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ABSTRACT

This work is concerned with the study and numerical solution of large reaction diffu-

sion systems with applications to the simulation of degradation effects in solar cells. A

discussion of the basics of solar cells including the function of solar cells, the degrada-

tion of energy efficiency that happens over time, defects that affect solar cell efficiency

and specific defects that can be modeled with a reaction diffusion system are included.

Also included is a simple model equation of a solar cell. The basics of stoichiometry

theory, how it applies to kinetic reaction systems, and some conservation properties

are introduced. A model that considers the migration of defects in addition to the

reaction processes is considered. A discussion of asymptotics and how it relates to

the numerical simulation of the lifetime of solar cells is included. A reduced solution

is considered and a presentation of a numerical comparison of the reduced solution

with the full solution on a simple test problem is included. Operator splitting tech-

niques are introduced and discussed. Asymptotically preserving schemes combine

asymptotics and operator splitting to use reasonable time steps. A presentation of a

realistic example of this study applied to solar cells follows.
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Chapter 1

INTRODUCTION

This work is concerned with the study and numerical solution of large reaction

diffusion systems with applications to the simulation of degradation effects in solar

cells. Chapter 2 discusses the basics of solar cells. It covers the function of solar

cells, the degradation of energy efficiency that happens over time, defects that affect

solar cell efficiency and highlights specific defects that can be modeled with a reaction

diffusion system. Also included is a simple model equation of a solar cell. Chapter

3 discusses the basics of stoichiometry theory and how it applies to kinetic reaction

systems. Chapter 4 introduces a model that considers the migration of defects in

addition to the reaction processes. Chapter 5 introduces asymptotics. Asymptotics

allows us to compute a reduced solution. We will show a comparison of the reduced

solution with the full solution on a simple toy problem in Chapter 6. Chapter 7 covers

operator splitting techniques. Operator splitting allows us to compute the transport

and reaction parts separately at each time step. Chapter 8 addresses asymptotically

preserving methods. Asymptotically preserving schemes allow us to combine asymp-

totics and operator splitting and take reasonable time steps. Chapter 9 presents a

realistic example of this study applied to solar cells.
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Chapter 2

SOLAR CELLS

A solar cell is a device that turns light into electricity (Macaulay (1988)). Solar

cells are created using semiconductor material. Each solar cell is made up of two

different types of semiconductor materal brought together to form what is called a

p-n junction. A p-n junction is formed when a p-type semiconductor is brought into

contact with an n-type semiconductor (Neamen (2012)). The letters p and n stand

for positively charged holes and negatively charged electrons respectively. Semicon-

ductor junctions are used in many electronic applications. In the case of a solar cell,

the p-n junction is specially engineered to convert photon (light) power into electrical

power which is then delivered to a load (e.g. calculator, light, home, power grid, etc.).

Consumer solar cell technology is currently limited to approximately 30 percent

quantum efficiency which is defined as the ratio of the number of carriers collected

by the solar cell to the number of photons of a given energy incident on the solar cell

(Honsberg and Bowden (2019)). Several factors are used to calculate this efficiency.

These factors include the cost of creating the solar cells, the lifetime of the solar cells,

and the replacement cost. Research is required in the area of solar cell technology

in order to find material that is cost effective, efficient, and long lasting. While with

many technologies, computer modeling and calculations can be used to determine the

efficacy of the design, currently the only experimental way to determine the longevity

of solar cell material is via testing. Solar cells must be produced and put into ser-

vice. Then we have to measure the electric energy output compared to the photon

energy input. These measurements need to be recorded for over 20 years in order to
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determine if the solar cells have a sufficient lifetime (see Section 2.3). It is here that

computer modeling plays an essential role in the design of solar cells.

In Section 2.1 we look at a simple p-n junction solar cell. First we review how the

energy of a photon interacts with semiconductor material.

Quantum mechanically, the energy E of a photon is given by the equation E = hv

(Neamen (2012)). Here h is Plank’s constant and v is the frequency of the photon

(light wave). If we define the wavelength of the photon as λ, then we can use the

relationship between wavelength and frequency where c is the speed of light in a

vacuum

λ =
c

v
.

We combine these two equations to get a relationship between wavelength and energy

λ =
c

v
=
hc

hv
=
hc

E
. (2.1)

Putting in values of h = 4.135× 10−15 eV-s, and c = 2.998× 1010 cm/s, we get

λ =
hc

E
=

(4.135× 10−15)(2.998× 1010)

E
=

1.24

E
µm.

When a photon comes into contact with a semiconductor, there are many possible

interactions. If the photon has enough energy it can elevate an electron from the va-

lence band to the conduction band of the semiconductor and produce an electron-hole

pair and thus power or electrical energy. If the photon doesn’t have enough energy

it can pass through the semiconductor material making the material seem transpar-

ent. The photon can also interact with the semiconductor lattice and produce heat.

Solar cell technology focuses on the first possibility, the production of electrical energy.

3



2.1 Function

Figure 2.1: Solar Spectral Irradiance (Pierret (1996))

When light hits semiconductor material the photons may be absorbed or propa-

gate through the material. This is determined by the relationship between the energy

of the photon and the band-gap energy of the semiconductor material. If the energy

of the photon is equal to the band-gap energy of the semiconductor material, then

the photon may elevate an electron from the valence band to the conduction band

and thus produce an electron-hole pair in the semiconductor material.

Figure 2.1 shows the spectral distribution of the sun’s energy that reaches the

surface of the earth. The air mass zero (AM0) curve is the measured radiant en-

ergy outside of the earth’s atmosphere. The AM1.5 curve has been normalized to
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give a total spectral power density of 100 mW/cm2. It represents the average ter-

restrial condition in the United States. A small box near the bottom of the graph

shows where the visible spectrum of light falls (between 0.4 and 0.7 µm). Also shown

are the band-gap energy levels of three semiconductor materials, cadmium telluride

(CdTe), galium arsenide (GaAs) and silicon (Si) denoted as λG. Those energy levels

illustrate the relationship between energy and wavelength, specifically, the greater the

wavelength, the lower the energy. Note that λG-Si is at a greater wavelength than

λG-GaAs and λG-CdTe. This reflects the fact that the band-gap energy of Si is lower

than the bandgap energies of GaAs and CdTe. Therefore more of the sun’s light may

be converted to power by Si than by GaAs or CdTe (Pierret (1996)).

Figure 2.2: A p-n Junction Solar Cell with Resistive Load (Neamen (2012))

Now we look at a simple p-n junction (shown in Figure 2.2). Note that this p-n

junction has a resistive load (R) and the bias applied to the juction is zero. Even

without an applied bias, there is an electric field (E-field) in the space charge region.

Light or photon radiation (shown as hv) may create electron-hole pairs in the space

5



charge region that will be swept out. These electron-hole pairs will produce a current

(IL) in the reverse-biased direction called a photocurrent. The photocurrent creates

a voltage drop that puts the p-n junction into foward bias which creates a forward

bias current. This is shown in Figure 2.2 as IF (vertical arrow on the left). The net

current in the p-n junction is given as I = IL− IF . Now we introduce the ideal-diode

equation (Neamen (2012)) to find an expression for the forward-biase current

IF = IS

[
exp

(
eVa
kT

)
− 1

]
where IS is the reverse saturation current, e is the electronic charge (magnitude),

Va is the applied voltage, k is Boltzmann’s constant, and T is the temperature in

degrees Kelvin. We make a substitution to get

I = IL − IF = IL − IS
[
exp

(
eVa
kT

)
− 1

]
. (2.2)

As the diode (p-n junction) becomes forward biased, the electric field in the space

charge region, E-field, is decreased. But E-field doesn’t go to zero. The photocurrent,

IL, and the net current, I, both stay in the reverse-biased direction. We consider

two limiting cases, where the resistance goes to zero and where the resistance goes to

infinity. The case where the resistance is equal to zero is known as the short-circuit

current (Isc) and we have that I = Isc = IL. The case where the resistance goes to

infinity is where the net current is zero and the resulting voltage is known as the open-

circuit voltage (Voc). In this case the photocurrent is balanced by the forward-biased

junction current which produces

I = 0 = IL − IS
[
exp

(
eVoc
kT

)
− 1

]
.

When we solve this equation for Voc we obtain

Voc =

(
kT

e

)
ln

(
1 +

IL
IS

)
.
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Figure 2.3 shows a plot of the current vs. voltage (I-V ) from equation (2.2). We

have included the short-circuit current (Isc) and the open-circuit voltage (Voc) in the

figure. Given that power is equal to current times voltage, we can express the power

delivered to the load as

P = I · V = IL · V − IS
[
exp

(
eV

kT

)
− 1

]
· V.

In order to maximize the power delivered to the load we take the derivative with

respect to voltage and set it equal to zero. This gives us

dP

dV
= 0 = IL − IS

[
exp

(
eVm
kT

)
− 1

]
− ISVm

( e

kT

)
exp

(
eVm
kT

)
.

We use trial and error in order to find the value of Vm that produces the maximum

power. When we take Im equal to the current given the value of Vm we get the

maximum power rectangle shown in Figure 2.3.

Figure 2.3: Maximum Power Rectangle of the Solar Cell I − V Characteristics.
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2.2 Defects

Some of the mechanisms that contribute to solar cell degradation are listed here

(Jordan and Kurtz (2012)).

• Encapsulant browning

• Bad solder bonds

• Ethylene Vinyl Acetate (EVA) browning

• Light-induced degradation

• Soiling effects - Dust and dirt covering the solar cell mitigated by regular clean-

ing.

• Oxygen contamination in the bulk of the Si junction (rapid)

• Ultraviolet exposure (slow) (Osterwald et al. (2002))

• Increase in series resistance (Morita et al. (2003))

• Corrosion and interconnect breakage

• Electrical component failure

• Thermomechanical fatigue of the interconnects

• Antireflective coating

• Front delamination

• Inherent junction degradation

• Climate conditions

8



PV education reports that a photovoltaic (PV) module’s operating life is largely de-

termined by the stability and resistance to corrosion of the materials from which it

is constructed. They report that most of the reasons for failure are related to wa-

ter ingress or temperature stress. A gradual degradation in module performace can

be caused by: 1. Increases in Rs (series resistance) due to decreased adherence of

contacts or corrosion (usually caused by water vapor); 2. Decreases in Rsh (shunt re-

sistance) due to metal migration through the p-n junction; 3. Antireflection coating

deterioration (Honsberg and Bowden (2019))

Pollutants diffuse into the cell, become ionized and ruin (in the long run) the func-

tionality of the cell. Some of these pollutants are positively and negatively charged

chlorine, oxygen, sulfur, arsenic (Cl±, O±, S±, As±, . . . ) (Ringhofer (2018)).

By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04%

carbon dioxide, and small amounts of other gases. The other constituents, which in-

clude the inert elements neon, helium, krypton, xenon, as well as hydrogen and some

other compounds, such as methane, sulfur dioxide, and various oxides of nitrogen,

that come from biological and industrial processes, are present in extremely small

fractions, a few parts per million or less (Neiburger et al. (1982)).

List of items that degrade cadmium telluride (CdTe) (Ringhofer (2018)):

• Cu+
i (copper interstitial)

• Cu−Cd (copper cadmium)

• Cd+2
i (cadmium interstitial)

• Cui+CuCd (copper interstitial - copper cadmium)

9



• Cu0
i (copper interstitial)

• Cu0
Cd (copper cadmium)

• Cl+Te (chlorine telluride)

• Cl+i (chlorine interstitial)

• Cl0i (chlorine interstitial)

• Cl−i (chlorine interstitial)

• Cli+Cl0Te (chlorine interstitial - chlorine telluride)

• Cli+Cl+1
Te (chlorine interstitial - chlorine telluride)

• Cli+Cl+2
Te (chlorine interstitial - chlorine telluride)

• Cli+Cu0
Cd (chlorine interstitial - copper cadmium)

• Cli+Cu+1
Cd (chlorine interstitial - copper cadmium)

• Cli+Cu+2
Cd (chlorine interstitial - copper cadmium)

• Cli+Cu+2
Cd(Q2) (chlorine interstitial - copper cadmium)

The superscripts denote the ionic charges; + denotes +1 Cation (a positively charged

ion), and − denotes −1 Anion (a negatively charged ion).

2.3 Lifetime Tests

Around 1980, the Jet Propulsion Laboratory (JPL) in California conducted a

block buy program where they procured PV modules and tested them using various
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proceedures (Wohlgemuth (1994)). The first step in module testing is outdoor expo-

sure, since this is where the modules have to work. However, outdoor exposure takes

too long and varies from location to location. Therefore, standardized accelerated

tests were developed. In the first step to designing accelerated environmental tests,

extreme care was taken to insure that the test related to both acceleration of the

environment that the product was to be exposed to as well as to the mechanisms by

which the environmental stress causes failure in the product. Manufacturers use the

accelerated tests as quick feedback in the development of more reliable modules. By

designing modules to pass the accelerated tests, production modules may no longer

exhibit the early field failures caused by the failure mechanisms that the accelerated

tests were designed to stress.

The next step is field deployment of modules that successfully pass the accelerated

environmental tests. Once again, field failures are likely to occur, but this time the

modules will probably work for a much longer time. These new failures have to be

analyzed, failure mechanisms identified and new or modified accelerated environmen-

tal tests developed.

Assessment of module field failures has always been an important part of PV re-

liability. This leads to the whole field of Accelerated Lifetime Testing (ALT), where

time is artificially accelerated in a laboratory experiment by changing environmental

conditions, such as ambient temperature (TamizhMani and Kuitche (2013)). Initial

identification of failure modes was a key part of the development of accelerated stress

tests and ultimately the module qualification tests (IEC 61215). Because the qual-

ification tests have now been in use for many years, we would expect that some of

the identified failure modes would be reduced or eliminated in more modern module
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types. On the other hand as new module types are implemented and deployment

conditions change, we expect either new failure modes or at least changes in the fre-

quency of the different modes (Wohlgemuth (2018)).

An accelerated lifetime test is described in Albin (Albin (2011)). In order to

ascertain the long term reliability of modules based upon cadmium sulfide/cadmium

telluride (CdS/CdTe), cells of this basic design were exposed to 1-sun illumination

under open-circuit, Voc, bias and acceleration temperatures of 60 - 120 ◦C for times

exceeding 1000 hours. Under field-use conditions, series-connected cells nominally see

voltages somewhat less than Voc, thus, open-circuit conditions represent an additional

form of acceleration. It is here that computational models of degradation play an

important role. ALT testing, as well as computational models, necessarily depend

on some simplifying physical assumptions. It is, however, rather easy to ”accelerate”

time in a computational model by simply using larger time scales.

2.3.1 Pictures

This section shows some examples of PV defects. Also shown are components of

solar cell modules where some of the defects can occur. Figure 2.4 shows a solar panel

on the ASU Tempe campus near the Hayden Library. Figure 2.5 is a close up of the

same solar panel. The solar cell appears to have suffered from front delamination.
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Figure 2.4: Defective Solar Panel

Near Hayden Library.

Figure 2.5: Closeup Showing

Front Delamination of Solar

Panel.

Figures 2.6 and 2.7 show some of the components of the solar collection system

on the Apache parking structure on the ASU Tempe campus. These pictures show

how many electrical and mechanical components are used in order to transport the

electricity to the final load. Notice the mechanical hydraulics in figure 2.6 that support

the tilting of a series of PV modules in order to receive direct sunlight throughout

the day. All of these components are suseptible to failure thus contributing to solar

cell degradation.
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Figure 2.6: Electrical and Me-

chanical Components of PV Mod-

ules at ASU Apache Parking

Structure.

Figure 2.7: Electrical Compo-

nents of PV Modules at ASU

Apache Parking Structure.

2.4 A Simple Model Equation

We will now consider a simple example for the time evolution of degrading defects.

We will restrict ourselves for the moment to the zero-dimensional case, ignoring the

spatial transport of defects and assuming a spatially homogeneous material. (Spa-

tial transport and diffusion will of course be essential in modeling defects later on.)

We consider a simple reaction system modeled by a system of ordinary differential

equations. Given five species we consider two reactions of the form:

spec1 + spec2 � spec3, spec3 + spec1 � spec4 + spec5

Here we have two particles (species 1 and species 2) that react to form a particle

of species 3. The resulting particle of species 3 can combine with a particle of species

1 again to form two particles of type 4 and 5 (species 4 and species 5). While

there is not much physical relevance to this example, it serves as an example of

binary reactions where two molecules combine into one and two molecules produce

two different molecules. We also consider the corresponding inverse reactions. This
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will give us the following five differential equations for the mol densities, uj, of the

species:

u̇1 = −αf1u1u2 +αb1u3 −αf2u1u3 +αb2u4u5

u̇2 = −αf1u1u2 +αb1u3

u̇3 = αf1u1u2 −αb1u3 −αf2u1u3 +αb2u4u5

u̇4 = αf2u1u3 −αb2u4u5

u̇5 = αf2u1u3 −αb2u4u5

(2.3)

Where α is the coefficient of the reaction. The subscript of α indicates the reaction

number and the superscript indicates wheather the reaction is forward or backward.

For example αf1 denotes the coefficient of the first reaction going forward. A key

tool to encode the structure of a given set of reactions (i.e. which species react

with other species) is the stoichiometry matrix (see Section 3.1). A row of this

matrix corresponds to a single reaction and, within each row, an entry of negative

one corresponds to a particle lost and an entry of one corresponds to a particle gained

in the reaction. Using this example, the stoichiometry matrix will be as follows:

S =

−1 −1 1 0 0

−1 0 −1 1 1


Notice that the first row describes the first reaction where species one and two

lose one element and species three gains one element. The second row corresponds

to the second reaction. The columns correspond to the species participation in the

reaction. In general, given N species and K reactions, the stoichiometry matrix will

be a K ×N matrix.

We consider the results of a MATLAB progam which models binary reactions

while ensuring that correct quantities are conserved. We wrote the program for a

variable number of species and a variable number of reactions.
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The input to the program is:

S = the stochiometry matrix describing the different reactions,

αfβ = the coefficients (β = 1 : K) for the forward reactions,

αbβ = the coefficients (β = 1 : K) for the backward reactions.

Since we will consider binary reactions only, the resulting ODE system will exhibit

a quadratic and vector-valued right hand side. Each differential equation is then of

the form

u̇n = ~uTAn~u+ bTn~u.

where for the first species the matrix A and the vector b are of the form

A1 =



0 −αf1 −α
f
2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 αb2

0 0 0 0 0


and bT1 = (0 0 αb1 0 0)

We start by computing the solution using the Euler method with equations (2.3).

Then we used the stoichiometry matrix and computed the matrices A and b. Then

we computed the solution using the matrices A and b and compared the solutions

and the CPU time for each computation. We used some ”vectorized” commands in

MATLAB from Higham (Higham (2001)).

The solutions were identical up to machine precision. The time was vastly differ-

ent. Using the Euler method the time was 4.737902 seconds. Using the matrices the
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time was 0.460772 seconds. This comparison was completed using only five species

and two reactions. Figures 2.8 and 2.9 show the two output figures using a surface

plot. Figure 2.10 shows the solution in two dimensions.

Figure 2.8: Solution Using the

Forward Euler Method

Figure 2.9: Solution Using Matri-

ces

Figure 2.10: Forward Euler Solution in 2-D
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Chapter 3

STOICHIOMETRY THEORY

In this section we formulate systems of reaction equations based on binary reac-

tions which describe chemical reactions of defects and ionization processes (i.e. the

reaction of ions with free electrons). Since the number of molecules in these reactions

is not conserved, the resulting equations constitute a non-conservative system. To de-

velop physically relevant models, it is important to identify which components of the

mathematical solution of the resulting differential equations are actually conserved.

The key to this is basic stoichiometry theory. We first give a definition and overview

of stoichiometry theory and derive a general principle to determine which compo-

nents of the solution of the model equations are conserved for a system consisting of

an arbitrary number of species and an arbitrary number of reactions.

3.1 Stoichiometry Theory

Stoichiometry is the area of study that examines the quantities of substances con-

sumed and produced in chemical reactions (Brown (2008)). This section describes how

stoichiometry theory is used to symbolize chemical reactions. Reaction stoichiometry

describes how to determine quantity relationships between reactants (Flowers et al.

(2018)).

3.1.1 Writing Chemical Equations

We write chemical equations to describe the process of an atom gaining or losing an

electron, or combining with another atom or atoms to form molecules. The symbols

of the atoms are changed or combined with the symbols of other atoms. In this
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way we create a chemical equation or formula that represents the species involved

in the reaction. We are careful to include not only the types of species involved in

the reaction but the quantities of each specie involved. We also wish to balance the

chemical equation in order to be in compliance with the law of conservation. We

will consider an example reaction where the species are one methane molecule (CH4)

and two diatomic oxygen molecules (O2) combine to produce one carbon dioxide

molecule (CO2) and two water molecules (H2O). We can represent this reaction with

the following chemical equation

CH4 + 2O2 −→ CO2 + 2H2O.

Here we can name some fundamentals for chemical equations:

1. Species being reacted upon are reactants and they are represented by their

formulas on the left side of the arrow.

2. Species that are the result of the reaction are called products and they are

represented by their formulas on the right side of the arrow.

3. We use a plus sign (+) to separate each specie on either side of the equation.

4. We use an arrow (−→) to separate the reactants and products (the left and

right) sides of the equation.

5. Coefficients are used to represent the numbers of each individual reactant and

product species.

3.1.2 Balancing Equations

In the example above we have a balanced chemical equation. We may note that

the number of atoms of each specie is the same on the ractant side and the product
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side of the equation. Balancing chemical equations is required by conservation of

matter. We can confirm that a chemical equation is balanced by summing the num-

ber of atoms on both sides of the equation. If they are equal, then the equation is

balanced. In order to correctly count the number of atoms for each specie we multiply

the coefficent by the subscript of the specie. We look at another example.

Again, we look at the reaction beween methane and oxygen that produces carbon

dioxide and water. We see that both CO2 and H2O contain the species oxygen. We

follow the formula and multiply the coefficient by the subscript as follows:

(
1 CO2 molecule× 2 O atoms

CO2 molecule

)
+
(

2 H2O molecules× 1 O atom

H2O molecule

)
= 4 O atoms.

We see that this equation is balanced, as shown here:

CH4 + 2O2 −→ CO2 + 2H2O.

Element Reactants Products Balanced?

C 1× 1 = 1 1× 1 = 1 1 = 1, yes

H 1× 4 = 4 2× 2 = 4 4 = 4, yes

O 2× 2 = 4 (1× 2) + (2× 1) = 4 4 = 4, yes

We consider a system of general binary reactions of the form

s1 + s2 � s3 + s4 or s1 + s2 � s3 .

Two molecules or atoms, one each of species 1 and 2, react and form either two

molecules, one each of species 3 and 4, or a single molecule of species 3. The reaction

is, in general, reversible and time scales are given by reaction rates. Considering a
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system of N species the evolution of the mol numbers un(t) of species n are given by

the ODE system

d

dt
~u(t) = ~r(~u), ~u = (u1, .., uN), ~r = (r1, .., rN),

where the vector function ~r is quadratic. In general, ~r will be of the form

rn = ~uTAn~u+~bTn~u, n = 1 : N.

We again consider the example of Section 2.4. A reaction system with five species

and two reactions of the form

u1 + u2 � u3, u3 + u1 � u4 + u5.

The resulting ODE system is of the form

u̇1 = r1 = −αf1u1u2 +αb1u3 −αf2u1u3 +αb2u4u5

u̇2 = r2 = −αf1u1u2 +αb1u3

u̇3 = r3 = αf1u1u2 −αb1u3 −αf2u1u3 +αb2u4u5

u̇4 = r4 = αf2u1u3 −αb2u4u5

u̇5 = r5 = αf2u1u3 −αb2u4u5

(3.1)

with the αfk and αbk, k = 1, 2 the reaction rates for the forward and backward reactions.

To illustrate the structure, we give a simple example in section 3.2.

3.1.3 Reaction Stoichiometry

Chemical equations give us information regarding the species that are reactants

and species that emerge from the reaction as products. Each coefficient tells us the

relative amounts of each of the species involved in the reaction. This allows us to

perform a quantitative assessment of the amounts of species consumed and produced

by each reaction. This is known as the reaction’s stoichiometry. Stoichiometry is
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a term that was derived from the Greek words stoicheion (meaning ”element”) and

metron (meaning ”measure”) (Flowers et al. (2018)).

We can use a balanced chemical equation to find out how much of one specie

is required to combine with a given amount of another specie on the reactant side

and give a certain amount of product specie. We use the coefficients in the balanced

equation to produce the stoichiometric factors that allow us to compute the desired

quantity. We illustrate this with an example. Consider the reaction of nitrogen and

hydrogen to produce ammonia:

N2 + 3H2 −→ 2NH3.

This shows that for every two ammonia molecules we need three hydrogen molecules.

This gives us a 2:3 ratio. The stoichiometric factors are independent of the units in-

volved as long as the units used to measure the ammonia molecules are the same as

the units used to measure the hydrogen molecules:

2 NH3 molecules

3 H2 molecules
or

2 doz NH3 molecules

3 doz H2 molecules
or

2 mol NH3 molecules

3 mol H2 molecules
.

The stoichiometric factors allow us to compute the number of ammonia molecules

produced from a given number of hydrogen molecules. Or, we can compute the num-

ber of hydrogen molecules required to produce a given number of ammonia molecules.

This can be extended to any pair of species in any chemical equation.

3.1.4 Percent Yield

The theoretical yield of any reaction is the amount of species produced by a

reaction as calculated by the stoichiometry of the balanced chemical equation that

governs that reaction. Often, the theoretical yield of a chemical reaction is more
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than the actual yield. This is due to several reasons. Some reactions are inherently

inefficient because we have simplified the actual reaction by not taking into account

side reactions that generate other products. Other reactions are incomplete because

of various physical considerations. Some products are hard to measure without some

loss. Percent yield is the extent that the theoretical yield of a reaction is achieved:

percent yield =
actual yield

theoretical yield
× 100%.

Actual and theoretical yields may be expressed in any unit, such as mass or molar

amounts. We must use the same units in both the actual yield and the thoretical

yield in order to get an accurate percent yield.

3.2 Conservation Properties

To derive physically relevant simulation tools it is essential to numerically conserve

physically conserved quantities. In addition, the understanding of which quantities

are conserved by the model equations will be necessary for the formulation and devel-

opment of asymptotically preserving schemes in Chapter 8. This raises the question

of how to find all possible conserved quantities in a complex reaction system given

a set of model equations of the form (3.1). The key to this venue is the use of the

stoichiometry matrix outlined below.

We will begin by looking at a complex chemical reaction equation and talk about

the conservation properties preserved through stoichiometry theory. Then we will

look at a simple model of a generic reaction. First we will consider the chemical

reaction equation (Erdi and Toth (1989)).

2CO + 3H2 = C2H2 + 2H2O

CO + H2O = CO2 + H2.

(3.2)

23



The three atoms involved in this reaction are hydrogen (H), oxygen (O), and car-

bon (C). The five chemical compounds in this reaction are carbon monoxide (CO),

dihydrogen (H2), acetylene (C2H2), water (H2O), and carbon dioxide (CO2).

We now use the atomic matrix to describe the atomic structure of the components

of this reaction

Z ≡



CO H2 C2H2 H2O CO2

H 0 2 2 2 0

O 1 0 0 1 2

C 1 0 2 0 1


Notice that the first row shows how many hydrogen atoms are in each of the five

chemical compounds. The second row shows how many oxygen atoms and the third

row is for the carbon atoms. The columns show how many of each atom are in each

compound.

We can describe the structure of the reactions with a matrix made up of reaction

vectors called the stoichiometric matrix

γ =



R1 R2

CO −2 −1

H2 −3 1

C2H2 1 0

H2O 2 −1

CO2 0 1


.

Notice that the R1 vector describes the first reaction as two of the CO molecules

and three of the H2 molecules are put into the reaction (negative values) to produce

one C2H2 molucule and two H2O molecules (positive values). The R2 vector describes
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the second reaction as one CO molecule and one H2O molecule are put into the

reaction (negative) to produce one H2 molecule and one CO2 molecule (positive).

The conservation law of atomic balance says that the number of atoms should be the

same on both sides of each of the reactions. We can ensure that this conservation law

is satisfied by multiplying Z and γ using normal matrix multiplication and see that

the product is zero:

Zγ =


0 2 2 2 0

1 0 0 1 2

1 0 2 0 1





−2 −1

−3 1

1 0

2 −1

0 1


=


0 0

0 0

0 0



We recall our example from Section 3.1.2. Given five species and two reactions as

follows:

u1 + u2 � u3, u3 + u1 � u4 + u5

We have the following five differential equations:

u̇1 = r1 = −αf1u1u2 +αb1u3 −αf2u1u3 +αb2u4u5

u̇2 = r2 = −αf1u1u2 +αb1u3

u̇3 = r3 = αf1u1u2 −αb1u3 −αf2u1u3 +αb2u4u5

u̇4 = r4 = αf2u1u3 −αb2u4u5

u̇5 = r5 = αf2u1u3 −αb2u4u5

(3.3)

The stoichiometry matrix (see Section 3.1) will be as follows:

S =

−1 −1 1 0 0

−1 0 −1 1 1


Given N species and K reactions, the stoichiometry matrix will be a K ×N ma-

trix. The first row corresponds to the first reaction and the second row corresponds
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to the second reaction. The columns correspond to the species participation in the

reaction. Notice that the first row describes the first reaction where species one and

two lose one element and species three gains one element.

For the development of an asymptotic theory in the following sections and for the

purpose of numerical accuracy it is important to identify the conserved quantities of

the system, i.e. we are looking for vectors ~c such that

~cT
d

dt
~u = ~cT~r(~u) = 0

holds for all solutions ~u. Fortunately the conservation vectors ~c are a property of

the reaction structure and independent of the state ~u. They can be determined via

the use of the stoichiometry matrix. For a system of K reactions and N species the

stoichiometry matrix S is a K ×N matrix, and is constructed as follows:

For each lost molecule in the forward reaction number k the kth row of S contains

an entry of negative one and for each gained molecule an entry of one. So, for the

example above, S is a 2× 5 matrix of the form

S =

−1 −1 1 0 0

−1 0 −1 1 1

 .

The basic idea of determining the conservation vectors is to consider a system for

mass densities instead of molecule numbers. If each molecule of species n has a mass

wn the total mass of the system has to be conserved. Setting the mass density vector

to ~y we have ẏn = wnrn(~u), n = 1 : N , and we have conservation of the total mass,

expressed by

d

dt

N∑
n=1

yn =
N∑
n=1

wnrn = 0 .
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To actually use the equivalent system for the masses yn is not practical because of the

large difference in the masses of the individual reactants. If the reaction is of the form

that an uncharged atom and an electron create a negative ion the mass ratio between

the atom and the electron is of the order of 1020. However, we do not need to use the

actual physical masses of the involved atoms, but can use any set of virtual masses (or

weights) wn, as long as they are consistent with the reaction system. This consistency

condition is obtained from the stoichiometry matrix S. If the reaction is of the form

s1 + s2 � s3, then w1 + w2 = w3 has to hold to conserve mass in the reaction. In

the example above this would give the two consistency conditions w1 + w2 = w3 and

w1 +w3 = w4 +w5 for the two reactions. So the consistency conditions for the weights

wn, considering all reactions, are given by the equation S ~w = 0. This gives

~wT~r = 0 ∀~w : S ~w = 0 .

So all conserved quantities can be computed by finding a basis of the nullspace N (S),

yielding in general J linearly independent vectors ~c1, ..,~cJ (J being the dimension of

N (S)) with

d

dt
(~cTj ~u) = ~cTj ~r(~u) = 0, j = 1 : J, ∀~u .

For the example above the stoichiometry matrix S is 2× 5 and we obtain a basis for

the nullspace of S as

c1 =



−1

2

1

0

0


, c2 =



1

−1

0

1

0


, c3 =



1

−1

0

0

1


,

which implies the three conservation relations

d

dt
(−u1 + 2u2 + u3) = 0,

d

dt
(u1 − u2 + u4) = 0,

d

dt
(u1 − u2 + u5) = 0,

27



which can be easily verified from the original equations (3.3).

Of course, any linear combination of the basis vectors ~cj will yield another ele-

ment of N (S), and we obtain an infinite number of conserved quantities, which are

all linear combinations of the J linearly independent basis vectors.

The importance of this approach is that all conserved quantities can be computed

from the stoichiometry matrix S, which is a function of the structure of the reaction

system only. So, the subspace of conserved quantities can be computed a priori,

independent of the current state of the solution ~u.
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Chapter 4

DEFECT TRANSPORT MODELS

To simulate the degradation of solar cells it is essential to consider the migration

of defects in addition to the reaction processes. In this work we restrict ourselves to

diffusion-convection models for the transport picture. Given the density, un(x, t), for

species number n (which now depends also on the spatial variable, x) the resulting

model equations (van Roosbroeck (1950)) are of the form

∂tun(x, t) = Tnun +

(
1

ε

)
rn(un), n = 1 : N , (4.1)

with the diffusion operator Tn given by

Tn~u = ∇x · [Dn∇xun + znµn∇xV un], n = 1 : N , (4.2)

and the quadratic reactions term defined as in Section 2.4

u̇n = rn = ~uTAn~u+ bTn~u.

Dn and µn in the definition (4.2) of the transport operator denote the diffusion

coefficient and the mobility of a molecule of species n. The motion of the particle

is in addition driven by a convection term, due to the possible electrical charge of

the molecule. zn denotes the charge of a particle/molecule of species n. The term

∇xV (x, t) in (4.2) denotes the electric field (the gradient of the electrodynamic poten-

tial), which is given in terms of the charges produced by the defects via the Poisson

equation

−∇x · (κ∇xV (x, t)) =
N∑
n=1

znun +D(x) . (4.3)
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Here κ denotes the usual dielectricity constant and the time independent func-

tion D(x) denotes some background concentration of immobile carriers (determining

whether we are in a p-type or n-type region). We note that coupling the diffusion

reaction system (4.1) to the Poisson equation (4.3) via the electric field results in the

transport problem becoming nonlinear, i.e. V = V (~u) holds.

Finally, the dimensionless parameter ε in (4.1) denotes the separation of the trans-

port and the reaction time scales. In a lifetime stress test, defects will diffuse on a

time scale of months or years whereas reactions will happen on a scale of minutes or

hours. Therefore ε� 1 will hold.
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Chapter 5

ASYMPTOTICS

In this chapter we consider the analysis of the stiff (in time) reaction diffusion

system presented in Chapter 4. The stiffness arises from the fact that reactions occur

on a much faster time scale than the spatial transport. The goal is to derive the

asymptotic behavior of the solution on the slow (diffusion) time scale by looking at

the reduced equation (ε = 0). The relevance of the analysis in this chapter is twofold.

On one hand the results of this chapter will give guidance for the development of

an efficient numerical solution of the model equations. A straightforward numerical

approach to the equations turns out to be prohibitive due to the vastly different time

scales. On the other hand, the resulting reduced problem gives insight into which

mechanisms are really responsible for the large time degradation of the solar cell. We

note that the analysis below is not restricted to diffusion transport models of the

form (4.2). In many simulations more detailed transport models based on particle

models and kinetic equations are used on short time scales (Dimarco and Pareschi

(2011), Ascher et al. (1997), Caflisch et al. (1997)). In this section we only use the

conservation properties and certain coercive properties of the transport operator. The

analysis translates therefore immediately to these more detailed models. In Section

5.1 we outline the basic idea of the asymptotic analysis. The reactions preserve a

set of quantities, given by stoichiometry theory, discussed in Chapter 3. To compute

the correct steady states for t → ∞ it is imperative that these quantities are also

preserved by the reduced system. In Appendix A we illustrate the results of Section

5.1 with a simple example. In Section 5.4 we present a proposition showing subspace

conservation and a proposition showing that the reduced equation conserves the cor-
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rect quantities (given by stoichiometry theory). In Section 5.5 we discuss an approach

to the numerical solution of the reduced problem and show that the numerical scheme

is order 1 consistent. Although we will restrict ourselves to very small ”toy” problems

for the computational examples in this and the next chapter, it should be pointed out

the following analysis and approach is scalable, i.e. leading to a numerical method

which can solve rather large reaction transport systems in multiple spatial dimensions

at a reasonable computational cost.

5.1 Basic Approach

There exists a basic methodology to derive asymptotic large time models for dy-

namical systems of the form (4.1). This methodology is originally due to Maxwell

and Chapman and Enskog (Maxwell (1878), Rosenboum (1941), Enskog (1911b)),

and was originally developed to derive macroscopic models in gas dynamics such as

the compressible Euler equations and the Navier-Stokes equations from the underly-

ing Boltzmann equation. This basic methodology is of the following form:

Given a dynamical system of the form

∂tu = Tu+

(
1

ε

)
r(u) (5.1)

1. Find the conserved quantities, i.e. find a matrix C such that CT r(u) = 0 holds

for all u. The slow evolution is then given by the equation

∂t(C
Tu) = CTTu . (5.2)

2. Consider in zero-th order the equation on the fast O( t
ε
) time scale

∂tu =
1

ε
r(u), ∂τu = r(u) +O(ε), τ =

t

ε
.

The large time solution is given by the steady state, given by the equation

r(u) = 0.
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3. Parameterize this solution by a parameter p, i.e. r(u) = 0 ⇐⇒ u = ueq(p).

4. Close equation (5.2) by using this parameterization, giving

∂t(C
Tueq(p)) = CTTueq(p) (5.3)

Equation (5.3) is a closed equation on the large O(t) time scale for the parameter

p, as long as the number of columns in the matrix C equals the dimension of the pa-

rameter vector p. (For infinite dimensional problems this must be verified by proving

the existence of a Fredholm alternative.)

We have basically taken care of step 1 in the above algorithm (the computation

of the conserved quantities and the matrix C) in Section 3.2 via the stoichiometry

matrix. The basic problem with this methodology in the context of solar cells and

general reaction-transport systems lies in step 3 of the above algorithm. In the case

of classical gas dynamics, the null manifold of r(u) = 0 is given by Boltzmann’s

H-theorem, and given by Maxwellians, parameterized by density, velocity and tem-

perature. In the case of general reaction-transport systems, the parameterization of

this manifold would involve the computation of the general solution of a system of N

quadratic equations in the case of N species. While this might be possible for small

N using computer algebra tools, it is certainly prohibitive for a realistic number of

defect species.

The basic idea of the asymptotic solutions developed here, separating the time

scales, is to introduce an additional variable, namely the product of the reactions

v. While the separation of the time scales for the evolution of concentrations u is

inherently a nonlinear problem, depending on the apriori unknown concentrations,

the evolution of the reaction product v becomes linear, given the slow scale evolution
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of the concentrations u. This problem can be solved using standard linear projection

techniques.

This approach has been followed in the context of fluid and rarified gas dynamics

by Boltzmann, Maxwell, Chapman and Enskog (Boltzmann (1995) Maxwell (1878)

Rosenboum (1941) Enskog (1911b) Enskog (1911a) Brush (1972)) for the connection

between the Boltzmann equation and the compressible Euler equations of gas dy-

namics. Higher order expansions, leading to the connections between the Boltzmann

equation for particles and the Navier-Stokes equations have been derived in the cor-

responding literature.

We take a second order formulation and make the substitution: v = (1/ε)r. This

and equation (5.1) gives us the following with the use of the chain rule:

∂tv =
1

ε
R(u)∂tu =

1

ε
R(u)

(
v + Tu

)
with R = ∂r

∂u
= the Jacobian matrix of r(u). Equation (5.1) becomes

∂tu = v + Tu, u(0) = uI

∂tv =
1

ε
R(u)(v + Tu), v(0) = vI =

1

ε
r(uI).

(5.4)

The quasi-steady-state approximation is a standard procedure in the study of

chemical reaction kinetics in situations where certain species have a very short time

of existence with respect to other species (Bisi et al. (2007)). Accordingly, we assume

quasi steady state and so r(uI) ≈ ε =⇒ vI = O(1).
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5.2 The Fundamental Theorem of Linear Algebra

We will use Strang (Strang (1993)) in the following. Consider a system of the

form

Rx = y, with R : N ×M

The fundamental theorem of linear algebra gives us the following

RM = N (R)⊕R(RT ),

RN = N (RT )⊕R(R),

where N denotes the nullspace, R denotes the range, and ⊕ denotes the orthogonal

direct sum. This means that R(R) = N (RT )⊥ and also for the transpose, R(RT ) =

N (R)⊥. This means that any y ∈ RN can be decomposed uniquely into

y = y1 + y2, y1 ∈ N (RT ), y2 ∈ R(R), yT1 y2 = 0.

We also have that any y ∈ RM can be decomposed uniquely into

y = y1 + y2, y1 ∈ N (R), y2 ∈ R(RT ), yT1 y2 = 0.

We will assume a square matrix R with N = M . Then we can define the left and

right nullspaces of R as follows. The left nullspace

C = N (RT ) =⇒ CTR = 0.

The right nullspace

G = N (R) =⇒ RG = 0.

We can also define the N × N projection matrix P = G(CTG)−1CT . Using the

projection P we have

N (RT ) = R(R)⊥ = {z : CT z = 0} = {z : Pz = 0}
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N (R) = R(RT )⊥ = {z : Rz = 0} = {z : z = Gq} = {z : Pz = z}

We can draw the following conclusions:

1. Rx = y only has a solution if

y ∈ R(R) = N (RT )⊥ ⇐⇒ zTy = 0 ∀z ∈ N (RT )

⇐⇒ CTy = 0 ⇐⇒ Py = 0.

Thus, for general y, we solve Rx = y1 = (I − P )y =⇒ Py1 = 0.

2. The solution of Rx = y1 is given by

x = x0 +Gq

where x0 is a particular solution of Rx = y1 and Gq is the general solution of

Rx = 0.

3. If rank(R) = rank(RT ) = K < N then dim(N (R)) = dim(N (RT )) = N −K.

Therefore G and C are N × (N −K) full rank matrices. We fix the solution of

Rx = y1 by requiring

CTx = 0 ⇐⇒ Px = 0.

5.3 Solving the Fast Equations

We split v into the part that is in the nullspace of R and the part that is in the

orthogonal complement of the nullspace of R with v = ṽ + v̂ with ṽ = P (u)v and

v̂ = (I − P (u))v. We also define Ṗ =
d

dt
P (u(t)).

We use this and the product rule with equation (5.4) to get

∂tṽ = ∂t(P (u)v) = P (u)∂tv + Ṗ v = P (u)
1

ε
R(u)(v + Tu) + Ṗ v
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=
1

ε
P (u)R(u)(v + Tu) + Ṗ v = Ṗ v

∂tv̂ = ∂t((I − P (u))v) = (I − P (u))∂tv − Ṗ v = (I − P (u))
1

ε
R(u)(v + Tu)− Ṗ v

=
1

ε
(I − P (u))R(u)(v + Tu)− Ṗ v =

1

ε
R(u)(v + Tu)− Ṗ v

By the definition of P and ṽ we have R(u)ṽ = R(u)P (u)v = 0. And from equation

(5.4) it follows that

∂tu = ṽ + v̂ + Tu, u(0) = uI , (5.5)

∂tṽ = Ṗ (ṽ + v̂), ṽ(0) = vI (5.6)

∂tv̂ =
1

ε
R(u)(v̂ + Tu)− Ṗ (ṽ + v̂), v̂(0) = vI . (5.7)

Remark: In local equilibrium r(uI) = 0 which implies that vI = 0 which implies

that ṽ(0) = 0 and v̂(0) = 0.

Now we look for the asymptotic solution to this system of differential equations

(Holmes (2013)). We multiply equation (5.7) by ε to get

ε∂tv̂ = R(u)(v̂ + Tu)− εṖ (ṽ + v̂).

We now let ε → 0 in order to find the reduced, or order 1, equation. This gives

us the leading order equation for v̂ of

R(u)(v̂ + Tu) = 0 . (5.8)

We now use the projections to investigate the dynamical system

ε∂tv = R(Tu+ v), R : N ×N.

With C the basis of the left nullspace of R (i.e. CTR = 0) and G the basis of

the right nullspace of R (i.e. RG = 0). Both C and G are N × N −K matrices for
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a rank K matrix R. The projection P is given by P = G(CTG)−1CT . According to

the fundamental theorem of linear algebra we have

N (R) = {z : Rz = 0} = {z : z = Gq, ∀q ∈ RN−K} = {z : Pz = z},

R(R) = N (RT )⊥ = {z : yT z = 0, ∀y ∈ N (RT )} = {z : CT z = 0} = {z : Pz = 0}.

We can re-write equation 5.8 as

Rv̂ = −RTu . (5.9)

• This has a solution since the right hand side satisfies PRTu = 0.

• According to the fundamental theorem of linear algebra, the general solution is

given by v̂ = x0 +Gq with q an arbitrary N −K vector. Adding the condition

v̂ ∈ R(R) ⇐⇒ P v̂ = 0 gives Px0 + Gq = 0 ⇐⇒ G(CTG)−1CTx0 + Gq = 0

and therefore q = −(CTG)−1CTx0. This uniquely determines q and therefore

v̂.

• On the other hand, we can find the unique solution of (5.9) directly by setting

v̂ = (P − I)Tu, giving

Rv̂ = R(P − I)Tu = −RTu, P v̂ = P (P − I)Tu = 0,

P ṽ = ṽ, (I − P )ṽ = 0, P v̂ = 0, (I − P )v̂ = v̂.

Therefore, the unique solution of R(Tu+v̂) = 0, P v̂ = 0 is given by v̂ = (P−I)Tu.

Now equations (5.5) and (5.6) become

∂tu = ṽ + (P − I)Tu+ Tu,

∂tṽ = Ṗ (ṽ + (P − I)Tu)

(5.10)
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or

∂tu = ṽ + PTu, u(0) = uI ,

∂tṽ = Ṗ (ṽ − (I − P )Tu), ṽ(0) = vI
(5.11)

with

P = G(CTG)−1CT , CTR = 0, RG = 0, ∀ u.

We provide a simple example at Appendix A.

5.4 Conservation

We split spaces by letting Rn = S̃ = Ŝ. So we have

S̃(t) = {v : (I − P (t))v = 0} = span(G(t)),

Ŝ(t) = {v : P (t)v = 0} = {v : CTv = 0}.

With the following proposition, we show that the subspace S̃ is conserved.

Proposition (Subspace conservation): Consider the system

∂tv = Ṗ (t)v + P (t)f (5.12)

then v(t) ∈ S̃ for all t as long as v(0) ∈ S̃, and (I − P (0))v(0) = 0 holds.

Proof. We start with ∂t((I − P )v) and use the chain rule.

∂t((I − P )v) = (I − P )∂tv − Ṗ v

now we use equation (5.12) to get

= (I−P )(Ṗ v+Pf)−Ṗ v = (I−P )Ṗ v+(I−P )Pf−Ṗ v = (I−P )Ṗ v+(P−P 2)f−Ṗ v
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Recall that P 2 = P by construction and so we have that

∂t((I − P )v) = (I − P )Ṗ v − Ṗ v. (5.13)

We just showed that (I −P )P = 0. We differentiate with respect to t and use the

chain rule to get

0 = ∂t((I − P )P ) = (I − P )Ṗ − ṖP =⇒ (I − P )Ṗ = ṖP.

We substitite this result into (5.13) and so ∂t((I−P )v) = ṖPv− Ṗ v = Ṗ (P −I)v.

Now we let w = (P − I)v so we have

∂tw = Ṗw.

We note that this is a homogeneous equation in the variable w. So, if v(0) ∈ S̃(0)

then (I − P (0))v(0) = 0, and (I − P (t))v(t) = 0 =⇒ v(t) ∈ S̃(t) holds for all

time.

We use the identity P (P − I) = 0 =⇒ Ṗ (P − I) = PṖ combined with the

reduced equations (5.11) which gives us

∂tṽ = Ṗ (ṽ + (P − I)Tu) = Ṗ ṽ + Ṗ (P − I)Tu = Ṗ ṽ + PṖTu.

And so we have

∂tu = ṽ + PTu, u(0) = uI ,

∂tṽ = Ṗ ṽ − PṖTu, ṽ(0) = P (uI)vI .

(5.14)

The equation for ṽ, equation (5.14), is of the form of equation (5.12) in the sub-

space conservation proposition with f = −Ṗ Tu. Thus ṽ ∈ S̃(u(t)) for all t. Now we

show that equations (5.14) are conservative.

Proposition: The reduced equations (5.14) conserve
∫
CTu(t)dx and CT ṽ.
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Proof. We start with P = G(CTG)−1CT and see that CTP = CTG(CTG)−1CT = CT .

And so we use that CTP = CT and apply this to equations (5.14).

∂tC
Tu = CT ṽ + CTPTu = CT ṽ + CTTu ,

∂tC
T ṽ = CT Ṗ ṽ − CTPṖTu = CT Ṗ ṽ − CT Ṗ Tu .

(5.15)

We differentiate CTP = CT with respect to t to get

∂t(C
TP ) = ∂t(C

T ) = 0 =⇒ CT Ṗ = 0

which gives us

∂tC
Tu = CT ṽ + CTTu, ∂tC

T ṽ = 0.

This shows us that as long as CT ṽ(0) = 0 we have CT ṽ(t) = 0 for all t because

∂tC
T ṽ = 0. We put this into the first equation of (5.15) and get ∂tC

Tu = CTTu and

so

∂t

∫
CTudx = boundary terms.

5.5 Numerical Solution of the Reduced Problem

The computation of the time derivative Ṗ = d
dt
P (u(t)) would be a quite involved

numerical task and so we intruduce the following notation for the numerical solution:

We replace ṽ with v for notational convenience and start with

u(t0), v(t0) with v(t0) ∈ S̃(t0) ⇐⇒ v(t0) = P (u(t0))v(t0).

Step 1: We begin with equation (5.14) and solve

∂tu = v(t0) + P (u(t0))Tu(t0).
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We use a forward Euler time step to compute u(t0 + h) and Ṗ as follows,

u(t0 + h)− u(t0)

h
= v(t0) + P (u(t0))Tu(t0).

Solve for u(t0 + h)

u(t0 + h) = u(t0) + h[v(t0) + P (u(t0))Tu(t0)]. (5.16)

P (u(t0 + h))

=
1

u1(t0 + h) + u2(t0 + h)


u1(t0 + h) −u1(t0 + h) 0

−u2(t0 + h) u2(t0 + h) 0

u2(t0 + h) u1(t0 + h) u1(t0 + h) + u2(t0 + h)


Now we introduce a new variable Q to identify the computed approximation for

Ṗ . We let Q = 1
h

(
P (u(t0 + h))− P (u(t0))

)
≈ Ṗ .

Step 2: Solve the unconstrained step.

The first order condition to find the unconstrained maximum of a function, u, is

that u′ = 0. And so we take equation (5.14) and let ∂tu = 0. Now we introduce

another new variable, w, to identify the unconstrained value v. So w(0) = v(t0).

From equation (5.14) with ∂tu = 0 we have

0 = v(t0) + PTu(t0) =⇒ ∂tw = −QTu(t0 + h)

=⇒ w(0 + h)− w(0)

h
= −QTu(t0 + h).

This gives us that

w(h) = v(t0)− h[QTu(t0 + h)], w(0) = v(t0). (5.17)
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Step 3: Let’s review our notation. Recall that w is our computed value for v which

is ṽ which is in S̃ which implies that w = Pw where P is our projection. So we have

w(t0 + h) = P (u(t0 + h))w(t0 + h).

This conserves the property v(t0 + h) = P (u(t0 + h))v(t0 + h).

Now we show that this scheme is order 1 consistent.

Proposition: This scheme is consistent of order 1.

Proof. A method is said to be consistent if the local truncation error goes to zero as

the time step goes to zero (LeVeque (2007)). In order to prove that this scheme is

consistent of order 1, we have to show that

u(t+ h) = u(t) + hv(t) + hP (u(t))Tu(t) +O(h2), and

v(t+ h) = v(t) + hṖ (u(t))v(t)− hP (u(t))Ṗ (u(t))Tu(t) +O(h2).

We Taylor expand u(t0 + h) and substitite for ∂tu(t0) from equation (5.14).

u(t0 + h) = u(t0) + h∂tu(t0) +
h2

2
∂2
t u(t0) + . . .

u(t0 + h) = u(t0) + h[v(t0) + P (u(t0))Tu(t0)] +O(h2).

Now we Taylor expand v(t0 + h) and substitite for ∂tv(t0) from equation (5.14).

v(t0 + h) = v(t0) + h∂tv(t0) +
h2

2
∂2
t v(t0) + . . .

v(t0 + h) = v(t0) + h[Ṗ (u(t0))v(t0)− P (u(t0))Ṗ (u(t0))Tu(t0)] +O(h2)).

Which gives us our desired result

u(t0 + h) = u(t0) + h [v(t0) + P (u(t0))Tu(t0)] +O(h2),

v(t0 + h) = v(t0) + hṖ (u(t0))v(t0)− hP (u(t0))Ṗ (u(t0))Tu(t0) +O(h2)

which shows that this scheme is consistent of order 1.
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Chapter 6

NUMERICAL COMPARISON

In this section we present a numerical scheme for the reduced solution and a

numerical scheme for the full solution. We then propose an example problem and

show the comparison of the reduced solution with the full solution.

6.1 Numerical Scheme for Reduced Solution

Given the reduced equations (5.11) which we reproduce here for convenience

∂tu = ṽ + P (u)Tu, u(0) = uI ,

∂tṽ = Ṗ (ṽ + (P (u)− I)Tu), ṽ(0) = vI
(6.1)

Step 1:

u(t+ h) = u(t) + h[v(t) + P (u(t))Tu(t)].

Step 2: Compute

P (t+ h) = P (u(t+ h))

set

Q(t) ≈ Ṗ =
1

h
(P (t+ h)− P (t)) =⇒ P (t+h) = P (t) +hQ(t) = P (t) +hṖ +O(h2).

Step 3: Compute the unconstrained step

w = v(t) + hQ(t) [v(t) + (P (t)− I)Tu(t+ h)] .

Set

v(t+ h) = P (t+ h)w

this guarantees v(t) = P (t)v(t) for all t!

44



6.2 Numerical Scheme for Full Solution

We begin with equation (5.4)

∂tu = v + Tu, u(0) = uI

∂tv =
1

ε
R(u)(v + Tu), v(0) = vI =

1

ε
r(uI).

(6.2)

Then we have

u(t+ h) = u(t) + h(v(t) + Tu(t))

εv(t+ h) = εv(t) + h(R(u(t+ h))(Tu(t+ h) + v(t+ h))).

We can solve the final equation for v(t+ h) to get

u(t+ h) = u(t) + h(v(t) + Tu(t))

v(t+ h) = (εI − hR(u(t+ h)))−1(εv(t) + h(R(u(t+ h))Tu(t+ h))).

(6.3)

6.3 A Spatially Homogeneous Example

Let’s go back to our example first introduced in Section 2.4. Given five species

and two reactions as follows:

u1 + u2 � u3, u3 + u1 � u4 + u5

We have the following five differential equations:

u̇1 = r1 = −αf1u1u2 +αb1u3 −αf2u1u3 +αb2u4u5

u̇2 = r2 = −αf1u1u2 +αb1u3

u̇3 = r3 = αf1u1u2 −αb1u3 −αf2u1u3 +αb2u4u5

u̇4 = r4 = αf2u1u3 −αb2u4u5

u̇5 = r5 = αf2u1u3 −αb2u4u5

(6.4)
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We find the jacobian R =
dr

du

R(u) =



−αf1u2 − αf2u3 −αf1u1 αb1 − α
f
2u1 αb2u5 αb2u4

−αf1u2 −αf1u1 αb1 0 0

αf1u2 − αf2u3 αf1u1 −αb1 − α
f
2u1 αb2u5 αb2u4

αf2u3 0 αf2u1 −αb2u5 −αb2u4

αf2u3 0 αf2u1 −αb2u5 −αb2u4


The stoichiometry matrix is:

S =

−1 −1 1 0 0

−1 0 −1 1 1


A basis for the nullspace of S is

C =



−1 1 1

2 −1 −1

1 0 0

0 1 0

0 0 1


And so we have CTR = 0

Each timestep we compute a new value for R and use that to compute a new value

for G which we use to find

P = G(CTG)−1CT

We set αf1 = 0.5, αb1 = 1, αf2 = 0.5, and αb2 = 1. In accordance with our quasi-

steady-state assumption, we chose values for uI so that r ≈ ε which we set at 1×10−6.

We used a stepsize of h = 0.01. Since the transport operator T is diagonal in the

species index, and we consider a spatially homogeneous problem in this example, the
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transport operator T reduces to a diagonal matrix in the species u and has non-

positive eigenvalues. In this example we set the transport operator to be

T = diag(−2,−1.5,−1,−0.5, 0) .

A summary of parameters used for figure 6.1 is given in table 6.1.

Table 6.1: Parameters Used in Computing and Plotting Figure 6.1.

Parameter Value

Coefficient of the first forward reaction (αf1) 0.5

Coefficient of the first backward reaction (αb1) 1

Coefficient of the second forward reaction (αf2) 0.5

Coefficient of the second backward reaction (αb2) 1

Separation of time scales (ε) 1× 10−6

Timestep (h) 0.01

Transport operator diag( −2,−1.5,−1,−0.5, 0)

For the full solution we solved the scheme (6.3) for t ∈ [0, 1]×10−4 and solved the

reduced problem with the first order scheme explained in Section 6.1. As you can see

in Figure 6.1, the solutions match very well.
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Figure 6.1: Comparison of Full Solution to Reduced Solution (Five Species and

Two Reactions).

6.4 A Spatially Inhomogeneous Example

We take an example similar to the example in Appendix A. Given three species

and one reversable reaction as follows:

u1 + u2 � u3

We have the following three differential equations:

u̇1 = r1 = −αf1u1u2 +αb1u3

u̇2 = r2 = −αf1u1u2 +αb1u3

u̇3 = r3 = αf1u1u2 −αb1u3

(6.5)

We find the jacobian R =
dr

du

R(u) =


−αf1u2 −αf1u1 αb1

−αf1u2 −αf1u1 αb1

αf1u2 αf1u1 −αb1

 = Γdiag(u2, u1, 1), Γ =


−αf1 −α

f
1 αb1

−αf1 −α
f
1 αb1

αf1 αf1 −αb1


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A basis for the nullspace of R is found by first computing the basis for the nullspace

of Γ as follows

N(Γ) = H =


−1 αb1

1 0

0 αf1

 , N(R) = G(u) = diag(u2, u1, 1)−1H =


−1
u2

αb1
u2

−1
u1

0

0 αf1


The stoichiometry matrix is:

S =

(
−1 −1 1

)
A basis for the nullspace of S is

C =


−1 1

1 0

0 1


And again we have CTR = 0.

Each timestep we compute a new value for R and use that to compute a new value

for H and Γ which we use to find

P = G(CTG)−1CT

We note that the units of u are particles per cm. Therefore the units of u̇ = r are

particles per (cm × time). Thus we have that the units of αb are u/time or particles

per (cm × time). The units of αf are 1/time. We set αf1 = 4, αb1 = 0.1. In accordance

with our quasi-steady-state assumption, we chose values for uI so that r ≈ ε which

we set at 1 × 10−1. We used a time stepsize of h = 0.1. In this case we add a one

dimensional spatial variable of x ∈ [0, 1] with a stepsize of ∆x = 0.05. The transport

operator T is given by equation (4.2). We set the diffusion coefficient equal to four
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for each specie. We set the mobility equal to one. Since we take the electrodynamic

potential to be linear, the electric field is constant and we set it equal to two. We

look at two cases for the charge.

• Case 1. In this case we have that u1 is a mobile atom (e.g. cadmium), u2 is a

free site, and u3 is an atom on a fixed site on a lattice. In this case z2 should

be zero. And z1 and z3 should be the same, either negative one or zero. In the

first case we take z1 and z3 to be zero. We summarize the parameters used for

Case 1 in table 6.2.

• Case 2. In this case we have that u1 is an electron, u2 is an uncharged particle,

and u3 is a negative ion. In this case z1 will be negative one, z2 will be zero,

and z3 will be negative one. We summarize the parameters used for Case 2 in

table 6.3.

Table 6.2: Parameters Used in Computing and Plotting Figure 6.2.

Parameter Value

Coefficient of the first forward reaction (αf1) 4

Coefficient of the first backward reaction (αb1) 0.1

Separation of time scales (ε) 1× 10−1

Timestep (h) 0.1

Spatial stepsize (∆x) 0.05

Diffusion Coefficient (D) diag(4, 4, 4)

Mobility (µ) diag(1, 1, 1)

Electric Field (∇xV ) 4

Charge (z) diag(0, 0, 0)
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Table 6.3: Parameters Used in Computing and Plotting Figure 6.3.

Parameter Value

Coefficient of the first forward reaction (αf1) 4

Coefficient of the first backward reaction (αb1) 0.1

Separation of time scales (ε) 1× 10−1

Timestep (h) 0.1

Spatial stepsize (∆x) 0.05

Diffusion Coefficient (D) diag(4, 4, 4)

Mobility (µ) diag(1, 1, 1)

Electric Field (∇xV ) 4

Charge (z) diag(−1, 0,−1)

For the full solution we solved the scheme (6.3) for t ∈ [0, 20] × 10−4 and solved

the reduced problem with the first order scheme explained in Section 6.1. In Figures

6.2 and 6.3, we show the results of the full and reduced solutions for cases one and

two at x = 0.25 microns, x = 0.55 microns, and x = 0.85 microns. As you can see in

these figures, the solutions match very well. We computed the norm of the difference

of the full and reduced solutions over the norm of the full solution at the last time

step. We got 0.0124 for case one and 0.0057 for case two.
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Figure 6.2: Case 1 Comparison of Full and Reduced Solutions at x = 0.25, 0.55,

and 0.85 Microns.

Figure 6.3: Case 2 Comparison of Full and Reduced Solutions at x = 0.25, 0.55,

and 0.85 Microns.
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Chapter 7

OPERATOR SPLITTING METHODS

Operator splitting is a numerical method of computing the solution of a differential

equation. The splitting method separates the original equation into two parts over a

single time step, separately computes the solution to each part, and then combines

the two separate solutions to form a solution to the original equation (MacNamara

and Strang (2016)). We apply operator splitting techniques (MacNamara and Strang

(2016), Sportisse (2000)). The systems under consideration are of stiff type, which

Sportisse addresses in his paper. In practical applications the use of operator splitting

methods is a necessity to keep the computational cost within reasonable bounds. The

goal of the work in Chapter 7 is to develop a numerical method that is a consistent

solver for the original reaction transport system, which implicitly solves the reduced

problem for time steps chosen much larger than the time scale of the fastest reac-

tions. We demonstrate the necessity for operator splitting methods in Section 7.1 by

comparing computational costs of a fully implicit scheme with the cost of separating

the transport and the reaction parts of the equations by operator splitting. We give

an overview of existing theory in Section 7.3.

7.1 Reasons

For realistic systems of the form (5.1), it is imperative to use operator splitting

methods, separating the reaction term, r, and the transport operator, T . In the

following we give a rough reasoning for this statement using operation counts under

simplified assumptions. The actual operation count will depend on the actual numer-

ical method used. However, the basic conclusion will still hold. Namely, that for a
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realistic reaction diffusion system with O(50) species in two spatial dimensions, the

use of operator splitting is imperative. An operator splitting method for the system

(5.1) would be of the following form. Given u(t) and time step h, compute u(t + h)

by solving reaction and spatial transport separately.

• Step 1: The reaction step. Solve

∂tw1 =
1

ε
r(w1), w1(t) = u(t), set u1 = w1(t+ h).

• Step 2: The transport step. Solve

∂tw2 = Tw2, w2(t) = u1, set u(t+ h) = w2(t+ h).

We compare this to a direct solution of the system (5.1). Since the original system

(5.1) is stiff in time we would have to use an implicit time discretization method for

the full system to be able to use time steps on the order of the slow reactions. We

compare the computational cost of an implicit method for the full system with the

cost of an operator splitting method. For simplicity, let us assume that the involved

nonlinear equations at each implicit time step are solved by a Newton type algorithm

and that the resulting linear equations are solved by a direct sparse solver. We

restrict this comparison to the case of simulations in two spatial dimensions, since one

spatial dimension is, in general, not enough to represent the transport mechanisms

in a solar cell and nobody would use a direct solver in three spatial dimensions.

The computational work for a direct sparse solution of a system of M equations

with a matrix bandwidth b is roughly given by O(Mb2). Considering a reaction

diffusion system with N species and O(K2) grid points (or finite element cells) in two

dimensions we have roughly M = NK2 and b = NK, giving a computational cost of

O(N3K4) operations per linear solve for a straightforward use of an implicit method

for the full system (5.1). Comparing this to the cost of the operator splitting method,
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we have to solve K non-linear equations which will take K2 operations, involving N3

operations per Newton step for the (full) linear systems, giving O(K2N3) operations

for Step 1. In Step 2 we solve N separate two-dimensional transport equations. Each

of these equations gives a K2×K2 system with a matrix bandwidth K, and therefore

involves O(K4) operations. All together, the operation count for the operator splitting

method per linear solve is O(N3K2+NK4) whereas the operation count for the direct

solution per linear solve would be O(N3K4). This gives a ratio of

direct

operator splitting
=

N2K2

N2 +K2
.

For realistic numbers (N = O(50), K = O(100)), this gives a speedup factor of

roughly 1000 of the operator splitting method over the direct solution.

This is a very rough comparison only. The performance of the direct solver could

be improved, even in two dimensions, using iterative solvers for the involved linear

systems, but so could the performance of the operator splitting solver in Step 2. On

the other hand, this comparison assumes operation counts on a purely linear machine,

not taking into account parallelization. Parallelization, or vectorization, will actually

work in favor of the operator splitting method. So, in summary, to make the solution

of the reaction-transport system (5.1) feasible on a standard desktop-type computer,

for realistic values of the number of species and gridpoints, it is necessary to employ

the operator splitting method.

7.2 Self Consistent Potentials and Gummel’s Algorithm

To include a self consistent potential V into the simulation, Poisson’s equation

(4.3) has to be solved dynamically together with the reaction and the transport equa-

tions. This will couple the transport step in the operator splitting method across the
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species index n as well as across the spatial variable x. The standard approach to

deal with this problem is an iterative method, commonly known as Gummel iteration

(Selberherr (1984)), which adds an inner loop to the operator splitting method in

Section 7.1 to resolve the resulting nonlinearity.

Remark: The operator splitting algorithm presented in this section will still suffer

from a severe restriction on the time step h = tk+1 − tk, due to the stiffness of the

problem for ε � 1 (Sportisse (2000)). The purpose of this section is to show that,

using Gummel’s algorithm, the inclusion of a self consistent potential V via the Pois-

son equation (7.1) is just an add-on to the operator splitting method, involving an

additional inner loop for Gummel’s iteration. An asymptotically preserving operator

splitting method, based on the asymptotic analysis in Chapter 5, avoiding the restric-

tion on the time step due to the stiffness, will be discussed in Chapter 8.

An alternate discussion of Gummel’s method is given in Appendix B. Given the

system of transport equations ∂t~u = ~T , where the nonlinear operator ~T is given by

(4.2) as

~T = (T1, . . . , Tn), Tn(~u) = ∇x · [Dn∇xun + znµnun∇xV ]

and the potential V = V (~u) is given by the Poisson equation (4.3)

−∇x · (κ∇xV ) =
N∑
n=1

znun +D , (7.1)

Gummel’s method (Selberherr (1984)) consists of iterating between the Poisson equa-

tion (4.3) and the transport equation system (4.2) after using the variable transfor-
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mation un = e
−znµn
Dn sn, n = 1 : N resulting in the system

(a)−∇x · (κ∇xV ) =
N∑
n=1

zne
−znµn
Dn

V sn +D

(b) ∂t(e
−znµn
Dn

V sn) = ∇x · (Dne
−znµn
Dn

V∇xsn), n = 1 : N .

(7.2)

The transformed variables sn are often referred to as Slotboom variables (Vook

et al. (2000)) in the engineering literature. Gummel’s algorithm now consists of

iterating between (7.2) (a) and (7.2) (b) until convergence is reached, i.e. solving

iteratively

(a)−∇x · (κ∇xV
j) =

N∑
n=1

zne
−znµn
Dn

V jsj−1
n +D

(b) ∂t(e
−znµn
Dn

V jsjn) = ∇x · (Dne
−znµn
Dn

V j∇xs
j
n), n = 1 : N ,

(7.3)

j = 1, 2, . . . , thus transferring the nonlinearity in the system (7.2) from the transport

equations (7.2) (b) to the, now nonlinear, Poisson equation (7.3) (a) within the iter-

ation. After reverting to the original densities, given by un = e
−znµn
Dn sn, n = 1 : N ,

(7.3) becomes

(a)−∇x · (κ∇xV
j) =

N∑
n=1

zne
znµn
Dn

(V j−1−V j)uj−1
n +D

(b) ∂tu
j
n = Tn[V j]ujn = ∇x · [Dn∇xu

j
n + znµnu

j
n∇xV

j], n = 1 : N .

(7.4)

So, for an iterate V j, computed from (7.4) (a), equation (7.4) (b) becomes linear in

uj. More importantly, equation (7.4) (b) can be solved separately for each species

un, regaining the advantages of the operator splitting methods outlined in Section

7.1. The modification of the operator splitting method in Section 7.1, including the

nonlinear coupling of the species through the self consistent potential V , is now of

the form: Given V (x, tk) and ~u(x, tk):

• Step 1: The reaction step. Solve

∂t ~w =
1

ε
~r(~w), tk < t < tk+1, ~w(x, tk) = ~u(x, tk), set ~u(1)(x) = ~w(x, tk+1),
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with ~w = (w1, . . . , wN), ~r = (r1, . . . , rN)

• Step 2: The (nonlinear) transport step. Starting with V 0(x, t) = V (x, tk),

~w0(x, tk) = ~u(1)(x),

– Step 2(a): Solve −∇x · (κ∇xV
j) =

∑N
n=1 zne

znµn
Dn

(V j−1−V j)wj−1
n +D,

– Step 2(b): Solve ∂t ~w
j = ~T [V j]~wj, ~wj(x, tk) = ~u(1)(x), for tk < t < tk+1 and

j = 1, 2, . . . .

• Step 3: Upon convergence of Step 2 with ~w → ~w∞ and V j → V ∞, set

~u(x, tk+1) = ~w∞(x, tk+1), V (x, tk+1) = V ∞(x, tk+1)

Remark: The above operator splitting algorithm retains the advantage of the

operator splitting method, namely that Step 2(b) can be carried out separately for

each species n = 1 : N , once V j has been computed from Step 2(a).

7.3 General Convergence Theory for Operator Splitting Methods

We will begin with an ODE example (MacNamara and Strang (2016)).

du

dt
= (A+B)u

whose solution is

u(h) = u(0)eh(A+B)

which looks pretty easy to compute. But what if it isn’t easy? What if we can compute

ehA and ehB separately but not eh(A+B)? A first order splitting approximation would

be

eh(A+B) = ehAehB. (7.5)
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Let’s take the case where A and B are matrices and show why this is only a first

order approximation. We start with a Taylor series expansion of each term.

eh(A+B) = I + h(A+B) +
h2

2
(A+B)2 +

h3

6
(A+B)3 + . . .

ehA = I + hA+
h2

2
A2 +

h3

6
A3 + . . .

ehB = I + hB +
h2

2
B2 +

h3

6
B3 + . . .

Now we put this into equation (7.5) to see

I + h(A+B) +
h2

2
(A+B)2 +O(h3)

=

(
I + hA+

h2

2
A2 +O(h3)

)(
I + hB +

h2

2
B2 +O(h3)

)
Now we do the multiplication on the right hand side (RHS)

RHS = I + hA+
h2

2
A2 + hB + h2AB +

h2

2
B2 +O(h3)

We rearrange terms and see

RHS = I + h(A+B) +
h2

2
(A2 + 2AB +B2) +O(h3)

This gives us

I + h(A+B) +
h2

2
(A+B)2 +O(h3) = I + h(A+B) +

h2

2
(A2 + 2AB +B2) +O(h3).

The 2nd order terms don’t always match because

(A+B)2 = (A2 + 2AB +B2)

only when the matrices commute. Therefore, equation (7.5) is only a first order ap-

proximation unless the matrices A and B commute.

59



The symmetric Strang splitting is presented in MacNamara and Strang (MacNa-

mara and Strang (2016)) as follows

eh(A+B) ≈ e
h
2
AehBe

h
2
A. (7.6)

This is second order splitting. To illustrate this, we proceed as above with Taylor

series expansion of each term

eh(A+B) = I + h(A+B) +
h2

2
(A+B)2 +

h3

6
(A+B)3 + . . .

e
h
2
A = I +

h

2
A+

h2

8
A2 +

h3

48
A3 + . . .

ehB = I + hB +
h2

2
B2 +

h3

6
B3 + . . .

Now we put this into equation (7.6)

I + h(A+B) +
h2

2
(A+B)2 +

h3

6
(A+B)3 + · · · =

(
I +

h

2
A+

h2

8
A2 +

h3

48
A3 + . . .

)
(
I + hB +

h2

2
B2 +

h3

6
B3 + . . .

)(
I +

h

2
A+

h2

8
A2 +

h3

48
A3 + . . .

)
(7.7)

We multiply the square and cube on the left hand side (LHS)

h2

2
(A+B)2 =

h2

2

(
A2 + AB +BA+B2

)
h3

6
(A+B)3 =

h3

6

(
A3 + ABA+BA2 +B2A+ A2B + AB2 +BAB +B3

)
We put this back into the LHS of Equation (7.7) to get

LHS = I + h(A+B) +
h2

2

(
A2 + AB +BA+B2

)
+
h3

6

(
A3 + ABA+BA2 +B2A+ A2B + AB2 +BAB +B3

)
+O(h4)

(7.8)

Now we start on the RHS by multiplying the first two terms(
I +

h

2
A+

h2

8
A2 +

h3

48
A3 + . . .

)(
I + hB +

h2

2
B2 +

h3

6
B3 + . . .

)
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= I +
h

2
A+

h2

8
A2 +

h3

48
A3 + hB+

h2

2
AB+

h3

8
A2B+

h2

2
B2 +

h3

4
AB2 +

h3

6
B3 +O(h4)

We multiply this with the last term on the RHS(
I +

h

2
A+

h2

8
A2 +

h3

48
A3 + hB +

h2

2
AB +

h3

8
A2B +

h2

2
B2 +

h3

4
AB2 +

h3

6
B3

+O(h4)
)(
I +

h

2
A+

h2

8
A2 +

h3

48
A3 + . . .

)
= I +

h

2
A+

h2

8
A2 +

h3

48
A3 + hB +

h2

2
AB +

h3

8
A2B +

h2

2
B2

+
h3

4
AB2 +

h3

6
B3 +

h

2
A+

h2

4
A2 +

h3

16
A3 +

h2

2
BA+

h3

4
ABA+

h3

4
B2A+

h2

8
A2 +

h3

16
A3

+
h3

8
BA2 +

h3

48
A3 +O(h4)

Combining like terms we get

RHS = I + h(A+B) +
h2

2

(
A2 + AB +BA+B2

)
+
h3

6

(
A3 +

3

4
A2B +

3

2
AB2 +

3

2
ABA+

3

2
B2A+

3

4
BA2 +B3

)
+O(h4)

(7.9)

We look at the local error by subtracting Equation (7.8) from Equation (7.9). We

notice that I and the h and h2 terms cancel, and we are left with

local error =
h3

6

(
A3 +

3

4
A2B +

3

2
AB2 +

3

2
ABA+

3

2
B2A+

3

4
BA2 +B3

)
−h

3

6

(
A3 + ABA+BA2 +B2A+ A2B + AB2 +BAB +B3

)
+O(h4)

=
h3

6

(
1

2
ABA− 1

4
BA2 +

1

2
B2A− 1

4
A2B +

1

2
AB2 −BAB

)
+O(h4)

So we see that

local error = Ch3 +O(h4)

Where the constant C is given by

C =
1

24

(
2ABA−BA2 + 2B2A− A2B + 2AB2 − 4BAB

)
If we define a difference operator by [A,B] = AB −BA then we can show that

C =
1

24
([[A,B], A] + 2[[A,B], B])

61



Proof.

C =
1

24
([(AB −BA), A] + 2[(AB −BA), B])

=
1

24
((ABA−BAA− AAB + ABA) + 2(ABB −BAB −BAB +BBA))

=
1

24
(2ABA−BAA− AAB + 2ABB − 4BAB + 2BBA)

Which is our desired result.

We note that second order operator splitting introduces an error which cancels

out the benefits (MacNamara and Strang (2016)) therefore in this work we use a first

order splitting method.
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Chapter 8

ASYMPTOTICALLY PRESERVING SCHEMES

The basic idea of asymptotically preserving methods is the following: Consider

a problem depending on a small parameter ε. Consider the discretization of this

problem depending on a small parameter h (a stepsize). There are two iterated limits

to be considered

• The limit h→ 0, ε→ 0, giving the continuous solution of the full problem first

(if the scheme is convergent) and then the solution of the reduced problem for

ε→ 0.

• The limit ε→ 0, h→ 0, giving the continuous solution of the limiting solution

of the discretization for ε→ 0 first, and then the continuum limit of this limiting

solution for h→ 0.

The definition of an asymptotically preserving scheme is that these two limits

commute. This means in practice that we get the same solution for ε� h and h� ε.

Therefore we can take large time steps h � ε and still compute the correct solution

on large time scales.

In this section we address asymptotically preserving methods and their applica-

tions to modeling the efficiency and lifetime of solar cells. We will also present a proof

that L-stable methods are asymptotically preserving for the reaction diffusion system.
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8.1 An Asymptotically Preserving Scheme

Based on the asymptotic analysis developed in Chapter 5, we develop and impli-

ment an asymptotically preserving scheme that allows us to compute the solutions

efficiently (on the transport time scale). We briefly outline the basic idea here. Since

the asymptotically preserving scheme must reflect the properties of the limiting asym-

totic solution in Chapter 5 we discretize the original problem in the formulation (5.4),

using the reaction product v = 1
ε
r(u) as an additional variable. We consider the sys-

tem

∂tu = v + Tu ,

ε∂tv = R(u)(v + Tu) .

(8.1)

In addition, we have to discretize this system by an operator splitting method,

treating transport and reactions separately, for the reasons of computational efficiency

outlined in Section 7.1. There are various ways to achieve this goal. One possible way

would be the following scheme: given u(tn) and v(tn), compute u(tn+1) and v(tn+1).

• Step 1: solve

(a) ∂tu1 = Tu1, u1(tn) = u(tn) ,

(b) ε∂tv1 = R(u1)(v1 + Tu1), v1(tn) = v(tn) .

(8.2)

for tn < t < tn+1 = tn + ∆t

• Step 2: solve

(a) ∂tu2 = v2, u2(tn) = u1(tn+1) ,

(b) ε∂tv2 = 0, v2(tn) = v1(tn+1)

(8.3)

for tn < t < tn+1 = tn + ∆t
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• Step 3: set

u(t+ ∆t) = u2(t+ ∆t) ,

v(t+ ∆t) = v2(t+ ∆t) .

Note that this method has essentially the same advantages in terms of compu-

tational costs as outlined in Section 7.1. Step 1(a) can be performed separately for

each species. In Step 1(b) the variables u1(t) and Tu1(t) are known inhomogeneous

terms, and Step 1(b) can be performed for each gridpoint (or finite element) sepa-

rately. Step 2 is just a simple integration. In the following we prove that the scheme

above is actually asymptotically stable and varify this on computation ALT tests for

more realistic problems.

8.2 AP Applied to the Full Solution

We apply this Asymptotically Preserving (AP) scheme to the full solution pre-

sented in Chapter 6. We again begin with equation (5.4)

(a) ∂tu = v + Tu, u(0) = uI

(b) ∂tv =
1

ε
R(u)(v + Tu), v(0) = vI =

1

ε
r(uI).

(8.4)

• Step 1: Solve

(a) ∂tu1 = Tu1, u1(tn) = u(tn),

(b) ε∂tv1 = R(u1)(v1 + Tu1), v1(tn) = v(tn)

Then we have

u1(t+ h) = u1(t) + hTu(t+ h)

εv1(t+ h) = εv1(t) + h(R(u1(t+ h))(Tu1(t+ h) + v1(t+ h))).
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We solve the first equation for u1(t + h) and the second equation for v1(t + h)

to get

u1(t+ h) = (I − hT )−1u1(t)

v1(t+ h) = (εI − hR(u1(t+ h)))−1(εv1(t) + h(R(u1(t+ h))Tu1(t+ h))).

(8.5)

for tn < t < tn+1 = tn + h

• Step 2: Solve

(a) ∂tu2 = v2, u2(tn) = u1(tn+1),

(b) ε∂tv2 = 0, v2(tn) = v1(tn+1)

Then we have

u2(t+ h) = u2(t) + h(v1(t+ h))

v2(t+ h) = v2(t) = v1(t+ h).

(8.6)

for tn < t < tn+1 = tn + h

• Step 3: Set

u(t+ h) = u2(t+ h)

v(t+ h) = v2(t+ h).

(8.7)

8.3 AP Applied to the Reduced Solution

We begin with an analysis of the asymptotically preserving scheme on the reduced

equations (ε = 0). We proceed as in section 5.3. We split v into the part that is in the

nullspace of R and the part that is in the orthogonal complement of the nullspace of

R with v = ṽ+ v̂ with ṽ = P (u)v and v̂ = (I−P (u))v. We recall that Ṗ =
d

dt
P (u(t)).
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We differentiate ṽ1 with respect to t and then substitute in for ∂tv1 from equation

(8.2) (b) as follows

∂tṽ1 = ∂t(Pv1) = Ṗ v1 + P∂tv1

= Ṗ v1 + P

(
1

ε

)
R(v1 + Tu1) = Ṗ v1 .

Here we have used that PR = 0

Now we differentiate v̂1 with respect to t and then substitute in for ∂tv1 from

equation (8.2) (b) again

∂tv̂1 = ∂t(I − P )v1 = −Ṗ v1 + (I − P )∂tv1

= −Ṗ v1 + (I − P )

(
1

ε

)
R(v1 + Tu1)

= −Ṗ v1 +

(
1

ε

)
R(v1 + Tu1) .

For Step 1 we have

∂tu1 = Tu1, u1(0) = uI

∂tṽ1 = Ṗ (ṽ1 + v̂1), ṽ1(0) = vI

∂tv̂1 =

(
1

ε

)
R(v̂1 + Tu1)− Ṗ (ṽ1 + v̂1), v̂1(0) = vI .

(8.8)

For Step 2, we use the same process as above except that we substitute from

equation (8.3) (b) as follows

∂tṽ2 = ∂t(Pv2) = Ṗ v2 + P∂tv2 = Ṗ v2 + P · 0 = Ṗ v2 .

∂tv̂2 = ∂t(I − P )v2 = −Ṗ v2 + (I − P )∂tv2 = −Ṗ v2 .

For Step 2 we have

∂tu2 = (ṽ2 + v̂2)

∂tṽ2 = Ṗ (ṽ2 + v̂2)

∂tv̂2 = −Ṗ (ṽ2 + v̂2), .

(8.9)
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Now we look for the asymptotic solution to this system of partial differential

equations. We begin with Step 1 and multiply the equation for v̂1 in (8.8) by ε and

let ε→ 0 to find the order-one equation for v̂1.

ε∂tv̂1 = R(v̂1 + Tu1)− εṖ (ṽ1 + v̂1), (ε→ 0)

=⇒ R(v̂1 + Tu1) = 0

We found in section 5.3 that the solution of R(v̂ + Tu) = 0 is given by v̂ =

(P − I)Tu. We apply this to v̂1 and u1. Now for Step 1, equation (8.8) becomes

∂tu1 = Tu1, u1(0) = uI

∂tṽ1 = Ṗ (ṽ1 + (P − I)Tu1), ṽ1(0) = vI .

(8.10)

The equations for Step 2 remain as in (8.9).

This gives us the following for the numerical discretization for Step 1 and Step 2

• Step 1

u1(t+ h) = (I − hT )−1u1(t)

ṽ1(t+ h) = (I − hṖ )−1[ṽ1(t) + (P − I)Tu1(t+ h)] .

(8.11)

• Step 2

ṽ2(t+ h) = (I − hṖ )−1[ṽ2(t) + hṖ v̂2(t)]

v̂2(t+ h) = (I + hṖ )−1[v̂2(t)− hṖ ṽ2(t+ h)]

u2(t+ h) = u2(t) + h[ṽ2(t+ h) + v̂2(t+ h)] .

(8.12)
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8.4 Reduced Equations

We begin with a version of our asymptotically preserving scheme introduced in

section 8.1. For notational purposes we will use the following:

u0 = u(t)

v0 = v(t)

u2 ≈ u(t+ h)

v2 ≈ v(t+ h)

We will reserve u1 and v1 for the intermediate part (Step 1) of each time step. We

discretize Step 1 from equation (8.2) and Step 2 from equation (8.3)

Step 1

a) (I − hT )u1 = u0 or u1 = u0 + hTu1.

b) εv1 = εv0 + hR0(Tu1 + v1) where R(u0) = R0 and RP = PR = 0.

(8.13)

Step 2

a) u2 = u1 + hv2

b) v2 = v1

(8.14)

Step 3

a) u(t+ h) ≈ u2

b) v(t+ h) ≈ v2

(8.15)

Now we split spaces in S0 as in section 5.4, letting

v0 = ṽ0 + v̂0 with ṽ0 = P0v0 and v̂0 = (I − P0)v0

v1 = ṽ1 + v̂1 with ṽ1 = P0v1 and v̂1 = (I − P0)v1

ṽ0, ṽ1 ∈ S̃0 and v̂0, v̂1 ∈ Ŝ0
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We split Step 1 equation b) into the following two equations using ṽ1 = P0v1 and

v̂1 = (I − P0)v1.

εṽ1 = εP0v0 + hP0R0(Tu1 + v1)

εv̂1 = ε(I − P0)v0 + h(I − P0)R0(Tu1 + ṽ1 + v̂1)

(8.16)

We use the fact that ṽ0 = P0v0 and that PR = RP = 0 to get

ṽ1 = ṽ0

εv̂1 = εv̂0 + hR0(Tu1 + v̂1)

(8.17)

We also split Step 2 equation b) which gives us the following equations for Step 1

and Step 2

Step 1

a) u1 = u0 + hTu1.

b) ṽ1 = ṽ0, εv̂1 = εv̂0 + hR0(Tu1 + v̂1)

(8.18)

Step 2

a) u2 = u1 + hv1

b) ṽ2 = P2v1, v̂2 = (I − P2)v1 .

(8.19)

Now we let ε→ 0 and get the following for Step 1 b)

ṽ1 = ṽ0, 0 = R0(Tu1 + v̂1)

We again use the first law of linear algebra to find that v̂1 = −(I − P0)Tu1 and

so our equations become

Step 1

a) u1 = u0 + hTu1.

b) ṽ1 = ṽ0, v̂1 = −(I − P0)Tu1

(8.20)
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Step 2

a) u2 = u1 + hv1

b) ṽ2 = P2v1, v̂2 = (I − P2)v1 .

(8.21)

Now we expand up to O(h2):

Step 1 a)

u1 = u0 + hTu1 =⇒ u1 = u0 + hT [u0 + hTu1] =⇒ u1 = u0 + hTu0 +O(h2)

Step 1 b)

v̂1 = −(I−P0)Tu1 =⇒ v̂1 = −(I−P0)T [u0 +hTu1] =⇒ v̂1 = −(I−P0)Tu0 +O(h)

Step 2 a)

u2 = u1 + hṽ1 + hv̂1

Step 2 b)

ṽ2 = P0(ṽ1 + v̂1) + h∆P0(ṽ1 + v̂1) +O(h2)

v̂2 = (I − P0)(ṽ1 + v̂1)− h∆P0(ṽ1 + v̂1) +O(h2)

Now we eliminate u1, ṽ1, and v̂1 from Step 2 up to O(h2) using Step 1 equations

Step 2 a)

u2 = u0 + hTu0 + hṽ0 − h(I − P0)Tu0 +O(h2) = u0 + hP0Tu0 + hṽ0 +O(h2)

Step 2 b)

ṽ2 = ṽ0 + h∆P0(ṽ0 − (I − P0)Tu0) +O(h2)

v̂2 = (I − P0)(ṽ0 − (I − P0)Tu0)− h∆P0(ṽ0 − (I − P0)Tu0) +O(h)
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v̂2 = −(I − P0)Tu0 +O(h)

Which gives us the following

Step 2

a) u2 = u0 + hP0Tu0 + hṽ0 +O(h2)

b) ṽ2 = ṽ0 + h∆P0(ṽ0 − (I − P0)Tu0) +O(h2)

c) v̂2 = −(I − P0)Tu0 +O(h)

(8.22)

We take the limit h→ 0 to get

a) ∂tu = PTu+ ṽ

b) ∂tṽ = Ṗ (ṽ − (I − P )Tu), v̂ = −(I − P )Tu

ṽ ∈ S̃(t), v̂ ∈ Ŝ(t) .

(8.23)

Which is a closed system for u, ṽ which is the same as equation (5.14).

8.5 A Spatially Homogeneous Example

We again use the example first introduced in Section 2.4 where we have five species

and two reactions as follows:

u1 + u2 � u3, u3 + u1 � u4 + u5

We used the same parameters as in section 6.3 which are listed in table 8.1. We

compare the full and reduced AP schemes. For the full solution we solved equations

(8.5), (8.6), and (8.7) and for the reduced solution we discretized equations (8.20)

and (8.21) noting that v1 = ṽ1 + v̂1 = ṽ0 + v̂1. This is used to discretize equation

(8.20) as follows.

a) u1 = (I − hT )−1u0

b) v1 = P0v0 − (I − P0)Tu1 .

(8.24)
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Equation (8.21) is discretized as

a) u2 = u1 + hv1

b) v2 = v1 .

(8.25)

Table 8.1: Parameters Used in Computing and Plotting Figure 8.1.

Parameter Value

Coefficient of the first forward reaction (αf1) 0.5

Coefficient of the first backward reaction (αb1) 1

Coefficient of the second forward reaction (αf2) 0.5

Coefficient of the second backward reaction (αb2) 1

Separation of time scales (ε) 1× 10−6

Timestep (h) 0.01

Transport operator diag( −2,−1.5,−1,−0.5, 0)

As you can see in Figure 8.1, the solutions match very well. We computed the

norm of the difference of the full and reduced solutions over the norm of the full

solution at the last time step. We got 1.7236× 10−6.
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Figure 8.1: Comparison of Full to Reduced Solutions for the AP Scheme with

Five Species and Two Reactions.

8.6 A Spatially Inhomogeneous Example

We again use the example first introduced in Section 2.4 where we have five species

and two reactions as follows:

u1 + u2 � u3, u3 + u1 � u4 + u5

We used similar parameters as in section 6.4 which are listed in Table 8.2 for case

1 and Table 8.3 for case 2. We compare the full and reduced AP schemes. We used

the same equations as in Section 8.5.

For the full solution we solved the scheme (6.3) for t ∈ [0, 20] × 10−4 and solved

the reduced problem with the first order scheme explained in Section 6.1. In Figures

8.2 and 8.3, we show the results of the full and reduced solutions for cases one and

two at x = 0.25 microns, x = 0.55 microns, and x = 0.85 microns. As you can see in
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these figures, the solutions match very well. We computed the norm of the difference

of the full and reduced solutions over the norm of the full solution at the last time

step. We got 0.6083 for case one and 0.1504 for case two.

Table 8.2: Parameters Used in Computing and Plotting Figure 8.2.

Parameter Value

Coefficient of the first forward reaction (αf1) 4

Coefficient of the first backward reaction (αb1) 0.1

Coefficient of the second forward reaction (αf2) 4

Coefficient of the second backward reaction (αb2) 0.1

Separation of time scales (ε) 1× 10−6

Timestep (h) 0.1

Spatial stepsize (∆x) 0.05

Diffusion Coefficient (D) (−1× 10−4×) [1, 0.75, 0.5, 0.25, 0.0025]

Mobility (µ) diag(1, 1, 1, 1, 1)

Electric Field (∇xV ) 2

Charge (z) diag(0, 0, 0, 0, 0)

Figure 8.2: Case 1 Comparison of Full and Reduced Solutions at x = 0.25, 0.55,

and 0.85 Microns.
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Table 8.3: Parameters Used in Computing and Plotting Figure 8.3.

Parameter Value

Coefficient of the first forward reaction (αf1) 4

Coefficient of the first backward reaction (αb1) 0.1

Coefficient of the second forward reaction (αf2) 4

Coefficient of the second backward reaction (αb2) 0.1

Separation of time scales (ε) 1× 10−2

Timestep (h) 0.1

Spatial stepsize (∆x) 0.05

Diffusion Coefficient (D) (−1× 10−4×) [1, 0.75, 0.5, 0.25, 0.0025]

Mobility (µ) diag(1, 1, 1, 1, 1)

Electric Field (∇xV ) 2

Charge (z) diag(−1, 0,−1, 0, 0)

Figure 8.3: Case 2 Comparison of Full and Reduced Solutions at x = 0.25, 0.55,

and 0.85 Microns.
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Chapter 9

EXAMPLE

Here we present a more realistic example applied to the simulation of degradation

effects in solar cells.

9.1 Solar Cell

We begin with our list of items that degrade cadmium telluride which we intro-

duced in Chapter 2. We use that list and derive the following list of 15 species.

1. e− (electron)

2. Cu−i (copper interstitial)

3. Cu0
i (copper interstitial)

4. Cu+
i (copper interstitial)

5. Cu−Cd (copper cadmium)

6. Cu0
Cd (copper cadmium)

7. Cu+
Cd (copper cadmium)

8. Cu+2
Cd (copper cadmium)

9. Cl−i (chlorine interstitial)

10. Cl0i (chlorine interstitial)

11. Cl+i (chlorine interstitial)
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12. Cl−Te (chlorine telluride)

13. Cl0Te (chlorine telluride)

14. Cl+Te (chlorine telluride)

15. Cl+2
Te (chlorine telluride)

Now we consider the following reactions:

1. e−+ Cu0
i = Cu−i

2. e−+ Cu0
Cd = Cu−Cd

3. Cu+
i + Cu−Cd = Cu0

i+Cu0
Cd

4. e−+ Cu+
i = Cu0

i

5. e−+ Cu+
Cd = Cu0

Cd

6. e−+ Cl+2
Te = Cl+Te

7. e−+ Cl+i = Cl0i

8. e−+ Cl0i = Cl−i

9. Cl+i + Cl−Te = Cl0i+ Cl0Te

10. Cl+i + Cl0Te = Cl0i+ Cl+Te

11. Cl+i + Cl+Te = Cl0i+ Cl+2
Te

12. Cl+i + Cu−Cd = Cl0i+ Cu0
Cd

13. Cl+i + Cu0
Cd = Cl0i+ Cu+

Cd

14. Cl+i + Cu+
Cd = Cl0i+ Cu+2

Cd
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We use a stoichoimetry matrix to describe these 14 reactions involving the 15

species.

−1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0

−1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

−1 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

−1 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 −1 1 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1

0 0 0 0 −1 1 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 −1 1 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 −1 1 0 1 −1 0 0 0 0


The following three figures show how the species amounts change as we get deeper

into the material. Figure 9.1 shows the species after only one time step. Figure 9.2

shows the species at t = .5 seconds and figure 9.3 shows the species at t = 1 second.

Notice that as the time progresses the scales on each species plot change. This is a

somewhat reduced model. There are no electron hole combinations. Only electrons.

More work is needed to include electron hole combinations.
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Figure 9.1: All of the Species at t = 1× 10−5 Seconds, Which is After the First

Time Step.

Figure 9.2: All of the Species at t = 0.5 Seconds.
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Figure 9.3: All of the Species at t = 1 Second.

Table 9.1 shows the parameters used in this model.

9.2 Conclusion

Throughout this work we have developed a methodology for general reaction trans-

port problems on multiple time scales applicable to situations where we cannot ex-

plicitly compute quasi-steady state. For these general problems we have developed

asymptotically preserving operator splitting methods which allow us to take large

time steps using information about the asymptotic solutions. We applied this solu-

tion to the specific problem of solar cells but there could be other applications. Future

work in this area will improve the physics of the example in Section 9.1 and explore

applications to biological and other problems.
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Table 9.1: Parameters Used in Computing and Plotting Figures 9.1, 9.2, and

9.3.

Parameter Value

Separation of time scales (ε) 1× 10−7

Timestep (h) 1× 10−5 seconds

Spatial stepsize (∆x) 0.01 microns

Electric Field (∇xV ) 2 eV

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

µ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

z -1 -1 0 1 -1 0 1 2 -1 0 1 -1 0 1 2
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APPENDIX A

A SIMPLE EXAMPLE
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The following is a simple example of the discussion presented in section 5.3. We
begin with one reaction and three species. Let the species be u1, u2, and u3 with the
reaction u1 + u2 → u3. In this example we have the following

u̇1 = −u1u2

u̇2 = −u1u2

u̇3 = u1u2

The stoichiometry matrix is S = (−1 − 1 1). As stated above in Section 5.1, C
is the basis of the null space of S which we compute following (Bogacki (2019)). We
transform S to the reduced row echilon form to get ( 1 1 − 1). This corresponds to
the system x1 + x2 − x3 = 0. This system has infinitely many solutions

x1 = −x2 + x3, x2 = arbitrary, x3 = arbitrary

We select x2 = −1 and x3 = 0. This gives us ( 1 − 1 0 )T . Next we select x2 = 0
and x3 = 1. This gives us ( 1 0 1 )T which gives us

r =

[−u1u2

−u1u2

u1u2

]
, R =

[−u2 −u1 0
−u2 −u1 0
u2 u1 0

]
C =

[
1 1
−1 0
0 1

]
G =

[
u1 0
−u2 0

0 1

]
.

We also see that CTR = 0 and so we choose P = G(CTG)−1CT . Let us check
these with our example

CT ·R =

[
1 −1 0
1 0 1

]
·

[−u2 −u1 0
−u2 −u1 0
u2 u1 0

]
=

[
−u2 + u2 −u1 + u1 0
−u2 + u2 −u1 + u1 0

]
=

[
0 0 0
0 0 0

]

and R ·G =

[−u2 −u1 0
−u2 −u1 0
u2 u1 0

]
·

[
u1 0
−u2 0

0 1

]
=

[−u2u1 + u1u2 0
−u2u1 + u1u2 0
u2u1 − u1u2 0

]
=

[
0 0
0 0
0 0

]
.

Now we compute P = G(CTG)−1CT in our example. We begin with the middle,

(CTG) =

[
1 −1 0
1 0 1

]
·

[
u1 0
−u2 0

0 1

]
=

[
u1 + u2 0
u1 1

]
.

Now we use Cramer’s Rule (Strang (2009)) to find the inverse.

(CTG)−1 =
1

u1 + u2

[
1 0
−u1 u1 + u2

]
.

Now we multiply by the first term on the left
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G(CTG)−1 =
1

u1 + u2

[
u1 0
−u2 0

0 1

]
·
[

1 0
−u1 u1 + u2

]
=

1

u1 + u2

[
u1 0
−u2 0
−u1 u1 + u2

]
.

And now multiply by the last term on the right will give us P

P = G(CTG)−1CT =
1

u1 + u2

[
u1 0
−u2 0
−u1 u1 + u2

]
·
[
1 −1 0
1 0 1

]

=
1

u1 + u2

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]
.

Now we check that PR = RP = 0.

PR =
1

u1 + u2

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]
·

[−u2 −u1 0
−u2 −u1 0
u2 u1 0

]

=
1

u1 + u2

 −u1u2 + u1u2 −u2
1 + u2

1 0
u2

2 − u2
2 u2u1 − u2u1 0

−u2
2 − u1u2 + u1u2 + u2

2 −u2u1 − u2
1 + u2

1 + u2u1 0

 =

[
0 0 0
0 0 0
0 0 0

]
.

RP =
1

u1 + u2

[−u2 −u1 0
−u2 −u1 0
u2 u1 0

]
·

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]

=
1

u1 + u2

[−u2u1 + u1u2 u2u1 − u1u2 0
−u2u1 + u1u2 u2u1 − u1u2 0
u2u1 − u1u2 −u2u1 + u1u2 0

]
=

[
0 0 0
0 0 0
0 0 0

]
.

Now we check that P 2 = P

P 2 =
1

u1 + u2

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]
· 1

u1 + u2

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]

=
1

(u1 + u2)2

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]
·

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]

=
1

(u1 + u2)2

 u2
1 + u1u2 −u2

1 − u1u2 0
−u2u1 − u2

2 u2u1 + u2
2 0

u2u1 − u1u2 + (u1 + u2)u2 −u2u1 + u1u2 + (u1 + u2)u1 (u1 + u2)2


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=
1

(u1 + u2)2

[
u1(u1 + u2) −u1(u1 + u2) 0
−u2(u1 + u2) u2(u1 + u2) 0
u2(u1 + u2) u1(u1 + u2) (u1 + u2)2

]

=
1

u1 + u2

[
u1 −u1 0
−u2 u2 0
u2 u1 u1 + u2

]
= P.
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APPENDIX B

GUMMEL’S METHOD
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This is essentially the same as the presentation in section 7.2 however, here we
treat the one speceis case before we discuss N species case. Gummel’s method is
an iterative method which shifts the nonlinearity from the transport equations to
the Poisson equation using a variable transformation. Given N species, we have the
following Poisson drift diffusion problem

∂2
t V =

∑
n

znun + d

∂tun = ∂x(Dn∂xun + znµnun∂xV ), n = 1 : N (B.1)

We start by treating one species plus Poisson. We begin with one species and a
model equation of the form

∂tu = ∂x[A(∂xu+ u∂xψ)], ∂2
xψ = −u+ d.

We introduce a variable transformation. We set ρ = eψu which gives us

∂t(e
−ψρ) = ∂x(Ae

−ψ∂xρ), ∂2
xψ = −e−ψρ+ d.

Now we apply the method of lines discretization (LeVeque (2007)) to get

∂t(e
−ψjρj) =

fj+0.5 − fj−0.5

∆x
, fj+0.5 =

A

∆x
e−ψj+0.5(ρj+1 − ρj) (B.2)

ψj+1 − 2ψj + ψj−1

∆x2
= e−ψjρj + dj . (B.3)

We apply the Gummel iteration with index k to get

ψkj+1 − 2ψkj + ψkj−1

∆x2
= e−ψ

k
j ρk−1

j + dj

and this gives us ψkj for all j. We apply this to equation (B.2) to get

e−ψjρj|k = e−ψjρj(t) + ∆t

(
fj+0.5 − fj−0.5

∆x

)
, fj+0.5 =

A

∆x
e−ψj+0.5(ρj+1 − ρj)|k+1

t+∆t

Now we present a preliminary algorithm for one time step. We set ρ0
j = ρj(t) and

ψ0
j = ψj(t). Then we solve

ψkj+1 − 2ψkj + ψkj−1

∆x2
= e−ψ

k
j ρk−1

j + dj, k = 1 : K

And this will give us ψkj for k = 1 : K and for all j. Note that this is still a nonlinear
equation in ψ so it still has to be solved by a Newton type method.
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Next we solve

e−ψ
k
j ρkj = e−ψjρj(t) + ∆t

(
fj+0.5 − fj−0.5

∆x

)
, (B.4)

fj+0.5 =
A

∆x
e−ψj+0.5(ρj+1 − ρj)|k, k = 1 : K (B.5)

And this will give us ρkj for k = 1 : K and for all j. Since we already know the

ψkj+0.5 this is linear for ρkj , therefore we have shifted the nonliearity from the transport
equation to the Poisson equation.

Now we set ψj(t+ ∆t) = ψKj and ρj(t+ ∆t) = ρKj .

Note that we compute ψj+0.5 by interpolating between ψj and ψj+1. In this way
we set

exp(−ψj+0.5) = exp(−1

2
(ψj + ψj+1)).

Using this we have that

fj+0.5 =
A

∆x
exp(−1

2
(ψj + ψj+1))(ρj+1 − ρj).

We recall that ρ = eψu and eliminate ρ to get

fj+0.5 =
A

∆x

[
exp(

ψj+1 − ψj
2

)uj+1 − exp(
ψj − ψj+1

2
)uj

]
.

Using this we present a final algorithm for one time step.

We set u0
j = uj(t) and ψ0

j = ψj(t). Then we solve

ψkj+1 − 2ψkj + ψkj−1

∆x2
= [exp(ψk−1

j − ψkj )]uk−1
j + dj, k = 1 : K

And this will give us ψkj for k = 1 : K and for all j.

Next we solve

ukj = uj(t) + ∆t

(
fj+0.5 − fj−0.5

∆x

)
,

fj+0.5 =
A

∆x

[
exp(

ψj+1 − ψj
2

)uj+1 − exp(
ψj − ψj+1

2
)uj

] ∣∣∣∣∣
k

, k = 1 : K

(B.6)

And this will give us ukj for k = 1 : K and for all j.

Now we set ψj(t+ ∆t) = ψKj and uj(t+ ∆t) = uKj .
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Now we expand the one species algorithm to an N species algorithm. We begin
with equation (B.1) and use the Einstein relations, UT is the ambient thermal energy
(UT ≈ 0.025eV at 300 kelvin). We also set UT = Dn/µn for all n and get

∂tun = ∂x(Dn∂xun + znµnun∂xV ) = ∂x[Dn(∂xun +
zn
UT

un∂xV )], n = 1 : N

Now we set A = Dn and ψ = zn
UT
V . This gives us an algorithm for one time step

in V, u1, . . . , uN .

We set u0
n,j = un,j(t) and V 0

j = Vj(t). Then we solve

V k
j+1 − 2V k

j + V k
j−1

∆x2
=
∑
n

exp

[
zn
UT

(
V k−1
j − V k

j

)]
znu

k−1
n,j + dj, k = 1 : K

And this will give us ψkj for k = 1 : K and for all n and j.

Next we solve

ukn,j = un,j(t) + ∆t

(
fj+0.5 − fj−0.5

∆x

)
,

fj+0.5 =
A

∆x

[
exp(zn

Vj+1 − Vj
2UT

)un,j+1 − exp(zn
Vj − Vj+1

2UT
)un,j

] ∣∣∣∣∣
k

, k = 1 : K

(B.7)

And this will give us ukn,j for k = 1 : K and for all n and j.

Now we set Vj(t+ ∆t) = V K
j and un,j(t+ ∆t) = uKn,j.
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