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ABSTRACT

Hyperspectral unmixing is an important remote sensing task with applications

including material identification and analysis. Characteristic spectral features make

many pure materials identifiable from their visible-to-infrared spectra, but quantify-

ing their presence within a mixture is a challenging task due to nonlinearities and

factors of variation. In this thesis, physics-based approaches are incorporated into an

end-to-end spectral unmixing algorithm via differentiable programming. First, sparse

regularization and constraints are implemented by adding differentiable penalty terms

to a cost function to avoid unrealistic predictions. Secondly, a physics-based dis-

persion model is introduced to simulate realistic spectral variation, and an efficient

method to fit the parameters is presented. Then, this dispersion model is utilized

as a generative model within an analysis-by-synthesis spectral unmixing algorithm.

Further, a technique for inverse rendering using a convolutional neural network to

predict parameters of the generative model is introduced to enhance performance

and speed when training data are available. Results achieve state-of-the-art on both

infrared and visible-to-near-infrared (VNIR) datasets as compared to baselines, and

show promise for the synergy between physics-based models and deep learning in

hyperspectral unmixing in the future.
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Chapter 1

INTRODUCTION

The journey of light from the surface of a planet, through the atmosphere, and

into the detector of a satellite instrument can be described by physics. A conceptual

diagram of this journey is shown in Figure 1.1. The central idea of this thesis is to

blend these physical models with optimization and machine learning algorithms to

extract information from hyperspectral images.

Hyperspectral imaging is a method of imaging where light radiance is densely

sampled at multiple wavelengths. Increasing spectral resolution beyond a traditional

Figure 1.1: Journey of a Photon: A satellite captures a hyperspectral image by de-

tecting photons reflected and emitted from the planetary surface. The molecular

structure of each material gives a unique spectral response for these reflections and

emissions. Non-linear effects can occur as the photon interacts with the scene. How-

ever, the detected photons do combine linearly at the spectrometer.
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camera’s red, green, and blue spectral bands typically requires more expensive detec-

tors, optics, and/or lowered spatial resolution. However, hyperspectral imaging has

demonstrated its utility in computer vision, biomedical imaging, and remote sensing.

For example, absorption spectra can show the concentration of oxygen saturation in

hemoglobin, which is useful for cancer diagnosis by identifying the related physical

processes of angiogenisis and hypermetabolism. Further, using hyperspectral imaging

has been shown to improve performance of classical computer vision tasks such as

object recognition [54, 13]. In particular, spectral information is critically important

for understanding material reflectance and emission properties, important for recog-

nizing materials. Spectral unmixing is a specific task within hyperspectral imaging

for identifying material presence in a mixture. This analysis of hyperspectral images,

usually from aircraft or satellite based spectrometers, has application to many land

classification problems related to ecology, hydrology, and mineralogy [37, 43]. For

example, thermal emission spectroscopy was used to map the minerology of Mars

including the important discovery of the hematite mineral, which is known to form

in liquid water [2]. While pure materials have characteristic spectral features that

can be immediately recognized, mixtures require algorithms to identify and quantify

material presence. Figure 1.2 shows a conceptual diagram of a spectral unmixing

unmixing algorithm.

Many spectral unmixing algorithms are based off of simple physical principles such

as the linear mixing model. The model states that an observed spectrum is a lin-

ear combination of pure material spectra, scaled by the fractional abundance of each

material. Mathematically this is expressed as b = Ax + η where b is the observed

spectra, A is a matrix whose columns are the pure material spectra, η is the mea-

surement noise, and x is the abundance of each pure material. Nonlinear effects are

known to occur when photons interact with multiple materials prior to being detected,

2



Figure 1.2: Spectral Unmixing: We are given data aquired from a spectrometer.

Using spectral unmixing we can predict the materials present in the sample observed

by the spectrometer.

which we discuss in more detail in Chapter 2. Many of the techniques for non-linear

unmixing encode physics-based radiative transfer models into the algorithms [37].

Recent advances in automatic differentiation [58] have opened the door to include

even more sophisticated physical models into predictive algorithms. By making phys-

ical models differentiable, the parameters of the models can be predicted with gradi-

ent descent optimization. Additionally, differentiable physical models can be blended

with machine learning algorithms by backpropagating the error through both the

physical and machine learning models, which can improve speed and performance

when training data are available. This technique of differentiable programming has

recently become a popular research area due to its potential to bridge gaps between

physics-based and machine learning-based techniques for computer vision and graph-

ics [74, 32, 1]. Our key insight is to leverage differentiable programming and dispersion

theory to address challenges in spectral unmixing.

1.1 Contributions of the Thesis

First, we examine the problem of producing sparse abundance maps using regu-

larization in Chapter 3. A common usage of spectral unmixing is to produce maps

3



of the fractional abundance of each material on a planetary surface. Typically the

spectral unmixing algorithms produce dense maps, meaning that each pixel of the hy-

perspectral image is predicted to contain many materials. However, it is understood

that abundance maps should be sparse, meaning that only a few materials would

realistically be present in each region of the scene. Sparse regularization is a method

to penalize algorithms from making unrealistically dense predictions. We provide

new experiments which show that sparse regularization with the Lp norm has the

most performance benefits. We also show that the L∞ method, which had not been

previously tried on spectral unmixing, offers some performance benefits although it

is slower than the Lp method.

In Chapter 4, we examine the problem of spectral variability from a physics-based

approach. Both linear and non-linear mixing models require the pure material spectra

to be specified. However, pure materials have an inherent variability in their spectral

signatures, and thus cannot be represented by a single characteristic spectrum. Spec-

tral variability of endmembers is caused by subtle absorption band differences due

to factors such as different grain sizes [55, 65, 60, 61] or differing ratios of molecular

bonds [12, 70] as shown in Figure 4.1. This variability causes significant errors in

unmixing algorithms, and is an active area of research [81, 23, 86].

Our approach is to leverage differentiable programming to incorporate a physics-

based dispersion model with parameters that control the strength, shape, and fre-

quency of absorption bands into a spectral unmixing algorithm. Such an approach

has the capacity to unmix scenes with a large amount of variability, while constrain-

ing the predictions to be physically plausible. These physically plausible variations

of endmember spectra also provide additional science data as the variation of absorp-

tion bands can reveal properties about the composition and history of the material.

To our knowledge, we are the first to use a generative physics model to account for

4



Figure 1.3: Endmember Variation: Several spectra of olivine are plotted to demon-

strate it’s spectral variability. The olivine mineral is a solid solution with continuous

compositional variation of Iron (Fe2) and Magnesium (Mg2) bonds. This ratio of

bonds (indexed by the Fo number), causes absorption bands to shift in frequency and

strength [70].

spectral variability in an unmixing algorithm.

Our specific contributions in this thesis are the following:

• We consider new experiments to compare the sparse regularization techniques

and show that Lp is the best performing method. We are also the first to

consider the L−1∞ method for spectral unmixing and show it is a viable convex

alternative to Lp regularization although it is slower.

• We introduce a physics-based dispersion model (first presented in [67, 45, 76])

to generate and render spectral variation for various pure materials. We provide

an efficient optimization method via gradient descent to find dispersion model

parameters for this spectral variation.

• We incorporate this dispersion model into an end-to-end spectral unmixing al-

gorithm utilizing differentiable programming to perform analysis-by-synthesis

optimization. Analysis-by-synthesis is solved via alternating minimization op-

timization and requires no training data.

5



• We further design an inverse rendering algorithm consisting of a convolutional

neural network to jointly estimate dispersion model parameters and mineral

abundances for spectral unmixing. This method requires training data, but

is computationally efficient at test time and outperforms analysis-by-synthesis

and other state-of-the-art methods.

We provide extensive analysis of our proposed methods with respect to noise and

convergence criteria. To validate our contributions, we test on both synthetic and real

datasets using hyperspectral observations in the visible and near infrared (VNIR), and

mid to far infrared (IR). The datasets also span three different environments from

laboratory, aircraft, and satellite based spectrometers. Our methods achieve state-of-

the-art across all datasets, and we compare against several baselines from literature.

We hope this work inspires more fusion between physics models and machine learning

for hyperspectral imaging and computer vision more generally in the future.

In Chapter 5, we provide a conclusion of our findings and recognize opportuni-

ties for future work. Also, we present Appendices for readers interested in specific

aspects of this Thesis. In Appendix A, we show a derivation of the dispersion model

from first principles. In Appendix B, we provide tables summarizing the dispersion

parameters for several important materials. In Appendix C, we provide a discussion

on convergence of our alternating minimization approach to our analysis-by-synthesis

algorithm. Finally, in Appendix D, we show the mineral maps of Mars produced by

our analysis-by-synthesis algorithm.
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Chapter 2

RELATED WORK

Linear vs. Non-linear mixing: The models for spectral mixing depend on

whether emitted or reflected energy is being measured. Emissions are generally ob-

served in the infrared (IR) wavelengths, around 8-100 µm. Measurements at these

wavelengths are dominated by thermal emissions from the top-most surface because

most materials are strongly absorbing in the infrared resulting in a low chance of ob-

serving reflected photons. This process results in a linear mixing model except when

the grain size of the particles approaches optical wavelengths [65, 60, 61].

Reflected sunlight is generally observed in the visual-to-near-infrared (VNIR)

wavelengths, 0.4-2.4 µm. In the VNIR, it is common for light to penetrate and inter-

act with a volume of materials prior to reflecting. Volume mixing has been shown to

cause non-linearities, particularly if the endmembers are “intimately mixed”, mean-

ing that the multiple materials are blended together in the same patch of the surface.

This is can lead to non-linear mixing in the VNIR because many materials are rel-

atively transparent at these wavelengths leading to photons penetrating the surface

and interacting with a volume. However, in many cases the linear mixing model is

applied to VNIR data by assuming the non-linearities are negligible [43, 79]. Other

efforts have been made to encode physical knowledge of radiative transfer to account

for non-linear mixing by converting the VNIR radiance to single scattering albedo

(SSA) [66, 43, 35, 34]. For a review of methods to account for non-linear mixing we

refer readers to the review by Heylen et al. [37]. We mainly use thermal emission

datasets which are assumed to follow the linear mixing model and VNIR reflected

datasets which are assumed to have negligible non-linear effects. Thus, we build our

7



contributions around the linear mixing model, although it would be possible to com-

bine our spectral variability and sparse regularization techniques to non-linear mixing

models as well.

Optimization-based Approaches Standard optimization techniques for spec-

tral unmixing include projection, non-negative least squares, weighted least squares,

and interior point methods [60, 36, 27, 18, 34]. These family of methods setup an

optimization problem based off of physical models describing the observed spectra in

terms of the known pure material spectra. For example, in the linear mixing model

b = Ax+η, where b is a vector representing the observed spectral observation, A is a

matrix whose columns are the pure material spectra, x is a vector whose elements are

the abundance of the materials corresponding with the columns of A, and η is a vector

representing noise or other sources of error in the measurement. The matrix-vector

multiplication Ax produces a linear combination of the columns of A weighted by

the elements of x, describing the physics of certain spectral mixing scenarios. Then,

this model can be inverted using a least squares approach by finding the abundances

that minimize the mean squared error between the modelled and observed spectra,

||b − Ax||22. Note that this notation is simply the squared L2 norm, where the L2

norm is defined as ||x||2 := (
∑n

i=1 |xi|2)
1
2 . The squared L2 norm is equivalent to the

mean-squared error, and is typically referred to as the least-squares when used in an

optimization or curve fitting problem. A closed form solution for this least squares

optimization problem exists by multiplying each side of the linear mixing model with

the pseudo-inverse of A.

Gradient descent [64] can also be used to solve this optimization problem, and

is advantageous in that constraints and penalty terms can be added to improve pre-

dictions so long as the penalty terms are differentiable. In short, gradient descent

iteratively updates the parameters away from the gradient of the cost function to

8



converge at a local minimum with respect to the error. When the cost function is

a convex function, formally defined as convex if a line connecting any two points

on a graph of a function lies above or on the graph (for example, a bowl shaped

graph is convex), then if a local minima exists it is also guaranteed to be the global

minima. Thus, convex optimization problems can guarantee unique solutions with

gradient descent based optimization as they always converge to local minima given

sufficient iterations. Non-convex functions, in which there are lines between points

on the graph which go underneath the graph, can have many local minima and thus

gradient descent may converge to any of these minima and the solutions are not nec-

essarily unique. Note that the basic least squares optimization problem for linear

unmixing is a convex problem, and a graph of the cost function indeed looks like a

bowl when visualizing three dimensions of the least squares cost function. Of course,

there are usually more than three dimensions in a linear unmixing problem, but the

cost function is still convex even if it cannot be visualized in higher dimensions. How-

ever, as we introduce sparsity promoting penalty terms and dispersion models into

the optimization problem, we will deal with non-convex optimization problems.

Note that we also wish to constrain our optimization programs to produce real-

istic abundance predictions. In particular, the abundances should be non-negative

and sum-to-one since they are treated as percentages and it does not make sense

to have negative percentages of a material. Constraints are implemented by adding

penalty terms to a cost function via the Karush-Kuhn-Tucker approach [9]. Since

these additional constraint penalties added to the least squares cost function are also

differentiable, the cost function can still be solved with gradient descent based opti-

mization that converges to solutions which meet the prescribed equality (sum is equal

to one) and inequality (each element is greater than zero) constraints.

Sparse Spectral Unmixing: It is desired to encode prior knowledge of sparsity

9



(few materials present) into spectral unmixing algorithms. Adding penalty terms to

the cost function of the spectral unmixing optimization problem is one method to

produce sparse abundance predictions. These penalty terms are commonly the norm

of the abundance vector, where the norm is simply assigning a real number to a vector

according to a formula. The general formula for an Lp norm, where p can be replaced

with a non-negative number, is defined as ||x||p := (
∑n

i=1 |xi|p)
1
p . Note that when p

is between 0 and 1, it breaks the mathematical definition of norm but is still useful

to consider for sparse spectral unmixing. Also note that the L∞ norm is simply the

maximum element of the vector, ||x||∞ := max
i
|xi|.

It is well understood that regularization by adding the L1 norm to the cost function

promotes sparse solutions [72, 39]. This method, referred to as least absolute shrinkage

and selection operator (LASSO), has been applied to spectral unmixing by Iordache

et al. [40]. However, it is known that L1 regularization has a conflict with the sum-to-

one abundance constraint of the spectral unmixing problem. In order to maintain this

constraint, Lp regularization (with p < 1) has been proposed for spectral unmixing,

although it makes the problem non-convex [14]. Regularizing with the inverse of the

L∞ norm has been proposed as a convex method of promoting sparsity when the L1

norm is constrained [59] and has not been tried for spectral unmixing. We compare

these methods experimentally to find the best method for sparse regularization in

spectral unmixing, and find that the Lp method offers the best performance despite

the non-convexity, although the L∞ method also improves performance.

Spectral Variability: Spectral variability has been a topic of recent inter-

est [81, 10]. One approach is to augment the endmember library A with multiple vari-

ations or spectra for each endmember. To do this, multiple endmember spectral mix-

ture analysis (MESMA) [63] and multiple-endmember linear spectral unmixing (MEL-

SUM) [22] both require labeled data of the spectral variation for each endmember.
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In contrast, unsupervised techniques learn endmember sets from unlabelled hyper-

spectral images, including semi-automated techniques [6], k-means clustering [6], and

the sparsity promoting iterated constrained endmember algorithm (SPICE) [79, 80]

which simultaneously finds endmember sets while unmixing for material abundances.

These techniques are limited by the amount of sets in the endmember library, and

computational complexity increases with more additions. Our method by contrast

finds an efficient parameter set to physically model the spectral variation.

Another category of endmember variability techniques models the endmember

spectral variation as samples from a multivariate distribution P(e|θ) where e is the

endmember spectra, and θ are the distribution parameters. Common statistical dis-

tributions proposed include the normal compositional model [68], Gaussian mixture

models [86], and the beta compositional model [23]. These distribution models have

large capacity to model spectral variations, however sometimes they can render end-

member spectra that are not physically realistic.

Deep Learning for Hyperspectral Classification and Unmixing: Deep

learning has recently improved many hyperspectral imaging tasks [83, 49]. Deep

learning refers to computational models which connect artificial neurons in a hierar-

chical pattern and optimizes the weights of the connections between these neurons to

produce a desired mapping from input to output (for example, to predict an abun-

dance vector given an input spectrum vector). To produce this mapping, the weights

of the neuron connections are optimized given a training dataset of labelled input-

output pairs (for example using stochastic gradient descent optimization [11]). While

this shallow description only scratches the surface of neural networks and deep learn-

ing, a complete explanation requires lengthy descriptions of a long list of concepts

combining statistics, optimization, and machine learning for which we refer readers

to the text by Lecun et al. [46].
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In spectral unmixing, neural networks have been proposed to process hyperspectral

pixel vectors using both deep belief networks [52] and convolutional neural networks

(CNNs) [38, 16, 77]. For spatial hyperspectral data, CNNs [17], joint spectral-spatial

feature extraction [85], and 3D CNNs [51] have been used used. All these methods

require large hyperspectral datasets that are annotated correctly, which is currently a

bottleneck for spectral unmixing. One of our methods, which we refer to as analysis-

by-synthesis, does not require training data and can be directly applied to observed

spectra by performing an alternating optimization using physics-based models. This

analysis-by-synthesis technique avoids low training data issues, but we also show

that the generative physics models can be made complementary to deep learning

architectures as we show in our inverse rendering CNN.

Differentiable Programming and Rendering: Differentiable programming

refers to writing algorithms which can be fully differentiated end-to-end using auto-

matic differentiation for any parameter [74, 75, 7]. This has been applied for audio [26]

and 3D geometry processing [62]. In graphics, differentiable rendering has improved

ray tracing [50, 56, 53, 82], solved analysis-by-synthesis problems in volumetric scat-

tering [33, 32], estimated reflectance and lighting [1], and performed 3D reconstruc-

tion [73]. We write a forward imaging model utilizing the physics of dispersion in

spectral variation to allow our pipeline to be differentiable end-to-end.
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Chapter 3

PRODUCING SPARSE ABUNDANCE MAPS

A primary usage of spectral unmixing is to produce maps showing the fractional

abundance of each material present on a planetary surface. The spatial distribution

of materials is expected to be sparse - only a few materials should be present in each

pixel of the scene. However, previous studies using remote sensing data [2, 27, 25] and

laboratory data [60, 28, 19, 5, 3] have noted that spectral unmixing algorithms tend

to incorrectly predict dense spatial distribution of materials. That is, the abundance

maps produced from remote sensing data showed many materials present in every

pixel of the scene, contrary to expectation. The laboratory data, where ground truth

was available, confirmed that these dense predictions are erroneous. In this chapter,

we explore methods to encode prior knowledge of sparsity into spectral unmixing

algorithms through regularization. Further, we use synthetic, laboratory, and remote

sensing data to validate which regularization terms yield the best results.

3.1 Methods

3.1.1 Regularization Terms

The general form of an Lp norm for any p is simply assigning a real number to

a vector according to the formula ||x||p := (
∑n

i=1 |xi|p)
1
p . Note that the L1 norm is

simply the sum of the absolute value of each element of x. In spectral unmixing, the

L1 norm is usually constrained to be equal to one since it does not make sense to

have more or less than 100% of total materials.

The most common sparsity promoting technique in signal processing, referred

to as the least absolute shrinkage and selection operator (LASSO), penalizes the
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cost function of an optimization problem with the L1 norm of the variable under

optimization [72]. However, if L1 norm is constrained to 1, it is an ineffective penalty

term for minimization.

In proxy to penalizing with the L1 norm, penalizing with the Lp norm where

p < 1 and with the inverse L∞ norm are also known to provide sparse solutions and

do not conflict with the constraints [59, 14]. Note that the Lp norm with p < 1 has

previously been tried on spectral unmixing but is non-convex, and thus is prone to

converging to local minima. On the other hand, the inverse L∞ is convex and had

not been tried on spectral unmixing before.

Adding a penalty term to the linear unmixing objective function results in the

following optimization problem:

x̂ = arg min
x
||b−Ax||22 + λΓ(x)

subject to ||x||1 = 1, x ≥ 0.

(3.1)

Where x̂ are the predicted abundances that minimize the cost function, x are

the abundances of the linear mixing model, Γ(x) is a penalty that promotes sparse

abundance predictions, b is the observed spectra, and A is the endmember library.

Also note that the term ||b−Ax||22 is simply the squared L2 norm, equivalent to the

mean-squared error, which is commonly referred to as a least-squares optimization

problem. For the L−1∞ method, Γ(x) = 1
||x||∞ . For the Lp method, Γ(x) = ||x||p

and p < 1. For the LASSO method, Γ(x) = ||x||1. Also for LASSO, the sum-to-

one constraint is removed during optimization and the outputs are normalized to

respect the constraint after optimization. For all methods, λ is the weight of the

regularization

The L−1∞ method as expressed in Equation (3.1) is not convex. However, it can be

rewritten as n convex problems, where n is the number of endmembers, expressed by

the following optimization problem:
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x̂ = min
i∈[n]
{arg min

x
||b−Ax||22 +

λ

xi
}

subject to : ||x||1 = 1, x ≥ 0.

(3.2)

The proof that the L−1∞ method can be globally solved by the convex problems

written in equation (3.2) is shown in [59].

Recall from the chapter 2 that the basic least squares optimization problem, with-

out penalty terms, is a convex function so gradient descent will converge to a global

minimum. However, since the Lp norm with p < 1 is a non-convex function, because

it breaks the formal definition that a line between points on it’s graph fall below the

graph. Therefore, the entire cost function is non-convex, since the sum of convex and

non-convex functions are non-convex in general. Thus, the results will be sensitive to

the initialization because gradient descent based optimization can converge to a local

minima rather than the global minimum, and thus are not unique. In the reported

results, x was initialized such that all elements were set to 1
n

where n is the number

of endmembers.

3.1.2 Implementation Details

The baseline method, referred to as fully constrained least squares (FCLS) [36],

solves the least squares optimization problem with the non-negativity and sum-to-

one constraints but without any regularization. This baseline method is compared

against the LASSO , L−1∞ , and Lp regularization techniques. All of these methods are

are implemented using the Sequential Least SQuares Programming (SLSQP) method

in the SciPy optimization toolkit [42]. Note that the λ term in Equation (3.1) that

gives weight to the penalty term needs to be input to the algorithm to give the

appropriate balance between the sparse penalty and the least squares error. This

type of parameter is referred to as a hyper-parameter because it cannot be optimized
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Figure 3.1: Hyperparameter Sweep: The hyperparameters for the regularization

weight, λ, is swept through a range of values for each method. The Lp norm has

a second hyper-parameter for the value of p which is also swept across several values.

The error is calculated by performing the unmixing algorithms on 1000 synthetic mix-

tures and then is repeated for each trial value of the hyper-parameters. This error

vs. parameter value is plotted for the methods under consideration. The optimal

hyper-parameters for each method are chosen that minimize the error.

by the algorithm. The hyper-parameters for λ, as well as the p in the Lp norm, are

determined by sweeping across a range of values and choosing the parameter that

minimizes the average error in an experimental setup using synthetically generated

spectral mixtures as shown in Figure 3.1. However, as the amount of noise varies,

the optimal parameters do change since there needs to be less weight given to the

mean squared error to avoid unwanted fitting to the noisy signal, which is commonly

referred to as overfitting.
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3.2 Experimental Results

3.2.1 Datasets

We utilize three different datasets to compare the sparsity promoting regulariza-

tion techniques. The datasets range from synthetic, to laboratory, to remote sensing

datasets in the infrared.

Synthetic Mars Dataset: Pure endmembers from the ASU spectral library [19]

are combined linearly to form synthetic mixtures that simulate Mars mixtures. The

proportions of minerals are meant to simulate three regions of the Martian surface,

according to the distrubtion shown in Table 3.1.

The mixtures are perturbed with Gaussian noise to simulate measurement error

in spectrometers. The amount of noise is calculated by comparing against calibration

results from an exemplary spectrometer, the Osiris-Rex Thermal Emission Spectrom-

eter (OTES) [21], which showed that the variance of the noise due to measurement

error was σ < 1e − 8. In the synthetic data experiments, several tests are repeated

where the variance of the noise is increased above this amount.

Feely dataset: We utilize 90 samples from the Feely et al. dataset [28] of thermal

emission spectra in the infrared for various minerals measured in the lab. Ground

truth was determined via optical petrography [28], and a labeled endmember library

is provided. Note that there is approximately 5% error in labelled abundances of this

dataset from human error.

Mars TES dataset: The remote sensing data set is provided by the Mars Ther-

mal Emission Spectrometer (TES) measurements [20]. The block diagram represen-

tation of raw data processing is shown in Figure 3.2.

For these experiments, the raw TES data is used, and the atmospheric compo-

nents must be accounted for. To boost efficiency, atmospheric correction and spectral
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Table 3.1: Synthetic Data Generation: Synthetic data is generated by averaging

endmember spectra together with plausible proportions. Three regions of Mars are

simulated, with a probability of sampling each region which roughly approximates the

distribution of Mars. In each region there is a different range of proportions for each

category of materials. After the proportions are randomly selected from a uniform

distribution, they are normalized to follow the sum-to-one constraint.

Region Feldspar Rich Hematite Rich Rare

Probability of region 0.85 0.1 0.05

Hematite 0 10-30% 0

Feldspar 10-40% 0-30% 0-30%

Pyroxene 10-40% 0-30% 0-30%

Olivine 0-20% 0-10% 0-10%

High Si Phases 0-20% 0-10% 0-10%

Carbonate 0-10% 0-10% 0-10%

Sulfate 0-10% 0-10% 0-10%

Other 0% 0-10% 10-40%

unmixing are performed in a single optimization problem. We show that atmospheric

correction can be solved simultaneously by the following argument: The observation

b can be expressed as:

b = A∗x∗ + A′x′ + η. (3.3)

Where the endmember library A can be split into two libraries, A∗ and A′ for

atmospheric and surface mineral endmembers with corresponding abundances x∗ and

x′. This is valid because the atmospheric components have been shown to combine
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Figure 3.2: TES Data Processing: Block diagram showing the process for raw TES

data processing.

extremely linearly [4]. Then, x∗ and x′ can be solved for by the following optimization

problem:

arg min
x∗,x′

||b−A∗x∗ −A′x′||22

subject to : ||x′||1 = 1, x′ ≥ 0.

(3.4)

Bandfield et al. found the residual signal by subtracting the atmospheric compo-

nents to determine the surface emissivity, b − A∗x∗ = A′x′ + η, prior to unmixing

a second time to solve for the surface mineral abundances [2, 27]. However, unmix-

ing the residual to solve for A′x′ results in an equivalent optimization problem to

Equation (3.4), so only the first optimization is necessary.

3.2.2 Spectral Unmixing Results

Performance metrics: The performance on the datasets with ground truth is

evaluated by the mean squared error (MSE) between the predicted and ground truth

abundances. It is also interesting to measure the accuracy, precision, and recall of
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detecting mineral presence, to show that even small improvements in error can make

a big difference in correctly determining which minerals are present. The presence is

determined when the abundance is above a threshold, set to 1% in the reported results.

The predicted presence is compared against ground truth and uses the standard

convention for true positive tp, true negative tn, false positive fp, and false negative

fn to compute accuracy, precision, and recall.

Synthetic Dataset Results: The qualitative behavior of sparse regularization

on a single synthetic sample is shown in Figure 3.3. The results summarized in

Table 3.2 shows the performance of each regularization taken on 1000 mixtures with

noise added where σ = 2.5e − 5. Table 3.3 shows the performance of 1000 mixtures

where σ = 2.5e− 4. The hyper-parameters of each algorithm were optimized for each

of these experiments where p = 0.999, λLp = 1e−2, λL−1
∞

= 1e−5, and λLASSO = 1e−6.

The results show that the Lp method has the lowest error and the L−1∞ method has

the second lowest error.

Table 3.2: Synthetic Results with Low Noise: Performance metrics for sparse regu-

larization techniques on the synthetic dataset with low noise.

FCLS LASSO L−1∞ Lp

MSE 4.1e-04 8.2e-04 2.6e-04 2.2e-04

accuracy 0.9973 0.9935 0.9986 0.9989

precision 0.9887 0.9719 0.9946 0.9956

recall 0.9979 0.9976 0.9984 0.9984

The results show that the Lp method produces the endmember predictions with

the lowest error, and also increases accuracy and precision. FCLS had a higher recall

for some results, because it is not penalized for including components, which increases
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Figure 3.3: Qualitative Analysis of Sparse Regularization: A comparison of FCLS

and Lp regularization results for unmixing a single synthetic sample. Note that both

signal reconstructions are almost perfect, but the predicted abundances vary. The Lp

regularization predicts fewer materials present in the material, driving many of the

erroneous predictions to zero. It also correctly finds Hypersthene which FCLS misses.

It only predicts one Olivine rather than the combination of two different Olivine,

although this negatively impacts the the MSE metric, it can be advantageous to have

fewer, more confident, predictions.

chances of recalling the support endmembers.

Feely dataset results: The Feely results are shown in table 3.4. All methods
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Table 3.3: Synthetic Results with High Noise: Performance metrics for sparse regu-

larization techniques on the synthetic dataset with higher noise.

FCLS LASSO L−1∞ Lp

MSE 1.6e-04 5.0e-04 8.5e-05 5.1e-05

accuracy 0.9940 0.9908 0.9963 0.9959

precision 0.9768 0.9633 0.9873 0.9884

recall 0.9929 0.9927 0.9928 0.9895

had significantly more error on the laboratory mixture experiment than the synthetic

mixture experiment. Still, the Lp method performed better than other regularization

methods by lowering the error and increasing the accuracy and precision. FCLS has

the highest recall because it is not penalized for including extra components.

Table 3.4: Feely Dataset Results: Performance metrics for sparse unmixing on the

Feely laboratory dataset.

FCLS LASSO L−1∞ Lp

MSE 0.121 0.116 0.110 0.098

accuracy 0.7544 0.7421 0.7699 0.8016

precision 0.4908 0.4773 0.5171 0.5529

recall 0.8131 0.8004 0.8015 0.7303

Mars TES dataset results: Because of the large amount of data to be processed,

only the Lp method and the FCLS methods were used to generate Mars TES mineral

maps. Figure 3.4 shows the amount of materials predicted above 1% present in each

pixel of the map (at 1 pixel per degree). As expected, the Lp encourages sparsity
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and limits the amount of materials predicted in each scene. The Lp method, with

p = 0.98 and λ = 0.01, predicted an average of 11.7 components per pixel and

the FCLS method predicted an average of 14.2 components per pixel. This shows

that sparse regularization is useful on real data for limiting the number of materials

predicted, to better match realistic material distributions. Note that no one knows

the exact count of minerals that should be present in each spatial region of Mars, and

this is only a qualitative assessment based on the expected distribution of minerals.

Noise sweep results: A noise sweep is run on 100 mixtures, by repeating spectral

unmixing algorithms on the same synthetic mixtures and increasing the noise power

to observe the effect on error. In the noise sweep, the hyper-parameters are held

constant ( λ and p optimized for σ2 = 2.5e-4, which is in the middle of the noise

sweep). Figure 3.5 shows the error of each method as noise is increased. The results

show that the Lp method has the lowest error across all noise levels, followed by the

L−1∞ method.

Execution Time: The execution time of the algorithms was measured. The

results are summarized in Table 3.5 with varying number of endmembers, n. As

expected L−1∞ is the slowest algorithm, since it has to solve n optimization problems,

and the other methods are roughly equivalent.

3.3 Discussion

In this chapter we explored sparse regularization techniques for improving spec-

tral unmixing results. We compared methods which had already been proposed for

spectral unmixing, FCLS, LASSO and the Lp norm, and also introduced the L∞ norm

which had not been previously applied to spectral unmixing.

We validated these techniques against synthetic, laboratory, and remote sensing

datasets in the infrared. In particular, we examined linear unmixing although the
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Figure 3.4: Sparsity Maps: The sparsity maps show the count of endmembers pre-

dicted above a threshold, set to 1%. The Lp method (top) consistently uses fewer

endmembers than FCLS method (bottom), showing that the sparse regularization is

working.

techniques could be extended to non-linear unmixing algorithms by adding the pro-

posed penalty terms to cost functions for non-linear unmixing algorithms.

We found that sparse unmixing does indeed improve results, and that Lp regular-

ization seems to be the best method. Regularization with the Lp norm reduces the

error, increases the accuracy and precision, and uses fewer endmembers in predic-
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Figure 3.5: Noise Sweep: Sparse regularization performance is evaluated on 100 syn-

thetic mixtures. The noise is varied by several orders of magnitude. The Lp method

produces the lowest error predictions across all noise levels.

Table 3.5: Execution Time Comparison: The execution times of sparse regularization

methods are compared. The L−1∞ method is much slower than the other methods.

n FCLS LASSO L−1∞ Lp

5 1 ms 1 ms 5 ms 1 ms

15 5 ms 4 ms 39 ms 4 ms

25 8 ms 4 ms 108 ms 8 ms

50 12 ms 12 ms 607 ms 20 ms

tions. The L−1∞ method also showed some performance benefits, but can be an order

of magnitude slower. The Lp method has approximately the same speed as FCLS

and LASSO and has the overall best performance.

Further work on solving spectral variation in Chapter 4 incorporates sparse reg-

ularization into the end-to-end pipeline. The performance benefits of accounting for

both sparsity and spectral variation further improves the results.
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We hope that this chapter inspires closer looks into remote sensing data by the

geoscience community to produce more realistic abundance maps with sparse regu-

larization. Although no one knows the exactly how sparse the abundance predictions

should be, providing a ”dial” to tune the amount of sparsity can hopefully lead to

valuable insights.
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Chapter 4

PHYSICS-BASED SPECTRAL VARIABILITY

Pure materials cannot be represented by a single characteristic spectrum, be-

cause their absorption bands can change in strength, shape, and frequency due to

factors such as different grain sizes [55, 65, 60, 61] or differing ratios of molecular

bonds [12, 70] as shown in Figure 4.1. This is problematic to existing spectral unmix-

ing algorithms, because both linear and non-linear mixing models assume that the

pure material spectra is known [81, 23, 86]. The objective of this chapter is to find a

model that accounts for the absorption band shifts in a physically plausible way. That

is, we seek a generative model for spectra with “dials” to tune the frequency, strength,

and shape of absorption bands. From the literature on analysis of the formation of

spectra from an atomistic perspective [67, 76], we find that the Lorentz-Lorenz dis-

persion model is the correct approach to take. However, unlike previous works we

go further than using the model to derive optical properties of materials, we also

incorporate the dispersion model into an end-to-end spectral unmixing pipeline that

allows the parameters to be fine-tuned via differentiable programming to account for

spectral variability.

We incorporate a physics-based dispersion model with parameters that control the

absorption bands into a spectral unmixing algorithm. This allows our algorithm to

find the endmember variation which best fits the data, but constrains these predic-

tions to be physically plausible. These variations of endmember spectra also provide

additional science data, as the variation of absorption bands can reveal properties

about the composition and history of the material. To our knowledge, we are the first

to use this approach of optimizing a parametrized physical model to generate spectra
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Figure 4.1: Endmember Variation: Several spectra of olivine are plotted to demon-

strate it’s spectral variability. The olivine mineral is a solid solution with continuous

compositional variation of Iron (Fe2) and Magnesium (Mg2) bonds This ratio of bonds

which is indexed by the Fo number and varies from Fo 100 (pure Forresterite with

only Mg bonds) to Fo 0 (pure Fayalite with only Fe bonds), causes absorption bands

to shift in frequency and strength.

within a spectral unmixing algorithm, simultaneously solving for the abundances and

the variance in absorption bands.

4.1 Method

We account for spectral variability in hyperspectral unmixing with two main com-

ponents: (1) use of a physically-accurate dispersion model for pure endmember spec-

tra, and (2) a differentiable programming pipeline to perform spectral unmixing. This

approach has synergistic benefits of leveraging prior domain knowledge while learn-

ing from data. Our first algorithm, which we refer to as analysis-by-synthesis, solves

spectral unmixing in a self-supervised fashion by generating endmember spectra with

the dispersion model and using optimization to solve for the proportional abundance

of each spectra as well as optimizing the parameters of the dispersion model to ad-

just the absorption bands. Further, we show how to inversely rendering the observed

spectra via a convolutional neural network (CNN) to predict both abundances and

dispersion parameters, with the dispersion model in the loop to ”render” the spectra.
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This method improves performance when training data is available and is computa-

tionally fast in implementation compared to analysis-by-synthesis.

4.1.1 Dispersion Model

We first describe the dispersion model for generating endmember spectra. End-

member and/or endmember spectra is what we call the spectral curve for emissivity

ε as a function of wavenumber ω. Each pure material has a characteristic endmember

spectrum, although the absorption band can have subtle shifts in frequency and shape,

which is the problem we are trying to solve/disambiguate. Let εmeasured(ω) be end-

member spectra we have measured, typically in a lab or in the field, whose emissivity

is sampled at different wavenumbers:
[
εmeasured(ω1), · · · εmeasured(ωN)

]T
. Our goal is

to propose a model εmodel(Λ;ω) with parameters Λ such that the following loss is

minimized: L(Λ) =
∑N

i=1

(
εmeasured(ωi)− εmodel(Λ;ωi)

)2
. That is, we fit the model

emissivity of an endmember spectrum to the measured spectrum. In practice, we

need to add regularization and constraints to this endmember loss for better fitting

that we describe after the derivation of the dispersion model.

Our model of endmember spectra is derived from an atomistic oscillator driven by

electromagnetic waves impinging on the molecular structure of the pure material [67,

45]. In Figure 4.2, we show a conceptual diagram of this model, and how it generates

emissivity curves as a function of wavelength. For the full derivation of the model

from first principles, we refer the reader to Appendix A in the supplementary material.

Instead, we outline the model below based on the equations derived from that analysis.

Let Λ = [ρ,ωo,γ, εr] be a matrix of parameters, where ρ,ω0,γ, εr ∈ RK and

K is a model hyperparameter corresponding to the number of distinct mass-spring

equations used to model the emissivity. ρ is the band strength and as it increases the

absorption band becomes deeper. ωo is the resonant frequency and as it increases
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Figure 4.2: Dispersion Model Conceptual Diagram: The insight of the dispersion

model is that optical properties can be related to molecular structure through first

principles via an atomistic oscillator model. We use this generative model for the

formation of spectral variation in our spectral unmixing algorithm.

the absorption band shifts in wavenumber (and also slightly shifts the shape). γ

is the frictional force (dampening coefficient) and controls the shape/width of the

absorption bands. εr is relative dielectric permeability and as it increases the entire

emissivity curve is shifted downwards. Also note that absorption bands which are

close to each other interact in highly non-linear ways. Note: usually εr is a constant

vector which does not vary with K. In Figure 4.3 we see the effect of perturbing these

parameters, and their effect on the strength, shape, and frequency of the absorption

bands. This level of control is exactly what we aimed to build into our spectral

unmixing algorithm to allow for realistic variation in our endmember library.

In the full derivation of the model shown in Appendix A, optical indices are related

to the dispersion parameters from first principles. The refractive index terms n, k are

given as follows [67, 45]:

n(Λ;ω) =

√
θ + b

2
, k(Λ;ω) =

φ

n(Λ;ω)
, (4.1)

where the expressions for θ, b, φ are given as follows:

θ = εr +
K∑
k=1

4πρkω
2
0k

(ω2
0k
− ω2)

(ω2
0k
− ω2)2 + γ2kω

2
0k
ω2
, (4.2)

30



Figure 4.3: Dispersion Parameter Variation: A single absorption band is initialized

with εr = 2.356, ω0 = 1161, γ = 0.1, ρ = 0.67. Then the parameters are perturbed

such that ω0 is increased by 100, γ is increased to 120%, and ρ is increased to 120%.

The plots show the effect of changing each parameter individually to show it’s control

over the shape and width of the absorption band.

b =
√
θ2 + 4φ2, φ =

K∑
k=1

2πρkω
2
0k

γkω0kω

(ω2
0k
− ω2)2 + γ2kω

2
0k
ω2
. (4.3)

We note that subscript k denotes the k-th coordinate of the corresponding vector.

Also there is another useful relation (derived in Appendix A) that n2−k2 = θ, nk = φ.

We then define the complex refractive index as n̂(Λ;ω) = n(Λ;ω)− i ·k(Λ;ω), where

i =
√
−1 is the imaginary number. Hence, we can calculate the emissivity as follows:

ε(Λ;ω) = 1−R(Λ;ω), where R(Λ;ω) =

∣∣∣∣ n̂(Λ;ω)− 1

n̂(Λ;ω) + 1

∣∣∣∣2 . (4.4)

When considering minerals, we introduce M ∈ N, the number of optical axes of

symmetry in crystal structures, (eg. 2 axes of symmetry in quartz [67, 76]), to define

the full model:

εmodel(Λ;ω) =
M∑
m=1

αm · ε(Λm;ω) such that
M∑
m=1

αm = 1, αm ≥ 0, (4.5)

31



where we use a different parameter matrix Λm and weight αm for each optical axis.

The dispersion model has been primarily used to analyze optical properties of

materials to determine n and k, which then can be subsequently applied to optical

models like radiative transfer [67, 76]. After n and k are found, spectra such as

reflectance, emissivity, and transmissivity can be generated. In particular, we notice

that fine-grained control of the dispersion model parameters can realistically render

spectral variation that occurs in hyperspectral data. Our contribution is to leverage

these properties in a differentiable programming pipeline for spectral unmixing.

4.1.2 Endmember Fitting

Using the dispersion model presented above, we want to robustly estimate the

model parameters to fit the spectra εmeasured captured in a lab or in the field. To fit

the model, we wish to perform gradient descent to efficiently find these parameters.

In short, we want to exploit the fact that the negative gradient points in the direction

which minimizes the loss function, so we want to iteratively update the parameters

away from the gradient to better fit the data and find optimal parameters. Using

chain rule on the loss function, we see that ∂L
∂Λij

= ∂L
∂εmodel

∂εmodel

∂Λij
, where (ij) corre-

sponds to that element of the parameter matrix, and all expressions are scalars once

the coordinate is specified. While the partial derivatives can be calculated explicitly

via symbolic toolboxes, the resulting expressions are too long to be presented here.

For simplicity and ease of use, we use the autograd function [7, 57] in PyTorch [58]

to automatically compute derivatives for our model as we are performing backpropa-

gation. Note that this produces the analytic derivative, not an estimated derivative,

by pre-programmed derivatives of simple math operations available in the Pytorch

library and applying the chain rule to find derivatives of larger more complicated

functions. Since the entire dispersion theory can be expressed as a chain, or compu-
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tational graph, of simple math operations, it is possible to find the analytic derivative

of each parameter with respect to a cost function.

One main challenge in performing endmember fitting is that the dispersion model

is not an injective function, meaning that more than one set of parameters Λ can

result in the same generated spectrum, and thus the parameters cannot be uniquely

identified given a target material spectrum. This can be solved, in-part, through

sparse regularization which adds penalty terms to the cost function of the optimiza-

tion problem to encourage solutions that use fewer parameters, to narrow down the

solutions which possibly have the same fit to the target spectra. This is especially

applicable since a preference for fewer dispersion parameters has been suggested in

literature on finding dispersion parameters which fit a target spectra [67, 76]. In our

implementation, we initialize our model with K = 50 rows of the parameter matrix.

Since the parameter ρ controls the strength of the absorption band, small values of

ρ do not contribute much energy to the spectra (unnecessary absorption bands), and

can be pruned. After performing sparse regression by penalizing the L1 norm of ρ,

K is typically around 10-15 in our experiments.

Thus, our modified sparse regression problem may be written as

arg min
Λmin≤Λ≤Λmax

N∑
i=1

(
εreal(ωi)− εmodel(Λ;ωi)

)2
+ λρ||ρ||1, (4.6)

where Λmin and Λmax restrict the variation of the dispersion parameters to a plausible

range. In addition, endmembers (particularly minerals) can have multiple optical axes

of symmetry described by separate spectra, which has been noted in the literature [67,

76]. Without prior knowledge of the number of axes for every material we encounter,

we run this optimization for a single and double axes, and pick the one with the lowest

error. See Section 4.3 for results on endmember fitting and Figure 4.7 for examples

of modelled vs. measured spectra.
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Figure 4.4: Analysis-by-Synthesis: The analysis-by-synthesis algorithm uses differ-

entiable programming to find optimal dispersion parameters and abundances. The

initial dispersion parameters and the target spectra are fed as inputs, and the algo-

rithm alternates between optimizing the abundances in the least squares sense and

updating the dispersion parameters with respect to the gradient.

This regression problem is non-convex, formally meaning that a line connecting

points on the graph of the cost function can fall below the graph, and intuitively

meaning that there can be several local minima that gradient descent optimization can

converge to resulting in non-unique predictions. However, we still solve the problem

using gradient descent with a random initialization; which is known to converge to

a local minimum with probability 1 [47]. A global minimum is not necessary at this

stage, since we use endmember fitting to provide a good initialization point for the

subsequent alternating minimization procedure introduced in the next section 4.1.3.
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4.1.3 Differentiable Programming for Spectral Unmixing

4.1.4 Analysis-by-Synthesis Optimization

In Figure 4.4, we show our full end-to-end spectral unmixing pipeline. Here,

εmodel(Λ;ω), which is initially fit to εmeasured, is then aggregated into the columns

of A. Then, the observed spectra b is linearly unmixed by solving a regularized

least-squares optimization: argminx‖b − Ax‖22 + λ‖x‖p subject to sum-to-one and

non-negativity constraints ‖x‖1 = 1,x ≥ 0. Given these constraints, one cannot

impose sparsity with the usual L1 norm. Instead, we use the Lp norm to induce

sparsity for the predicted abundances; this has been proposed before for spectral

unmixing [14].

The key to our pipeline is that everything is fully differentiable, and thus we can

actually minimize the following equation:

arg min
x,Λ∈[Λmin,Λmax]

‖b−A(Λ)x‖22 + λ‖x‖p such that ‖x‖1 = 1,x ≥ 0. (4.7)

with respect to both the parameters of the dispersion model Λ and the abundances

x. This gives us our recipe for hyperspectral unmixing: first, perform endmember

fitting to initialize A(Λ), then, solve Equation 4.7 in an alternating fashion for x and

Λ. One could also solve this equation jointly for both unknowns, however, we found

that the alternating optimization was faster and converged to better results.

The optimization problem established in equation (4.7) is an alternating minimiza-

tion problem and is unfortunately not convex [41]. One popular approach to tackle

nonconvex problems is to find a good initialization point [24, 8], and then execute

a form of gradient descent. Inspired by this, we first initialize A(Λ) by performing

endmember fitting using Equation 4.6 as described in Section 4.1.1. Our experiments

indicate that this provides a useful initialization for our subsequent step. We then
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perform alternating minimization on Equation 4.7 for x and Λ. For more details on

this, we refer the reader to Appendix C where we discuss on the properties of A(Λ)

across multiple runs and how they relate to the convergence of the optimization.

In the ideal scenario, this initial matrix A(Λ) would consist of the endmember

spectra that fully characterizes the mixed spectra b. However, since spectra for similar

materials can significantly vary [55, 65, 60, 61, 12, 70] (see Figure 4.1), the initializa-

tion can be slightly off and we follow up with (4.7) to obtain a better fit. Note that this

optimization problem is solving for the maximum likelihood estimator under a Gaus-

sian noise model. Our optimization technique is performing analysis-by-synthesis, as

given a single observation b, the dispersion model synthesizes endmember variation

until a good fit is achieved.

4.1.5 Inverse Rendering of Dispersion Model Parameters

The previous analysis-by-synthesis optimization does not require training data in

order to perform spectral unmixing. However, there is room for even more improve-

ment by using labeled data to help improve the parameter fitting of the model in the

synthesis step. We train a CNN to predict the parameters for a generative model,

known as inverse rendering in other domains [78]. In Figure 4.5, we show this inverse

rendering conceptually, and how it can be fed into our differentiable programming

pipeline for end-to-end spectral unmixing.

Our CNN architecture consists of convolutional layers followed by a series of fully-

connected layers. Using a CNN for inverse rendering is significantly faster at test

time as compared to the analysis-by-synthesis optimization. However, it does have a

drawback of requiring training data which is unavailable for certain tasks/datasets.
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Figure 4.5: Inverse Rendering: A CNN is trained to “inversely render” pixels of

the hyperspectral image, by predicting both the dispersion parameters that control

the spectral variability, and the abundances that control the mixing model. During

training, the reconstruction error is back-propagated through the differentiable dis-

persion model to boost the performance of the network at making physically realistic

predictions.

4.2 Implementation Details

Analysis-by-Synthesis Optimization: For analysis-by-synthesis, the sparse

regularization was set with p = 0.95 and λp = 0.0001. Dispersion parameters were

constrained within a tolerance of their initial conditions with ρtol = 0.05, γtol = 0.005,

εtol = 0.001, and ωtol = 0.0001. On the Gulfport datasets γtol and εtol were increased

to 0.05 to compensate for increased variation. Analysis-by-Synthesis alternates be-

tween finding optimal abundances (solving a regularized least squares problem), and

updating the dispersion parameters for 100 iterations using the Adam optimizer with

learning rate = 0.01, betas = (0.9, 0.999), and weight decay = 0.

Inverse Rendering CNN Architecture: The input to the inverse rendering

CNN is the spectrum (or batch of spectra). There are four convolutional layers with

alternating 1x5 and 1x4 kernels and a depth of 3, 6, 12, and 24 kernels in each layer

respectively. The convolutional layers also have a rectified linear unit (ReLU) activa-
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tions and the last 2 layers have a 1x2 maxpooling layer. The convolutional layers are

followed by fully connected layers with 150 hidden units. The final fully connected

layer has enough units for the amount of dispersion parameters and abundances de-

pending on the size of the endmember library and number of dispersion parameters

per endmember. Then, the dispersion parameters are used to render endmember

spectra and the mixture is reconstructed under the linear mixing model with the

predicted abundances as inputs. The network only needs the input spectra and the

abundances as inputs for training, as the reconstruction error of the spectra is used to

back-propagated through the differentiable dispersion model to teach the network to

predict good dispersion parameters. Real data (when available) and synthetic data

(around 50,000 samples) are used to train the network, which converges after about

100 epochs. An Adam optimizer is used with learning rate set to 1e-3, betas set to

(0.9, 0.999), and weight decay set to 0.

4.2.1 Baseline Methods

We compare against several state-of-the-art baselines in the literature. The ba-

sic linear unmixing algorithm is Fully Constrained Least Squares (FCLS) [36] which

solves least squares with sum-to-one and non-negativity constraints on the abun-

dances. We also implement two state-of-the-art statistical methods for modelling

endmember variability as distributions: the Normal Compositional Model (NCM) [68]

and the Beta Compositional Model (BCM) [23]. NCM and BCM use a Gaussian and

Beta distribution respectively, perform expectation-maximization for unmixing, and

require a small amount of training data to determine model parameters.

We also compare against two state-of-the-art deep learning networks by Zhang et

al. [84]. The first network utilizes a 1D CNN (CNN-1D) architecture, while the second

network utilizes a 3D CNN (but with 1D convolutional kernels) (CNN-3D). CNN-3D is
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only applicable to datasets with spatial information, and not testable on the Feely and

Gulfport synthetic data. We further created a modified CNN architecture (CNN-1D

Modified) to maximize the performance on our datasets by changing the loss function

to MSE, removing max-pooling layers, and adding an additional fully connected layer

before the output.

Fully Constrained Least Squares: We compare against Fully Constrained

Least Squares (FCLS) [36] which is a popular classical unmixing algorithm. FCLS

solves for the the (aerial) abundances, x: x̂ = arg minx ||b−Ax||22 subject to ||x||1 =

1,x ≥ 0. The constraints, referred to as the sum-to-one constraint and the non-

negativity constraint, are enforced since abundances are interpreted as percentages.

Normal Compositional Model: The Normal Compositional Model (NCM) [68]

is one of the most popular methods for modelling endmember variability via statistical

methods. The method requires a small amount of training data (roughly 50 samples

per endmember) to learn the mean and variance of reflectivity (or emissivity) of each

spectral band, and modelling the variation as a Gaussian distribution. During unmix-

ing, Expectation Maximization is used to simultaneously learn the abundances and

the endmember variation, subject to the abundance sum-to-one and non-negativity

constraints.

The NCM is run using the Matlab code provided by Du et al. [23]. Training data

of about 50 samples of endmember variation were provided to the NCM for each

dataset. There are no hyperparameters needed for this method.

Beta Compositional Model: The Beta Compositional Model (BCM) [23] is a

more recent method for modelling spectral variability via a statistical method. Similar

to the NCM, a small amount of training data are used to learn the beta parameters

of each spectral band, and an Expectation Maximization algorithm is used during

unmixing. The beta parameters allow each spectral band to be modelled as a more
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complex distribution than the NCM and has been shown to increase performance. The

BCM is run using the Matlab code provided by Du et al. [23]. Training data of about

50 samples of endmember variation were provided to the BCM for each dataset. For

datasets without sufficient endmember samples, we generated synthetic endmember

variation with the dispersion model. We search for the optimal hyperparameters

through repeated experiments and report the best results. The optimal BCM across

all datasets was run with K = 3, σV = 100, and σM = 0.001.

CNN-1D Architecture: A 1x1 hyperspectral pixel is input into the network,

four convolutional layers with alternating 1x5 and 1x4 kernels and a depth of 3, 6,

12, and 24 kernels in each layer respectively. All convolutional layers have ReLU

activations a 1x2 maxpooling layer. The convolutional layers are followed by a fully

connected layer with 150 hidden units, and an output fully connected layer with a

size that depends on the number of abundances. Normalization is used to enforce

the abundance sum-to-one constraint and the ReLU activation enforces the non-

negativity constraint. The CNN is trained to minimize the log loss between the

predicted and ground truth abundances. The network converges in about 100 epochs

with a learning rate of 1e-3.

CNN-3D Architecture: CNN-3D has an almost identical architecture, although

it accepts a 3x3 set of pixels at the input. Although a spatial dimension exists at

the input, the convolutions only occur in the spectral dimension. four convolutional

layers with alternating 1x5 and 1x4 kernels and a depth of 16, 32, 64, and 128 kernels

in each layer respectively. The convolutional layers are followed by a fully connected

layer with 150 hidden units, and an output fully connected layer with a size that

depends on the number of abundances.

The output abundances are then normalized to enforce the abundance sum-to-

one constraint and the ReLU activation of the artificial neurons enforces the non-
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negativity constraint. The CNN is trained to minimize the log loss between the

predicted and ground truth abundances. The network converges in about 100 epochs

with a learning rate of 1e-3.

CNN-1D Modified Architecture: Finally, a modified version of CNN-1D is

baselined against to try to find the optimal architecture for performance on our

datasets. The first 2 max-pooling layers are removed, an additional hidden fully

connected layer with 150 units is added before the output, and a softmax operation is

applied to the output to enforce the abundance sum-to-one constraint. The network

is trained to minimize the mean squared error between the predicted and ground

truth abundances. The network converges in 100 epochs with a learning rate of 1e-3.

4.3 Experimental Results

4.3.1 Datasets

We utilize three separate datasets to validate our spectral unmixing algorithms.

In Figure 4.6, we visually represent these datasets and their exemplar data.

Feely Dataset: We utilize 90 samples from the Feely et al. dataset [28] of thermal

emission spectra in the infrared for various minerals measured in the lab. Ground

truth was determined via optical petrography [28], and a labeled endmember library

is provided. The limited amount of data is challenging for machine learning methods,

so we utilize the dispersion model to generate 50,000 additional synthetic spectra for

dataset augmentation. Note that ground truth for this dataset has about 5% error in

each abundance prediction since the optical petrography method is prone to human

error.

Gulfport Dataset: The Gulfport dataset from Gader et al. [29] contains hy-

perspectral aerial images in the VNIR along with ground truth classification labels

41



segmenting pixels into land types (e.g. grass, road, building). Although the dataset

is for spectral classification, it can also be used to benchmark unmixing algorithms

by creating synthetic mixtures of pure pixels from the Gulfport dataset with random

abundances as done by [23, 86]. We perform both spectral classification (Gulfport)

and unmixing (Gulfport synthetic) tasks in our testing. Both datasets are split into

a train and test set (although some methods do not require training data), and the

training data are augmented with 50,000 synthetically generated mixtures from the

dispersion model.

One main difficulty of this dataset is the endmembers identified correspond to

coarse materials such as grass and road as opposed to pure materials. Such endmem-

bers can significantly vary across multiple pixels, but this spectral variation is not

physically described by the dispersion model. To solve this problem, we utilize K-

means clustering to learn examplar endmembers for each category (e.g. grass, road,

etc). Then the resulting centroid endmember can be fit to the dispersion model to

allow further variation such as absorption band shifts in the spectra. We found that

K = 5 worked the best for the Gulfport dataset.

TES Martian Dataset: The Thermal Emission Spectrometer (TES) [20] uses

Fourier Transform Infrared Spectroscopy to measure the Martian surface. We utilize

pre-processing from Bandfield et al. [2], and the endmember library used by Rogers

et al. to analyze Mars TES data [27]. There is no ground truth for this dataset, as

the true abundance of minerals on the Martian surface is unknown, so other metrics

such as reconstruction error of the spectra are considered.

4.3.2 Endmember Fitting Results

To bootstrap both the analysis-by-synthesis and inverse rendering algorithms,

good initial conditions for the dispersion parameters need to be input to the model.
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Figure 4.6: Datasets: This figure shows representative data and instrumentation for

the three datasets considered in this chapter. Data includes laboratory, aircraft, and

satellite measurements, and ground truth ranges from detailed abundance analysis

under a microscope (Feely [28]) to pure pixel labels of land type for spectral classifi-

cation (Gulfport [29]) to no ground truth for the Martian data (TES [20]).

Determining dispersion parameters typically required detailed molecular structure

analysis or exhaustive parameter searching methods [67, 76, 48]. One main advantage

of our method is that we utilize gradient descent to efficiently find parameter sets for

different materials. In Appendix B, we share some of these parameter sets.

In Figure 4.7, we show qualitative results of our endmember fitting by minimizing

the loss in Equation 4.6 using gradient descent. The reconstructed spectra achieves a

low MSE with the measured spectra with an average MSE of 0.016 for the TES library,

0.0019 for the Feely library, and an MSE of 2.6e-5 on the Gulfport cluster centroids.

Note that there is noise in the measurements, and so MSE is not an absolute metric

of the fit to the true unknown spectra.
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Figure 4.7: Endmember Fitting: (Left) Measured and modelled spectra for a quartz

sample in the IR. (Right) Cluster centroids found for pixels labelled as grass in the

Gulfport dataset, and the model fit to these centroids. Note the high fidelity of fit

via the dispersion model for both these cases.

Table 4.1: Spectral Variation Results: Mean squared error of the abundance predic-

tions vs. ground truth for Feely, Gulfport, and Gulfport synthetic datasets. The bold

entries indicate top performance.

Dataset FCLS

[36]

NCM

[68]

BCM

[23]

CNN-

1D

[84]

CNN-

3D

[84]

CNN-1D

Modified

Analysis-

by-

synthesis

Inverse

Rendering

Feely

[28]

0.121 0.119 0.131 0.469 N/A 0.205 0.052 0.188

Gulfport

[29]

0.75 0.799 0.800 1.000 0.497 0.297 0.45 0.272

Gulfport

Synthetic

0.911 0.471 0.136 0.824 N/A 0.148 0.147 0.059
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4.3.3 Spectral Unmixing Results

In Table 4.1, we show results on the Feely, Gulfport, and the Gulfport synthetic

mixture datasets. For Feely, the analysis-by-synthesis method achieved a MSE of

0.052, with the next closest method (NCM) achieving 0.119. Due to the Feely dataset

only containing 90 test samples, the machine learning methods were trained on syn-

thetic data which explains their lower performance as data mismatch. Thus, the low

error of analysis-by-synthesis shows the utility of the dispersion model for modelling

endmember variability, particularly in cases with low training data.

For the Gulfport dataset, the task was to predict the material present since the

labeled data are for single coarse materials (e.g. road, grass, etc) at 100% abundance

per pixel. Here, the deep learning methods of CNNs and Inverse Rendering have

the highest performance. This is expected as there exists a large amount of training

data to learn from. Note that Inverse Rendering performs the best at 0.272 MSE,

demonstrating that the addition of a generative dispersion model to the output of

the CNN improves performance over purely learned approaches. Also note that our

analysis-by-synthesis method still has relatively high performance (0.45 MSE) without

using any training data at all.

For the Gulfport synthetic mixture dataset, Inverse Rendering achieves the lowest

MSE of 0.059, leveraging both physics-based modeling for spectral mixing as well as

learns from available training data. The BCM and the analysis-by-synthesis methods

both outperform the CNN methods, even though they do not have access to the train-

ing data. In fact, BCM even slightly outperforms the analysis-by-synthesis method,

which could be because the sources of variation in this data are well-described by

statistical distributions.

Speed of Methods: The additional capacity of adding statistical and physical
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models usually has a cost of speed in implementation. Averaged over 90 mixtures,

the convergence for a single operation was FCLS - 10ms, BCM - 1.23s, NCM - 18ms,

CNN - 33ms, Inverse Rendering - 39ms, and analysis-by-synthesis - 10.2s. Future work

could potentially increase the speed of analysis-by-synthesis with parallel processing.

4.3.4 Noise Analysis

Prior to spectral unmixing, emissivity is separated from radiance by dividing

out the black-body radiation curve at the estimated temperature [60, 21]. In gen-

eral, a Gaussian noise profile in the radiance space with variance σ2
radiance results in

wavenumber dependent noise source in the emissivity space with the profile σ2(ω) =

σ2
radiance · 1/B(ω, T ) where B is the black-body function given by Planck’s law. In our

noise experiments we use a black-body radiation curve for a 330K target, which is

the approximate temperature the Feely dataset samples were held at. In Figure 4.8

left, we see that the emissivity noise is higher where the radiance signal is lower.

We simulated varying the noise power to determine the methods’ robustness tested

on 30 samples from the Feely dataset. In Figure 4.8, you can see that analysis-by-

synthesis still has the best performance in the presence of noise, and is relatively

flat as noise increases compared to other methods. We note that statistical methods,

while having higher average error, seem to be robust to increased noise as they can

handle random perturbations of each spectral band statistically. CNN and Inverse

Rendering methods perform the worst for high noise, as these methods were trained

on data without noise.

4.3.5 Producing Mars Abundance Maps

The Mars TES data were unmixed using our analysis-by-synthesis method to

demonstrate it’s utility on tasks where zero training data are available. The method
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Figure 4.8: Noise Sweep: The left plot shows the radiance profile of a spectra per-

turbed by Gaussian noise and the resulting emissivity profile after separating out

the blackbody radiance. The right figure shows the robustness of the algorithms to

increasing amounts of noise.

produces mineral maps which correctly finds abundances of the mineral hematite

at Meridiani Planum in Figure 5.1. This is an important Martian mineral which

provides evidence for liquid water having existed at some point on Mars, and has

been verified by NASA’s Opportunity Rover [44]. Note how FCLS predicts many

sites for hematite, while our method narrows down potential sites on the Martian

surface, which is useful for planetary scientists. By allowing for spectral variation

through our physics-based approach, our method has lower RMS reconstruction error

than previous analysis of TES data. FCLS, which was previously used on TES because

of the zero training-data problem, has an average RMS reconstruction error of 0.0043

while analysis-by-synthesis has an average of 0.0038. This is an exciting result as

our methods could provide a new suite of hyperspectral analysis tools for scientists

studying the Martian surface.
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Figure 4.9: Martian Surface Hematite Map: The figure shows a mineral map of

hematite on the Martian surface produced by FCLS (top) and analysis-by-synthesis

(bottom) using TES data. Both algorithms find the deposit of hematite on Meridiani

Planum, as expected, but analysis-by-synthesis predicts a sparser map which matches

expectation of mineral distributions. Note that these are preliminary maps and should

be inspected by geoscientists who can tune the sparse regularization and dispersion

parameter constraints to better match the expected mineral distributions.
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4.4 Discussion

This chapter incorporated generative physics models into spectral unmixing algo-

rithms via differentiable programming. We adopt a physics-based dispersion model

to simulate spectral variability, and show how this model can realistically fit several

real measured spectra via gradient descent. We further show how to jointly optimize

for the dispersion parameters and material abundances with an analysis-by-synthesis

optimization. A second algorithm is introduced for tasks where additional data is

available by training a CNN to “Inversely Render” a hyperspectral image with the

differentiable dispersion model in the loop.

We validate these contributions extensively on three datasets ranging from mid

to far IR and VNIR, and compared against state-of-the-art optimization, statistical

and deep learning benchmarks. From these experiments we observe that analysis-

by-synthesis has the best performance when training data is not available, and that

Inverse Rendering has the best performance when training data is available. We also

see that analysis-by-synthesis is noise resilient, and reconstructs Mars spectra with

lower error than previous techniques.

There are still limitations for the methods proposed. First, analysis-by-synthesis

has a large computational cost compared to other methods, although this could be

mitigated through parallelization of the algorithm. Secondly, the spectral unmixing

community is limited by the training data available. This is difficult to overcome,

because it is expensive to produce quality datasets. Future work could investigate

generating realistic synthetic data suitable for training machine learning based al-

gorithms for better performance. We hope that this work using generative physics

based models inspires others to produce work on realistic synthetic data as well as

differentiable programming methods which require low training data.
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Chapter 5

CONCLUSION

In this thesis we explored methods to encode physical realism into spectral unmix-

ing. Sparse regularization and constraints are used to guide the algorithm to produce

believable abundance maps. We compare several existing sparse regularization tech-

niques and show that the Lp norm produces the lowest error. Then, we address the

problem of spectral variability from a physics-based approach by allowing absorp-

tion bands to shift in strength, shape, and frequency. This is accomplished by using

the Lorentz-Lorenz dispersion model to render spectra, with variation in absorption

bands controlled by dispersion parameters. The model is fit to several real spectral

measurements via an efficient gradient descent optimization. Then, an analysis-by-

synthesis optimization approach is used to jointly optimize the dispersion parameters

(allowing absorption bands to shift) and the pure material abundances. We introduce

a second algorithm that trains a CNN to “inversely render” a hyperspectral image,

which improves performance and speed when training data is available. All of the

the algorithms, constraints, and regularization terms are implemented by differen-

tiable terms that use the gradient to produce optimal results. This central theme of

differentiable programming was successful on incorporating physical knowledge into

optimization and machine learning based techniques for spectral unmixing.

We validated our methods on four datasets ranging from synthetic, laboratory,

aircraft, and satellite-based spectroscopy. The datasets also covered two important

regions of spectroscopy for thermal infrared emissions and visual-to-near-infrared re-

flected solar spectroscopy. We compared against several optimization, statistical and

deep learning benchmarks and achieve state-of-the-art performance by reducing error
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and producing sparser abundance maps of Mars with lower reconstruction error. Our

experiments were limited to datasets where the linear mixing model was assumed. In

the future, work could be done to tie these sparse regularization and spectral variation

techniques into non-linear unmixing algorithms.

Differentiable programming is a promising area for many fields, including remote

sensing and hyperspectral imaging. Since the physical concepts that model the jour-

ney of a photon as it is emitted, reflected, scattered, absorbed, and ultimately ob-

served are well understood, it makes sense to build this knowledge into our algorithms.

Still, the amount of information we observe could become dwarfed by the amount of

parameters in a full physical simulation, which is a recipe for an under-determined

system and non-unique solutions. Of course, if the physical world really does have all

of those parameters then the exact interactions of the photons may be too complex

to identify uniquely. The options would be to observe more information by increasing

spectral resolution/combining observations together or to make prior assumptions to

simplify the amount of unknowns. The method of combining several observations

could be as simple as including spatial information from adjacent pixels in the anal-

ysis, which would be an interesting area for future work. This is a promising avenue

to explore as spatial information from adjacent pixels has greatly improved other

computer vision tasks such as detecting objects with spatial-convolutional filters.

The method of encoding prior knowledge by making assumptions is tricky, and

sometimes we do not realize the assumptions we are making. For example, when

we use a simplified physical model, such as linear unmixing (without spectral vari-

ability/regularization), it may seem advantageous that the system becomes over-

determined and there are unique solutions promised. However, linear unmixing is

actually making very strong assumptions that there are no non-linear effects and

that the endmember library exactly matches the spectra of the pure materials in the
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target sample (no spectral variation). In reality, there is spectral variation, and lin-

ear unmixing is just making hard coded assumptions on these parameters which can

lead to errors. Another method of encoding prior knowledge is through constraints

and regularization. Sparse regularization has made amazing contributions to other

fields such as compressed sensing by showing that unique solutions can exist for some

underdetermined systems if sparsity is encoded into the algorithm. Although we do

not claim that our sparse prior guarantees uniqueness, the experimental evidence

showed that regularization and differentiable physical models gave complementary

performance benefits.

We hope that this work inspires geoscientists and other remote sensing analysts to

use our tools to improve the accuracy of their results. There could even be additional

science done by analyzing the physically plausible spectral variation predicted for the

pure materials in target mixtures. The spectral variation of the material gives clues

about it’s exact composition, and the history of the geological processes that formed

it. This could be particularly interesting in the study of planets other than our own,

such as Mars, where the spectral variation might not match anything we have seen

on Earth and could be a telling sign of an important geological process.

We also hope that the central idea of blending physical models with optimization

and machine learning algorithms inspires future innovations in hyperspectral unmix-

ing, and computer vision in general. With recent advance in automatic differentiation,

it is now convenient to make complex physical models differentiable. There is also

an underlying problem in machine learning for remote sensing because of the lack of

datasets labelled by experts rather than algorithms. This is hard for the remote sens-

ing community because experts themselves do not know how to label data without

further analysis from their algorithms. Unless the algorithm was flawless, training

supervised algorithms with this type of data would be unreliable. So, there is clearly

52



Figure 5.1: Solving for Spectral Variation: The analysis-by-synthesis algorithm is ini-

tialized with dispersion parameters that fit Quartz and Olivine Fo60. Then a synthetic

target mixture is generated with 60% Olivine Fo35 (which does not match the Fo60

endmember) and 40% Quartz (Which does match the endmember). The analysis-by-

synthesis algorithm finds the abundances and updates the dispersion parameters to

find the best fit to the target mixture (bottom). Interestingly, after performing the

optimization the predicted endmember spectra (top) better fits the real endmember,

Olivine Fo35. This is promising that analysis-by-synthesis with the dispersion model

could be used to predict the real endmember variation present in an unknown spectra.

a need for physics-based solutions to produce algorithms that provide good results

without the need for training data. Also, physics-based simulations could possibly

produce synthetic data which is reliable enough to train machine learning algorithms.

It is an exciting period of time when physics-driven and data-driven methods are

bridging together and we are eager to see where this research area goes.
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In this appendix, we derive the dispersion model from first principles, modeling
the generation of spectral radiance as a sum of mass-spring oscillations driven by an
electromagnetic wave. This induces changes in the index of refraction, which governs
the reflectance of the material with respect to light wavelength/frequency. This is
based on earlier work by Garbuny and by Spitzer et al. [30, 67].

We first start with the equation for a mass-spring oscillator driven by an external
force:

F = m
d2x

dt2
+R

dx

dt
+G · x(t). (A.1)

For a charged particle, F = qE, where q is charge and E = E0e
iωt for a propagating

electromagnetic wave. Thus we can substitute these in to get:

F = qE0e
iωt = m

d2x

dt2
+R

dx

dt
+G · x(t) (A.2)

which has the solution:

x =
qE0e

iωt

m

1
G
m
− ω2 + iR

m
ω

=
qE0e

iωt

m

1

ω2
0 − ω2 + iγω

. (A.3)

where ω2
0 = G/m and γ = R/m.

At the same time, we can also relate x to E via the band strength:

x =
αE

q
(A.4)

where α is the polarizability. Using the identity ε = 1 + 4πα, we can derive the
following band strength equation:

x =
(ε− 1)E0e

iωt

4πq
. (A.5)

Combining Eq. A.3 and Eq. A.5, we get

(ε− 1)E0e
iωt

4πq
=
qE0e

iωt

m

1

ω2
0 − ω2 + iγω

. (A.6)

Solving for ε:

ε =
4πq2

m

1

ω2
0 − ω2 + iγω

+ 1. (A.7)

Relating ε to the refractive index, εµ = n̂2 where µ = 1 and n̂ = n− ik, we get

ε = (n− ik)2 = n2 − k2 − 2nki =
4πq2

m

1

ω2
0 − ω2 + iγω

+ 1 (A.8)

This yields the refractive index equations:

n2 − k2 =
4πq2

m

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

+ 1 (A.9)
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2nk =
4πq2

m

γω

(ω2
0 − ω2)2 + γ2ω2

. (A.10)

Using the Lorentz-Lorenz formula, we can get

n̂2 = 1 +
4πq2

m

1

ω2
1 − ω2 + iγω

(A.11)

where ω2
1 = ω2

0 −
4πq2

3m
where ω1 < ω0. So plugging in ω1 for ω0 yields:

n2 − k2 =
4πq2

m

ω2
1 − ω2

(ω2
1 − ω2)2 + γ2ω2

+ 1 (A.12)

2nk =
4πq2

m

γω

(ω2
1 − ω2)2 + γ2ω2

. (A.13)

This entire derivation was for a single oscillator, but in practice, there are multiple
oscillators that interact. We write this as a linear superposition given as follows:

n2 − k2 = εr +
∑
i

4πq2fi
mi

ω2
i − ω2

(ω2
i − ω2)2 + γ2i ω

2
(A.14)

2nk =
∑
i

4πq2fi
mi

γiω

(ω2
i − ω2)2 + γ2i ω

2
. (A.15)

where fi is the strength of each individual oscillator. Using these equations, we
have two equations for two unknowns (n and k), which we showed in Section 4.1.1 of
Chapter 4 is the basis of calculating reflectance and emission.
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The importance of initializing the alternating optimization with good initial dis-
persion parameters was emphasized in Chapter 4, as the problem is non-convex and
good initialization is essential. It also makes intuitive sense to initialize with pa-
rameters fit to an endmember sample to give physical significance to the generated
spectra. As shown in the results of Chapter 4, we achieve good fits with low MSE
on endmember libraries used to analyze the Martian surface as well as a semi-urban
university scene. The endmember libraries used to fit the minerals to analyze the
Mars TES data are of high quality from the Arizona State University Thermal Emis-
sion Spectral Library [19]. The resulting parameters from a few of the important
materials from this endmember library are provided in the following tables. The re-
maining dispersion parameters are available in the project repository folder named
dispersionParameters.

Table B.1: Olivine Parameters: Dispersion parameters found for Olivine Fo10

Axis Index ω0 γ ρ εr
0 0 258.45 0.018 0.022 1.07
0 1 272.71 0.038 0.070 1.07
0 2 285.33 0.027 0.035 1.07
0 3 340.81 0.021 0.015 1.07
0 4 361.06 0.067 0.187 1.07
0 5 467.03 0.060 0.091 1.07
0 6 589.36 0.032 0.043 1.07
0 7 826.60 0.011 0.015 1.07
0 8 863.05 0.030 0.083 1.07
0 9 934.94 0.018 0.038 1.07
0 10 1068.56 0.009 0.001 1.07
0 11 1349.50 0.043 0.009 1.07
0 12 1400.46 0.057 0.026 1.07
0 13 1452.82 0.064 0.020 1.07
0 14 1518.96 0.079 0.025 1.07
0 15 1597.62 0.018 0.001 1.07
0 16 1694.56 0.043 0.007 1.07
0 17 1794.69 0.032 0.002 1.07
0 18 1837.96 0.009 0.001 1.07
0 19 1934.50 0.056 0.020 1.07
1 0 293.77 0.042 0.240 1.99
1 1 303.28 0.058 0.263 1.99
1 2 317.16 0.137 0.356 1.99
1 3 473.47 0.006 0.002 1.99
1 4 496.39 0.029 0.030 1.99
1 5 504.45 0.062 0.302 1.99
1 6 562.92 0.055 0.057 1.99
1 7 577.32 0.027 0.008 1.99
1 8 891.85 0.023 0.189 1.99
1 9 990.28 0.047 0.086 1.99
1 10 1108.25 0.023 0.006 1.99
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Table B.2: Biotite Parameters: Dispersion parameters found for Biotite

Axis Index ω0 γ ρ εr
0 0 235.91 0.066 0.2343 1.31
0 1 432.39 0.056 0.4040 1.31
0 2 439.80 0.039 0.4131 1.31
0 3 446.34 0.014 0.0385 1.31
0 4 451.92 0.042 0.4797 1.31
0 5 594.57 0.073 0.0147 1.31
0 6 954.50 0.036 0.2510 1.31
0 7 1008.94 0.014 0.0578 1.31
0 8 1013.39 0.017 0.0184 1.31
0 9 1041.20 0.048 0.0178 1.31
0 10 1075.68 0.025 0.0198 1.31
0 11 1116.66 0.007 0.0003 1.31
0 12 1152.61 0.019 0.0012 1.31
0 13 1390.98 0.044 0.0177 1.31
0 14 1460.91 0.061 0.0280 1.31
0 15 1524.44 0.065 0.0676 1.31
0 16 1629.72 0.025 0.0271 1.31
0 17 1661.44 0.007 0.0034 1.31
0 18 1687.84 0.068 0.0723 1.31
0 19 1772.30 0.074 0.0877 1.31
0 20 1813.27 0.006 0.0009 1.31
0 21 1865.48 0.064 0.0731 1.31
0 22 1964.44 0.055 0.0131 1.31
1 0 268.77 0.073 0.4634 2.61
1 1 294.51 0.045 0.1965 2.61
1 2 313.92 0.064 0.3242 2.61
1 3 337.12 0.093 0.4930 2.61
1 4 362.24 0.062 0.1954 2.61
1 5 400.00 0.209 0.5174 2.61
1 6 462.66 0.065 0.4399 2.61
1 7 492.95 0.080 0.3498 2.61
1 8 510.47 0.061 0.0664 2.61
1 9 653.21 0.078 0.0611 2.61
1 10 718.49 0.040 0.0331 2.61
1 11 873.68 0.115 0.3343 2.61
1 12 928.32 0.048 0.0488 2.61
1 13 991.97 0.015 0.3550 2.61
1 14 1588.86 0.040 0.0607 2.61
1 15 1963.15 0.004 0.0023 2.61
1 16 1989.53 0.001 0.0002 2.61
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Table B.3: Hematite Parameters: Dispersion parameters found for Hematite

Axis Index ω0 γ ρ εr
0 0 258.29 0.11 0.110 1.27
0 1 279.35 0.13 0.141 1.27
0 2 294.73 0.11 0.149 1.27
0 3 335.86 0.08 0.130 1.27
0 4 471.32 0.07 0.098 1.27
0 5 526.58 0.05 0.029 1.27
0 6 543.94 0.07 0.062 1.27
0 7 563.14 0.08 0.067 1.27
0 8 609.37 0.04 0.041 1.27
0 9 619.61 0.04 0.041 1.27
0 10 632.43 0.07 0.067 1.27
0 11 654.46 0.09 0.054 1.27
0 12 686.74 0.12 0.038 1.27
0 13 798.98 0.04 0.011 1.27
0 14 890.21 0.03 0.009 1.27
0 15 916.82 0.02 0.005 1.27
0 16 958.26 0.04 0.014 1.27
0 17 1002.55 0.04 0.010 1.27
0 18 1100.72 0.03 0.022 1.27
0 19 1167.07 0.02 0.010 1.27
0 20 1238.37 0.01 0.005 1.27
0 21 1282.36 0.03 0.019 1.27
1 0 234.31 0.02 0.007 1.25
1 1 238.56 0.06 0.031 1.25
1 2 312.13 0.09 0.255 1.25
1 3 356.47 0.04 0.032 1.25
1 4 430.53 0.09 0.085 1.25
1 5 444.75 0.06 0.032 1.25
1 6 457.95 0.04 0.011 1.25
1 7 486.07 0.03 0.019 1.25
1 8 577.56 0.08 0.160 1.25
1 9 727.69 0.06 0.049 1.25
1 10 748.13 0.07 0.040 1.25
1 11 773.90 0.06 0.013 1.25
1 12 1049.92 0.10 0.058 1.25
1 13 1069.60 0.01 0.003 1.25
1 14 1140.36 0.02 0.012 1.25
1 15 1197.28 0.04 0.022 1.25
1 16 1256.54 0.02 0.010 1.25
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APPENDIX C

ALTERNATING OPTIMIZATION CONVERGENCE
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Our ultimate goal is to solve the spectral unmixing problem which can be formu-
lated as minA,x ‖b−Ax‖22, where the minimization occurs over both the matrix A
and the unmixing vector x. This is a standard case of alternate minimization which
is known to be nonconvex [41]. In practice, alternating minimzation are particularly
hard to tackle due to the presence of suboptimal local minimas. Recent progress
on tackling nonconvex problems involves either characterizing the optimization land-
scape [31, 71, 69] or providing initialization to descent algorithms [8, 15] to assure
convergence to the global optimum. It is known that gradient descent applied to
alternate minimization problem faces the issue of getting stuck at local minimas [41]
and hence initialization plays an important role in solving Equation 7 in Chapter 4.
With that in mind, we provide a mechanism to provide good initialization to gradient
descent algorithm with the hope of tackling the alternating minimization problem
effectively.

Initialization using dictionary A(εmodel): We investigate the properties of matrix
A as relates to the convergence of the alternating optimization. We denote the mea-
sured the emissivity spectrum of various materials in the lab as εmeasured, and the
physics-based dispersion model as εmodel. We then use these emissivity spectrum to
construct a dictionary A(ε) which servers as the initialization for A in the alternating
minimization approach in Equation 7 of Chapter 4. The intuition behind this revolves
around the ability of matrix A as a dictionary of known emissivity spectra and we
expect that the unknown spectra εunknown would be described as a linear combination
of columns from matrix A.

Consider the following subproblem of the alternating minimization:

min
x
‖b−A(Λ)x‖22

without the regularization terms. In order to ensure the uniqueness of the solution x∗,
we need to ensure that the matrix A is full rank. The rate of convergence for the above
minimization is inversely dependent on the condition number of the matrix A(Λ).
While it is difficult to analyze this matrix analytically, we perform an experimental
characterization of the rank, condition number, and eigenvalues of the matrix for
several different runs of the optimization algorithm with random initializations.

From the plots, we can note that the matrix A(Λ) has full rank with condition
number of around 6000. The minimum and maximum eigenvalues are not showing
drastic difference which goes well with our motive to incorporate small changes using
alternate minimization to fit the spectral differences due to geographic differences.
The high condition number is the reason for the relatively slow performance for run-
ning the alternating minimization framework, with our method taking tens of seconds
to converge.
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(a) Rank of A across runs (b) Condition number of A across runs

(c) Max eigenvalue of A across runs (d) Min eigenvalue of A across runs

Figure C.1: Condition Number Behavior: The endmember library A behavior is
plotted while the dispersion parameters are optimized during end-to-end spectral
unmixing of a random observation.

Figure C.2: Eigenvalue Distribution: The endmember library A eigenvalue distri-
bution is plotted while the dispersion parameters are optimized during end-to-end
spectral unmixing of a random observation.
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APPENDIX D

ADDITIONAL RESULTS
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Some mineral maps produced using analysis-by-synthesis on the Mars TES data
are shown in Figures D.1. - D.6 Additional mineral maps and numerical abundance
files are located in the project repository. Code to reproduce all experiments is also
uploaded to the project repository with instructions on how to use the code and apply
the algorithm to new datasets. Additional results such as saved experiment perfor-
mance metrics and dispersion parameters are also located in the project repository.
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Figure D.1: Mineral Maps 1
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Figure D.2: Mineral Maps 2

74



Figure D.3: Mineral Maps 3
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Figure D.4: Mineral Maps 4
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Figure D.5: Mineral Maps 5
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Figure D.6: Mineral Maps 6
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