Differentiable Harvard Machine Architecture with Neural Network Controller
by

Manthan Bharat Bhatt

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved April 2020 by the
Graduate Supervisory Committee:

Heni Ben Amor, Chair
Yu Zhang
Yezhou Yang

ARIZONA STATE UNIVERSITY
May 2020

ABSTRACT

There have been multiple attempts of coupling neural networks with external memory
components for sequence learning problems. Such architectures have demonstrated
success in algorithmic, sequence transduction, question-answering and reinforcement
learning tasks. Most notable of these attempts is the Neural Turing Machine (NTM),
which is an implementation of the Turing Machine with a neural network controller
that interacts with a continuous memory. Although the architecture is Turing com-
plete and hence, universally computational, it has seen limited success with complex
real-world tasks.

In this thesis, I introduce an extension of the Neural Turing Machine, the Neural
Harvard Machine, that implements a fully differentiable Harvard Machine framework
with a feed-forward neural network controller. Unlike the NTM, it has two different
memories - a read-only program memory and a read-write data memory. A sufficiently
complex task is divided into smaller, simpler sub-tasks and the program memory
stores parameters of pre-trained networks trained on these sub-tasks. The controller
reads inputs from an input-tape, uses the data memory to store valuable signals and
writes correct symbols to an output tape. The output symbols are a function of the
outputs of each sub-network and the state of the data memory. Hence, the controller
learns to load the weights of the appropriate program network to generate output
symbols.

A wide range of experiments demonstrate that the Harvard Machine framework
learns faster and performs better than the NTM and RNNs like LSTM, as the com-

plexity of tasks increases.

DEDICATION

To my parents.

i

ACKNOWLEDGEMENTS

I want to thank Dr. Heni Ben Amor for guiding me through-out my journey and
supporting me at every step. I have had a wonderful learning experience working
with you.

I also want to thank the Dr. Yu Zhang and Dr. Yezhou Yang. I am honored to
have you on the committee for my thesis.

Lastly, I want to thank my parents and my friends who have shown immense
support at all times during this journey. It would not have been possible without all

of you.

1l

TABLE OF CONTENTS

Page

LIST OF TABLES vi

LIST OF FIGURES vii
CHAPTER

1 INTRODUCTION . .. 1

1.1 Memory Augmented Neural Networks - Literature Review 2

1.2 Motivation and Contributions 7

1.3 Related Works. 9

2 BACKGROUND KNOWLEDGE i 10

2.1 von Neumann Architecture i 10

2.2 Harvard Architecture 11

2.3 Turing Machine. i i 12

2.4 Neural Turing Machine.......... i 12

2.4.1 Architecture Overview 13

2.4.2 Reading from Memory 13

2.4.3 Writing to Memory i 13

2.4.4 Addressing Mechanisms il 14

3 METHODOLOGY ... e 16

3.1 Architecture - 1 19

3.1.1 Controller 19

3.1.2 Addressing Mechanisms 20

3.1.3 Reading from and Writing to the Data Memory 20

3.1.4 Reading from Program Memory........................... 21

3.2 Architecture - 2 21

3.2.1 Controller 22

v

CHAPTER Page

3.2.2 Reading from and Writing to the Data Memory 22

4 EXPERIMENTS, RESULTS AND ANALYSIS 23
4.1 Obstacle Avoidance and Wall Following 23
4.1.1 Experimental Setup 23

4.1.2 Results. 25

4.1.3 Analysisof Results......... 28

4.2 Pick and Sort Boxes 29
4.2.1 Experimental Setup 29

422 Results. 31

4.2.3 Analysisof Results......... 32

4.3 Mathematical Expressions i 33
4.3.1 Experimental Setup 33

4.3.2 Results. 34

4.3.3 Analysisof Results........ L 35

5 CONCLUSION AND FUTURE RESEARCH 39
5.1 Architecture 1 39
5.2 Architecture 2 40
REFERENCES . .o e 41

Table
4.1

4.2

4.3

4.4

4.5

4.6

LIST OF TABLES

Page
Accuracy of Harvard Machine, Neural Turing Machine and LSTM on
the First E-puck Task. 25
Accuracy of Harvard Machine, Neural Turing Machine and LSTM on
the Second E-puck Task. 28
Accuracy of Harvard Machine, Neural Turing Machine and LSTM on
the Third E-puck Task....... ... 28
Accuracy of Harvard Machine and Neural Turing Machine on the Sort
Items Experiment. 32
Comparison of Harvard Machine, Neural Turing Machine and Lstm
on Math Expressions Evaluation Task. The Error Term Represents
Average Divergence of a Model from the Correct Answer - Absolute
Difference Between Actual and Predicted Output, as a Percent of the
Maximum Possible Error...... ... 0 . 35
Change of P Vector over Time-steps. 35

vi

Figure
2.1
2.2
2.3
3.1

3.2

4.1

4.2

4.3

4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

LIST OF FIGURES

Page
von Neumann Architecture 10
Harvard Architecture. 11
Neural Turing Machine - Architecture Overview 12

Architecture-1 of the Proposed Differentiable Harvard Machine. The
Output from the Task Network Can Be Written to the Data Memory. . 19
Architecture-2 of the Proposed Differentiable Harvard Machine 21
An Overview of the E-puck Robot and the Arena Created in Webots. .. 23
Training Error Vs Iteration Plots Obtained in the Three Tasks for
Harvard Machine, Neural Turing Machine and LSTM. 26
Changes in the Data Memory as the Harvard Machine Parses over a
Sequence, for the Third Task with E-puck Robot. 27
Variation in P Values over Time for the E-puck Tasks................. 29
An Overview of the Youbot Robot and the Arena Created in Webots
for Sort Items Experiment. 30
Training Error Vs Epochs - Comparison Between Harvard Machine
and Neural Turing Machine. 32
Variation in P Values over Time for the Sort Boxes Task. 33
Training Loss Vs Epochs for Mathematical Expression Evaluation Task. 34
State of the Data Memory after Each Element of Input Sequence. 36
Change of the Interpolation Scalar over Time for the Mathematical
Expression Evaluation Task. 37
A Comparison Between Actual Operands That Were Supposed to Be
Passed to the Task Network Vs the Operands Generated by the Con-

BrOller. o 38

vil

Chapter 1

INTRODUCTION

The human brain processes sequential data received through all the senses, in
real time. These signals can be from multiple domains - notes of a song playing or
images of a baseball game. From visual senses, the visual cortex can identify edges,
judge depth and differentiate objects. Differentiating and identifying phonemes from
a continuous stream of auditory signals is executed by the auditory cortex. Therefore,
to achieve human-level cognition in machines, processing sequences and finding useful
representations of sequences is essential.

Multi-layer perceptrons, or feed-forward neural networks, have achieved success in
a wide-range of supervised learning problems in computer vision (Khan et al. (2019)).
For a given input X, a neural network classifier generates a probability distribution,
P(Y|X) over possible classes Y. As an example, from an x-ray image of a person’s
lungs, a feed-forward network can predict if the person has pneumonia.

In contrast to computer vision tasks, the output probabilities in sequence learning
problems depend on the current as well as all the previous inputs. For example, take a
look at the sentence “It is December now and the weather is ___”. 1f a neural network
had to predict a word between warm and cold to complete the sentence, it would
require information about all the previous words, especially the word December.

Recurrent Neural Networks (Elman (1990)), in contrast to feed-forward networks,
have a memory unit coupled with an activation unit in each neuron. These mem-
ory units can maintain state over time, storing valuable temporal relationships in
sequences. RNNs have been noteworthy in tackling problems in Natural Language

Processing (Young et al. (2018)).

Tight coupling of memory and computation units poses a challenge. For rep-
resenting long sequences, the computation cost, and as a result the training time,
increases exponentially. To counter this, a class of recurrent neural networks, called
Memory Augmented Neural Networks (MANNSs) were introduced (Ma and Principe
(2019)). A MANN has a neural network controller that interacts with an external
memory as it parses through a sequence. As discussed in the next section, many
MANN frameworks have been proposed so far that have achieved success in a broad
range of sequential problems.

In this thesis, I propose a Memory Augmented Neural Network that can capture
and represent long-term relationships in a sequence and test this model on a wide
range of mathematical and robotic experiments. The architecture is based on the
Harvard Machine design (Broesch (2009)) that has two external memories - a read
only memory and a read-write memory. This document is divided in five chapters -
the first chapter outlines the research done so far in the field of MANNs and lists the
motivation and key contributions of this work. Chapter 2 provides the reader with the
background knowledge that will be required to fully understand the methodologies
explained in this document. In Chapter 3, the architecture of the neural network
model is explained in detail and Chapter 4 illustrates the experiments that were
performed on the model and results obtained on them. Conclusions and directions of
possible future research are listed in the last chapter.

1.1 Memory Augmented Neural Networks - Literature Review

Research on neural networks began in the second half of the twentieth century.
However, until late 1980s, no such neural network architecture was developed that
could extract and represent temporal relationships from sequences. The Simple Re-

current Neural Network (SRNN) introduced by (Elman (1990)) was one the first

neural networks to claim success in this field. Unlike a feed-forward network, the
neurons in the hidden layer of SRNN had recurrent connections; the activation of a
hidden neuron at a particular time was a function of its previous activation. As a
result, the network was able to store intermediate values, called states, that could rep-
resent temporal properties. This opened many research areas in the field of sequence
learning. Languages are the most common sequences that we encounter in daily
life, and beyond any doubt, were of remarkable interest to researchers. Giles et al.
(1992a) and Giles et al. (1992b) showed that RNNs could successfully be trained to
represent regular languages. They had proven that they could capture the underlying
automaton. Another important area in sequence learning is sequence transduction -
transforming a given input sequence to an output sequence. A prototypical example
of such a task is machine translation. Bourlard and Morgan (1993) demonstrated that
with enough hidden layers, a recurrent neural network can translate long sequences
with sparse temporal dependencies.

As discussed in the previous section, such RNNs (called deep RNNs) require
enough number of hidden layers to store representations for the longest possible string.
As computation units and memory are strongly coupled, this leads to an unwanted
added computation cost for shorter strings. Also, for a linear increase in input length,
the computation units, and hence computation cost, increase exponentially. More-
over, RNNs were only able to successfully learn regular languages - the first class of
languages in Chomsky Hierarchy.

These were the main motivations for decoupling neural networks from memory
and led to the first wave of neural network architectures with external memories in
the early 1990s. The Neural Network Push Down Automaton (NNPDA) (S. Das
and Sun (1992)) was the first work concerned with the inference of Deterministic

Context-Free languages, only from training data sequences. The model has an exter-

nal stack memory integrated through a hybrid error function. The stack is continuous
and hence could be trained by gradient-descent methods. Training this model was
computationally heavy and unstable. S. Das and Sun (1993) put forth some meth-
ods to overcome the shortcomings of NNPDA by inducing a priori knowledge about
the tasks during training like using incremental learning and biasing network with
task-specific initial weights. Zeng et al. (1994) also proposed a neural network cou-
pled with an external stack memory for learning deterministic context-free grammars.
However, the proposed stack was discrete, unlike NNPDA. While the previous papers
focused on learning push-down automata, Mozer and Das (1993) proposed a neural
net architecture that learns to encode the structure of symbol strings via reduction
transformations. An example of a reduction transformation is reducing English lan-
guage sentences to noun phrases and verb phrases.

Following these works were two decades that saw little progress in this field. In the
second decade of the 21st century, there was a sudden rise in neural network related
research, especially in computer vision, due to availability of high performing GPUs.
In 2014, two works were published that inspired research for following years in the
field of Memory Augmented Neural Networks. These were Memory Networks (Weston
et al. (2014)) and the Neural Turing Machine (NTM) (Graves et al. (2014)). Memory
Networks were motivated by the fact that LSTMs performed poorly in capturing
long-term dependencies in sequences. The framework has four modules - to convert
input strings into an internal representation, to write this internal representation into
a memory, to produce an output given a query and state of the memory at that time,
and to convert the output to the desired format. The authors tested their model on
question-answering tasks with 14 million statements and 35 million questions.

The Neural Turing Machine (Graves et al. (2014)) aimed to train a neural network

model to perform algorithmic tasks. It has a neural network controller, either feed-

forward or recurrent, that interacts with an analog memory through continuous read
and write heads. This architecture was an implementation of the Turing Machine
(Turing (1936)). However, as the memory read and write operations are also con-
tinuous and differentiable, unlike the Turing Machine, the entire architecture could
be trained by gradient descent based methods. The NTM out-performed LSTM on
algorithms like copy, repeat copy, associative recall and priority sort.

Another noteworthy paper published during the same time was Joulin and Mikolov
(2015). Reviving the work done in 1990s (S. Das and Sun (1992), S. Das and Sun
(1993), Zeng et al. (1994), Mozer and Das (1993)), the paper investigated the lim-
itations of Recurrent Neural Networks in sequence transduction problems. They
proposed a model with an external continuous stack that outperformed RNNs for a
range of sequences. They extend the idea of a differentiable stack to a queue and a
dequeue (double ended queue). Just like a stack, the queue has a push and a pop op-
erations where the pop occurs at the bottom of the stack. The deque too has the same
operations, but the states of read and write heads are represented by 2-dimensional
vectors; the extra dimension indicates where to push or pop from (top bottom). The
results on tasks like Bigram Flipping, Subj—Verb—Obj to Subj-Obj—Verb conversion
and Gender Conjunction showed that the queue and dequeue generalize better than
the stack and much better than Deep RNNs, especially for longer sequences.

In the next couple of years, researchers worked on enhancing/extending the capa-
bilities of these MANNs. Memory Network (Weston et al. (2014)) described earlier
required supervision at each of its modules and could not be trained end-to-end.
Sukhbaatar et al. (2015) presented a version of Memory Networks that could be
trained end-to-end through back-propagation. While Memory Networks used discrete
max operators to generate the most similar feature representation for a question, End-

To-End Memory Networks (Sukhbaatar et al. (2015)) replaced these operators with

a Softmax layer. Instead of having soft attention mechanisms to address the memory
in NTM, Zaremba and Sutskever (2015) propose discrete weightings for the read and
write head. As the architecture cannot be trained end-to-end by back-propagation,
they use Reinforcement Learning to train the addressing mechanisms. Their model,
Reinforcement Learning Neural Turing Machine, can be extended to other discrete
interfaces like a search engine or a database. Another notable work, the Differen-
tiable Neural Computer (DNC) (Graves et al. (2016)) improves NTM in a few ways.
First, it introduces a new method to address memory, dynamic memory allocation,
to prevent interference of memory locations. Second, it uses free gates to free already
used memory that is no longer required, and third, it maintains the order in which
sequential information was stored, in a temporal link matrix. Sparse Access Memory
(SAM) (Rae et al. (2016)) introduced a memory architecture similar to that of the
NTM, but more scalable when the memory size increases. Firstly, the authors only
focus on content-based addressing and secondly, unlike NTM whose weightings are
a distribution over all the locations of the memory, SAM’s read and write vectors
are a distribution over a subset of all the memory locations. This subset is chosen
by a combination of a nearest-neighbor and a least recently used algorithm. As a
consequence, the forward and backward passes occur in O(logN) time and constant
space is utilized per time-step.

More recent works have been in applications of MANNSs in various fields, in im-
proving the efficiency and ease of training of previous MANNs, and in the field of
Memory Augmented Generative Models. Le et al. (2018a) proposed a Variational
Memory Encoder Decoder(VMED). In their architecture, an external memory acts
as an interface between an encoder and a decoder. The memory captures depen-
dencies in latent variables across time-steps. The encoder writes multi-modal latent

representations in the memory from which the decoder reads and constructs the in-

put. To model a multi-modal space, the authors use Mixture of Gaussians. Le et al.
(2018b) leveraged external memory to fuse features from two views for multi-view
sequential learning. Each view has its own controller and a memory, and the paper
puts forth algorithms for early and late fusing features from the two memories. Based
on Kanerva’s sparse distributed model (Kanerva (1988)), Wu et al. (2018) presented
a generative memory model. To reduce redundancy in storing latent information, the
authors derived a Bayesian memory update rule that optimizes the trade-off between
losing old values and writing new ones. Csordas and Schmidhuber (2019) overcame
three shortcomings that were present in the DNC - having a key-to-key comparison
in content based addressing instead of value-to-key by masking portions of values and
generating keys, de-allocating memory with low usage counters so that they don’t
affect the results of content-based addressing, and sharpening links in the tempo-
ral link matrix. The Neural Stored-Program Memory (Le et al. (2020)) is a fully
differentiable implementation of the Harvard Machine architecture. By having two
memories, one for storing data and another for programs, the architecture claims to
be truly universal. The controller and the data memory have function like in an
NTM. However, unlike the NTM where only one program(behavior) is implemented
by the controller, the controller in Le et al. (2020) can implement multiple programs.
The parameters of these programs are stored in the program memory. Depending on
the state of the memory and the input at any time-step, the controller can switch

between its behaviors.
1.2 Motivation and Contributions

In mathematics, often a complex computation can be thought of as a repetitive
combination of simple computations. Take for example the task of finding the n'”

term in an Arithmetic-Geometric Progression (A.G.P.). It may seem overwhelming

at first, especially when compared to simple mathematical operations like addition

and multiplication. However, a closer look at the terms of an A.G.P.
a, (a+d)r, (a+2d)r? (a+3d)r3, ... la+ (n—1)dr"!

suggests that it can be represented by a series of addition and multiplication oper-
ations. Another example is the multiplication operation itself which can be expressed
by repeated additions.

When building a convoluted software, engineers divide it into atomic, reuse-able
modules called functions. These functions are then called from a controller, or the
Main class, which implements an algorithmic outline of the business logic.

In the field of robotics, particularly in reinforcement learning, tasks are sequential
in nature, i.e. the agent gets a single input from the environment at each time-step.
More often than not, these tasks can also be broken into smaller sub-tasks. Examine
a robot that moves around in a park, picks up trash and throws it in a trash-can. To
train such a robot is intricate. However, different modules can be trained to recognize
trash, pick an object, navigate to the nearest trash-can and drop an object. Training
neural networks for these tasks individually is much less involving than training the
agent as a whole. Furthermore, just like the Main class described above in the case
of software development, a controller neural network can be trained that learns to
implement any given algorithm by loading different modules depending on the state
of the system and input from the environment. This was the fundamental motivation
behind the work presented in this document.

To that end, the contribution of this thesis is two-fold:

1. Propose a memory augmented neural network architecture that can learn com-
plex sequential tasks, both continuous and episodic, by learning granular com-

ponents individually and by learning to integrate these components.

2. Show that the proposed architecture successfully learns to evaluate mathemat-

ical sequences and various robotic tasks in simulation.

1.3 Related Works

The fundamentals of this thesis are directly based on the Neural Turing Machine
(Graves et al. (2014)). However, the most closely related work is the Neural Stored-
Program Memory (Le et al. (2020)), which was published a few weeks before this
thesis. The framework in Le et al. (2020) also extends NTM and proposes a differ-
entiable implementation of the Harvard Architecture. While the number of stored
programs and parameters are learn-able in Le et al. (2020), they are fixed in the
framework proposed in this work, which makes it easier to understand the underlying
semantics of the model and the training less complicated.

As mentioned earlier, the aim of this thesis is to propose a neural network archi-
tecture that can learn complex sequential tasks encompassing long sequences. Rae
et al. (2016), Le et al. (2019) and Csordas and Schmidhuber (2019) have proposed
methods with similar goals. Moreover, these works also are, in varying magnitudes,
based on the Neural Turing Machine and the Differentiable Neural Computer.

Another major aim of this thesis was to train complex robot policies. Parisotto
and Salakhutdinov (2017), Pritzel et al. (2017), Oh et al. (2016), Gupta et al. (2017),
Beck et al. (2020) are some works that have been successful with complex robotic
tasks. While these works propose architectures specific to a category of tasks, the
model proposed in this thesis is more generic and can be used for any sequence

transduction task.

Chapter 2

BACKGROUND KNOWLEDGE

In this chapter, a few concepts are described that are of importance for the un-
derstanding of the work presented in this thesis. An assumption has been made that
the reader has some familiarity with artificial neural networks (ANNs) and the two
main classes of ANNs - feed-forward networks and recurrent networks.

2.1 von Neumann Architecture

The von Neumann Architecture (von Neumann (1993)) is a computer architecture
that was introduced by Jon von Neumann in the year 1945. It is a type of a stored-
program computer, i.e. it stores program instructions in a memory instead of a control

panel. It consists of three main components (Figure 2.1)

Central Processing
Unit
Input R Output
Device 4 “| Device
Memory Unit

Figure 2.1: von Neumann Architecture

1. A Central Processing Unit(CPU) that has an Arithmetic and Logical Unit(ALU)
to compute arithmetic operations and a Control Unit(CU) that has an instruc-

tion register to store current instruction and a program counter register

10

2. A memory that stores data and program instructions

3. Mechanisms to interact with input and output devices

From the architecture diagram of the von Neumann Architecture (Figure 2.1), it
is evident that program instructions and data are fetched by the same bus. However,
CPUs execute instructions much faster than the speeds at which memories operate.
Hence, the CPU is never able to reach its maximum possible threshold. This phe-

nomenon is called the von Neumann bottleneck.

2.2 Harvard Architecture

Input
Device

\ 4

Instruction € Central

Memory __ , ProcessingUnit Data Memory

A 4

Output
Device

Figure 2.2: Harvard Architecture

The Harvard Architecture (Broesch (2009)) is also a stored-program computer
architecture. Unlike the von Neumann Architecture, the Harvard Architecture has
different buses for program instructions and data (Figure 2.2). In fact, the instruction
memory and data memory share a completely different memory space. By the virtue
of this design, the Harvard Architecture does not face a bottleneck in CPU throughput

that the von Neumann Architecture faces.

11

2.3 Turing Machine

A Turing Machine is a mathematical model of computation that defines an ab-
stract machine (Turing (1936)), invented by Alan M. Turing in 1936. It has an infinite
array of cells called a memory tape, and a head that it uses to interact with the tape.
Given a symbol read at a particular cell by the head, the machine can either move
the tape left or right, write to the current cell or halt the computation. Despite its

simple design, a Turing Machine can simulate the logic of any computer algorithm.
2.4 Neural Turing Machine

Neural Turing Machine (Graves et al. (2014)) is Memory Augmented Neural Net-
work (MANN) that has a single read-write memory block and a neural network con-
troller that uses soft attention mechanisms to address the memory, as discussed in
Chapter 1. It is an implementation of the Turing Machine which follows the von Neu-
mann design; there is only a single memory to store both data and instructions. In
this section, the details of its architecture and the methods through which it interacts
with the memory are discussed. Because the Harvard Machine proposed in this thesis
is an extension of the principles of the NTM, it is of importance that the reader is

familiar with them.

Input > Neural Controller Output

A 4

Write Read
Head Head

Memory

Figure 2.3: Neural Turing Machine - Architecture Overview

12

2.4.1 Architecture Overview

The NTM has a neural network controller that reads sequential inputs and gener-
ates outputs. This neural network can either be a feed-forward network or a recurrent
network. However, as the output at time ¢ depends on the memory contents at time
t — 1, the entire architecture is recurrent. At each time step ¢, the controller emits
a read head(s) and a write head(s). These heads act like attention mechanisms over
memory locations for reading and writing respectively. Figure 2.3 depicts a high level

view of the architecture.
2.4.2 Reading from Memory

Let M, be the contents of the N x M memory at time ¢, where N is the number
of memory locations and M is the size of each location. The read head emits a

weighting over the N locations of the memory, represented by vector w; such that:

Then, the read vector r; returned by the read head can be defined as follows:
Ty = Elwt(z)Mt(z)
2.4.3 Writing to Memory

Like LSTMs, the write operation is broken down into two - an erase operation
followed by an add operation. To that end, the write head emits two vectors, an erase
vector e; and an add vector a;, in addition to weightings w;. The write operation

can then be decomposed into the following two operations:
My(i) = Mya()[1 — wy(i)e]

13

where 1 is a row vector of 1s and the subtraction and multiplication operations

occur point-wise.
2.4.4 Addressing Mechanisms

Memory Networks introduced in Chapter 1, addressed memory locations by calcu-
lating similarities between vector representation of the query and the contents of the
memory. Such an addressing scheme is called content-based addressing. Although
simple, just content-based addressing may not be enough for certain class of problems.
Sometimes the state of a variable me be arbitrary but the variable still needs to be
stored in the memory. Searching for the most similar answer for a question may be ac-
complished through content-based addressing, but storing the result of multiplication
of two variables cannot be.

The NTM has one other type of addressing mechanism in addition to content-
based addressing, location-based addressing, where a memory location can either be
selected iteratively or can be randomly jumped to.

For content-addressing, each head produces a key vector k; of length M. The
similarity between this key vector and each location of the memory M,(7) is calculated
by similarity measure K7[.,.]. A scalar 8, determines the scale of attention to each

location.

exp(ﬁtK[k?t, Mt@)])
Yiexp(Bi K ki, Mi(7)])

we (i) =

In the paper Graves et al. (2014), the similarity measure used was Cosine Simi-
larity.

Location based addressing is a combination of three separate operations:

1. Interpolation: A scalar g;, which takes values in the closed interval [0,1], acts

as a gate to interpolate weights produced by content-addressing and the weights

14

from previous time-step.

2. Shifting: To focus on a particular memory location, the heads emit a vector s;
that is a normalized weighing over the allowed shits. For example, if the allowed
shifts are in the range [—2, 2], the distribution will be over [-2, —1,0, 1, 2], where
the sign indicates the direction in which to shift the attention (up is positive,
down if negative) and the absolute value indicates how many memory locations

to shift.

3. Sharpening: As the shift vector may get dispersed over time, the final weight-
ings are sharpened by performing a softmax-like operation. To that end, the

head emits a scalar 7, > 1 that defines the extent of sharpening.

The above mentioned operations can be formalized by the following equations:

w9 = gw + (1 —g)we

15

Chapter 3

METHODOLOGY

Let us revisit the example from Chapter 1 of a robot in a park collecting trash
and depositing it in trash-cans, in more detail. Say the robot is an arm mounted on a
mobile platform and is equipped with a depth camera like Kinect, a GPS sensor and a
compass. Furthermore, it also knows the location(GPS coordinates) of all the trash-
cans in the park. To train a policy for this robot, end-to-end using reinforcement
learning, is intricate. However, training the robot to perform the following tasks may
not be as involving:

1. For a given image of an object, classify it as trash or not trash.
2. Pick an object after seeing depth images
3. Plan a path from current location to nearest trash-can

4. Avoid obstacles when navigating on a path

Therefore, neural networks, called Task Networks from hereon, can be trained
individually to learn the above mentioned policies. Each task network generates a
distribution over actions to select from, based on the input signals it receives from
the environment.

Let an episode be defined as the agent picking up one trash object and placing
it in a trash-can. Each episode can then be represented as a sequence of states and
actions, (x;,a;), where x, is the state and a; is the optimal action to be taken at
time ¢t. A recurrent neural network, the Controller Network, can learn to transduce

the sequences of inputs into sequences of actions. The controller receives inputs from

16

the environment and reads the current state of its memory. It then decides which
task network should be designated to generate the next action. In order to make
the model trainable by back-propagation, instead of selecting one task network, the
controller generates a distribution over task networks. Optionally, depending on the
nature of the task, the controller can chose to write the output at each time-step in the
memory. The supervision is performed on the output generated at every time-step,
i.e. the model is trained end-to-end.

More formally, each input x, presented to the controller network at time ¢, the
controller learns to generate the probability distribution P(ay|x;, 0, 67,07, ..., 67x),
where 6F are the parameters of the controller network and 671...07 are the parameters
of the task network for k different tasks.

The model has Six main components:

1. Controller: The controller, N€, is a neural network that reads sequential input
symbols and generates output symbols. Analogous to the Turing Machine, the
input and output symbols can be assumed to be coming from an infinitely long
tape. The controller also emits weightings to address the data and the program
memory. Either a feed-forward or a recurrent neural network can be used as
the controller. Since the state of the program memory is maintained over time,
the entire architecture is recurrent irrespective of the choice of the controller

network.

2. Task Network: A Task Network, N, is a neural network that has been trained
to perform a sub-part of the entire task. For example, a network that has been
trained to add two numbers can be used to evaluate mathematical expressions.
There can be a single task network (train the same architecture for all the

sub-tasks) or multiple task networks.

17

3. Program Memory: It is a read-only memory that stores learned parame-
ters for different sub-tasks. At each time-step, the appropriate parameters are

chosen from this memory and loaded into the task network(s).

4. Data Memory: It is a read-write memory that the controller uses to store
information that may be of importance in the future. For example, while eval-
uating mathematical expressions, it can store intermediate results that will be

required for future calculations.

5. Program Memory Head: It is a continuous read head that addresses the

Program Memory.

6. Data Memory Heads: These are continuous read and write heads that ad-

dress the Data Memory.

In this chapter, two different architectures are discussed. The need for two ar-
chitecture stems from the nature of tasks. In some problems, the outputs generated
at intermediate steps may be required to calculate outputs in the future. Therefore,
the controller must decide if the output at any given time step should be written in
the data-memory. Also, the inputs in the task networks should be a function of the
contents of the data memory. Alternatively, some problems do not necessitate the
storage of intermediate outputs. In such cases, the only inputs to the task networks
are the inputs that the controller sees at every time-step. To that end, the following

two sub-sections describe these to architectures in detail.

18

Program Memory

Load Weights

wh|wh w T

Controller

Task Network

Input 7

i: Output

["t—l) "t]

Data Memory

Figure 3.1: Architecture-1 of the Proposed Differentiable Harvard Machine. The
Output from the Task Network Can Be Written to the Data Memory.

3.1 Architecture - 1
3.1.1 Controller

The controller, N¢, can be a feed-forward or a recurrent neural network. In all
the experiments listed through-out this thesis, a feed-forward network was used. At
every time-step ¢, the controller receives input x,, and outputs parameters &, and (,
that parameterize a read-write memory M and a pointer vector p, to a read-only
memory M", respectively. The read-only memory M" has K locations that contain
learned parameters for the K tasks, N''... N*%. The output of the penultimate layer
of the controller, OF~! is used to generate parameters &, and ¢, for the data and

program memories respectively. The architecture is represented in Figure 3.1.

ﬁt = VVtg[OtL_l]
¢ = WioF ™

(&, C) = Ne(xy; 0f)

19

3.1.2 Addressing Mechanisms

There are two memories to be addressed here, M; and M". The weights for
M, w] (read weights) and w}’ (write weights), are computed from &, similar to how

Neural Turing Machines do it. The vector ¢, has two components:

G = [1; Pyl

p, are the weightings that address the pointers to M" and y; is a scalar that will
be used to interpolate the add vector with output. p is of significance only if the
architecture allows writing the predicted output into data memory. More about u is

discussed in the next sub-section.
3.1.3 Reading from and Writing to the Data Memory

Let M, be the N x W data matrix with IV locations of size W. At time ¢, the
controller emits read weights w; which define a weighing over the N locations of the

memory. Since all the weightings are normalized, therefore:
YSawi(t) =1, 0<wj(i) <1
Then, the read vector at time ¢,
ry = 2wy (1).M(7)

For writing, the controller also emits normalized write weights w}’. Apart from
the weights, it also emits two vectors - an erase vector e; and an add vector a;. The
erase vector determines memory from which locations can be removed and the add
vector determines what is to be written to the memory. Also, the scalar p; controls
how much output at time ¢ affects the value of a;. Hence, at some time-steps, the

controller can choose to write the output of previous iteration to the memory.

20

a; = ap*xpy + Outyx (1 — py)
M(i) = M;_1(4)[1 — w?(7).eq
M(i) = M) + w(i).a¢

3.1.4 Reading from Program Memory

The read vector of the program memory encodes the learned parameters for the
task network. This vector is obtained in the same way as for the data memory - a

linear combination of attention weightings and contents of the memory location.
o/ = Zip(i).M" (i)
Here @] are the parameters that will be loaded in the task network.
3.2 Architecture - 2

Program Memory

Load Weights

Input

Vs

Output

Data Memory

Figure 3.2: Architecture-2 of the Proposed Differentiable Harvard Machine

As both the architectures have the same components and underlying principles,
only the differences between them are highlighted in this section. An illustration of

the architecture can be seen in Figure 3.2.

21

3.2.1 Controller

Just like the first architecture, the second to last layer of the controller emits
two vectors that parameterize the data and the program memory. However, because
the task network is not allowed to write to the data memory, the scalar pu,; is not

generated. Therefore, the following equations now define the controller:

& = WiOF ™
Dy = th[OtL_l]

(& p) = N(xu:0;)
3.2.2 Reading from and Writing to the Data Memory

The reading operation is the same in both the architectures. However, because
there is no interpolation from the output, the write operation now is exactly the same
as in the Neural Turing Machine - an erase operation followed by an add operation.

The add vector is directly generated by the controller and is a part of &,

22

Chapter 4

EXPERIMENTS, RESULTS AND ANALYSIS

In this chapter, the details of different experiments performed and results obtained
on them are discussed. Each section represents a class of experiments and is divided
into three sub-sections - the experimental setup, results obtained and the analysis
of those results. Experiments were performed on both the architectures described in
the previous chapter. A comparison of performance between the Harvard machine
architecture presented in this thesis, Neural Turing Machine and Long Short Term
Memory(LSTM) Networks is provided in terms of learning rate and accuracy. The
simulator used for the purpose of robotic experimentation is Webots.

4.1 Obstacle Avoidance and Wall Following
4.1.1 Experimental Setup

E-puck is a miniature mobile robot originally developed at EPFL for teaching
purposes. It has two differential wheels and eight infra-red distance sensors. The
robot’s top view can be seen in Figure 4.1.

The robot is put into an arena created in Webots simulator (Figure 4.1(b)). The

N2

[3

ps5

ps2

(a) E-Puck Model (b) WeBots Arena
Figure 4.1: An Overview of the E-puck Robot and the Arena Created in Webots.

23

arena has a floor surrounded by four walls and two wooden obstacles. With the values
of the infra-red distance sensors as input, the following three distinct networks are

trained.

1. Obstacle Avoidance: Keep moving straight and keep avoiding walls/wooden

blocks if encountered.

2. Wall Following - Clockwise: Reach the nearest wall and follow it in a clock-

wise direction.

3. Wall Following - Anti-clockwise: Reach the nearest wall and follow it in an

anti-clockwise direction.

Combining the above trained policies, Harvard Machine, Neural Turing Machine

and LSTM are trained on the following tasks:

1. Task 1: Keep moving straight until a wall/wooden box is encountered. Follow

the wall in a given direction once encountered.

2. Task 2: Keep moving straight and avoid walls/wooden boxes if encountered.
Keep a count of the number of times a box/wall is avoided. As the count reaches

five, follow the next wall encountered in a given direction.

3. Task 3: Keep moving straight and avoid walls/wooden boxes if encountered.
Keep a count of the number of times a box/wall is avoided. As the count reaches
two, follow the next wall encountered in a given direction. While following the
wall, if an end of either of the wooden boxes is reached, revert to obstacle

avoidance behavior again.

The direction in which the walls are to be followed is given to the robot at ¢t =1
as a signal. The robot has to remember that signal until it switches to wall following

behavior.

24

Model Accuracy Accuracy: Critical Points

Harvard Machine 98.14% 89.98%
Neural Turing Machine 89.08% 63.71%
LSTM 81.43% 36.75%

Table 4.1: Accuracy of Harvard Machine, Neural Turing Machine and LSTM on the
First E-puck Task.

4.1.2 Results

It can be clearly observed that the tasks have an increasing order of complexity.
The average sequence lengths for the above tasks were approximately 342, 687 and
834 respectively. The consequence of such long sequences can be seen in the Training
Loss vs [terations graphs in Figure 4.2. While LSTM converges well before the optimal
behavior, the Harvard Machine learns faster and converges to a better solution than
the NTM.

Tables 4.1, 4.2 and 4.3 show the accuracy attained after training each model on the
above mentioned tasks. The accuracy, however, is not the best metric to demonstrate
the definiteness of these models. Take for example a task in which the robot has to
keep following a linear path for 99 steps and then turn left. If a network predicts the
first 99 actions correctly (going straight) but ends up predicting the last action as
going right, the robot may end up being in a completely different place. The accuracy
of such a model would still be 99%. Thus, the accuracy of a model at such critical

points is important.

25

—— Harvad Machine
—— Neural Turing Machine
—— LSTM

0.54

I
IS
L

Cross Entropy Loss
o
w
)

0.2+
0.14
T T T T T T T T
0 10 20 30 40 50 60 70
Iterations x 1000
(a) Task-1
—— Harvad Machine
0.5+ Neural Turing Machine
— LSTM
0.4 4
2
S
3
2
g 0.3 1
=]
c
o
2
S 0.2
s}
0.1
0.0 1
0 10 20 30 40 50 60 70
Iterations x 1000
(b) Task-2
—— Harvad Machine
| —— Neural Turing Machine
054 | — LSTM

Cross Entropy Loss
o o
N w

0.14

0.0

0 10 20 30 40 50 60 70
Iterations x 1000

(c) Task-3
Figure 4.2: Training Error Vs Iteration Plots Obtained in the Three Tasks for
Harvard Machine, Neural Turing Machine and LSTM.

26

(2) (h)

Figure 4.3: Changes in the Data Memory as the Harvard Machine Parses over a
Sequence, for the Third Task with E-puck Robot.

27

Model

Accuracy Accuracy: Critical Points

Harvard Machine 97.86% 86.02%
Neural Turing Machine 92.47% 57.72%
LSTM 84.73% 12.98%

Table 4.2: Accuracy of Harvard Machine, Neural Turing Machine and LSTM on the

Second E-puck Task.

Model Accuracy Accuracy: Critical Points
Harvard Machine 98.65% 86.9%
Neural Turing Machine 92.63% 60.19%
LSTM 88.79% 8.5%

Table 4.3: Accuracy of Harvard Machine, Neural Turing Machine and LSTM on the
Third E-puck Task.

4.1.3 Analysis of Results

In Figure 4.3, the state of the data memory at different time-steps is presented for
Task 3. A similar pattern was seen for all the tasks - the controller writes something in
the memory which becomes more prominent over time, and when the robot switches
behaviour, the contents of the memory change drastically.

To analyze the performance of the model, the most important factor is the confi-
dence with which it selects weights from the Program Memory. If the right network
is chosen at a given time-step, the output is guaranteed to be correct because the
task network reads inputs from the input tape rather than the data memory. Figure
4.4 depicts how the values of p(i) change over time, for each of the 3 tasks. It can be

concluded that at any given time, the model has high confidence in choosing a task

28

-
o

o
EY

1.0 (’ A : rv—"Ty "HIHHHJNW
0.8)

0.6

o
EY

—— Avoid Walls
Follow - Clockwise
—— Follow - Anticlockwise

.Lnlm...w_,ﬁ,)k

100 200 300 400 500
Time

—— Avoid Walls
Follow - Clockwise
—— Follow - Anticlockwise

P Values
P Values

o
S

0.4

0.2

-
”

0.0

(a) Task-1 (b) Task-2

1 — Avoid walls
Follow - Clockwise
—— Follow - Anticlockwise

P Values

0.4

0.24

Wl L
0 50 100 150 200 250
Time

(c) Task-3
Figure 4.4: Variation in P Values over Time for the E-puck Tasks.

network, as the values of p(i) do not overlap.
4.2 Pick and Sort Boxes
4.2.1 FExperimental Setup

In this task, A mobile arm equipped with a camera is presented with an object.
The object can either be a red or a green colored box. There are two bins (colored red
and green), which are placed at different locations in an arena. The robot learns to
pick the object, plans to navigate to the correct bin and then drops the object in the
bin. An important point to note is that once the object is picked up, it is no longer
in the robot’s field of view. Therefore, it has to remember the object it had picked

until it places it in a bin. This task is similar to the trash collection task discussed

29

(a) Kuka YouBot (b) WeBots Arena

Figure 4.5: An Overview of the Youbot Robot and the Arena Created in Webots
for Sort Items Experiment.

in Chapter 1.

The mobile arm used for this task is Kuka’s YouBot. It is an arm with two fingers
and five degrees of freedom. The arm is mounted on a unidirectional platform. The
simulator used to create the arena is Webots. Figure 4.5 depicts the robot and the
arena in more detail. As it can be seen from the figure, the bins are not visible to the
robot while picking the object.

For this experiment, the following four task networks were trained:

1. Given images from an RGB camera, strafe towards the object and execute a

grip.
2. Given GPS coordinates of the robot, navigate to the red bin and drop the object.

3. Given GPS coordinates of the robot, navigate to the green bin and drop the

object.

While training on sequences, the Harvard Machine is presented with images from
the camera and GPS coordinates of the robot. At each time-step, it generates a
distribution over the following actions - move forward, move backward, strafe left,

strafe right, pick the object, and drop the object.

30

Architecture-2 of the Harvard Machine, as described in the previous chapter, was
used as the model. Furthermore, the network to navigate to bins and to pick a box
have different architectures. Therefore, it is not possible to load weights like it was
for the E-puck tasks. One way to go about having multiple task networks is to look
at the problems from another angle - instead of picking the weights for a single task
network, the controller can choose one output from multiple task networks. This can
be seen as an equivalent of choosing one network to generate an output at a particular

time-step. Therefore, the following equation:
OtT = Xip(i).M" (i)
now becomes
Y, = Zip(i)-fr(xi;0")

Where y, is the output generated at time ¢, fi() is the i task network and 6%
are its learned parameters stored in the program memory. If the task networks have
different output(action) spaces then they can be stacked together in a Softmaz layer,

instead of a linear combination. That is:
y, = Softmaz([p(0).f2(x.;0™), p(1).fH(x,;:0™), .. ,p(d).f3(x:;0™)])
4.2.2 Results

A comparison of learning curves of the Harvard Machine and the Neural Turing
Machine are shown in Figure 4.6. The figure indicates that the Harvard Machine

converges much faster than NTM. A comparison of their accuracy can be found in

Table 4.4.

31

Model Accuracy Accuracy: Critical Points

Harvard Machine 96.9% 96.36%

Neural Turing Machine 78.04% 70.76%

Table 4.4: Accuracy of Harvard Machine and Neural Turing Machine on the Sort
Items Experiment.

0.6 ,
—— Harvad Machine
\ Neural Turing Machine
0.5 A
9]
3 0.4 4
-
>
o
o
5 0.3
]
[
<
o
0.2 A
0.1 ‘\,—\
0 5 10 15 20 25 30 35 40
Epochs

Figure 4.6: Training Error Vs Epochs - Comparison Between Harvard Machine and
Neural Turing Machine.

4.2.3 Analysis of Results

One major observation that can be made from the results is the relation between
training loss and accuracy for Neural Turing Machine. Although NTM converges to
a better optima, its accuracy is much less than that of the Harvard Machine. This
happens because the loss is the average of losses for picking up a green box and a
red box. The Neural Turing Machine almost always over-fits to one of the classes.
Therefore, its loss for the other class increases while the average is not affected by a

large quantity. Furthermore, its confidence while taking actions for the other class is

32

o f

0.8 1

)

—— Pick Box
Navigate - Red
—— Navigate - Green

P Values

o
B
1

0.29 v——rd

0 50 100 150 200 250
Time

Figure 4.7: Variation in P Values over Time for the Sort Boxes Task.

also low. That is the reason why the cross-entropy loss remains less.

To analyze the confidence of the Harvard Machine, once again the variation in P
values with time is depicted in Figure 4.7. Initially, the pick box task, illustrated by
the blue curve, has the highest value. This suddenly drops when the box is picked
up. Following that, the value for the network that navigates the robot to the green

bin rises close to 1 (green curve in the figure.)
4.3 Mathematical Expressions
4.3.1 Experimental Setup

The task network, N', has been trained to learn two tasks: add and multiply
two numbers in the range [1,9]. The controller receives a sequence of operands and
symbols as an input that is a combination of these two tasks. A sample input is given

below:

(op1 + op2) * (ops + ops)$

33

Where opy, ops, ops and op, are four operands chosen randomly in [1,9]. The '$’
symbol acts as a signal to the network that signifies the end of an input sequence.
Also, each input symbol is converted into a one-hot vector of size 14; 9 places for
the digits, 2 for opening and closing parenthesis, 2 for addition and multiplication
operations and one for the delimiter '$’.

As storing the values of intermediate add operations is required to evaluate such
an operation, the first architecture of the Harvard Machine proposed in this thesis is

used to learn this task.

4.3.2 Results

0.021 1 —— Harvad Machine
Neural Turing Machine
—— LSTM
0.020 A
A
3 0.019
>
Q.
e
5
»n 0.018 A
(%]
o
o
0.017 A
0.016
0 5 10 15 20 25

Epochs
Figure 4.8: Training Loss Vs Epochs for Mathematical Expression Evaluation Task.

The results of these experiments are reported in Table 4.5. The error term rep-
resents average divergence of a model from the correct answer. For example, if the
correct answer was 127 and the model predicted it as 133, the error, which is the
absolute difference, is 6. This is divided by the maximum possible error (321 in the

scenario with four operands) to get the percentage of average error.

34

Model Average Error (%)

Harvard Machine 7.28
Neural Turing Machine 14.28
LSTM 16.9

Table 4.5: Comparison of Harvard Machine, Neural Turing Machine and Lstm on
Math Expressions Evaluation Task. The Error Term Represents Average Divergence
of a Model from the Correct Answer - Absolute Difference Between Actual and Pre-
dicted Output, as a Percent of the Maximum Possible Error.

Symbol P-Value

First ’)’ [1.000000e+-00 9.085198e-14]

Second ’)’ [9.9975413e-01 2.4582000e-04]

’$’ [9.165004¢-09 1.000000e+00]

Table 4.6: Change of P Vector over Time-steps.

The learning curves for the three models are shown in Figure 4.8. Harvard Machine

converges to a significantly better minimum than NTM and LSTM.
4.3.3 Analysis of Results

As it can be seen from the table, the Harvard Machine performs significantly
better while evaluating the expression. The patterns observed in its data-memory is
shown in Figure 4.9. Initially, all the cells of the memory are assigned with a value
of 107%. As it can be seen from the figure, the controller writes new operands to the
memory and reads them while performing computations at a later time-step. This
indicates that the Harvard Machine understands the semantics of a task better than

NTM and LSTM.

35

(a) Input = ((b) Input = op1 (c) Input = +

(d) Input = op2 (e) Input =) . (f) input=* -

(g) Input = ((h) Input = op3 (i) Input = +

(i) Input = op4 () Input =) () Input = $
Figure 4.9: State of the Data Memory after Each Element of Input Sequence

In Figure 4.9, the state of the data memory after each input symbol is presented.
Whenever a new operand is encountered, the controller writes its representation in
the memory, which is later retrieved while performing computations. However, just
the trace of the memory is not enough to judge if the model is learning useful repre-
sentations.

Table 4.6 has a list of P values generated by the controller during different stages
of the input sequence. Only three are shown here because the values at those instances
are more significant in evaluating the overall expression. P values are a vector in which
the first elements corresponds to the parameters for add operation and the second
element for multiplication operation. When the addition sub-expressions end, the
controller confidently picks the parameters for the add network. Conversely, when
the $ symbol is encountered, the network loads parameters for the multiplication
network. The same pattern can be seen in the values of p. This is illustrated in

Figure 4.10. The controller chooses to write outputs of the intermediate results to its

36

data memory.

1.0 4

0.8

u Value

(opl + op2) * (op3 + opd) $
Equation

Figure 4.10: Change of the Interpolation Scalar over Time for the Mathematical
Expression Evaluation Task.

What do not transpire as per expectations are the values of the operands passed
to the task network. Recollect that in the Architecture-1 described in Chapter 3, the
input to the task network is a function of the Data Memory. In this task, the input
is created by concatenating the read heads and current and previous time-step. To
ensure that correct outputs are generated at each time-step, two conditions should

be met:
1. The controller should load correct weights in the task network.

2. The controller should choose inputs such that the task network generates desired

output.

Figure 4.11, a graph is shown that illustrates the inputs generated by the controller
and the desired inputs, for the task network at the last time-step. As it can be seen,

there is a significant difference between them. It can be concluded that the controller

37

1.0 A

0.8 1

0.6

0.4 1

0.2 1

0.0

Il |

B Generated Operands

Actual Operands

[N

0

5

10

15

20

25

30 35

40

Figure 4.11: A Comparison Between Actual Operands That Were Supposed to Be
Passed to the Task Network Vs the Operands Generated by the Controller.

does not actually learn to write and load intermediate results. Instead it learns to

load such operands that it thinks will produce the most appropriate output. This

analysis is of extreme importance because it substantiates that even though it is easier

to visualize the representations stored by the Harvard Machine over recurrent neural

networks like LSTMs, it still does not learn the precise semantics of this task.

38

Chapter 5

CONCLUSION AND FUTURE RESEARCH

To solve complex sequential learning problems, a hierarchical learning method
was proposed in this thesis. A big, convoluted task is divided into simpler sub-
problems and separate neural networks are trained to learn these sub-problems. These
neural networks are called Task Networks in this thesis. A neural network controller,
augmented with an external memory, then goes through the symbols of the sequence
one at a time and learns to load learned parameters for the appropriate task network
at each time-step. This proposed architecture is called the Differentiable Harvard
Machine as it is inspired from the Harvard Machine design introduced in Chapter
2. Two separate architecture of the Differentiable Harvard Machine are proposed to
account for different characteristics of tasks.

The directions of future research for both these architectures are listed in this
chapter.

5.1 Architecture 1

The first architecture allows the output generated by the task network to be
written to the data memory. Hence, it can be used for tasks that require intermediate
outputs in future time-steps, like the task of evaluating mathematical expressions.
However, the model failed to understand the underlying semantics of the task and

over-fitted to the form of the given equation. Two research paths for this task can

be:

1. Training with variable length sequences: One reason for the controller

over-fitting may be because the equation has the same format. Hence, instead

39

of looking at what the symbols are actually, it can memorize the format and
generate specific outputs depending on the inputs. This will not happen if the

format of the equation is variable.

2. Loss function formulation: The loss function can be formulated in such a

way that it forces the controller to produce desired intermediate outputs.

5.2 Architecture 2

The second architecture performs well in robotic experiments, remembering in-
formation over long sequences. Some further improvements that can be made in the

architecture are as follows:

1. Training with the reinforce algorithm: Supervised learning is not always
feasible for robotic tasks because of a lack of training data. Hence, training the
model with reinforcement learning is preferable. The model then represents the

Quality Function - Q(s, a).

2. Transferring to a real-world robot: All the experiments performed in this
thesis were on a simulator. However, it is important that the learned policy can

be transferred to a real robot.

3. Write-able program memory: If the program memory can be made write-
able, the model can learn actively - while it is exploring an environment. It will

be interesting to see how the model represents sub-problems for a given task.

40

REFERENCES

Beck, J., K. Ciosek, S. Devlin, S. Tschiatschek, C. Zhang and K. Hof-
mann, “Amrl: Aggregated memory for reinforcement learning”, in
“International Conference on Learning Representations”, (2020), URL
https://openreview.net/forum?id=Bk17bREtDr.

Bourlard, H. A. and N. Morgan, Connectionist Speech Recognition: A Hybrid Ap-
proach (Kluwer Academic Publishers, USA, 1993).

Broesch, J. D., Digital Signal Processing (Newnes, Burlington, 2009), URL URL
http://www.sciencedirect.com/science/article/pii/B9780750689762000080.

Csordas, R. and J. Schmidhuber, “Improving differentiable neural computers
through memory masking, de-allocation, and link distribution sharpness con-
trol”, in “International Conference on Learning Representations”, (2019), URL
https://openreview.net/forum?id=HyGEM3CIKQ.

Elman, J. L., “Finding structure in time”, in “Cog-
nitive science”, vol. 70, p. 190-198 (1990), URL
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709co0g1402;.

Giles, C. L., C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun and L. Y. C., “Learning
and extracting finite state automata with second-order recurrent neural networks”,
in “Neural Computation”, vol. 4 (1992a).

Giles, C. L., C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen and L. Y. C., “Extracting
and learning unknown grammar with recurrent neural networks”, in “Advances in
Neural Information Systems”, No. 4 (1992b).

Graves, A., G. Wayne and I. Danihelka, “Neural turing machines”, CoRR
abs/1410.5401, URL http://arxiv.org/abs/1410.5401 (2014).

Graves, A., G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska,
S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia,
K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield,
P. Blunsom, K. Kavukcuoglu and D. Hassabis, “Hybrid computing using a neu-
ral network with dynamic external memory”, Nature 538, 7626, 471-476, URL
http://dx.doi.org/10.1038/nature20101 (2016).

Gupta, S., J. Davidson, S. Levine, R. Sukthankar and J. Malik, “Cognitive mapping
and planning for visual navigation”, in “2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)”, pp. 7272-7281 (2017).

Joulin, A. and T. Mikolov, “Inferring algorithmic patterns with stack-augmented
recurrent nets”, in “Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 17, NIPS’15, p. 190-198 (MIT Press,
Cambridge, MA, USA, 2015).

41

Kanerva, P., Sparse Distributed Memory (MIT Press, Cambridge, MA, USA, 1988).

Khan, A., A. Sohail, U. Zahoora and A. S. Qureshi, “A survey of the recent archi-
tectures of deep convolutional neural networks”, CoRR abs/1901.06032, URL
http://arxiv.org/abs/1901.06032 (2019).

Le, H., T. Tran, T. Nguyen and S. Venkatesh, “Variational memory encoder-
decoder”, in “Advances in Neural Information Processing Systems 31”7, edited
by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi
and R. Garnett, pp. 1508-1518 (Curran Associates, Inc., 2018a), URL
http://papers.nips.cc/paper/7424-variational-memory-encoder-decoder.pdf.

Le, H., T. Tran and S. Venkatesh, “Learning to transduce with unbounded mem-
ory”, in “Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery; Data Mining, KDD ’18”, p. 1637-1645 (ACM, 2018b), URL
http://doi.acm.org/10.1145/3219819.3219981.

Le, H., T. Tran and S. Venkatesh, “Learning to remember more with less memoriza-
tion”, in “In International Conference on Learning Representations”, (2019), URL
https://openreview.net/forum?id=rix1viOq¥Ym.

Le, H., T. Tran and S. Venkatesh, “Neural stored-program memory”,
in “International Conference on Learning Representations”, (2020), URL
https://openreview.net/forum?id=rkxxA24FDr.

Ma, Y. and J. C. Principe, “A taxonomy for neural memory networks”, IEEE trans-
actions on neural networks and learning systems (2019).

Mozer, M. C. and S. Das, “A connectionist symbol manipulator that discovers the
structure of context-free languages”, in “Conference on Neural Information Pro-
cessing Systems (NIPS)”, (1993).

Oh, J., V. Chockalingam, S. Singh and H. Lee, “Control of memory, active percep-
tion, and action in minecraft”, in “Proceedings of the 33rd International Confer-
ence on International Conference on Machine Learning - Volume 487, ICML’16, p.
2790-2799 (JMLR.org, 2016).

Parisotto, E. and R. Salakhutdinov, “Neural map: Structured memory for deep rein-
forcement learning”, ICLR (2017).

Pritzel, A., B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis,
D. Wierstra and C. Blundell, “Neural episodic control”, in “34th Interna-
tional Conference on Machine Learning”, vol. 70, pp. 2827-2836 (2017), URL
http://proceedings.mlr.press/v70/pritzeli7a.html.

Rae, J. W., J. J. Hunt, T. Harley, I. Danihelka, A. Senior, G. Wayne, A. Graves
and T. P. Lillicrap, “Scaling memory-augmented neural networks with sparse reads
and writes”, in “Proceedings of the 30th International Conference on Neural Infor-
mation Processing Systems”, NIPS’16, p. 3628-3636 (Curran Associates Inc., Red
Hook, NY, USA, 2016).

42

S. Das, C. L. G. and G. 7Z. Sun, “Learning context-free grammars:

Capabilities and limitations of a recurrent neural network with an
external stack memory”, in “Proceedings of the Fourteenth An-
nual Conference of the Cognitive Science Society”, (1992), URL
https://clgiles.ist.psu.edu/papers/Cog.Sci.conf.14th.NNPDA.pdf.

S. Das, C. L. G. and G. Z. Sun, “Using prior knowledge in a nnpda to learn context-
free language”, in “Conference on Neural Information Processing Systems (NIPS)”,
(1993).

Sukhbaatar, S., a. szlam, J. Weston and R. Fergus, “End-to-end mem-
ory networks”, in “Advances in Neural Information Processing Systems
28”7, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama
and R. Garnett, pp. 2440-2448 (Curran Associates, Inc., 2015), URL
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf.

Turing, A. M., “On computable numbers, with an application to the Entschei-
dungsproblem”, Proceedings of the London Mathematical Society 2, 42, 230-265,
URL http://www.cs.helsinki.fi/u/gionis/cc05/0nComputableNumbers.pdf
(1936).

von Neumann, J., “First draft of a report on the edvac”, IEEE Ann. Hist. Comput.
15, 4, 27-75, URL https://doi.org/10.1109/85.238389 (1993).

Weston, J., S. Chopra and A. Bordes, “Memory networks”, URL
http://arxiv.org/abs/1410.3916, cite arxiv:1410.3916 (2014).

Wu, Y., G. Wayne, A. Graves and T. Lillicrap, “The kanerva machine: A generative
distributed memory”, in “International Conference on Learning Representations”,
(2018), URL https://openreview.net/forum?id=S1H1A-ZAZ.

Young, T., D. Hazarika, S. Poria and E. Cambria, “Recent trends in deep learning
based natural language processing [review article]”, IEEE Computational Intelli-
gence Magazine 13, 55-75 (2018).

Zaremba, W. and I. Sutskever, “Reinforcement learning neural turing machines”,
CoRR abs/1505.00521, URL http://arxiv.org/abs/1505.00521 (2015).

Zeng, 7., R. M. Goodman and P. Smyth, “Discrete recurrent neural networks for
grammatical inference”, in “IEEE Transactions on Neural Networks”, vol. 5 (1994).

43

