
A Novel Location-Allocation-Routing Model

for Siting Multiple Recharging Points

on the Continuous Network Space

by

Yazhu Song

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree of

Doctor of Philosophy

Approved January 2020 by the
Graduate Supervisory Committee:

Pitu Mirchandani, Chair

Teresa Wu
Jorge Sefair

Arunabha Sen

ARIZONA STATE UNIVERSITY

May 2020

i

ABSTRACT

Due to environmental and geopolitical reasons, many countries are embracing

electric vehicles (EVs) as an alternative to gasoline powered automobiles. Other

alternative-fuel vehicles (AFVs) powered by compressed gas, hydrogen or biodiesel

have also been tested for replacing gasoline powered vehicles. However, since the

associated refueling infrastructure of AFVs is sparse and is gradually being built,

the distance between recharging points (RPs) becomes a crucial prohibitive attribute

in attracting drivers to use such vehicles. Optimally locating RPs will both increase

demand and help in developing the refueling infrastructure.

The major emphasis in this dissertation is the development of theories and

associated algorithms for a new set of location problems defined on continuous

network space related to siting multiple RPs for range limited vehicles.

This dissertation covers three optimization problems: locating multiple RPs

on a line network, locating multiple RPs on a comb tree network, and locating

multiple RPs on a general tree network. For each of the three problems, finding the

minimum number of RPs needed to refuel all Origin-Destination (O-D) flows is

considered as the first objective. For this minimum number, the location objective is

to locate this number of RPs to minimize weighted sum of the travelling distance for

all O-D flows. Different exact algorithms are proposed to solve each of the three

algorithms.

In the first part of this dissertation, the simplest case of locating RPs on a

line network is addressed. Scenarios include single one-way O-D pair, multiple one-

way O-D pairs, round trips, etc. A mixed integer program with linear constraints

and quartic objective function is formulated. A finite dominating set (FDS) is

ii

identified, and based on the existence of FDS, the problem is formulated as a

shortest path problem. In the second part, the problem is extended to comb tree

networks. Finally, the problem is extended to general tree networks. The extension

to a probabilistic version of the location problem is also addressed.

iii

DEDICATION

I dedicate this dissertation to my parents,

who have loved me so well for all these years.

Hi, Mom and Dad!

Sorry about that you cannot read English. Ha-ha.

But seriously, I love you.

iv

ACKNOWLEDGMENTS

 I wish to express my sincere gratitude to the members of my graduate

supervisory committee, Professor Pitu Mirchandani, Professor Jorge Sefair,

Professor Teresa Wu and Professor Arunabha Sen, for their time and guidance.

 I am deeply grateful for the guidance and mentorship provided by my

committee chair, Professor Pitu Mirchandani. From him I have learned much about

optimization, transportation science, and what is the right attitude towards

challenges in research as well as in life. To be honest, initially I hesitated to work on

this challenging research topic, since there was barely related work that has been

done and getting every new tiny result took me days, weeks or even months. But Dr.

Mirchandani kept encouraging me, “This is research, no wonder that you will

experience desperate times during your Ph.D. life. Hang in there!” Thank you for

your frank and powerful words. As I delved deeper into it, I have realized he

provided me with such a great interesting topic for my dissertation, which not only

contributes to location theory but also gives mathematics aesthetic pleasure. Thank

you! Your concern for my well-being was apparent all the way through.

 Thank you to my friends Xiushuang Li, Guanqi Fang, Yinlin Fu, Congzhe Su,

Xiaonan Liu, Kerem Demirtas, Gina Dumkrieger, Gita Ketut and Viswananth

Potluri.

 Finally, I am very grateful to my family for always supporting me,

encouraging me, and believing in me. My parents deserve the utmost appreciation.

Their constant and unwavering support helped me overcome all the difficulties I had

in my life so far. They have blessed me in more ways than I can tell.

v

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

CHAPTER

1. INTRODUCTION ... 1

1.1. Overview .. 1

1.2. Literature review .. 3

2. THE LINE PROBLEM ... 8

2.1. Problem with only one-way trips ... 8

2.1.1. Set of candidate sites ... 9

2.1.2. Minimum number of RPs needed .. 11

2.2. Round trip problem ... 14

2.2.1. Minimum number of RPs needed .. 14

2.2.2. Math programming formulation ... 21

2.2.3. Existence of finite dominating set ... 35

2.2.4. Solution Method ... 46

2.3. Conclusion ... 51

3. THE COMB TREE PROBLEM .. 52

3.1. Overview .. 52

3.2. Minimum number of RPs needed ... 55

 3.2.1. Step One --- Comb tree trimming... 55

vi

CHAPTER Page

3.2.2. Step Two --- A rightward pass and a leftward pass 59

3.2.3. Analyzing the algorithm .. 70

3.3. Math Programming Formulation ... 73

3.3.1. Properties of shortest refueling walk .. 73

3.3.2. A proposed math program ... 76

3.4. Existence of finite dominating set ... 79

3.4.1. Set of breakpoints .. 79

3.4.2. Restricted problem ... 82

3.5. Solution method .. 91

3.5.1. Network construction .. 91

3.5.2. Correctness ... 94

3.6. Conclusion ... 99

4. PROBABILISTIC LINE AND COMB PROBLEM .. 101

4.1. Overview .. 101

4.2. Minimum number of RPs needed ... 102

4.3. Find optimal RPs’ locations .. 110

4.4. Conclusion ... 113

5. THE GENERAL TREE PROBLEM ... 114

5.1. Overview .. 114

5.2. Problem on caterpillars and stars .. 114

5.3. Problem on general trees .. 116

5.4. Solution method .. 140

vii

CHAPTER Page

5.5. Conclusion ... 143

6. CONCLUSIONS AND FUTURE WORK .. 145

REFERENCES .. 147

viii

LIST OF TABLES

Table Page

1. Notation for FCLM ………..……………………………………………………........4

2. More Notation for FRLM…..…………………………………………………….......5

3. A Table of 𝕏𝕏𝑘𝑘+1……………………………..………………………………....………......84

ix

LIST OF FIGURES

Figure Page

2.1. A Line Road Network with 5 Nodes .. 9

2.2. A Simple Line Network for Example 2.1 ... 10

2.3. A Line Network for Example 2.2, Where 2 RPs Are Not Enough 15

2.4. Line Network for Example 2.3 ... 21

2.5. An Illustration for Case (a) 𝑟𝑟2 < 𝑑𝑑 ≤ 𝑟𝑟 .. 25

2.6. An Illustration for Case (b) .. 27

2.7. An Illustration for Sub-cases (b1), (b2) and (b3) ... 29

2.8. A Copy of Figure 2.4 ... 37

2.9. The Network Constructed for Example 2.5 ... 49

3.1. A Simple Example with a Small Tree ... 52

3.2. A Comb Tree ... 54

3.3. A Comb Tree with Three RPs .. 55

3.4. An Illustration for Trimming Procedure ... 56

3.5. Comb Tree Representation of O-D Nodes and Roads for Example 3.1 58

3.6. The Trimmed Comb Tree for Example 3.1 .. 58

3.7. (a) The Reachability Graph G~ Constructed on {v2, v3, v7}

 (b) The Bipartite Graph Constructed for Example 3.2 64

3.8. Illustrating the Rightward Pass .. 68

3.9. Localization Segments .. 70

3.10. Can the Greedy Algorithm’s 𝑙𝑙 + 1𝑡𝑡ℎ RP Be Established Closer to 𝑣𝑣0? 73

3.11. A Copy of Figure 3.8 ... 81

x

Figure Page

3.12. An Illustration of Non-convex Solution Space Resulting From ubk+1(x) = βk+1h

and ubk+1(x�) = αk+1h , Where x�k < xk = βkh ... 87

3.13. A Copy of Figure 3.6 ... 95

3.14. A Copy of Figure 3.8 ... 95

3.15. The Constructed Network, the Edges Weights Are Not Listed 96

3.16. A Subgraph of the Original Comb, Assuming That 𝓅𝓅2 Has Established at 8.3,

and 𝓅𝓅3 Has Been Established at 11 ... 97

3.17. A Meta-Network, Where 𝓅𝓅2 Has Been Established at 8.3, and 𝓅𝓅3 Has Been

Established at 11 ... 98

4.1. A Simple Line Network .. 101

4.2. A Copy of Figure 2.4 ... 102

4.3. The Constructed Network for Solving the SPP ... 112

5.1. An Example of a Caterpillar Tree .. 115

5.2. An Example of a Star ... 116

5.3. An Example of an Undirected Tree Network .. 117

5.4. Added RP Locations .. 119

5.5. After the Initial Trimming ... 120

5.6. A Portion of the Tree Network ... 123

5.7. The Star Network We Are Left With ... 123

5.8. The Product After Performing Step 2.2 ... 125

5.9. One Iteration of Step 2.3 .. 126

5.10. The Product After Performing Step 2.2 ... 127

xi

Figure Page

5.11. The Resulting Tree Network After Another Iteration of Step 2 127

5.12. Localization Tree for the Star Network in Figure 5.11 136

5.13. Localization Trees for the Tree Network in Figure 5.5 139

5.14. A Contraction Preprocessing Idea ... 139

1

CHAPTER 1

INTRODUCTION

1.1. Overview

 The environmental, geopolitical and financial implications of the global

dependence on oil are well known, and much is being done to lessen our use of fossil

fuels. Over the last few years, vehicles that are powered by electricity or other

alternative clean fuels have received increasing attention as an alternative to

traditional gasoline powered automobiles, since they could potentially to help reduce

the world’s consumption of non-renewable energy resources as well as decrease

consumers’ transportation costs. Whereas both automobile companies and

governments have been trying to incentivize the use of such vehicles, they are still

not widely accepted by the public. One of the primary reasons is that the associated

recharging/refueling infrastructure is sparse and is gradually being built, and,

hence, a driver has to deal with the “range anxiety”, that is, the fear of his/her

vehicle will run out of charge or fuel before reaching the destination. In this sense,

optimally locating recharging/refueling stations will both help market penetration of

such vehicles and help in developing the recharging/refueling infrastructure.

Hereon, we simply refer to recharging/refueling as ‘refueling’ for brevity.

 Suppose we wish to locate 𝑛𝑛 refueling points (RP) on a transportation

network where there are none currently. The problem of optimally locating such RPs

has been initially investigated by Kuby and his collaborators, e.g., Kuby and Lim

(2005), Kuby and Lim (2007), Upchurch et al. (2009), Lim and Kuby (2010), and

2

Capar et al. (2012). Typically, they use modifications of flow capturing or flow

interception models [Hodgson (1990), Berman et al. (1992), Rebello et al. (1995)], to

locate a given number of RPs chosen from a given discrete set of potential sites to

“cover” as many origin-destination (O-D) routes as possible, where covering an O-D

pair means there are paths between O and D so that a vehicle will not run out of

fuel.

 Taking a trip, especially one through sparsely populated areas, requires the

driver to plan where the vehicle will need to be refueled. Given the abundance of

gasoline stations for standard vehicles, a driver usually considers refueling only

when the fuel tank is low. In the case of range-limited vehicles (RLVs), planning

when to refuel is important, since there are few places to refuel because, at least

initially, RPs would be few and far in between. Therefore, one needs to develop

models which consider routes that include detouring to RPs if necessary. Objectives

for such models could be to (a) minimize the total detouring distance for all O-D

pairs and (b) minimize the total number of refueling stops. It is surprising that

detouring is not a consideration in most of the reported models. In fact, detouring

plays a major role in the problems that have been analyzed in this research. Finding

routes in a network considering refueling detours have been studied by, among

others, Ichimori (1981), Laporte and Pascoal (2011), Smith et al. (2012), and Adler

and Mirchandani (2014).

 In this research, minimization of the number of RPs to refuel all O-D flows is

considered as the first objective, since building refueling infrastructure is costly. For

this minimum number, the location objective is to locate this number of stations to

minimize weighted sum of the distance traveled for all O-D flows. The research

3

starts with the simplest case, locating RPs on a real line network, then this is

extended to tree networks, and finally to general networks.

1.2. Literature review

 Bapna et al. (2002) present a study on locating gas station facilities in

developing countries like India which are in the midst of conversion from leaded

gasoline to unleaded fuel. They attempt to maximize the population that will be

within a given distance from the new gas stations and simultaneously minimize the

cost locating the stations, while making all inter-city travel possible. Their method is

based on the notion of “enabling arcs”, which means to locate a necessary number of

stations on the arc such that a vehicle can use it for travel. They propose a heuristic

procedure to solve the problem, where at each step an arc of the highest population

coverage per unit cost is enabled until a strongly connected spanning subgraph is

achieved. However, their model double counts the amount of coverage. Also, this

method does not address the problem of where exactly to locate stations, since it is

still possible for a vehicle not to be able to travel from one arc to another along a

path even though each comprising arc is enabled.

 Hodgson (1990) propose a Flow-Capturing Location-Allocation Model

(FCLM), which locates a specified number of facilities at nodes in a network to

maximize (O-D) traffic flow capture. The term “capture” describes a form of covering

the flow: a facility at a node “captures” all the flow which passes through that node,

where, for example, in advertisement applications it captures the eyeballs of the

vehicles’ travelers, and in retailing it captures potential demand for searching any

4

services/products. In this sense, location at a node is at least as good as location on

any adjacent link. Using the following notation one can formulate FCLM:

Table 1.1

Notation for FCLM

𝑞𝑞 a particular O-D pair

𝑄𝑄 the set of all O-D pairs

𝑓𝑓𝑞𝑞 the flow between O-D pair 𝑞𝑞

𝑦𝑦𝑞𝑞 = �
1, if 𝑓𝑓𝑞𝑞 is captured
0, otherwise

𝑘𝑘 a potential facility location

𝑲𝑲 the set of all potential facility locations

𝑥𝑥𝑘𝑘 = �1, if there is a facility at location 𝑘𝑘
0, otherwise

𝑵𝑵𝑞𝑞
the set of nodes capable of capturing 𝑓𝑓𝑞𝑞 (the set of nodes on path 𝑞𝑞 between
𝑂𝑂𝑖𝑖 and 𝐷𝐷𝑗𝑗)

𝑝𝑝 the number of facilities to be located

FCLM:

Maximize 𝑍𝑍 = ∑ 𝑓𝑓𝑞𝑞𝑦𝑦𝑞𝑞𝑞𝑞∈𝑸𝑸 (1.1)

Subject to ∑ 𝑥𝑥𝑘𝑘𝑘𝑘∈𝑵𝑵𝑞𝑞 ≥ 𝑦𝑦𝑞𝑞 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑞𝑞 ∈ 𝑸𝑸 (1.2)

 ∑ 𝑥𝑥𝑘𝑘𝑘𝑘∈𝑲𝑲 = 𝑝𝑝 (1.3)

Objective (1.1) maximizes flow captured and where constraint (1.2) ensures that flow

on a path 𝑞𝑞 can be captured only if a facility is located on the path, and constraint

(1.3) limits the specified number 𝑝𝑝 facilities being located.

 Based on the FCLM, Kuby and Lim (2005) develop the Flow-Refueling

Location Model (FRLM), which seeks to locate a pre-specified number of refueling

points at network nodes to refuel as many O-D flows as possible. For each O-D pair,

5

their model initially generates the shortest path and assumes that the O-D is

covered if RPs are located on these paths such that RLVs can travel on their shortest

paths; it determines a set of minimal RP combinations that can refuel each path. A

combination 𝐻𝐻 is said to be minimal, if station 𝑘𝑘 is in 𝐻𝐻, then 𝐻𝐻 − 𝑘𝑘 is not able to

refuel such paths. Then the problem is formulated as a mixed-integer program and

solved exactly by using the branch-and-bound algorithm. However, there are two

drawbacks to this model: (a) the solution can be suboptimal when facility placement

is only allowed at nodes, and (b) in reality, people might not always be able to choose

the shortest path, any may be able to detour to refuel.

FRLM:

Maximize 𝑍𝑍 = ∑ 𝑓𝑓𝑞𝑞𝑦𝑦𝑞𝑞𝑞𝑞∈𝑸𝑸 (1.4)

Subject to ∑ 𝑏𝑏𝑞𝑞ℎ𝑣𝑣ℎℎ∈𝑯𝑯 ≥ 𝑦𝑦𝑞𝑞 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑞𝑞 ∈ 𝑄𝑄 (1.5)

 𝑥𝑥𝑘𝑘 ≥ 𝑣𝑣ℎ 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 ℎ ∈ 𝑯𝑯; 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑘𝑘 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑎𝑎ℎ𝑘𝑘 = 1 (1.6)

 ∑ 𝑥𝑥𝑘𝑘𝑘𝑘∈𝑲𝑲 = 𝑝𝑝 (1.7)

where,

Table 1.2

More notation for FRLM

ℎ a particular facility combination

𝑯𝑯 the set of all potential facility combinations

𝑎𝑎ℎ𝑘𝑘 a coefficient, = �1, if facility 𝑘𝑘 is in combination ℎ
0, otherwise

𝑏𝑏𝑞𝑞ℎ a coefficient, = �1, if combination ℎ can refuel OD pair 𝑞𝑞
0, otherwise

𝑣𝑣ℎ = �1, if all facilities in combination ℎ are established
0, otherwise

6

 For a network location problem where researchers do not know whether a

finite dominating set (FDS) exists or not, adding additional potential facility sites

along the arcs may lead to better solutions compared to merely restricting placement

at given network nodes. Kuby et al. (2005) introduce the Added-Node Dispersion

Problem (ANDP). By adding a node to an arc, the arc will be subdivided into sub-

arcs. ANDP is to add a given number of nodes along arcs to optimize some criterion

function. Based on minimax and maximin distance criteria, they studied heuristics

for adding nodes and sub-arcs. The minimax objective aims to minimize the

maximum sub-arc length, and the maximin objective aims to maximize the

minimum sub-arc length. Then on the basis of minimax (maximin), a secondary

objective is considered, which aims to minimize the sum of maximum sub-arc length.

 Kuby and Lim (2007) improve the FRLM by adding additional discrete

candidate sites along network arcs. They propose three methods: the mid-path

segment method, the minimax added-node dispersion problem (ANDP) method, and

the maximin ANDP method. For each path that can be refueled with one single

facility (except origin and destination), i.e., 𝑑𝑑𝑞𝑞 ≤ 𝑟𝑟 < 2𝑑𝑑𝑞𝑞, where 𝑑𝑑𝑞𝑞 denotes the one-

way shortest path distance and 𝑟𝑟 denotes the vehicle range, the mid-path segment

method identifies a line segment in which any point can refuel the path by itself.

Once all line segments are generated, the method breaks up the overlapping

segments, only retains the dominating ones, and adds additional candidate sites,

each of which is a midpoint of the segment. The ANDP method does not depend on

the vehicle range, which simply disperses additional candidate sites along arcs. The

minimax version aims to minimize the longest sub-arc length to prevent any long

stretches of network without any candidate sites; and the maximin version aims to

7

maximize the shortest sub-arc length to not wasting candidate sites by locating

them too close together. However, none of these methods generate a finite

dominating set. The mid-path segment method does not consider how segments may

coordinate with each other to refuel O-D flows, and it will just ignore any path with

𝑑𝑑𝑞𝑞 > 𝑟𝑟. The computation cost explodes for ANDP method as more candidate sites are

added.

 Kim and Kuby (2011) develop the Deviation-Flow Refueling Location Model

(DFRLM), in which they relax the assumption of FRLM --- that each O-D flow sticks

with the shortest path between the two nodes. They use a modified 𝑘𝑘 shortest path

algorithm to generate deviation paths within a certain upper distance limit for each

O-D pair, compute the fraction of flow volume on deviation paths, and come up with

combinations of stations to refuel deviation paths, then solve the problem as FRLM.

 Cabral et al. (2007) consider a network design problem with relays (NDPR) in

the context of telecommunication network design and proposed a column generation

scheme and four algorithms. Konak (2012) also studies NDPR and propose a set

covering formulation with a meta-heuristic algorithm. However, these models only

choose nodes to locate relays, which may not be optimal in our transportation

application.

8

CHAPTER 2

THE LINE PROBLEM

 Now we address some continuous versions of the detouring-flow location

problem on a line network. The set of potential RP locations is relaxed to include not

just the network nodes and pre-determined points on the arcs, but all points on the

network. That is, every point on an arc is an allowable site for establishing an RP.

The objective of this first problem is to (a) first determine the minimum number of

RPs that are necessary and sufficient to refuel all O-D traffic flow; and (b) then

determine the optimal locations for RPs that minimize the total travelling distance

for all vehicles.

2.1. Problem with only one-way trips

 Suppose the road network is represented as an undirected line graph 𝐺𝐺 =

(𝑉𝑉,𝐴𝐴), where the node set 𝑉𝑉 = {𝑣𝑣0, 𝑣𝑣2,⋯ , 𝑣𝑣𝑛𝑛} represents a set of 𝑛𝑛 + 1 origin and/or

destination nodes, connected by arc set 𝐴𝐴 = ��𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑗𝑗+1�, 𝑗𝑗 = 0,⋯ ,𝑛𝑛 − 1�. See figure 2.1

as an illustration. Associated with each arc �𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑗𝑗+1� is a nonnegative weight

𝑏𝑏�𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑗𝑗+1� representing its length, and we have 𝑏𝑏�𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑗𝑗+1� = 𝑏𝑏�𝑣𝑣𝑗𝑗+1, 𝑣𝑣𝑗𝑗�. The length

𝑏𝑏(𝑥𝑥,𝑦𝑦) of the portion of arc between points 𝑥𝑥 and 𝑦𝑦 on �𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑗𝑗+1� is defined to be

𝑏𝑏(𝑥𝑥,𝑦𝑦) = �𝑏𝑏�𝑣𝑣𝑗𝑗 , 𝑥𝑥� − 𝑏𝑏�𝑣𝑣𝑗𝑗 ,𝑦𝑦��. The length function 𝑏𝑏 yields a distance function 𝑑𝑑 for

the line network, where 𝑑𝑑(𝑥𝑥,𝑦𝑦) is defined to be the shortest path length from 𝑥𝑥 to 𝑦𝑦

for any two points 𝑥𝑥, 𝑦𝑦 on 𝐺𝐺. However, in a line network, there is a unique path

between them and let 𝑃𝑃(𝑥𝑥,𝑦𝑦) denote this path. Furthermore, let 𝑙𝑙(𝑥𝑥) denote the

coordinate of 𝑥𝑥 on 𝐺𝐺, which is taken to be the distance from 𝑣𝑣0 to 𝑥𝑥, i.e. 𝑙𝑙(𝑥𝑥) =

9

𝑑𝑑(𝑣𝑣0, 𝑥𝑥) + 𝑙𝑙(𝑣𝑣0). Specifically, 𝑙𝑙(𝑣𝑣0) = 0. Hereon, the two expressions 𝑥𝑥 ≺ 𝑦𝑦 and 𝑙𝑙(𝑥𝑥) <

𝑙𝑙(𝑦𝑦) will be used interchangeably to indicate that point 𝑥𝑥 is on the left-hand side of 𝑦𝑦

on 𝐺𝐺.

 We denote a pair �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� as the one-way transportation need for flow from 𝑣𝑣𝑖𝑖

to 𝑣𝑣𝑗𝑗, for all 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉. The average traffic flow volume on 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is denoted as

𝑓𝑓�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�. As a prototypical application, many drivers of electric vehicles will charge

their vehicles overnight at their origin (home), and will have proper charging

facilities at their destination (workplace) as well. In this problem, an electric vehicle

is assumed to depart from its origin with a fully charged battery and needs to reach

its destination. If a set of RP locations is given, then we say that trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� can be

served if the path 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� has no segment without refueling with a length greater

than the range limit. We let 𝑟𝑟 denote the range limit, i.e., the maximum distance

that our fully charged electric vehicle can travel before refueling.

Figure 2.1 A line road network with 5 nodes

2.1.1. Set of candidate sites

 We begin to formalize the discussion of our model development by way of a

simple example.

EXAMPLE 2.1 Consider the following line network in Figure 2.2, which consists

of two nodes 𝑂𝑂 and 𝐷𝐷, and a single arc (𝑂𝑂,𝐷𝐷) with length 2𝑟𝑟 < 𝑏𝑏(𝑂𝑂,𝐷𝐷) < 3𝑟𝑟. Suppose

that two RPs are necessary and sufficient to serve flows from 𝑂𝑂 to 𝐷𝐷 and flows from

𝐷𝐷 to 𝑂𝑂.

10

 To refuel flows from 𝑂𝑂 to 𝐷𝐷: The first RP should be located within 𝑟𝑟 distance

from node 𝑂𝑂 and within 2𝑟𝑟 distance to node 𝐷𝐷, and the second RP should be located

within 2𝑟𝑟 distance from 𝑂𝑂 and within 𝑟𝑟 distance to 𝐷𝐷. Conversely, to refuel flows

from 𝐷𝐷 to 𝑂𝑂, the second RP should be located within 𝑟𝑟 distance from node 𝐷𝐷 and

within 2𝑟𝑟 distance to node 𝑂𝑂, and the first RP should be located within 2𝑟𝑟 distance

from 𝐷𝐷 and within 𝑟𝑟 distance to 𝑂𝑂. Thus, the set of potential sites for the first RP

includes all points on the line segment from point 𝑑𝑑(= 𝑙𝑙(𝐷𝐷) − 2𝑟𝑟) to point 𝑎𝑎(= 𝑟𝑟), and

the set of potential sites for the second RP includes all points on the line segment

from point 𝑐𝑐(= 𝑙𝑙(𝐷𝐷) − 𝑟𝑟) to point 𝑏𝑏(= 2𝑟𝑟), as indicated in Figure 2.2. Last but not

least, the distance between the two RPs should not exceed 𝑟𝑟.

Figure 2.2 A simple line network for example 2.1

 Before proceeding with the discussion, let us state two facts, which are useful

and easy to be verified.

FACT 2.1 If flows on �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� can be served by the RPs established on the line

network, then flows on �𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑖𝑖� can be served as well.

FACT 2.2 No refueling detouring will occur for electric vehicles on their one-

way trips.

11

2.1.2. Minimum number of RPs needed

We now consider the problem: Given a line network 𝐺𝐺 with ordered nodes

𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 and a vehicle range limit 𝑟𝑟, what is the minimum number of RPs that

should be located so that all O-D flows can be served?

Theorem 2.1 The minimum number of RPs that are necessary and sufficient to

serve all O-D transportation needs is

 𝑚𝑚 = �
�𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
� , 𝑖𝑖𝑓𝑓 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0

𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟

− 1, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
, (2.1)

equivalently,

 𝑚𝑚 = �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� − 1. (2.2)

Let 𝒫𝒫 = {𝓅𝓅1,𝓅𝓅2,⋯ ,𝓅𝓅𝑚𝑚} represent the set of RPs to be established on 𝐺𝐺, and

let 𝑙𝑙(𝓅𝓅1) < 𝑙𝑙(𝓅𝓅2) < ⋯ < 𝑙𝑙(𝓅𝓅𝑚𝑚) without loss of generality, i.e., 𝓅𝓅1 ≺ 𝓅𝓅2 ≺ ⋯ ≺ 𝓅𝓅𝑚𝑚. For

notational convenience, we introduce 𝜏𝜏𝑖𝑖 to represent the position of 𝓅𝓅𝑖𝑖 in the

sequence of RPs in a left-to-right order. Then 𝜏𝜏𝑖𝑖: = 𝑖𝑖, where 𝑖𝑖 is the subscript of 𝓅𝓅𝑖𝑖. 𝜏𝜏𝑖𝑖

and 𝜏𝜏(𝓅𝓅𝑖𝑖) will be used interchangeably. Let 𝓅𝓅𝑣𝑣𝑗𝑗− and 𝓅𝓅𝑣𝑣𝑗𝑗+ represent the closest RP

established on the left-hand side and on the right-hand side of 𝑣𝑣𝑗𝑗, respectively.

However, we should note that for some node 𝑣𝑣 on 𝐺𝐺, it is possible that (a) 𝑣𝑣 does not

have a RP established on its left-hand side (for example, node 𝑣𝑣0) or on its right-

hand side (for example, node 𝑣𝑣𝑛𝑛); and that (b) a RP has been established just at the

position of node 𝑣𝑣𝑗𝑗, and we say that 𝓅𝓅𝑣𝑣− = 𝓅𝓅𝑣𝑣+.

Before proceeding with the proof of theorem 2.1, let us first state the

proposition 2.1, based on which we shall prove theorem 2.1.

12

Proposition 2.1 Given a set of RP locations, if flows on O-D pair (𝑣𝑣0, 𝑣𝑣𝑛𝑛) can be

served, then all O-D pairs can be served.

Proof of Proposition 2.1. Suppose that the assertion fails. Then we may assume

that there exists some O-D pair �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� that cannot be refueled, and without loss of

generality we let 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗. Then the length of one or more of the following intervals

would be greater than the range limit 𝑟𝑟:

 the interval between node 𝑣𝑣𝑖𝑖 and RP 𝓅𝓅𝑣𝑣𝑗𝑗+ ,

 the interval between any two consecutive RPs 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1 where 𝜏𝜏�𝓅𝓅𝑣𝑣𝑖𝑖+� ≤ 𝑘𝑘 <

𝜏𝜏 �𝓅𝓅𝑣𝑣𝑗𝑗
− �,

 the interval between RP 𝓅𝓅𝑣𝑣𝑗𝑗− and node 𝑣𝑣𝑗𝑗.

However, if that is true, the flows on pair (𝑣𝑣0, 𝑣𝑣𝑛𝑛) cannot be served either.

We can now prove theorem 2.1 using this proposition.

Proof of Theorem 2.1 By proposition 2.1, we know that to compute the minimum

number of RPs 𝑚𝑚, it is sufficient to just consider a single O-D pair (𝑣𝑣0, 𝑣𝑣𝑛𝑛). Now

suppose that we are going to locate the RPs in the following fashion:

 If 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0, we locate RPs at distances 𝑟𝑟, 2𝑟𝑟,⋯ , and �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� × 𝑟𝑟 from node

𝑣𝑣0;

 Otherwise, we locate RPs at distances 𝑟𝑟, 2𝑟𝑟,⋯ , and �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟

− 1� × 𝑟𝑟 from node 𝑣𝑣0.

It is easy to see that the flows on pair (𝑣𝑣0, 𝑣𝑣𝑛𝑛) can be refueled. Hence,

𝑚𝑚 ≤ �
�𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
� , 𝑖𝑖𝑓𝑓 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0

𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟

− 1, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
,

which gives us an upper bound of 𝑚𝑚.

13

When 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0, suppose that we locate �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� − 1 RPs, then the

average length of the following intervals:

 the interval between node 𝑣𝑣0 and RP 𝓅𝓅1,

 the interval between any two consecutive RPs 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1 where 1 ≤ 𝑘𝑘 <

�𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� − 2,

 the interval between RP 𝓅𝓅
�𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟 �−1
 and node 𝑣𝑣𝑛𝑛,

would be �̅�𝑑 = 𝑙𝑙(𝑣𝑣𝑛𝑛)

�𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟 �−1

≥ 𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟 −1

> 𝑟𝑟, which implies that flows on pair (𝑣𝑣0,𝑣𝑣𝑛𝑛) cannot be

refueled. When 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≡ 0, we could deduce the same conclusion. Thus, a

lower bound of 𝑚𝑚 has been found

𝑚𝑚 ≥ �
�𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
� , 𝑖𝑖𝑓𝑓 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0

𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟

− 1, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
.

We have proved equation (2.1), and it is trivial to see that equations (2.1) and

(2.2) are equivalent.

As a by-product of Theorem 2.1, we can derive a localization segment for each

RP in 𝒫𝒫, which contains all the allowable sites for that RP. We let 𝑆𝑆𝑘𝑘 = [𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘]

denote the localization segment of 𝓅𝓅𝑘𝑘.

Corollary 2.1 Given that 𝑚𝑚 RPs are to be established on the line, then

 𝑆𝑆𝑘𝑘 = [𝑙𝑙(𝑣𝑣𝑛𝑛) − (𝑚𝑚 − 𝑘𝑘 + 1)𝑟𝑟, 𝑘𝑘𝑟𝑟], for 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚. (2.3)

Theorem 2.2 If the objective aims to minimize the total travelling distance, then

each feasible solution is an optimal solution.

Proof. By FACT 2.2, we know that no refueling detouring will occur for electric

vehicles on their one-way trips. Hence, any feasible solution is also optimal.

14

2.2. Round trip problem

We now formally consider the case where electric vehicles go for round trips

between any two nodes along a road. Let triple �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑖𝑖� represent a round trip

demand, that is, a vehicle starts at 𝑣𝑣𝑖𝑖, arrives at its intended destination 𝑣𝑣𝑗𝑗 and then

goes back to 𝑣𝑣𝑖𝑖. The subtrip from origin 𝑣𝑣𝑖𝑖 to destination 𝑣𝑣𝑗𝑗 is called an outbound

trip, and the subtrip from 𝑣𝑣𝑗𝑗 back to 𝑣𝑣𝑖𝑖 is called an inbound trip. If a vehicle is able

to reach 𝓅𝓅𝑣𝑣𝑗𝑗− (the RP that is on the left-hand side of 𝑣𝑣𝑗𝑗 and closest to 𝑣𝑣𝑗𝑗) during its

outbound trip 𝑣𝑣𝑖𝑖 → 𝑣𝑣𝑗𝑗, and 𝓅𝓅𝑣𝑣𝑗𝑗− is within 𝑟𝑟
2
 distance to 𝑣𝑣𝑗𝑗, then the vehicle is able to

reach 𝑣𝑣𝑗𝑗 with at least a half full fuel cell and return to 𝓅𝓅𝑣𝑣𝑗𝑗− without running out of

fuel. Otherwise, after arriving at 𝑣𝑣𝑗𝑗, the vehicle has to make a detour to visit 𝓅𝓅𝑣𝑣𝑗𝑗+ for

refueling and then returns to 𝑣𝑣𝑗𝑗.

2.2.1. Minimum number of RPs needed

Recall the FACT 2.1, which claims that if flows on �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� can be served by

the RPs established on the line, then flows on �𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑖𝑖� can be served as well. Here,

unlike the one-way case, the fact that a round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� can be served by the

RPs established on the line does not necessarily imply that the round trip �𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�

can also be served. Using the following example, let us examine that why FACT 2.1

cannot be generalized to the round-trip case, and also get a rough idea about how to

identify a set of RPs to serve all round trips, with minimum cardinality.

EXAMPLE 2.2 Consider the line network of figure 2.3, which is same to the one

that was used in example 2.1. Again, we assume that two RPs are to be established

on the line. First, we consider the round-trip (𝑂𝑂,𝐷𝐷,𝑂𝑂). To refuel the outbound trip

15

𝑂𝑂 → 𝐷𝐷, 𝓅𝓅1 should be located within 𝑟𝑟 distance from node 𝑂𝑂 and 2𝑟𝑟 distance to node 𝐷𝐷,

and 𝓅𝓅2 should be located within 2𝑟𝑟 distance from 𝑂𝑂 and 𝑟𝑟 distance to 𝐷𝐷. To refuel the

inbound trip 𝐷𝐷 → 𝑂𝑂, 𝓅𝓅2 should be within 𝑟𝑟
2
 distance from 𝐷𝐷 and 2𝑟𝑟 distance to 𝑂𝑂, and

𝓅𝓅1 should be within 3𝑟𝑟
2

 distance from 𝐷𝐷 and 𝑟𝑟 distance to 𝑂𝑂. Thus, the set of allowable

sites for 𝓅𝓅1 includes all points on the line segment from point 𝑑𝑑 �= 𝑙𝑙(𝑣𝑣𝑛𝑛) − 3𝑟𝑟
2
� to

point 𝑎𝑎(= 𝑟𝑟), and the set of allowable sites for 𝓅𝓅2 includes all points on the line

segment from point 𝑐𝑐 �= 𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
� to point 𝑏𝑏(= 2𝑟𝑟), as indicated by two black bold

segments in figure 2.3. Moreover, the distance between the two RPs should be less

than or equal to 𝑟𝑟.

Follow the same fashion, another two segments, [𝑏𝑏′, 𝑐𝑐′] and [𝑎𝑎′,𝑑𝑑′], for serving

the round-trip (𝐷𝐷,𝑂𝑂,𝐷𝐷) can be identified as well, where 𝑏𝑏′ = 𝑙𝑙(𝑣𝑣𝑛𝑛) − 2𝑟𝑟, 𝑐𝑐′ = 𝑟𝑟
2
, 𝑎𝑎′ =

𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟, and 𝑑𝑑′ = 3𝑟𝑟
2

. [𝑏𝑏′, 𝑐𝑐′] and [𝑎𝑎′,𝑑𝑑′] are indicated by two red bold segments in

figure 2.3.

From the figure, we can see that the black segments and red segments are

nonoverlapped, implying that two RPs are not enough to serve both (𝑂𝑂,𝐷𝐷,𝑂𝑂) and

(𝐷𝐷,𝑂𝑂,𝐷𝐷).

Figure 2.3 A line network for example 2.2, where 2 RPs are not enough

16

Proposition 2.2 Given a set of RP locations, if flows on round trips (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0) and

(𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛) can be refueled, then flows on any round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� can be refueled,

where 0 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛. Furthermore, refueling detouring may occur for electric vehicles

on their round trips.

Proof of Proposition 2.2 Let 𝒫𝒫 be a set of RPs established on the line such that

round trips (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0) and (𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛) can be served. Then we can safely conclude

that

 𝓅𝓅1 is located within 𝑟𝑟
2
 distance from node 𝑣𝑣0;

 the interval between any two consecutive RPs 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1 is not more than 𝑟𝑟,

where 1 ≤ 𝑘𝑘 < |𝒫𝒫| − 1 (|𝒫𝒫| is the cardinality of 𝒫𝒫);

 𝓅𝓅|𝒫𝒫| is located within 𝑟𝑟
2
 distance to node 𝑣𝑣𝑛𝑛.

Consider any round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖�, and without loss of generality we assume that

𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗. Then:

(a) The outbound trip 𝑣𝑣𝑖𝑖 → 𝑣𝑣𝑗𝑗 can be refueled, since the length of each of the following

intervals would be not more than 𝑟𝑟: the interval between node 𝑣𝑣𝑖𝑖 and 𝓅𝓅𝑣𝑣𝑗𝑗
+ , the interval

between any two consecutive RPs 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1 where 𝜏𝜏�𝓅𝓅𝑣𝑣𝑖𝑖+� ≤ 𝑘𝑘 < 𝜏𝜏 �𝓅𝓅𝑣𝑣𝑗𝑗
− �, and the

interval between 𝓅𝓅𝑣𝑣𝑗𝑗
− and 𝑣𝑣𝑗𝑗 .

(b) The inbound trip 𝑣𝑣𝑗𝑗 → 𝑣𝑣𝑖𝑖 can be refueled as well. If 𝓅𝓅𝑣𝑣𝑗𝑗
− is located within 𝑟𝑟

2
 distance from

𝑣𝑣𝑗𝑗 , after arriving at node 𝑣𝑣𝑗𝑗 , the vehicle is able to return to 𝓅𝓅𝑣𝑣𝑗𝑗− without running out of

fuel. Otherwise if 𝓅𝓅𝑣𝑣𝑗𝑗− is located beyond 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗 , the vehicle is able to make a

detour to visit 𝓅𝓅𝑣𝑣𝑗𝑗
+ for refueling and goes back to 𝑣𝑣𝑖𝑖 , since the distance between 𝓅𝓅𝑣𝑣𝑗𝑗

− and 𝓅𝓅𝑣𝑣𝑗𝑗
+

is not more than 𝑟𝑟.

17

Theorem 2.2 The minimum number of RPs that are necessary and sufficient to

serve all round-trip triples is

 𝑚𝑚 = �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
�. (2.4)

Proof of Theorem 2.2 By proposition 2.2, we know that to compute the minimum

number of RPs 𝑚𝑚, it is sufficient to only consider the round trips (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0) and

(𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛). Now suppose that we are going to locate the RPs in the following fashion:

 If 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0, we locate RPs at distances 𝑟𝑟
2

, 3𝑟𝑟
2

,⋯ , 𝑟𝑟
2

+ �𝑙𝑙(𝑣𝑣𝑛𝑛)−𝑟𝑟
𝑟𝑟

� × 𝑟𝑟, 𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2

from node 𝑣𝑣0;

 Otherwise, we locate RPs at distances 𝑟𝑟
2

, 3𝑟𝑟
2

,⋯ , �𝑙𝑙(𝑣𝑣𝑛𝑛)−𝑟𝑟 2⁄
𝑟𝑟

� × 𝑟𝑟 from node 𝑣𝑣0.

Then, it is easy to see that flows on round trip triple (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0) and flows on

(𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛) can be refueled. Hence,

𝑚𝑚 ≤ �
�𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
� + 1, 𝑖𝑖𝑓𝑓 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0

�𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� , 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

,

which gives us an upper bound of 𝑚𝑚.

We then find a lower bound of 𝑚𝑚. Consider the following two cases:

a) To refuel flows on (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0).

For the outbound trip, 𝓅𝓅𝑘𝑘 should be located within 𝑘𝑘𝑟𝑟 distance from 𝑣𝑣0 and

within (𝑚𝑚 − 𝑘𝑘 + 1)𝑟𝑟 to 𝑣𝑣𝑛𝑛. For the inbound trip, 𝓅𝓅𝑚𝑚 should be located within 𝑟𝑟
2

distance from 𝑣𝑣𝑛𝑛 and within 𝑚𝑚𝑟𝑟 to 𝑣𝑣0. Consequently, 𝓅𝓅𝑘𝑘 should be located within 𝑟𝑟
2

+

(𝑚𝑚 − 𝑘𝑘)𝑟𝑟 distance from 𝑣𝑣𝑛𝑛 and 𝑘𝑘𝑟𝑟 distance to 𝑣𝑣0. Therefore,

𝑆𝑆1 = �max �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
− (𝑚𝑚 − 1)𝑟𝑟, 0� , 𝑟𝑟�,

18

𝑆𝑆𝑘𝑘 = �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
− (𝑚𝑚 − 𝑘𝑘)𝑟𝑟, 𝑘𝑘𝑟𝑟�, for 1 < 𝑘𝑘 < 𝑚𝑚, and

𝑆𝑆𝑚𝑚 = �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2

, min{𝑚𝑚𝑟𝑟, 𝑙𝑙(𝑣𝑣𝑛𝑛)}�.

b) To refuel flows on (𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛).

For the outbound trip, 𝓅𝓅𝑘𝑘 should be located within �𝑚𝑚 − (𝑘𝑘 − 1)�𝑟𝑟 distance

from 𝑣𝑣𝑛𝑛 and within 𝑘𝑘𝑟𝑟 to 𝑣𝑣0. For the inbound trip, 𝓅𝓅1 should be located within 𝑟𝑟
2
 from

𝑣𝑣0 and within 𝑚𝑚𝑟𝑟 to 𝑣𝑣𝑛𝑛. Consequently, 𝓅𝓅𝑘𝑘 should be located within 𝑟𝑟
2

+ (𝑘𝑘 − 1)𝑟𝑟 from

𝑣𝑣0 and within (𝑚𝑚 − 𝑘𝑘 + 1)𝑟𝑟 distance to 𝑣𝑣𝑛𝑛. Therefore,

𝑆𝑆1 = �max{𝑙𝑙(𝑣𝑣𝑛𝑛) −𝑚𝑚𝑟𝑟, 0} , 𝑟𝑟
2
�,

𝑆𝑆𝑘𝑘 = �𝑙𝑙(𝑣𝑣𝑛𝑛) − �𝑚𝑚 − (𝑘𝑘 − 1)�𝑟𝑟, 𝑟𝑟
2

+ (𝑘𝑘 − 1)𝑟𝑟�, for 1 < 𝑘𝑘 < 𝑚𝑚, and

𝑆𝑆𝑚𝑚 = �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟, min �𝑟𝑟
2

+ (𝑚𝑚 − 1)𝑟𝑟, 𝑙𝑙(𝑣𝑣𝑛𝑛)��.

By combining a) and b), we obtain 𝑆𝑆𝑘𝑘 = �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
− (𝑚𝑚 − 𝑘𝑘)𝑟𝑟, 𝑟𝑟

2
+ (𝑘𝑘 − 1)𝑟𝑟�.

By letting 𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
− (𝑚𝑚 − 𝑘𝑘)𝑟𝑟 ≤ 𝑟𝑟

2
+ (𝑘𝑘 − 1)𝑟𝑟, we derive 𝑚𝑚 ≥ 𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
, i.e., integer 𝑚𝑚 ≥

�𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
�, which gives us a lower bound of 𝑚𝑚.

Therefore, we have

�𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� ≤ 𝑚𝑚 ≤ �

�𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� + 1, 𝑖𝑖𝑓𝑓 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0

�𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� , 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

.

If 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≠ 0, �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� = �𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
� + 1, otherwise if 𝑚𝑚𝑓𝑓𝑑𝑑(𝑙𝑙(𝑣𝑣𝑛𝑛), 𝑟𝑟) ≡ 0, �𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
� = �𝑙𝑙(𝑣𝑣𝑛𝑛)

𝑟𝑟
�.

Equation (2.4) 𝑚𝑚 = �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
� has been proved.

As a by-product of Theorem 2.2, we can derive the localization segment 𝑆𝑆𝑘𝑘 for

each 𝓅𝓅𝑘𝑘.

19

Corollary 2.2 Given that 𝑚𝑚 RPs are to be established on the line, then

𝑆𝑆1 = �max �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
− (𝑚𝑚 − 1)𝑟𝑟, 0� , 𝑟𝑟

2
�,

𝑆𝑆𝑘𝑘 = �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
− (𝑚𝑚 − 𝑘𝑘)𝑟𝑟, 𝑟𝑟

2
+ (𝑘𝑘 − 1)𝑟𝑟� , 1 < 𝑘𝑘 < 𝑚𝑚, and

𝑆𝑆𝑚𝑚 = �𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2

, min �𝑟𝑟
2

+ (𝑚𝑚 − 1)𝑟𝑟, 𝑙𝑙(𝑣𝑣𝑛𝑛)��. (2.5)

Observation 2.1 Let �̂�𝑑 denote the distance between the right endpoint of

localization segment 𝑆𝑆𝑘𝑘 and the left endpoint of localization segment 𝑆𝑆𝑘𝑘+1, where 1 ≤

𝑘𝑘 < 𝑚𝑚. Then by Corollary 2.2, we have

�̂�𝑑 = 𝛼𝛼𝑘𝑘+1 − 𝛽𝛽𝑘𝑘

= �𝑙𝑙(𝑣𝑣𝑛𝑛) −
𝑟𝑟
2

 − �𝑚𝑚 − (𝑘𝑘 + 1)�𝑟𝑟� − �
𝑟𝑟
2

+ (𝑘𝑘 − 1)𝑟𝑟�

= 𝑙𝑙(𝑣𝑣𝑛𝑛) − (𝑚𝑚 − 1)𝑟𝑟

= 𝑟𝑟 − ��
𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟

� −
𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟

� 𝑟𝑟.

Therefore, 0 < �̂�𝑑 ≤ 𝑟𝑟.

Observation 2.2 We can observe and refer to a node 𝑣𝑣 ∈ 𝑉𝑉 an internal node if it is

either an interior point or a boundary point of a localization segment, otherwise, we

will call 𝑣𝑣 is an external node.

Furthermore, we can decompose the node set 𝑉𝑉 into two disjoint subsets 𝑉𝑉𝑖𝑖𝑛𝑛

and 𝑉𝑉𝑒𝑒𝑒𝑒, where 𝑉𝑉𝑖𝑖𝑛𝑛 = ⋃ {𝑣𝑣}𝑣𝑣∈𝑉𝑉:𝑣𝑣 is an internal node and 𝑉𝑉𝑒𝑒𝑒𝑒 = ⋃ {𝑣𝑣}𝑣𝑣∈𝑉𝑉:𝑣𝑣 is an external node =

𝑉𝑉\𝑉𝑉𝑖𝑖𝑛𝑛.

Observation 2.3 Let 𝑣𝑣 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒 be an external node, then both 𝜏𝜏(𝓅𝓅𝑣𝑣−) and 𝜏𝜏(𝓅𝓅𝑣𝑣+) are

known to us, given the localization segments. However, let 𝑢𝑢 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 be an internal

node, then without knowing the exact RP locations, 𝜏𝜏(𝓅𝓅𝑢𝑢−) and 𝜏𝜏(𝓅𝓅𝑢𝑢+) cannot be

determined.

20

Observations 2 and 3 will shortly be illustrated in Figure 2.4 to follow.

Consider an internal node 𝑢𝑢 and assume that 𝑢𝑢 is an interior point of

localization segment 𝑆𝑆𝑘𝑘, then we have

𝜏𝜏(𝓅𝓅𝑢𝑢−), 𝜏𝜏(𝓅𝓅𝑢𝑢+) = �
𝑘𝑘, 𝑘𝑘 + 1, 𝑖𝑖𝑓𝑓 𝓅𝓅𝑘𝑘 ≺ 𝑢𝑢
𝑘𝑘 − 1, 𝑘𝑘, 𝑖𝑖𝑓𝑓 𝑢𝑢 ≺ 𝓅𝓅𝑘𝑘

𝑘𝑘, 𝑘𝑘, 𝑖𝑖𝑓𝑓 𝑙𝑙(𝑢𝑢) = 𝑙𝑙(𝓅𝓅𝑘𝑘)
.

For notational convenience, for such an internal node 𝑢𝑢, we let 𝓅𝓅𝑢𝑢= denote the RP of

which the localization segment “covers” node 𝑢𝑢. By using the word “cover”, we mean

that 𝑢𝑢 is either an interior point or a boundary point of the segment 𝑆𝑆𝜏𝜏(𝓅𝓅𝑢𝑢=).

EXAMPLE 2.3 Consider the 4-node line network in figure 2.4, where 𝑏𝑏(𝑣𝑣0, 𝑣𝑣1) =

13, 𝑏𝑏(𝑣𝑣1,𝑣𝑣2) = 3, 𝑏𝑏(𝑣𝑣2, 𝑣𝑣3) = 8, 𝑏𝑏(𝑣𝑣3, 𝑣𝑣4) = 8 and 𝑟𝑟 = 7.

By equation (2.4), we can compute the minimum number of RPs that are needed,

𝑚𝑚 = �𝑙𝑙(𝑣𝑣4)
𝑟𝑟
� = �32

7
� = 5. By equations in (2.5), we can compute the localization

segments:

𝑆𝑆1 = �max �𝑙𝑙(𝑣𝑣4) − 7
2
− (5 − 1) × 7, 0� , 7

2
� = [0.5,3.5],

𝑆𝑆2 = �𝑙𝑙(𝑣𝑣4) − 7
2
− (5 − 2) × 7, 7

2
+ (2 − 1) × 7� = [7.5,10.5],

𝑆𝑆3 = �𝑙𝑙(𝑣𝑣4) − 7
2
− (5 − 3) × 7, 7

2
+ (3 − 1) × 7� = [14.5,17.5],

𝑆𝑆4 = �𝑙𝑙(𝑣𝑣4) − 7
2
− (5 − 4) × 7, 7

2
+ (4 − 1) × 7� = [21.5,24.5],

𝑆𝑆5 = �𝑙𝑙(𝑣𝑣4) − 7
2

, min �7
2

+ (5 − 1) × 7, 𝑙𝑙(𝑣𝑣4)�� = [28.5,31.5].

As shown in figure 2.4, the localization segments are indicated by five black bold

segments. Also, we know that 𝑉𝑉𝑒𝑒𝑒𝑒 = {𝑣𝑣0, 𝑣𝑣1,𝑣𝑣4 } and 𝑉𝑉𝑖𝑖𝑛𝑛 = {𝑣𝑣2, 𝑣𝑣3}. To illustrate

21

observation 2.3, consider node 𝑣𝑣1, then 𝜏𝜏�𝓅𝓅𝑣𝑣1− � = 2 and 𝜏𝜏�𝓅𝓅𝑣𝑣1+ � = 3. However, for node

𝑣𝑣2, we are not able to tell whether 𝜏𝜏�𝓅𝓅𝑣𝑣2− � is equal to 2 or 3 at this moment.

Figure 2.4 Line network for example 2.3

2.2.2. Math programming formulation

Given a line network, given the traffic flow volume of each round trip, and

given the vehicle range limit, in order to minimize the total travel distance (i.e., the

total refueling detouring distance), by fixing the total number of RPs to be located

equal to the minimum number 𝑚𝑚, we can formulate this line problem as a mixed-

integer program with linear constraints and quadratic objective function, and solve

the problem using the OPTI toolbox in MATLAB.

Define the continuous decision variable 𝑥𝑥𝑘𝑘 for 𝓅𝓅𝑘𝑘 ∈ 𝒫𝒫 and 𝑘𝑘 ∈ {1, 2,⋯ ,𝑚𝑚} as

the position on the line at which 𝓅𝓅𝑘𝑘 is to be established. Let 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑚𝑚)

represent these 𝑚𝑚 locations. Then the objective function can be written as

min
𝒙𝒙
𝑍𝑍(𝒙𝒙) = ∑ �∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑖𝑖 ∗ �1 − 𝐼𝐼𝕃𝕃𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− ��� ∗ �2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗

+ ��𝑣𝑣𝑖𝑖:𝑣𝑣𝑖𝑖≺𝑣𝑣𝑗𝑗
𝑑𝑑�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗�>𝑟𝑟/2

+𝑣𝑣𝑗𝑗∈𝑉𝑉

∑ 𝑓𝑓𝑘𝑘𝑗𝑗𝑘𝑘 ∗ �1 − 𝐼𝐼ℝ𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ ��� ∗ �2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗
− ��𝑣𝑣𝑘𝑘:𝑣𝑣𝑘𝑘≻𝑣𝑣𝑗𝑗

𝑑𝑑�𝑣𝑣𝑗𝑗,𝑣𝑣𝑘𝑘�>𝑟𝑟/2
�, (2.6)

where:

𝑓𝑓𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑓𝑓�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑖𝑖� denotes the flow volume of round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖�;

22

𝕃𝕃𝑗𝑗 = �𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2

, 𝑙𝑙�𝑣𝑣𝑗𝑗�� denotes a segment on the line network that contains all points

on the left-hand side of node 𝑣𝑣𝑗𝑗 and within 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗;

 ℝ𝑗𝑗 = �𝑙𝑙�𝑣𝑣𝑗𝑗�, 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟
2
� denotes another segment on the line network that contains all

points on the right-hand side of node 𝑣𝑣𝑗𝑗 and within 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗; and

𝐼𝐼𝐴𝐴(𝑥𝑥) = �1, 𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ 𝐴𝐴
0, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 is an indicator function.

Consider any round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� with 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗, the function 1 − 𝐼𝐼𝕃𝕃𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− ��

can be interpreted as whether or not the electric vehicle will need to make a

refueling detour to 𝓅𝓅𝑣𝑣𝑗𝑗+ after arriving at 𝑣𝑣𝑗𝑗. Then, 1 − 𝐼𝐼𝕃𝕃𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− �� =

�0, 𝑖𝑖𝑓𝑓 𝓅𝓅𝑣𝑣𝑗𝑗
− ∈ �𝑙𝑙�𝑣𝑣𝑗𝑗� −

𝑟𝑟
2

, 𝑙𝑙�𝑣𝑣𝑗𝑗��
1, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

. If this refueling detouring occurs, the corresponding

detouring distance is two times the distance between 𝑣𝑣𝑗𝑗 and 𝓅𝓅𝑣𝑣𝑗𝑗+ , i.e., 2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗
+ �.

Likewise, consider any round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘� with 𝑣𝑣𝑗𝑗 ≺ 𝑣𝑣𝑘𝑘, the function 1 −

𝐼𝐼ℝ𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ �� can be interpreted as whether or not the electric vehicle will need to

make a refueling detour to 𝓅𝓅𝑣𝑣𝑗𝑗− after arriving at 𝑣𝑣𝑗𝑗. Then, 1 − 𝐼𝐼ℝ𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ �� =

�0, 𝑖𝑖𝑓𝑓 𝓅𝓅𝑣𝑣𝑗𝑗
+ ∈ �𝑙𝑙�𝑣𝑣𝑗𝑗�, 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟

2
�

1, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
, and the associated detouring distance is 2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗

− �.

From �1 − 𝐼𝐼𝕃𝕃𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− ��� ∗ �2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗
+ �� and �1 − 𝐼𝐼ℝ𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ ��� ∗ �2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗

− ��, we can

easily see that whether or not the electric vehicle will need to make a refueling

detour, and what the associated detouring distance exactly is, are independent of the

origin node and the given destination node 𝑣𝑣𝑗𝑗. Then for notational convenience, we

23

let 𝑓𝑓𝑗𝑗− = ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑖𝑖𝑣𝑣𝑖𝑖:𝑣𝑣𝑖𝑖≺𝑣𝑣𝑗𝑗
𝑑𝑑�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗�>𝑟𝑟/2

 and 𝑓𝑓𝑗𝑗+ = ∑ 𝑓𝑓𝑘𝑘𝑗𝑗𝑘𝑘𝑣𝑣𝑘𝑘:𝑣𝑣𝑘𝑘≻𝑣𝑣𝑗𝑗
𝑑𝑑�𝑣𝑣𝑗𝑗,𝑣𝑣𝑘𝑘�>𝑟𝑟/2

. We can rewrite the objective (2.6)

as

min
𝒙𝒙
𝑍𝑍(𝒙𝒙) = 2 ∗ ∑ �𝑓𝑓𝑗𝑗− ∗ �1 − 𝐼𝐼𝕃𝕃𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− ��� ∗ 𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗

+ � + 𝑓𝑓𝑗𝑗+ ∗𝑣𝑣𝑗𝑗∈𝑉𝑉

�1 − 𝐼𝐼ℝ𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ ��� ∗ 𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗
− ��. (2.7)

Now we replace the two indicator functions in (2.7). Define two binary

decision variables 𝑦𝑦𝑣𝑣𝑗𝑗− and 𝑦𝑦𝑣𝑣𝑗𝑗+ for 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 as whether or not the electric vehicle will

need to make a refueling detour during its round trip with origin on the left-hand

side of 𝑣𝑣𝑗𝑗 and with origin on the right-hand side of 𝑣𝑣𝑗𝑗, respectively. That is,

𝑦𝑦𝑣𝑣𝑗𝑗
− =

⎩
⎪
⎨

⎪
⎧1, if refueling detouring occurs for any round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖�, where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗

�⟺ 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− � < 𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2
�

0, otherwise

 (2.8)

𝑦𝑦𝑣𝑣𝑗𝑗
+ =

⎩
⎪
⎨

⎪
⎧1, if refueling detouring occurs for any round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘�, where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗

�⟺ 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ � > 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟
2
�

0, otherwise

 (2.9)

The mixed integer program to locate the RPs is now the following:

Minimize 𝑍𝑍(𝒙𝒙)

Subject to 𝛼𝛼𝑘𝑘 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽𝑘𝑘 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚 (2.10)

 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ≤ 𝑟𝑟 1 ≤ 𝑘𝑘 < 𝑚𝑚 (2.11)

 𝑦𝑦𝑣𝑣𝑗𝑗
− + 𝑦𝑦𝑣𝑣𝑗𝑗

+ ≤ 1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 (2.12)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
−) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� −

𝑟𝑟
2
− 𝑀𝑀𝑦𝑦𝑣𝑣𝑗𝑗

− ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 (2.13)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
−) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� −

𝑟𝑟
2

+ 𝑀𝑀�1 − 𝑦𝑦𝑣𝑣𝑗𝑗
−� ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 (2.14)

24

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
+) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟

2
+ 𝑀𝑀𝑦𝑦𝑣𝑣𝑗𝑗

+ ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 (2.15)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
+) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟

2
− 𝑀𝑀 �1 − 𝑦𝑦𝑣𝑣𝑗𝑗

+� ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 (2.16)

 𝑦𝑦𝑣𝑣𝑗𝑗
− ,𝑦𝑦𝑣𝑣𝑗𝑗

+ ∈ {0,1} ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 (2.17)

Constraint (2.11) ensures the distance between every two consecutive RPs on the

line is not more than the range limit 𝑟𝑟. Constraint (2.12) ensures that given any

node 𝑣𝑣𝑗𝑗, refueling detouring will occur for either round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� or round trip

�𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘�, but not both, where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗 ≺ 𝑣𝑣𝑘𝑘. Suppose that we have 𝑦𝑦𝑣𝑣𝑗𝑗− + 𝑦𝑦𝑣𝑣𝑗𝑗
+ > 1, then

the distance between these two consecutive RPs, 𝓅𝓅𝑣𝑣𝑗𝑗− and 𝓅𝓅𝑣𝑣𝑗𝑗+ , would be greater than

𝑟𝑟. Constraints (2.13) and (2.14) ensure that if no refueling detouring will occur for a

round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗, i.e., 𝑦𝑦𝑣𝑣𝑗𝑗− = 0, then 𝓅𝓅𝑣𝑣𝑗𝑗− should be established within

𝑟𝑟
2
 distance from node 𝑣𝑣𝑗𝑗. Constraints (2.15) and (2.16) ensure that if no refueling

detouring will occur for a round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘� where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗, i.e., 𝑦𝑦𝑣𝑣𝑗𝑗+ = 0, then 𝓅𝓅𝑣𝑣𝑗𝑗+

should be established within 𝑟𝑟
2
 distance from node 𝑣𝑣𝑗𝑗.

For any external node 𝑢𝑢 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒, the indices 𝜏𝜏(𝓅𝓅𝑢𝑢−) and 𝜏𝜏(𝓅𝓅𝑢𝑢+) are determined,

that is, they will stay the same no matter where 𝓅𝓅𝑢𝑢− and 𝓅𝓅𝑢𝑢+ are to be established

within their corresponding localization segments. Then, we can rewrite the total

refueling detouring distance associated with external nodes, denoted 𝑍𝑍𝑒𝑒𝑒𝑒(𝒙𝒙), by

replacing 𝑑𝑑(𝑢𝑢,𝓅𝓅𝑢𝑢+) with 𝑥𝑥𝜏𝜏(𝓅𝓅𝑢𝑢+) − 𝑙𝑙(𝑢𝑢) and replacing 𝑑𝑑(𝑢𝑢,𝓅𝓅𝑢𝑢−) with 𝑙𝑙(𝑢𝑢) − 𝑥𝑥𝜏𝜏(𝓅𝓅𝑢𝑢−). Hence,

we have

𝑍𝑍𝑒𝑒𝑒𝑒(𝒙𝒙) = 2 ∗ ∑ �𝑓𝑓𝑗𝑗− ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
− ∗ �𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗

+) − 𝑙𝑙�𝑣𝑣𝑗𝑗�� + 𝑓𝑓𝑗𝑗+ ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
+ ∗ �𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗

−)��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒⊆𝑉𝑉 (2.18)

25

However, we should note that there is a problem with this formulation.

Recall observation 2.3, we know that for an internal node 𝑢𝑢 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 the indices 𝜏𝜏(𝓅𝓅𝑢𝑢−)

and 𝜏𝜏(𝓅𝓅𝑢𝑢+) can only be determined after knowing the exact RP locations, i.e., after

deriving the solution. Hence, we shall revise the above formulation for internal

nodes.

Given the 𝑚𝑚 localization segments, let us consider two cases: 𝒓𝒓
𝟐𝟐

< �̂�𝑑 ≤ 𝑟𝑟 and

�̂�𝑑 ≤ 𝒓𝒓
𝟐𝟐
, where �̂�𝑑 was defined in observation 2.1, representing the distance between the

right endpoint of some localization segment 𝑆𝑆𝑘𝑘 and the left endpoint of 𝑆𝑆𝑘𝑘+1.

(a) 𝒓𝒓
𝟐𝟐

< �̂�𝑑 ≤ 𝑟𝑟

Consider any internal node 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛, which is covered by localization segment

𝑆𝑆𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �. Then we have

 𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2
≥ 𝛼𝛼𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � −

𝑟𝑟
2

> 𝛼𝛼𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � − �̂�𝑑 = 𝛽𝛽𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �−1 ≥ 𝑙𝑙 �𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �−1�, and

 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟
2
≤ 𝛽𝛽𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � + 𝑟𝑟

2
< 𝛽𝛽𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � + �̂�𝑑 = 𝛼𝛼𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 ≤ 𝑙𝑙 �𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1�,

that is, no matter where the two RPs, 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �−1 and 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1, are to be established

on the line, they are beyond 𝑟𝑟
2
 distance from node 𝑣𝑣𝑗𝑗, as illustrated in figure 2.5.

Figure 2.5 An illustration for case (a) 𝒓𝒓
𝟐𝟐

< 𝒅𝒅� ≤ 𝒓𝒓

26

Then,

 if 𝑙𝑙 �𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �� = 𝑙𝑙�𝑣𝑣𝑗𝑗�: 𝑦𝑦𝑣𝑣𝑗𝑗− = 𝑦𝑦𝑣𝑣𝑗𝑗
+ = 0. That is, no refueling detouring will occur for

both round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗 and round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘� where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗;

 if 𝓅𝓅𝑣𝑣𝑗𝑗− = 𝓅𝓅𝑣𝑣𝑗𝑗
= : 𝑦𝑦𝑣𝑣𝑗𝑗− = 0 and 𝑦𝑦𝑣𝑣𝑗𝑗+ = 1. That is, refueling detouring will occur for any

round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘� where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗, the electric vehicle will have to make a

detour to 𝓅𝓅𝑣𝑣𝑗𝑗= and the associated detouring distance is 2 �𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=)�;

 if 𝓅𝓅𝑣𝑣𝑗𝑗+ = 𝓅𝓅𝑣𝑣𝑗𝑗
= : 𝑦𝑦𝑣𝑣𝑗𝑗− = 1 and 𝑦𝑦𝑣𝑣𝑗𝑗+ = 0. That is, refueling detouring will occur for any

round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗, the electric vehicle will have to make a detour

to 𝓅𝓅𝑣𝑣𝑗𝑗= and the associated detouring distance is 2�𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) − 𝑙𝑙�𝑣𝑣𝑗𝑗��. See figure 2.5

as an illustration.

Therefore, the total refueling detouring distance associated with all internal nodes is

𝑍𝑍𝑖𝑖𝑛𝑛(𝒙𝒙) = 2 ∗ ∑ �𝑓𝑓𝑗𝑗− ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
− ∗ �𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗

=) − 𝑙𝑙�𝑣𝑣𝑗𝑗�� + 𝑓𝑓𝑗𝑗+ ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
+ ∗ �𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗

=)��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛 (2.19)

The constrains associated with internal nodes are now the following:

 𝑦𝑦𝑣𝑣𝑗𝑗
− + 𝑦𝑦𝑣𝑣𝑗𝑗

+ = 1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 (2.20.1)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑀𝑀𝑦𝑦𝑣𝑣𝑗𝑗

− ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 (2.20.2)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑀𝑀 �1 − 𝑦𝑦𝑣𝑣𝑗𝑗

−� ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 (2.20.3)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑀𝑀𝑦𝑦𝑣𝑣𝑗𝑗

+ ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 (2.20.4)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑀𝑀�1 − 𝑦𝑦𝑣𝑣𝑗𝑗

+� ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 (2.20.5)

 𝑦𝑦𝑣𝑣𝑗𝑗
− ,𝑦𝑦𝑣𝑣𝑗𝑗

+ ∈ {0,1} ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 (2.20.6)

(b) �̂�𝑑 ≤ 𝒓𝒓
𝟐𝟐

27

Case (b) would be a bit more complicated than case (a). In this case, the

length of a localization segment is greater than or equal to 𝑟𝑟
2
, and it is possible that

both 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− � and 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ � are established within 𝑟𝑟
2
 distance from node 𝑣𝑣𝑗𝑗. As we can see

from figure 2.6, where 𝓅𝓅𝑣𝑣𝑗𝑗− = 𝓅𝓅𝑣𝑣𝑗𝑗
= is within 𝑟𝑟

2
 distance from 𝑣𝑣𝑗𝑗 and 𝓅𝓅𝑣𝑣𝑗𝑗+ = 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 is

within 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗, then 𝑦𝑦𝑣𝑣𝑗𝑗− = 𝑦𝑦𝑣𝑣𝑗𝑗

+ = 0.

Figure 2.6 An illustration for case (b)

Let 𝑑𝑑𝑗𝑗− denote the distance between the internal node 𝑣𝑣𝑗𝑗 and the left endpoint of the

localization segment 𝑆𝑆𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � that covers 𝑣𝑣𝑗𝑗, and let 𝑑𝑑𝑗𝑗+ denote the distance between 𝑣𝑣𝑗𝑗

and the right endpoint of 𝑆𝑆𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �.

Furthermore, let us consider three sub-cases: (b1) 𝑑𝑑𝑗𝑗− ≥
𝑟𝑟
2

,𝑑𝑑𝑗𝑗+ < 𝑟𝑟
2
; (b2) 𝑑𝑑𝑗𝑗− <

𝑟𝑟
2

,𝑑𝑑𝑗𝑗+ ≥
𝑟𝑟
2
; and (b3) 𝑑𝑑𝑗𝑗− < 𝑟𝑟

2
,𝑑𝑑𝑗𝑗+ < 𝑟𝑟

2
, where in each case we are able to avoid the

problem of not knowing indices 𝜏𝜏 �𝓅𝓅𝑣𝑣𝑗𝑗− � and 𝜏𝜏 �𝓅𝓅𝑣𝑣𝑗𝑗+ � for an internal node 𝑣𝑣𝑗𝑗.

(b1) 𝑑𝑑𝑗𝑗− ≥
𝑟𝑟
2
 and 𝑑𝑑𝑗𝑗+ < 𝑟𝑟

2

 If 𝓅𝓅𝑣𝑣𝑗𝑗+ = 𝓅𝓅𝑣𝑣𝑗𝑗
= , then for any round trip �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑖𝑖� where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗, the electric vehicle

will need to make a refueling detour to 𝓅𝓅𝑣𝑣𝑗𝑗+ since by 𝑑𝑑𝑗𝑗− ≥
𝑟𝑟
2
 we know that 𝓅𝓅𝑣𝑣𝑗𝑗− =

𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �−1 is established beyond 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗. For any round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘�

28

where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗, no refueling detouring will occur since by 𝑑𝑑𝑗𝑗+ < 𝑟𝑟
2
 we know that

𝓅𝓅𝑣𝑣𝑗𝑗
+ = 𝓅𝓅𝑣𝑣𝑗𝑗

= is established within 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗. That is, 𝑦𝑦𝑣𝑣𝑗𝑗− = 1 and 𝑦𝑦𝑣𝑣𝑗𝑗+ = 0. See

illustration in figure 2.7(a).

 If 𝓅𝓅𝑣𝑣𝑗𝑗− = 𝓅𝓅𝑣𝑣𝑗𝑗
= and 𝓅𝓅𝑣𝑣𝑗𝑗= is established beyond 𝑟𝑟

2
 distance from 𝑣𝑣𝑗𝑗, then 𝑦𝑦𝑣𝑣𝑗𝑗− = 1 and by

𝑦𝑦𝑣𝑣𝑗𝑗
− + 𝑦𝑦𝑣𝑣𝑗𝑗

+ ≤ 1 we shall have 𝑦𝑦𝑣𝑣𝑗𝑗+ = 0. See illustration in figure 2.7(b).

 If 𝓅𝓅𝑣𝑣𝑗𝑗− = 𝓅𝓅𝑣𝑣𝑗𝑗
= and 𝓅𝓅𝑣𝑣𝑗𝑗= is established within 𝑟𝑟

2
 distance from 𝑣𝑣𝑗𝑗, then 𝑦𝑦𝑣𝑣𝑗𝑗− = 0. But 𝑦𝑦𝑣𝑣𝑗𝑗+

can be either 0 or 1, depending on the distance between 𝑣𝑣𝑗𝑗 and 𝓅𝓅𝑣𝑣𝑗𝑗+ , that is, 𝑦𝑦𝑣𝑣𝑗𝑗+ =

1 if 𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗
+ � > 𝑟𝑟

2
, otherwise 𝑦𝑦𝑣𝑣𝑗𝑗+ = 0. See illustration in figure 2.6 and figure

2.7(c).

29

Figure 2.7 An illustration for sub-cases (b1), (b2) and (b3)

Define three binary variables, 𝜂𝜂𝑣𝑣𝑗𝑗1 , 𝜂𝜂𝑣𝑣𝑗𝑗2 and 𝜂𝜂𝑣𝑣𝑗𝑗3 :

𝜂𝜂𝑣𝑣𝑗𝑗
1 = �

1, 𝑖𝑖𝑓𝑓 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � < 𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2

0, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
, indicating whether or not 𝓅𝓅𝑣𝑣𝑗𝑗= is established on the left-

hand side of 𝑣𝑣𝑗𝑗 and beyond 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗; (2.21.1)

𝜂𝜂𝑣𝑣𝑗𝑗
2 = �

1, 𝑖𝑖𝑓𝑓 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � > 𝑙𝑙�𝑣𝑣𝑗𝑗�

0, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
, indicating whether or not 𝓅𝓅𝑣𝑣𝑗𝑗= is established on the left-

hand side of 𝑣𝑣𝑗𝑗; (2.21.2)

30

𝜂𝜂𝑣𝑣𝑗𝑗
3 = �

1, 𝑖𝑖𝑓𝑓 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 < 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟
2

0, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
, indicating whether or not 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 is established

beyond 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗. (2.21.3)

Then with these three variables, we shall be able to see that in case (b1) we

could avoid the problem of not knowing indices 𝜏𝜏 �𝓅𝓅𝑣𝑣𝑗𝑗− � and 𝜏𝜏 �𝓅𝓅𝑣𝑣𝑗𝑗+ � for an internal

node 𝑣𝑣𝑗𝑗. Since if refueling detouring occurs for a round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗,

when 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � < 𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2
 (i.e., 𝑤𝑤𝑣𝑣𝑗𝑗1 = 1), the electric vehicle will need to make a detour

to 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1, and when 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � > 𝑙𝑙�𝑣𝑣𝑗𝑗� (i.e., 𝑤𝑤𝑣𝑣𝑗𝑗2 = 1), the electric vehicle will need to

make a detour to 𝓅𝓅𝑣𝑣𝑗𝑗= . And if refueling detouring occurs for a round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘�

where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗, then the vehicle will need to make a detour to 𝓅𝓅𝑣𝑣𝑗𝑗= . Let 𝑉𝑉𝑖𝑖𝑛𝑛′ =

�𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛: 𝑑𝑑𝑗𝑗− ≥
𝑟𝑟
2

,𝑑𝑑𝑗𝑗+ < 𝑟𝑟
2
�. We can rewrite the total refueling detouring distance

associated with internal nodes in set 𝑉𝑉𝑖𝑖𝑛𝑛′ as

𝑍𝑍𝑖𝑖𝑛𝑛′ (𝒙𝒙) = 2 ∗ ∑ �𝑓𝑓𝑗𝑗− ∗ 𝜂𝜂𝑣𝑣𝑗𝑗
1 ∗ �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 − 𝑙𝑙�𝑣𝑣𝑗𝑗�� + 𝑓𝑓𝑗𝑗− ∗ 𝜂𝜂𝑣𝑣𝑗𝑗

2 ∗ �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � −𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
′

𝑙𝑙�𝑣𝑣𝑗𝑗�� + 𝑓𝑓𝑗𝑗+ ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
+ ∗ �𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗

=)��. (2.22)

Now we can construct the constraints as:

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� −

𝑟𝑟
2
− 𝑀𝑀𝜂𝜂𝑣𝑣𝑗𝑗

1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.1)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� −

𝑟𝑟
2

+ 𝑀𝑀�1 − 𝜂𝜂𝑣𝑣𝑗𝑗
1 � ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.2)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑀𝑀𝜂𝜂𝑣𝑣𝑗𝑗

2 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.3)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑀𝑀 �1 − 𝜂𝜂𝑣𝑣𝑗𝑗

2 � ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.4)

31

𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟
2
− 𝑀𝑀𝜂𝜂𝑣𝑣𝑗𝑗

3 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.5)

𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟
2

+ 𝑀𝑀�1 − 𝜂𝜂𝑣𝑣𝑗𝑗
3 � ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.6)

𝜂𝜂𝑣𝑣𝑗𝑗
1 + 𝜂𝜂𝑣𝑣𝑗𝑗

2 ≤ 1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.7)

𝜂𝜂𝑣𝑣𝑗𝑗
1 ≤ 𝜂𝜂𝑣𝑣𝑗𝑗

3 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.33.8)

𝑦𝑦𝑣𝑣𝑗𝑗
+ ≤ 1 − 𝜂𝜂𝑣𝑣𝑗𝑗

3 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.9)

𝑦𝑦𝑣𝑣𝑗𝑗
+ ≤ 1 − 𝜂𝜂𝑣𝑣𝑗𝑗

2 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.10)

𝜂𝜂𝑣𝑣𝑗𝑗
1 + 𝜂𝜂𝑣𝑣𝑗𝑗

2 + 𝑦𝑦𝑣𝑣𝑗𝑗
+ ≤ 1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.11)

𝜂𝜂𝑣𝑣𝑗𝑗
1 , 𝜂𝜂𝑣𝑣𝑗𝑗

2 , 𝜂𝜂𝑣𝑣𝑗𝑗
3 ∈ {0,1} ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′ (2.23.12)

Constraint (2.23.7) ensures that we will not have 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � < 𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2
 and

𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � > 𝑙𝑙�𝑣𝑣𝑗𝑗� existing at the same time. Constraint (2.23.8) ensures that the

distance between 𝓅𝓅𝑣𝑣𝑗𝑗= and 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 will not be greater than the range limit 𝑟𝑟.

Constraint (2.23.9) ensures that if 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 is established within 𝑟𝑟
2
 distance from 𝑣𝑣𝑗𝑗,

then no refueling detouring will occur for any round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘� where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗.

Constraint (2.23.10) ensures that if refueling detouring occurs for a round trip

�𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘� where 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗, then 𝓅𝓅𝑣𝑣𝑗𝑗= is established on the left-hand side of 𝑣𝑣𝑗𝑗.

Constraint (2.23.11) is equivalent to 𝑦𝑦𝑣𝑣𝑗𝑗− + 𝑦𝑦𝑣𝑣𝑗𝑗
+ ≤ 1 since it is easy to see that 𝜂𝜂𝑣𝑣𝑗𝑗1 +

𝜂𝜂𝑣𝑣𝑗𝑗
2 = 𝑦𝑦𝑣𝑣𝑗𝑗

− .

Now let us consider case (b2).

(b2) 𝑑𝑑𝑗𝑗− < 𝑟𝑟
2
 and 𝑑𝑑𝑗𝑗+ ≥

𝑟𝑟
2

This case is symmetric to (b1), then we shall be able to safely skip the details. Again,

we define three binary decision variables:

32

𝜆𝜆𝑣𝑣𝑗𝑗
1 = �

1, 𝑖𝑖𝑓𝑓 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � > 𝑙𝑙�𝑣𝑣𝑗𝑗�

0, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
 (2.24.1)

𝜆𝜆𝑣𝑣𝑗𝑗
2 = �

1, 𝑖𝑖𝑓𝑓 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= � < 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟
2

0, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
 (2.24.2)

𝜆𝜆𝑣𝑣𝑗𝑗
3 = �

1, 𝑖𝑖𝑓𝑓 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �−1 < 𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2

0, 𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
 (2.24.3)

Let 𝑉𝑉𝑖𝑖𝑛𝑛′′ = �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛: 𝑑𝑑𝑗𝑗− < 𝑟𝑟
2

,𝑑𝑑𝑗𝑗+ ≥
𝑟𝑟
2
� . Then the total refueling detouring distance

associated with the internal nodes in set 𝑉𝑉𝑖𝑖𝑛𝑛′′ can be rewritten as

 𝑍𝑍𝑖𝑖𝑛𝑛′′ (𝒙𝒙) = 2 ∗ ∑ �𝑓𝑓𝑗𝑗− ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
− ∗ �𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗

=) − 𝑙𝑙�𝑣𝑣𝑗𝑗�� + 𝑓𝑓𝑗𝑗+ ∗ �1 − 𝜆𝜆𝑣𝑣𝑗𝑗
1 � ∗ �𝑙𝑙�𝑣𝑣𝑗𝑗� −𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

′′

𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �� + 𝑓𝑓𝑗𝑗+ ∗ �1 − 𝜆𝜆𝑣𝑣𝑗𝑗
2 � ∗ �𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �−1��. (2.25)

The constraints are the following:

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑀𝑀 �1 − 𝜆𝜆𝑣𝑣𝑗𝑗

1 � ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.1)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑀𝑀𝜆𝜆𝑣𝑣𝑗𝑗

1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.2)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟

2
+ 𝑀𝑀�1 − 𝜆𝜆𝑣𝑣𝑗𝑗

2 � ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.3)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑟𝑟

2
− 𝑀𝑀𝜆𝜆𝑣𝑣𝑗𝑗

2 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.4)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=)−1 ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� −

𝑟𝑟
2

+ 𝑀𝑀�1 − 𝜆𝜆𝑣𝑣𝑗𝑗
3 � ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.5)

𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=)−1 ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� −

𝑟𝑟
2
− 𝑀𝑀𝜆𝜆𝑣𝑣𝑗𝑗

3 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.6)

𝜆𝜆𝑣𝑣𝑗𝑗
1 + 𝜆𝜆𝑣𝑣𝑗𝑗

2 ≥ 1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.7)

𝜆𝜆𝑣𝑣𝑗𝑗
2 ≥ 𝜆𝜆𝑣𝑣𝑗𝑗

3 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.8)

𝑦𝑦𝑣𝑣𝑗𝑗
− ≤ 𝜆𝜆𝑣𝑣𝑗𝑗

1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.9)

𝑦𝑦𝑣𝑣𝑗𝑗
− ≤ 𝜆𝜆𝑣𝑣𝑗𝑗

3 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.10)

33

𝑦𝑦𝑣𝑣𝑗𝑗
− + �1 − 𝜆𝜆𝑣𝑣𝑗𝑗

1 � + �1 − 𝜆𝜆𝑣𝑣𝑗𝑗
2 � ≤ 1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.11)

𝜆𝜆𝑣𝑣𝑗𝑗
1 , 𝜆𝜆𝑣𝑣𝑗𝑗

2 , 𝜆𝜆𝑣𝑣𝑗𝑗
3 ∈ {0,1} ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′ (2.26.12)

Then let us consider case (b3).

(b3) 𝑑𝑑𝑗𝑗− < 𝑟𝑟
2
 and 𝑑𝑑𝑗𝑗+ < 𝑟𝑟

2

 Since �𝑑𝑑𝑗𝑗− + 𝑑𝑑𝑗𝑗−� + �̂�𝑑 = 𝑟𝑟, we have 𝑑𝑑𝑗𝑗− + �̂�𝑑 > 𝑟𝑟
2
 and 𝑑𝑑𝑗𝑗+ + �̂�𝑑 > 𝑟𝑟

2
. Then

 If 𝑙𝑙 �𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �� = 𝑙𝑙�𝑣𝑣𝑗𝑗�: 𝑦𝑦𝑣𝑣𝑗𝑗− = 𝑦𝑦𝑣𝑣𝑗𝑗
+ = 0;

 If 𝓅𝓅𝑣𝑣𝑗𝑗− = 𝓅𝓅𝑣𝑣𝑗𝑗
= : by 𝑑𝑑𝑗𝑗− < 𝑟𝑟

2
 we know that 𝑦𝑦𝑣𝑣𝑗𝑗− = 0, and by 𝑑𝑑𝑗𝑗+ + �̂�𝑑 > 𝑟𝑟

2
 we know that 𝑦𝑦𝑣𝑣𝑗𝑗+ =

1;

 If 𝓅𝓅𝑣𝑣𝑗𝑗+ = 𝓅𝓅𝑣𝑣𝑗𝑗
= : by 𝑑𝑑𝑗𝑗+ < 𝑟𝑟

2
 we know that 𝑦𝑦𝑣𝑣𝑗𝑗+ = 0, and by 𝑑𝑑𝑗𝑗− + �̂�𝑑 > 𝑟𝑟

2
 we know that 𝑦𝑦𝑣𝑣𝑗𝑗− =

1.

Let 𝑉𝑉𝑖𝑖𝑛𝑛′′′ = �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛: 𝑑𝑑𝑗𝑗− < 𝑟𝑟
2

,𝑑𝑑𝑗𝑗+ < 𝑟𝑟
2
� . Then the total refueling detouring distance

associated with the internal nodes in set 𝑉𝑉𝑖𝑖𝑛𝑛′′′ can be rewritten as

𝑍𝑍𝑖𝑖𝑛𝑛′′′(𝒙𝒙) = 2 ∗ ∑ �𝑓𝑓𝑗𝑗− ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
− ∗ �𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗

=) − 𝑙𝑙�𝑣𝑣𝑗𝑗�� + 𝑓𝑓𝑗𝑗+ ∗ 𝑦𝑦𝑣𝑣𝑗𝑗
+ ∗ �𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= ���𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

′′′ (2.27)

Recall our discussion in case (a), we shall see that case (b3) is similar to (a),

since no matter where 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �−1 and 𝓅𝓅𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗= �+1 are to be established on the line, they

are beyond 𝑟𝑟
2

 distance from node 𝑣𝑣𝑗𝑗 . Therefore, we can construct the following

constraints:

 𝑦𝑦𝑣𝑣𝑗𝑗
− + 𝑦𝑦𝑣𝑣𝑗𝑗

+ = 1 ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′′ (2.28.1)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑀𝑀𝑦𝑦𝑣𝑣𝑗𝑗

− ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′′ (2.28.2)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑀𝑀 �1 − 𝑦𝑦𝑣𝑣𝑗𝑗

−� ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′′ (2.28.3)

34

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≥ 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑀𝑀𝑦𝑦𝑣𝑣𝑗𝑗

+ ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′′ (2.28.4)

 𝑥𝑥𝜏𝜏(𝓅𝓅𝑣𝑣𝑗𝑗
=) ≤ 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑀𝑀�1 − 𝑦𝑦𝑣𝑣𝑗𝑗

+� ∀𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛′′′ (2.28.5)

The mixed integer program with linear constraints and quadric is now the

following:

Case (a): 𝒓𝒓
𝟐𝟐

< �̂�𝑑 ≤ 𝑟𝑟

 Minimize 𝑍𝑍(𝒙𝒙) = 𝑍𝑍𝑒𝑒𝑒𝑒(𝒙𝒙) + 𝑍𝑍𝑖𝑖𝑛𝑛(𝒙𝒙)

 Subject to constraints (2.10)-(2.11)

 constraints (2.12)-(2.17) for external nodes in 𝑉𝑉𝑒𝑒𝑒𝑒

 constraints (2.20.1)-(2.20.6) for internal nodes in 𝑉𝑉𝑖𝑖𝑛𝑛

Case (b): �̂�𝑑 ≤ 𝒓𝒓
𝟐𝟐

 Minimize 𝑍𝑍(𝒙𝒙) = 𝑍𝑍𝑒𝑒𝑒𝑒(𝒙𝒙) + 𝑍𝑍𝑖𝑖𝑛𝑛′ (𝒙𝒙) + 𝑍𝑍𝑖𝑖𝑛𝑛′′ (𝒙𝒙) + 𝑍𝑍𝑖𝑖𝑛𝑛′′′(𝒙𝒙)

 Subject to constraints (2.10)-(2.11)`

 constraints (2.12)-(2.17) for external nodes in 𝑉𝑉𝑒𝑒𝑒𝑒

 constraints (2.23.1)-(2.23.12) for external nodes in 𝑉𝑉𝑖𝑖𝑛𝑛′

 constraints (2.26.1)-(2.26.12) for internal nodes in 𝑉𝑉𝑖𝑖𝑛𝑛′

 constraints (2.28.1)-(2.28.5) for internal nodes in 𝑉𝑉𝑖𝑖𝑛𝑛′′′

Then we are able to solve the line problem using the OPTI toolbox in MATLAB.

Theorem 2.3. 𝓅𝓅1 can always be located at 𝛽𝛽1 = 𝑟𝑟
2
 where 𝛽𝛽1 is the right endpoint of

localization segment 𝑆𝑆1, and 𝓅𝓅𝑚𝑚 can always be located at 𝛼𝛼𝑚𝑚 = 𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟
2
 where 𝛼𝛼𝑚𝑚 is

the left endpoint of localization segment 𝑆𝑆𝑚𝑚.

Proof of Theorem 2.3. Given any feasible solution 𝒙𝒙 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑚𝑚) to the line

problem, we obtain 𝒙𝒙′ by repositioning 𝓅𝓅1 at 𝑟𝑟
2
 and 𝓅𝓅𝑚𝑚 at 𝑙𝑙(𝑣𝑣𝑛𝑛) − 𝑟𝑟

2
, then it is easy to

35

see that 𝒙𝒙′ is feasible to the problem as well. Let 𝑣𝑣𝑗𝑗 be a node within (𝑥𝑥1, 𝑥𝑥1 + 𝑟𝑟
2
] if

any. Then if refueling detouring will occur for a round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘� with 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗, by

repositioning 𝓅𝓅1, the detouring distance is 2 × max �0, 𝑙𝑙�𝑣𝑣𝑗𝑗� −
𝑟𝑟
2
�, decreased. Let 𝑣𝑣𝑗𝑗 be

a node within (𝑥𝑥1 + 𝑟𝑟
2

, 𝑟𝑟] if any. Then if refueling detouring will occur for a round trip

�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� with 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗, by repositioning 𝓅𝓅1, refueling detouring will be no longer

needed. Likewise, by repositioning 𝓅𝓅𝑚𝑚, the refueling detouring distance would be

non-increasing as well.

EXAMPLE 2.4. Consider the same line network used in example 2.3. Assume

that

flow volume 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

𝑓𝑓𝑗𝑗− 5 10 10

𝑓𝑓𝑗𝑗+ 10 10 5

One of the optimal solution given by the OPTI is 𝑥𝑥1 = 3.5, 𝑥𝑥2 = 10, 𝑥𝑥3 = 16, 𝑥𝑥4 =

23, 𝑥𝑥5 = 28.5, and the total refueling detouring distance is 5.

2.2.3. Existence of finite dominating set

In this section, we will show that there exists a finite dominating set (FDS) to

the line problem, i.e., a finite set of points where an optimal solution must belong.

2.2.3.1. Set of breakpoints

For any node 𝑣𝑣𝑗𝑗, let 𝑣𝑣𝑗𝑗−(𝑑𝑑) represent the point that is on the left-hand side of

𝑣𝑣𝑗𝑗 and at 𝑑𝑑 distance away from 𝑣𝑣𝑗𝑗, i.e., 𝑙𝑙 �𝑣𝑣𝑗𝑗−(𝑑𝑑)� = 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑑𝑑, and let 𝑣𝑣𝑗𝑗+(𝑑𝑑) represent

the point that is on the right-hand side of 𝑣𝑣𝑗𝑗 and at 𝑑𝑑 distance away from 𝑣𝑣𝑗𝑗, i.e.,

36

�𝑣𝑣𝑗𝑗+(𝑑𝑑)� = 𝑙𝑙�𝑣𝑣𝑗𝑗� + 𝑑𝑑. Specifically, we say that 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� and 𝑣𝑣𝑗𝑗+ �

𝑟𝑟
2
� are two extreme

none refueling detouring (XNRD) sites for 𝓅𝓅𝑣𝑣𝑗𝑗− and 𝓅𝓅𝑣𝑣𝑗𝑗+ , respectively. By “XNRD” we

mean that 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� is the farthest allowable site on the left-hand side of 𝑣𝑣𝑗𝑗 such that

no refueling detouring will occur for a round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� with 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗, and that

𝑣𝑣𝑗𝑗+ �
𝑟𝑟
2
� is the farthest allowable site on the right-hand side of 𝑣𝑣𝑗𝑗 such that no

refueling detouring will occur for a round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘� with 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗.

Define 𝓑𝓑 as the set of breakpoints, and 𝓑𝓑 is composed of the following four

parts:

 𝐵𝐵1 = ⋃ {𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘}𝑚𝑚
𝑘𝑘=1 , the set of endpoints of each localization segment;

 𝐵𝐵2 = 𝑉𝑉𝑖𝑖𝑛𝑛, the set of internal nodes;

 𝐵𝐵3 = �𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� , 𝑣𝑣𝑗𝑗+ �

𝑟𝑟
2
� ∶ 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉� ∩ {⋃ 𝑆𝑆𝑘𝑘𝑚𝑚

𝑘𝑘=1 }, the set of XNRD sites that are either

interior points or boundary points of some localization segments;

 𝐵𝐵4 = ⋃ �{𝑥𝑥−(𝑖𝑖𝑟𝑟), 𝑥𝑥+(𝑖𝑖𝑟𝑟): 𝑖𝑖 = 1, 2,⋯ ,𝑚𝑚} ∩ {⋃ 𝑆𝑆𝑘𝑘𝑚𝑚
𝑘𝑘=1 }�𝑒𝑒∈𝐵𝐵1∪𝐵𝐵2∪𝐵𝐵3 . Suppose that a RP is

to be established at some point 𝑥𝑥 ∈ 𝐵𝐵1 ∪ 𝐵𝐵2 ∪ 𝐵𝐵3, then with 𝐵𝐵4, we are guaranteed

to be able to identify a set of 𝑚𝑚 locations such that the distance between every

two consecutive RPs is not more than the range limit 𝑟𝑟.

By identifying the set of breakpoints 𝓑𝓑, each localization segment can be further

divided into several sub-segments. A segment is called indivisible if it does not

contain any breakpoint as its interior point. Consider a localization segment 𝑆𝑆𝑘𝑘, let

𝓃𝓃𝑘𝑘 denote the number of breakpoints that are either interior points or boundary

points of 𝑆𝑆𝑘𝑘. Then, 𝑆𝑆𝑘𝑘 can be decomposed into 𝓃𝓃𝑘𝑘 − 1 indivisible sub- segments.

37

EXAMPLE 2.5 Consider the same line network used in example 2.3, where

𝑏𝑏(𝑣𝑣0, 𝑣𝑣1) = 13, 𝑏𝑏(𝑣𝑣1, 𝑣𝑣2) = 3, 𝑏𝑏(𝑣𝑣2,𝑣𝑣3) = 8, 𝑏𝑏(𝑣𝑣3, 𝑣𝑣4) = 8 and 𝑟𝑟 = 7. From example 2.3,

we know that the five localization segments are 𝑆𝑆1 = [0.5,3.5], 𝑆𝑆2 = [7.5,10.5], 𝑆𝑆3 =

[14.5,17.5], 𝑆𝑆4 = [21.5,24.5], and 𝑆𝑆5 = [28.5,31.5].

Figure 2.8 A copy of Figure 2.4

Then,

𝐵𝐵1 = ⋃ {𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘}5
𝑘𝑘=1 = {0.5, 3.5} ∪ {7.5, 10.5} ∪ {14.5, 17.5} ∪ {21.5, 24.5} ∪ {28.5, 31.5};

𝐵𝐵2 = 𝑉𝑉𝑖𝑖𝑛𝑛 = {𝑣𝑣2, 𝑣𝑣3} = {16, 24};

𝐵𝐵3 = �𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� , 𝑣𝑣𝑗𝑗+ �

𝑟𝑟
2
� ∶ 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉� ∩ �⋃ 𝑆𝑆𝑘𝑘5

𝑘𝑘=1 � = {3.5, 9.5, 16.5, 12.5, 19.5, 20.5, 27.5, 28.5};

𝐵𝐵4 = ⋃ �{𝑥𝑥−(𝑖𝑖𝑟𝑟), 𝑥𝑥+(𝑖𝑖𝑟𝑟): 𝑖𝑖 = 1, 2,⋯ ,𝑚𝑚} ∩ �⋃ 𝑆𝑆𝑘𝑘5
𝑘𝑘=1 ��𝑒𝑒∈𝐵𝐵1∪𝐵𝐵2∪𝐵𝐵3 = 𝐵𝐵1 ∪ {2, 9, 23, 30} ∪

{3, 10, 17, 31} ∪ {2.5, 16.5, 23.5,30.5}.

Hence, we can see that

𝑆𝑆1 can be divided into 4 sub-segments: [0.5,2], [2,2.5], [2.5,3] and [3,3.5];

𝑆𝑆2 can be divided into 4 sub-segments: [7.5,9], [9,9.5], [9.5,10] and [10,10.5];

𝑆𝑆3 can be divided into 4 sub-segments: [14.5,16], [16,16.5], [16.5,17] and [17,17.5];

𝑆𝑆4 can be divided into 4 sub-segments: [21.5,23], [23,23.5], [23.5,24] and [24,25.5];

𝑆𝑆5 can be divided into 4 sub-segments: [28.5,30], [30,30.5], [30.5,31] and [31,31.5].

Now we claim that there exists an FDS to the line problem.

Theorem 2.4 𝓑𝓑 is an FDS to the line problem.

38

2.2.3.2. Another perspective on calculating refueling detouring distance

Before proceeding with the proof of theorem 2.4, let us introduce a different

perspective on calculating the total refueling detouring distance. Recall in (2.6), the

objective function is written as

𝑍𝑍(𝒙𝒙) = ∑ �∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑖𝑖 ∗ �1 − 𝐼𝐼𝕃𝕃𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗− ��� ∗ �2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗
+ ��𝑣𝑣𝑖𝑖:𝑣𝑣𝑖𝑖≺𝑣𝑣𝑗𝑗

𝑑𝑑�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗�>𝑟𝑟/2
+𝑣𝑣𝑗𝑗∈𝑉𝑉

∑ 𝑓𝑓𝑘𝑘𝑗𝑗𝑘𝑘 ∗ �1 − 𝐼𝐼ℝ𝑗𝑗 �𝑥𝑥𝜏𝜏�𝓅𝓅𝑣𝑣𝑗𝑗+ ��� ∗ �2𝑑𝑑 �𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑣𝑣𝑗𝑗
− ��𝑣𝑣𝑘𝑘:𝑣𝑣𝑘𝑘≻𝑣𝑣𝑗𝑗

𝑑𝑑�𝑣𝑣𝑗𝑗,𝑣𝑣𝑘𝑘�>𝑟𝑟/2
�,

which is a summed over all round trips. Now, let us rewrite 𝑍𝑍(𝒙𝒙) as

𝑍𝑍(𝒙𝒙) = ∑ 𝑍𝑍𝑘𝑘(𝒙𝒙)𝑚𝑚
𝑘𝑘=1 , (2.29)

where 𝑍𝑍𝑘𝑘(𝒙𝒙) is the total refueling detouring distance associated with RP 𝓅𝓅𝑘𝑘. That is,

the electric vehicle will need to make a detour to 𝓅𝓅𝑘𝑘 to complete its round trip on the

line. Then we have,

𝑍𝑍𝑘𝑘(𝒙𝒙) = ∑ �∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑖𝑖 ∗ 2𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�𝑣𝑣𝑖𝑖:𝑣𝑣𝑖𝑖≺𝑣𝑣𝑗𝑗,

𝑑𝑑�𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

�𝑣𝑣𝑗𝑗∈𝑉𝑉: 𝓅𝓅𝑣𝑣𝑗𝑗
− =𝓅𝓅𝑘𝑘−1,

𝑑𝑑�𝓅𝓅𝑘𝑘−1,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

+

∑ �∑ 𝑓𝑓𝑘𝑘𝑗𝑗𝑘𝑘 ∗ 2𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�𝑣𝑣𝑘𝑘:𝑣𝑣𝑘𝑘≻𝑣𝑣𝑗𝑗,

𝑑𝑑�𝑣𝑣𝑗𝑗,𝑣𝑣𝑘𝑘�>
𝑟𝑟
2,

�𝑣𝑣𝑗𝑗∈𝑉𝑉: 𝓅𝓅𝑣𝑣𝑗𝑗
+ =𝓅𝓅𝑘𝑘+1,

𝑑𝑑�𝑣𝑣𝑗𝑗,𝓅𝓅𝑘𝑘+1�>
𝑟𝑟
2

. (2.30)

For notational convenience, let 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 = �𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 ∩ 𝑆𝑆𝑘𝑘� represent the set of

internal nodes that are within localization segment 𝑆𝑆𝑘𝑘 and let 𝑉𝑉𝑒𝑒𝑒𝑒𝑘𝑘−1,𝑘𝑘 =

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒 ,𝛽𝛽𝑘𝑘−1 < 𝑙𝑙�𝑣𝑣𝑗𝑗� < 𝛼𝛼𝑘𝑘� represent the set of external nodes that are between

localization segments 𝑆𝑆𝑘𝑘−1 and 𝑆𝑆𝑘𝑘, particularly, 𝑉𝑉𝑒𝑒𝑒𝑒0,1 = �𝑣𝑣𝑗𝑗: 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒 , 0 < 𝑙𝑙�𝑣𝑣𝑗𝑗� < 𝛼𝛼1�.

Note that 𝑉𝑉𝑖𝑖𝑛𝑛 = ⋃ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘𝑚𝑚
𝑘𝑘=1 and 𝑉𝑉𝑒𝑒𝑒𝑒 = ⋃ 𝑉𝑉𝑒𝑒𝑒𝑒

𝑘𝑘−1,𝑘𝑘𝑚𝑚
𝑘𝑘=1 .

39

Given a set of RP locations 𝒙𝒙. Consider an external node 𝑣𝑣𝑗𝑗:

 If 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒𝑘𝑘−1,𝑘𝑘 and 𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘−1 > 𝑟𝑟
2
, then the refueling detouring distance

associated with any round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑖𝑖� with 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗 is 2𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��;

 If 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒𝑘𝑘,𝑘𝑘+1 and 𝑥𝑥𝑘𝑘+1 − 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑟𝑟
2
, then the refueling detouring distance

associated with any round trip �𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑘𝑘� with 𝑣𝑣𝑘𝑘 ≻ 𝑣𝑣𝑗𝑗 is 2𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�.

Then,

𝑍𝑍𝑘𝑘𝑒𝑒𝑒𝑒(𝒙𝒙) = 2

⎝

⎜
⎜
⎛

� 𝑓𝑓𝑗𝑗−𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒: 𝓅𝓅𝑣𝑣𝑗𝑗

− =𝓅𝓅𝑘𝑘−1,

𝑑𝑑�𝓅𝓅𝑘𝑘−1,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒: 𝓅𝓅𝑣𝑣𝑗𝑗

+ =𝓅𝓅𝑘𝑘+1,

𝑑𝑑�𝑣𝑣𝑗𝑗,𝓅𝓅𝑘𝑘+1�>
𝑟𝑟
2 ⎠

⎟
⎟
⎞

= 2�� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘:

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘,𝑘𝑘+1:

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

� (2.31)

Now let us consider an internal node 𝑣𝑣𝑗𝑗. Again, we shall consider two cases:

(a) 𝒓𝒓
𝟐𝟐

< �̂�𝑑 ≤ 𝑟𝑟

Given any RP locations 𝒙𝒙. Then:

 for any 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘−1 with 𝓅𝓅𝑣𝑣𝑗𝑗− = 𝓅𝓅𝑘𝑘−1, 𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘−1� ≤ 𝛽𝛽𝑘𝑘 − 𝛼𝛼𝑘𝑘 = 𝑟𝑟 − �̂�𝑑 < 𝑟𝑟
2
,

 for any 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘+1 with 𝓅𝓅𝑣𝑣𝑗𝑗+ = 𝓅𝓅𝑘𝑘+1, 𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘+1� ≤ 𝛽𝛽𝑘𝑘+1 − 𝛼𝛼𝑘𝑘+1 = 𝑟𝑟 − �̂�𝑑 < 𝑟𝑟
2
,

i.e., we have �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘−1 �
𝓅𝓅𝑣𝑣𝑗𝑗
+ = 𝓅𝓅𝑘𝑘

𝑑𝑑�𝓅𝓅𝑘𝑘−1, 𝑣𝑣𝑗𝑗� > 𝑟𝑟
2

� = ∅ and �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘+1 �
𝓅𝓅𝑣𝑣𝑗𝑗
− = 𝓅𝓅𝑘𝑘 ,

𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘+1� > 𝑟𝑟
2
� = ∅.

Furthermore, for any 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 :

 if 𝓅𝓅𝑣𝑣𝑗𝑗− = 𝓅𝓅𝑘𝑘−1 (i.e., 𝑙𝑙�𝑣𝑣𝑗𝑗� < 𝑥𝑥𝑘𝑘), 𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘−1� ≥ 𝛼𝛼𝑘𝑘 − 𝛽𝛽𝑘𝑘−1 = �̂�𝑑 > 𝑟𝑟
2
,

 if 𝓅𝓅𝑣𝑣𝑗𝑗+ = 𝓅𝓅𝑘𝑘+1, (i.e., 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑥𝑥𝑘𝑘), 𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘+1� ≥ 𝛼𝛼𝑘𝑘+1 − 𝛽𝛽𝑘𝑘 = �̂�𝑑 > 𝑟𝑟
2
,

40

i.e., we have�𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 �
𝓅𝓅𝑣𝑣𝑗𝑗
+ = 𝓅𝓅𝑘𝑘 ,

𝑑𝑑�𝓅𝓅𝑘𝑘−1, 𝑣𝑣𝑗𝑗� > 𝑟𝑟
2

 � = �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗� < 𝑥𝑥𝑘𝑘�, and

 �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 �
𝓅𝓅𝑣𝑣𝑗𝑗
− = 𝓅𝓅𝑘𝑘 ,

𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘+1� > 𝑟𝑟
2
� = �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑥𝑥𝑘𝑘�.

Then,

𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) = 2

⎝

⎜
⎜
⎛

� 𝑓𝑓𝑗𝑗−𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛: 𝓅𝓅𝑣𝑣𝑗𝑗

− =𝓅𝓅𝑘𝑘−1,

𝑑𝑑�𝓅𝓅𝑘𝑘−1,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛: 𝓅𝓅𝑣𝑣𝑗𝑗

+ =𝓅𝓅𝑘𝑘+1,

𝑑𝑑�𝑣𝑣𝑗𝑗,𝓅𝓅𝑘𝑘+1�>
𝑟𝑟
2 ⎠

⎟
⎟
⎞

= 2� � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘

� (2.32)

(b) 0 < �̂�𝑑 ≤ 𝒓𝒓
𝟐𝟐

Unlike case (a), here, let us consider an internal node 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘−1 with 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑥𝑥𝑘𝑘−1 + 𝑟𝑟
2
,

then the electric will need to make a refueling detour to 𝓅𝓅𝑘𝑘 on its round trip

�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� where 𝑣𝑣𝑖𝑖 ≺ 𝑣𝑣𝑗𝑗. In case (b), we have the following:

�𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 �
𝓅𝓅𝑣𝑣𝑗𝑗
+ = 𝓅𝓅𝑘𝑘 ,

𝑑𝑑�𝓅𝓅𝑘𝑘−1, 𝑣𝑣𝑗𝑗� >
𝑟𝑟
2

 � =

�𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 : 𝑥𝑥𝑘𝑘−1 + 𝑟𝑟
2

< 𝑙𝑙�𝑣𝑣𝑗𝑗� < 𝑥𝑥𝑘𝑘� ∪ �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘−1: 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑥𝑥𝑘𝑘−1 + 𝑟𝑟
2
�,

�𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛 �
𝓅𝓅𝑣𝑣𝑗𝑗
− = 𝓅𝓅𝑘𝑘 ,

𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘+1� >
𝑟𝑟
2
� =

�𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 : 𝑥𝑥𝑘𝑘 < 𝑙𝑙�𝑣𝑣𝑗𝑗� < 𝑥𝑥𝑘𝑘+1 −
𝑟𝑟
2
� ∪ �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘+1: 𝑙𝑙�𝑣𝑣𝑗𝑗� < 𝑥𝑥𝑘𝑘+1 −

𝑟𝑟
2
�.

Then,

41

𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) = 2

⎝

⎜
⎜
⎛

� 𝑓𝑓𝑗𝑗−𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛: 𝓅𝓅𝑣𝑣𝑗𝑗

− =𝓅𝓅𝑘𝑘−1,

𝑑𝑑�𝓅𝓅𝑘𝑘−1,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛: 𝓅𝓅𝑣𝑣𝑗𝑗

+ =𝓅𝓅𝑘𝑘+1,

𝑑𝑑�𝑣𝑣𝑗𝑗,𝓅𝓅𝑘𝑘+1�>
𝑟𝑟
2 ⎠

⎟
⎟
⎞

= 2�� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2<𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘

+ � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘−1

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑒𝑒𝑘𝑘<𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘+1

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

� (2.33)

Now, we are able to rewrite the objective function uniformly as

 𝑍𝑍(𝒙𝒙) = ∑ �𝑍𝑍𝑘𝑘𝑒𝑒𝑒𝑒(𝒙𝒙) + 𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙)�𝑚𝑚
𝑘𝑘=1 (2.34)

where 𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) can be computed using (2.32) in case (a) and using (2.33) in case (b).

2.2.3.3. Restricted problem

Now, we shall continue to prove theorem 2.4, which claims that the set of

breakpoints 𝓑𝓑 is an FDS to the line problem. Let us consider a set of restricted

problems by requiring each RP to be established within an indivisible sub-segment

of its original localization segment. Then an optimal solution of at least one of these

restricted problems is optimal to the original problem. Thus, it suffices to show that

the set of breakpoints 𝓑𝓑 is an FDS for each restricted problem. A restricted problem

is formulated as following:

 Minimize 𝑍𝑍(𝒙𝒙) = ∑ �𝑍𝑍𝑘𝑘𝑒𝑒𝑒𝑒(𝒙𝒙) + 𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙)�𝑚𝑚
𝑘𝑘=1 (2.35)

 Subject to 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ≤ 𝑟𝑟 1 ≤ 𝑘𝑘 < 𝑚𝑚 (2.36)

 𝛼𝛼𝑘𝑘𝒉𝒉 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽𝑘𝑘𝒉𝒉 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚 (2.37)

42

where 𝒉𝒉 = (ℎ1,ℎ2,⋯ , ℎ𝑚𝑚) is a particular combination of indivisible sub-segments and

ℎ𝑘𝑘 ∈ {1, 2,⋯ ,𝓃𝓃𝑘𝑘 − 1} (recall that 𝓃𝓃𝑘𝑘 is defined as the number of breakpoints in 𝑆𝑆𝑘𝑘),

and where �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� is the ℎ𝑘𝑘𝑡𝑡ℎ indivisible sub-segment between two consecutive

breakpoints 𝛼𝛼𝑘𝑘𝒉𝒉 (the ℎ𝑘𝑘𝑡𝑡ℎ breakpoint in 𝑆𝑆𝑘𝑘) and 𝛽𝛽𝑘𝑘𝒉𝒉 (the (ℎ𝑘𝑘 + 1)𝑡𝑡ℎ breakpoint in 𝑆𝑆𝑘𝑘).

Let 𝑪𝑪 represent the solution space. It is easy to see that 𝑪𝑪 is a convex set.

Hereon, we proceed with proving that the objective function 𝑍𝑍(𝒙𝒙) is concave on 𝑪𝑪. Let

𝒙𝒙,𝒙𝒙′ ∈ 𝑪𝑪 and 0 < 𝜃𝜃 < 1, that is, we wish to prove 𝑍𝑍(𝒙𝒙′′) = 𝑍𝑍�(1 − 𝜃𝜃)𝒙𝒙 + 𝜃𝜃𝒙𝒙′� ≥

(1 − 𝜃𝜃)𝑍𝑍(𝒙𝒙) + 𝜃𝜃𝑍𝑍(𝒙𝒙′). Not surprisingly, we would discuss the following two cases: (a)

𝑟𝑟
2

< �̂�𝑑 ≤ 𝑟𝑟 and (b) 0 < �̂�𝑑 ≤ 𝑟𝑟
2
.

(a) 𝑟𝑟
2

< �̂�𝑑 ≤ 𝑟𝑟

(a.1) Let us first show that 𝑍𝑍𝑘𝑘𝑒𝑒𝑒𝑒(𝒙𝒙) is concave on 𝑪𝑪. Recall equation (2.31):

𝑍𝑍𝑘𝑘𝑒𝑒𝑒𝑒(𝒙𝒙) = 2�∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘:

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘,𝑘𝑘+1:

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

�.

Consider any external node 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒𝑘𝑘−1,𝑘𝑘. Then 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� ∉ �𝛼𝛼𝑘𝑘−1𝒉𝒉 ,𝛽𝛽𝑘𝑘−1𝒉𝒉 �, since �𝛼𝛼𝑘𝑘−1𝒉𝒉 ,𝛽𝛽𝑘𝑘−1𝒉𝒉 �

is indivisible. That is, we have either 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� ≤ 𝛼𝛼𝑘𝑘𝒉𝒉 or 𝑣𝑣𝑗𝑗− �

𝑟𝑟
2
� ≥ 𝛽𝛽𝑘𝑘𝒉𝒉. Then for any

𝑥𝑥𝑘𝑘−1 ∈ �𝛼𝛼𝑘𝑘−1𝒉𝒉 ,𝛽𝛽𝑘𝑘−1𝒉𝒉 �, we have

 �𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑥𝑥𝑘𝑘−1 + 𝑟𝑟

2
�

= �𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘 , 𝑣𝑣𝑗𝑗− �

𝑟𝑟
2
� > 𝑥𝑥𝑘𝑘−1�

= �
�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒

𝑘𝑘−1,𝑘𝑘 , 𝑥𝑥𝑘𝑘−1 < 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� < 𝛽𝛽𝑘𝑘−1𝒉𝒉 � ∪ �𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒

𝑘𝑘−1,𝑘𝑘 , 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� ≥ 𝛽𝛽𝑘𝑘−1𝒉𝒉 � , 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘−1 < 𝛽𝛽𝑘𝑘−1𝒉𝒉

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘 , 𝑣𝑣𝑗𝑗− �

𝑟𝑟
2
� > 𝛽𝛽𝑘𝑘−1𝒉𝒉 � , 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘−1 = 𝛽𝛽𝑘𝑘−1𝒉𝒉

43

= �
�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒

𝑘𝑘−1,𝑘𝑘 , 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� ≥ 𝛽𝛽𝑘𝑘−1𝒉𝒉 � , 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘−1 < 𝛽𝛽𝑘𝑘−1𝒉𝒉

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘 , 𝑣𝑣𝑗𝑗− �

𝑟𝑟
2
� > 𝛽𝛽𝑘𝑘−1𝒉𝒉 � , 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘−1 = 𝛽𝛽𝑘𝑘−1𝒉𝒉

 �𝑏𝑏𝑦𝑦 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� ∉ �𝛼𝛼𝑘𝑘−1𝒉𝒉 ,𝛽𝛽𝑘𝑘−1𝒉𝒉 �� (2.38)

which implies that if there exists a node 𝑣𝑣∗ ∈ 𝑉𝑉𝑒𝑒𝑒𝑒𝑘𝑘−1,𝑘𝑘 such that 𝑣𝑣∗− �𝑟𝑟
2
� = 𝛽𝛽𝑘𝑘−1𝒉𝒉 ,

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘 , 𝑣𝑣𝑗𝑗− �

𝑟𝑟
2
� ≥ 𝛽𝛽𝑘𝑘−1𝒉𝒉 � \{𝑣𝑣∗} = �𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒

𝑘𝑘−1,𝑘𝑘 , 𝑣𝑣𝑗𝑗− �
𝑟𝑟
2
� > 𝛽𝛽𝑘𝑘−1𝒉𝒉 �.

Without loss of generality we assume that 𝑥𝑥𝑘𝑘−1 < 𝑥𝑥𝑘𝑘−1′ . Then,

 � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1
′′ +𝑟𝑟2

= � 𝑓𝑓𝑗𝑗− ��(1 − 𝜃𝜃)𝑥𝑥𝑘𝑘 + 𝜃𝜃𝑥𝑥𝑘𝑘′ � − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1
′′ +𝑟𝑟2

= � (1 − 𝜃𝜃)𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗�� + 𝜃𝜃𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1
′′ +𝑟𝑟2

= (1 − 𝜃𝜃)� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1
′′ +𝑟𝑟2

+ 𝜃𝜃� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1
′′ +𝑟𝑟2

≥ (1 − 𝜃𝜃)� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ 𝜃𝜃� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1
′ +𝑟𝑟2

 (𝑏𝑏𝑦𝑦 (2.38))

where strict inequality is achieved when 𝑥𝑥𝑘𝑘−1′ = 𝛽𝛽𝑘𝑘−1𝒉𝒉 and there exists a node 𝑣𝑣∗ ∈

𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘 such that 𝑣𝑣∗− �𝑟𝑟

2
� = 𝛽𝛽𝑘𝑘−1𝒉𝒉 , since �𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒

𝑘𝑘−1,𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑥𝑥𝑘𝑘−1′′ + 𝑟𝑟
2
� \{𝑣𝑣∗} =

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� > 𝑥𝑥𝑘𝑘−1′′ + 𝑟𝑟

2
�. Hence, the first component ∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 −𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒

𝑘𝑘−1,𝑘𝑘:

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

𝑙𝑙�𝑣𝑣𝑗𝑗�� of 𝑍𝑍𝑘𝑘𝑒𝑒𝑒𝑒(𝒙𝒙) is concave on 𝑪𝑪. Likewise, we are able to show that the second

component ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘,𝑘𝑘+1:

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

 of 𝑍𝑍𝑘𝑘𝑒𝑒𝑒𝑒(𝒙𝒙) is concave on 𝑪𝑪.

(a.2) Then, let us show that 𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) is concave on 𝑪𝑪 as well. Recall equation (2.32):

44

𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) = 2 �∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘

+ ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘

�.

Note that we can rewrite 𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) as

2 �∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘

+ ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≥𝑒𝑒𝑘𝑘

�,

Consider any internal node 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 . Then 𝑣𝑣𝑗𝑗 ∉ �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉�, since �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� is indivisible.

That is, we have either 𝑣𝑣𝑗𝑗 ≤ 𝛼𝛼𝑘𝑘𝒉𝒉 or 𝑣𝑣𝑗𝑗 ≥ 𝛽𝛽𝑘𝑘𝒉𝒉. Then for any 𝑥𝑥𝑘𝑘 ∈ �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉�, we have

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� ≤ 𝑥𝑥𝑘𝑘� = �
�𝑣𝑣𝑗𝑗: 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� ≤ 𝛼𝛼𝑘𝑘𝒉𝒉�, 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘 < 𝛽𝛽𝑘𝑘𝒉𝒉

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� ≤ 𝛼𝛼𝑘𝑘𝒉𝒉� ∪ �𝛽𝛽𝑘𝑘𝒉𝒉�, 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘 = 𝛽𝛽𝑘𝑘𝒉𝒉 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖𝑓𝑓 𝛽𝛽𝑘𝑘𝒉𝒉 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘
,

and

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� ≥ 𝑥𝑥𝑘𝑘� = �
�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� ≥ 𝛽𝛽𝑘𝑘𝒉𝒉� ∪ �𝛼𝛼𝑘𝑘𝒉𝒉�, 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘 = 𝛼𝛼𝑘𝑘𝒉𝒉 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖𝑓𝑓 𝛼𝛼𝑘𝑘𝒉𝒉 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘

�𝑣𝑣𝑗𝑗:𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉𝑖𝑖𝑛𝑛𝑘𝑘 , 𝑙𝑙�𝑣𝑣𝑗𝑗� ≥ 𝛽𝛽𝑘𝑘𝒉𝒉�, 𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘 > 𝛼𝛼𝑘𝑘𝒉𝒉
.

Then,

� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘
′′

= (1 − 𝜃𝜃)� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘
′′

+ 𝜃𝜃� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘
′′

= (1 − 𝜃𝜃)� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��
𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛

𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘
+ 𝜃𝜃� 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��

𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘

′
,

it is worth to mention that when 𝑥𝑥𝑘𝑘′ = 𝛽𝛽𝑘𝑘𝒉𝒉 the equality between ∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′ −𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘

′

𝑙𝑙�𝑣𝑣𝑗𝑗�� and ∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘′ − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘 : 𝑙𝑙�𝑣𝑣𝑗𝑗�≤𝑒𝑒𝑘𝑘

′′ still holds, since �𝑥𝑥𝑘𝑘′ − 𝛽𝛽𝑘𝑘𝒉𝒉��𝑒𝑒𝑘𝑘′=𝛽𝛽𝑘𝑘𝒉𝒉
= 0. Hence,

the first component of 𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) is concave on 𝑪𝑪. Follow the same fashion, we can show

that the second component of 𝑍𝑍𝑘𝑘𝑖𝑖𝑛𝑛(𝒙𝒙) is also concave on 𝑪𝑪.

Therefore, we shall claim that for case (a) the objective function 𝑍𝑍(𝑥𝑥) is

concave on 𝑪𝑪.

(b) 0 < �̂�𝑑 ≤ 𝑟𝑟
2

45

In case (b), follow the same fashion in (a), we are able to show that the following four

components are concave on 𝑪𝑪:

 ∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘:

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ ∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘−1

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

,

 ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘,𝑘𝑘+1:

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

+ ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘+1

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

,

 ∑ 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2<𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘

,

 ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑒𝑒𝑘𝑘<𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

.

Therefore, at least one of the extreme points will be the optimal solution for

each restricted problem. Let ℰ(𝑪𝑪) denote the set of extreme points of the solution

space 𝑪𝑪. Then we shall prove that ℰ(𝑪𝑪) ⊆ {(𝑏𝑏1,𝑏𝑏2,⋯ , 𝑏𝑏𝑚𝑚): 𝑏𝑏𝑘𝑘 ∈ 𝓑𝓑, 𝑘𝑘 = 1, … ,𝑚𝑚}. The

extreme points of a polyhedron are defined algebraically as: Let 𝒙𝒙� ∈ 𝑃𝑃 =

{𝑥𝑥 ∈ ℝ𝑛𝑛 | 𝑨𝑨𝒙𝒙 ≤ 𝒃𝒃}, where 𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘(𝑨𝑨) = 𝑛𝑛 and 𝒃𝒃 ∈ ℝ𝑚𝑚. Further, let 𝑨𝑨�𝒙𝒙� = 𝒃𝒃� be the equality

subsystem of 𝑨𝑨𝒙𝒙 ≤ 𝒃𝒃. Then 𝒙𝒙� is an extreme point of 𝑃𝑃 if and only if 𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘(𝑨𝑨�) = 𝑛𝑛. That

the equality subsystem has rank 𝑛𝑛 basically means that there should be at least 𝑛𝑛

linearly independent half-spaces going through the point 𝒙𝒙�.

Recall that 𝑪𝑪 = �
𝒙𝒙: 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ≤ 𝑟𝑟, 1 ≤ 𝑘𝑘 < 𝑚𝑚

𝛼𝛼𝑘𝑘𝒉𝒉 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽𝑘𝑘𝒉𝒉, 𝑓𝑓𝑓𝑓𝑟𝑟 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚�. Then for any 𝒙𝒙� ∈ ℰ(𝑪𝑪),

there should be at least 𝑚𝑚 linear independent half-spaces going through it. Hence, at

least one half-space in �𝑥𝑥𝑘𝑘 ≥ 𝛼𝛼𝑘𝑘𝒉𝒉,𝑓𝑓𝑓𝑓𝑟𝑟 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚� ∪ �𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽𝑘𝑘𝒉𝒉, 𝑓𝑓𝑓𝑓𝑟𝑟 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚� goes

through 𝒙𝒙�. Without loss of generality, suppose that the half-space 𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽𝑘𝑘𝒉𝒉 together

with other 𝑚𝑚 − 1 half-spaces in {𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ≤ 𝑟𝑟, 𝑓𝑓𝑓𝑓𝑟𝑟 1 ≤ 𝑘𝑘 < 𝑚𝑚} go through 𝒙𝒙�. Hence,

46

𝒙𝒙� = �𝛽𝛽𝑘𝑘𝒉𝒉 − (𝑘𝑘 − 1)𝑟𝑟,⋯ ,𝛽𝛽𝑘𝑘𝒉𝒉 − 𝑟𝑟,𝛽𝛽𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟,⋯ ,𝛽𝛽𝑘𝑘𝒉𝒉 + (𝑚𝑚 − 𝑘𝑘)𝑟𝑟�. Clearly, 𝒙𝒙� ∈

{(𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑚𝑚): 𝑏𝑏𝑘𝑘 ∈ 𝓑𝓑, 𝑘𝑘 = 1, … ,𝑚𝑚}.

Thus, theorem 2.4 has been proved.

2.2.4. Solution Method

2.2.4.1. Network construction

In this section, we formulate our problem as a shortest path problem on an

acyclic network. The network has 𝑚𝑚 layers of nodes: It has one layer corresponding

to each RP 𝓅𝓅𝑘𝑘 ∈ {𝓅𝓅1,𝓅𝓅2,⋯ ,𝓅𝓅𝑚𝑚}. The layer 𝑘𝑘 has 𝓃𝓃𝑘𝑘 nodes, �𝑛𝑛1𝑘𝑘 ,𝑛𝑛2𝑘𝑘 ,⋯ ,𝑛𝑛𝓃𝓃𝑘𝑘
𝑘𝑘 �, where 𝑛𝑛𝑖𝑖𝑘𝑘

denotes the 𝑖𝑖𝑡𝑡ℎ breakpoint (in the left to right order) in localization segment 𝑆𝑆𝑘𝑘, and

signifies that 𝓅𝓅𝑘𝑘 is established at that breakpoint. Connect nodes 𝑛𝑛𝑖𝑖𝑘𝑘 and 𝑛𝑛𝑗𝑗𝑘𝑘+1 if the

distance between the two corresponding breakpoints is not more than 𝑟𝑟. Denote

𝑤𝑤�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� the cost of edge �𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�. Recall equation (2.30), the total refueling

detouring distance associated with RP 𝓅𝓅𝑘𝑘 is 𝑍𝑍𝑘𝑘(𝒙𝒙):

𝑍𝑍𝑘𝑘(𝒙𝒙) = 2�∑ �𝑓𝑓𝑗𝑗−𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘��𝑣𝑣𝑗𝑗∈𝑉𝑉: 𝓅𝓅𝑣𝑣𝑗𝑗
− =𝓅𝓅𝑘𝑘−1,

𝑑𝑑�𝓅𝓅𝑘𝑘−1,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

+ ∑ �𝑓𝑓𝑗𝑗−𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘��𝑣𝑣𝑗𝑗∈𝑉𝑉: 𝓅𝓅𝑣𝑣𝑗𝑗
+ =𝓅𝓅𝑘𝑘+1,

𝑑𝑑�𝑣𝑣𝑗𝑗,𝓅𝓅𝑘𝑘+1�>
𝑟𝑟
2

�,

Here the first sum depends on the positions of 𝓅𝓅𝑘𝑘−1 and 𝓅𝓅𝑘𝑘 and the second one

depends on the positions of 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1. Then, for notational convenience, we let

 𝐷𝐷𝑘𝑘−(𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘) = ∑ 𝑓𝑓𝑗𝑗−𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�𝑣𝑣𝑗𝑗: 𝓅𝓅𝑣𝑣𝑗𝑗
− =𝓅𝓅𝑘𝑘−1,

𝑑𝑑�𝓅𝓅𝑘𝑘−1,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

 (2.39)

 𝐷𝐷𝑘𝑘+(𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1) = ∑ 𝑓𝑓𝑗𝑗+𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝓅𝓅𝑘𝑘�𝑣𝑣𝑗𝑗: 𝓅𝓅𝑣𝑣𝑗𝑗
+ =𝓅𝓅𝑘𝑘+1,

𝑑𝑑�𝓅𝓅𝑘𝑘+1,𝑣𝑣𝑗𝑗�>
𝑟𝑟
2

 (2.40)

47

Particularly, 𝐷𝐷1−(𝑥𝑥1) = 0 and 𝐷𝐷𝑚𝑚+(𝑥𝑥𝑚𝑚) = 0. In case (a) 𝑟𝑟
2

< �̂�𝑑 ≤ 𝑟𝑟, we have

𝐷𝐷𝑘𝑘−(𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘) = � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘

,

𝐷𝐷𝑘𝑘+(𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1) = � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘,𝑘𝑘+1

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

.

In case (b) 0 < �̂�𝑑 ≤ 𝑟𝑟
2
, we have

𝐷𝐷𝑘𝑘−(𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘) = � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘−1

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘−1,𝑘𝑘

𝑙𝑙�𝑣𝑣𝑗𝑗�>𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗− �𝑥𝑥𝑘𝑘 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑒𝑒𝑘𝑘−1+
𝑟𝑟
2<𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘

,

𝐷𝐷𝑘𝑘+(𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1) = � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘

𝑒𝑒𝑘𝑘<𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
𝑘𝑘,𝑘𝑘+1

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 𝑥𝑥𝑘𝑘�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
𝑘𝑘+1

𝑙𝑙�𝑣𝑣𝑗𝑗�<𝑒𝑒𝑘𝑘+1−
𝑟𝑟
2

.

 Let 𝑤𝑤�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� = 𝐷𝐷𝑘𝑘+�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� + 𝐷𝐷𝑘𝑘+1− �𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�.

2.2.4.2. Correctness

Each path of the network corresponds to a feasible solution of our original

problem, as each path contains one node from every layer, and each node represents

a breakpoint which is a candidate location site for a refueling station, and two nodes

can be connected only if the distance between the two corresponding breakpoints is

not more than 𝑟𝑟. Let 𝑃𝑃 = �𝑛𝑛𝑟𝑟1
1 ,𝑛𝑛𝑟𝑟2

2 ,⋯ ,𝑛𝑛𝑟𝑟𝑚𝑚
𝑚𝑚 � be a path of the network, where 𝑟𝑟𝑘𝑘 denote

the rank of the node in its layer. Denote 𝑊𝑊(𝑃𝑃) the cost of path 𝑃𝑃, then

48

𝑊𝑊(𝑃𝑃) = � 𝑤𝑤�𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,𝑛𝑛𝑟𝑟𝑘𝑘+1

𝑘𝑘+1 �
𝑚𝑚−1

𝑘𝑘=1

= � �𝐷𝐷𝑘𝑘+�𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,𝑛𝑛𝑟𝑟𝑘𝑘+1

𝑘𝑘+1 � + 𝐷𝐷𝑘𝑘+1− �𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,𝑛𝑛𝑟𝑟𝑘𝑘+1

𝑘𝑘+1 ��
𝑚𝑚−1

𝑘𝑘=1

= 𝐷𝐷1
+�𝑛𝑛𝑟𝑟1

1 � + � �𝐷𝐷𝑘𝑘−� 𝑛𝑛𝑟𝑟𝑘𝑘−1
𝑘𝑘−1 ,𝑛𝑛𝑟𝑟𝑘𝑘

𝑘𝑘 � + 𝐷𝐷𝑘𝑘+�𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,𝑛𝑛𝑟𝑟𝑘𝑘+1

𝑘𝑘+1 ��
𝑚𝑚−1

𝑘𝑘=2
+ 𝐷𝐷𝑚𝑚− � 𝑛𝑛𝑟𝑟𝑚𝑚

𝑚𝑚 �

= � 𝑍𝑍𝑘𝑘(𝒙𝒙)
𝑚𝑚

𝑘𝑘=1
.

Therefore, the path cost is equal to the total refueling detouring distance associated

with such an infrastructure layout. Conversely, a feasible solution to our problem

defines a path from layer 1 to layer 𝑚𝑚 with a cost equal to the total detour distance.

This correspondence implies that we are able find the optimal solution to our

original problem by finding the shortest path of the constructed network.

Remark Recall theorem 2.3 which claims that 𝓅𝓅1 can always be located at 𝛽𝛽1,

and 𝓅𝓅𝑚𝑚 can always be located at 𝛼𝛼𝑚𝑚. Therefore, we can only keep the breakpoint 𝛽𝛽1

for localization segment 𝑆𝑆1 and 𝛼𝛼𝑚𝑚 for segment 𝑆𝑆𝑚𝑚.

EXAMPLE 2.5 Let us consider the same example for illustrating how to

construct the network. There are five layers of nodes, each layer corresponding to a

station 𝓅𝓅𝑘𝑘, 𝑘𝑘 ∈ {1,⋯ , 5}. Layer 1 contains only one node 𝑛𝑛11, i.e., the breakpoint 𝑏𝑏1(=

3.5), and layer 5 contains one node 𝑛𝑛15(= 𝑎𝑎5 = 28.5) as well. Layer 2 contains 5 nodes:

𝑛𝑛12 = 7.5, 𝑛𝑛22 = 9, 𝑛𝑛32 = 9.5, 𝑛𝑛42 = 10, and 𝑛𝑛52 = 10.5. Layer 3 contains 5 nodes: 𝑛𝑛13 = 14.5,

𝑛𝑛23 = 16, 𝑛𝑛33 = 16.5, 𝑛𝑛43 = 17, and 𝑛𝑛53 = 17.5. Layer 4 contains 5 nodes as well: 𝑛𝑛14 =

28.5, 𝑛𝑛24 = 30, 𝑛𝑛34 = 30.5, 𝑛𝑛44 = 31, and 𝑛𝑛54 = 31.5.

49

Figure 2.9 The network constructed for example 2.5

To illustrate how to derive edge costs, we take 𝑤𝑤(𝑛𝑛42,𝑛𝑛33) for example. Note that �̂�𝑑 =

4 > 𝑟𝑟
2
 in this example.

𝑤𝑤(𝑛𝑛42,𝑛𝑛33) = 𝐷𝐷2+(𝑛𝑛42,𝑛𝑛33) + 𝐷𝐷3−(𝑛𝑛42,𝑛𝑛33)

= � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 10�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
2

𝑙𝑙�𝑣𝑣𝑗𝑗�>10

+ � 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 10�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
2,3

𝑙𝑙�𝑣𝑣𝑗𝑗�<16.5−3.5

+ � 𝑓𝑓𝑗𝑗− �16.5 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
2,3

𝑙𝑙�𝑣𝑣𝑗𝑗�>10+3.5

+ � 𝑓𝑓𝑗𝑗− �16.5 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
3

𝑙𝑙�𝑣𝑣𝑗𝑗�<16.5

,

where 𝑉𝑉𝑖𝑖𝑛𝑛2 = ∅, 𝑉𝑉𝑒𝑒𝑒𝑒2,3 = {𝑣𝑣1}, and 𝑉𝑉𝑖𝑖𝑛𝑛3 = {𝑣𝑣2}, and 𝑙𝑙(𝑣𝑣1) = 13, 𝑙𝑙(𝑣𝑣2) = 16. Therefore,

∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 10�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
2

𝑙𝑙�𝑣𝑣𝑗𝑗�>10

= 0, ∑ 𝑓𝑓𝑗𝑗+�𝑙𝑙�𝑣𝑣𝑗𝑗� − 10�𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
2,3

𝑙𝑙�𝑣𝑣𝑗𝑗�<13

= 0, ∑ 𝑓𝑓𝑗𝑗− �16.5 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑒𝑒𝑒𝑒
2,3

𝑙𝑙�𝑣𝑣𝑗𝑗�>13.5

=

0, and ∑ 𝑓𝑓𝑗𝑗− �16.5 − 𝑙𝑙�𝑣𝑣𝑗𝑗��𝑣𝑣𝑗𝑗∈𝑉𝑉𝑖𝑖𝑛𝑛
3

𝑙𝑙�𝑣𝑣𝑗𝑗�<16.5

= 𝑓𝑓𝑣𝑣2
− ∙ (0.5). Therefore, 𝑤𝑤(𝑛𝑛42,𝑛𝑛33) = 𝑓𝑓𝑣𝑣2

− ∙ (0.5).

The shortest path of the network is 𝑛𝑛11 − 𝑛𝑛42 − 𝑛𝑛23 − 𝑛𝑛24 − 𝑛𝑛15, with length = 5.

Same result as using math programming: 𝑥𝑥1 = 3.5, 𝑥𝑥2 = 10, 𝑥𝑥3 = 16, 𝑥𝑥4 = 23, 𝑥𝑥5 = 28.5,

total detouring = 5.

Remark The network we constructed can be viewed as multistage graph.

50

A multistage graph is a directed graph in which the nodes can be divided into

a set of stages such that all edges are from a stage to next stage only. There are

multiple strategies we can apply to find the shortest path. For example, the

Dijkstra’s algorithm of single source shortest paths, but which does not use the

special feature that a multistage graph has. The best strategy is using dynamic

programming, and the time complexity is 𝒪𝒪(𝑛𝑛2), where 𝑛𝑛 is the number of nodes in

the graph.

Theorem 2.5 The line problem can be solved in 𝒪𝒪(𝑚𝑚𝑛𝑛3 + 𝑚𝑚2𝑛𝑛2).

Proof of Theorem 2.5 Recall from Theorem 2.2, the minimum number of RPs that

are necessary and sufficient to serve all round-trip triples is 𝑚𝑚 = �𝑙𝑙(𝑣𝑣𝑛𝑛)
𝑟𝑟
�. Let 𝑇𝑇1

represents the time required to construct the network and let 𝑇𝑇2 represent the time

required to find the shortest path in the constructed network.

(1) 𝑇𝑇1 = 𝒪𝒪(𝑚𝑚𝑛𝑛3). By the nature of the line network problem and by the

construction of the multistage network note that the number of nodes in each node

layer in our constructed multistage network is at most 𝑛𝑛 + 1. Also, note that we only

need to keep one breakpoint in the first layer and last layer. By the calculation of

edge weights, we know that the time required to find the weight of an edge is

𝒪𝒪(𝑛𝑛 + 1). Thus, 𝑇𝑇1 = 𝒪𝒪�(𝑚𝑚 − 3)(𝑛𝑛 + 1)3 + 2(𝑛𝑛 + 1)2� = 𝒪𝒪(𝑚𝑚𝑛𝑛3).

(2) 𝑇𝑇2 = 𝒪𝒪(𝑚𝑚2𝑛𝑛2). Note that the total number of nodes in our multistage network

is at most (𝑚𝑚 − 2) ∗ (𝑛𝑛 + 1) + 2. Thus, finding the shortest path in the constructed

multistage network will take 𝒪𝒪 ��(𝑚𝑚 − 2) ∗ (𝑛𝑛 + 1) + 2�2� = 𝒪𝒪(𝑚𝑚2𝑛𝑛2) time.

The overall run time T of the line problem is 𝑇𝑇1 + 𝑇𝑇2 = 𝒪𝒪(𝑚𝑚𝑛𝑛3 + 𝑚𝑚2𝑛𝑛2).

51

2.3. Conclusion

In this chapter, we studied the continuous location problem related to

locating RPs on line networks, where finding the minimum number of RPs needed to

refuel all O-D flows is considered as the first objective. Given this minimum number,

our goal is to locate this number of RPs to minimize weighted sum of the travelling

distance for all O-D flows. The one-way scenario is rather simple. For the round-trip

scenario, an integer program with linear constraints and quartic objective function

is formulated, and the problem can be solved using OPTI toolbox in Matlab. We have

also identified a finite dominating set to the problem, and based on the existence of

finite dominating set, the problem is formulated as a shortest path problem.

52

CHAPTER 3

THE COMB TREE PROBLEM

3.1. Overview

In chapter 2 we discussed the continuous version of detouring-flow location

problem on a real line. In this chapter we address the location problem on a comb

tree. Again, this problem is to (a) first determine the minimum number of RPs that

are necessary and sufficient to refuel all O-D traffic flow, and (b) then determine the

optimal locations for RPs that minimize the total travelling distance.

Let us begin our discussion by way of a simple example. Consider the small

tree in Figure 3.1. By a “small tree” we mean that a single RP is sufficient to serve

all O-D transportation needs. We are ignoring the possibility of queue formation for

battery swapping/recharging services. In Figure 3.1, there are 6 ordered O-D pairs

in total: (𝐴𝐴,𝐵𝐵), (𝐴𝐴,𝐶𝐶), (𝐵𝐵,𝐴𝐴), (𝐵𝐵,𝐶𝐶), (𝐶𝐶,𝐴𝐴) and (𝐶𝐶,𝐵𝐵). We wish to find the optimal

location that minimizes the total traveling distance by using a single RP.

Figure 3.1 A simple example with a small tree

Points 𝐴𝐴1, 𝐴𝐴2, 𝐵𝐵1, 𝐵𝐵2, 𝐶𝐶1 and 𝐶𝐶2 are such that the distances 𝐴𝐴𝐴𝐴1, 𝐴𝐴𝐴𝐴2, 𝐵𝐵𝐵𝐵1, 𝐵𝐵𝐵𝐵2, 𝐶𝐶𝐶𝐶1

and 𝐶𝐶𝐶𝐶2 are all equal to the range limit 𝑟𝑟. The bold segments, which constitute a

subtree, represent the intersection of all paths between these points. Note that if we

53

locate the RP beyond this subtree, then one RP would be insufficient to serval all O-

D pairs. For example, suppose that we’ve located the RP at point 𝐶𝐶1, then trip (𝐴𝐴,𝐵𝐵)

and trip (𝐴𝐴,𝐶𝐶) cannot be satisfied. Therefore, by using a single RP, it must be located

on this subtree, and all O-D pairs can be served then, with or without the need of

detouring. To minimize the total traveling distance, junction node 𝐽𝐽 would be the

only optimal location such that all trips can be served without detouring, since 𝐽𝐽 lies

on any shortest path between a given pair of O-D nodes.

We now formally consider a general comb tree.

Let 𝐺𝐺 = (𝑉𝑉,𝐴𝐴) be an undirected comb tree with node set 𝑉𝑉 and arc set 𝐴𝐴. See

Figure 3.2 for illustration. The node set 𝑉𝑉 can be further partitioned into two

subsets: a subset of leaf nodes (nodes with degree 1), and a subset of junction nodes.

End node 𝑗𝑗 is denoted 𝑣𝑣𝑗𝑗, 𝑗𝑗 = 0, 1,⋯ ,𝑛𝑛, and each end node serves as an origin and/or

a destination of a trip by the electric vehicle. Junction node 𝑗𝑗 is denoted 𝐽𝐽𝑗𝑗, 𝑗𝑗 =

1,⋯ ,𝑛𝑛 − 1. Hence, the cardinality of set 𝑉𝑉 is |𝑉𝑉| = 2𝑛𝑛. The arc set 𝐴𝐴 =

{(𝑣𝑣0, 𝐽𝐽1), (𝑣𝑣𝑛𝑛, 𝐽𝐽𝑛𝑛−1)} ∪ {(𝑣𝑣𝑘𝑘 , 𝐽𝐽𝑘𝑘), 𝑘𝑘 = 1,⋯ ,𝑛𝑛 − 1} ∪ {(𝐽𝐽𝑘𝑘−1, 𝐽𝐽𝑘𝑘), 𝑘𝑘 = 2,⋯ ,𝑛𝑛 − 1}. An arc

connecting nodes 𝑣𝑣𝑘𝑘 and 𝐽𝐽𝑘𝑘 is denoted 𝑎𝑎𝑘𝑘, 𝑘𝑘 = 1,⋯ ,𝑛𝑛 − 1, and an arc connecting

nodes 𝐽𝐽𝑘𝑘−1 and 𝐽𝐽𝑘𝑘 is denoted 𝑎𝑎𝑛𝑛+𝑘𝑘−1, 𝑘𝑘 = 2,⋯ ,𝑛𝑛 − 1. Additionally, let 𝑎𝑎0 represent the

arc connecting 𝑣𝑣0 and 𝐽𝐽1, and 𝑎𝑎𝑛𝑛 represent the arc connecting 𝑣𝑣𝑛𝑛 and 𝐽𝐽𝑛𝑛−1. Hence, the

cardinality of set 𝐴𝐴 is |𝐴𝐴| = 2𝑛𝑛 − 1. We say that 𝑎𝑎𝑘𝑘 is a comb tooth of 𝐺𝐺 if 𝑎𝑎𝑘𝑘 connects

a leaf node and a junction node. Associate with each arc 𝑎𝑎𝑘𝑘 ∈ 𝐴𝐴 is a nonnegative

weight 𝑏𝑏𝑘𝑘 representing its length, and the length 𝑏𝑏(𝑥𝑥, 𝑦𝑦) of the portion of arc between

points 𝑥𝑥 and 𝑦𝑦 on 𝑎𝑎𝑘𝑘 is defined to be 𝑏𝑏(𝑥𝑥,𝑦𝑦) = �𝑏𝑏�𝑒𝑒𝑘𝑘1, 𝑥𝑥� − 𝑏𝑏�𝑒𝑒𝑘𝑘1,𝑦𝑦��, where 𝑒𝑒𝑘𝑘1 and 𝑒𝑒𝑘𝑘2

are the two endpoints of arc 𝑎𝑎𝑘𝑘, one is a leaf node and the other is a junction node,

precisely, let 𝑒𝑒𝑘𝑘1 represent the leaf node. The length function 𝑏𝑏 yields a distance

54

function 𝑑𝑑 for the comb, where 𝑑𝑑(𝑥𝑥, 𝑦𝑦) is defined to be the shortest path length from

𝑥𝑥 to 𝑦𝑦 for any two points 𝑥𝑥, 𝑦𝑦 on 𝐺𝐺. However, there is exactly one path between them

since 𝐺𝐺 is a tree and let 𝑃𝑃(𝑥𝑥,𝑦𝑦) denote this unique path. We say that 𝑃𝑃(𝑣𝑣0, 𝑣𝑣𝑛𝑛) is the

comb span of 𝐺𝐺.

Figure 3.2 A comb tree

Further, we use the cartesian coordinate system to uniquely determine the position

of the points on 𝐺𝐺, without loss of generality we assume that each comb tooth is

perpendicular to the comb span.

Then the line goes through comb span is chosen as the horizontal axis, and

the line that is perpendicular to the comb span and goes through node 𝑣𝑣0 is chosen

as the vertical axis. Let �𝑙𝑙1(𝑥𝑥), 𝑙𝑙2(𝑥𝑥)� denote the coordinates of 𝑥𝑥 on 𝐺𝐺, where 𝑙𝑙1(𝑥𝑥)

and 𝑙𝑙2(𝑥𝑥) are taken to be the distances to the axes. Specifically, �𝑙𝑙1(𝑣𝑣0), 𝑙𝑙2(𝑣𝑣0)� =

(0, 0). For points 𝑥𝑥, 𝑦𝑦 on 𝐺𝐺, we say that 𝑥𝑥 is on the left-hand side of 𝑦𝑦 on 𝐺𝐺 if 𝑙𝑙1(𝑥𝑥) <

𝑙𝑙1(𝑦𝑦), and that 𝑥𝑥 is on the right-hand side of 𝑦𝑦 if 𝑙𝑙1(𝑥𝑥) > 𝑙𝑙1(𝑦𝑦).

We denote a pair �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� as the one-way transportation need for flow from

nodes 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗, for all 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉. The average traffic flow volume on 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is denoted

as 𝑓𝑓�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�. Again, in this problem, an electric vehicle is assumed to depart from its

origin with a fully charged battery and needs to reach its destination. If a set of RP

locations, say 𝓟𝓟, is given and has been added to 𝐺𝐺, then we say that trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� can

be served if there exists a refueling walk in 𝐺𝐺 starting at 𝑣𝑣𝑖𝑖 and ending at 𝑣𝑣𝑗𝑗 which

55

has no segment without refueling with a length greater than the range limit 𝑟𝑟, that

is, any path contained in this refueling walk starting and ending at nodes in �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� ∪

𝓟𝓟 has length at most 𝑟𝑟. Here, the term “walk” is used as opposed to “path” since a

detour to refuel the vehicle might include repeated nodes or arcs. In this problem, as

many refueling stops can be taken by the vehicle as necessary. Consider the comb

tree with three RPs in Figure 3.3, a refueling walk for one-way trip (𝑣𝑣2, 𝑣𝑣4) is 𝑣𝑣2 →

𝐽𝐽2 → 𝓅𝓅1 → 𝐽𝐽2 → 𝐽𝐽3 → 𝓅𝓅2 → 𝐽𝐽3 → 𝐽𝐽4 → 𝓅𝓅3 → 𝐽𝐽4 → 𝑣𝑣4, if 𝑑𝑑(𝑣𝑣2,𝓅𝓅1) ≤ 𝑟𝑟, 𝑑𝑑(𝓅𝓅1,𝓅𝓅2) ≤

𝑟𝑟, 𝑑𝑑(𝓅𝓅2,𝓅𝓅3) ≤ 𝑟𝑟, and 𝑑𝑑(𝓅𝓅3,𝑣𝑣4) ≤ 𝑟𝑟. While, the shortest path from 𝑣𝑣2 to 𝑣𝑣4 is 𝑝𝑝(𝑣𝑣2, 𝑣𝑣4) =

𝑣𝑣2 → 𝐽𝐽2 → 𝐽𝐽3 → 𝐽𝐽4 → 𝑣𝑣4.

Figure 3.3 A comb tree with three RPs

3.2. Minimum number of RPs needed

To determine the minimum number of RPs that are required to serve all O-D

transportation needs, we introduce a two-step algorithm.

3.2.1. Step One --- Comb tree trimming

The trimming procedure is simple: it picks an arbitrary comb tooth of 𝐺𝐺, say

𝑎𝑎𝑘𝑘, if 𝑏𝑏𝑘𝑘 ≥ 𝑟𝑟, adds a set 𝒫𝒫𝑘𝑘 = �𝓅𝓅1𝑘𝑘 ,⋯ ,𝓅𝓅
�𝑏𝑏𝑘𝑘𝑟𝑟 �
𝑘𝑘 � of �𝑏𝑏𝑘𝑘

𝑟𝑟
� RP locations to 𝑎𝑎𝑘𝑘, where the 𝑖𝑖𝑡𝑡ℎ RP

location is at 𝑖𝑖 ∗ 𝑟𝑟 distance away from the endpoint 𝑒𝑒𝑘𝑘1 of 𝑎𝑎𝑘𝑘, i.e., the leaf node on 𝑎𝑎𝑘𝑘.

56

It then cuts the leaf node 𝑒𝑒𝑘𝑘1, the newly added RP locations in 𝒫𝒫𝑘𝑘\ �𝓅𝓅
�𝑏𝑏𝑘𝑘𝑟𝑟 �
𝑘𝑘 �, and the

arcs joining them, and iterates on the remaining comb until the remaining comb has

no tooth with length greater than or equal to 𝑟𝑟. The procedure is illustrated in

Figure 3.4. Let 𝑎𝑎𝑘𝑘 = (𝑣𝑣𝑘𝑘 , 𝐽𝐽𝑘𝑘) be the comb tooth chosen on which the procedure will

add RP locations and then cut the comb tree. The RP locations 𝓅𝓅1𝑘𝑘, 𝓅𝓅2𝑘𝑘, 𝓅𝓅3𝑘𝑘 and 𝓅𝓅4𝑘𝑘 are

added, and 𝑣𝑣𝑘𝑘, 𝓅𝓅1𝑘𝑘, 𝓅𝓅2𝑘𝑘 and 𝓅𝓅3𝑘𝑘 are removed from the comb tree afterwards.

Figure 3.4 An illustration for trimming procedure

This is a greedy method. After trimming, a new comb tree 𝐺𝐺∗ = (𝑉𝑉∗,𝐴𝐴∗) will

be derived, where

𝑉𝑉∗ = {𝑣𝑣𝑘𝑘∗ : 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉(𝐺𝐺)} ∪ {𝐽𝐽𝑘𝑘∗: 𝐽𝐽𝑘𝑘 ∈ 𝑉𝑉(𝐺𝐺)},

𝐴𝐴∗ = {𝑎𝑎𝑘𝑘∗ : 𝑎𝑎𝑘𝑘 ∈ 𝐴𝐴(𝐺𝐺)},

𝑏𝑏𝑘𝑘∗ = 𝑏𝑏𝑘𝑘 − �𝑏𝑏𝑘𝑘
𝑟𝑟
� ∙ 𝑟𝑟, for ∀𝑘𝑘 in {0, 1,⋯ ,𝑛𝑛}, and

𝑓𝑓�𝑣𝑣𝑖𝑖∗, 𝑣𝑣𝑗𝑗∗� = 𝑓𝑓�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�, for ∀𝑖𝑖, 𝑗𝑗 in {0, 1,⋯ ,𝑛𝑛}.

Moreover, we assign a label “RP” to node 𝑣𝑣𝑘𝑘∗ if node 𝑣𝑣𝑘𝑘 has been cut by the procedure

in 𝐺𝐺.

Proposition 3.1 Let 𝑚𝑚, 𝑚𝑚∗ be the minimum number of RPs needed to serve all O-

D transportation needs on 𝐺𝐺 and 𝐺𝐺∗, respectively. Then, 𝑚𝑚 = 𝑚𝑚∗ + ∑ �𝑏𝑏𝑘𝑘
𝑟𝑟
�{𝑎𝑎𝑘𝑘: 𝑏𝑏𝑘𝑘≥𝑟𝑟} .

57

Proof of Proposition 3.1 We know that 𝑚𝑚 ≤ 𝑚𝑚∗ + ∑ �𝑏𝑏𝑘𝑘
𝑟𝑟
�{𝑎𝑎𝑘𝑘: 𝑏𝑏𝑘𝑘≥𝑟𝑟} , since if flows on

�𝑣𝑣𝑖𝑖∗, 𝑣𝑣𝑗𝑗∗� can be served by a set 𝒫𝒫 of RPs located on 𝐺𝐺∗, then flows on �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� can be

served by RPs in 𝒫𝒫 ∪ �⋃ 𝒫𝒫𝑘𝑘{𝑎𝑎𝑘𝑘: 𝑏𝑏𝑘𝑘≥𝑟𝑟} � on the original comb 𝐺𝐺. We shall then prove that

𝑚𝑚 ≥ 𝑚𝑚∗ + ∑ �𝑏𝑏𝑘𝑘
𝑟𝑟
�{𝑎𝑎𝑘𝑘: 𝑏𝑏𝑘𝑘≥𝑟𝑟} . Consider a one-way trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� on 𝐺𝐺, then for the first sub-

trip from 𝑣𝑣𝑖𝑖 to 𝐽𝐽𝑖𝑖, the vehicle has to refuel for at least �𝑏𝑏(𝑣𝑣𝑖𝑖,𝐽𝐽𝑖𝑖)
𝑟𝑟

� times. Conversely,

consider another one-way trip (𝑣𝑣𝑘𝑘 , 𝑣𝑣𝑖𝑖) on 𝐺𝐺, then for the last sub-trip from 𝐽𝐽𝑖𝑖 to 𝑣𝑣𝑖𝑖.

Assume that the vehicle has a remaining fuel of 𝜀𝜀 after arriving at 𝐽𝐽𝑖𝑖, then the

vehicle has to refuel for at least �𝑑𝑑(𝑣𝑣𝑖𝑖,𝐽𝐽𝑖𝑖)−𝜀𝜀
𝑟𝑟

� times. If 0 ≤ 𝜀𝜀 < 𝑟𝑟, �𝑑𝑑(𝑣𝑣𝑖𝑖,𝐽𝐽𝑖𝑖)
𝑟𝑟

� = �𝑑𝑑(𝑣𝑣𝑖𝑖,𝐽𝐽𝑖𝑖)−𝜀𝜀
𝑟𝑟

�,

since 𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝐽𝐽𝑖𝑖) − 𝑟𝑟 < 𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝐽𝐽𝑖𝑖) − 𝜀𝜀 ≤ 𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝐽𝐽𝑖𝑖). If 𝜀𝜀 = 𝑟𝑟, �𝑑𝑑(𝑣𝑣𝑖𝑖,𝐽𝐽𝑖𝑖)
𝑟𝑟

� = �𝑑𝑑(𝑣𝑣𝑖𝑖,𝐽𝐽𝑖𝑖)−𝜀𝜀
𝑟𝑟

� + 1, however,

in this case, there is a RP located at junction 𝐽𝐽𝑖𝑖. Since 𝐺𝐺∗ is the smallest comb tree

we can get by trimming, then 𝑚𝑚∗ + ∑ �𝑏𝑏𝑘𝑘
𝑟𝑟
�{𝑎𝑎𝑘𝑘: 𝑏𝑏𝑘𝑘≥𝑟𝑟} ≤ 𝑚𝑚.

EXAMPLE 3.1 Consider the non-oriented comb tree in Figure 3.5. The nodes in

{𝑣𝑣0, 𝑣𝑣1,⋯ , 𝑣𝑣7} represent origins and/or destinations, and the arcs represent roads

connecting the nodes. The numbers (weights) beside the arcs indicate travel distance

along the arcs. Assume that the range limit equals 4. We wish to find the minimum

number of RPs that all one-way trips can be served. We are ignoring the possibility

of queue formation for battery swapping/recharging services.

58

Figure 3.5 Comb tree representation of O-D nodes and roads for example 3.1

Given the information available in Figure 3.5, we obtain first the trimmed

comb tree, as shown in Figure 3.6. After examining every comb tooth, we find that

(𝑣𝑣2, 𝐽𝐽2), (𝑣𝑣3, 𝐽𝐽3) and (𝑣𝑣7, 𝐽𝐽6) are the only three teeth with length of more than 𝑟𝑟. Since

�𝑐𝑐(𝑣𝑣2,𝐽𝐽2)
𝑟𝑟

� = �5.2
4
� = 1, we have one public RP located on (𝑣𝑣2, 𝐽𝐽2), with distance of 4 from

𝑣𝑣2. As depicted in Figure 3.6, 𝑣𝑣2 is now a triangular shape node, indicating that

battery swapping/recharging service is available here，and 𝑑𝑑(𝑣𝑣2, 𝐽𝐽2) = 1.2. Similarly,

another 2 public RPs are located on (𝑣𝑣3, 𝐽𝐽3) and(𝑣𝑣7, 𝐽𝐽6), respectively.

Figure 3.6 The trimmed comb tree for example 3.1

Hereon, we will be using the trimmed comb tree 𝐺𝐺∗ for algorithm developing,

and for notational convenience we simply refer to 𝐺𝐺∗ as 𝐺𝐺 unless otherwise specified.

59

3.2.2. Step Two --- A rightward pass and a leftward pass

Recall that in that simple example by which we started our discussion of the

comb tree problem, a subtree (the intersection of all paths between points 𝐴𝐴1, 𝐴𝐴2, 𝐵𝐵1,

𝐵𝐵2, 𝐶𝐶1 and 𝐶𝐶2) was constructed for finding the optimal location for a single RP. Now,

we verify that the search for the optimal set of RP locations can be limited to the

comb span.

Proposition 3.2 The search for the optimal set of RP locations can be limited to

the comb span and thus all interior points and the leaf node on comb tooth can be

excluded from consideration.

Proof of Proposition 3.2. Any RP that is located on an interior point or the leaf

node of a comb tooth can be moved to the junction node without any loss of flow and

possibly with a decrease of distance of detours.

The second step for determining the minimum number 𝑚𝑚 of required RPs

consists of a rightward pass and a leftward pass. After this procedure, not only 𝑚𝑚 is

determined, but also for each RP a localization segment on the comb span is derived.

3.2.2.1. Rightward pass

We consider a point 𝑥𝑥 on 𝐺𝐺, where 𝑥𝑥 can be either a leaf node of 𝐺𝐺 or a RP

point located on the comb span (if any). Assuming that an electric vehicle departs

from 𝑥𝑥 with a fully charged battery and heads to node 𝑦𝑦, where 𝑦𝑦 is on the right-

hand side of 𝑥𝑥, let 𝑥𝑥+ denote the farthest point on the comb span that the vehicle is

able to reach from 𝑥𝑥 and 𝑥𝑥+ is on the right-hand side of 𝑥𝑥, where the number of times

the vehicle can stop is not limited. Moreover, let 𝑥𝑥𝑝𝑝≡0+ and 𝑥𝑥𝑝𝑝>0+ represent the

farthest point on the comb span that the vehicle can reach by restricting the number

60

of times to stop to zero and to at least one, respectively. Then, 𝑙𝑙1�𝑥𝑥𝑝𝑝≡0+ � = 𝑙𝑙1(𝑥𝑥) +

�𝑟𝑟 − 𝑙𝑙2(𝑥𝑥)�. Denote ℛ(𝑥𝑥) the set of points on 𝐺𝐺, where each element 𝑦𝑦 of ℛ(𝑥𝑥) has

been assigned a label “RP”, and there exists at least one refueling walk from 𝑥𝑥 to 𝑦𝑦.

Then, 𝑙𝑙1�𝑥𝑥𝑝𝑝>0+ � = max
𝑦𝑦∈ℛ(𝑒𝑒)\{𝑒𝑒}

�𝑙𝑙1�𝑦𝑦𝑝𝑝≡0+ ��. Furthermore, we have 𝑙𝑙1(𝑥𝑥+) =

max�𝑙𝑙1�𝑥𝑥𝑝𝑝≡0+ �, 𝑙𝑙1�𝑥𝑥𝑝𝑝>0+ ��, and 𝑥𝑥+ = argmax
𝑦𝑦∈�𝑒𝑒𝑝𝑝≡0

+ ,𝑒𝑒𝑝𝑝>0
+ �

{𝑙𝑙1(𝑦𝑦)}. Reachability between RPs is an

equivalence relation, since (let 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 be three points on 𝐺𝐺, labelled “RP”):

(1) It is reflexive: there is a trivial path of length zero from any node to itself;

(2) It is symmetric: if there is a refueling walk from 𝑥𝑥 to 𝑦𝑦, the same arcs form a

refueling walk from 𝑦𝑦 to 𝑥𝑥;

(3) It is transitive: if there is a refueling walk from 𝑥𝑥 to 𝑦𝑦 and a refueling walk

from 𝑦𝑦 to 𝑧𝑧, the two walks can be concatenated together to form a refueling

walk from 𝑥𝑥 to 𝑧𝑧.

Fact 3.1 Let 𝑥𝑥 and 𝑦𝑦 be two points on 𝐺𝐺, labelled “RP”. If 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≤ 𝑟𝑟, then we

have ℛ(𝑥𝑥) = ℛ(𝑦𝑦), and 𝑥𝑥+ = 𝑦𝑦+.

Proof of Fact 3.1 Since the reachability between RPs is an equivalence relation, it

is trivial to see that ℛ(𝑥𝑥) = ℛ(𝑦𝑦). We shall prove 𝑥𝑥+ = 𝑦𝑦+:

𝑙𝑙1(𝑥𝑥+) = max�𝑙𝑙1�𝑥𝑥𝑝𝑝≡0+ �, 𝑙𝑙1�𝑥𝑥𝑝𝑝>0+ ��

= max �𝑙𝑙1�𝑥𝑥𝑝𝑝≡0+ �, max �𝑙𝑙1�𝑧𝑧𝑝𝑝≡0+ � | 𝑧𝑧 ∈ ℛ(𝑥𝑥)\{𝑥𝑥}��

= max �𝑙𝑙1�𝑥𝑥𝑝𝑝≡0+ �, 𝑙𝑙1�𝑦𝑦𝑝𝑝≡0+ �, max �𝑙𝑙1�𝑧𝑧𝑝𝑝≡0+ � | 𝑧𝑧 ∈ ℛ(𝑥𝑥)\{𝑥𝑥,𝑦𝑦}��

= max �𝑙𝑙1�𝑥𝑥𝑝𝑝≡0+ �, 𝑙𝑙1�𝑦𝑦𝑝𝑝≡0+ �, max �𝑙𝑙1�𝑧𝑧𝑝𝑝≡0+ � | 𝑧𝑧 ∈ ℛ(𝑦𝑦)\{𝑥𝑥, 𝑦𝑦}�� (by ℛ(𝑥𝑥) = ℛ(𝑦𝑦))

= max �𝑙𝑙1�𝑦𝑦𝑝𝑝≡0+ �, max �𝑙𝑙1�𝑧𝑧𝑝𝑝≡0+ � | 𝑧𝑧 ∈ ℛ(𝑦𝑦)\{𝑦𝑦}��

= max�𝑙𝑙1�𝑦𝑦𝑝𝑝≡0+ �, 𝑙𝑙1�𝑦𝑦𝑝𝑝>0+ ��

61

= 𝑙𝑙1(𝑦𝑦+).

Since 𝑥𝑥+ and 𝑦𝑦+ are two points on the comb span, by proving 𝑙𝑙1(𝑥𝑥+) = 𝑙𝑙1(𝑦𝑦+), we

know that 𝑥𝑥+ = 𝑦𝑦+.

Fact 3.2 For ∀ 𝑦𝑦 ∈ ℛ(𝑥𝑥), 𝑥𝑥+ = 𝑦𝑦+.

Proof of Fact 3.2 𝑙𝑙1(𝑥𝑥+) = max�𝑙𝑙1�𝑧𝑧𝑝𝑝≡0+ � | 𝑧𝑧 ∈ ℛ(𝑥𝑥)� = max�𝑙𝑙1�𝑧𝑧𝑝𝑝≡0+ � | 𝑧𝑧 ∈ ℛ(𝑦𝑦)� =

𝑙𝑙1(𝑦𝑦+).

Now let us restate ℛ(𝑥𝑥) in a different way. Denote ~ this binary reachability

relation on set 𝑉𝑉𝒫𝒫 of points labelled “RP”, that is, the equivalence class of 𝑥𝑥 ∈ 𝐺𝐺

under ~ is defined as ℛ(𝑥𝑥) = [𝑥𝑥] = {𝑦𝑦 ∈ 𝑉𝑉𝒫𝒫 | 𝑦𝑦~𝑥𝑥}. Then the set of all possible

equivalence classes of 𝑉𝑉𝒫𝒫 by ~ is denoted 𝑉𝑉𝒫𝒫~: = {[𝑥𝑥] | 𝑥𝑥 ∈ 𝑉𝑉𝒫𝒫}. We call that 𝑟𝑟𝑒𝑒𝑝𝑝([𝑥𝑥])

the representative of equivalence class [𝑥𝑥], which is defined as 𝑟𝑟𝑒𝑒𝑝𝑝([𝑥𝑥]) ≔

argmax
𝑦𝑦∈[𝑒𝑒]

�𝑙𝑙1�𝑦𝑦𝑝𝑝≡0+ ��. Given comb tree 𝐺𝐺, we can come up with a graph 𝐺𝐺~ = (𝑉𝑉~,𝐴𝐴~)

indicating the reachability between RPs, where

𝑉𝑉~ = 𝑉𝑉𝒫𝒫~,

𝐴𝐴~ = ��𝑣𝑣𝑖𝑖~,𝑣𝑣𝑗𝑗~�: if 𝑑𝑑�𝑣𝑣𝑖𝑖~, 𝑣𝑣𝑗𝑗~� ≤ 𝑟𝑟 on the origianl comb�,

that is, each edge corresponds to a range-limited shortest path (i.e., a path of length

less than or equal to 𝑟𝑟). The graph 𝐺𝐺~ will have one or more connected components,

each of which is formed by an equivalence class of the relation ~.

While, for a leaf node 𝑣𝑣 that is not in 𝑉𝑉𝒫𝒫, i.e., no public RP has been located at

𝑣𝑣, we let 𝑣𝑣 ↝ 𝑥𝑥 denote that if an electric vehicle starts from 𝑣𝑣 with a fully charged

battery, it is able to reach point 𝑥𝑥 and 𝑥𝑥 is labelled “RP”. By the transitive property

of the reachability relation ~ between RPs, we know that 𝑣𝑣 ↝ 𝑦𝑦 for ∀𝑦𝑦 ∈ [𝑥𝑥], if 𝑣𝑣 ↝ 𝑥𝑥.

62

Similarly, let 𝑣𝑣+ represent the farthest point on the comb span that the vehicle is

able to reach from 𝑣𝑣 and 𝑣𝑣+ is on the right-hand side of 𝑣𝑣. Then we have

𝑙𝑙1(𝑣𝑣+) = max �𝑙𝑙1�𝑣𝑣𝑝𝑝≡0+ �, max{𝑙𝑙1(𝑥𝑥+) | 𝑣𝑣 ↝ 𝑥𝑥}�

= max �𝑙𝑙1�𝑣𝑣𝑝𝑝≡0+ �, max{𝑙𝑙1(𝑥𝑥+) | 𝑑𝑑(𝑣𝑣 , 𝑥𝑥) ≤ 𝑟𝑟}� .

If we replace every connected component 𝐶𝐶𝑘𝑘 of 𝐺𝐺~ by a single node 𝑐𝑐𝑘𝑘, we can

construct a bipartite graph 𝐺𝐺𝐵𝐵 = (𝐵𝐵1,𝐵𝐵2,𝐸𝐸), where

𝐵𝐵1 = {⋃ 𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=0 }\𝑉𝑉𝒫𝒫, the set of leaf nodes in 𝐺𝐺 that are without public RPs,

𝐵𝐵2 = ⋃ 𝑐𝑐𝑘𝑘𝑘𝑘 ,

𝐸𝐸 = {(𝑣𝑣, 𝑐𝑐𝑘𝑘) | if for some 𝑥𝑥 ∈ 𝑉𝑉(𝐶𝐶𝑘𝑘), 𝑣𝑣 ↝ 𝑥𝑥}.

These concepts will be illustrated in example 3.2.

Now let us formally introduce the algorithm FARTHEST-POINT-ON-

RHS(𝐺𝐺), by which we are able to find the farthest point that a vehicle can reach from

𝑥𝑥 with a fully charged battery. Furthermore, consider a one-way trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�, and

without loss of generality we assume that 𝑙𝑙1(𝑣𝑣𝑖𝑖) < 𝑙𝑙1�𝑣𝑣𝑗𝑗�. Then we can use this

algorithm to find the position 𝑙𝑙1(𝑣𝑣𝑖𝑖+) on the comb at or before which an RP must be

located, otherwise the flows from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗 cannot be served.

FARTHEST-POINT-ON-RHS(𝑮𝑮)

Step 1 Compute the minimum distance matrix

Step 2 Compute 𝑙𝑙1�𝑣𝑣𝑝𝑝≡0+ �

Step 3 Construct graph 𝐺𝐺~ on node set 𝑉𝑉𝒫𝒫

 For each 𝑣𝑣 in 𝑉𝑉𝒫𝒫, add 𝑣𝑣 to 𝐺𝐺~

 Add (𝑢𝑢, 𝑣𝑣) to 𝐺𝐺~, if 𝑢𝑢, 𝑣𝑣 ∈ 𝐺𝐺~ and 𝑑𝑑(𝑢𝑢, 𝑣𝑣) ≤ 𝑟𝑟

Step 4 Compute the connected components of 𝐺𝐺~

Step 5 For each connected component 𝐶𝐶𝑘𝑘 of 𝐺𝐺~

63

 𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉(𝐶𝐶𝑘𝑘)� ← argmax
𝑣𝑣∈𝑉𝑉(𝐶𝐶𝑘𝑘)

�𝑙𝑙1�𝑣𝑣𝑝𝑝≡0+ ��

Step 6 For each 𝑣𝑣 in 𝑉𝑉𝒫𝒫

 𝑙𝑙1(𝑣𝑣+) ← 𝑙𝑙1 �𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉(𝐶𝐶𝑘𝑘)�𝑝𝑝≡0
+ � if 𝑣𝑣 ∈ 𝑉𝑉(𝐶𝐶𝑘𝑘)

Step 7 For each node 𝑣𝑣 without an RP

 𝑙𝑙1(𝑣𝑣+) ← max �𝑙𝑙1�𝑢𝑢𝑝𝑝≡0+ �, max{𝑙𝑙1(𝑢𝑢+) | 𝑑𝑑(𝑢𝑢 , 𝑣𝑣) ≤ 𝑟𝑟}�

EXAMPLE 3.2. In this example, we illustrate the computation procedure of the

algorithm FARTHEST-POINT-ON-RHS(𝐺𝐺) on the comb tree of Figure 3.6.

Step 1: We first compute the minimum distance between each leaf node and each

node labelled “RP” (𝑣𝑣2, 𝑣𝑣3 and 𝑣𝑣7):

𝐷𝐷3×8 =
𝑣𝑣2
𝑣𝑣3
𝑣𝑣7 ⎝

⎜
⎛

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7
6.7 7.7 \ 5.2 7.2 11.1 18.7 18.2

9.5 10.5 5.2 \ 4 7.9 15.5 15

22.5 23.5 18.2 15 16 7.9 3.5 \ ⎠

⎟
⎞

.

Step 2: Then for each node 𝑣𝑣 we compute 𝑙𝑙1�𝑣𝑣𝑝𝑝≡0+ �:

�𝑙𝑙1�𝑣𝑣𝑝𝑝≡0+ ��
1×8

= �
𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7
4 3 8.3 11.5 10.5 18.6 23 26.5

�,

where 𝑙𝑙1 �𝑣𝑣𝑖𝑖𝑝𝑝≡0
+ � = 𝑙𝑙1(𝑣𝑣𝑖𝑖) + 𝑟𝑟 − 𝑙𝑙2(𝑣𝑣𝑖𝑖).

Step 3-7: Now we can construct the graph 𝐺𝐺~ in Figure 3.7(a) indicating the

reachability between leaf nodes labelled “RP”. Note that each of 𝑣𝑣2, 𝑣𝑣3 and 𝑣𝑣7 itself

forms a connected component, since the minimum distance between any of two

nodes is greater than the range limit (𝑑𝑑(𝑣𝑣2, 𝑣𝑣3) = 5.2, 𝑑𝑑(𝑣𝑣2, 𝑣𝑣7) = 18.2 and 𝑑𝑑(𝑣𝑣3, 𝑣𝑣7) =

15). Then we have 𝑙𝑙1(𝑣𝑣2+) = 𝑙𝑙1 �𝑣𝑣2𝑝𝑝≡0
+ � = 8.3, 𝑙𝑙1(𝑣𝑣3+) = 𝑙𝑙1 �𝑣𝑣3𝑝𝑝≡0

+ � = 11.5, and

𝑙𝑙1(𝑣𝑣7+) = 𝑙𝑙1 �𝑣𝑣7𝑝𝑝≡0
+ � = 26.5. In Figure 3.7(b), we see that there is a link connecting

leaf node 𝑣𝑣4 and component node 𝑐𝑐2 since 𝑑𝑑(𝑣𝑣4, 𝑣𝑣3) = 4 ≤ 𝑟𝑟, and a link connecting 𝑣𝑣6

and 𝑐𝑐3 since 𝑑𝑑(𝑣𝑣6, 𝑣𝑣7) = 3.5 ≤ 𝑟𝑟. Then, we can compute 𝑙𝑙1(𝑣𝑣4+) =

64

max �𝑙𝑙1 �𝑣𝑣4𝑝𝑝≡0
+ � , 𝑙𝑙1(𝑣𝑣3+)� = max{10.5, 11.5} = 11.5 and 𝑙𝑙1(𝑣𝑣6+) =

max �𝑙𝑙1 �𝑣𝑣6𝑝𝑝≡0
+ � , 𝑙𝑙1(𝑣𝑣7+)� = max{23, 26.5} = 26.5. While for any other node 𝑣𝑣𝑗𝑗 in 𝐵𝐵1,

𝑙𝑙1�𝑣𝑣𝑗𝑗+� = 𝑙𝑙1 �𝑣𝑣𝑗𝑗𝑝𝑝≡0
+ �, hence, 𝑙𝑙1(𝑣𝑣0+) = 4, 𝑙𝑙1(𝑣𝑣1+) = 3, 𝑙𝑙1(𝑣𝑣5+) = 18.6.

Figure 3.7 (a) The reachability graph 𝑮𝑮~ constructed on {𝒗𝒗𝟐𝟐,𝒗𝒗𝟑𝟑,𝒗𝒗𝟕𝟕}

 (b) The bipartite graph constructed for example 3.2

Algorithm RIGHTWARD-PASS(G)

Now, we are able to devise the following recursive algorithm, RIGHTWARD-

PASS(𝐺𝐺), for identifying an “extreme” site at which an RP must be located in each

iteration, otherwise some flows cannot be served. Let 𝓟𝓟 = {𝓅𝓅1,𝓅𝓅2,⋯ ,𝓅𝓅𝑚𝑚} represent

the set of RPs to be located on the comb span, where 𝑚𝑚 is the minimum number of

RPs required. The basic idea in this greedy algorithm is to use a simple rule to

identify the first farthest possible site 𝛽𝛽1 from 𝑣𝑣0. Once 𝓅𝓅1 is supposed to be located

at site 𝛽𝛽1, we obtain a minor of the comb by cutting the leaf and junction nodes on

the left-hand side of 𝛽𝛽1, and converting 𝛽𝛽1 to a leaf node labelled “RP”. We then

identify the second farthest possible site 𝛽𝛽2 from 𝛽𝛽1, and again obtain a minor of the

comb by cutting leaf and junction nodes on the left-hand side of 𝛽𝛽2, and converting 𝛽𝛽2

65

to a leaf node. We continue in this fashion until we reach the end of the comb span

𝑣𝑣𝑛𝑛.

Let us state the algorithm a bit more formally. In the pseudocode below, we

again use 𝑉𝑉𝒫𝒫 denoting the set of leaf nodes labelled “RP” in 𝐺𝐺.

Remarks to the algorithm RIGHTWARD-PASS(𝐺𝐺)

The validity of the algorithm termination condition may be established by

proving the following proposition.

Proposition 3.3 The following assertions are equivalent for a comb 𝐺𝐺.

i). There is a refueling walk between every pair of leaf nodes.

RIGHTWARD-PASS(𝑮𝑮)

Step 1 Initially let 𝐺𝐺 be the comb tree, and let 𝜷𝜷 be empty

Step 2 While 𝑉𝑉(𝐺𝐺) is not empty

 Call method FARTHEST-POINT-ON-RHS(𝑮𝑮)

 If (𝑙𝑙1(𝑢𝑢+) ≡ 𝑙𝑙1(𝑣𝑣+) ≥ 𝑙𝑙1(𝑣𝑣𝑛𝑛) for any two nodes 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉𝒫𝒫) && (𝑙𝑙1(𝑢𝑢+) ≥ 𝑙𝑙1(𝑣𝑣+)

for any 𝑢𝑢 ∈ 𝑉𝑉\𝑉𝑉𝒫𝒫 and 𝑣𝑣 ∈ 𝑉𝑉𝒫𝒫)

 Stop

 Else

 𝛽𝛽𝑘𝑘 ← argmin
𝑢𝑢∈𝑉𝑉(𝐺𝐺)

{𝑙𝑙1(𝑢𝑢+)}

 𝜷𝜷 ← 𝜷𝜷 ∪ {𝛽𝛽𝑘𝑘}

 Insert a new node at 𝛽𝛽𝑘𝑘, labelled “RP”

 Cut the comb into two smaller combs at 𝛽𝛽𝑘𝑘

 𝐺𝐺 ← Right comb

Step 3 Return 𝜷𝜷

66

ii). The reachability graph 𝐺𝐺~ has exactly one connected component 𝐶𝐶1, and for

every node 𝑢𝑢 ∈ 𝑉𝑉\𝑉𝑉𝒫𝒫, there exists a node 𝑣𝑣 ∈ 𝑉𝑉𝒫𝒫 (i.e., labelled “RP”) such that

𝑑𝑑(𝑢𝑢 , 𝑣𝑣) ≤ 𝑟𝑟.

iii). For any two nodes 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉𝒫𝒫, 𝑙𝑙1(𝑢𝑢+) ≡ 𝑙𝑙1(𝑣𝑣+) ≥ 𝑙𝑙1(𝑣𝑣𝑛𝑛); and for any 𝑢𝑢 ∈ 𝑉𝑉\𝑉𝑉𝒫𝒫 and

𝑣𝑣 ∈ 𝑉𝑉𝒫𝒫, 𝑙𝑙1(𝑢𝑢+) ≥ 𝑙𝑙1(𝑣𝑣+).

Proof of Proposition 3.3 By algorithm FARTHEST-POINT-ON-RHS(𝐺𝐺), we know

that assertions ii) and iii) are equivalent. Now suppose that assertion i) is true. It is

trivial to see that ii) is true, since there are no unreachable nodes. Now suppose that

assertion ii) is true. It is also trivial to see that there is a refueling walk between

every pair (𝑢𝑢 , 𝑣𝑣) of nodes, where

(a) 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉𝒫𝒫, since 𝐺𝐺~ is connected;

(b) 𝑢𝑢 ∈ 𝑉𝑉\𝑉𝑉𝒫𝒫 and 𝑣𝑣 ∈ 𝑉𝑉𝒫𝒫, since there exists some 𝑤𝑤 ∈ 𝑉𝑉𝒫𝒫 such that 𝑑𝑑(𝑢𝑢 ,𝑤𝑤) ≤ 𝑟𝑟 and (a);

(c) 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉\𝑉𝑉𝒫𝒫, since (b) and (a).

After iteration 𝑘𝑘, 𝑘𝑘 RPs are supposed to have been located at sites 𝛽𝛽1,⋯ ,𝛽𝛽𝑘𝑘 on

the comb span.

Proposition 3.4 The rightward pass algorithm returns a feasible set of RP

locations, 𝜷𝜷 = {𝛽𝛽1,⋯ ,𝛽𝛽𝑚𝑚}.

Proof of Proposition 3.4 To prove this proposition, we need to show that there is a

refueling walk between every pair of nodes.

We first prove by induction that, for all 𝑘𝑘 ∈ {1,⋯ ,𝑚𝑚}, there is a refueling walk

between every pair of nodes 𝑢𝑢 and 𝑣𝑣 with 𝑙𝑙1(𝑢𝑢), 𝑙𝑙1(𝑣𝑣) ≤ 𝑙𝑙1(𝛽𝛽𝑘𝑘), after RPs 𝛽𝛽1, 𝛽𝛽2, ⋯,

and 𝛽𝛽𝑘𝑘 have been located on the comb span (∗).

Base case: When 𝑘𝑘 = 1, trivial, by greedy rule.

Induction step: Let 𝑙𝑙 ∈ {1,⋯ ,𝑚𝑚} be given and suppose (∗) is true for 𝑘𝑘 = 𝑙𝑙. Then :

67

(a) 𝛽𝛽𝑙𝑙 and 𝛽𝛽𝑙𝑙+1 are mutually reachable; (by greedy rule)

(b) node 𝑣𝑣 and 𝛽𝛽𝑙𝑙 and 𝛽𝛽𝑙𝑙+1 are mutually reachable, where 𝑙𝑙1(𝑣𝑣) ∈ (𝑙𝑙1(𝛽𝛽𝑙𝑙), 𝑙𝑙1(𝛽𝛽𝑙𝑙+1)]; (by

greedy rule and (a))

(c) nodes 𝑢𝑢 and 𝑣𝑣 are mutually reachable, where 𝑙𝑙1(𝑢𝑢), 𝑙𝑙1(𝑣𝑣) ∈ (𝑙𝑙1(𝛽𝛽𝑙𝑙), 𝑙𝑙1(𝛽𝛽𝑙𝑙+1)]; (by (b))

(d) nodes 𝑢𝑢 and 𝑣𝑣 are mutually reachable, where 𝑙𝑙1(𝑢𝑢) ≤ 𝑙𝑙1(𝛽𝛽𝑙𝑙) and 𝑙𝑙1(𝑣𝑣) ∈

(𝑙𝑙1(𝛽𝛽𝑙𝑙), 𝑙𝑙1(𝛽𝛽𝑙𝑙+1)]. (by induction hypothesis and (b))

Thus, (∗) holds for 𝑘𝑘 = 𝑙𝑙 + 1, and the proof of the induction step is complete. By the

principle of induction, (∗) is true for all 𝑘𝑘 ∈ {1,⋯ ,𝑚𝑚}.

Recall the stopping criterion of the rightward pass algorithm. We know that every

node 𝑣𝑣 and 𝛽𝛽𝑚𝑚 are mutually reachable, where 𝑙𝑙1(𝑣𝑣) > 𝑙𝑙1(𝛽𝛽𝑚𝑚). Hence, by (∗), there is a

refueling walk between every pair of nodes.

EXAMPLE 3.3 We illustrate two iterations of the rightward pass algorithm on

the comb shown in Figure 3.6.

Recall that in example 3.2, we computed 𝑙𝑙1(𝑣𝑣+) for each 𝑣𝑣:

�𝑙𝑙1(𝑣𝑣+)�1×8 = �
𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7
4 3 8.3 11.5 11.5 18.6 26.5 26.5

�,

In the first iteration: note that 𝑙𝑙1(𝑣𝑣2+) ≠ 𝑙𝑙1(𝑣𝑣3+) ≠ 𝑙𝑙1(𝑣𝑣7+), hence, we let𝑙𝑙1(𝛽𝛽1) =

min
𝑣𝑣∈{𝑣𝑣0,⋯,𝑣𝑣7}

{𝑙𝑙1(𝑣𝑣+)} = 𝑙𝑙1(𝑣𝑣1+) = 3. Then we insert a RP node at 𝛽𝛽1, split the comb into

two smaller combs, and let the right comb be the input in the next iteration.

In the second iteration:

�𝑙𝑙1(𝑣𝑣+)�1×7 = �
𝛽𝛽1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6 𝑣𝑣7
8.3 8.3 11.5 11.5 18.6 26.5 26.5

�,

Again we have 𝑙𝑙1(𝑣𝑣2+) ≠ 𝑙𝑙1(𝑣𝑣3+) ≠ 𝑙𝑙1(𝑣𝑣7+). Then we let 𝑙𝑙1(𝛽𝛽2) = min
𝑣𝑣∈{𝛽𝛽1,𝑣𝑣2,⋯,𝑣𝑣7}

{𝑙𝑙1(𝑣𝑣+)} =

8.3, insert a station node at 𝛽𝛽2, and split the comb.

68

In the next three iterations, we get 𝛽𝛽3 = 12.3, 𝛽𝛽4 = 16.3, and 𝛽𝛽5 = 20.3.

Figure 3.8 Illustrating the rightward pass

3.2.2.2. Leftward pass

By performing the rightward pass algorithm, a set of extreme none refueling

detouring (XNRD) RP sites has been identified. Then, in the leftward pass, we shall

start from the rightmost (i.e., leaf node 𝑣𝑣𝑛𝑛) of the comb tree and derive a set of

XNRD RP sites iteratively.

69

Consider a point 𝑥𝑥 on 𝐺𝐺, where 𝑥𝑥 can be either a leaf node of 𝐺𝐺 or a RP point

that is supposed to be established on the comb span (if any). Let 𝑥𝑥− denote the

farthest point on the comb span that the electric vehicle is able to reach from 𝑥𝑥 and

𝑥𝑥− is on the left-hand side of 𝑥𝑥. Let 𝑥𝑥𝑝𝑝≡0− and 𝑥𝑥𝑝𝑝>0− represent the farthest point on the

comb span that the vehicle can reach by restricting the number of times to stop to

zero and to at least one, respectively. Then we have 𝑙𝑙1�𝑥𝑥𝑝𝑝≡0− � = 𝑙𝑙1(𝑥𝑥) − �𝑟𝑟 − 𝑙𝑙2(𝑥𝑥)�,

and 𝑙𝑙1�𝑥𝑥𝑝𝑝>0− � = min
𝑦𝑦∈ℛ(𝑒𝑒)\{𝑒𝑒}

�𝑙𝑙1�𝑦𝑦𝑝𝑝≡0− ��, where ℛ(𝑥𝑥) is the set of RP points reachable to 𝑥𝑥.

Furthermore, we have 𝑙𝑙1(𝑥𝑥−) = min�𝑙𝑙1�𝑥𝑥𝑝𝑝≡0− �, 𝑙𝑙1�𝑥𝑥𝑝𝑝>0− ��, and 𝑥𝑥− = argmin
𝑦𝑦∈�𝑒𝑒𝑝𝑝≡0− ,𝑒𝑒𝑝𝑝>0− �

{𝑙𝑙1(𝑦𝑦)}.

To determine 𝑙𝑙1(𝑣𝑣−), there is no need to rewrite another algorithm, say,

FARTHEST-POINT-ON-LHS(𝐺𝐺)). Note that by reversing the comb tree we can apply

FARTHEST-POINT-ON-RHS(𝐺𝐺)).

Reverse-Comb(𝑮𝑮)

Step 1 Initially let 𝐺𝐺 be the original comb graph, let 𝐺𝐺𝑅𝑅𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑅𝑅𝑒𝑒 be empty, and 𝐿𝐿 = 0

Step 2 𝐿𝐿 ← length of the comb span

Step 3 𝐺𝐺𝑅𝑅𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑅𝑅𝑒𝑒 ← 𝐺𝐺

Step 4 For each 𝑣𝑣 in 𝑉𝑉(𝐺𝐺𝑅𝑅𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑅𝑅𝑒𝑒)

 𝑙𝑙1(𝑣𝑣) ← 𝐿𝐿 − 𝑙𝑙1(𝑣𝑣)

Step 5 Return 𝐺𝐺𝑅𝑅𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟𝑅𝑅𝑒𝑒

Therefore, we have the following algorithm for the leftward pass:

LEFTWARD-PASS(𝑮𝑮)

Step 1 Initially let 𝐺𝐺 be the comb tree, let 𝐺𝐺′ be empty, 𝜶𝜶 be empty, and 𝐿𝐿 = 0

Step 2 𝐿𝐿 ← length of the comb span

Step 3 Call method REVERSE-COMB(𝑮𝑮), 𝐺𝐺′ ← REVERSE-COMB(𝐺𝐺)

70

Remarks to the algorithm LEFTWARD-PASS(𝐺𝐺)

Proposition 3.5 The leftward pass algorithm returns a feasible set of RP

locations, 𝜶𝜶 = {𝛼𝛼1,𝛼𝛼2,⋯ , 𝛼𝛼𝑚𝑚−}.

Proof of Proposition 3.5 Directly by proposition 3.4.

EXAMPLE 3.3 (Continue) By running leftward pass algorithm on the same comb

tree, we get 𝛼𝛼1 = 1.5, 𝛼𝛼2 = 5.5, 𝛼𝛼3 = 10.5, 𝛼𝛼4 = 14.5, and 𝛼𝛼5 = 18.5.

Figure 3.9 Localization segments

3.2.3. Analyzing the algorithm

In this section, we want to justify that our proposed greedy method returns a

minimum RP set.

As a start, we declare that 𝑚𝑚+ = 𝑚𝑚−, where 𝑚𝑚+ denotes the cardinality of the

set of extreme none refueling detouring RP sites, {𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑚𝑚+}, derived by

rightward pass algorithm, and where 𝑚𝑚− denotes the cardinality of the set of

extreme none refueling detouring RP sites, {𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑚𝑚−}, derived by leftward pass

algorithm.

Proposition 3.6 𝛼𝛼1 ≤ 𝛽𝛽1

Step 4 Call method RIGHTWARD-PASS(𝑮𝑮′), 𝜶𝜶 ← RIGHTWARD-PASS(𝐺𝐺′)

Step 5 For each 𝛼𝛼𝑘𝑘 in 𝜶𝜶 ← Reverse(𝐿𝐿 − 𝜶𝜶)

Step 6 Return 𝜶𝜶

71

Proof of Proposition 3.6 By termination condition, we know that there is a

refueling walk between every pair of nodes in {𝑣𝑣: 𝑙𝑙1{𝑣𝑣} ≤ 𝛼𝛼1} ∪ {𝛼𝛼1}. That is, every

node in {𝑣𝑣: 𝑙𝑙1(𝑣𝑣) ≤ 𝛼𝛼1} is able to reach 𝛼𝛼1. Then by our greedy rule, we have 𝛼𝛼1 ≤ 𝛽𝛽1.

Proposition 3.7 𝑚𝑚+ = 𝑚𝑚−

Proof of Proposition 3.7 Suppose on the contrary that 𝑚𝑚+ ≥ 𝑚𝑚− + 1. Consider the

following 𝑚𝑚− segments on the comb span:

[𝛼𝛼1,𝛼𝛼2), [𝛼𝛼2,𝛼𝛼3), ⋯, [𝛼𝛼𝑚𝑚−−1,𝛼𝛼𝑚𝑚−) and �𝛼𝛼𝑚𝑚− , 𝑙𝑙1(𝑣𝑣𝑛𝑛)�.

Then by proposition 3.5 and by pigeonhole principle, we know that at least one of

these segments will contain more than one 𝛽𝛽. Without loss of generality, suppose

that 𝛽𝛽𝑘𝑘 ,𝛽𝛽𝑘𝑘+1 ∈ [𝛼𝛼𝑙𝑙 ,𝛼𝛼𝑙𝑙+1). Recall the rightward pass algorithm. The greedy rule tells

us that given that 𝑘𝑘 RPs have been established at {𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑘𝑘}, there exists some

node 𝑣𝑣∗ with 𝛽𝛽𝑘𝑘 ≤ 𝑙𝑙1(𝑣𝑣) ≤ 𝛽𝛽𝑘𝑘+1 such that the farthest point (away from 𝑣𝑣0) it can

reach is 𝛽𝛽𝑘𝑘+1.

Now let us consider the leftward pass. Suppose that RPs have been

established at {𝛼𝛼𝑙𝑙+1,𝛼𝛼𝑙𝑙+1,⋯ ,𝛼𝛼𝑚𝑚−}. If the electric vehicle departs from 𝛼𝛼𝑙𝑙+1 with a

fully charged battery, then the remaining level of charge would be 𝑟𝑟 − (𝛼𝛼𝑙𝑙+1 − 𝛽𝛽𝑘𝑘+1).

That is, the vehicle is not able to reach node 𝑣𝑣∗.

Theorem 3.1 The rightward pass algorithm returns a minimum set of RP

locations, 𝜷𝜷 = {𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑚𝑚+}.

Since there may exist many sets of RP locations that can serve all O-D

transportation needs and are with minimum cardinality, so for purposes of

comparison, let 𝒪𝒪∗ be a single one of them. We wish to show that 𝑚𝑚+ = |𝜷𝜷| = |𝒫𝒫∗|.

That is, 𝜷𝜷 contains the same number of RPs as 𝒫𝒫∗ and therefore the number of RPs

in 𝜷𝜷 is minimum also. We introduce some notation to help with this proof. Let the

72

set of RPs in 𝒫𝒫∗ be denoted by 𝓅𝓅1, 𝓅𝓅2, …, 𝓅𝓅𝑚𝑚, assuming that they are ordered in the

left-to-right order by the corresponding positions on the comb span.

Recall that our intuition for this greedy method came from wanting our comb

tree to become as “small” as possible after establishing the first RP on comb span

and cutting the comb. Indeed, our greedy rule guarantees that 𝛽𝛽1 ≽ 𝓅𝓅1. In this sense,

we want to show that our greedy rule “stays ahead” if we measure the algorithm’s

progress in a step-by-step fashion. That is, each RP in 𝜷𝜷 has been established at a

“right-er” position than the corresponding RP in the set 𝒫𝒫∗. Thus, we now prove that

for each 𝑘𝑘 ≥ 1, we have 𝛽𝛽𝑘𝑘 ≽ 𝓅𝓅𝑘𝑘.

Proposition 3.8 For all indices 𝑘𝑘 ≤ 𝑚𝑚, we have 𝛽𝛽𝑘𝑘 ≽ 𝓅𝓅𝑘𝑘.

Proof of Proposition 3.8 We shall prove this statement by induction.

Base case: When 𝑘𝑘 = 1, trivial, by greedy rule.

Induction step: Let 𝑙𝑙 ∈ {1, … , |𝒫𝒫∗|} be given and suppose that the statement is true for

𝑘𝑘 = 𝑙𝑙, and we will try to prove it holds true for 𝑘𝑘 = 𝑙𝑙 + 1. The induction hypothesis

lets us assume that 𝛽𝛽𝑙𝑙 ≽ 𝓅𝓅𝑙𝑙. In order for algorithm’s (𝑙𝑙 + 1)𝑡𝑡ℎ RP not to be located at

a “right-er” position compared to 𝓅𝓅𝑙𝑙+1, it would need to “stay closer to 𝑣𝑣0” as shown

in Figure 3.10. But there’s a simple reason why this could not happen: rather than

choose a position that is closer to 𝑣𝑣0, our greedy algorithm always has the option (at

worst) of choosing 𝓅𝓅𝑙𝑙+1 and thus fulfilling the induction step.

73

Figure 3.10 Can the greedy algorithm’s (𝒍𝒍 + 𝟏𝟏)𝒕𝒕𝒉𝒉 RP be established closer to 𝒗𝒗𝟎𝟎?

Now, we shall prove theorem 3.1.

Proof of theorem 3.1 We will prove the theorem by contradiction. Suppose on the

contrary we have 𝑚𝑚+ > 𝑚𝑚. That is, at least one more RP in 𝜷𝜷 would be located after

𝓅𝓅𝑚𝑚. By proposition 3.6, we know that 𝛽𝛽𝑚𝑚 ≽ 𝓅𝓅𝑚𝑚. Clearly, there is no need to locate

any RPs after 𝛽𝛽𝑚𝑚 has been established.

Remarks

 After performing the rightward pass and the leftward pass algorithm, we will

identify a set of localization segments on the comb span, {[𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘], 𝑘𝑘 = 1,2,⋯ ,𝑚𝑚}.

 A junction node 𝐽𝐽 ∈ 𝑉𝑉 is called an internal junction if it is an interior or boundary

point of a localization segment, otherwise, it is called an external junction.

3.3. Math Programming Formulation

3.3.1. Properties of shortest refueling walk

Given a comb graph 𝐺𝐺 and a set of refueling points 𝓟𝓟 with fixed locations on

the comb span, we denote by 𝐺𝐺𝓟𝓟 the graph on 𝑉𝑉(𝐺𝐺) ∪ 𝓟𝓟 in which each node 𝓅𝓅 ∈ 𝓟𝓟

has been established at its designated location. Then every node 𝑣𝑣 ∈ 𝑉𝑉�𝐺𝐺𝓟𝓟� has a left

neighbor 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣− and a right neighbor 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣+ in 𝓟𝓟, where

74

 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣− ∶= arg min
𝓅𝓅∈𝒫𝒫: 𝑙𝑙1(𝓅𝓅)<𝑙𝑙1(𝑣𝑣)

|𝑙𝑙1(𝑣𝑣) − 𝑙𝑙1(𝓅𝓅)|, (3.1)

 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣+ ∶= arg min
𝓅𝓅∈𝒫𝒫: 𝑙𝑙1(𝓅𝓅)>𝑙𝑙1(𝑣𝑣)

|𝑙𝑙1(𝑣𝑣) − 𝑙𝑙1(𝓅𝓅)|. (3.2)

Let 𝑒𝑒, 𝑜𝑜 ∈ 𝑉𝑉�𝐺𝐺𝓟𝓟� represent the starting and ending nodes of a trip by the

electric vehicle. Let 𝓦𝓦(𝑅𝑅,𝑡𝑡) represent the set of refueling walks from 𝑒𝑒 to 𝑜𝑜. For 𝑊𝑊 ∈

𝓦𝓦(𝑅𝑅,𝑡𝑡) we put 𝛿𝛿(𝑊𝑊) = 𝐿𝐿(𝑊𝑊) − 𝑑𝑑(𝑒𝑒, 𝑜𝑜), where 𝐿𝐿(𝑊𝑊) is the length of 𝑊𝑊 and 𝑑𝑑(𝑒𝑒, 𝑜𝑜) is the

shortest distance from 𝑒𝑒 to 𝑜𝑜, i.e., 𝛿𝛿(𝑊𝑊) denotes the refueling detouring distance that

arises from taking walk 𝑊𝑊. Let Δ(𝑒𝑒, 𝑜𝑜) denote the shortest refueling walk detouring

distance from 𝑒𝑒 to 𝑜𝑜:

 Δ(𝑒𝑒, 𝑜𝑜) = �
min

𝑊𝑊∈𝓦𝓦(𝑠𝑠,𝑡𝑡)
{𝛿𝛿(𝑊𝑊)} , if there is a refueling walk 𝑊𝑊 from 𝑒𝑒 to 𝑜𝑜

∞, otherwise
. (3.3)

Let �𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−� = �𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠++1,⋯ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−� denote the set of RPs that are established

on the comb span and between nodes 𝑒𝑒 and 𝑜𝑜, and let ��𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−�� denote the

cardinality of the set. Then for 𝑊𝑊 ∈𝓦𝓦(𝑅𝑅,𝑡𝑡), �𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−� ⊆ 𝑉𝑉(𝑊𝑊). While note that,

��𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−�� ≥ 1 if 𝑛𝑛𝑒𝑒𝑡𝑡− ≥ 𝑛𝑛𝑒𝑒𝑅𝑅+, and ��𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−�� = 0 if 𝑛𝑛𝑒𝑒𝑡𝑡− = 𝑛𝑛𝑒𝑒𝑅𝑅− otherwise. Let

walks between {𝑒𝑒, 𝑜𝑜} ∪ �𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−� be called subwalks of 𝑊𝑊. Also, besides RP nodes in

�𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−�, 𝑊𝑊 may contain other RP nodes that are on the left-hand side of 𝑒𝑒 or on

the right-hand side of 𝑜𝑜.

Using our definitions of shortest refueling walk. We can come up with several

properties.

Property 3.1 Let 𝑊𝑊 = 𝑊𝑊1 ⨄𝑊𝑊2 ⨄⋯⨄𝑊𝑊𝑘𝑘 be a shortest refueling walk that goes

from 𝑒𝑒 to 𝑜𝑜 through the subwalks 𝑊𝑊1 through 𝑊𝑊𝑘𝑘. Any subwalk 𝑊𝑊𝑖𝑖 must be a

shortest refueling walk from the origin to the destination of 𝑊𝑊𝑖𝑖. That is, a shortest

75

refueling walk is constructed of shortest refueling walks between any two nodes in

{𝑒𝑒, 𝑜𝑜} ∪ �𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ ,𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡−�.

Proof of Property 3.1 Suppose the assertion is false and 𝑊𝑊� 𝑖𝑖 is a shorter refueling

walk from the origin to the destination of 𝑊𝑊𝑖𝑖. Since the vehicle is always allowed to

refuel at a RP node. Then if we replace 𝑊𝑊𝑖𝑖 in 𝑊𝑊 with 𝑊𝑊� 𝑖𝑖, a new walk, 𝑊𝑊� =

𝑊𝑊1 ⨄⋯⨄𝑊𝑊� 𝑖𝑖 ⨄⋯⨄𝑊𝑊𝑘𝑘, is found, which is both feasible and shorter than 𝑊𝑊,

contradicting its optimality.

Property 3.1 is called the optimal substructure property.

Property 3.2 Let 𝑊𝑊 be a shortest refueling walk from 𝑒𝑒 to 𝑜𝑜. Let 𝑣𝑣 ∈ 𝑉𝑉�𝐺𝐺𝓟𝓟� be a

comb leaf node without public refueling infrastructure implemented. Then, 𝑣𝑣 ∉

𝑉𝑉(𝑊𝑊)\{𝑒𝑒, 𝑜𝑜}.

Property 3.3 Let 𝑊𝑊 be a shortest refueling walk from 𝑒𝑒 to 𝑜𝑜. Let 𝑣𝑣 ∈ 𝑉𝑉(𝑊𝑊) be a

node with public refueling infrastructure implemented. Then 𝑣𝑣 appears exactly once

in 𝑊𝑊.

Property 3.4 Let 𝑊𝑊 = 𝑊𝑊1 ⨄𝑊𝑊2 ⨄⋯⨄𝑊𝑊𝑘𝑘 be a shortest refueling walk that goes

from 𝑒𝑒 to 𝑜𝑜 through the subwalks 𝑊𝑊1 through 𝑊𝑊𝑘𝑘. Let 𝑝𝑝 be a refueling point in 𝑉𝑉�𝐺𝐺𝓟𝓟�

on the left-hand side of 𝑒𝑒. Then if 𝑑𝑑(𝑒𝑒,𝑝𝑝) > 𝑟𝑟, 𝑝𝑝 ∉ 𝑉𝑉(𝑊𝑊1). Similarly, let 𝑝𝑝′ be a

refueling point in 𝑉𝑉�𝐺𝐺𝓟𝓟� on the right-hand side of 𝑒𝑒. Then if 𝑑𝑑(𝑜𝑜,𝑝𝑝′) > 𝑟𝑟, 𝑝𝑝′ ∉ 𝑉𝑉�𝑊𝑊𝑘𝑘�.

Proof of Property 3.4 Suppose the assertion is false and 𝑝𝑝 ∈ 𝑉𝑉(𝑊𝑊1). Let 𝑝𝑝.𝓐𝓐

denote the set of ancestors of node 𝑝𝑝 in the current refueling walk and let 𝑝𝑝.𝜋𝜋 denote

the parent of node 𝑝𝑝 in the current refueling walk. Since 𝑑𝑑(𝑒𝑒,𝑝𝑝) > 𝑟𝑟, 𝑝𝑝.𝓐𝓐\{𝑒𝑒}

contains at least one refueling point. Let 𝑓𝑓 = 𝑝𝑝.𝜋𝜋 and 𝑛𝑛 = 𝑓𝑓.𝜋𝜋, then we have 𝑑𝑑(𝑝𝑝, 𝑓𝑓) ≤

𝑟𝑟, 𝑑𝑑(𝑓𝑓,𝑛𝑛) ≤ 𝑟𝑟, and 𝑑𝑑(𝑝𝑝,𝑛𝑛) > 𝑟𝑟, otherwise 𝑊𝑊\{𝑓𝑓} is a shorter refueling walk. Consider

76

the remaining level of charge of the vehicle as it arrives at junction 𝐽𝐽𝑜𝑜 in the

following two cases:

(a) The predecessor of 𝐽𝐽𝑜𝑜 is 𝑓𝑓: the remaining level of charge is 𝑟𝑟 − 𝑙𝑙2(𝑓𝑓);

(b) The predecessor of 𝐽𝐽𝑜𝑜 is 𝑝𝑝: the remaining level of charge is 𝑟𝑟 − 𝑙𝑙2(𝑝𝑝) −

�𝑙𝑙1(𝑓𝑓) − 𝑙𝑙1(𝑝𝑝)�.

Then, by 𝑑𝑑(𝑓𝑓,𝑛𝑛) ≤ 𝑟𝑟 and 𝑑𝑑(𝑝𝑝,𝑛𝑛) > 𝑟𝑟, we have 𝑟𝑟 − 𝑙𝑙2(𝑝𝑝) − �𝑙𝑙1(𝑓𝑓) − 𝑙𝑙1(𝑝𝑝)� < 𝑟𝑟 − 𝑙𝑙2(𝑓𝑓)

(see below), which implies that there is no need for the vehicle to make a detour to

visit refueling point 𝑝𝑝 after visiting 𝑓𝑓. Thus, 𝑝𝑝 ∉ 𝑉𝑉(𝑊𝑊1). 𝑝𝑝′ ∉ 𝑉𝑉�𝑊𝑊𝑘𝑘� can be proved in

a similar way as well.

(Math deduction:

�
𝑑𝑑(𝑓𝑓,𝑛𝑛) = 𝑙𝑙2(𝑛𝑛) + �𝑙𝑙1(𝑛𝑛) − 𝑙𝑙1(𝑓𝑓)� + 𝑙𝑙2(𝑓𝑓) ≤ 𝑟𝑟
𝑑𝑑(𝑝𝑝,𝑛𝑛) = 𝑙𝑙2(𝑛𝑛) + �𝑙𝑙1(𝑛𝑛) − 𝑙𝑙1(𝑝𝑝)� + 𝑙𝑙2(𝑝𝑝) > 𝑟𝑟

⟹ �𝑙𝑙1(𝑛𝑛) − 𝑙𝑙1(𝑓𝑓)� + 𝑙𝑙2(𝑓𝑓) < �𝑙𝑙1(𝑛𝑛) − 𝑙𝑙1(𝑝𝑝)� + 𝑙𝑙2(𝑝𝑝)

⟹−𝑙𝑙1(𝑓𝑓) + 𝑙𝑙2(𝑓𝑓) < −𝑙𝑙1(𝑝𝑝) + 𝑙𝑙2(𝑝𝑝)

⟹−𝑙𝑙2(𝑝𝑝) − �𝑙𝑙1(𝑓𝑓) − 𝑙𝑙1(𝑝𝑝)� < −𝑙𝑙2(𝑓𝑓))

Property 3.5 Let 𝑊𝑊 = 𝑊𝑊1 ⨄𝑊𝑊2 ⨄⋯⨄𝑊𝑊𝑘𝑘 be a shortest refueling walk that goes

from 𝑒𝑒 to 𝑜𝑜 through the subwalks 𝑊𝑊1 through 𝑊𝑊𝑘𝑘. 𝑊𝑊1 contains at most one RP that

is on the left-hand side of 𝑒𝑒, and 𝑊𝑊𝑘𝑘 contains at most one RP that is on the right-

hand side of 𝑜𝑜.

3.3.2. A proposed math program

Define the continuous decision variable 𝑥𝑥𝑘𝑘 for 𝓅𝓅𝑘𝑘 ∈ 𝓟𝓟 and 𝑘𝑘 ∈ {1, 2,⋯ ,𝑚𝑚} as

the position on the comb span at which 𝓅𝓅𝑘𝑘 is to be established. Let 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑚𝑚}

represent these 𝑚𝑚 locations. Then the objective function can be written as

77

 min
𝒙𝒙
𝑍𝑍(𝒙𝒙) = ∑ 𝑓𝑓(𝑒𝑒, 𝑜𝑜) ∗ Δ(𝑅𝑅,𝑡𝑡)(𝒙𝒙)(𝑅𝑅,𝑡𝑡) , (3.4)

where 𝑓𝑓(𝑒𝑒, 𝑜𝑜) denotes the flow volume of one-way trip (𝑒𝑒, 𝑜𝑜). Since for any two one-

way trips (𝑒𝑒, 𝑜𝑜) and (𝑜𝑜, 𝑒𝑒) we have Δ(𝑅𝑅,𝑡𝑡) = Δ(𝑡𝑡,𝑅𝑅), then

𝑍𝑍(𝒙𝒙) = ∑ �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ Δ(𝑅𝑅,𝑡𝑡)(𝑅𝑅,𝑡𝑡):𝑅𝑅<𝑡𝑡 , (3.5)

Furthermore, by splitting the set of {(𝑒𝑒, 𝑜𝑜): 𝑒𝑒 < 𝑜𝑜} into two disjoint subsets:

{(𝑒𝑒, 𝑜𝑜): 𝑒𝑒 < 𝑜𝑜,𝑛𝑛𝑒𝑒𝑡𝑡− ≥ 𝑛𝑛𝑒𝑒𝑅𝑅+} and {(𝑒𝑒, 𝑜𝑜): 𝑒𝑒 < 𝑜𝑜,𝑛𝑛𝑒𝑒𝑡𝑡− = 𝑛𝑛𝑒𝑒𝑅𝑅−}, we have

𝑍𝑍(𝒙𝒙) = ∑ �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ Δ(𝑅𝑅,𝑡𝑡)(𝑅𝑅,𝑡𝑡):𝑅𝑅<𝑡𝑡,
𝑛𝑛𝑒𝑒𝑡𝑡−≥𝑛𝑛𝑒𝑒𝑠𝑠

+
+ ∑ �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ Δ(𝑅𝑅,𝑡𝑡)(𝑅𝑅,𝑡𝑡):𝑅𝑅<𝑡𝑡,

𝑛𝑛𝑒𝑒𝑡𝑡−=𝑛𝑛𝑒𝑒𝑠𝑠−
 (3.6)

By the properties of shortest refueling walk, we can derive the refueling

detouring distance of one-way trip (𝑒𝑒, 𝑜𝑜) with 𝑛𝑛𝑒𝑒𝑡𝑡− ≥ 𝑛𝑛𝑒𝑒𝑅𝑅+:

Δ(𝑅𝑅,𝑡𝑡) = min�𝛿𝛿(𝑊𝑊) | 𝑊𝑊 ∈𝓦𝓦(𝑅𝑅,𝑡𝑡)�

= min �� 𝛿𝛿�𝑊𝑊𝑖𝑖�
𝑖𝑖

| ⨄𝑖𝑖𝑊𝑊𝑖𝑖 = 𝑊𝑊 ∈𝓦𝓦(𝑅𝑅,𝑡𝑡)�

= min �𝛿𝛿(𝑊𝑊) | 𝑊𝑊 ∈𝓦𝓦�𝑅𝑅,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+�
� + ⋯+ min�𝛿𝛿(𝑊𝑊) | 𝑊𝑊 ∈𝓦𝓦(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1)� + ⋯

+ min {𝛿𝛿(𝑊𝑊) | 𝑊𝑊 ∈𝓦𝓦�𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡− ,𝑡𝑡�}

 = Δ�𝑅𝑅,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+�
+ ⋯+ Δ(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1) + ⋯+ Δ�𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡− ,𝑡𝑡� (3.7)

where each component of (3.4) is a function of the RP locations 𝒙𝒙. Hence, we can

rewrite the first sum in (3.6) as

∑ �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ �Δ�𝑅𝑅,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+�
+ ⋯+ Δ(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1) + ⋯+ Δ�𝓅𝓅𝑛𝑛𝑒𝑒𝑡𝑡− ,𝑡𝑡��(𝑅𝑅,𝑡𝑡):𝑅𝑅<𝑡𝑡,

𝑛𝑛𝑒𝑒𝑡𝑡−≥𝑛𝑛𝑒𝑒𝑠𝑠
+

, (3.8)

and by way of re-arranging, we get

78

(3.8) = � � �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ Δ(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1)
(𝑅𝑅,𝑡𝑡): 𝑅𝑅≤𝑙𝑙1(𝓅𝓅𝑘𝑘),

𝑡𝑡≥𝑙𝑙1(𝓅𝓅𝑘𝑘+1)
𝑘𝑘

+ � � �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ Δ(𝑅𝑅,𝓅𝓅𝑘𝑘)
(𝑅𝑅,𝑡𝑡): 𝑅𝑅∈(𝑙𝑙1(𝓅𝓅𝑘𝑘−1),𝑙𝑙1(𝓅𝓅𝑘𝑘)],

𝑡𝑡≥𝑙𝑙1(𝓅𝓅𝑘𝑘)
𝑘𝑘

+ � � �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ Δ(𝓅𝓅𝑘𝑘,𝑡𝑡)
(𝑅𝑅,𝑡𝑡): 𝑡𝑡∈�𝑙𝑙1(𝓅𝓅𝑘𝑘),𝑙𝑙1(𝓅𝓅𝑘𝑘+1)�,

𝑅𝑅≤𝑙𝑙1(𝓅𝓅𝑘𝑘)
𝑘𝑘

 (3.9)

By replacing the first sum in (3.6) with (3.9), now the objective function is

𝑍𝑍(𝒙𝒙) = (3.9) + ∑ �𝑓𝑓(𝑒𝑒, 𝑜𝑜) + 𝑓𝑓(𝑜𝑜, 𝑒𝑒)� ∗ Δ(𝑅𝑅,𝑡𝑡)(𝑅𝑅,𝑡𝑡):𝑅𝑅<𝑡𝑡,
𝑛𝑛𝑒𝑒𝑡𝑡−=𝑛𝑛𝑒𝑒𝑠𝑠−

. (3.10)

Given RP locations 𝒙𝒙, let 𝑉𝑉𝑘𝑘 denote the set of nodes that are on the right-hand

side of RP 𝓅𝓅𝑘𝑘 and on the left-hand side of 𝓅𝓅𝑘𝑘+1, that is 𝑉𝑉𝑘𝑘 = {𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺): 𝑥𝑥𝑘𝑘 ≤ 𝑙𝑙1(𝑣𝑣) ≤

𝑥𝑥𝑘𝑘+1}. Let 𝑉𝑉𝑘𝑘𝓟𝓟 be the set of RP nodes in 𝑉𝑉𝑘𝑘 (i.e., nodes labelled “RP”). Suppose that we

have shut down 𝓅𝓅𝑘𝑘+1, then 𝑉𝑉𝑘𝑘𝓟𝓟 ∪ {𝓅𝓅𝑘𝑘} can be decomposed into a collection of mutually

disjoint subsets, �𝑉𝑉𝑘𝑘,0
𝓟𝓟 ,𝑉𝑉𝑘𝑘,1

𝓟𝓟 ,⋯ ,𝑉𝑉𝑘𝑘,𝑞𝑞
𝓟𝓟 �, where for any two distinct nodes 𝑢𝑢 ∈ 𝑉𝑉𝑘𝑘,𝑖𝑖

𝓟𝓟 and 𝑣𝑣 ∈

𝑉𝑉𝑘𝑘,𝑗𝑗
𝓟𝓟 , if there is a refueling walk between them then 𝑖𝑖 ≡ 𝑗𝑗. Specifically, we let 𝑉𝑉𝑘𝑘,0

𝓟𝓟

denote the subset that contains 𝓅𝓅𝑘𝑘. For any 𝑙𝑙 ∈ {0,⋯ , 𝑞𝑞}, 𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 may be a singleton or

contain multiple elements. We call 𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 � the representative of subset 𝑙𝑙, which is

defined by 𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 � = argmax

𝑧𝑧∈𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟

�𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)��. Furthermore, let 𝑁𝑁𝑘𝑘 = 𝑉𝑉𝑘𝑘\𝑉𝑉𝑘𝑘𝓟𝓟

represent the set of nodes without a public RP. The representative of 𝑁𝑁𝑘𝑘𝓟𝓟 is defined

by 𝑟𝑟𝑒𝑒𝑝𝑝(𝑁𝑁𝑘𝑘) = argmin
𝑧𝑧∈𝑁𝑁𝑘𝑘

�𝑙𝑙1(𝑧𝑧+)�, where recall that 𝑧𝑧+ is the farthest point on the comb

span that the vehicle is able to reach from 𝑧𝑧. To ensure that all flows can be refueled,

every 𝑣𝑣 ∈ 𝑉𝑉𝑘𝑘 should be able to reach RPs 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1. That is, we should have the

following constraint:

79

𝑙𝑙1(𝓅𝓅𝑘𝑘+1) ≤ min�𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� | 𝑧𝑧 ∈ �⋃ 𝑅𝑅𝑒𝑒𝑝𝑝�𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 �𝑙𝑙 � ∪ 𝑅𝑅𝑒𝑒𝑝𝑝(𝑁𝑁𝑘𝑘)�. (3.11)

The math program to our comb tree problem is now the following:

Minimize 𝑍𝑍(𝒙𝒙)

Subject to 𝑥𝑥𝑘𝑘+1 ≤ min�𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� | 𝑧𝑧 ∈ �⋃ 𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 �𝑙𝑙 � ∪ 𝑟𝑟𝑒𝑒𝑝𝑝(𝑁𝑁𝑘𝑘)� 1 ≤ 𝑘𝑘 < m

 𝛼𝛼𝑘𝑘 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽𝑘𝑘 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚

Remarks We are not going to solve detouring-flow comb tree problem by using

math programming. However, this proposed math program will be used to prove the

existence of a finite dominating set to the problem.

3.4. Existence of finite dominating set

In this section, we will show that there exists a finite dominating set (FDS) to

the comb tree problem, i.e., a finite set of points where an optimal solution must

belong.

3.4.1. Set of breakpoints

For any leaf node 𝑣𝑣, let 𝑣𝑣−(𝑑𝑑) represent a point on the comb span such that

𝑣𝑣−(𝑑𝑑) is on the left-hand side of 𝑣𝑣 and at 𝑑𝑑 distance away from 𝑣𝑣, i.e., 𝑙𝑙1�𝑣𝑣−(𝑑𝑑)� =

𝑙𝑙1(𝑣𝑣) − �𝑑𝑑 − 𝑙𝑙2(𝑣𝑣)� and 𝑙𝑙2�𝑣𝑣−(𝑑𝑑)� = 0. Let 𝑣𝑣+(𝑑𝑑) represent the point on the comb

span such that 𝑣𝑣+(𝑑𝑑) is on the right-hand side of 𝑣𝑣𝑗𝑗 and at 𝑑𝑑 distance away from 𝑣𝑣𝑗𝑗,

i.e., 𝑙𝑙1�𝑣𝑣+(𝑑𝑑)� = 𝑙𝑙1(𝑣𝑣) + �𝑑𝑑 − 𝑙𝑙2(𝑣𝑣)� and 𝑙𝑙2�𝑣𝑣+(𝑑𝑑)� = 0. Specifically, we say that 𝑣𝑣−(𝑟𝑟)

and 𝑣𝑣+(𝑟𝑟) are two extreme none refueling detouring (XNRD) sites for 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣− and 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣+,

respectively. By “XNRD” we mean that 𝑣𝑣−(𝑟𝑟) is the farthest allowable site on the

left-hand side of 𝑣𝑣 such that no refueling detouring will occur for a subtrip between 𝑣𝑣

and 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣− (i.e., the first subtrip of an one-way trip (𝑣𝑣,𝑢𝑢) or the last subtrip of (𝑢𝑢, 𝑣𝑣)

80

where 𝑢𝑢 ≼ 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣−, and that 𝑣𝑣+(𝑟𝑟) is the farthest allowable site on the right-hand side

of 𝑣𝑣 such that no refueling detouring will occur for a subtrip between 𝑣𝑣 and 𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣+

(i.e., the first subtrip of an one-way trip (𝑣𝑣,𝑢𝑢) or the last subtrip of (𝑢𝑢, 𝑣𝑣) where 𝑢𝑢 ≽

𝓅𝓅𝑛𝑛𝑒𝑒𝑣𝑣−.

Define 𝓑𝓑 as the set of breakpoints, and 𝓑𝓑 is composed of the following four parts:

 𝐵𝐵1 = ⋃ {𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘}𝑚𝑚
𝑘𝑘=1 , the set of endpoints of each localization segment;

 𝐵𝐵2 = �𝐽𝐽𝑗𝑗: 𝐽𝐽𝑗𝑗 ∈ 𝑉𝑉(𝐺𝐺)� ∩ {⋃ 𝑆𝑆𝑘𝑘𝑚𝑚
𝑘𝑘=1 }, the set of internal junction nodes;

 𝐵𝐵3 = �𝑣𝑣𝑗𝑗−(𝑟𝑟),𝑣𝑣𝑗𝑗+(𝑟𝑟): 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉(𝐺𝐺)� ∩ {⋃ 𝑆𝑆𝑘𝑘𝑚𝑚
𝑘𝑘=1 }, the set of XNRD sites that are either

interior points or boundary points of some localization segments;

 𝐵𝐵4 = ⋃ ({𝑥𝑥−(𝑖𝑖𝑟𝑟), 𝑥𝑥+(𝑖𝑖𝑟𝑟): 𝑖𝑖 = 1, 2,⋯ ,𝑚𝑚} ∩ {⋃ 𝑆𝑆𝑘𝑘𝑚𝑚
𝑖𝑖=𝑘𝑘 })𝑒𝑒∈𝐵𝐵1∪𝐵𝐵2∪𝐵𝐵3 . Supposed that a RP is

to be established at some point 𝑥𝑥 ∈ 𝐵𝐵1 ∪ 𝐵𝐵2 ∪ 𝐵𝐵3, then with 𝐵𝐵4 we are able to

identify a set of 𝑚𝑚 locations on the comb span such that the distance between

every two consecutive RPs is not more than the range limit 𝑟𝑟, if any. Unlike the

line problem, here it is possible that the distance between the right endpoint of

localization segment 𝑆𝑆𝑘𝑘 and the left endpoint of localization segment 𝑆𝑆𝑘𝑘+1 is

greater than 𝑟𝑟.

By identifying the set of breakpoints 𝓑𝓑, each localization segment can be further

divided into several sub-segments. A segment is called indivisible if it does not

contain any breakpoint as its interior point. Consider a localization segment 𝑆𝑆𝑘𝑘, let

𝓃𝓃𝑘𝑘 denote the number of breakpoints that are either interior or boundary points of

𝑆𝑆𝑘𝑘. Then 𝑆𝑆𝑘𝑘 can be decomposed into 𝓃𝓃𝑘𝑘 − 1 indivisible sub-segments.

Example 3.4 Consider the same comb tree used in example 3.3. Then the set of

breakpoints can be computed as:

81

𝐵𝐵1 = ⋃ {𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘}5
𝑘𝑘=1 = {1.5, 3} ∪ {5.5, 8.3} ∪ {10.5, 12.3} ∪ {14.5, 16.3} ∪ {18.5, 20.3};

𝐵𝐵2 = �𝐽𝐽𝑗𝑗: 𝐽𝐽𝑗𝑗 ∈ 𝑉𝑉(𝐺𝐺)� ∩ �⋃ 𝑆𝑆𝑘𝑘5
𝑘𝑘=1 � = {𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽5} = {2, 5.5, 15};

𝐵𝐵3 = �𝑣𝑣𝑗𝑗−(𝑟𝑟),𝑣𝑣𝑗𝑗+(𝑟𝑟): 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉(𝐺𝐺)� ∩ ��𝑆𝑆𝑘𝑘

5

𝑘𝑘=1

�

 = {4} ∪ {1, 3} ∪ {2.7, 8.3} ∪ {5.5, 11.5} ∪ {7.5, 10.5} ∪ {11.4, 18.6} ∪ {19, 23} ∪ {18.5}

 = {2.7, 3, 5.5, 7.5, 8.3, 10.5, 11.4, 11.5, 18.5, 18.6, 19};

𝐵𝐵4 = � �{𝑥𝑥−(𝑖𝑖𝑟𝑟), 𝑥𝑥+(𝑖𝑖𝑟𝑟): 𝑖𝑖 = 1,⋯ , 5} ∩ ��𝑆𝑆𝑘𝑘

5

𝑖𝑖=𝑘𝑘

��
𝑒𝑒∈𝐵𝐵1∪𝐵𝐵2∪𝐵𝐵3

 = {5.5, 9.5, 13.5, 17.5} ∪ {7, 11, 15, 19} ∪ {4.3, 12.3, 16.3, 20.3} ∪ {6.5, 2.5, 14.5, 18.5} ∪

{6, 10, 14, 18} ∪ {6.7, 10.7, 14.7, 18.7} ∪ {3.5, 11.5, 15.5, 19.5} ∪ {7.4, 3.4, 15.4, 19.4} ∪

{14.6, 10.6, 6.6, 2.6}.

Figure 3.11 A copy of Figure 3.8

Hence, we can see that

𝑆𝑆1 can be divided into 5 sub-segments: [1.5,2], [2,2.5], [2.5,2.6], [2.6,2.7] and [2.7,3];

𝑆𝑆2 can be divided into 8 sub-segments: [5.5,6], [6,6.5], [6.5,6.6], [6.6,6.7], [6.7,7],

[7, 7.4], [7.4,7.5] and [7.5, 8.3];

𝑆𝑆3 can be divided into 6 sub-segments: [10.5,10.6], [10.6,10.7], [10.7,11], [11, 11.4],

[11.4, 11.5] and [11.5,12.3];

82

𝑆𝑆4 can be divided into 6 sub-segments: [14.5,14.6], [14.6,14.7], [14.7,15], [15, 15.4],

[15.4, 15.5] and [15.5,16.3];

𝑆𝑆5 can be divided into 4 sub-segments:[18.5,18.6], [18.6,18.7], [18.7,19], [19, 19.4],

[19.4, 19.5] and [19.5,20.3].

Now we claim that there exists an FDS to the comb tree problem.

Theorem 3.2 𝓑𝓑 is an FDS to the comb tree problem.

3.4.2. Restricted problem

We may prove the existence of an FDS by considering a set of ∏ (𝓃𝓃𝑘𝑘 − 1)𝑚𝑚
𝑖𝑖=1

restricted problems by requiring each RP to be established within an indivisible sub-

segment of its original localization segment. Then an optimal solution of at least one

of these restricted problems is optimal to the original problem. It suffices to show

that 𝓑𝓑 is an FDS for each restricted problem. A restricted problem is formulated as:

Minimize 𝑍𝑍(𝒙𝒙)

Subject to 𝑥𝑥𝑘𝑘+1 ≤ min�𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� | 𝑧𝑧 ∈ �⋃ 𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 �𝑙𝑙 � ∪ 𝑟𝑟𝑒𝑒𝑝𝑝(𝑁𝑁𝑘𝑘)� 1 ≤ 𝑘𝑘 < 𝑚𝑚

 𝛼𝛼𝑘𝑘𝒉𝒉 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽𝑘𝑘𝒉𝒉

 1 ≤ 𝑘𝑘 < 𝑚𝑚

where 𝒉𝒉 = (ℎ1,ℎ2,⋯ , ℎ𝑚𝑚) is a particular combination of indivisible sub-segments and

ℎ𝑘𝑘 ∈ {1, 2,⋯ ,𝓃𝓃𝑘𝑘 − 1}, and where �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� denotes the ℎ𝑘𝑘𝑡𝑡ℎ indivisible sub-segment

between two consecutive breakpoints 𝛼𝛼𝑘𝑘𝒉𝒉 (the ℎ𝑘𝑘𝑡𝑡ℎ breakpoint in 𝑆𝑆𝑘𝑘) and 𝛽𝛽𝑘𝑘𝒉𝒉 (the

(ℎ𝑘𝑘 + 1)𝑡𝑡ℎ breakpoint in 𝑆𝑆𝑘𝑘).

Since �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� is an indivisible sub-segment, then by the way we defined the

set of breakpoints 𝓑𝓑, we know that the sub-segment �𝛼𝛼𝑘𝑘𝒉𝒉 + 𝑟𝑟,𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟� is indivisible, if

83

𝛼𝛼𝑘𝑘𝒉𝒉 + 𝑟𝑟, 𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟 ∈ 𝓑𝓑, and that if �𝛼𝛼𝑘𝑘𝒉𝒉 + 𝑟𝑟,𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟� is indivisible, then for any 𝑧𝑧 ∈ 𝑉𝑉𝑘𝑘 we

have either 𝑧𝑧+(𝑟𝑟) ≤ 𝛼𝛼𝑘𝑘𝒉𝒉 + 𝑟𝑟 or 𝑧𝑧+(𝑟𝑟) ≥ 𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟. Let

𝑓𝑓𝑘𝑘0(𝒙𝒙) = max �𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� | 𝑧𝑧 ∈ 𝑉𝑉𝑘𝑘,0
𝓟𝓟 \{𝓅𝓅𝑘𝑘}�, (3.12)

𝑓𝑓𝑘𝑘1(𝒙𝒙) = min�𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� | 𝑧𝑧 ∈ �⋃ 𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 �𝑙𝑙≠0 � ∪ 𝑟𝑟𝑒𝑒𝑝𝑝(𝑁𝑁𝑘𝑘)� (3.13)

Given RP locations 𝒙𝒙. Let 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) denote the upper bound of 𝑥𝑥𝑘𝑘+1. Then,

𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) = min �𝛽𝛽𝑘𝑘+1𝒉𝒉 , min �𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� | 𝑧𝑧 ∈ �� 𝑟𝑟𝑒𝑒𝑝𝑝�𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 �

𝑙𝑙
� ∪ 𝑟𝑟𝑒𝑒𝑝𝑝(𝑁𝑁𝑘𝑘)��

= min�𝛽𝛽𝑘𝑘+1𝒉𝒉 , min�max{𝑓𝑓𝑘𝑘0(𝒙𝒙), 𝑥𝑥𝑘𝑘 + 𝑟𝑟} , 𝑓𝑓𝑘𝑘1(𝒙𝒙)��

= �
 min�𝛽𝛽𝑘𝑘+1𝒉𝒉 , 𝑓𝑓𝑘𝑘1(𝒙𝒙)� , if 𝑓𝑓𝑘𝑘1(𝒙𝒙) ≤ 𝛼𝛼𝑘𝑘𝒉𝒉 + 𝑟𝑟
min�𝛽𝛽𝑘𝑘+1𝒉𝒉 , min�𝑓𝑓𝑘𝑘0(𝒙𝒙), 𝑓𝑓𝑘𝑘1(𝒙𝒙)�� , if 𝑓𝑓𝑘𝑘1(𝒙𝒙) ≥ 𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟, 𝑓𝑓𝑘𝑘0(𝒙𝒙) ≥ 𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟
 min�𝛽𝛽𝑘𝑘+1𝒉𝒉 , 𝑥𝑥𝑘𝑘 + 𝑟𝑟� , if 𝑓𝑓𝑘𝑘1(𝒙𝒙) ≥ 𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟, 𝑓𝑓𝑘𝑘0(𝒙𝒙) ≤ 𝛼𝛼𝑘𝑘𝒉𝒉 + 𝑟𝑟

 (3.14)

Consider any 𝑥𝑥𝑘𝑘 ∈ �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉�, let 𝕏𝕏𝑘𝑘+1 represent the set of allowable sites of 𝓅𝓅𝑘𝑘+1

in the solution space with 𝑙𝑙1(𝓅𝓅𝑘𝑘) = 𝑥𝑥𝑘𝑘, that is, site positions that are within the

segment between 𝛼𝛼𝑘𝑘𝒉𝒉 and 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙). We claim that 𝕏𝕏𝑘𝑘+1 is one of the four following

types:

 𝕏𝕏𝑘𝑘+1 = ∅

 𝕏𝕏𝑘𝑘+1 = �𝛼𝛼𝑘𝑘+1𝒉𝒉 �

 𝕏𝕏𝑘𝑘+1 = �𝛼𝛼𝑘𝑘+1𝒉𝒉 ,𝛽𝛽𝑘𝑘+1𝒉𝒉 �

 𝕏𝕏𝑘𝑘+1 = �𝛼𝛼𝑘𝑘+1𝒉𝒉 , 𝑥𝑥𝑘𝑘 + 𝑟𝑟�

depending on the values of 𝑓𝑓𝑘𝑘0(𝒙𝒙) and 𝑓𝑓𝑘𝑘1(𝒙𝒙), and the relative position of segments

�𝛼𝛼𝑘𝑘+1𝒉𝒉 ,𝛽𝛽𝑘𝑘+1𝒉𝒉 � and �𝛼𝛼𝑘𝑘𝒉𝒉 + 𝑟𝑟,𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟�. The detail is depicted in Table 3.1.

84

85

Proposition 3.7 If 𝑥𝑥𝑘𝑘 < 𝛽𝛽𝑘𝑘𝒉𝒉, then given any 𝜀𝜀 > 0, a 𝛿𝛿 > 0 can be found such that

for every 𝑥𝑥�𝑘𝑘 ∈ [𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉) and within the neighborhood of 𝑥𝑥𝑘𝑘 of radius 𝛿𝛿, −𝜀𝜀 < 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) −

𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) < 𝜀𝜀.

Proof of Proposition 3.7 Since �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� is an indivisible sub-segment, we have

 𝑉𝑉𝑘𝑘(𝒙𝒙) = 𝑉𝑉𝑘𝑘(𝒙𝒙�),

 for any 𝑧𝑧 ∈ 𝑉𝑉𝑘𝑘(𝒙𝒙), 𝑧𝑧−(𝑟𝑟) > 𝑥𝑥𝑘𝑘 if and only if 𝑧𝑧−(𝑟𝑟) > 𝑥𝑥�𝑘𝑘. (∗)

Then we claim that 𝑧𝑧 is not able to reach 𝓅𝓅𝑘𝑘 in 𝐺𝐺𝓟𝓟(𝒙𝒙) if and only if 𝑧𝑧 is not able to

reach 𝓅𝓅𝑘𝑘 in 𝐺𝐺𝓟𝓟(𝒙𝒙�):

 𝑧𝑧 ∈ 𝑉𝑉𝑘𝑘(𝒙𝒙) is not able to reach 𝓅𝓅𝑘𝑘 in 𝐺𝐺𝓟𝓟(𝒙𝒙)

⟺ In 𝐺𝐺𝓟𝓟(𝒙𝒙): 𝑑𝑑(𝑧𝑧,𝓅𝓅𝑘𝑘) > 𝑟𝑟, and 𝑧𝑧 is not able to reach any RP node that is within 𝑟𝑟

distance to 𝓅𝓅𝑘𝑘 (by definition of reachability)

⟺ In 𝐺𝐺𝓟𝓟(𝒙𝒙�): 𝑑𝑑(𝑧𝑧,𝓅𝓅𝑘𝑘) > 𝑟𝑟, and 𝑧𝑧 is not able to reach any RP node that is within 𝑟𝑟

distance to 𝓅𝓅𝑘𝑘 (by (∗))

⟺ 𝑧𝑧 is not able to reach 𝓅𝓅𝑘𝑘 in 𝐺𝐺𝓟𝓟(𝒙𝒙�).

As a result, for any 𝑙𝑙, 𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 (𝒙𝒙) = 𝑉𝑉𝑘𝑘,𝑙𝑙

𝓟𝓟 (𝒙𝒙�), and 𝑁𝑁𝑘𝑘(𝒙𝒙) = 𝑁𝑁𝑘𝑘(𝒙𝒙�). By definition of

𝑓𝑓𝑘𝑘0(𝒙𝒙) and 𝑓𝑓𝑘𝑘1(𝒙𝒙), we have 𝑓𝑓𝑘𝑘0(𝒙𝒙) = 𝑓𝑓𝑘𝑘0(𝒙𝒙�) and 𝑓𝑓𝑘𝑘1(𝒙𝒙) = 𝑓𝑓𝑘𝑘1(𝒙𝒙�). Recall that 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) =

min�𝛽𝛽𝑘𝑘+1𝒉𝒉 , min�max�𝑓𝑓𝑘𝑘0(𝒙𝒙�), 𝑥𝑥𝑘𝑘 + 𝑟𝑟� , 𝑓𝑓𝑘𝑘1(𝒙𝒙�)��, then we have either 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) − 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) =

0, or 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) − 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘.

While if 𝑥𝑥𝑘𝑘 = 𝛽𝛽𝑘𝑘𝒉𝒉, such a radius 𝛿𝛿 > 0 depicted in proposition 3.7 may not

exist.

Proposition 3.8 If 𝑥𝑥𝑘𝑘 = 𝛽𝛽𝑘𝑘𝒉𝒉, for any 𝑥𝑥�𝑘𝑘 < 𝑥𝑥𝑘𝑘, it is possible to have

 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) = 𝛽𝛽𝑘𝑘+1𝒉𝒉 and 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) = 𝛼𝛼𝑘𝑘+1𝒉𝒉 , (∗∗)

Proof of Proposition 3.8 To show (∗∗), let us consider the following two cases:

86

 Suppose that 𝑓𝑓𝑘𝑘0(𝒙𝒙�) = 𝛼𝛼𝑘𝑘+1𝒉𝒉 , 𝑓𝑓𝑘𝑘1(𝒙𝒙�) ≥ 𝛽𝛽𝑘𝑘+1𝒉𝒉 , and 𝛼𝛼𝑘𝑘+1𝒉𝒉 ≥ 𝛽𝛽𝑘𝑘𝒉𝒉 + 𝑟𝑟. Then 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) =

𝛼𝛼𝑘𝑘+1𝒉𝒉 . If a RP node �̃�𝑧 can be found such that 𝑙𝑙1(�̃�𝑧) − �𝑟𝑟 − 𝑙𝑙2(�̃�𝑧)� = 𝛽𝛽𝑘𝑘𝒉𝒉 and �̃�𝑧 ∈ 𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 (𝒙𝒙�)

where 𝑙𝑙 ≠ 0. Then in 𝐺𝐺𝓟𝓟(𝒙𝒙), where RP 𝓅𝓅𝑘𝑘 is established at position 𝛽𝛽𝑘𝑘𝒉𝒉, we have

�̃�𝑧 ∈ 𝑉𝑉𝑘𝑘,0
𝓟𝓟 (𝒙𝒙), and hence 𝑉𝑉𝑘𝑘,𝑙𝑙

𝓟𝓟 (𝒙𝒙�) ⊆ 𝑉𝑉𝑘𝑘,0
𝓟𝓟 (𝒙𝒙). Then, 𝑓𝑓𝑘𝑘0(𝒙𝒙) ≥ 𝑓𝑓𝑘𝑘1(𝒙𝒙�) ≥ 𝛽𝛽𝑘𝑘+1𝒉𝒉 . Therefore,

𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) = 𝛽𝛽𝑘𝑘+1𝒉𝒉 .

 Conversely, suppose that 𝑓𝑓𝑘𝑘0(𝒙𝒙�) ≥ 𝛽𝛽𝑘𝑘+1𝒉𝒉 and 𝑓𝑓𝑘𝑘1(𝒙𝒙�) = 𝛼𝛼𝑘𝑘+1𝒉𝒉 . Then 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) = 𝛼𝛼𝑘𝑘+1𝒉𝒉 . If

a node set 𝑍𝑍� ⊆ 𝑉𝑉𝑘𝑘(𝒙𝒙�) can be found, where:

a) 𝑍𝑍� ∩ 𝑉𝑉𝑘𝑘,0
𝓟𝓟 (𝒙𝒙�) = ∅,

b) for every �̃�𝑧 ∈ 𝑍𝑍�, 𝑙𝑙1(𝑧𝑧) − �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� = 𝛽𝛽𝑘𝑘𝒉𝒉,

c) in 𝐺𝐺𝓟𝓟(𝒙𝒙�), for every 𝑧𝑧 ∈ 𝑉𝑉𝑘𝑘(𝒙𝒙�)\𝑍𝑍�\�⋃ 𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 (𝒙𝒙�)𝑙𝑙∉𝐿𝐿� � (where \ denotes set minus), 𝑧𝑧 is

able to reach 𝛽𝛽𝑘𝑘+1𝒉𝒉 , where 𝐿𝐿� = ⋃ �𝑙𝑙 | �̃�𝑧 ∈ 𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 (𝒙𝒙�)�𝑧𝑧�∈𝑍𝑍� .

Let 𝑓𝑓𝑘𝑘1
′(𝒙𝒙�): = min{𝑙𝑙1(𝑧𝑧) + �𝑟𝑟 − 𝑙𝑙2(𝑧𝑧)� | 𝑧𝑧 ∈ �⋃ 𝑅𝑅𝑒𝑒𝑝𝑝 �𝑉𝑉𝑘𝑘,𝑙𝑙

𝓟𝓟 (𝒙𝒙�)�𝑙𝑙∉{0,𝐿𝐿�} � ∪ �𝑅𝑅𝑒𝑒𝑝𝑝�𝑁𝑁𝑘𝑘(𝒙𝒙�)�\𝑍𝑍��},

we have 𝑓𝑓𝑘𝑘1
′(𝒙𝒙�) ≥ 𝛽𝛽𝑘𝑘+1𝒉𝒉 . Then in 𝐺𝐺𝓟𝓟(𝒙𝒙), where RP 𝓅𝓅𝑘𝑘 is located at 𝛽𝛽𝑘𝑘𝒉𝒉, we will have

⋃ 𝑉𝑉𝑘𝑘,𝑙𝑙
𝓟𝓟 (𝒙𝒙)𝑙𝑙:𝑙𝑙≠0 ⊆ ⋃ 𝑉𝑉𝑘𝑘,𝑙𝑙

𝓟𝓟 (𝒙𝒙�)𝑙𝑙:𝑙𝑙∉{0,𝐿𝐿�} , and 𝑁𝑁𝑘𝑘(𝒙𝒙) ⊆ 𝑁𝑁𝑘𝑘(𝒙𝒙�)\𝑍𝑍�, implying that 𝑓𝑓𝑘𝑘1(𝒙𝒙) ≥

𝑓𝑓𝑘𝑘1
′(𝒙𝒙�) ≥ 𝛽𝛽𝑘𝑘+1𝒉𝒉 . Therefore, 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) = 𝛽𝛽𝑘𝑘+1𝒉𝒉 .

In either case, (∗∗) would happen, which may lead to a non-convex solution space.

As illustrated in Figure 3.12, that every interior point on the red line

segment is not within the solution space (the black line segment). However, we can

overcome this issue by further restricting 𝕏𝕏𝑘𝑘 × 𝕏𝕏𝑘𝑘+1 on �𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� × �𝛼𝛼𝑘𝑘+1𝒉𝒉 ,𝛼𝛼𝑘𝑘+1𝒉𝒉 � and

�𝛽𝛽𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� × �𝛼𝛼𝑘𝑘+1𝒉𝒉 ,𝛽𝛽𝑘𝑘𝒉𝒉�. Then we have 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) ≡ 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙).

87

Figure 3.12 An illustration of non-convex solution space resulting from

𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) = 𝛽𝛽𝑘𝑘+1𝒉𝒉 and 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙�) = 𝛼𝛼𝑘𝑘+1𝒉𝒉 , where 𝑥𝑥�𝑘𝑘 < 𝑥𝑥𝑘𝑘 = 𝛽𝛽𝑘𝑘𝒉𝒉

Convexity --- feasible region

Let 𝑪𝑪 represent the solution space. Let 𝒙𝒙,𝒙𝒙′ ∈ 𝑪𝑪 and 0 < 𝜃𝜃 < 1. To prove 𝑪𝑪 is a

convex region, we shall show that 𝒙𝒙′′ = (1 − 𝜃𝜃)𝒙𝒙 + 𝜃𝜃𝒙𝒙′ ∈ 𝑪𝑪. Since we have

 𝑥𝑥𝑘𝑘+1′′ = (1 − 𝜃𝜃)𝑥𝑥𝑘𝑘+1 + 𝜃𝜃𝑥𝑥𝑘𝑘+1′ ≥ 𝛼𝛼𝑘𝑘+1𝒉𝒉 ,

 𝑥𝑥𝑘𝑘+1′′ = (1 − 𝜃𝜃)𝑥𝑥𝑘𝑘+1 + 𝜃𝜃𝑥𝑥𝑘𝑘+1′ ≤ (1 − 𝜃𝜃)𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) + 𝜃𝜃𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′),

then if we can show that (1 − 𝜃𝜃)𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) + 𝜃𝜃𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′) ≤ 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′′), the convexity is

proved. By proposition 3.7 and by way of further restricting, we have

 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) = 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′) = 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′′), or

 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) = 𝑥𝑥𝑘𝑘 + 𝑟𝑟,𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′) = 𝑥𝑥𝑘𝑘′ + 𝑟𝑟,𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′′) = 𝑥𝑥𝑘𝑘′′ + 𝑟𝑟.

Thus, (1 − 𝜃𝜃)𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙) + 𝜃𝜃𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′) = 𝑢𝑢𝑏𝑏𝑘𝑘+1(𝒙𝒙′′).

Concavity --- objective function

The objective function of a restricted problem can be rewritten as

88

𝑍𝑍𝒉𝒉(𝒙𝒙) =

⎩
⎪
⎨

⎪
⎧

� � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝓅𝓅𝑘𝑘 𝓅𝓅𝑘𝑘+1)
𝒉𝒉 (𝒙𝒙)

(𝑅𝑅,𝑡𝑡): 𝑅𝑅≤𝛼𝛼𝑘𝑘
𝒉𝒉,

𝑡𝑡≥𝛽𝛽𝑘𝑘+1
𝒉𝒉

𝑘𝑘

+ � � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝑅𝑅,𝓅𝓅𝑘𝑘)
𝒉𝒉 (𝒙𝒙)

(𝑅𝑅,𝑡𝑡): 𝑅𝑅∈�𝛽𝛽𝑘𝑘−1
𝒉𝒉 ,𝛼𝛼𝑘𝑘

𝒉𝒉�,
𝑡𝑡≥𝛽𝛽𝑘𝑘

𝒉𝒉

𝑘𝑘

+ � � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝓅𝓅𝑘𝑘,𝑡𝑡)
𝒉𝒉 (𝒙𝒙)

(𝑅𝑅,𝑡𝑡): 𝑡𝑡∈�𝛽𝛽𝑘𝑘
𝒉𝒉,𝛼𝛼𝑘𝑘+1

𝒉𝒉 �,
𝑅𝑅≤𝛼𝛼𝑘𝑘

𝒉𝒉

𝑘𝑘

⎭
⎪
⎬

⎪
⎫

+ � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝑅𝑅,𝑡𝑡)
𝒉𝒉 (𝒙𝒙)

(𝑅𝑅,𝑡𝑡):𝛽𝛽𝑘𝑘
𝒉𝒉≤𝑅𝑅<𝑡𝑡≤𝛼𝛼𝑘𝑘+1

𝒉𝒉

.

 (3.15)

Let 𝓦𝓦𝑘𝑘
𝒉𝒉(𝒙𝒙) denote the set of refueling walks between 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1, where 𝑙𝑙1(𝓅𝓅𝑘𝑘) = 𝑥𝑥𝑘𝑘,

and let Δ𝑘𝑘𝒉𝒉(𝒙𝒙) denote the detouring distance of the shortest refueling walk between

𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1. Then

Δ𝑘𝑘𝒉𝒉(𝒙𝒙) = min
𝑊𝑊∈𝓦𝓦𝑘𝑘

𝒉𝒉(𝒙𝒙)
{𝛿𝛿(𝑊𝑊)} = min

𝑊𝑊∈𝓦𝓦𝑘𝑘
𝒉𝒉(𝒙𝒙)

 {∑ 2 × 𝑙𝑙2(𝑧𝑧)𝑧𝑧∈𝑉𝑉(𝑊𝑊) }. (3.16)

Specifically, we let 𝓦𝓦𝑘𝑘
𝒉𝒉(𝒙𝒙) =

⎩
⎪
⎨

⎪
⎧𝓦𝓦𝑘𝑘,0,0

𝒉𝒉 , if 𝑥𝑥𝑘𝑘 = 𝛼𝛼𝑘𝑘𝒉𝒉, 𝑥𝑥𝑘𝑘+1 = 𝛼𝛼𝑘𝑘+1𝒉𝒉

𝓦𝓦𝑘𝑘,0,1
𝒉𝒉 , if 𝑥𝑥𝑘𝑘 = 𝛼𝛼𝑘𝑘𝒉𝒉, 𝑥𝑥𝑘𝑘+1 = 𝛽𝛽𝑘𝑘+1𝒉𝒉

𝓦𝓦𝑘𝑘,1,0
𝒉𝒉 , if 𝑥𝑥𝑘𝑘 = 𝛽𝛽𝑘𝑘𝒉𝒉, 𝑥𝑥𝑘𝑘+1 = 𝛼𝛼𝑘𝑘+1𝒉𝒉

𝓦𝓦𝑘𝑘,1,1
𝒉𝒉 , if 𝑥𝑥𝑘𝑘 = 𝛽𝛽𝑘𝑘𝒉𝒉, 𝑥𝑥𝑘𝑘+1 = 𝛽𝛽𝑘𝑘+1𝒉𝒉

, and let Δ𝑘𝑘,𝑖𝑖,𝑗𝑗
𝒉𝒉 =

min
𝑊𝑊∈𝓦𝓦𝑘𝑘,𝑖𝑖,𝑗𝑗

𝒉𝒉
 {∑ 2 × 𝑙𝑙2(𝑧𝑧)𝑧𝑧∈𝑉𝑉(𝑊𝑊) }, where 𝑖𝑖, 𝑗𝑗 = {0, 1}.

Given 𝒙𝒙, let 𝑅𝑅+(𝓅𝓅𝑘𝑘)|𝒙𝒙 and 𝑅𝑅−(𝓅𝓅𝑘𝑘)|𝒙𝒙 represent the set of nodes that are

reachable to 𝓅𝓅𝑘𝑘 and on the right-hand side and left-hand side of 𝓅𝓅𝑘𝑘, respectively. By

the indivisibility of each sub-segment, we have

89

𝑅𝑅+(𝓅𝓅𝑘𝑘)|𝒙𝒙 = {𝑧𝑧 | (𝑙𝑙1(𝑧𝑧) − 𝑥𝑥𝑘𝑘) + 𝑙𝑙2(𝑧𝑧) ≤ 𝑟𝑟}

= {𝑧𝑧 | 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) − 𝑟𝑟 ≤ 𝑥𝑥𝑘𝑘}

= �𝑧𝑧 | 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) − 𝑟𝑟 ≤ 𝛼𝛼𝑘𝑘𝒉𝒉� ∪ {𝑧𝑧 | 𝑎𝑎𝑘𝑘 < 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) − 𝑟𝑟 ≤ 𝑥𝑥𝑘𝑘}

= �
�𝑧𝑧 | 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) − 𝑟𝑟 ≤ 𝛼𝛼𝑘𝑘𝒉𝒉�, if 𝑥𝑥𝑘𝑘 < 𝛽𝛽𝑘𝑘𝒉𝒉

�𝑧𝑧 | 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) − 𝑟𝑟 ≤ 𝛼𝛼𝑘𝑘𝒉𝒉� ∪ �𝑧𝑧 | 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) − 𝑟𝑟 = 𝛽𝛽𝑘𝑘𝒉𝒉�, if 𝑥𝑥𝑘𝑘 = 𝛽𝛽𝑘𝑘𝒉𝒉

 (3.17)

and

𝑅𝑅−(𝓅𝓅𝑘𝑘)|𝒙𝒙 = �𝑧𝑧 | �𝑥𝑥𝑖𝑖 − 𝑙𝑙1(𝑧𝑧)� + 𝑙𝑙2(𝑧𝑧) ≤ 𝑟𝑟�

= {𝑧𝑧 | − 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) + 𝑟𝑟 ≥ 𝑥𝑥𝑘𝑘}

= �𝑧𝑧 | − 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) + 𝑟𝑟 ≥ 𝛽𝛽𝑘𝑘𝒉𝒉� ∪ �𝑧𝑧 | 𝑥𝑥𝑖𝑖 ≤ −𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) + 𝑟𝑟 < 𝛽𝛽𝑘𝑘𝒉𝒉�

= �
�𝑧𝑧 | − 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) + 𝑟𝑟 ≥ 𝛽𝛽𝑘𝑘𝒉𝒉�, if 𝑥𝑥𝑘𝑘 > 𝛼𝛼𝑘𝑘𝒉𝒉

�𝑧𝑧 | − 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) + 𝑟𝑟 ≥ 𝛽𝛽𝑘𝑘𝒉𝒉� ∪ �𝑧𝑧 | − 𝑙𝑙1(𝑧𝑧) + 𝑙𝑙2(𝑧𝑧) + 𝑟𝑟 = 𝛼𝛼𝑘𝑘𝒉𝒉�, if 𝑥𝑥𝑘𝑘 = 𝛼𝛼𝑘𝑘𝒉𝒉

 (3.18)

Then we can claim that for any (𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1) ∈ [𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉) × (𝛼𝛼𝑘𝑘+1𝒉𝒉 ,𝛽𝛽𝑘𝑘+1𝒉𝒉], we have 𝓦𝓦𝑘𝑘
𝒉𝒉(𝒙𝒙) =

𝓦𝓦𝑘𝑘,0,1
𝒉𝒉 , 𝓦𝓦𝑘𝑘,0,1

𝒉𝒉 ⊆ 𝓦𝓦𝑘𝑘,0,0
𝒉𝒉 and 𝓦𝓦𝑘𝑘,1,1

𝒉𝒉 ⊆ 𝓦𝓦𝑘𝑘,1,0
𝒉𝒉 , implying that Δ𝑘𝑘𝒉𝒉(𝒙𝒙) = Δ𝑘𝑘,0,1

𝒉𝒉 , Δ𝑘𝑘,0,1
𝒉𝒉 ≥ Δ𝑘𝑘,0,0

𝒉𝒉

and Δ𝑘𝑘,1,1
𝒉𝒉 ≥ Δ𝑘𝑘,1,0

𝒉𝒉 . Hence, we should safely be able to claim that the function Δ𝑘𝑘𝒉𝒉(𝒙𝒙) is

concave.

Let 𝑒𝑒 denote the origin node of some one-way trip. Let 𝓦𝓦(𝑅𝑅,+)
𝒉𝒉 (𝒙𝒙) denote the

set of refueling walks from 𝑒𝑒 to its closest RP 𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+ that is on the right-hand side of 𝑒𝑒.

Note that 𝓦𝓦(𝑅𝑅,+)
𝒉𝒉 (𝒙𝒙) can be decomposed into two disjoint subsets: 𝓦𝓦(𝑅𝑅,+,𝑖𝑖𝑛𝑛)

𝒉𝒉 (𝒙𝒙) and

𝓦𝓦(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙), where for every 𝑊𝑊 ∈𝓦𝓦(𝑅𝑅,+,𝑖𝑖𝑛𝑛)

𝒉𝒉 (𝒙𝒙), 𝑊𝑊 goes through 𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−, and for every

𝑊𝑊 ∈𝓦𝓦(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙), 𝑊𝑊 does not go through 𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−. By shortest refueling walk properties

3.4 and 3.5, we have:

90

Δ(𝑅𝑅,+)
𝒉𝒉 (𝒙𝒙) = �

min�Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙),Δ(𝑅𝑅,+,𝑖𝑖𝑛𝑛)

𝒉𝒉 (𝒙𝒙)� , 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� ≤ 𝑟𝑟
Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙), 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� > 𝑟𝑟

= �
min�Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙), 2�𝑙𝑙1(𝑒𝑒) − 𝑥𝑥𝑛𝑛𝑒𝑒𝑠𝑠−� + Δ𝑛𝑛𝑒𝑒𝑠𝑠−
𝒉𝒉 (𝒙𝒙)� , 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� ≤ 𝑟𝑟

Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙), 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� > 𝑟𝑟

 (3.19)

Without loss of generality, we suppose that 𝑛𝑛𝑒𝑒𝑅𝑅+ = 𝑘𝑘 + 1. Then for any 𝑥𝑥𝑘𝑘+1 ∈

(𝛼𝛼𝑘𝑘+1𝒉𝒉 ,𝛽𝛽𝑘𝑘+1𝒉𝒉], we have

Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙)|𝑒𝑒𝑘𝑘+1=𝛼𝛼𝑘𝑘+1𝒉𝒉 ≤ Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙) = Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙)|𝑒𝑒𝑘𝑘+1=𝛽𝛽𝑘𝑘+1𝒉𝒉 .

Therefore, the function Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙) is concave. Furthermore, we are able to claim that

Δ(𝑅𝑅,+)
𝒉𝒉 (𝒙𝒙) is concave.

When 𝑛𝑛𝑒𝑒𝑅𝑅+ = 𝑛𝑛𝑒𝑒𝑡𝑡+, 𝓦𝓦(𝑅𝑅,𝑡𝑡)
𝒉𝒉 (𝒙𝒙) can be decomposed into four disjoint subsets:

𝓦𝓦(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙), 𝓦𝓦(𝑅𝑅,𝑡𝑡,𝑖𝑖𝑛𝑛,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙), 𝓦𝓦(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑖𝑖𝑛𝑛)
𝒉𝒉 (𝒙𝒙) and 𝓦𝓦(𝑅𝑅,𝑡𝑡,𝑖𝑖𝑛𝑛,𝑖𝑖𝑛𝑛)

𝒉𝒉 (𝒙𝒙). Likewise, by shortest

refueling walk properties 3.4 and 3.5, we have

Δ(𝑅𝑅,𝑡𝑡)
𝒉𝒉 (𝒙𝒙)

=

⎩
⎪
⎨

⎪
⎧min�Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙),Δ(𝑅𝑅,𝑡𝑡,𝑖𝑖𝑛𝑛,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙),Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑖𝑖𝑛𝑛)

𝒉𝒉 (𝒙𝒙),Δ(𝑅𝑅,𝑡𝑡,𝑖𝑖𝑛𝑛,𝑖𝑖𝑛𝑛)
𝒉𝒉 (𝒙𝒙)� , 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� ≤ 𝑟𝑟,𝑑𝑑�𝑜𝑜,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+� ≤ 𝑟𝑟

min�Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙),Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑖𝑖𝑛𝑛)

𝒉𝒉 (𝒙𝒙)�, 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� > 𝑟𝑟,𝑑𝑑�𝑜𝑜,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+� ≤ 𝑟𝑟

min�Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙),Δ(𝑅𝑅,𝑡𝑡,𝑖𝑖𝑛𝑛,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙)�, 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� ≤ 𝑟𝑟,𝑑𝑑�𝑜𝑜,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+� > 𝑟𝑟

Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙), 𝑑𝑑�𝑒𝑒,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠−� > 𝑟𝑟,𝑑𝑑�𝑜𝑜,𝓅𝓅𝑛𝑛𝑒𝑒𝑠𝑠+� > 𝑟𝑟

,

 (3.20)

where Δ(𝑅𝑅,𝑡𝑡,𝑖𝑖𝑛𝑛,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙) = 2�𝑙𝑙1(𝑒𝑒) − 𝑥𝑥𝑛𝑛𝑒𝑒𝑠𝑠−� + Δ(𝑡𝑡,−,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙), (3.21)

Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑖𝑖𝑛𝑛)
𝒉𝒉 (𝒙𝒙) = Δ(𝑅𝑅,+,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙) + 2 �𝑥𝑥𝑛𝑛𝑒𝑒𝑠𝑠+ − 𝑙𝑙1(𝑜𝑜)�, (3.22)

Δ(𝑅𝑅,𝑡𝑡,𝑖𝑖𝑛𝑛,𝑖𝑖𝑛𝑛)
𝒉𝒉 (𝒙𝒙) = 2�𝑙𝑙1(𝑒𝑒) − 𝑥𝑥𝑛𝑛𝑒𝑒𝑠𝑠−� + Δ𝑛𝑛𝑒𝑒𝑠𝑠−

𝒉𝒉 (𝒙𝒙) + 2 �𝑥𝑥𝑛𝑛𝑒𝑒𝑠𝑠+ − 𝑙𝑙1(𝑜𝑜)�. (3.23)

91

To prove the concavity of Δ(𝑅𝑅,𝑡𝑡)
𝒉𝒉 (𝒙𝒙), it suffices to show that Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒)

𝒉𝒉 (𝒙𝒙) is concave,

which is easy, since Δ(𝑅𝑅,𝑡𝑡,𝑒𝑒𝑒𝑒,𝑒𝑒𝑒𝑒)
𝒉𝒉 (𝒙𝒙) would be a constant for any (𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1) ∈

�𝛼𝛼𝑘𝑘𝒉𝒉,𝛽𝛽𝑘𝑘𝒉𝒉� × [𝛼𝛼𝑘𝑘+1𝒉𝒉 ,𝛽𝛽𝑘𝑘+1𝒉𝒉].

Therefore, at least one of the extreme points will be the optimal solution for

each restricted problem. Let ℰ(𝑪𝑪) denote the set of extreme points of the solution

space 𝑪𝑪. Then follow the same argument by which we proved theorem 2.4, we are

able to prove that ℰ(𝑪𝑪) ⊆ {(𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑚𝑚): 𝑏𝑏𝑘𝑘 ∈ 𝓑𝓑, 𝑘𝑘 = 1, … ,𝑚𝑚}.

Thus, theorem 3.2 has been proved.

3.5. Solution method

In this section, we formulate our problem as a shortest path problem on an

acyclic network.

3.5.1. Network construction

The network in the formulation consists of a pseudo-source node, a pseudo-

sink node, and 𝑚𝑚 layers of nodes: it has one layer corresponding to each RP 𝓅𝓅𝑘𝑘 ∈

{𝓅𝓅1,𝓅𝓅2,⋯ ,𝓅𝓅𝑚𝑚}. The layer 𝑘𝑘 has 𝓃𝓃𝑘𝑘 nodes, �𝑛𝑛1𝑘𝑘 ,𝑛𝑛2𝑘𝑘 ,⋯ ,𝑛𝑛𝓃𝓃𝑘𝑘
𝑘𝑘 �, where 𝑛𝑛𝑖𝑖𝑘𝑘 denotes the 𝑖𝑖𝑡𝑡ℎ

breakpoint (in the left to right order) in localization segment 𝑆𝑆𝑘𝑘 and signifies that 𝓅𝓅𝑘𝑘

is established at that breakpoint.

Connecting the nodes

Consider two breakpoints 𝑛𝑛𝑖𝑖𝑘𝑘 and 𝑛𝑛𝑗𝑗𝑘𝑘+1. Recall that in line problem, 𝑛𝑛𝑖𝑖𝑘𝑘 and

𝑛𝑛𝑗𝑗𝑘𝑘+1 are connected to each other if and only if the distance between them is less than

or equal to 𝑟𝑟. However, we should note that in comb tree problem, between the two

candidate sites 𝑛𝑛𝑖𝑖𝑘𝑘 and 𝑛𝑛𝑗𝑗𝑘𝑘+1, there may exist leaf nodes with RPs. That is, the

92

reachability between 𝑛𝑛𝑖𝑖𝑘𝑘 and 𝑛𝑛𝑗𝑗𝑘𝑘+1 does not necessarily require that the distance

between 𝑛𝑛𝑖𝑖𝑘𝑘 and 𝑛𝑛𝑗𝑗𝑘𝑘+1 is not more than 𝑟𝑟. Then how shall we decide whether or not

they can be connected? Recall the reachability graph that we introduced in section

3.2. Here, we can solve the node connection problem on a reachability graph 𝐺𝐺~,

which is defined as:

 𝑉𝑉(𝐺𝐺~) = �𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� ∪ 𝑉𝑉𝑘𝑘𝓟𝓟�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�, i.e., the node set of 𝐺𝐺~ contains 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1

(which are supposed to have been established at 𝑛𝑛𝑖𝑖𝑘𝑘 and 𝑛𝑛𝑗𝑗𝑘𝑘+1, as well as all RP

nodes that are on the right-hand side of 𝑛𝑛𝑖𝑖𝑘𝑘 and on the left-hand side of 𝑛𝑛𝑗𝑗𝑘𝑘+1

(denoted as 𝑉𝑉𝑘𝑘𝓟𝓟�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�).

 𝐴𝐴(𝐺𝐺~) = {(𝑥𝑥, 𝑦𝑦): 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≤ 𝑟𝑟}, i.e., for any two nodes 𝑥𝑥,𝑦𝑦 ∈ 𝑉𝑉(𝐺𝐺~), the graph

contains an arc (𝑥𝑥,𝑦𝑦) if 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≤ 𝑟𝑟 on the original comb.

Then, we connect the two breakpoints 𝑛𝑛𝑖𝑖𝑘𝑘 and 𝑛𝑛𝑗𝑗𝑘𝑘+1 if

 The number of connected components of graph 𝐺𝐺~, 𝑏𝑏0(𝐺𝐺~), is equal to 1 (by

performing search algorithm, 𝑏𝑏0(𝐺𝐺~) can be determined).

 For every node 𝑢𝑢 ∈ 𝑉𝑉𝑘𝑘�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�\𝑉𝑉𝑘𝑘𝓟𝓟�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�, there exists a node 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺~) such

that 𝑑𝑑(𝑢𝑢 , 𝑣𝑣) ≤ 𝑟𝑟.

Defining edge weights

Denote 𝑤𝑤�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� the weight of edge �𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�. Let

93

𝑤𝑤�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� = � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1)

(𝑅𝑅,𝑡𝑡):𝑅𝑅≤𝑛𝑛𝑖𝑖
𝑘𝑘,

𝑡𝑡≥𝑛𝑛𝑗𝑗
𝑘𝑘+1

+ � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝑅𝑅,𝓅𝓅𝑘𝑘+1)

(𝑅𝑅,𝑡𝑡):𝑅𝑅∈(𝑛𝑛𝑖𝑖
𝑘𝑘,𝑛𝑛𝑗𝑗

𝑘𝑘+1],

𝑡𝑡≥𝑛𝑛𝑗𝑗
𝑘𝑘+1

+ � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝓅𝓅𝑘𝑘,𝑡𝑡)

(𝑅𝑅,𝑡𝑡):𝑅𝑅≤𝑛𝑛𝑖𝑖
𝑘𝑘,

𝑡𝑡∈[𝑛𝑛𝑖𝑖
𝑘𝑘,𝑛𝑛𝑗𝑗

𝑘𝑘+1)

+ � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝑅𝑅,𝑡𝑡)

(𝑅𝑅,𝑡𝑡):𝑛𝑛𝑖𝑖
𝑘𝑘<𝑅𝑅<𝑡𝑡<𝑛𝑛𝑗𝑗

𝑘𝑘+1

.

 (3.24)

Particularly,

𝑤𝑤�source,𝑛𝑛𝑗𝑗1� = � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝑅𝑅,𝓅𝓅1)

(𝑅𝑅,𝑡𝑡):𝑅𝑅∈�0,𝑛𝑛𝑗𝑗
1�,

𝑙𝑙1(𝑡𝑡)≥𝑛𝑛𝑗𝑗
1

+ � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝑅𝑅,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):0≤𝑅𝑅<𝑡𝑡<𝑛𝑛𝑗𝑗

1

 (3.25)

𝑤𝑤�𝑛𝑛𝑗𝑗𝑚𝑚, sink� = � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝓅𝓅𝑚𝑚,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):𝑅𝑅≤𝑛𝑛𝑗𝑗

𝑚𝑚,
𝑡𝑡∈[𝑛𝑛𝑗𝑗

𝑚𝑚,𝑙𝑙1(𝑣𝑣𝑛𝑛))

+ � �𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅)� ∗ Δ(𝑅𝑅,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):𝑛𝑛𝑗𝑗

𝑚𝑚<𝑅𝑅<𝑡𝑡≤𝑙𝑙1(𝑣𝑣𝑛𝑛)

 (3.26)

To calculate such terms Δ(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1), Δ(𝑅𝑅,𝓅𝓅𝑘𝑘+1), Δ(𝓅𝓅𝑘𝑘,𝑡𝑡) and Δ(𝑅𝑅,𝑡𝑡) in (3.24), we will use the

shortest electric vehicle walk problem (Adler, J.D. et al., 2014). For example, to

calculate Δ(𝑅𝑅,𝑡𝑡) with 𝑛𝑛𝑖𝑖𝑘𝑘 < 𝑒𝑒 < 𝑜𝑜 < 𝑛𝑛𝑗𝑗𝑘𝑘+1, we need to construct a meta-network on node

set {𝑒𝑒, 𝑜𝑜} ∪ {𝓅𝓅𝑘𝑘 ,𝓅𝓅𝑘𝑘+1} ∪ 𝑉𝑉𝑘𝑘𝓟𝓟�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�, where the nodes in this meta-network have an

edge if the two nodes are mutually reachable in a single charge in the original comb

tree graph. That is, the edge between two nodes in this meta-network corresponds to

a shortest path with length less than or equal to 𝑟𝑟 in the original comb graph. Let 𝑒𝑒

be the origin node and 𝑜𝑜 be the destination node. Then the shortest path in this

94

meta-network from 𝑒𝑒 to 𝑜𝑜 corresponds to a shortest walk from 𝑒𝑒 to 𝑜𝑜 in the original

comb graph without a limit on refueling stops. Hence,

𝛥𝛥(𝑅𝑅,𝑡𝑡) = length of the shortest path P∗(𝑒𝑒, 𝑜𝑜) on meta network − 𝑑𝑑(𝑒𝑒, 𝑜𝑜). (3.27)

In example 3.5, we will illustrate the idea of how to connect the breakpoints and

compute the corresponding weights.

3.5.2. Correctness

Let 𝑃𝑃 = �source,𝑛𝑛𝑟𝑟1
1 ,𝑛𝑛𝑟𝑟2

2 ,⋯ ,𝑛𝑛𝑟𝑟𝑚𝑚
𝑚𝑚 , sink� be a path from the pseudo source to the

pseudo sink on the network, where 𝑟𝑟𝑘𝑘 denote the rank of the node 𝑛𝑛𝑟𝑟𝑘𝑘𝑘𝑘 in layer 𝑘𝑘. For

notational convenience, we let 𝑓𝑓𝑅𝑅𝑡𝑡 = 𝑓𝑓(𝑅𝑅,𝑡𝑡) + 𝑓𝑓(𝑡𝑡,𝑅𝑅) be the total flow volume of O-D pair

(𝑒𝑒, 𝑜𝑜) and O-D pair (𝑜𝑜, 𝑒𝑒). Then,

𝑊𝑊(𝑃𝑃) = 𝑤𝑤�source,𝑛𝑛𝑟𝑟1
1 � + � 𝑤𝑤�𝑛𝑛𝑟𝑟𝑘𝑘

𝑘𝑘 ,𝑛𝑛𝑟𝑟𝑘𝑘+1
𝑘𝑘+1 �

𝑚𝑚−1

𝑘𝑘=1
+ 𝑤𝑤�𝑛𝑛𝑟𝑟𝑚𝑚

𝑚𝑚 , sink�

= � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝓅𝓅1)

(𝑅𝑅,𝑡𝑡):𝑅𝑅∈�0,𝑛𝑛𝑗𝑗
1�,

𝑙𝑙1(𝑡𝑡)≥𝑛𝑛𝑗𝑗
1

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):0≤𝑅𝑅<𝑡𝑡<𝑛𝑛𝑗𝑗

1

+ �

⎝

⎛� 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1)(𝑅𝑅,𝑡𝑡):𝑅𝑅≤𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,

𝑡𝑡≥𝑛𝑛𝑟𝑟𝑘𝑘+1
𝑘𝑘+1

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝓅𝓅𝑘𝑘+1)(𝑅𝑅,𝑡𝑡):𝑅𝑅∈�𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,𝑛𝑛𝑙𝑙

𝑖𝑖+1�,

𝑡𝑡≥𝑛𝑛𝑟𝑟𝑘𝑘+1
𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=1

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅𝑘𝑘,𝑡𝑡)(𝑅𝑅,𝑡𝑡):𝑅𝑅≤𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,

𝑡𝑡∈�𝑛𝑛𝑟𝑟𝑘𝑘
𝑘𝑘 ,𝑛𝑛𝑟𝑟𝑘𝑘+1

𝑘𝑘+1 �

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):𝑛𝑛𝑟𝑟𝑘𝑘

𝑘𝑘 <𝑅𝑅<𝑡𝑡<𝑛𝑛𝑟𝑟𝑘𝑘+1
𝑘𝑘+1

⎠

⎞

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅𝑚𝑚,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):𝑅𝑅≤𝑛𝑛𝑗𝑗

𝑚𝑚,

𝑡𝑡∈�𝑛𝑛𝑗𝑗
𝑚𝑚,𝑙𝑙1(𝑣𝑣𝑛𝑛)�

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):𝑛𝑛𝑗𝑗

𝑚𝑚<𝑅𝑅<𝑡𝑡≤𝑙𝑙1(𝑣𝑣𝑛𝑛)

95

= � � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅𝑘𝑘,𝓅𝓅𝑘𝑘+1)(𝑅𝑅,𝑡𝑡):𝑅𝑅≤𝑙𝑙1(𝓅𝓅𝑘𝑘),
𝑡𝑡≥𝑙𝑙1(𝓅𝓅𝑘𝑘+1)

𝑚𝑚−1

𝑘𝑘=1
+ � � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝓅𝓅𝑘𝑘+1)(𝑅𝑅,𝑡𝑡): 𝑅𝑅∈(𝑙𝑙1(𝓅𝓅𝑘𝑘),𝑙𝑙1(𝓅𝓅𝑘𝑘+1)],

𝑡𝑡≥𝑙𝑙1(𝓅𝓅𝑘𝑘+1)𝑘𝑘

+ � � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅𝑘𝑘,𝑡𝑡)(𝑅𝑅,𝑡𝑡): 𝑡𝑡∈�𝑙𝑙1(𝓅𝓅𝑘𝑘),𝑙𝑙1(𝓅𝓅𝑘𝑘+1)�,
𝑅𝑅≤𝑙𝑙1(𝓅𝓅𝑘𝑘)

𝑘𝑘

+ � � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):𝑙𝑙1(𝓅𝓅𝑘𝑘)<𝑅𝑅<𝑡𝑡<𝑙𝑙1(𝓅𝓅𝑘𝑘+1)𝑘𝑘

= 𝑍𝑍(𝒙𝒙) (𝑜𝑜otal refueling detouring distance, see 𝑒𝑒𝑞𝑞. (3.10))

Therefore, the total weight of this path 𝑃𝑃 is equal to the total refueling detouring

distance associated with locating RPs at 𝑛𝑛𝑟𝑟11 ,𝑛𝑛𝑟𝑟2
2 ,⋯ ,𝑛𝑛𝑟𝑟𝑚𝑚

𝑚𝑚 .

Hence, the shortest path in our constructed network corresponds to an

optimal set of RP locations on the comb.

Example 3.5 Consider the same comb tree used in example 3.4. Recall in example

3.4, we have computed the set of breakpoints, where

Figure 3.13 A copy of Figure 3.6

Figure 3.14 A copy of Figure 3.8

𝑆𝑆1 contains 6 breakpoints: 1.5, 2, 2.5, 2.6, 2.7, 3;

96

𝑆𝑆2 contains 9 breakpoints: 5.5, 6, 6.5, 6.6, 6.7, 7, 7.4, 7.5, 8.3;

𝑆𝑆3 contains 7 breakpoints: 10.5, 10.6, 10.7, 11, 11.4, 11.5, 12.3;

𝑆𝑆4 contains 7 breakpoints: 14.5, 14.6, 14.7, 15, 15.4, 15.5, 16.3;

𝑆𝑆5 contains 7 breakpoints: 18.5, 18.6, 18.7, 19, 19.4, 19.5, 20.3.

Then, our network should contain 5 layers of nodes, and one source node and one

sink node, as shown in Figure 3.15.

Figure 3.15 The constructed network, the edges weights are not listed

To illustrate the idea of connecting two breakpoints, we take (𝑛𝑛12,𝑛𝑛63) =

(5.5, 11.5) for example. Since 𝑣𝑣3−(𝑟𝑟) = 𝑙𝑙1(𝑣𝑣3) − �𝑟𝑟 − 𝑙𝑙2(𝑣𝑣3)� = 8.5 − (4 − 1) = 5.5,

𝑣𝑣3+(𝑟𝑟) = 𝑙𝑙1(𝑣𝑣3) + �𝑟𝑟 − 𝑙𝑙2(𝑣𝑣3)� = 8.5 + (4 − 1) = 11.5 and 𝑑𝑑(𝑣𝑣3, 𝑣𝑣4) = 1 + 0.5 + 2.5 = 4 ≤

𝑟𝑟. Therefore, 𝑛𝑛12 and 𝑛𝑛63 should be connected.

To illustrate the idea of computing edge weights, we take 𝑤𝑤(𝑛𝑛92,𝑛𝑛43) =

𝑤𝑤(8.3, 11) for example:

𝑤𝑤(𝑛𝑛92,𝑛𝑛43) = 𝑤𝑤(8.3, 11)

97

= � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅2,𝓅𝓅3)(𝑅𝑅,𝑡𝑡):𝑅𝑅≤8.3,
𝑡𝑡≥11

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝓅𝓅3)(𝑅𝑅,𝑡𝑡):𝑅𝑅∈(8.3,11],
𝑡𝑡≥11

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅2,𝑡𝑡)(𝑅𝑅,𝑡𝑡):𝑅𝑅≤8.3,
𝑡𝑡∈[8.3,11)

+ � 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝑡𝑡)
(𝑅𝑅,𝑡𝑡):8.3<𝑅𝑅<𝑡𝑡<11

where

∑ 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝓅𝓅3)(𝑅𝑅,𝑡𝑡):𝑅𝑅∈(8.3,11],
𝑡𝑡≥11

= ∑ ∑ 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝓅𝓅3)𝑡𝑡: 𝑡𝑡>𝑅𝑅𝑅𝑅∈{𝑣𝑣3,𝑣𝑣4} ;

∑ 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅2,𝑡𝑡)(𝑅𝑅,𝑡𝑡):𝑅𝑅≤8.3,
𝑡𝑡∈[8.3,11)

= ∑ ∑ 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝓅𝓅2,𝑡𝑡)𝑅𝑅: 𝑅𝑅<𝑡𝑡𝑡𝑡∈{𝑣𝑣3,𝑣𝑣4} ;

∑ 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑅𝑅,𝑡𝑡)(𝑅𝑅,𝑡𝑡):8.3<𝑅𝑅<𝑡𝑡<11 = 𝑓𝑓𝑅𝑅𝑡𝑡 ∗ Δ(𝑣𝑣3,𝑣𝑣4).

Let’s consider the following subgraph in Figure 3.16 of our original comb by

establishing 𝓅𝓅2 at 8.3, and 𝓅𝓅3 at 11, and the shortest distance matrix is also shown

below:

Figure 3.16 A subgraph of the original comb, assuming that 𝓹𝓹𝟐𝟐 has established
at 𝟖𝟖.𝟑𝟑, and 𝓹𝓹𝟑𝟑 has been established at 𝟏𝟏𝟏𝟏

From the shortest distance matrix, we know that Δ(𝑣𝑣3,𝓅𝓅3) = 0, Δ(𝑣𝑣3,𝑣𝑣4) = 0, and by

constructing the following meta-network, where we let 𝑣𝑣4 be the origin node and 𝓅𝓅3

be the destination node, and the numbers beside an arc is the corresponding shortest

path distance on the subgraph in Figure 3.17. The red path corresponds to a shortest

refueling walk from 𝑣𝑣4 to 𝓅𝓅3 on the original comb, i.e., 𝑣𝑣4 → 𝓅𝓅2 → 𝓅𝓅3, with a refueling

detouring distance of 2 × (0.2 + 0.5) = 1.4. And Δ(𝑣𝑣4,𝓅𝓅3) = 3.2 + 2.7 − 4.5 = 1.4.

𝑑𝑑(,) 𝓅𝓅2 𝓅𝓅3 𝑣𝑣3 𝑣𝑣4

𝓅𝓅2(= 8.3) 0 2.7 1.2 3.2
𝓅𝓅3(= 11) 0 3.5 4.5

𝑣𝑣3 0 4

𝑣𝑣4 0

98

Figure 3.17 A meta-network, where 𝓹𝓹𝟐𝟐 has been established at 𝟖𝟖.𝟑𝟑,

and 𝓅𝓅3 has been established at 11

Assuming that the traffic flow on all O-D pairs are equal, with 𝑓𝑓𝑅𝑅𝑡𝑡 = 20. Then,

the shortest path on the constructed network is “source → 3 → 7 → 11 → 15 → 19 →

sink”, as shown in Figure 3.14, and the path length is 40 + 0 + 300 + 0 + 0 + 0 = 340,

where 𝑤𝑤(source, 3) = 40, 𝑤𝑤(7, 11) = 300, and 𝑤𝑤(3, 7) = 𝑤𝑤(11, 15) = 𝑤𝑤(15, 19) =

𝑤𝑤(19, sink) = 0.

By this algorithm, we derive the optimal RP locations: 𝓅𝓅1 = 3, 𝓅𝓅2 = 7,

𝓅𝓅3 = 11, 𝓅𝓅4 = 15 and 𝓅𝓅5 = 19, and the total refueling detouring distance equal to

340, with 𝑓𝑓𝑅𝑅𝑡𝑡 = 20 for all (𝑒𝑒, 𝑜𝑜).

Remarks The comb tree problem can be solved in polynomial-time.

Theorem 3.3 The comb problem can be solved in 𝒪𝒪(𝑛𝑛5).

Proof of Theorem 3.3. An upper bound of the minimum number of RPs that are

necessary and sufficient to serve all one-way trips is �𝑙𝑙1(𝑣𝑣𝑛𝑛)
𝑟𝑟
� + 𝑛𝑛 − 1. Let 𝑇𝑇1 represents

the time required to construct the network and let 𝑇𝑇2 represent the time required to

find the shortest path in the constructed network.

(1) 𝑇𝑇1 = 𝒪𝒪(𝑚𝑚𝑛𝑛3). By the nature of the line network problem and by the

construction of the multistage network note that the number of nodes in each node

layer in our constructed multistage network is at most 2𝑛𝑛. Also, note that we add

99

one artificial source node and one artificial sink node. By the way we connect two

nodes and calculate an edge weight, we know that the time required to determine

whether or not two nodes should be connected and to find the weight of an edge is

𝒪𝒪(𝑛𝑛2). Thus, 𝑇𝑇1 = 𝒪𝒪 ���𝑙𝑙1(𝑣𝑣𝑛𝑛)
𝑟𝑟
� + 𝑛𝑛 − 1� ∗ 4𝑛𝑛2 ∗ 𝑛𝑛2� = 𝒪𝒪(𝑛𝑛5).

(2) 𝑇𝑇2 = 𝒪𝒪(𝑛𝑛2). Note that the total number of nodes in our multistage network is

at most ��𝑙𝑙1(𝑣𝑣𝑛𝑛)
𝑟𝑟
� + 𝑛𝑛 − 1� ∗ 2𝑛𝑛 + 2. Thus, finding the shortest path in the constructed

multistage network will take 𝒪𝒪 ����𝑙𝑙1(𝑣𝑣𝑛𝑛)
𝑟𝑟
� + 𝑛𝑛 − 1� ∗ 2𝑛𝑛 + 2�

2
� = 𝒪𝒪(𝑛𝑛2) time.

The overall run time T of the line problem is 𝑇𝑇1 + 𝑇𝑇2 = 𝒪𝒪(𝑛𝑛5).

3.6. Conclusion

In this chapter, we studied the continuous location problem related to

locating RPs on comb tree networks. To find the fewest number of RPs needed to

serve all one-way O-D pairs, we proposed a 2-step greedy method. Then, we proposed

a math programming formulation, based on which we proved the existence of a finite

dominating set to the comb tree problem. Then we formulated the problem as a

shortest path problem whereby the shortest path of the constructed network gives us

an optimal set of RP locations.

Beyond the scope of current study, there are several issues worth of a further

investigation. For instance, it is our interest to see how to revise the current

proposed math programming formulation so that it can be solved using commercial

solvers. How to construct the network that will be used in the shortest path problem

in a more efficient way will require a further research too. Moreover, an extension of

100

current work to the round-trip scenario needs to be investigated as well, which will

not cost too much extra work.

101

CHAPTER 4

PROBABILISTIC LINE AND COMB PROBLEM

4.1. Overview

In the last two chapters, we presented the problem of locating multiple RPs

on a deterministic line network and/or comb network. The assumption behind our

results is that battery charge decreases uniformly on distances throughout the

network. In this chapter, we consider the location problem on probabilistic networks.

How many RPs must be located on a network and where should these RPs be located

such that all transportation needs are satisfied, and the average transportation cost

is minimized? Consider this simple case of a line network:

Figure 4.1 A simple line network

here 𝑟𝑟 is a driving range, say in miles, and 𝐿𝐿 is distance miles. These are physical

distances and a point in the network is a fixed physical point. Let’s say that this is

one possibility of the state of the network, say with probability 2/3. Here 𝑟𝑟 the

“discharging range” coincides with physical distance. Now we have another state, a

congested state, where the new discharging range 𝑟𝑟𝑛𝑛𝑒𝑒𝑛𝑛 is 0.75 of the old 𝑟𝑟. What can

we say about the localization set?

102

The class of probabilistic networks considered in this chapter includes

networks for which the values of the travel attributes associated with the links are

random. Another class of probabilistic networks encountered in the literature

consists of network whose topology itself is random. For example, when the network

is under attack, determining the nodes that have the highest probability of being

connected with a given node or selecting a given number of nodes that have the least

possibility of being disconnected. However, we do not consider such networks in this

thesis.

4.2. Minimum number of RPs needed

Now consider the same line network that we used in chapter 2,

Figure 4.2 A copy of Figure 2.4

assume discharging range for state 1 is 𝑟𝑟, and new discharging ranges for state 2 are

between 𝑣𝑣0 and 𝑣𝑣1 is 0.9 ∙ 𝑟𝑟;

between 𝑣𝑣1 and 𝑣𝑣2 is 0.8 ∙ 𝑟𝑟;

between 𝑣𝑣2 and 𝑣𝑣3 is 0.8 ∙ 𝑟𝑟;

between 𝑣𝑣3 and 𝑣𝑣4 is 0.9 ∙ 𝑟𝑟.

What can we say about localization sets now?

Proposition 4.1 Given a set of RP locations on the line network, if flows on

round trips (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0) and (𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛) can be refueled, then flows on any round trip

�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖� can be refueled, where 0 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛.

103

Proof of Proposition 4.1. Let 𝒫𝒫 = {𝓅𝓅1,⋯ ,𝓅𝓅𝑚𝑚} be a set of RPs established on the

line network such that both round trips (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0) and (𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛) can be served.

Then we are able to conclude that:

 the vehicle is able to reach 𝓅𝓅1 with 𝑟𝑟
2
 level of charge from node 𝑣𝑣0;

 the vehicle is able to traverse between every two adjacent RPs, 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1, with

a single charge, where 1 ≤ 𝑘𝑘 < 𝑚𝑚 − 1;

 the vehicle is able to reach node 𝑣𝑣𝑛𝑛 with 𝑟𝑟
2
 level of charge from 𝓅𝓅𝑚𝑚.

Consider any round trip �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖�, and without loss of generality we assume

that 𝑣𝑣𝑖𝑖 is on the LHS of 𝑣𝑣𝑗𝑗. Then, the outbound trip 𝑣𝑣𝑖𝑖 → 𝑣𝑣𝑗𝑗 is refuellable, since the

vehicle is able to traverse each of the following intervals with a single charge: the

interval between node 𝑣𝑣𝑖𝑖 and 𝓅𝓅𝑣𝑣𝑖𝑖+ (the closest RP on the RHS of 𝑣𝑣𝑖𝑖), the interval

between 𝓅𝓅𝑣𝑣𝑗𝑗− (the closest RP on the LHS of 𝑣𝑣𝑗𝑗) and node 𝑣𝑣𝑗𝑗, and the interval between

every two adjacent RPs, 𝓅𝓅𝑘𝑘 and 𝓅𝓅𝑘𝑘+1, where 𝜏𝜏�𝓅𝓅𝑣𝑣𝑖𝑖+� ≤ 𝑘𝑘 < 𝜏𝜏 �𝓅𝓅𝑣𝑣𝑗𝑗
− �. The inbound trip

𝑣𝑣𝑗𝑗 → 𝑣𝑣𝑖𝑖 is refuellable as well. Let’s consider the following two cases:

 if the vehicle is able to reach 𝑣𝑣𝑗𝑗 from 𝓅𝓅𝑣𝑣𝑗𝑗− with 𝑟𝑟
2
 level of charge, after arriving at

𝑣𝑣𝑗𝑗, the vehicle is able to return to 𝓅𝓅𝑣𝑣𝑗𝑗− without running out of battery;

 if strictly greater than 𝑟𝑟
2
 level of charge is needed for the vehicle to traverse from

𝓅𝓅𝑣𝑣𝑗𝑗
− to 𝑣𝑣𝑗𝑗, however, the vehicle is able to make a detour to visit 𝓅𝓅𝑣𝑣𝑗𝑗+ for refueling

and goes back to 𝓅𝓅𝑣𝑣𝑗𝑗− , since the level of charge needed to traverse between 𝓅𝓅𝑣𝑣𝑗𝑗− and

𝓅𝓅𝑣𝑣𝑗𝑗
+ is not more than 𝑟𝑟.

104

For each segment 𝑗𝑗 between nodes 𝑣𝑣𝑗𝑗−1 and 𝑣𝑣𝑗𝑗, denote 𝑏𝑏𝑗𝑗 the length of this

segment, and denote 𝜗𝜗𝑗𝑗 the ratio of new discharging range for state 2 to the

discharging range for state 1 of this segment.

Assuming that round trip (𝑣𝑣0, 𝑣𝑣𝑛𝑛, 𝑣𝑣0) is refuellable with this set of RPs, let’s

see how these RPs should be allocated on the line. First, consider the outbound trip

𝑣𝑣0 → 𝑣𝑣𝑛𝑛. Assuming that the vehicle starts with a fully charged battery, then the

farthest point it can reach with a single charge is

𝑣𝑣0+(𝑟𝑟) =

⎩
⎪
⎨

⎪
⎧

𝜗𝜗1𝑟𝑟, 𝜗𝜗1𝑟𝑟 ≤ 𝑏𝑏1
𝑏𝑏1 + 𝜗𝜗2 �𝑟𝑟 −

𝑏𝑏1
𝜗𝜗1
� , 0 < 𝜗𝜗2 �𝑟𝑟 −

𝑏𝑏1
𝜗𝜗1
� ≤ 𝑏𝑏2

𝑏𝑏1 + 𝑏𝑏2 + 𝜗𝜗3 �𝑟𝑟 −
𝑏𝑏1
𝜗𝜗1
− 𝑏𝑏2

𝜗𝜗2
� , 0 < 𝜗𝜗3 �𝑟𝑟 −

𝑏𝑏1
𝜗𝜗1
− 𝑏𝑏2

𝜗𝜗2
� ≤ 𝑏𝑏3

⋮, ⋮

. (4.1)

That is,

 if the length of segment 1 (𝑏𝑏1) is greater than or equal to 𝜗𝜗1𝑟𝑟, the vehicle will not

be able to traverse the whole segment, and the farthest point it can reach is 𝜗𝜗1𝑟𝑟;

 if 𝑏𝑏1 < 𝜗𝜗1𝑟𝑟, then the remaining level of charge of the vehicle when it arrives at

node 𝑣𝑣1 is 𝑟𝑟 − 𝑏𝑏1
𝜗𝜗1

, and furthermore,

• if 𝜗𝜗2 �𝑟𝑟 −
𝑏𝑏1
𝜗𝜗1
� ≤ 𝑏𝑏2, the vehicle will not be able to traverse segment 2 and the

farthest point it can reach is 𝑏𝑏1 + 𝜗𝜗2 �𝑟𝑟 −
𝑏𝑏1
𝜗𝜗1
�;

• if 𝜗𝜗2 �𝑟𝑟 −
𝑏𝑏1
𝜗𝜗1
� > 𝑏𝑏2, the vehicle is able to reach node 𝑣𝑣2, with a remaining level

of charge equal to 𝑟𝑟 − 𝑏𝑏1
𝜗𝜗1
− 𝑏𝑏2

𝜗𝜗2
, ….

After identifying the point 𝑣𝑣0+(𝑟𝑟), which is regarded as an extreme (farthest

from node 𝑣𝑣0) site for the first RP to be established at, we can continue this fashion

105

to find the set of extreme sites for the rest of RPs, until the vehicle is able to reach

node 𝑣𝑣𝑛𝑛 from the last site that has been identified without running out of battery.

Then, let’s consider the inbound trip 𝑣𝑣𝑛𝑛 → 𝑣𝑣0. The farthest point from node 𝑣𝑣𝑛𝑛

at which the last RP should be established at is as follows,

𝑣𝑣𝑛𝑛−(𝑟𝑟) =

⎩
⎪
⎨

⎪
⎧ 𝐿𝐿 − 𝜗𝜗𝑛𝑛𝑟𝑟

2
, 𝜗𝜗𝑛𝑛𝑟𝑟 ≤ 2𝑏𝑏𝑛𝑛

𝐿𝐿 − 𝑏𝑏𝑛𝑛 − 𝜗𝜗𝑛𝑛−1 �
𝑟𝑟
2
− 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
� , 0 < 𝜗𝜗𝑛𝑛−1 �

𝑟𝑟
2
− 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
� ≤ 𝑏𝑏𝑛𝑛−1

𝐿𝐿 − 𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1 − 𝜗𝜗𝑛𝑛−2 �
𝑟𝑟
2
− 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
− 𝑏𝑏𝑛𝑛−1

𝜗𝜗𝑛𝑛−1
� , 0 < 𝜗𝜗𝑛𝑛−2 �

𝑟𝑟
2
− 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
− 𝑏𝑏𝑛𝑛−1

𝜗𝜗𝑛𝑛−1
� ≤ 𝑏𝑏𝑛𝑛−2

⋮, ⋮

 (4.2)

More specifically,

 if 𝑏𝑏𝑛𝑛
𝜗𝜗𝑛𝑛
≥ 𝑟𝑟

2
, i.e., the level of charge that is necessary for the vehicle to traverse

segment 𝑛𝑛 is at least 𝑟𝑟
2
, then the last RP should be established within 𝜗𝜗𝑛𝑛𝑟𝑟

2
 distance

from node 𝑣𝑣𝑛𝑛;

 if 𝑏𝑏𝑛𝑛
𝜗𝜗𝑛𝑛

< 𝑟𝑟
2
, it is trivial to see that the last RP can be established on the right-hand

side of node 𝑣𝑣𝑛𝑛−1, and furthermore,

• if 𝜗𝜗𝑛𝑛−1 �
𝑟𝑟
2
− 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
� ≤ 𝑏𝑏𝑛𝑛−1 (i.e., 𝑏𝑏𝑛𝑛−1

𝜗𝜗𝑛𝑛−1
+ 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
≥ 𝑟𝑟

2
), the level of charge that is necessary

for the vehicle to traverse segments 𝑛𝑛 − 1 and 𝑛𝑛 is at least 𝑟𝑟
2
, then the last RP

should be established within 𝑏𝑏𝑛𝑛 + 𝜗𝜗𝑛𝑛−1 �
𝑟𝑟
2
− 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
� distance from node 𝑣𝑣𝑛𝑛;

• if 𝜗𝜗𝑛𝑛−1 �
𝑟𝑟
2
− 𝑏𝑏𝑛𝑛

𝜗𝜗𝑛𝑛
� > 𝑏𝑏𝑛𝑛−1, the vehicle is able to traverse segments 𝑛𝑛 − 1 and 𝑛𝑛

with 𝑟𝑟
2
 level of charge, ….

After identifying the point 𝑣𝑣𝑛𝑛−(𝑟𝑟), which is regarded as an extreme site (farthest to

node 𝑣𝑣𝑛𝑛) for the last RP to be established at, we can continue this fashion to find the

106

set of extreme sites for the rest of RPs, until the vehicle is able to reach node 𝑣𝑣0 with

a single charge.

For round trip (𝑣𝑣𝑛𝑛, 𝑣𝑣0, 𝑣𝑣𝑛𝑛), we can follow the same procedure as above.

Now, let’s turn to the situation described in the problem, where 𝑏𝑏1 = 13, 𝑏𝑏2 =

3, 𝑏𝑏3 = 8, 𝑏𝑏4 = 8, 𝜗𝜗1 = 𝜗𝜗4 = 9
10

, 𝜗𝜗2 = 𝜗𝜗3 = 4
5
, and the discharging range for state 1 is

𝑟𝑟 = 7.

First, consider round trip (𝑣𝑣0, 𝑣𝑣4, 𝑣𝑣0). Let 𝜷𝜷1 denote the set of extreme sites for

RPs to refuel the outbound trip 𝑣𝑣0 → 𝑣𝑣4, and 𝜶𝜶1 denote the set of extreme sites for

RPs to refuel the inbound trip 𝑣𝑣4 → 𝑣𝑣0. We can iteratively compute 𝜷𝜷1 using equation

(1):

1. 𝛽𝛽11 Since 𝑏𝑏1
𝜗𝜗1

= 13
9
10

> 𝑟𝑟, then 𝛽𝛽11 = 𝜗𝜗1𝑟𝑟 = 9
10

× 7 = 6 3
10

, and we let 𝑏𝑏1 ← 𝑏𝑏1 − 𝜗𝜗1𝑟𝑟 =

6 7
10

;

2. 𝛽𝛽21 Since 𝑏𝑏1
𝜗𝜗1

=
6 7
10
9
10

> 𝑟𝑟, then 𝛽𝛽21 = 𝛽𝛽11 + 𝜗𝜗1𝑟𝑟 = 12 3
5
, and we let 𝑏𝑏1 ← 𝑏𝑏1 − 𝜗𝜗1𝑟𝑟 = 6 7

10
−

6 3
10

= 2
5
;

107

3. 𝛽𝛽31 Since

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏1

𝜗𝜗1
=

2
5
9
10

< 𝑟𝑟

𝑏𝑏1
𝜗𝜗1

+ 𝑏𝑏2
𝜗𝜗2

=
2
5
9
10

+ 3
4
5

< 𝑟𝑟

𝑏𝑏1
𝜗𝜗1

+ 𝑏𝑏2
𝜗𝜗2

+ 𝑏𝑏3
𝜗𝜗3

=
2
5
9
10

+ 3
4
5

+ 8
4
5

> 𝑟𝑟

, then 𝛽𝛽31 = (𝛽𝛽21 + 𝑏𝑏1 + 𝑏𝑏2) + 𝜗𝜗3 �𝑟𝑟 −
𝑏𝑏1
𝜗𝜗1
−

𝑏𝑏2
𝜗𝜗2
� = 13 + 4

5
�7 −

2
5
9
10
− 3

4
5
� = 18 11

45
, and we let 𝑏𝑏3 ← 𝑏𝑏3 − 𝜗𝜗3 �𝑟𝑟 −

𝑏𝑏1
𝜗𝜗1
− 𝑏𝑏2

𝜗𝜗2
� = 5 34

45
，𝑏𝑏2 ←

0, 𝑏𝑏1 ← 0;

4. 𝛽𝛽41 Since 𝑏𝑏3
𝜗𝜗3

=
53445
4
5

> 𝑟𝑟, then 𝛽𝛽41 = 𝛽𝛽31 + 𝜗𝜗3𝑟𝑟 = 23 38
45

, and we let 𝑏𝑏3 ← 𝑏𝑏3 − 𝜗𝜗3𝑟𝑟 = 7
45

;

5. 𝛽𝛽51 Since

⎩
⎪
⎨

⎪
⎧ 𝑏𝑏3

𝜗𝜗3
=

7
45
4
5

< 𝑟𝑟

𝑏𝑏3
𝜗𝜗3

+ 𝑏𝑏4
𝜗𝜗4

=
7
45
4
5

+ 8
9
10

> 𝑟𝑟
, then 𝛽𝛽51 = (𝛽𝛽41 + 𝑏𝑏3) + 𝜗𝜗4 �𝑟𝑟 −

𝑏𝑏3
𝜗𝜗3
� = 24 +

9
10
�7 −

7
45
4
5
� = 30 1

8
, and we let 𝑏𝑏4 ← 𝑏𝑏4 − 𝜗𝜗4 �𝑟𝑟 −

𝑏𝑏3
𝜗𝜗3
� = 1 7

8
, 𝑏𝑏3 ← 0.

6. End Since 𝑏𝑏4
𝜗𝜗4

=
178
9
10

< 𝑟𝑟, the vehicle is able to reach node 𝑣𝑣4 in a single charge.

Then, by using equation (2), we can compute 𝛼𝛼51, and again by using equation

(1), we can iteratively compute the rest of 𝜶𝜶1:

1. 𝛼𝛼51 Since 𝑏𝑏4
𝜗𝜗4

= 8
9
10

> 𝑟𝑟
2
, then 𝛼𝛼51 = 𝐿𝐿 − 𝜗𝜗4𝑟𝑟

2
= 32 −

9
10×7

2
= 28 17

20
, and we let 𝑏𝑏4 ← 𝑏𝑏4 −

𝜗𝜗4𝑟𝑟
2

= 4 17
20

;

2. 𝛼𝛼41 Since

⎩
⎪
⎨

⎪
⎧ 𝑏𝑏4

𝜗𝜗4
=

41720
9
10

< 𝑟𝑟

𝑏𝑏4
𝜗𝜗4

+ 𝑏𝑏3
𝜗𝜗3

=
41720
9
10

+ 8
4
5

> 𝑟𝑟
, then 𝛼𝛼41 = (𝛼𝛼51 − 𝑏𝑏4) − 𝜗𝜗3 �𝑟𝑟 −

𝑏𝑏4
𝜗𝜗4
� = 24 −

4
5
�7 −

41720
9
10
� = 22 32

45
, and we let 𝑏𝑏3 ← 𝑏𝑏3 − 𝜗𝜗3 �𝑟𝑟 −

𝑏𝑏4
𝜗𝜗4
� = 6 32

45
, 𝑏𝑏4 ← 0;

108

3. 𝛼𝛼31 Since 𝑏𝑏3
𝜗𝜗3

=
63245
4
5

> 𝑟𝑟, 𝛼𝛼31 = 𝛼𝛼41 − 𝜗𝜗3𝑟𝑟 = 22 32
45
− 4

5
× 7 = 17 1

9
, and we let 𝑏𝑏3 ← 𝑏𝑏3 −

𝜗𝜗3𝑟𝑟 = 1 1
9
;

4. 𝛼𝛼21 Since

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏3

𝜗𝜗3
=

119
4
5

< 𝑟𝑟

𝑏𝑏3
𝜗𝜗3

+ 𝑏𝑏2
𝜗𝜗2

=
119
4
5

+ 3
4
5

< 𝑟𝑟

𝑏𝑏3
𝜗𝜗3

+ 𝑏𝑏2
𝜗𝜗2

+ 𝑏𝑏1
𝜗𝜗1

=
119
4
5

+ 3
4
5

+ 13
9
10

> 𝑟𝑟

, then 𝛼𝛼21 = (𝛼𝛼31 − 𝑏𝑏3 − 𝑏𝑏2) −

𝜗𝜗1 �𝑟𝑟 −
𝑏𝑏3
𝜗𝜗3
− 𝑏𝑏2

𝜗𝜗2
� = 13 − 9

10
�7 −

119
4
5
− 3

4
5
� = 11 13

40
, and we let 𝑏𝑏1 ← 𝑏𝑏1 − 𝜗𝜗1 �𝑟𝑟 −

𝑏𝑏3
𝜗𝜗3
−

𝑏𝑏2
𝜗𝜗2
� = 11 13

40
, 𝑏𝑏3 ← 0, 𝑏𝑏2 ← 0.

5. 𝛼𝛼11 Since 𝑏𝑏1
𝜗𝜗1

=
111340
9
10

> 𝑟𝑟, then 𝛼𝛼11 = 𝛼𝛼21 − 𝜗𝜗1𝑟𝑟 = 11 13
40
− 9

10
× 7 = 5 1

40
, and we let 𝑏𝑏1 ←

𝑏𝑏1 − 𝜗𝜗1𝑟𝑟 = 5 1
40

;

6. End Since 𝑏𝑏1
𝜗𝜗1

=
5 1
40
9
10

< 𝑟𝑟, the vehicle is able to reach node 𝑣𝑣0 in a single charge.

Therefore, to refuel round trip (𝑣𝑣0, 𝑣𝑣4, 𝑣𝑣0), the minimum number of RPs

needed is 5, and for each RP a localization segment is identified:

To refuel (𝑣𝑣0, 𝑣𝑣4, 𝑣𝑣0) 𝓅𝓅1 𝓅𝓅2 𝓅𝓅3 𝓅𝓅4 𝓅𝓅5

𝜶𝜶1 5
1

40
 11

13
40

 17
1
9

 22
32
45

 28
17
20

𝜷𝜷1 6
3

10
 12

3
5

 18
11
45

 23
38
45

 30
1
8

Similarly, to refuel round trip (𝑣𝑣4, 𝑣𝑣0,𝑣𝑣4), the minimum number of RPs

needed is 5, and for each RP a localization segment is identified:

To refuel (𝑣𝑣4, 𝑣𝑣0, 𝑣𝑣4) 𝓅𝓅1 𝓅𝓅2 𝓅𝓅3 𝓅𝓅4 𝓅𝓅5

𝜷𝜷2 1
1
8

 7
17
40

 13
29
45

 19
41
45

 25
7

10

109

𝜶𝜶2 3
3

20
 9

9
20

 15
4
9

 21
2

45
 26

39
40

However, from the above two tables, we should note that these two set of

localization segments are nonoverlapped, which implies that by establishing 5 RPs

on the line network, there will be unsatisfied transportation needs. In fact, the

minimum number of RPs that are necessary and sufficient to serval all round trips

is 6, and the corresponding localization segments are:

𝓅𝓅1 𝓅𝓅2 𝓅𝓅3 𝓅𝓅4 𝓅𝓅5 𝓅𝓅6

[0,𝛼𝛼12] [𝛼𝛼11,𝛼𝛼22] [𝛼𝛼21,𝛼𝛼32] [𝛼𝛼31,𝛼𝛼42] [𝛼𝛼41,𝛼𝛼52] [𝛼𝛼51, 𝐿𝐿]

�0, 3
3

20
� �5

1
40

, 9
9

20
� �11

13
40

, 15
4
9
� �17

1
9

, 21
2

45
� �22

32
45

, 26
39
40
� �28

17
20

, 32�

where,

 The first RP will be established with 3 3
20

 distance from node 𝑣𝑣0 (i.e., site 𝛼𝛼12,

which is an extreme site to serve the inbound trip 𝑣𝑣0 → 𝑣𝑣4 of (𝑣𝑣4, 𝑣𝑣0,𝑣𝑣4));

 The last RP will be established with �32 − 28 17
20
� distance from node 𝑣𝑣4 (i.e., site

𝛼𝛼51, which is an extreme site to serve the inbound trip 𝑣𝑣4 → 𝑣𝑣0 of (𝑣𝑣0, 𝑣𝑣4, 𝑣𝑣0));

 The vehicle is able to traverse between every two adjacent RPs with a single

charge.

From part C), we get the following 6 localization segments:

𝓅𝓅1 𝓅𝓅2 𝓅𝓅3 𝓅𝓅4 𝓅𝓅5 𝓅𝓅6

�0, 3
3

20
� �5

1
40

, 9
9

20
� �11

13
40

, 15
4
9
� �17

1
9

, 21
2

45
� �22

32
45

, 26
39
40
� �28

17
20

, 32�

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

110

4.3. Find optimal RPs’ locations

For this two-state problem, we can conclude that there exists a finite

dominating set to the problem, since the objective function is the expected value of

the total refueling detouring distance in two states.

We can define the set of breakpoints as follows:

(1) 𝐵𝐵1, the set of endpoints of each localization segments;

(2) 𝐵𝐵2, the set of internal nodes;

(3) 𝐵𝐵3, the union of the set of extreme none refueling detouring sites (within

localization segments) in state 1 and state 2;

(4) 𝐵𝐵4 = ⋃ �{𝑥𝑥−(𝑖𝑖𝑟𝑟), 𝑥𝑥+(𝑖𝑖𝑟𝑟): 𝑖𝑖 = 1, 2,⋯ ,𝑚𝑚} ∩ {⋃ 𝑆𝑆𝑘𝑘𝑚𝑚
𝑘𝑘=1 }�𝑒𝑒∈𝐵𝐵1∪𝐵𝐵2∪𝐵𝐵3 , where 𝑥𝑥∓�(𝑖𝑖 + 1)𝑟𝑟�

denotes the point on the line that the vehicle is able to reach from 𝑥𝑥∓(𝑖𝑖𝑟𝑟) with a

fully charged battery in state 2. We should note that in this two-state problem,

the distance between 𝑥𝑥∓�(𝑖𝑖 + 1)𝑟𝑟� and 𝑥𝑥∓(𝑖𝑖𝑟𝑟) is not necessarily 𝑟𝑟.

For this specific problem, we have:

 𝐵𝐵1 = �0, 3 3
20
� ∪ �5 1

40
, 9 9

20
� ∪ �11 13

40
, 15 4

9
� ∪ �17 1

9
, 21 2

45
� ∪ �22 32

45
, 26 39

40
� ∪ �28 17

20
, 32�;

 𝐵𝐵2 = {13, 24}, the set of internal nodes;

 In state 1, the set of extreme none refueling detouring sites are 𝐵𝐵31 = �3 1
2
� ∪

�9 1
2

, 16 1
2
� ∪ �12 1

2
, 19 1

2
� ∪ �20 1

2
, 27 1

2
� ∪ �28 1

2
�; and in state 2, the set of extreme

none refueling detouring sites are𝐵𝐵32 = �3 3
20
� ∪ �9 17

20
, 15 4

5
� ∪ �13 1

5
, 18 4

5
� ∪

�21 1
5

, 27 3
20
� ∪ �28 17

20
�. Then, 𝐵𝐵3 = �3 3

20
, 12 1

2
, 13 1

5
, 18 4

5
, 19 1

2
, 20 1

2
, 28 17

20
�.

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

111

Let’s illustrate how to compute the two extreme none refueling detouring

sites associated with each node in state 2. For example, consider node 𝑣𝑣2. The

extreme none refueling detouring site on the LHS of 𝑣𝑣2 should be at 16 − 4
5

× 7 × 1
2

=

13 1
5
, and the extreme none refueling detouring site on the RHS of 𝑣𝑣2 should be at

16 + 4
5

× 7 × 1
2

= 18 4
5
.

 𝐵𝐵4 = � 4
10

, 6 7
10

, 18 3
5

, 24 9
40

, 30 21
40
� ∪ � 7

40
, 6 19

40
, 12 31

40
, 18 2

5
, 30 3

10
� ∪

�6 1
5

, 18 7
45

, 23 34
45

, 30 1
40
� ∪ �5

8
, 6 37

40
, 18 4

5
, 24 9

20
, 30 3

4
� ∪ �1 33

80
, 7 57

80
, 13 9

10
, 25 19

80
, 31 43

80
� ∪

�2 43
80

, 8 67
80

, 14 9
10

, 26 29
80
�.

Let’s take 𝑥𝑥 = 13 for example, 𝑥𝑥−(𝑟𝑟) = 13 − 9
10

× 7 = 6 7
10

, 𝑥𝑥−(2𝑟𝑟) = 6 7
10
−

9
10

× 7 = 4
10

, 𝑥𝑥+(𝑟𝑟) = 13 + 4
5

× 7 = 18 3
5
, 𝑥𝑥+(2𝑟𝑟) = 24 + 9

10
× �7 −

24−1835
4
5

� = 24 9
40

, and

𝑥𝑥+(3𝑟𝑟) = 24 9
40

+ 9
10

× 7 = 30 21
40

.

Then, we are able to construct the network that will be used for the shortest

path problem, where each node of the constructed network corresponds to a

breakpoint on the line network, and for any two nodes that are in adjacent two

layers, we connect them if the vehicle can traverse between them without running

out battery in state 2. In fact, if the vehicle can traverse between these two nodes in

a single in state 2, then it can traverse between them in state 1 as well, however, the

opposite is not necessarily true.

For the edge weight of the constructed network, say 𝑤𝑤�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� of edge

�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�, we can compute is as

𝑤𝑤�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� = 𝑝𝑝1 × 𝑤𝑤1�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� + 𝑝𝑝2 × 𝑤𝑤2�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�,

112

where 𝑝𝑝1 and 𝑝𝑝2 are the probabilities of two states, and 𝑤𝑤1�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� and 𝑤𝑤2�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�

are the corresponding weighted detouring distance associated with RP 𝑘𝑘 and 𝑘𝑘 + 1

(assuming that RP 𝑘𝑘 is established at 𝑛𝑛𝑖𝑖𝑘𝑘 and RP 𝑘𝑘 + 1 is established at 𝑛𝑛𝑗𝑗𝑘𝑘+1) in state

1 and state 2, respectively. 𝑤𝑤1�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� and 𝑤𝑤2�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1� can be computed using the

formula that we proposed in the proposal. We just need to keep in mind that we

should replace the original discharging range with the new discharging range when

we compute 𝑤𝑤2�𝑛𝑛𝑖𝑖𝑘𝑘 ,𝑛𝑛𝑗𝑗𝑘𝑘+1�.

To find the optimal set of RP locations, it is equivalent to find the shortest

path from the source node to the sink node in the constructed network. Below is the

constructed network of this problem.

Figure 4.3 The constructed network for solving the SPP

113

4.4. Conclusion

In this chapter, we considered the location problem on a class of probabilistic

networks for which the values of the travel attributes associated with the links are

random. Again, we are able to convert the original problem to a shortest path

problem and solve the problem in polynomial times.

114

CHAPTER 5

THE GENERAL TREE PROBLEM

5.1. Overview

While the US national highway system consists of a set of circuit networks, if

it is partitioned into local highway systems by operating authority, then many of

them form trees or tree-like networks. Also, note that road networks in sparsely

settled areas are generally trees, since tree road networks are the cheapest to

construct.

Trees are central to the structural understanding of networks and graphs

and often occur with additional attributes such as roots and vertex-ordering. They

have a wide range of applications, including data storage, searching, information

processing, and facility location. Because it is easier to get insights into tree network

problems, numerous articles in classical facility location problems on transportation

networks without cycles are available in the literature.

5.2. Problem on caterpillars and stars

In our previous discussion in Chapter 3, where the degree of any junction

node, which is on the central path, is at most three, now let us consider the same

problem on a caterpillar tree and on a star.

5.2.1. Definition of caterpillar and star (graph theory)

Caterpillar

In graph theory, a caterpillar tree is a tree in which all the vertices are

within distance 1 of a central path. Caterpillars were first studied in a series of

115

papers by Harary and Schwenk. The name was suggested by A. Hobbs. As Harary

and Schwenk (1973) colorfully write, “A caterpillar is a tree which metamorphoses

into a path when its cocoon of endpoints is removed.” Some equivalent

characterizations are as follows: (1) They are the trees for which removing the leaves

and incident edges produces a path graph; (2) They are the trees in which there

exists a path that contains every vertex of degree two or more; (3) They are the trees

in which every vertex of degree at least three has at most two non-leaf neighbors.

Figure 5.1 An example of a caterpillar tree

Star

A start 𝑆𝑆𝑘𝑘 is the complete bipartite graph 𝐾𝐾1,𝑘𝑘: a tree with one internal node

and 𝑘𝑘 leaves (but, no internal nods and 𝑘𝑘 + 1 leaves when 𝑘𝑘 ≤ 1). Alternatively, some

authors define 𝑆𝑆𝑘𝑘 to be the tree of order 𝑘𝑘 with maximum diameter 2; in which case a

star of 𝑘𝑘 > 2 has 𝑘𝑘 − 1 leaves.

116

Figure 5.2 An example of a star

5.3. Problem on general trees

Now, we address the continuous deviation-flow location problem on a tree

network. Let 𝑇𝑇(𝑉𝑉,𝐸𝐸) be an undirected tree network consisting of a set 𝑉𝑉 with 𝑛𝑛

vertices and a set 𝐸𝐸 with 𝑛𝑛 − 1 edges, where 𝑛𝑛 ≥ 2; otherwise, the network is trivial.

An edge �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� ∈ 𝐸𝐸 is defined if 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 and 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 are directedly connected. We also

denote 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� as the unique simple path between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 for 𝑖𝑖 < 𝑗𝑗, for all 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 ∈

𝑉𝑉. Let 𝐿𝐿 is defined as the set of all possible paths in 𝑇𝑇; that is, 𝐿𝐿 = �𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� | 𝑖𝑖 <

𝑗𝑗, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉�. The average traffic flow along 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is denoted as 𝑓𝑓�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�. The

length of 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is denoted as 𝑑𝑑�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�, and 𝑑𝑑�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� = 𝑑𝑑�𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑖𝑖�. Similarly, 𝑃𝑃(𝑣𝑣𝑖𝑖 , 𝑥𝑥)

denotes the unique simple path between 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 and any point 𝑥𝑥 ∈ 𝑉𝑉, and the length

of this path is denoted as 𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝑥𝑥) = 𝑑𝑑(𝑥𝑥, 𝑣𝑣𝑖𝑖).

117

Figure 5.3 An example of an undirected tree network

 We denote a vertex as a central vertex if its greatest distance from any other

vertex is as small as possible. Here, the distance between a pair of vertices is defined

as the minimum number of arcs between them. For the example tree network in

Figure 5.3, the central vertex is the red vertex 𝐽𝐽10.

Proposition 5.1 A tree has either one single central vertex, or two adjacent

central vertices.

Proof of Proposition 5.1 First observe that in a tree, if 𝑣𝑣𝑖𝑖 is some vertex and 𝑣𝑣𝑗𝑗 is

at maximal distance from 𝑣𝑣𝑖𝑖, then 𝑣𝑣𝑗𝑗 must be a leaf, because otherwise there is

another vertex further away from 𝑣𝑣𝑖𝑖. Therefore, if we remove all leaves at once, all

greatest distances are reduced by 1, and the set of central vertices remains the

same. We can repeatedly remove all leaves until this is no longer possible, which

118

must be because we are left with a single degree 0 vertex, or we are left with no

vertices. In the first case, the degree 0 vertex is central, and it must have been the

only central vertex in each previous step, including in the original tree. In the

second case, we must have had a single edge in the previous step, whose vertices

must have been the central ones in the original tree.

 Then, for any tree 𝑇𝑇(𝑉𝑉,𝐸𝐸) with |𝑉𝑉| > 2, we repeatedly remove all leaves until

this is no longer possible. In the previous step, we must either have a single central

vertex, or a single edge connecting the two central vertices, and in the penultimate

step, we must either have a star, or a caterpillar.

5.3.1. Minimum number of RPs needed

 To determine the minimum number of RPs that are required to serve all O-D

transportation needs, we introduce a two-step algorithm.

Step One --- Inward Searching Procedure

Step 1. The initial tree trimming. Examine each leaf vertex 𝑣𝑣 in the tree network, if

the length of the arc which connects the leaf with its parent is greater than or equal

to the driving range 𝑟𝑟, iteratively add RP locations onto the arc, then cut the tree.

 In Chapter 3, we also proposed a two-step algorithm in order for finding the

minimum number of RPs, where the first step is comb tree trimming, and the second

step is a rightward searching pass followed by a leftward searching pass. Recall that

in the trimming procedure, we systematically examine each comb tooth (𝑣𝑣, 𝐽𝐽),

iteratively add RP locations at distance 𝑖𝑖 ∗ 𝑟𝑟 from the leaf vertex 𝑣𝑣 if the length of

the tooth 𝑑𝑑(𝑣𝑣, 𝐽𝐽) is greater than or equal to 𝑟𝑟, where 𝑖𝑖 = 1, … , �𝑑𝑑(𝑣𝑣,𝐽𝐽)
𝑟𝑟
� × 𝑟𝑟, and then cut

the comb. While, we will do the same thing in the very first step. For each leaf vertex

119

𝑣𝑣 in tree 𝑇𝑇(𝑉𝑉,𝐸𝐸), let 𝑝𝑝𝑎𝑎𝑟𝑟𝑒𝑒𝑛𝑛𝑜𝑜(𝑣𝑣) denote the parent vertex of 𝑣𝑣. If the arc length

𝑑𝑑�𝑣𝑣,𝑝𝑝𝑎𝑎𝑟𝑟𝑒𝑒𝑛𝑛𝑜𝑜(𝑣𝑣)� is greater than or equal to 𝑟𝑟, add a set of RP locations

�𝓅𝓅1,⋯ ,𝓅𝓅
�𝑑𝑑�𝑣𝑣,𝑝𝑝𝑝𝑝𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡(𝑣𝑣)�

𝑟𝑟 �
� to the arc, where the 𝑖𝑖𝑡𝑡ℎ RP is at distance 𝑖𝑖 ∗ 𝑟𝑟 from the leaf

vertex 𝑣𝑣.

 In the example of the tree network in Figure 5.3, if we let driving range 𝑟𝑟

equal to 57, then there are six arcs with an arc length greater than 𝑟𝑟 but smaller

than 2𝑟𝑟: (𝑣𝑣0, 𝐽𝐽1), (𝑣𝑣1, 𝐽𝐽1), (𝑣𝑣5, 𝐽𝐽3), (𝑣𝑣6, 𝐽𝐽4), (𝑣𝑣8, 𝐽𝐽5) and (𝑣𝑣10, 𝐽𝐽6). Thus, onto each of these

arcs, we should add one RP location.

Figure 5.4 Added RP locations

120

Figure 5.5 After the initial trimming

 In order to further trim the tree network, we first examine the minimum

remaining travel distance of vehicles at a junction vertex 𝐽𝐽, which is adjacent to only

one junction vertex (≠ 𝐽𝐽) besides the leaves. The minimum remaining travel

distance of vehicles at such a junction vertex 𝐽𝐽 is denoted as 𝑟𝑟𝑒𝑒(𝐽𝐽) and computed as

follows:

𝑟𝑟𝑒𝑒(𝐽𝐽) = 𝑟𝑟 − max�max � 𝑑𝑑(𝑢𝑢, 𝐽𝐽) | 𝑢𝑢 is a leaf vertex adjacent to 𝐽𝐽,
but NOT able to reach any other leaf vertex with an RP� ,

min{𝑑𝑑(𝑣𝑣, 𝐽𝐽) | 𝑣𝑣 is a leaf vertex adjacent to 𝐽𝐽 and with an RP}
�. (5.1)

 The intuition behind 𝑟𝑟𝑒𝑒(𝐽𝐽) is that 𝑟𝑟𝑒𝑒(𝐽𝐽) tells the minimum remaining travel

distance at junction vertex 𝐽𝐽 that vehicles can drive up, when they enter the network

at any leaf vertex that is a neighbor of 𝐽𝐽. The minimum remaining travel distance,

𝑟𝑟𝑒𝑒(𝐽𝐽), is calculated by subtracting the maximum value between max
𝑢𝑢

{𝑑𝑑(𝑢𝑢, 𝐽𝐽)} and

min
𝑣𝑣

{𝑑𝑑(𝑣𝑣, 𝐽𝐽)} from driving range 𝑟𝑟, where 𝑢𝑢 is any leaf vertex (with or without an RP)

adjacent to 𝐽𝐽 but not able to reach other leaf vertices that are equipped with RPs,

and where 𝑣𝑣 is any leaf vertex (with an RP) adjacent to 𝐽𝐽, implying that the leaf 𝑣𝑣

121

can become a refueling service hub for vehicles entering the network at other leaves

adjacent to 𝐽𝐽 before continuing to 𝐽𝐽, if possible.

 In the example of the trimmed tree network in Figure 5.5, 𝑟𝑟𝑒𝑒(𝐽𝐽1) = 54,

𝑟𝑟𝑒𝑒(𝐽𝐽2) = 6, 𝑟𝑟𝑒𝑒(𝐽𝐽3) = 39, 𝑟𝑟𝑒𝑒(𝐽𝐽4) = 2, 𝑟𝑟𝑒𝑒(𝐽𝐽5) = 20 and 𝑟𝑟𝑒𝑒(𝐽𝐽6) = 55. Specially, 𝑟𝑟𝑒𝑒(𝐽𝐽1) is

computed as follows. Junction vertex 𝐽𝐽1 has two leaf neighbors: 𝑣𝑣0 and 𝑣𝑣1, where

each of them is equipped with an 𝑅𝑅𝑃𝑃, and vehicles entering the network at either 𝑣𝑣0

and 𝑣𝑣1 can drive up to 𝐽𝐽1 directly with a fully charged battery. Therefore, 𝑟𝑟𝑒𝑒(𝐽𝐽1) = 𝑟𝑟 −

min{𝑑𝑑(𝑣𝑣0, 𝐽𝐽1),𝑑𝑑(𝑣𝑣1, 𝐽𝐽1)} = 57 − min{3,20} = 54.

 In addition to the minimum travel distance of each junction 𝐽𝐽, we shall also

store the location information of 𝐽𝐽′s nearest RP if there is any within driving range 𝑟𝑟,

that is, we shall store the minimum travel distance from 𝐽𝐽 to an RP. Consider the

following situation in the example tree network in Figure 5.5, if vehicles entering

the tree network at junction 𝐽𝐽7 and heading to junction 𝐽𝐽10 with some level of

remaining charge, this information – the minimum travel distance from 𝐽𝐽1 to an RP

– can be used to determine that whether 𝐽𝐽1 could become a refueling detour routing

point for these vehicles or not.

Step 2. The main part of tree inward searching. Repeat Step 2.1 - Step 2.3, until

we are left with a star network, in which 𝑟𝑟𝑒𝑒(𝑣𝑣) ≤ 𝑑𝑑(𝑣𝑣, 𝐽𝐽) for any leaf 𝑣𝑣 in the star.

Step 2.1. For each junction vertex 𝐽𝐽 which has leaf vertices as its neighbors,

we compute the minimum remaining travel distance of 𝐽𝐽 when vehicles enter

the network at any of the leaf neighbors. Additionally, we store the minimum

travel distance from 𝐽𝐽 to an RP that has been added to the tree network in

previous steps, if none exists, we set this distance equal to +∞.

Step 2.2. Cut off leave vertices.

122

After step 2.2, the junction vertices in step 2.1 now become leaf vertices.

Step 2.3. According to these remaining travel distances computed in step 2.1,

we then determine the set of RPs that are needed to be located along the arc

which connects the new leaf vertex and its parent vertex.

 In Step 2.1, we compute the minimum remaining travel distance of a junction

vertex 𝐽𝐽 as follows:

𝑟𝑟𝑒𝑒(𝐽𝐽) = min
𝑣𝑣:𝑣𝑣 is a leaf adjacent to 𝐽𝐽

�max�𝑟𝑟𝑒𝑒(𝑣𝑣) − 𝑑𝑑(𝑣𝑣, 𝐽𝐽),

max
𝑢𝑢:𝑢𝑢≠𝑣𝑣 is a leaf adjacent to 𝐽𝐽,

and 𝑢𝑢 is a refueling detour routing point for 𝑣𝑣

{𝑟𝑟𝑒𝑒(𝑢𝑢) − 𝑑𝑑(𝑢𝑢, 𝐽𝐽)}��,

 (5.2)

where 𝑟𝑟𝑒𝑒(𝑣𝑣) − 𝑑𝑑(𝑣𝑣, 𝐽𝐽) measures the level of remaining charge at 𝐽𝐽 when detouring is

not an option, and max
𝑢𝑢:𝑢𝑢≠𝑣𝑣 is a leaf adjacent to 𝐽𝐽,

and 𝑢𝑢 is a refueling detour routing point for 𝑣𝑣

{𝑟𝑟𝑒𝑒(𝑢𝑢) − 𝑑𝑑(𝑢𝑢, 𝐽𝐽)} measures the

maximum level of remaining charge at 𝐽𝐽 when detouring is considered. Equation

(5.1) is a special case of equation (5.2).

 Let us further describe the Step 2.3. Consider the tree network in Figure 5.6,

if 𝑟𝑟𝑒𝑒(𝑣𝑣0) > 𝑑𝑑(𝑣𝑣0, 𝐽𝐽), no RP location is needed to be added onto arc (𝑣𝑣0, 𝐽𝐽), whereas if

𝑟𝑟𝑒𝑒(𝑣𝑣0) < 𝑑𝑑(𝑣𝑣0, 𝐽𝐽), we shall locate RPs sequentially at distance 𝑟𝑟𝑒𝑒(𝑣𝑣0), 𝑟𝑟𝑒𝑒(𝑣𝑣0) + 𝑟𝑟, …,

𝑟𝑟𝑒𝑒(𝑣𝑣0) + �𝑑𝑑(𝑣𝑣0,𝐽𝐽)−𝑟𝑟𝑒𝑒(𝑣𝑣0)
𝑟𝑟

� × 𝑟𝑟 away from 𝑣𝑣0. If any RP has been added onto the arc (𝑣𝑣0, 𝐽𝐽),

we turn the RP location at distance 𝑟𝑟 − �𝑟𝑟𝑒𝑒(𝑣𝑣0) + �𝑑𝑑(𝑣𝑣0,𝐽𝐽)−𝑟𝑟𝑒𝑒(𝑣𝑣0)
𝑟𝑟

� × 𝑟𝑟� from 𝐽𝐽 into a new

leaf vertex (let us continue to use 𝑣𝑣0), cut off the tree, update 𝑟𝑟𝑒𝑒(𝑣𝑣0) = 𝑟𝑟 and

𝑑𝑑(𝑣𝑣0,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 0.

123

Figure 5.6 A portion of the tree network

 As we mentioned earlier, any tree network has either one single central

vertex, or two adjacent central vertices, where a central vertex is a vertex such that

its greatest distance from any other vertex is as small as possible. Thus, after

iterations of trimming, we should be left with a star network or a single arc

connecting two vertices which is also a star, as shown in Figure 5.7.

Figure 5.7 The star network we are left with

Illustrating Step 2 for the network in Figure 5.5

124

Input data: tree network in Figure 5.5, where vertices 𝑣𝑣0, 𝑣𝑣1, 𝑣𝑣5, 𝑣𝑣6, 𝑣𝑣8 and 𝑣𝑣10 are

equipped with RPs, and 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) = 𝑟𝑟 = 57 for ∀𝑖𝑖 = 0,1, … ,11.

Perform Step 2.1 using equation (5.1):

𝑟𝑟𝑒𝑒(𝐽𝐽1) = 𝑟𝑟 − max{min{𝑑𝑑(𝑣𝑣0, 𝐽𝐽1),𝑑𝑑(𝑣𝑣1, 𝐽𝐽1)}} = 57 − min{3, 20} = 54, 𝑑𝑑(𝐽𝐽1,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 3;

𝑟𝑟𝑒𝑒(𝐽𝐽2) = 𝑟𝑟 − max{max{𝑑𝑑(𝑣𝑣2, 𝐽𝐽2),𝑑𝑑(𝑣𝑣3, 𝐽𝐽2)}} = 57 − max{26, 51} = 6, 𝑑𝑑(𝐽𝐽2,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) =

+∞;

𝑟𝑟𝑒𝑒(𝐽𝐽3) = 𝑟𝑟 − max{min{𝑑𝑑(𝑣𝑣5, 𝐽𝐽3)}} = 57 − 18 = 39, 𝑑𝑑(𝐽𝐽3,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 18;

𝑟𝑟𝑒𝑒(𝐽𝐽4) = 𝑟𝑟 − max{max{𝑑𝑑(𝑣𝑣7, 𝐽𝐽4)} , min{𝑑𝑑(𝑣𝑣6, 𝐽𝐽4)}} = 57 − max{55, 37} = 2,

𝑑𝑑(𝐽𝐽4,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 37;

𝑟𝑟𝑒𝑒(𝐽𝐽5) = 𝑟𝑟 − 𝑚𝑚𝑎𝑎𝑥𝑥{𝑚𝑚𝑎𝑎𝑥𝑥{𝑑𝑑(𝑣𝑣9, 𝐽𝐽5)} ,𝑚𝑚𝑖𝑖𝑛𝑛{𝑑𝑑(𝑣𝑣8, 𝐽𝐽5)}} = 57 −𝑚𝑚𝑎𝑎𝑥𝑥{37, 27} = 20,

𝑑𝑑(𝐽𝐽5,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 27;

𝑟𝑟𝑒𝑒(𝐽𝐽6) = 𝑟𝑟 − max{min{𝑑𝑑(𝑣𝑣10, 𝐽𝐽6)}} = 57 − 2 = 55, 𝑑𝑑(𝐽𝐽6,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 2.

Perform Step 2.2:

We cut off the leaf vertices in {𝑣𝑣𝑖𝑖 | 𝑖𝑖 = 0, 1, … , 11}. The tree network that we get

after trimming is shown in Figure 5.8.

125

Figure 5.8 The product after performing Step 2.2

Perform Step 2.3:

Input date: tree network in Figure 5.7

𝑟𝑟𝑒𝑒(𝐽𝐽1) = 54, 𝑑𝑑(𝐽𝐽1,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 3; 𝑟𝑟𝑒𝑒(𝐽𝐽2) = 6, 𝑑𝑑(𝐽𝐽2,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = +∞;

𝑟𝑟𝑒𝑒(𝐽𝐽3) = 39, 𝑑𝑑(𝐽𝐽3,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 18; 𝑟𝑟𝑒𝑒(𝐽𝐽4) = 2, 𝑑𝑑(𝐽𝐽4,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 37;

𝑟𝑟𝑒𝑒(𝐽𝐽5) = 20, 𝑑𝑑(𝐽𝐽5,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 27; 𝑟𝑟𝑒𝑒(𝐽𝐽6) = 55, 𝑑𝑑(𝐽𝐽6,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 2.

For arc (𝐽𝐽1, 𝐽𝐽7): 𝑑𝑑(𝐽𝐽1, 𝐽𝐽7) < 𝑟𝑟𝑒𝑒(𝐽𝐽1), no RP is needed.

For arc (𝐽𝐽2, 𝐽𝐽7): 𝑑𝑑(𝐽𝐽2, 𝐽𝐽7) > 𝑟𝑟𝑒𝑒(𝐽𝐽2), add one RP at distance 6 from 𝐽𝐽7, update 𝑟𝑟𝑒𝑒(𝐽𝐽2) = 57

and 𝑑𝑑(𝐽𝐽2, 𝐽𝐽7) = 73; add another RP at distance 57 from 𝐽𝐽2, update 𝑟𝑟𝑒𝑒(𝐽𝐽2) = 57 and

𝑑𝑑(𝐽𝐽2, 𝐽𝐽7) = 16.

For arc (𝐽𝐽3, 𝐽𝐽8): 𝑑𝑑(𝐽𝐽3, 𝐽𝐽8) < 𝑟𝑟𝑒𝑒(𝐽𝐽3), no RP is needed.

For arc (𝐽𝐽4, 𝐽𝐽8): 𝑑𝑑(𝐽𝐽4, 𝐽𝐽8) > 𝑟𝑟𝑒𝑒(𝐽𝐽4), add one RP at distance 2 from 𝐽𝐽4, update 𝑟𝑟𝑒𝑒(𝐽𝐽4) = 57

and 𝑑𝑑(𝐽𝐽4, 𝐽𝐽8) = 32.

For arc (𝐽𝐽5, 𝐽𝐽9): 𝑑𝑑(𝐽𝐽5, 𝐽𝐽9) > 𝑟𝑟𝑒𝑒(𝐽𝐽5), add one RP at distance 20 from 𝐽𝐽5, update 𝑟𝑟𝑒𝑒(𝐽𝐽5) = 57

and 𝑑𝑑(𝐽𝐽5, 𝐽𝐽9) = 64; add another RP at distance 57 from 𝐽𝐽5, update 𝑟𝑟𝑒𝑒(𝐽𝐽5) = 57 and

𝑑𝑑(𝐽𝐽5, 𝐽𝐽9) = 7.

For arc (𝐽𝐽6, 𝐽𝐽9): 𝑑𝑑(𝐽𝐽6, 𝐽𝐽9) < 𝑟𝑟𝑒𝑒(𝐽𝐽6), no RP is needed.

126

Figure 5.9 One iteration of Step 2.3

Anther iteration of Step 2:

Perform Step 2.1:

Input date: tree network (on the left) in Figure 5.9

𝑟𝑟𝑒𝑒(𝐽𝐽1) = 54, 𝑑𝑑(𝐽𝐽1,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 3; 𝑟𝑟𝑒𝑒(𝐽𝐽2) = 57, 𝑑𝑑(𝐽𝐽2,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 0;

𝑟𝑟𝑒𝑒(𝐽𝐽3) = 39, 𝑑𝑑(𝐽𝐽3,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 18; 𝑟𝑟𝑒𝑒(𝐽𝐽4) = 57, 𝑑𝑑(𝐽𝐽4,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 0;

𝑟𝑟𝑒𝑒(𝐽𝐽5) = 57, 𝑑𝑑(𝐽𝐽5,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 0; 𝑟𝑟𝑒𝑒(𝐽𝐽6) = 55, 𝑑𝑑(𝐽𝐽6,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 2.

𝑟𝑟𝑒𝑒(𝐽𝐽7) = 𝑟𝑟 − 𝑑𝑑(𝐽𝐽2, 𝐽𝐽7) = 41, 𝑑𝑑(𝐽𝐽7,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 16;

𝑟𝑟𝑒𝑒(𝐽𝐽8) = min{𝑟𝑟𝑒𝑒(𝐽𝐽3) − 𝑑𝑑(𝐽𝐽3, 𝐽𝐽8), 𝑟𝑟 − 𝑑𝑑(𝐽𝐽4, 𝐽𝐽8)} = 15, 𝑑𝑑(𝐽𝐽8,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 32;

𝑟𝑟𝑒𝑒(𝐽𝐽9) = 𝑟𝑟𝑒𝑒(𝐽𝐽6) − 𝑑𝑑(𝑣𝑣6, 𝐽𝐽9) = 57 − 6 = 51, 𝑑𝑑(𝐽𝐽9,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 6.

Perform Step 2.2:

We cut off the leaf vertices in {𝐽𝐽𝑖𝑖 | 𝑖𝑖 = 1,2, … ,6}. The tree network that we get

after trimming is shown in Figure 5.9.

127

Figure 5.10 The product after performing Step 2.2

Perform Step 2.3:

Input date: tree network in Figure 5.10

𝑟𝑟𝑒𝑒(𝐽𝐽7) = 41 , 𝑑𝑑(𝐽𝐽7,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 16 ; 𝑟𝑟𝑒𝑒(𝐽𝐽8) = 15 , 𝑑𝑑(𝐽𝐽8,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 32 ; 𝑟𝑟𝑒𝑒(𝐽𝐽9) = 51 ,

𝑑𝑑(𝐽𝐽9,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 6.

For arc (𝐽𝐽7, 𝐽𝐽10): 𝑑𝑑(𝐽𝐽7, 𝐽𝐽10) > 𝑟𝑟𝑒𝑒(𝐽𝐽7), add one RP at distance 41 from 𝐽𝐽7, update 𝑟𝑟𝑒𝑒(𝐽𝐽7) =

57 and 𝑑𝑑(𝐽𝐽7, 𝐽𝐽10) = 52.

For arc (𝐽𝐽8, 𝐽𝐽10): 𝑑𝑑(𝐽𝐽8, 𝐽𝐽10) > 𝑟𝑟𝑒𝑒(𝐽𝐽10), add one RP at distance 15 from 𝐽𝐽8, update 𝑟𝑟𝑒𝑒(𝐽𝐽8) =

57 and 𝑑𝑑(𝐽𝐽8, 𝐽𝐽10) = 32.

For arc (𝐽𝐽9, 𝐽𝐽10): 𝑑𝑑(𝐽𝐽9, 𝐽𝐽10) < 𝑟𝑟𝑒𝑒(𝐽𝐽10), no RP is needed.

Figure 5.11 The resulting tree network after another iteration of Step 2

 It is also worth to mention that at most one RP will be needed for the star

network we are left with after Step 2.

Proposition 5.2 Given any tree network, after performing the Steps 1 and 2, we

are left with a star network, and at most one RP will be needed for this star.

128

 Next, we present a procedure for finding the localization tree for the star

network, if one is needed.

Step 3. Determine the localization tree for the star. If no more RP is needed,

terminate the inward searching algorithm; otherwise, determine the localization

subtree for this star using the following steps.

 First, we describe the condition where no more RP is needed. Given a simple

path 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�, when no detouring option is available, the trip from vertices 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗 is

feasible if 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) − �𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝐽𝐽) + 𝑑𝑑�𝐽𝐽, 𝑣𝑣𝑗𝑗�� ≥ 𝑟𝑟 − 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗�, that is, vehicles entering the star

network at 𝑣𝑣𝑖𝑖 with the minimum remaining travel distance 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) is able to drive up

to 𝑣𝑣𝑗𝑗 directly while keeping the minimum level of recharge at 𝑟𝑟 − 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗� when leave

the star network at 𝑣𝑣𝑗𝑗, implying that vehicles can further drive up to any vertex

adjacent to 𝑣𝑣𝑗𝑗.

 Whereas when the detouring option is available for the trip from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗, the

trip is feasible if 𝑣𝑣𝑖𝑖 ⇝ 𝑣𝑣𝑘𝑘 ↦ 𝑣𝑣𝑗𝑗, where 𝑣𝑣𝑘𝑘 ∉ �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is a neighbor of 𝐽𝐽. By “𝑣𝑣𝑖𝑖 ⇝ 𝑣𝑣𝑘𝑘”, we

mean that there is a feasible refueling walk from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑘𝑘 and there is a feasible

simple path from 𝑣𝑣𝑘𝑘 to 𝑣𝑣𝑗𝑗, while maintaining the minimum level of charge at 𝑟𝑟 −

𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗� when vehicles leave the star at 𝑣𝑣𝑗𝑗. There are three different scenarios for 𝑣𝑣𝑖𝑖 ⇝

𝑣𝑣𝑘𝑘:

a) A feasible simple path from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑘𝑘 exists, and 𝑣𝑣𝑘𝑘 has an RP. That is, 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) −

�𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝐽𝐽) + 𝑑𝑑(𝐽𝐽, 𝑣𝑣𝑘𝑘)� ≥ 0 and 𝑟𝑟 − �𝑑𝑑(𝑣𝑣𝑘𝑘 , 𝐽𝐽) + 𝑑𝑑�𝐽𝐽, 𝑣𝑣𝑗𝑗�� ≥ 𝑟𝑟 − 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗�;

b) A feasible simple path from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑘𝑘 exists, but 𝑣𝑣𝑘𝑘 does not have an RP, implying

that after arriving at 𝑣𝑣𝑘𝑘, vehicles can further drive up to 𝑣𝑣𝑘𝑘 ’s nearest RP, get

129

refueled and continue to 𝑣𝑣𝑗𝑗. That is, 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) ≥ 𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝐽𝐽) + 𝑑𝑑(𝐽𝐽, 𝑣𝑣𝑘𝑘) + 𝑑𝑑(𝑣𝑣𝑘𝑘 ,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) and

�𝑟𝑟 − 𝑑𝑑(𝑣𝑣𝑘𝑘 ,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡)� − �𝑑𝑑(𝑣𝑣𝑘𝑘 , 𝐽𝐽) + 𝑑𝑑�𝐽𝐽, 𝑣𝑣𝑗𝑗�� ≥ 𝑟𝑟 − 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗�;

c) No feasible simple path from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑘𝑘 exists, but we have 𝑣𝑣𝑖𝑖 ⇝ 𝑣𝑣𝑙𝑙 ↦ 𝑣𝑣𝑘𝑘 ↦ 𝑣𝑣𝑗𝑗.

 Consider the star network 𝑆𝑆3 in Figure 5.11, where 𝑟𝑟𝑒𝑒(𝐽𝐽7) = 57,

𝑑𝑑(𝐽𝐽7,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 0, 𝑑𝑑(𝐽𝐽7, 𝐽𝐽10) = 52; 𝑟𝑟𝑒𝑒(𝐽𝐽8) = 57, 𝑑𝑑(𝐽𝐽8,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 0, 𝑑𝑑(𝐽𝐽8, 𝐽𝐽10) = 32; and

𝑟𝑟𝑒𝑒(𝐽𝐽9) = 51, 𝑑𝑑(𝐽𝐽9,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡) = 6, 𝑑𝑑(𝐽𝐽9, 𝐽𝐽10) = 2. Let us take 𝑃𝑃(𝐽𝐽7, 𝐽𝐽9) and 𝑃𝑃(𝐽𝐽8, 𝐽𝐽9) for

example.

For 𝑃𝑃(𝐽𝐽7, 𝐽𝐽9): the simple path is infeasible; 𝐽𝐽9 is not a feasible refueling detour routing

point, since 𝑟𝑟𝑒𝑒(𝐽𝐽7) ≤ 𝑑𝑑(𝐽𝐽7, 𝐽𝐽10) + 𝑑𝑑(𝐽𝐽10, 𝐽𝐽9) + 𝑑𝑑(𝐽𝐽9,𝑅𝑅𝑃𝑃𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑡𝑡). Thus, we can conclude

that one more RP is needed.

For 𝑃𝑃(𝐽𝐽8, 𝐽𝐽9): the simple path is feasible.

 If we find that one more RP is needed for the star network, how do we

identify the corresponding localization tree?

 Denote the star network as 𝑆𝑆𝑘𝑘, where 𝑆𝑆𝑘𝑘 is a complete bipartite graph 𝐾𝐾1,𝑘𝑘,

i.e., a tree with one junction vertex and 𝑘𝑘 leaves, however, when 𝑘𝑘 ≤ 1 there is no

junction vertex.

 In order to obtain the localization tree for 𝑆𝑆𝑘𝑘, the first step we need to do is,

for each simple path 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� where 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉(𝑆𝑆𝑘𝑘), to identify the localization segment

that contains all RP locations covering the trip from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗 when detouring option is

not considered. Let 𝐿𝐿𝑆𝑆�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� be the localization segment of 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�. Since vehicles

entering 𝑆𝑆𝑘𝑘 at 𝑣𝑣𝑖𝑖 have a minimum remaining travel distance 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖), points in

𝐿𝐿𝑆𝑆�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� must be within distance 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) from 𝑣𝑣𝑖𝑖. Since vehicles entering 𝑆𝑆𝑘𝑘 at 𝑣𝑣𝑗𝑗

have a minimum remaining travel distance 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗�, which implies that the level of

130

remaining charge at 𝑣𝑣𝑗𝑗 when vehicles leave 𝑆𝑆𝑘𝑘 should be at least 𝑟𝑟 − 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗�. Then

points in 𝐿𝐿𝑆𝑆�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� must be within distance 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗� from 𝑣𝑣𝑗𝑗. That is,

𝐿𝐿𝑆𝑆�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� = �𝑥𝑥 ∈ 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� | 𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝑥𝑥) ≤ 𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖),𝑑𝑑�𝑥𝑥, 𝑣𝑣𝑗𝑗� ≤ 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗��. (5.3)

If 𝐿𝐿𝑆𝑆�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� contains either vertex 𝑣𝑣𝑖𝑖 or 𝑣𝑣𝑗𝑗, we may expand the localization segment

on path 𝑃𝑃�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�.

 Next, we include the detouring option when finding the localization tree for

𝑃𝑃�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�. In this subsection, we use the terms of “Cycle Starting Vertex” and “Cycle

Returning Point” defined in Kweon et. al (2017).

Cycle Starting Vertex

 A vertex is called a cycle starting vertex if a symmetric cycle begins its

deviation from a simple path at this vertex. A cycle starting vertex is the only vertex

in common between the simple path and the symmetric cycle. We denote a cycle

starting vertex as 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉.

 In order to identify a cycle starting vertex of a simple path 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�, we need

to examine the maximum allowable detouring distance of vehicles at a vertex within

𝑃𝑃�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�, as well as its degree. Note that in a star, the junction vertex is the only

vertex that can be a cycle starting vertex.

 Denote the maximum allowable detouring distance of vehicles at a cycle

starting vertex 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 as 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� and we can compute it as follows:

𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� = min�
max �𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) − 𝑑𝑑(𝑣𝑣𝑖𝑖 ,𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉), max

𝑣𝑣𝑘𝑘
�𝑟𝑟𝑒𝑒𝑣𝑣𝑖𝑖⇝𝑣𝑣𝑘𝑘(𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉)�� ,

 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗� − 𝑑𝑑�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 ,𝑣𝑣𝑗𝑗�
�. (5.4)

Intuitively, 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� measures the maximum allowable outbound detouring

distance at 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 that vehicles can drive up when they enter the network at 𝑣𝑣𝑖𝑖 and

131

leave at 𝑣𝑣𝑗𝑗, where the 𝑃𝑃�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� is a portion of some one-way trip in the original tree

network. Any point within a symmetric cycle must be reachable from 𝑣𝑣𝑖𝑖 (with or

without detouring) and be able to reach 𝑣𝑣𝑗𝑗. The value of 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� must be

positive for vehicles to start a symmetric cycle originating at 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉.

 Next, we examine the degree of a cycle starting vertex 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉. Denote the

degree of 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 as 𝑑𝑑𝑒𝑒𝑑𝑑(𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉). For path 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�, 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 can only be a cycle starting

vertex if we have 𝑑𝑑𝑒𝑒𝑑𝑑(𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉) ≥ 3. That is, 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 has at least one more adjacent arc

other than (𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 ,𝑣𝑣𝑖𝑖) and �𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 ,𝑣𝑣𝑗𝑗�, and a portion of this arc or the entire arc can form

a sub-path for a symmetric cycle originating at 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉.

Cycle Returning Point

 For each symmetric cycle originating at 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉, we need to identify the farthest

point that vehicles can reach before returning to 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉, which is not necessarily a

network vertex. We call this point a cycle returning point and denote it as 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶.

Given that the purpose of starting a symmetric cycle is to refuel vehicles, then the

cycle returning point can be regarded as the farthest feasible candidate site for the

RP.

 Compared to the cycle starting vertex, the cycle returning point belongs to

the symmetric cycle only but does not belong to the simple path. The cycle starting

vertex is always a vertex on the original tree network, while the cycle returning

point can be an interior point on an arc or can be a vertex on the original network.

 According to the topology of the tree network, several cycle returning points

may arise from one cycle starting vertex, implying that multiple symmetric cycles

can start at the same cycle starting vertex. Given a cycle starting vertex 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 of

132

𝑃𝑃�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�, denote 𝐶𝐶𝑅𝑅𝑃𝑃�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� as the set of cycle returning points arising from 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉.

The location of a cycle returning point, 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 ∈ 𝐶𝐶𝑅𝑅𝑃𝑃�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�, is determined by

comparing the value of 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� to the length of the arc originating at 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉:

a) If the value of 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is less than the length of the arc, then the cycle

returning point is located at a distance 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� from 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉, since vehicles at 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉

can only drive up to this distance before getting recharged.

b) If the value of 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is greater than or equal to the length of the arc, we

further consider the following three cases:

b1) If the end vertex of this arc is a leaf vertex in the original tree network, then

the cycle returning point is located at that end vertex;

b2) If the end vertex of this arc is literally a vertex of degree greater than one in

the original tree network, then the cycle returning point can be located on the

arcs adjacent to that end vertex;

b3) If the end vertex of this arc is an interior point in the original tree network,

then the cycle returning point can be located on the arc which contains this sub-

arc in the original tree network, or it can be located on the arcs incident to the arc

which contains this sub-arc in the original tree network.

In either case b2) or b3), we shall expand the current star network by adding these

reachable arcs back into the star and determine the cycle returning points.

 Next, we describe an algorithm to identify the locations of all cycle returning

points in 𝐶𝐶𝑅𝑅𝑃𝑃�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� for a given cycle starting vertex 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 of path 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�. The

algorithm explores the arcs along separate sub-paths starting at 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉, compute the

133

minimum remaining travel distance at each reachable vertex, expand the star

network if necessary, until all cycle returning points are identified.

Algorithm (Cycle Returning Point Detection Algorithm)

Given 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� and the cycle starting vertex 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 on it:

Step 1. Compute 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�.

Step 2. Initialize an empty first-in first-out queue 𝑄𝑄. Place 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 at the tail of queue

𝑄𝑄.

Step 3. Repeat the following sub-steps until there is no remaining vertex in 𝑄𝑄:

Step 3.1. Select vertex 𝑣𝑣 at the head of 𝑄𝑄, pop it up from 𝑄𝑄.

Step 3.2. Determine the set of child vertices of 𝑣𝑣 in the original tree network.

Step 3.3. For each 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣), perform the following steps:

Step 3.3.1. Compute 𝛿𝛿�𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� = 𝛿𝛿�𝑣𝑣|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� − 𝑑𝑑�𝑣𝑣, 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)�;

Step 3.3.2. Perform one of the following three procedures:

a) If 𝛿𝛿�𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� < 0: 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 is located on the arc �𝑣𝑣, 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)� at a

distance 𝛿𝛿�𝑣𝑣|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� from 𝑣𝑣. Add 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 into set 𝐶𝐶𝑅𝑅𝑃𝑃�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�.

b) If 𝛿𝛿�𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� = 0 or if 𝛿𝛿�𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� > 0 and 𝑑𝑑𝑒𝑒𝑑𝑑�𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)� = 1 in

the original tree network: 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 is located exactly at 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣). Add 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 into

set 𝐶𝐶𝑅𝑅𝑃𝑃�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�.

c) If 𝛿𝛿�𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� > 0 and 𝑑𝑑𝑒𝑒𝑑𝑑�𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣)� ≥ 2 in the original tree network:

place 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣) at the head of 𝑄𝑄 and set the parent vertex of 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝑣𝑣) as 𝑣𝑣.

Illustration

134

Again, let us take 𝑃𝑃(𝐽𝐽7, 𝐽𝐽9), 𝑃𝑃(𝐽𝐽7, 𝐽𝐽8) and 𝑃𝑃(𝐽𝐽8, 𝐽𝐽9) for the star network in Figure

5.11 for example. Recall that 𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� is computed as

𝛿𝛿�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� = min�
max �𝑟𝑟𝑒𝑒(𝑣𝑣𝑖𝑖) − 𝑑𝑑(𝑣𝑣𝑖𝑖 ,𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉), max

𝑣𝑣𝑘𝑘
�𝑟𝑟𝑒𝑒𝑣𝑣𝑖𝑖⇝𝑣𝑣𝑘𝑘(𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉)�� ,

 𝑟𝑟𝑒𝑒�𝑣𝑣𝑗𝑗� − 𝑑𝑑�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 ,𝑣𝑣𝑗𝑗�
�.

Example 1 - Identify 𝐶𝐶𝑅𝑅𝑃𝑃(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽9):

Step 1. 𝛿𝛿(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽9) = min{𝑟𝑟𝑒𝑒(𝐽𝐽7) − 𝑑𝑑(𝐽𝐽7, 𝐽𝐽10), 𝑟𝑟𝑒𝑒(𝐽𝐽9) − 𝑑𝑑(𝐽𝐽10, 𝐽𝐽9)} = min{5, 49} = 5

Step 2. Initialize an empty first-in first-out queue 𝑄𝑄. Enqueue 𝐽𝐽10.

Step 3.

Step 3.1. Dequeue 𝐽𝐽10.

Step 3.2. 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝐽𝐽10) = 𝐽𝐽8.

Step 3.3. For 𝐽𝐽8, perform the following steps:

Step 3.3.1. Compute 𝛿𝛿(𝐽𝐽8|𝐽𝐽7, 𝐽𝐽9) = 𝛿𝛿(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽9) − 𝑑𝑑(𝐽𝐽10, 𝐽𝐽8) = −27;

Step 3.3.2. Perform procedure a) since 𝛿𝛿(𝐽𝐽8|𝐽𝐽7, 𝐽𝐽9) < 0:

a) 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 is located on the arc (𝐽𝐽10, 𝐽𝐽8) at a distance 5 from 𝐽𝐽10. Add 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 into set

𝐶𝐶𝑅𝑅𝑃𝑃(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽9).

Terminate.

Example 2 – Identify 𝐶𝐶𝑅𝑅𝑃𝑃(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽8):

Step 1. 𝛿𝛿(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽8) = min{𝑟𝑟𝑒𝑒(𝐽𝐽7) − 𝑑𝑑(𝐽𝐽7, 𝐽𝐽10), 𝑟𝑟𝑒𝑒(𝐽𝐽8) − 𝑑𝑑(𝐽𝐽10, 𝐽𝐽8)} = min{5, 25} = 5

Step 2. Initialize an empty first-in first-out queue 𝑄𝑄. Enqueue 𝐽𝐽10.

Step 3.

Step 3.1. Dequeue 𝐽𝐽10.

Step 3.2. 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝐽𝐽10) = 𝐽𝐽9.

Step 3.3. For 𝐽𝐽9, perform the following steps:

Step 3.3.1. Compute 𝛿𝛿(𝐽𝐽9|𝐽𝐽7, 𝐽𝐽8) = 𝛿𝛿(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽8) − 𝑑𝑑(𝐽𝐽10, 𝐽𝐽9) = 3;

135

Step 3.3.2. Perform procedure c) since 𝛿𝛿(𝐽𝐽9|𝐽𝐽7, 𝐽𝐽8) > 0 and 𝑑𝑑𝑒𝑒𝑑𝑑(𝐽𝐽9) ≥ 2 in the

original tree network:

c) Enqueue 𝐽𝐽9, set the 𝑝𝑝𝑎𝑎𝑟𝑟𝑒𝑒𝑛𝑛𝑜𝑜(𝐽𝐽9) as 𝐽𝐽10.

Another iteration of Step 3.

Step 3.1. Dequeue 𝐽𝐽9.

Step 3.2. 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝐽𝐽9) = {𝐽𝐽5, 𝐽𝐽6}.

Step 3.3. For 𝐽𝐽9, perform the following steps:

For 𝐽𝐽5:

Step 3.3.1. Compute 𝛿𝛿(𝐽𝐽5|𝐽𝐽7, 𝐽𝐽8) = 𝛿𝛿(𝐽𝐽9|𝐽𝐽7, 𝐽𝐽8) − 𝑑𝑑(𝐽𝐽9, 𝐽𝐽5) = −81;

Step 3.3.2. Perform procedure a) since 𝛿𝛿(𝐽𝐽5|𝐽𝐽7, 𝐽𝐽8) < 0:

a) 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 is located on the arc (𝐽𝐽9, 𝐽𝐽5) at a distance 3 from 𝐽𝐽9. Add 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 into set

𝐶𝐶𝑅𝑅𝑃𝑃(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽8).

For 𝐽𝐽6:

Step 3.3.1. Compute 𝛿𝛿(𝐽𝐽6|𝐽𝐽7, 𝐽𝐽8) = 𝛿𝛿(𝐽𝐽9|𝐽𝐽7, 𝐽𝐽8) − 𝑑𝑑(𝐽𝐽9, 𝐽𝐽6) = −1;

Step 3.3.2. Perform procedure a) since 𝛿𝛿(𝐽𝐽6|𝐽𝐽7, 𝐽𝐽8) < 0:

a) 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 is located on the arc (𝐽𝐽9, 𝐽𝐽6) at a distance 1 from 𝐽𝐽9. Add 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 into set

𝐶𝐶𝑅𝑅𝑃𝑃(𝐽𝐽10|𝐽𝐽7, 𝐽𝐽8).

Terminate.

Example 3 - Identify 𝐶𝐶𝑅𝑅𝑃𝑃(𝐽𝐽10|𝐽𝐽8, 𝐽𝐽9):

Step 1. 𝛿𝛿(𝐽𝐽10|𝐽𝐽8, 𝐽𝐽9) = min�max�𝑟𝑟𝑒𝑒(𝐽𝐽8) − 𝑑𝑑(𝐽𝐽8, 𝐽𝐽10), 𝑟𝑟𝑒𝑒𝐽𝐽8⇝𝐽𝐽9(𝐽𝐽10)� , 𝑟𝑟𝑒𝑒(𝐽𝐽9) − 𝑑𝑑(𝐽𝐽10, 𝐽𝐽9)� =

min{max{25, 49} , 49} = 49

Step 2. Initialize an empty first-in first-out queue 𝑄𝑄. Enqueue 𝐽𝐽10.

Step 3.

Step 3.1. Dequeue 𝐽𝐽10.

136

Step 3.2. 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑(𝐽𝐽10) = 𝐽𝐽7.

Step 3.3. For 𝐽𝐽7, perform the following steps:

Step 3.3.1. Compute 𝛿𝛿(𝐽𝐽7|𝐽𝐽8, 𝐽𝐽9) = 𝛿𝛿(𝐽𝐽10|𝐽𝐽8, 𝐽𝐽9) − 𝑑𝑑(𝐽𝐽10, 𝐽𝐽7) = −3;

Step 3.3.2. Perform procedure a) since 𝛿𝛿(𝐽𝐽8|𝐽𝐽7, 𝐽𝐽9) < 0:

a) 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 is located on the arc (𝐽𝐽10, 𝐽𝐽7) at a distance 49 from 𝐽𝐽10. Add 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 into

set 𝐶𝐶𝑅𝑅𝑃𝑃(𝐽𝐽10|𝐽𝐽8, 𝐽𝐽9).

 Let us define the symmetric cycle 𝑆𝑆𝐶𝐶�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 , 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� as the segment that

contains all RP locations that cover the detouring sub-path of 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� originating at

cycle starting vertex 𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉 and ending at cycle returning point 𝑟𝑟𝐶𝐶𝑅𝑅𝐶𝐶 in 𝐶𝐶𝑅𝑅𝑃𝑃�𝑣𝑣𝐶𝐶𝐶𝐶𝑉𝑉|𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�.

 Now, we have found the localization tree for covering the traffic flow from 𝑣𝑣𝑖𝑖

to 𝑣𝑣𝑗𝑗. To determine the localization tree for covering the traffic flow that enters the

star at any vertex 𝑣𝑣 and exits the star at any other vertex 𝑢𝑢 ≠ 𝑣𝑣, we need to found

the corresponding localization subtree for each 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� and take the intersection of

all of these subtrees.

Algorithm (Localization Tree Detection Algorithm)

Step 1. For each 𝑃𝑃�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�, determine its localization tree.

Step 2. Take the intersection of all the trees found in Step 1.

Figure 5.12 Localization tree for the star network in Figure 5.11

137

 Next, let us describe the outward searching procedure in order to determine

all localization trees for the original tree network.

Step Two --- Outward Searching Procedure

 In the last step of the inward searching procedure, we have found the

localization tree for the star network. The endpoints of that localization tree indicate

the boundary points defining the segments containing all RP locations. These

boundary points are then used to initiate the outward searching procedure.

 Recall the Breadth First Search (BFS) traversing approach used to traverse

graphs. BFS is an algorithm where you should start traversing from a selected

vertex (source) and traverse the graph layer wise thus exploring the neighbor

vertices (i.e., vertices which are directly connected to the source). Then you must

move towards the next-level neighbor vertices. As the name BFS suggests, we are

required to traverse the graph breadthwise as follows: First move horizontally and

visit all the vertices of the current layer; then move to the next layer.

 In this subsection, we use the idea from BFS to identify the set of boundary

points of all localization trees for the original tree network.

Step 1. Let 𝒮𝒮 be an empty set.

Step 2. Decompose the original tree network using the endpoints of the expanded

localization tree that we have found for the star in the inward searching procedure.

Step 3. For each endpoint 𝑒𝑒 in Step 2, perform the following steps:

Step 3.1. Let 𝑄𝑄 be a first-in first-out queue.

Step 3.2. Insert 𝑒𝑒 in 𝑄𝑄 (enqueue 𝑒𝑒).

Step 3.3. Mark 𝑒𝑒 as visited.

138

Step 3.4. While 𝑄𝑄 is not empty, perform the following procedures:

Step 3.4.1. Remove vertex 𝑣𝑣 from 𝑄𝑄, whose neighbor will be visited now.

Step 3.4.2. Update the remaining travel distance at 𝑣𝑣, if 𝑣𝑣 has a child vertex 𝑤𝑤

such that 𝑑𝑑𝑒𝑒𝑑𝑑(𝑤𝑤) = 1 and 𝑤𝑤 has an RP. To update: 𝑟𝑟𝑒𝑒(𝑣𝑣) =

max{𝑟𝑟𝑒𝑒(𝑣𝑣), max{𝑟𝑟 − 𝑑𝑑(𝑣𝑣,𝑤𝑤)|𝑑𝑑𝑒𝑒𝑑𝑑(𝑤𝑤) = 1,𝑎𝑎𝑛𝑛𝑑𝑑 𝑤𝑤 ℎ𝑎𝑎𝑒𝑒 𝑎𝑎𝑛𝑛 𝑅𝑅𝑃𝑃}}.

Step 3.4.3. For all neighbors 𝑤𝑤 of 𝑣𝑣 in subtree 𝑇𝑇:

Step 3.4.3.1. If 𝑤𝑤 has not been visited:

If 𝑑𝑑(𝑣𝑣,𝑤𝑤) ≥ 𝑟𝑟𝑒𝑒(𝑤𝑤): systematically locate RPs at distances 𝑟𝑟𝑒𝑒(𝑤𝑤),

𝑟𝑟𝑒𝑒(𝑤𝑤) + 𝑟𝑟, 𝑟𝑟𝑒𝑒(𝑤𝑤) + 2𝑟𝑟, …, from vertex 𝑣𝑣; add these RP locations into

set 𝒮𝒮; compute the remaining travel distance at 𝑤𝑤.

Else: compute the remaining travel distance at 𝑤𝑤.

Step 3.4.3.2. Store 𝑤𝑤 in 𝑄𝑄 to further visit its neighbor vertices.

Step 3.4.3.3. Mark 𝑤𝑤 as visited.

 After the Inward Searching procedure and the Outward Searching procedure,

we have identified the minimum number of RPs that are needed to be located on the

tree network in order to serve all one-way transportation needs, and we have also

identified the localization tree for each RP.

 For the tree network in Figure 5.5, we found 8 location trees by applying the

inward searching and outward searching procedure.

139

Figure 5.13 Localization trees for the tree network in Figure 5.5

5.3.2. Set of breakpoints

 Again, we denote 𝓑𝓑 as the set of breakpoints, and 𝓑𝓑 is consisting the

following four parts:

 The set of endpoints of each localization tree;

 The set of internal junction vertices. A junction vertex is called an internal

junction if it is within a localization tree.

 The set of XNRD sites for the points that are either internal junction vertices or

boundary points of some localization trees.

 The set of RP locations such that for any two RPs in the above three subsets,

with this fourth subset of RP locations we are able to guarantee that there exists

a feasible refueling walk between these two RPs.

140

By identifying the set of breakpoints 𝓑𝓑, each localization segment can be further

divided into several indivisible line segments, where a segment is called to be

indivisible if it does not contain any breakpoint as its interior point.

 Next, let us discuss some major differences between the localization segments

of a comb network and the localization subtrees of a general tree network, which will

lead to a difference as we identify the breakpoints.

 Consider a comb network of which at least three RPs should be located on the

comb span. Let 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖, 𝑆𝑆𝑖𝑖+1 be three consecutive localization segments, and let 𝛼𝛼 ∈

𝑆𝑆𝑖𝑖−1, 𝛽𝛽 ∈ 𝑆𝑆𝑖𝑖+1 be two points that we take from the segments 𝑆𝑆𝑖𝑖−1 and 𝑆𝑆𝑖𝑖+1. If there

exists a feasible refueling walk from 𝛼𝛼 to 𝛽𝛽, it is trivial for us to note that a portion

of segment 𝑆𝑆𝑖𝑖 or the whole segment 𝑆𝑆𝑖𝑖 must belong to that refueling walk from 𝛼𝛼 to

𝛽𝛽. Therefore, when we try to identify the set of breakpoints for the comb network, we

can do it in a linear wise manner as follows: first we perform a rightward screening

process, then we perform a leftward screening process. Whereas for a tree network,

this may not be the case.

 Therefore, when we determine the breakpoints for a tree network, we may

perform several iterations before identifying all the breakpoints for some adjacent

localization subtrees.

5.4. Solution method

 For the line network problem as well as the comb tree network problem, we

formulate the original problem as a shortest path problem on an acyclic network

constructed on the layers of breakpoints. More specifically, this acyclic network is a

multistage graph, in which the vertices can be divided into a set of stages such that

141

all edges from a stage to next stage only, in other words, there is no edge between

vertices of the same stage and from a vertex of current stage to previous stage. Each

path from source node to sink node corresponds to a feasible combination of RPs for

serving all O-D pairs, and the cost of the path is equal to the total refueling detour

distances with all RPs in the combination are open. By finding the shortest path in

this constructed network, we also able to find the optimal solution to our original

problem.

 While for the general tree network problem, we are not able to construct such

a multistage graph.

 We then present a mixed-integer linear programming formulation.

Formulation of the problem

Minimize ∑ 𝑓𝑓𝑞𝑞 ∑ 𝛿𝛿𝑞𝑞ℎ𝑣𝑣ℎ𝐻𝐻𝑞𝑞∈𝑄𝑄 (5.5)

Subject to ∑ 𝑣𝑣ℎℎ∈𝐻𝐻 = 1 (5.6)

𝑥𝑥𝑘𝑘 ≥ 𝑣𝑣ℎ , ∀ℎ ∈ 𝐻𝐻, 𝑘𝑘 ∈ 𝐾𝐾ℎ (5.7)

 ∑ 𝑥𝑥𝑘𝑘𝑘𝑘∈𝐾𝐾 = 𝑚𝑚 (5.8)

 𝑥𝑥𝑘𝑘 ∈ {0, 1}, , ∀𝑘𝑘 ∈ 𝐾𝐾 (5.9)

𝑣𝑣ℎ ∈ {0, 1}, , ∀ℎ ∈ 𝐻𝐻 (5.10)

where:

𝑞𝑞: a particular O-D pair

𝑄𝑄: set of all O-D pairs

ℎ: a particular combination of RPs

𝐻𝐻: set of all potential RP combinations

142

𝑘𝑘: a potential RP location

𝐾𝐾: set of all potential RP locations

𝐾𝐾ℎ: set of RPs that are in combination ℎ

Parameters

𝑓𝑓𝑞𝑞: flow between O-D pair 𝑞𝑞

𝛿𝛿𝑞𝑞ℎ: minimum refueling detour distance for O-D pair 𝑞𝑞, if all RPs in combination ℎ

are open and at least one refueling walk for the O-D pair 𝑞𝑞 exists

𝑚𝑚: the number of RPs to be located

Decision variables

𝑥𝑥𝑘𝑘 = 1 if there is an RP at location 𝑘𝑘, 𝑥𝑥𝑘𝑘 = 0 otherwise

𝑣𝑣ℎ = 1 if all RPs in combination ℎ are open, 𝑣𝑣ℎ = 0 otherwise

 The objective function (5.5) minimizes the total weighted refueling detour

distances. Constraint (5.6) ensures exactly one combination of RPs is open.

Constraint (5.7) ensures all RPs in combination ℎ are open before 𝑣𝑣ℎ becomes one.

Constraint (5.8) specify the number of RPs to be located. Constraints (5.9) and (5.10)

are the integrality constraints for the binary decision variables.

Preprocessing

 In this subsection, we present a preprocessing procedure that reduces the

number of combinations of RPs, while preserving the optimal solution. We are

hoping that this preprocessing procedure will reduce the problem size and decrease

the solution time in practice.

 As we have mentioned before, we probably are not able to construct a

multistage graph (where stages element should be connected consecutively) on the

143

breakpoints in a general tree network problem. But, for the set of breakpoints of

some RPs, we may construct a multistage graph.

 Let 𝑇𝑇𝑖𝑖−1, 𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑖𝑖+1 be such three set of breakpoints and let 𝑇𝑇𝑖𝑖+1 be the

cluster which is much closer to the central vertex of the original tree network. Then,

for each breakpoint in 𝑇𝑇𝑖𝑖+1, we can use dynamic programming to find the shortest

path from 𝑇𝑇𝑖𝑖−1 to 𝑇𝑇𝑖𝑖+1. We can also compute the refueling detour distance as we fix

RPs locations. Then, we can reduce the total number of combinations.

Figure 5.14 A contraction preprocessing idea

5.5. Conclusion

 In this chapter, we studied the continuous location problem related to

locating RPs on general tree networks. To find the fewest number of RPs needed to

serve all one-way O-D pairs, we proposed a 2-step greedy method --- an inward

searching and an outward searching. Then, we identified the set of breakpoints for

the tree network. In order for find the optimal RP locations, we formulated the

144

problem as a mixed integer linear programming and proposed some preprocessing

steps to reduce the problem size.

 Beyond the scope of current study, there are several issues worth of a further

investigation. For instance, it is our interest to see if there is a way to construct a

multi-stage network on the breakpoints and solve the original problem as a shortest

path problem, like what we did for both line network problems and comb tree

network problems. It is also worth to develop a heuristic to solve the problem, for

instance, decompose the tree network into a set of comb trees and utilize the

algorithm designed for the comb tree case to solve the problem.

145

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

 In this dissertation several decision problems relating to infrastructure

design , which arise when switching from gasoline vehicles to ones using alternative

clean fuels or electricity, were formulated, solved and analyzed.

 In Chapter 2, we studied the continuous location problem related to locating

RPs on line networks, where finding the minimum number of RPs needed to refuel

all O-D flows is considered as the first objective. Given this minimum number, our

goal is to locate this number of RPs to minimize weighted sum of the travelling

distance for all O-D flows. The one-way scenario is rather simple. For the round-trip

scenario, an integer program with linear constraints and quartic objective function

is formulated, and the problem can be solved using OPTI toolbox in Matlab. We have

also identified a finite dominating set to the problem, and based on the existence of

finite dominating set, the problem is formulated as a shortest path problem.

 In Chapter 3, we studied the continuous location problem related to locating

RPs on comb tree networks. To find the fewest number of RPs needed to serve all

one-way O-D pairs, we proposed a 2-step greedy method. Then, we proposed a math

programming formulation, based on which we proved the existence of a finite

dominating set to the comb tree problem. Then we formulated the problem as a

shortest path problem whereby the shortest path of the constructed network gives us

an optimal set of RP locations.

 In Chapter 4, we extended the models under the probabilistic scenario.

146

 In Chapter 5, we studied the continuous location problem related to locating

RPs on general tree networks. To find the fewest number of RPs needed to serve all

one-way O-D pairs, we proposed a 2-step greedy method, called an inward search

and outward search algorithm. Then, we proposed a math programming

formulation, based on which we proved the existence of a finite dominating set to the

tree problem. Then we formulated the problem as a mixed integer linear program for

finding the optimal set of RP locations.

 There are various possible areas for future work on this topic. In this

dissertation, we gave an exact solution for the location problem with each

underlying transportation network topology (line, comb tree and general TREE

networks), however, we proposed no heuristic. Future work could consider

developing a heuristic for the problem which effectively select the locations of the

RPs, especially for the location problem on a general network.

 We assumed that each RP can serve an infinite number of EVs (i.e.,

incapacitated RPs), however, this is unlikely to be the case in the real world. It will

be worth initiating the study of the capacity constrained location problem for this

continuous location problem.

 We also assumed that the underlying network topology is deterministic,

while since almost all real-world networks evolve over time, either by adding or

removing nodes or links over time, an interesting and challenging research problem

could be studying this continuous location problem where the population is moving

in network space over time, or where the transportation network is evolving over

time.

147

REFERENCES

Adler, J. D., & Mirchandani, P. B. (2014). Online routing and battery reservations for
electric vehicles with swappable batteries. Transportation Research Part B:
Methodological, 70, 285-302.

Berman, O., Larson, R. C., & Fouska, N. (1992). Optimal location of discretionary

service facilities. Transportation Science, 26(3), 201-211.

Cabral, E. A., Erkut, E., Laporte, G., & Patterson, R. A. (2007). The network design

problem with relays. European Journal of Operational Research,180(2), 834-844.

Capar, I., & Kuby, M. (2012). An efficient formulation of the flow refueling location

model for alternative-fuel stations. IIE Transactions, 44(8), 622-636.

Capar, I., Kuby, M., Leon, V. J., & Tsai, Y. J. (2013). An arc cover–path-cover

formulation and strategic analysis of alternative-fuel station locations. European
Journal of Operational Research, 227(1), 142-151.

Handler, G. Y., & Mirchandani, P. B. (1979). Location on networks: theory and

algorithms (Vol. 979). Cambridge, MA: MIT press.

Hodgson, M. J. (1990). A Flow‐Capturing Location‐Allocation Model. Geographical

Analysis, 22(3), 270-279.

Kim, J. G., & Kuby, M. (2012). The deviation-flow refueling location model for

optimizing a network of refueling stations. international journal of hydrogen
energy, 37(6), 5406-5420.

Konak, A. (2012). Network design problem with relays: A genetic algorithm with a

path-based crossover and a set covering formulation. European Journal of
Operational Research, 218(3), 829-837.

Kuby, M., & Lim, S. (2005). The flow-refueling location problem for alternative-fuel

vehicles. Socio-Economic Planning Sciences, 39(2), 125-145.

Kuby, M., & Lim, S. (2007). Location of alternative-fuel stations using the flow-

refueling location model and dispersion of candidate sites on arcs. Networks and
Spatial Economics, 7(2), 129-152.

Lim, S., & Kuby, M. (2010). Heuristic algorithms for siting alternative-fuel stations

using the flow-refueling location model. European Journal of Operational
Research, 204(1), 51-61.

148

Mirchandani, P. B., Rebello, R., & Agnetis, A. (1995). The Inspection Station Location
Problem in Hazardous Material Transportation - Some Heuristics and
Bounds. Infor, 33(2), 100-113.

Upchurch, C., Kuby, M., & Lim, S. (2009). A Model for Location of Capacitated

Alternative‐Fuel Stations. Geographical Analysis, 41(1), 85-106.

Kweon, S. J., Hwang, S.W., & Ventura, J.A. (2017). A Continuous Deviation-Flow

Location Problem for an Alternative-Fuel Refueling Station on a Tree-Like
Transportation Network. Journal of Advanced Transportation. 2017. 1-20.

	TABLE OF CONTENTS
	CHAPTER 1
	INTRODUCTION
	1.1. Overview
	1.2. Literature review

	CHAPTER 2
	THE LINE PROBLEM
	2.1. Problem with only one-way trips
	2.1.1. Set of candidate sites
	2.1.2. Minimum number of RPs needed
	2.2. Round trip problem
	2.2.1. Minimum number of RPs needed
	2.2.2. Math programming formulation
	2.2.3. Existence of finite dominating set
	2.2.3.1. Set of breakpoints
	2.2.3.2. Another perspective on calculating refueling detouring distance
	2.2.3.3. Restricted problem
	2.2.4. Solution Method
	2.2.4.1. Network construction
	2.2.4.2. Correctness
	2.3. Conclusion

	CHAPTER 3
	THE COMB TREE PROBLEM
	3.1. Overview
	3.2. Minimum number of RPs needed
	3.2.1. Step One --- Comb tree trimming
	3.2.2. Step Two --- A rightward pass and a leftward pass
	3.2.2.1. Rightward pass
	3.2.2.2. Leftward pass
	3.2.3. Analyzing the algorithm

	3.3. Math Programming Formulation
	3.3.1. Properties of shortest refueling walk
	3.3.2. A proposed math program

	3.4. Existence of finite dominating set
	3.4.1. Set of breakpoints
	3.4.2. Restricted problem

	3.5. Solution method
	3.5.1. Network construction
	3.5.2. Correctness

	3.6. Conclusion

	CHAPTER 4
	PROBABILISTIC LINE AND COMB PROBLEM
	4.1. Overview
	4.2. Minimum number of RPs needed
	4.3. Find optimal RPs’ locations
	4.4. Conclusion

	CHAPTER 5
	THE GENERAL TREE PROBLEM
	5.1. Overview
	5.2. Problem on caterpillars and stars
	5.3. Problem on general trees
	Step One --- Inward Searching Procedure

	5.4. Solution method
	Formulation of the problem
	5.5. Conclusion

	CHAPTER 6
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

