.0200 0.8481
039 0.2800 0.0140 0.0280 0.9082
045* 0.0400 0.0200 0.0400 1.0000

classifications do not match, with lower values suggesting a larger overlap between the

simulated tumor’s classification and the corresponding patient MRI’s segmentations. The

indices take values between 0 and 1, with 1 indicating all simulation voxels are incorrectly

classified and 0 indicating all simulation voxels perfectly match the segmentations. For

some patients, the MRI sets used for error analysis may not contain any scans that allow for

accurate edema or enhancing rim approximations, and for other patients, the comparison

MRIs may include a resection that has removed nearly all of the visible tumor, such that

there are very few high-density tumor voxels available for error analysis. As such, patients

whose datasets prevent fminsearch from finding best-fit parameters are marked with an

asterisk.

3.3 Visual Results

Figures 1 through 9 contain visualizations of the simulations, along with the correspond-

ing MRI comparisons, for the cases in which the error calculations included the edema.

Similarly, Figures 10 through 14 contain visualizations of the simulations, along with the

corresponding MRI comparisons, for the cases in which the error calculations disregard
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Table 9. Best-fit parameters for each patient, together with the associated error, for the
anisotropic diffusion simulations. Error evaluations disregarded the edema in these cases.
A low value for J indicates a large overlap between the simulation results and the compar-
ison MRI classifications. Patients marked with an asterisk indicate cases where the error
evaluation did not find a set of parameters with any overlap with the segmentations.

Patient ρ1 ρ2 D J
011 0.0335 0.0111 24.60 0.6730
018 0.0420 0.0190 1.200 0.0476
019 0.1550 0.0200 16.60 0.9572
026 0.0360 0.0200 0.400 0.6370
028* 0.0400 0.0200 4.000 1.0000
029 0.0280 0.0240 2.800 0.6250
030* 0.0400 0.0200 4.000 1.0000
036 0.0120 0.0350 1.200 0.7015
039 0.2000 0.0100 3.700 0.7582
045 0.0010 0.2430 0.900 0.6561

the edema. Each figure contains four images: two images for the comparison MRIs, and

two images for the best-fit simulations. The first image contains the starting T2 MRI on

the left with the associated segmentations on the right, with the second image containing

the enddate T2 MRI on the left and associated segmentations on the right. The third image

contains the results of the best-fit isotropic simulation, with a heatmap on the left and the

associated segmentations on the right. Similarly, the fourth image contains the results of

the best-fit anisotropic simulation, with a heatmap on the left and the associated segmenta-

tions on the right. When viewing the heatmaps, blue represents areas of low density, while

orange represents areas of high density. When viewing the segmentations, blue represents

the edema, orange represents the enhancing rim, maroon represents the tumor core, and

black represents areas where no growth can occur (i.e. the area is classified as a resection

or CSF).

3.4 Long-term Analysis

Figure 15 through Figure 20 contain visualizations of the long-term simulations for each

patient.
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Figure 1. Most accurate simulations for patient 011, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 2. Most accurate simulations for patient 018, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 3. Most accurate simulations for patient 026, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 4. Most accurate simulations for patient 028, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 5. Most accurate simulations for patient 029, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 6. Most accurate simulations for patient 030, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 7. Most accurate simulations for patient 036, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 8. Most accurate simulations for patient 039, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 9. Most accurate simulations for patient 045, with error calculations including the
edema. The starting MRI and classifications are found in the first set of images, while the
end MRI and classifications are found in the second set of images. The third and fourth
images contain a heatmap of the tumor cell populations (left) and the corresponding voxel
classifications (right) for the isotropic and anisotropic simulations, respectively. Error cal-
culations are performed as specified in Equation 13, where the simulation with the lowest
value for J is the simulation with the largest overlap between MRI segmentations and sim-
ulated tumor classifications.
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Figure 10. Most accurate simulations for patient 011, with error calculations disregard-
ing the edema. The starting MRI and classifications are found in the first set of images,
while the end MRI and classifications are found in the second set of images. The third and
fourth images contain a heatmap of the tumor cell populations (left) and the corresponding
voxel classifications (right) for the isotropic and anisotropic simulations, respectively. Er-
ror calculations are performed as specified in Equation 13, where the simulation with the
lowest value for J is the simulation with the largest overlap between MRI segmentations
and simulated tumor classifications.
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Figure 11. Most accurate simulations for patient 026, with error calculations disregard-
ing the edema. The starting MRI and classifications are found in the first set of images,
while the end MRI and classifications are found in the second set of images. The third and
fourth images contain a heatmap of the tumor cell populations (left) and the corresponding
voxel classifications (right) for the isotropic and anisotropic simulations, respectively. Er-
ror calculations are performed as specified in Equation 13, where the simulation with the
lowest value for J is the simulation with the largest overlap between MRI segmentations
and simulated tumor classifications.
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Figure 12. Most accurate simulations for patient 029, with error calculations disregard-
ing the edema. The starting MRI and classifications are found in the first set of images,
while the end MRI and classifications are found in the second set of images. The third and
fourth images contain a heatmap of the tumor cell populations (left) and the corresponding
voxel classifications (right) for the isotropic and anisotropic simulations, respectively. Er-
ror calculations are performed as specified in Equation 13, where the simulation with the
lowest value for J is the simulation with the largest overlap between MRI segmentations
and simulated tumor classifications.
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Figure 13. Most accurate simulations for patient 036, with error calculations disregard-
ing the edema. The starting MRI and classifications are found in the first set of images,
while the end MRI and classifications are found in the second set of images. The third and
fourth images contain a heatmap of the tumor cell populations (left) and the corresponding
voxel classifications (right) for the isotropic and anisotropic simulations, respectively. Er-
ror calculations are performed as specified in Equation 13, where the simulation with the
lowest value for J is the simulation with the largest overlap between MRI segmentations
and simulated tumor classifications.
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Figure 14. Most accurate simulations for patient 045, with error calculations disregarding
the edema. The starting MRI and classifications are found in the first set of images, while
the end MRI and classifications are found in the second set of images. The third images
contain a heatmap of the tumor cell populations (left) and the corresponding voxel classi-
fications (right) for the anisotropic simulations only. Error calculations are performed as
specified in Equation 13, where the simulation with the lowest value for J is the simulation
with the largest overlap between MRI segmentations and simulated tumor classifications.
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Figure 15. Long-term growth over 238 days for patient 011, as determined by the best-fit
parameters. Results are compared with the relevant MRI scan.
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Figure 16. Long-term simulation over 266 days for patient 026, as determined by the best-
fit parameters. Results are compared with the relevant MRI scan.

Figure 17. Long-term simulation over 250 days for patient 028, as determined by the best-
fit parameters. No set of patient MRIs is available 250 days after the initial MRIs.
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Figure 18. Long-term simulation over 250 days for patient 029, as determined by the best-
fit parameters. Results are compared with the relevant MRI scan.
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Figure 19. Long-term simulation over 276 days for patient 036, as determined by the best-
fit parameters. Results are compared with the relevant MRI scan.
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Figure 20. Long-term simulation over 228 days for patient 045, as determined by the best-
fit parameters. Results are compared with the relevant MRI scan.
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4. Discussion

The results of the parameter sensitivity analysis suggest that, in all cases, each patient’s

simulation is susceptible to changes in the proliferative and diffusion parameters, with the

quiescence parameters having very little impact on the outcome of the simulations, with

only a couple of simulations displaying any change in outcomes as a result of perturbations

in the quiescence parameters. However, even the simulations with the greatest response

to these perturbations, such as 011 and 045, experienced a negligible increase in accuracy

after running fminsearch on these parameters. Given the low impact of these parameters

on the outcome of the simulations, the best-fit quiescence parameters have been left out of

Table 6 and Table 7, and have been left at the default values of k1 = 0.01, k2 = 0.02, and

k3 = 0.04 in all cases. While the table suggests that changes in D have less impact for

the anisotropic code as opposed to the isotropic code, the perturbations in D were larger

in relation to the default value for the isotropic code (D = 0.04) when compared to the

default value for the anisotropic code (D = 4.0). In practice, larger perturbations in D

were necessary for the anisotropic code to compute accurate simulations of tumor growth.

In terms of the best-fit parameters, we refer to Figures 21 and 22 for a visualization of the

results. We find that, for both the isotropic diffusion and anisotropic diffusion simulations,

patients 011 and 045 have a noticeably higher diffusion coefficient than the other patients.

Additionally, while Figure 22 suggests that 036 has a relatively large diffusion coefficient

compared to the other cases, the visual results displayed in Figure 7 suggest patient 036’s

best-fit parameters do not provide an accurate estimate, and a diffusion coefficient closer

to patients 026, 028, and 029 may be more appropriate. Given the accuracy of patients 011

and 045, it appears the simulations most accurately approximate patients with highly dif-

fusive tumors. Conversely, anisotropic diffusion simulations with low diffusion parameter

values and high ρ2 values were not accurate approximations, while isotropic diffusion sim-

ulations with low diffusion parameter and relatively high ρ1 values were also not accurate
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Figure 21. Plot of the best-fit parameters for six patients, for the anisotropic diffusion
simulations

Figure 22. Plot of the best-fit parameters for six patients, for the isotropic diffusion simu-
lations

approximations. In both cases, 026 is the standout case. With its low to average parameters

values across the board, both sets of simulations should not be accurate approximations.

However, both sets of simulations produced results on par with patient 011 in terms of ac-

curacy, suggesting that the other low-diffusion patients with inaccurate results may simply

need lower ρ1 and/or ρ2 values.

Furthermore, the anisotropic diffusion simulations take noticeably less time than the

isotropic diffusion simulations. As an example, we take patient 036, whose maximum

stepsizes and time intervals did not differ between simulations. While there is quite a bit of

variance in computation time (which is likely tied to the overall size of the tumor/edema),

the fastest isotropic diffusion simulation for 036 still took over 20,000 seconds, as opposed
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to the slowest anisotropic diffusion simulation, which took just under 18,500 seconds. That

said, there does not appear to be any significant drawback in terms of computational error.

When comparing the best results for the isotropic diffusion and anisotropic diffusion sim-

ulations, the anisotropic diffusion simulation appears to have a maximum error of around

1.5192 · 10−5, while the isotropic diffusion simulation has a maximum error of around

8.1766 · 10−6. Hence, the increase in speed does not come at a significant cost with respect

to computational accuracy.

In terms of the accuracy of the simulations, the anisotropic diffusion simulations nearly

always produce more accurate results when compared to the isotropic diffusion simula-

tions. While there are some patient cases where some obvious alterations may be made to

the parameters of the isotropic diffusion code to produce better results, such as patients 036

and 029, fminsearch is constrained to a 48 CPU hour time limit per parameter. Hence, the

fact that fminsearch can run more anisotropic diffusion simulations (due to the aforemen-

tioned increase in speed over the isotropic diffusion simulations) allows for a more accurate

approximation of the patient’s parameters.
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5. Conclusion

In most cases, the simulations produce more accurate results via anisotropic diffusion, as

opposed to isotropic diffusion. Furthermore, the patients with the least accurate simulations

are those with a tumor that appears to grow very little (or even shrink) between MRIs.

Conversely, the simulations accurately approximate tumors with higher rates of growth

and/or diffusion, with the most accurate approximations occuring in patients with a large

amount of edema.

Further analysis could consider variations in the initial conditions, such as a nonzero

initial quiescent population, a gradual decrease in tumor cell populations towards the outer

edge of the tumor/edema as opposed to a strict cutoff, or initial conditions based on equa-

tions found in other works, the inclusion of the mass effect of the tumor, the inclusion of

various radiation treatments in the death term, the inclusion of a second type of prolifer-

ative cell to account for drug resistance, comparisons between other models with growth,

death, and diffusion terms, and variations in simulation outcomes as a result of varying

MRI segmentations (Murray 2003, Rockne 2008).
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APPENDIX I

FINITE DIFFERENCE IMPLEMENTATION
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The rate of change with respect to the diffusive term is calculated via a finite difference
method. The isotropic diffusion code performs these calculations with a 27-point stencil,
computing the sum of the derivatives in the x, xy, xz, y, yz, and z directions. While the
anisotropic code performs utilizes a 27-point stencil to calculate derivatives in the x, y, and
z directions, not all points in the stencil contribute to these derivatives. For the following
illustrations, we let i, j, and k refer to the indices of the voxel in the x, y, and z directions,
respectively.

For the isotropic code, the second derivative is computed directly with a central fi-
nite difference scheme, then multiplied by the diffusion coefficient associated with the
voxel. For example, if we let Di,j,k represent the diffusion value for voxel ui,j,k, and we let
uxxi,j,k,u

xy
i,j,k,u

xz
i,j,k,u

yy
i,j,k,u

yz
i,j,k,u

zz
i,j,k, and uxyzi,j,k represent the contributions to the second deriva-

tive in the x, xy, xz, y, yz,z, and xyz directions, respectively, then the second derivative
would be computed by first computing

uxxi,j,k =
ui+1,j,k − 2ui,j,k + ui−1,j,k

∆x2
,

uyyi,j,k =
ui,j+1,k − 2ui,j,k + ui,j−1,k

∆y2
,

uzzi,j,k =
ui,j,k+1 − 2ui,j,k + ui,j,k−1

∆z2
,

uxyi,j,k =
ui−1,j+1,k + ui−1,j−1,k − 4ui,j,k + ui+1,j+1,k + ui+1,j−1,k

(∆x2 + ∆y2)
,

uxzi,j,k =
ui−1,j,k+1 + ui−1,j,k−1 − 4ui,j,k + ui+1,j,k+1 + ui+1,j,k−1

(∆x2 + ∆z2)
,

uyzi,j,k =
ui,j+1,k+1 + ui,j+1,k−1 − 4ui,j,k + ui,j−1,k+1 + ui,j−1,k−1

(∆y2 + ∆z2)
,

uxyzi,j,k =
ui+1,j+1,k+1 + ui+1,j+1,k−1 − 4ui,j,k + ui+1,j−1,k+1 + ui+1,j−1,k−1

(∆x2 + ∆y2 + ∆z2)

+
ui−1,j+1,k+1 + ui−1,j+1,k−1 − 4ui,j,k + ui−1,j−1,k+1 + ui−1,j−1,k−1

(∆x2 + ∆y2 + ∆z2)
,

then by computing

∇ · (D(x)∇(ui,j,k)) = Di,j,k

(
uxxi,j,k + uyyi,j,k + uzzi,j,k + uxyi,j,k + uxzi,j,k + uyzi,j,k + uxyzi,j,k

)
For the anisotropic code, since the diffusion coefficient is replaced with a diffusion ten-

sor, first derivatives are computed with a backward difference method in the x, y, and z
directions only. These values are used to form a gradient that is then multiplied on the left
by the diffusion tensor. The second derivative is then calculated from the first derivatives
with a forward difference method. For example, if we let Di,j,k refer to the diffusion tensor
for the voxel ui,j,k, with Dxx

i,j,k, D
xy
i,j,k, D

xz
i,j,k, D

yy
i,j,k, D

yz
i,j,k, and Dzz

i,j,k referring to the indi-
vidual diffusion tensor values in the x, xy, xz, y, yz,z directions, respectively, then the first
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derivative at a voxel ui,j,k would be computed by

uxxi,j,k =
ui,j,k − ui−1,j,k

∆x
,

uyyi,j,k =
ui,j,k − ui,j−1,k

∆y
,

uzzi,j,k =
ui,j,k − ui,j,k−1

∆z
,

which is then followed by computing(
Dxx

i,j,k Dxy
i,j,k Dxz

i,j,k

Dyx
i,j,k Dyy

i,j,k Dyz
i,j,k

Dzx
i,j,k Dzy

i,j,k Dzz
i,j,k

)(
uxi,j,k
uyi,j,k
uzi,j,k

)
=

(
Dxx

i,j,ku
x
i,j,k+Dxy

i,j,ku
y
i,j,k+Dxz

i,j,ku
z
i,j,k

Dyx
i,j,ku

x
i,j,k+Dyy

i,j,ku
y
i,j,k+Dyz

i,j,ku
z
i,j,k

Dzx
i,j,ku

x
i,j,k+Dyz

i,j,ku
y
i,j,k+Dzz

i,j,ku
z
i,j,k

)
,

which is abbreviated as (
Di,j,ku

x
i,j,k

Di,j,ku
y
i,j,k

Di,j,ku
z
i,j,k

)
.

Similar calculations for the voxels ui+1,j,k, ui,j+1,k, and ui,j,k+1 are performed to calculate(
Dxx

i+1,j,ku
x
i+1,j,k+Dxy

i+1,j,ku
y
i+1,j,k+Dxz

i+1,j,ku
z
i+1,j,k

Dyx
i+1,j,ku

x
i+1,j,k+Dyy

i+1,j,ku
y
i+1,j,k+Dyz

i+1,j,ku
z
i+1,j,k

Dzx
i+1,j,ku

x
i+1,j,k+Dyz

i+1,j,ku
y
i+1,j,k+Dzz

i+1,j,ku
z
i+1,j,k

)
=

(
Di+1,j,ku

x
i+1,j,k

Di+1,j,ku
y
i+1,j,k

Di+1,j,ku
z
i+1,j,k

)
,(

Dxx
i,j+1,ku

x
i,j+1,k+Dxy

i,j+1,ku
y
i,j+1,k+Dxz

i,j+1,ku
z
i,j+1,k

Dyx
i,j+1,ku

x
i,j+1,k+Dyy

i,j+1,ku
y
i,j+1,k+Dyz

i,j+1,ku
z
i,j+1,k

Dzx
i,j+1,ku

x
i,j+1,k+Dyz

i,j+1,ku
y
i,j+1,k+Dzz

i,j+1,ku
z
i,j+1,k

)
=

(
Di,j+1,ku

x
i,j+1,k

Di,j+1,ku
y
i,j+1,k

Di,j+1,ku
z
i,j+1,k

)
,(

Dxx
i,j,k+1u

x
i,j,k+1+Dxy

i,j,k+1u
y
i,j,k+1+Dxz

i,j,k+1u
z
i,j,k+1

Dyx
i,j,k+1u

x
i,j,k+1+Dyy

i,j,k+1u
y
i,j,k+1+Dyz

i,j,k+1u
z
i,j,k+1

Dzx
i,j,k+1u

x
i,j,k+1+Dyz

i,j,k+1u
y
i,j,k+1+Dzz

i,j,k+1u
z
i,j,k+1

)
=

(
Di,j,k+1u

x
i,j,k+1

Di,j,k+1u
y
i,j,k+1

Di,j,k+1u
z
i,j,k+1

)
.

Finally, the second derivative can be computed with

∇ · (D(x)∇(ui,j,k)) =
Di+1,j,ku

x
i+1,j,k −Di,j,ku

x
i,j,k

∆x

+
Di,j+1,ku

y
i,j+1,k −Di,j,ku

y
i,j,k

∆y

+
Di,j,k+1u

z
i,j,k+1 −Di,j,ku

z
i,j,k

∆z
.
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APPENDIX II

NUMERICAL METHOD
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For both versions of the code, the IRKC method is the numerical scheme used to solve
the reaction-diffusion PDEs specified by equations 3 and 4, with the use of irkc.f. The
IRKC method can be classified as an IMEX method, where some terms in the PDE are
handled explicitly while other terms are handled implicitly. In particular, the IRKC method
is ideal when the implicit terms cause the PDEs to be stiff (Shampine 2006). Furthermore,
the use of irkc.f allows calculations to be performed voxel by voxel for both the reaction
and diffusion terms, which allows for parallelization of the simulations. There are a number
of assumptions that must be met in order to make use of irkc.f. For the explicit terms, the
eigenvalues of the Jacobian of the explicit terms must be close to, if not on, the negative
real axis. Similarly, the implicit terms require a Jacobian that is both real and negative,
and the code must be able to provide the Jacobian of the implicit terms to irkc.f at each
stage and at each voxel. Furthermore, the implicit terms at a given voxel must not depend
on any of the neighboring voxels (Shampine 2006). In order to solve equations 3 and 4,
the diffusion terms are handled explicitly with the use of a family of second-order Runge-
Kutta-Chebyshev methods, while the reaction terms are handled implicitly with the use of
a modified Newton method (Shampine 2006).

While irkc.f is capable of receiving a maximum timestep as input, the method chooses a
stepsize with respect to the estimated local error. If yn represents the solution at the current
timestep, the local error is associated with the second-order terms in the Taylor expansion
of the solution at the next timestep yn+1 (Shampine 2006). If no relative and absolute error
tolerances are specified, the defaults are 10−2 for the relative error and 10−3 for the absolute
error (Shampine 2006). For the purposes of our code, for each voxel, the code calculates

errk =
2∑
i=1

(
Est

(i)
n+1,k

10−3 + 10−2 max(|y(i)
n,k|, |y

(i)
n+1,k|)

)
,

then, with NG representing the total number of voxels (dependent on the spacial gridsize
∆x of the MRI scans and the standard brain), calculates the weighted root mean square
norm of the error as

||Estn+1|| =

√√√√ 1

2NG

NG∑
k=1

errk.

If ||Estn+1|| > 1, yn+1 is repeated with a smaller timestep. Otherwise, yn+1 is accepted
(Shampine 2006). In either case, the new stepsize is taken to be proportional to the current
timestep ∆tn, with

∆tnew = min(10,max(0.1, fac))∆tn,

fac = 0.8

(
||Estn||

1
2

||Estn+1||
1
2

∆tn
∆tn−1

)
1

||Estn+1||
1
2

.

If the modified Newton iteration fails to converge, the new stepsize is ∆tn/2 (Shampine
2006).
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