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ABSTRACT

Detecting areas of change between two synthetic aperture radar (SAR) images of

the same scene, taken at different times is generally performed using two approaches.

Non-coherent change detection is performed using the sample variance ratio detector,

and displays a good performance in detecting areas of significant changes. Coherent

change detection can be implemented using the classical coherence estimator, which

does better at detecting subtle changes, like vehicle tracks. A two-stage detector was

proposed by Cha et al., where the sample variance ratio forms the first stage, and the

second stage comprises of Berger’s alternative coherence estimator.

A modification to the first stage of the two-stage detector is proposed in this

study, which significantly simplifies the analysis of the this detector. Cha et al. have

used a heuristic approach to determine the thresholds for this two-stage detector.

In this study, the probability density function for the modified two-stage detector

is derived, and using this probability density function, an approach for determining

the thresholds for this two-dimensional detection problem has been proposed. The

proposed method of threshold selection reveals an interesting behavior shown by the

two-stage detector. With the help of theoretical receiver operating characteristic

analysis, it is shown that the two-stage detector gives a better detection performance

as compared to the other three detectors. However, the Berger’s estimator proves to

be a simpler alternative, since it gives only a slightly poorer performance as compared

to the two-stage detector. All the four detectors have also been implemented on a

SAR data set, and it is shown that the two-stage detector and the Berger’s estimator

generate images where the areas showing change are easily visible.
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Chapter 1

INTRODUCTION

1.1 Motivation

Synthetic aperture radar (SAR) is the concept of an airborne or space-based radar

generating high resolution images of the scene underneath, by processing the com-

plex valued radar return signals from the scene. If we have two SAR return data

sets of the same landscape, but taken at different times, an important application

which arises is the detection of regions where the underlying scene has undergone

a change. Change detection can be done by processing the two SAR data sets and

generating an image where a black pixel denotes change and a white pixel denotes no

change. This processing can be done by two methods, coherent change detection and

non-coherent change detection. Non-coherent change detection compares the sample

variance of the two corresponding locations, essentially comparing the intensity (mag-

nitude squared) of the two locations, by forming the ratio of the two sample variances,

and decides that a change has occurred if this sample variance ratio is not close to

unity [1]. Coherent change detection determines change by considering an estimate of

the coherence (which is the magnitude of the correlation coefficient) between the two

radar returns corresponding to the same location, and declares change if the value of

this estimate is significantly less than one. The sample coherence (also referred to as

the classical coherence estimator) is generally used. The non-coherent change detec-

tor generally performs better at detecting significant changes like the displacement

of a vehicle, while coherent change detection shows a better performance at detect-

ing subtle changes in the scene [2],[3]. The ability of the classical coherent change
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detector (classical CCD) to detect vehicle tracks has been demonstrated in [4]. In

[3], theoretical receiver operating characteristics (ROC) for the sample variance ratio

and the sample coherence detectors have been shown. A two-stage change detection

method has been introduced in [2], wherein the first stage incorporates the sample

variance ratio change detector, and the second stage implements a coherent change

detector. The second stage uses the Berger’s coherence estimator given in [5] instead

of the classical coherence estimate, as it has been shown in [2] that the Berger’s es-

timator performs better than the classical estimator if the true variances of the two

corresponding points are almost equal. Since the sample variance ratio (first stage)

compares the variances of the two locations, only those pairs of pixels which exhibit

almost equal variance are passed to the second stage. Thus, the first stage processes

the two SAR data sets to check for large scale changes, the pixel pairs which show

no large scale change are passed to the second stage, and finally the second stage

checks for subtle small scale changes between the two images. The two-stage detector

determines that a location has undergone a change if either one of the stages detects

a change.

All of the change detection methods mentioned above determine whether a pixel

pair has undergone a change by comparing some quantity to a threshold value. Com-

puting these thresholds in a way such that the error in detection performance is min-

imum is an important aspect of any detection algorithm. The method for computing

thresholds for the sample variance ratio and the classical CCD have been demon-

strated in [3]. For the two-stage change detector, a heuristic approach to determine

the thresholds has been proposed in [2]. Also, using this heuristic approach, receiver

operating characteristics have been generated empirically in [2], which suggest that

the two-stage detector gives a better performance as compared to the sample variance

ratio and the classical CCD methods.
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1.2 Proposed Thesis Work

The main goal of this thesis is to generate the theoretical ROC curves for the two-

stage detector in order to evaluate it’s detection performance and to compare it with

other change detection methods. In order to do this, an approach for selecting the

thresholds using the probability density function (pdf) of the two-stage detector has

been developed. Prior to dealing with these aspects of the detection performance of

the two-stage detector, a modification to the structure of the two-stage detector has

been proposed. The complex correlation coefficient between the two pixels acts as a

nuisance parameter for the sample variance ratio detector [6]. When this correlation

coefficient is assumed to be zero, this detector reduces to a simple F test. In this study,

an argument is made that considering a non-zero correlation coefficient under the no

change scenario can improve the detection performance for the sample variance ratio

detector. The cumulative distribution function for this detector has also been derived

in order to simplify the analysis. Furthermore, it has been shown that replacing the

sample variance ratio detector in the first stage by the symmetric sample variance

ratio significantly simplifies the analysis of the two-stage detector. This symmetric

detector has been introduced in [7] in the context of edge detection. [1] and [3] have

used this detector for change detection, but by assuming the correlation coefficient

between the two pixels to be zero even under the no change scenario. The probability

density function and the cumulative distribution function for this symmetric first

stage detector with a non-zero correlation coefficient have also been derived in this

study.

Considering the modifications mentioned above, the joint probability density func-

tion for this modified two-stage change detector has been derived. Based on this

distribution, a procedure has been developed for computing the thresholds for the

3



two-stage change detector. This procedure introduces a new parameter α, on which

the detection performance of the two-stage detector is dependent. This new param-

eter dictates the behavior of the two-stage detector, and for two specific values of

α, the two-stage detector reduces to the Berger’s coherence estimator and the sam-

ple variance ratio respectively. Detailed analysis of the dependence of the detection

performance on α has been shown. The theoretical ROC curves for the two-stage

detector are generated using the proposed method, and comparison of its detection

performance with the sample variance ratio, classical CCD, and Berger’s estimator

have been shown. Additionally, these detectors are also compared to the log-likelihood

ratio detector given in [3], which achieves the highest possible performance for any

detector. Finally, the four detectors are applied to a SAR data set, and the images

showing areas of change are generated for each of these detectors.

1.3 Thesis Organization

Chapter 2 contains a high-level overview of the concept of synthetic aperture

radar. Some important concepts of detection theory have also been discussed, along

with the data model for SAR change detection. The four change detectors discussed

in this thesis have been been discussed in Chapter 3. In Chapter 4, the modified

change detector is proposed, which has a simpler form. The new threshold selection

method for the two-stage detector is proposed in Chapter 5. Using this threshold

selection method, theoretical ROC curves are generated for the two-stage detector,

and are compared with the ROC curves of the other three detectors in Chapter 6.

Finally, in Chapter 7, all the detectors are applied to a SAR data set and the results

are compared.
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Chapter 2

BACKGROUND

2.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a technique which is used to generate high-

resolution images of a landscape, and can operate in any weather conditions. It is

a coherent processing technique which means that it measures the amplitude as well

as the phase of the received signals, i.e. the received signals are complex valued. As

shown in Figure 2.1, SAR involves a radar system mounted on a moving airborne or

space-based platform, where radar signals are transmitted and received at distinct

locations along the platform motion path.

As seen in Figure 2.1, two sets of coordinates, (x, y) and (u, r) have been used.

(x, y) is the coordinate system for the complex reflectivity of the scene, and (u, r) is

the coordinate system used to form the SAR raw data. At a given platform location,

the radar signal is transmitted, which encounters scatterers situated in the scene and

these scatterers reflect the signal incident on them. A part of the reflected signal is in

the direction of the radar, and forms the received signal at the radar. Based on the

time delay t = td at which this signal is received, the distance of the scatterer from

the platform location can be computed by:

R =
ctd
2

(2.1)

where c is the speed of propagation of the electromagnetic signal, i.e. the speed

of light. The transmitted signal is generally a pulse repeated periodically, over a

time interval known as the coherent processing interval (CPI). The pulse width τ
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Figure 2.1: Overview of SAR.

is approximately equal to the inverse of the signal’s bandwidth. Two targets can

be resolved as separate entities only if their returns are separated by a time delay

greater than τ . In other words, the smallest separation in the range direction at

which two targets can be resolved is ∆r = cτ/2. This distance is called the range

resolution. The range dimension is divided into separate range bins, each range bin is

of length ∆r. For each of the pulses over the CPI, a range profile is created, which is

a one-dimensional vector containing the value of the radar return for every range bin.

Combining these range profiles for all the pulses, the received data takes the form of

a complex matrix storing the radar return values, where the dimensions correspond

to the range (also known as fast time) and pulse number (known as slow time). The

resolution in the range direction is improved by using pulse compression waveforms.
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Linear frequency modulated (LFM) chirp signals are one of the most popular signals

used, which are given by

f(t) = exp

[
j(ωt+

µt2

2
)

]
−τ
2
≤ t ≤ τ

2
(2.2)

where ω = 2πfc, fc is the carrier frequency. The platform motion creates a synthetic

aperture of a large size, which results in improved resolution in the direction along the

flight path of the platform. This resolution is inversely proportional to the distance

over which the data is collected, i.e. the length of the synthetic aperture (where

smaller resolution means a better resolution).

Figure 2.2: SAR Data Matrix.

In order to generate the image from the received data, a reference function is first

generated. This reference function is generated by assuming the presence of a single

point target at location (x0 ,y0). Based on the transmitted waveform and the platform

motion characteristics, an estimate of the radar data matrix due to the point target at

(x0 ,y0) can be generated, and this estimate is the reference function. It is a function

of u and r for a given point target at x0 and y0, and can be denoted as h(u, r;x0, y0).

This reference function thus can be thought of as the shifted impulse response for
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the SAR system. In order to generate the complex pixel value at (x0 ,y0), a 2D

matched filter response is computed by performing the 2D convolution between the

received data matrix x(u, r) and h∗(−u,−r;x0, y0) [8]. In order to generate an image,

a matched filter bank is created with the reference functions for every (x0, y0), and

the received data matrix x(u, r) passed through this filter bank gives the final image.

The range-doppler, range-migration, chirp-scaling, and backprojection algorithms are

few of the of algorithms which are used to generate SAR images, where all of these

algorithms try to implement this 2D matched filter in different ways.

Figure 2.3: Large Number of Scatterers Illuminated by the Antenna Beam.

In general, the SAR return for a single resolution cell consists of a coherent sum

of a number of independent scatterers [9]. If this number is large, the central limit

theorem can be applied, and the radar return for each resolution cell can be modeled as

a zero mean circularly symmetric complex Gaussian random variable. The probability

density function (pdf) for this random variable is given by [10]:

p(x) =
1

πσ2
exp

[
−|x|

2

σ2

]
. (2.3)
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2.2 Detection Theory Concepts

In a decision theory problem, we have a set of possible hypotheses, and under

each of these hypotheses, the random data vector x (∈ Rn or Cn) which is observed

follows a different probability distribution. The simplest form of a decision problem

is the binary hypothesis testing problem, where we have only two hypotheses, the

null hypothesis (H0) and the alternative hypothesis (H1). If the probability density

function (pdf) of x depends on parameter θ, then the hypothesis testing problem can

be written as:

H0 : x ∼ p(x;H0) = p(x; θ0)

H1 : x ∼ p(x;H1) = p(x; θ1) (2.4)

where θi denotes the value of θ under Hi. The goal is to come up with a decision

rule which can accurately map any realization of the random vector to the probability

distribution which most likely generated it. In order to form a decision rule, a function

of the random vector x is created. The range (known as the decision space) of this

function is partitioned into the critical region (Z1) and the non-critical region (Z0). Zi

is the region where the decision rule decides that Hi is true. Such a function is known

as a test statistic, denoted by T (x), and this test statistic along with the decision

rule is referred to as a detector. In order to characterize the performance of any

detector, two quantities are generally used, the probability of false alarm (PFA) and

the probability of detection (PD). PFA is the probability that the detector will reject

H0, when the underlying true hypothesis is H0, and PD is defined as the probability

9



that detector rejects H0 when actually H1 is true. These probabilities are given by:

PFA = Pr {T (x) ∈ Z1;H0} =

∫
Z1

p(T ;H0)dT (2.5)

PD = Pr {T (x) ∈ Z1;H1} =

∫
Z1

p(T ;H1)dT (2.6)

where p(T ;H0) and p(T ;H1) denote the pdf of T (x) under H0 and H1 respectively.

We can see that an ideal detector should have PD = 1 and PFA = 0, but it turns out

that we cannot increase PD and decrease PFA simultaneously. However, we can find

an optimal detector which maximizes PD for a given PFA constraint. The optimal

test statistic (known as the likelihood ratio) is given by the Neyman-Pearson rule [11],

and it decides that H1 is true if:

T (x) =
p(x;H1)

p(x;H0)
> η (2.7)

where the threshold η is obtained by solving:

PFA =

∫
x:T (x)>η

p(x;H0)dx =

∞∫
η

p(T ;H0)dT. (2.8)

It is evident that in order to implement the likelihood ratio, complete knowledge

of the pdfs of x under both hypotheses (i.e knowledge of θ0 and θ1) is necessary.

Since this is rarely the case, this optimal detector generally cannot be implemented.

As a result, different detectors are used, which although do not give the optimal

performance, are physically realizable. In the next section, the distribution of the

data for the problem of change detection in SAR images is introduced, and a number

of detectors which have been proposed for this problem are summarized in the next

chapter.
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2.3 Data Model for Change Detection in SAR Images

In a SAR change detection problem, we are given two data sets {fk} and {gk}

of the same size, where fk, gk ∈ C. At a time, change is detected between a single

pair of pixels (say k = i) fi and gi, which are the radar returns corresponding to the

same location, but measured at two different times. Since it is clear that change is

detected for a fixed pair of pixels, for simplicity we can now drop the subscript i. We

use the statistical properties of the complex 2 × 1 random vector [f , g]T , in order

to characterize change. For the purpose of estimating these statistical properties, we

assume that all the radar returns within a spatial window of size N around f follow a

distribution identical to f , and are independent of f . A similar argument is made for

g. Each data window of size N is modeled as a collection of independent samples from

a zero mean circularly symmetric complex Gaussian distribution. However, since f

and g correspond to the same location, they are not uncorrelated/independent in

general. Thus, each of the 2×1 vectors [fk, gk]
T for k=1, . . . , N (which form a spatial

window around [f , g]T ) follow a zero mean bivariate complex Gaussian distribution,

with the covariance matrix:

Σ =

 σ2
f ρσfσg

ρ∗σfσg σ2
g

 (2.9)

where

σ2
f = Var(f) = E(|f |2), σ2

g = Var(g) = E(|g|2) (2.10)

and ρ is the complex correlation coefficient between f and g given by

ρ =
E(fg∗)√

E(|f |2)E(|g|2)
(2.11)

The magnitude of the correlation coefficient ρ, i.e., |ρ|, is known as the coherence

between f and g. Thus, the parameters which characterize the joint distribution of
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f and g are σ2
f , σ

2
g , and ρ. Based on the values of these parameters under the change

and no-change scenarios, hypothesis tests are formulated where the null hypothesis

represents no change and the alternative hypothesis represents a change between the

pixels. These different hypothesis test formulations lead to different change detectors.

Some of these detectors are summarized in the next chapter.
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Chapter 3

CHANGE DETECTION STATISTICS

Change detection statistics can be classified into two types - non-coherent and co-

herent change detection. Non-coherent change detection (NCCD) involves exploiting

only the magnitude information of the complex-valued radar returns, whereas coher-

ent change detection (CCD) exploits the phase information as well. The problem of

detecting change is formulated as a hypothesis testing problem, in each of the cases.

NCCD uses the sample variance ratio to test the equality of the two variances σ2
f

and σ2
g , and declares no change if they are equal. The classical CCD uses the sample

coherence statistic in order to determine the coherence |ρ| between the two pixels,

and declares change if they are uncorrelated. An alternative coherence estimator,

given by Berger in [5] can also be used for estimating coherence, however it provides

accurate estimates only if the underlying variances are equal. A two-stage detector

introduced by [2] combines the two techniques, where the first stage is the sample

variance ratio and the second stage is Berger’s coherence estimator. The first stage

tests if the two variances are equal, the pixel pairs which show equal variances (and

thus are classified as no change) will pass to the second stage where the Berger’s

estimator will test for the subtle changes.

3.1 Sample Variance Ratio

Non-coherent change detection compares the two variances by forming the ratio R

= σ2
f/σ

2
g ∈ (0,∞). For a given pair of pixels [f , g]T , if the value of R is close to one,

i.e. when the variances of σ2
f = σ2

g are equal, then this pair is labeled as no change,

whereas if R deviates further from unity, the detector declares change.
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Figure 3.1: Probability Density Function p(R̂;R, |ρ|, N) for N = 5, |ρ| = 0.9, and
different values of R.

The hypothesis test problem for NCCD can be written as follows:

H0 : R ≈ 1

H1 : R 6= 1 (3.1)

The test statistic used for this hypothesis test is the sample variance ratio (R̂), given

by:

R̂ =
σ̂2
f

σ̂2
g

=

N∑
k=1

|fk|2

N∑
k=1

|gk|2
where σ̂2

f =
1

N

N∑
k=1

|fk|2, σ̂2
g =

1

N

N∑
k=1

|gk|2 (3.2)

It is evident from the above expression that R̂ uses only the magnitude information

of fk and gk, and not the phase information. The pdf of R̂ is given by [12]:

p(R̂;R, |ρ|, N) =
Γ(2N)

Γ(N)2
(1− |ρ|2)N(R̂ +R)RN R̂N−1

[(R̂ +R)2 − 4R̂R|ρ|2]N+ 1
2

for 0 < R̂ <∞ (3.3)
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where R = σ2
f/σ

2
g is the ratio of the true variances, ρ is the complex correlation coef-

ficient between the two complex random radar returns and Γ(.) denotes the gamma

function. We can see that the pdf of R̂ depends on the true variances σ2
f and σ2

g only

through the true variance ratio R, coherence |ρ|, and the window size N . Figure 3.1

shows the pdf of R̂ plotted for different values of R and fixed N and |ρ|. We can

Figure 3.2: Probability Density Function p(R̂;R, |ρ|, N) for N = 5, R = 2, and
Different Values of |ρ|.

see that for this particular choice of N and |ρ|, the pdf is approximately centered

at the true R. However, as we decrease the value of the coherence |ρ| for fixed R

and N , the bias of R̂ increases, which can be seen from Figure 3.2. We can also

see that as |ρ| reduces, the variance of R̂ increases. R̂ decides that a pixel pair has

not undergone change if η1 ≤ R̂ ≤ η2 (where η1 < 1 < η2), else, the detector de-

clares change. In other words, the region Z1 where this detector declares change is

Z1 = {x ∈ R+|x ≤ η1 or x ≥ η2} for some η1 and η2 such that η1 < 1 < η2, as shown

in Figure 3.3.
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Figure 3.3: Probability Density Function p(R̂;R, |ρ|, N), Showing the Region Z1

where R̂ Declares Change.

3.2 Sample Coherence/Classical Coherence Estimator

Coherent change detection uses phase information (in addition to the magnitude

information) of the complex-valued radar returns in order to detect subtle changes.

The parameter used to define change is the coherence |ρ|, i.e. pixel pairs which

are uncorrelated are classified as changed pixels and those showing some degree of

correlation are classified as change. Since coherence is sensitive to a number of factors

which govern the SAR data acquisition, practically speaking, even pixels undergoing

no change do not exhibit a value of coherence equal to one [2]. The hypothesis testing

problem can be written as:

H0 : |ρ| ≈ 1

H1 : |ρ| ≈ 0 (3.4)
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Figure 3.4: Probability Density Function p(|ρ̂c|; |ρ|, N) for N = 6 and Different
Values of |ρ|.

The sample coherence statistic is the magnitude of ρ̂c, which is an estimator of the

cross-correlation coefficient ρ. The sample coherence is given by:

|ρ̂c| =

∣∣∣∣ N∑
k=1

fkg
∗
k

∣∣∣∣√
N∑
k=1

|fk|2
N∑
k=1

|gk|2
(3.5)

The pdf of |ρ̂c| is given by [13]:

p(|ρ̂c|; |ρ|, N) = 2(N − 1)
(
1− |ρ|2

)N |ρ̂c| (1− |ρ̂c|2)N−2 .2F1(N,N ; 1; |ρ̂c|2|ρ|2) (3.6)

for 0 ≤ |ρ̂c| < 1

where 2F1(., .; .; .) is the Gauss hypergeometric function [14]. It is evident that this

pdf depends only on N and |ρ|. It is worth noting that p(|ρ̂c|) is independent of

the true variances σ2
f and σ2

g . The pdf is plotted in Figure 3.4 for a fixed N and
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Figure 3.5: Probability Density Function p(|ρ̂c|; |ρ|, N) for |ρ| = 0.5 and Different
Values of N .

different values of |ρ|. We can see that the bias and variance increase as the true |ρ|

decreases for a constant N . In Figure 3.5, the pdf of |ρ̂c| is plotted for different values

of N , keeping |ρ| constant. In this case, as N increases, the bias and variance of |ρ̂c|

decrease. The region Z1 for this statistic is of the form Z1 = {|ρ̂c| ∈ R+ : |ρ̂c| ≤ η}

for some 0 < η < 1.

3.3 Berger’s Alternative Coherence Estimator

An alternative coherence estimator was given by Berger in [5], for the case when

the underlying variances σ2
f and σ2

g are equal. This alternative estimator is denoted

by |ρ̂a|, and is given by

|ρ̂a| =

∣∣∣∣ N∑
k=1

fkg
∗
k

∣∣∣∣
1
2

(
N∑
k=1

|fk|2 +
N∑
k=1

|gk|2
) . (3.7)
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Figure 3.6: Probability Density Functions p(|ρ̂c|; |ρ|, N) and p(|ρ̂a|; |ρ|, N), Showing
the Region Z1 where the Two Detectors Declare Change.

Comparing (3.7) and (3.5), we can see that |ρ̂a| and |ρ̂c| have the same numerator,

but the denominators are different. The sample coherence statistic has the geometric

mean of two quantities (sample variances multiplied by N) as the denominator, while

Berger’s estimate has the arithmetic mean of the same two quantities as the denomi-

nator. Only if the two sample variances are approximately equal, the arithmetic and

the geometric means are equivalent and thus in this case |ρ̂a| becomes an accurate

estimator of the coherence. The condition that the underlying variances are equal is

equivalent to R = 1. The pdf of |ρ̂a| under the assumption R = 1, is given by [5]:

p(|ρ̂a|; |ρ|, N) =(2N − 1)
(
1− |ρ|2

)N |ρ̂a| (1− |ρ̂a|2)N− 3
2

.2F1(N,N +
1

2
; 1; |ρ̂a|2|ρ|2) for 0 ≤ |ρ̂a| < 1 (3.8)

A detailed comparison of estimation characteristics between |ρ̂c| and |ρ̂a| has been

shown in [2]. Z1 for |ρ̂a| takes a similar form to that of |ρ̂c|.
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3.4 Two-Stage Change Detector

Many studies including [2] have shown that the sample variance ratio change de-

tector generally performs better at detecting significant changes like the appearance of

a large object like a car , while coherent change detection shows a better performance

at detecting subtle changes in the scene. The two-stage change detector, was intro-

duced by [2], and it combines the coherent change detection and the variance ratio

information in order to detect changes with higher accuracy at any scale. However,

instead of the sample coherence detector, it uses the alternative coherence estimator

given by Berger. With the help of mean squared error analysis (MSE), it has been

shown in [2] that when the underlying true variances σ2
f and σ2

g are approximately

equal, |ρ̂a| is a better estimator of |ρ| as compared to |ρ̂c|. Thus, the first stage of

the two-stage detector is R̂, which tests for equality of the two variances. If the

variances are not equal, it decides that a change has occurred. However, if σ2
f ≈ σ2

g ,

then those pixel pairs are passed on to the second stage, which is |ρ̂a|. Since the pixel

pairs passed on to the second stage have almost equal variance, |ρ̂a| gives an accurate

estimation of |ρ|, and thus changes can be detected on a smaller scale as well. Based

on the hypotheses testing formulations for R and |ρ|, the detection problem for the

two-stage change detector can be written hypothesis testing problem as follows :

H0 : R ≈ 1 and |ρ| ≈ 1

H1 : R 6= 1 or |ρ| ≈ 0 (3.9)

The two-stage change detector works as a two dimensional detector, i.e. the decision

space is two dimensional, where the dimensions correspond to the R̂ and |ρ̂a| statistics.

In order to evaluate the performance of this 2D detector, analysis of the joint pdf of

R̂ and |ρ̂a| is required. The joint density function for the two test statistics is derived
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(a) Joint pdf p(|ρ̂a|, R̂;R, |ρ|, N) for

N = 5, R = 0.9, and |ρ| = 0.9.

(b) Joint pdf p(|ρ̂a|, R̂;R, |ρ|, N) for

N = 5, R = 0.1, and |ρ| = 0.

(c) Joint pdf p(|ρ̂a|, R̂;R, |ρ|, N) for

N = 5, R = 0.8, and |ρ| = 0.1.

(d) Typical form of Z0 and Z1 for Two-

stage Detector.

Figure 3.7: Joint Pdf p(|ρ̂a|, R̂;R, |ρ|, N) for Two-stage Detector.
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in [2], and is given by:

p(|ρ̂a|, R̂;R, |ρ|, N) =
(1− |ρ|2)NΓ(2N)

Γ(N)Γ(N − 1)

|ρ̂a|
2(R̂ + 1)2

.

[
R̂

(R̂ + 1)2
− |ρ̂|

2

4

]N−2

.

[
|ρ̂a||ρ|+

R̂ +R

(R̂ + 1)
√
R

]−2N

.2F1

1

2
, 2N ; 1;

2|ρ̂a||ρ|
|ρ̂a||ρ|+ R̂+R

(R̂+1)
√
R

 (3.10)

for 0 ≤ R̂ < ∞, |ρ̂a| ≤ [4R̂/(R̂ + 1)2]1/2 and zero elsewhere, where 2F1(., .; .; .) is the

Gauss hypergeometric function [14]. The pdf depends on the true variance ratio R =

σ2
f/σ

2
g , the true coherence |ρ|, and the spatial window size N . The joint pdf is plotted

for different values of R, |ρ| and N in Figures 3.7a, 3.7b, and 3.7c.

Considering the hypothesis test in (3.9), and the forms of region Z1 for the Berger’s

estimate (which is similar to that for |ρ̂c|) and the sample variance ratio statistics,

we can see that the partition of the decision space for the two-stage detector has the

form shown in Figure 3.7d, given by Z0 = {(|ρ̂a|, R̂) ∈ (0, 1)×R+ : |ρ̂a| > η3 and η1 <

R̂ < η2}.
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Chapter 4

MODIFIED TWO-STAGE CHANGE DETECTOR

The probability density function of the two-stage detector is defined for all values

of R̂ which are non-negative. Considering the form of the partitions Z0 and Z1

in Figure 3.7d, we can see that η2 can take any value greater than one. Also, an

important point worth noting is that the value of R depends on the assignment of the

two data sets as f and g (if we interchange f and g, R will become 1/R). Since our

goal is to detect change irrespective of whether the change in variance is an increase

or a decrease, the detector should give exactly the same performance no matter which

image we consider as f or g, i.e. for both the cases when R = R1 and when R = 1/R1,

where R1 is any arbitrary value for the variance ratio. However, R̂ is not symmetric

in this sense, i.e. it is not invariant to the assignment of images as f and g. In order

to see this, we should consider Figure 3.1, which shows the pdfs of R̂ for R = 1/2 and

R = 2. We can see that the two functions are completely different, and thus might

not give the same detection performance in both the cases. Furthermore, Figures

4.1a and 4.1b show the joint pdfs for the two dimensional detector for R = 1/2 and

R = 2 respectively, for fixed N = 5 and |ρ| = 0. It is evident that these two pdfs are

not the same, and thus might give different performances, in spite of the fact that

both these cases depict the same scenario in terms of change detection. In order to

avoid this problem, we must use the symmetric ratio detector r̂ given by [7] as the

first stage, in place of R̂. This detector is given by:

r̂ =


R̂ when R̂ ≤ 1

R̂−1 when R̂ > 1.

(4.1)
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(a) Joint pdf p(|ρ̂a|, R̂;R, |ρ|, N) for N =

5, R = 1/2, and |ρ| = 0.

(b) Joint Pdf p(|ρ̂a|, R̂;R, |ρ|, N) for N =

5, R = 2, and |ρ| = 0.

Figure 4.1: Joint Pdf of Two-Stage Detector for Reciprocal Values of R.

The pdf for r̂ has been derived in [7] for the case when |ρ| = 0. The density

function for a non-zero coherence |ρ| has been derived in Appenidx A, and is given

by:

p(r̂;R, |ρ|, N) =
Γ(2N)

Γ(N)2
r̂N−1(1− |ρ|2)N

.

(
RN(r̂ +R)

[(r̂ +R)2 − 4r̂R|ρ|2]N+ 1
2

+
R−N(r̂ +R−1)

[(r̂ +R−1)2 − 4r̂R−1|ρ|2]N+ 1
2

)
(4.2)

for 0 ≤ r̂ ≤ 1 and zero elsewhere. Looking at the expression for the pdf of r̂, we can

easily see that i.e., r̂ has the same pdf for R = R1 and R = R−11 for fixed |ρ| and

N , and this is exactly the desirable symmetry property. Furthermore, since r̂ takes

values only between zero and one, using r̂ instead of R̂ for the first stage reduces the

size of the decision space for the two-stage detector from (0 ≤ |ρ̂a| < 1, 0 ≤ R̂ <∞)

24



(a) p(|ρ̂a|, r̂;R, |ρ|, N) for N = 5, R = 1/5, and |ρ| = 0.

(b) p(|ρ̂a|, r̂;R, |ρ|, N) for N = 5, R = 5, and |ρ| = 0.

Figure 4.2: Joint Pdf p(|ρ̂a|, r̂;R, |ρ|, N) for Modified Two-Stage Detector Showing
Symmetry.
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to (0 ≤ |ρ̂a| < 1, 0 ≤ r̂ ≤ 1). The joint pdf of r̂ and |ρ̂a| is derived in Appendix B,

and is given by:

p|ρ̂a|,r̂(x, y;R, |ρ|, N) = p|ρ̂a|,R̂(x, y;R, |ρ|, N) + p|ρ̂a|,R̂(x, y;
1

R
, |ρ|, N) (4.3)

for 0 ≤ y ≤ 1, x ≤ [4y/(y + 1)2]1/2 and zero elsewhere. Note that the subscript

indicates the random variable to which the distribution belongs, and this notation is

used to interpret (4.3) easily. p|ρ̂a|,R̂(x, y;R, |ρ|, N) is the joint pdf of |ρ̂a| and R̂, as

given in (3.10). The joint pdf for |ρ̂a| and r̂ is plotted in Figures 4.2a and 4.2b for

R = 5 and R = 1/5 respectively, for the same values of |ρ| and N , and we can see

that the distributions are exactly the same. Thus, using r̂ as the first stage makes

the detector invariant to image assignment as f and g. Figures 4.3 and 4.4 show the

joint pdf for |ρ| = 0.9 and |ρ| = 0 respectively, for fixed N = 5 and R = 1.

Figure 4.3: Joint Pdf p(|ρ̂a|, r̂;R, |ρ|, N) for N = 5, R = 1, and |ρ| = 0.9.

26



Figure 4.4: Joint Pdf p(|ρ̂a|, r̂;R, |ρ|, N) for N = 5, R = 1, and |ρ| = 0.

Figure 4.5: Typical Form of Partitions Z0 and Z1 of Decision Space for Modified
Two-Stage Detector.
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Furthermore, as shown in Figure 4.5, the partitions Z0 and Z1 now assume a much

simpler form given by Z0 = {(|ρ̂a|, r̂) ∈ (0, 1) × (0, 1] : |ρ̂a| > η2 and r̂ > η1}, which

makes the analysis of this method significantly simpler. We can see this by comparing

Figures 4.5 and 3.7d. Instead of computing three thresholds, we now are required to

compute just two thresholds η1 and η2.

Thus, it has been shown that replacing R̂ by the symmetric statistic r̂ as the first

stage results in a form of the two-stage detector which is significantly simpler.
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Chapter 5

THRESHOLD SELECTION FOR MODIFIED TWO-STAGE CHANGE

DETECTOR

In the previous chapter, the typical forms of Z0 and Z1 for the modified two-stage

detector were introduced, and it is evident that these regions are uniquely determined

by the value of thresholds η1 and η2. A heuristic approach for computing the three

thresholds η1, η2, and η3 for the original two-stage detector has been demonstrated

in [2]. In this chapter, a new approach for determining these thresholds has been

proposed, which uses the joint probability density function of the modified two-stage

detector, i.e. p(|ρ̂a|, r̂;R, |ρ|, N). Before introducing the proposed method of threshold

selection, the computation of thresholds for single-dimensional test statistics (like r̂

or |ρ̂c|) are discussed.

5.1 Computing Thresholds for r̂ and |ρ̂c|

The performance of different detectors can be compared by comparing the value

of probability of detection (PD) which they can achieve, for a given probability of

false alarm (PFA). We can determine Z1 by using the given PFA constraint as shown

in (2.5), and then find the PD by integrating the pdf of the test statistic under H1

over Z1. In Section 3.2, we have seen that for |ρ̂c|, Z1 is the interval 0 ≤ |ρ̂c| ≤ η.

Therefore, the threshold η can be found by solving

PFA =

∫
Z1

p(|ρ̂c|;H0)d|ρ̂c| =
η∫

0

p(|ρ̂c|;H0)d|ρ̂c| (5.1)
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where p(|ρ̂c|;N, |ρ|) is given in (3.6). η is computed by finding the zero of the function

h1(η) =

η∫
0

p(|ρ̂c|;H0)d|ρ̂c| − PFA. (5.2)

The region Z1 for r̂ is identical to that of |ρ̂c|, i.e. it is of the form 0 ≤ r̂ ≤ η. Thus,

similar to (5.1), η is computed by solving

PFA =

η∫
0

p(r̂;H0)dr̂ = Fr̂(η;R, |ρ|, N) (5.3)

where Fr̂(η;R, |ρ|, N) is the cumulative distribution function (cdf) of r̂, and the ex-

pression for this cdf has been derived in Appendix A, which is given by:

Fr̂(η;R, |ρ|, N) = FR̂(η;R, |ρ|, N) + FR̂(η;R−1, |ρ|, N) (5.4)

for 0 < η ≤ 1, where the expression for FR̂(η;R, |ρ|, N) is derived in [15], given by

FR̂(η;R, |ρ|, N) =Pr(R̂ ≤ η;R, |ρ|, N)

=0.5{1− sign[λ1(η)]}+ sign[λ1(η)].FG(l(η), N). (5.5)

In the above expression, G is a complex central F random variable with both degrees

of freedom equal. FG(. , N) denotes the cdf of this random variable with both degrees

of freedom equal to N , and is given by [16]:

FG(x,N) =
xN

(1 + x)2N−1

N−1∑
k=0

(
2N − 1

k +N

)
xk (5.6)

The remaining terms are given as follows:

λ1(η) = (R− η)−
√

(R + η)2 − 4η|ρ|2R

λ2(η) = (R− η) +

√
(R + η)2 − 4η|ρ|2R

l(η) = − λ2(η)

λ1(η)
.

Thus, η can be computed by finding the zero of the function

h2(η) = Fr̂(η;R, |ρ|, N)− PFA. (5.7)
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5.2 Computing Thresholds for Two-Stage Detector

Given the probability of false alarm PFA, the goal is to choose thresholds η1 and

η2 such that the joint pdf of |ρ̂a| and r̂ under H0 integrates to PFA over the region Z1.

Considering the form of Z1 for any of the two single-dimensional detectors r̂ and |ρ̂c|,

we can see that a given PFA uniquely determines the region Z1 (and hence η) for these

two detectors. This is a consequence of the fact that the cdf of a continuous random

variable is monotonically increasing. However, for the case of the two-dimensional

detector, the decision space is partitioned in a way that there can exist a number of

regions Z1 such that when we integrate p(|ρ̂a|, r̂;H0) over any such Z1, we get the

PFA. In other words, a given PFA does not uniquely determine η1 and η2. We require

some additional information apart from the given PFA in order to uniquely determine

η1 and η2. In order to develop a method for threshold selection, we further partition

Z1 into two sets, Z11 (0 ≤ r̂ ≤ η1, 0 ≤ |ρ̂a| ≤ 1) and Z12 (η1 ≤ r̂ ≤ 1, 0 ≤ |ρ̂a| ≤ η2),

as shown in Figure 5.1. The region Z1 must be such that:

PFA =

∫∫
Z1

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂ =

∫∫
Z11

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂ +

∫∫
Z12

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂

(5.8)

At this point, we introduce a parameter α ∈ [0, 1], which denotes the fraction of the

total PFA which is due to Z11. In other words, if we integrate p(|ρ̂a|, r̂;H0) over Z11,

we get αPFA.

αPFA =

∫∫
Z11

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂ =

η1∫
0

1∫
0

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂

=

η1∫
0

p(r̂;H0)dr̂

= F (η1;H0) (5.9)
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Figure 5.1: Partitions Z11 and Z12 of the Region Z1.

where the subscript r̂ has been dropped and now F (r̂;H0) denotes the cdf of r̂ as

given in (5.4). Thus, since we have the closed form expression for F (r̂;H0), we can

find η1, which is the value of r̂ for which F (r̂;H0) = αPFA. This is equivalent to

finding the threshold for the first stage detector r̂ with the fixed probability of false

alarm constraint equal to αPFA, as discussed in the previous section. Note that when

we fix α, η1 is uniquely determined for the given PFA. Since η1 is now known, we go

back to (5.8) in order to find η2.

PFA =

∫∫
Z1

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂ = 1−
∫∫
Z0

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂

= 1−
1∫

η1

1∫
η2

p(|ρ̂a|, r̂;H0)d|ρ̂a|dr̂ (5.10)
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The only unknown quantity in the above equation is η2, and it is found by com-

puting the zero of the function

h(η2) ,

1∫
η1

1∫
η2

p(|ρ̂a|, r̂)d |ρ̂a| dr̂ − (1− PFA)

by the Newton-Raphson method, where η2 is the running variable, and the double

integral is computed numerically in MATLAB for each η2.

It is important to note that in this analysis, we initially fixed a value of α, and

computed the thresholds for that α. In the beginning of this section, it was mentioned

that a given PFA does not uniquely determine η1 and η2. However, we can see that if

α is specified in addition to the PFA, the thresholds are uniquely determined. Thus,

in order to implement this approach of threshold selection, we must fix the fraction

of the total PFA which is contributed by Z11. The dependence of this parameter α

on the detection performance is discussed in the next chapter.

In this chapter, the distribution of various detectors under H0 was used to de-

termine the thresholds. The pdfs under H0 are obtained when we use the values of

R and |ρ| according to the H0 scenario of the hypothesis test formulations given in

(3.1), (3.4), and (3.9). In order to determine thresholds for |ρ̂c| and |ρ̂a|, it is obvious

that some |ρ| ≈ 1 should be assumed under H0. However, in the case of r̂, the pdf

depends on R and |ρ| both. Many studies including [3] have used the pdf of r̂ with

R = 1 and |ρ| = 0 to determine the thresholds. However, since |ρ| = 0 itself depicts

an H1 scenario, using this value of |ρ| under H0 might prove to degrade the detection

performance for r̂. This can also be seen in the hypothesis test for the two-stage

detector given in (3.9), where under H0, R = 1 and |ρ| ≈ 1. Thus, throughout this

study, R = 1 and some |ρ| ≈ 1 are assumed under H0 and are used for threshold

selection for r̂ and the two-stage detector.
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Chapter 6

DETECTION PERFORMANCE FOR MODIFIED TWO-STAGE

CHANGE DETECTOR

The detection performance of different detectors can be compared by generating

their Receiver Operating Characteristic (ROC) curves. The ROC curve for a detector

is generated by plotting it’s PD as a function of PFA. The detector which can achieve

a higher PD for the same PFA gives a better performance. In other words, the detector

for which the ROC curve lies above is the one which performs better. In this chapter,

the ROC curves for the three detectors discussed previously are compared for different

values of the true parameters R and |ρ|. Also, the dependence of PD on α for different

values of R and |ρ| is analyzed.

In order to generate the ROC curves for a test statistic T , the probability distribu-

tion of the test statistic under both the hypotheses, i.e. p(T ;H0) and p(T ;H1) should

be known. In other words, if the probability distribution depends on a parameter

θ, then the value of θ under H0 and H1 must be known. In the problem of change

detection, the detectors which we deal with depend on the parameters R, |ρ|, and

N . Out of these, N is just the window size, and it does not give any information on

the underlying SAR returns. R and |ρ| are the parameters which define change or

no change, as seen in the hypothesis testing formulations for the non-coherent, CCD,

and the two-stage change detection methods in (3.1), (3.4), and (3.9) respectively.

In the case of R, the H0 condition is fixed as R = 1, and the H1 condition can be

represented by any R significantly less than or greater than one. However, for |ρ|, the

H1 condition is assumed to be fixed as |ρ| = 0, and the H0 condition can have any

|ρ| ≈ 1. As mentioned in [3], such an assumption is valid for fine resolution systems,
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and is used in this section. Thus, throughout this section, the two main types of H1

scenarios of interest are - 1) change due to |ρ| only, i.e. R = 1 and |ρ| = 0, and 2)

change due to R and |ρ| both, i.e. R 6= 1 and |ρ| = 0.

The ROC curves for a test statistic T are generated as follows:

• Using the given PFA constraint and the distribution p(T ;H0), the region Z1 (i.e.

the thresholds) is determined, as shown in Chapter 5.

• The probability of detection (PD) corresponding to the PFA constraint is deter-

mined by integrating p(T ;H1) over Z1, as given in (2.6).

• The two steps given above are repeated for a range of PFA constraints, and the

ROC curves are generated by plotting the PD as a function of the PFA.

6.1 Generating ROC Curves for |ρ̂c|, |ρ̂a| and r̂

Once the threshold η is determined from the given PFA constraint as shown in

Section 5.1, the probability of detection (PD) for the sample coherence statistic can

be determined using:

PD =

∫
Z1

p(|ρ̂c|;H1)d|ρ̂c| =
η∫

0

p(|ρ̂c|;H1)d|ρ̂c|. (6.1)

The ROC curves for |ρ̂c| (solid lines) are plotted in Figure 6.1 for N = 6, where

the value of |ρ| under H1 (as per (3.4)) is fixed as |ρ| = 0, and the different curves

correspond to different values of |ρ| assumed under H0. We can see that as the value

of |ρ| under H0 increases, the performance of the detector becomes better. This

is because as |ρ| under H0 moves further away from 0, the pdfs under H0 and H1

which are given by p(|ρ̂c|;H0) and p(|ρ̂c|;H1) = p(|ρ̂c|; |ρ| = 0) get separated further

away from each other, which makes it easier to detect which of the two distributions

generated a given data sample. Note that the value of R under both the hypotheses
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Figure 6.1: ROC Curves for |ρ̂c| and |ρ̂a| for Change Scenario H1 Given by |ρ| = 0.
The Legend Indicates Value of |ρ| under H0.

was not mentioned above, because the pdf of |ρ̂c| is independent of the true underlying

variances, and thus is independent of R, as seen in (3.6). Thus, |ρ̂c| gives the same

detection performance for any value of R under H0 and H1.

At this point, it is interesting to consider the detection performance of |ρ̂a| as well.

In Section 3.4, it was mentioned that |ρ̂a| is an accurate estimator of |ρ| only when

the underlying variances are equal, i.e. R = 1. ROC curves for |ρ̂a| are plotted as

dashed-dot lines in Figure 6.1. The procedure for generating the ROC curves for |ρ̂a|

is the same as that of |ρ̂c|, the only difference is that the pdf in (3.8) is used instead

of (3.6). We can clearly see that the performance of the two detectors is almost

the same. It is important to note that (3.8) is valid only for R = 1, and thus the

comparison between |ρ̂c| and |ρ̂a| in Figure 6.1 is valid only when R = 1, even though

|ρ̂c| is independent of R. In summary, when the change is due to |ρ| only (R = 1 and

|ρ| = 0 under H1), |ρ̂a| and |ρ̂c| give the same detection performance.
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Figure 6.2: ROC Curves for r̂ for the No Change Scenario H0 Given by R = 1 and
|ρ| = 0.9. Different ROC Curves are due to Different Values of R under H1 where |ρ|
under H1 is fixed to be zero.

Similarly, for the modified first stage r̂, PD can be computed using

PD =

∫
Z1

p(r̂;H1)dr̂ =

η∫
0

p(r̂;H1)dr̂ (6.2)

The parameter which characterized change for |ρ̂c| was just |ρ|. However, in the case

of r̂, both R and |ρ| characterize change. Figure 6.2 shows the comparison of ROC

curves for N = 3 when the values of R and |ρ| under H0 are fixed to be 1 and 0.9

respectively. The ROC curves are plotted for fixed |ρ| = 0 and different values of

R under H1. As the value of R under H1 deviates further from 1, the detection

performance for r̂ improves. We can see that for change due to |ρ| only, r̂ gives a

very small value of PD, and for values of R significantly larger (or smaller) than one,

r̂ achieves high values of PD.
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6.2 Generating ROC Curves for Two-Stage Detector

In case of the two-stage detector, for a given PFA and α pair, the thresholds η1

and η2 can be determined as shown in the previous chapter. Thus, the probability of

detection can be given as:

PD =

∫∫
Z1

p(|ρ̂a|, r̂;H1)d|ρ̂a|dr̂ = 1−
∫∫
Z0

p(|ρ̂a|, r̂;H1)d|ρ̂a|dr̂

= 1−
1∫

η1

1∫
η2

p(|ρ̂a|, r̂;H1)d|ρ̂a|dr̂ (6.3)

Figure 6.3: ROC Curves for Two-Stage Detector for Different Values of α when
R = 1 and |ρ| = 0 under H1.

Figure 6.3 shows ROC curves for the two-stage detector for N = 5, R = 1 and

|ρ| = 0.9 under H0, and R = 1 and |ρ| = 0 under H1 for different values of α. A

value of α chosen is constant for all PFA in the ROC curve. We can see that as α
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Figure 6.4: ROC Curves for Two-Stage Detector for Different Values of α when
R = 5 and |ρ| = 0 under H1.

increases, the performance of the two-stage detector degrades. However, when ROC

curves are plotted for the H1 case of R = 5 and |ρ| = 0, the detector behaves in a

different manner, as we can see in Figure 6.4. The detection performance improves

as we increase α from 0.001 to 0.1, remains the same as α goes from 0.1 to 0.5, and

finally the performance degrades as α is further increased to 0.9. Thus, these two

figures illustrate that the manner in which the probability of detection depends on α

is different for different H1 scenarios.

6.3 Behaviour of Two stage Detector for α = 0 and α = 1.

In order to further explore the dependence of PD on α, it is important to under-

stand the behaviour of the two-stage detector as α varies from 0 to 1. As mentioned

earlier in Chapter 5, α is the fraction of the total PFA which is allotted to Z11. In

other words, when the joint pdf of the two-stage detector under H0 is integrated
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over Z11, we get αPFA. It is evident from Figure 5.1 that as we decrease α, η1 will

also decrease. However, since the entire region Z1 should integrate to PFA, η2 will

increase as η1 decreases. As α is made smaller, the rectangle representing the Z0

region elongates in the vertical direction, as shown in Figure 6.5. As α approaches

zero, η2 stops changing and attains a constant value. Note that α = 0 means that the

contribution of Z11 to the total PFA is zero. This effectively means that all the values

of r̂ are greater than η1, and the two-stage detector is only comparing the value of

|ρ̂a| with η2. Thus, α taking the value zero essentially reduces the two-stage detector

to the single stage detector |ρ̂a|. Similarly, as α becomes equal to one, the two-stage

detector reduces to r̂. Therefore, as α goes from zero to one, the two-stage detector

transitions from |ρ̂a| to r̂. This can be seen from Figure 6.6, where ROC curves are

plotted for r̂, |ρ̂a|, and the two-stage detector for α = 1 and α = 0.001 for the case of

N = 4, R = 1 under both hypotheses, and the value of |ρ| is 0.9 and 0 under H0 and

H1 respectively.

An important point must be considered regarding the generation of theoretical

ROC curves for |ρ̂a|. Equation (3.8) gives the pdf of |ρ̂a| only when the underlying

variances are equal, i.e. R = 1. Thus, the pdf in (3.8) can be used to generate the

ROC curves for |ρ̂a| only if R = 1 under both hypotheses. If R 6= 1 under H1, we

cannot use the same procedure to generate the ROC curves. In that case, the correct

procedure to generate the ROC curves for |ρ̂a| would be to generate the ROC curves

for the two-stage detector for α ≈ 0 (say 0.001), because the pdf of |ρ̂a| when R 6= 1

can be obtained by integrating the joint pdf of |ρ̂a| and r̂ over r̂ = 0 to r̂ = 1. In

Section 6.1, it was shown that the detection performance of |ρ̂c| and |ρ̂a| is the same

when R = 1 under both hypothesis. However, unlike |ρ̂c|, the detection performance

of |ρ̂a| is not invariant to R, and thus for R 6= 1, the detection performance of |ρ̂a|

and |ρ̂c| will not be the same.
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Figure 6.5: Transition of the Region Z0 as α Varies from Zero to One.

Figure 6.6: ROC Curves Showing that the Two-Stage Detector for α = 1 and α ≈ 0
give the Same PD as r̂ and |ρ̂a| respectively.
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6.4 Dependence of PD on α

Plots of PD as a function of α for a fixed PFA have been shown in this section for

the two types of change scenarios (change due to only |ρ| and change due to both R

and |ρ|). Throughout this section, the thresholds are computed using the H0 values

R = 1 and |ρ| = 0.9, and the value of the spatial window size is taken as N = 5.

Figure 6.7 shows α vs PD for PFA = 0.001, where the H1 scenario is given by |ρ| = 0

and R = 1. The curve suggests that as α takes values closer to 1, the probability

of detection is very low. This PD starts increasing as α is brought closer to 0, and

the maximum PD is attained when α = 0. It was shown in the previous section that

when α = 0, the two-stage detector gives the same performance as |ρ̂a|. Furthermore,

since |ρ̂a| gives a performance almost equal to |ρ̂c| (as mentioned in Section 6.1) when

R = 1 under both hypotheses, we can conclude that when the change is due to |ρ|

only, the two-stage detector for α ≈ 0 gives the highest probability of detection, and

this PD is equal to that achieved by |ρ̂c| and |ρ̂a|. Also, we can observe that when the

two-stage detector takes the form of r̂ (i.e. when α = 1), the probability of detection

is very low. This fact that r̂ performs very poorly when the change is due to |ρ| only

was also mentioned in the Section 6.1. Summarizing, when the change is given by

|ρ| only, that is, when |ρ| = 0 and R = 1 under H1, |ρ̂c| and |ρ̂a| give the same PD,

which is significantly higher than r̂, and this high value of PD can be achieved by the

two-stage detector when α ≈ 0.

Similarly, the α vs PD plot for |ρ| = 0 and R = 5 under H1 is shown in Figure 6.8

for PFA = 0.001. In this case, the value of α which gives maximum PD is somewhere

around 0.3. Similarly for |ρ| = 0 and R = 10 under H1, the optimal value of α was

found to be 0.47, as shown in Figure 6.9. Thus, when the change is given by both

|ρ| and R, the optimal value of α is a number between 0 and 1, and not 0 as in the
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Figure 6.7: Plot of α vs PD for PFA = 0.001 when R = 1 and |ρ| = 0 under H1 (i.e.
Change Due to |ρ| only).

Figure 6.8: Plot of α vs PD for PFA = 0.001 when R = 5 and |ρ| = 0 under H1 (i.e.
Change Due to |ρ| and R both).
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Figure 6.9: Plot of α vs PD for PFA = 0.001 when R = 10 and |ρ| = 0 under H1

(i.e. Change Due to |ρ| and R both).

case when change is due to |ρ| only. Figures 6.10 and 6.11 show the optimal value

of α for different values of |ρ| and R under H1 for PFA = 0.001 and PFA = 0.0001

respectively, when N = 5. The two types of change which we are interested in are

represented by the top-left (R ≈ 1 and |ρ| ≈ 0) and bottom-left regions (R 6= 1 and

|ρ| ≈ 0). We can see that when change is due to |ρ| only (top-left), the optimal value

of α is approximately zero, and this value increases as the value of R under H1 starts

increasing. When R under H1 deviates significantly from 1, the optimal value of α

approaches 1. Thus, when R = 1 under H1, the optimal performance is achieved

by |ρ̂a|, and when R under H1 is significantly greater or lesser than 1, the optimal

performance is achieved by r̂. For intermediate values of R, the optimal performance

is achieved by the two-stage detector where the optimal value of α lies between zero

and one.
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Figure 6.10: Optimal Value of α for Different Values of R and |ρ|, for PFA = 0.001
and N = 5.

Figure 6.11: Optimal Value of α for Different Values of R and |ρ|, for PFA = 0.0001
and N = 5.
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It is important to determine whether this optimal α (αopt) gives an improved

performance as compared to |ρ̂c| or r̂. Figures 6.12 and 6.13 illustrate the improvement

in PD achieved by the two-stage detector using the optimal value of α, as compared to

|ρ̂c| and r̂ respectively. Figure 6.12 shows the difference in PD obtained by subtracting

the PD achieved by |ρ̂c| from the PD achieved by the two-stage detector using the

optimal value of α for every true (R,|ρ|) pair under H1, for PFA = 0.001. A similar

plot showing the comparison of r̂ and the two-stage detector is shown in Figure 6.13.

The first observation which we can make is that the difference is always non-negative,

which suggests that using this αopt for the two-stage change detector will always give

a better (or at least the same) performance as compared to |ρ̂c| or r̂. As discussed

earlier, when the change is due to |ρ| only (i.e. when R ≈ 1 and |ρ| = 0), the two-

stage detector can only perform as good as |ρ̂c| (or |ρ̂a|). This can be seen in the

top-left region of Figure 6.12, as the improvement is almost close to zero. Significant

improvement can be seen in the bottom-left region, where change is due to R and |ρ|

both. Similarly, as discussed earlier, r̂ gives a poor performance when change is due

to |ρ| only, and thus we can see the significant improvement achieved by the two-stage

detector in the top-left region of Figure 6.13. Also, the bottom-left region shows only

a slight improvement, which suggests that when change is due to |ρ| and R both, the

two-stage detector with the optimal α shows only a slight improvement over r̂.

Figure 6.10 shows the optimal value of α for given R and |ρ| under H1. In real

applications, these values R and |ρ| are not known beforehand, and thus we cannot

use this information to select αopt based on Figure 6.10. However, we can observe

Figures 6.8 and 6.9 (i.e. the case when change is due to R and |ρ| both) and conclude

that, even though the optimal value of α is an arbitrary number between 0 and 1,

the PD achieved by setting α = 0 is not significantly less than the highest achievable

PD. Additionally, it was shown earlier that when change is due to |ρ| only, the
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Figure 6.12: Two-Stage Detector with Optimal α vs |ρ̂c| for PFA = 0.001

Figure 6.13: Two-Stage Detector with Optimal α vs r̂ for PFA = 0.001
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Figure 6.14: Two-Stage Detector with α = 0.1 vs |ρ̂c| for PFA = 0.001.

Figure 6.15: Two-Stage Detector with α = 0.1 vs r̂ for PFA = 0.001.
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optimal value of α is zero. Thus, we can conclude that using α ≈ 0 for the two-stage

detector (which effectively is |ρ̂a|) for any value of R and |ρ| under H1 will give a

significantly improved overall performance as compared to using |ρ̂c| or r̂ individually.

Furthermore, we can see that in Figures 6.8 and 6.9, the PD slightly drops as we

approach zero. In order to avoid this, we can use a value of α = 0.1, considering

the fact that the PD for α = 0.1 is not significantly less as compared to α = 0 in

Figure 6.7. As a result, we can expect that the two-stage detector with α ≈ 0.1 can

provide an higher overall PD as compared to |ρ̂c| and r̂. However, if a computationally

simpler detector is preferred, the single dimensional detector |ρ̂a| can be used, which

also gives an improved performance over |ρ̂c| and r̂.

Similar to Figures 6.12, the difference between the PD achieved by the two-stage

detector and |ρ̂c| is shown in Figure 6.14. The only point of difference is that for all

values of R and |ρ| under H1, the value of α used is 0.1, and not the optimal value

of α. Similar to Figure 6.12, we can see that the difference in PD is always positive,

suggesting that the two-stage detector with α = 0.1 always gives a performance which

is at least as good as |ρ̂c|. Additionally, in the bottom-left part of Figure 6.14 where

the change is due to |ρ| and R both, the improvement shown by the two-stage detector

as compared to |ρ̂c| is significantly high. Similarly, Figure 6.15 shows the difference

between the PD achieved by the two-stage detector with α = 0.1 and that achieved by

r̂. When change is given by |ρ| only, we can see a significant improvement, whereas

when change is due to |ρ| and R both, the PD is almost the same in both the cases.

The region where the difference is negative can be assumed to be very less likely to

occur, because higher values of |ρ| are unlikely when R starts to deviate from 1, as

explained in [2].
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Figure 6.16: Comparison of ROC Curves for the Case σf0 = σf1 = σg0 = σg1 = 1
(R0 = 1 and R1 = 1), ρ0 = 0.8, and ρ1 = 0

6.5 Comparison of ROC Performance for Different Change Detectors

As mentioned in Section 2.2, the optimal test statistic is given by the likelihood

ratio, which maximizes the probability of detection for a given probability of false

alarm. The log-likelihood test statistic for this problem of change detection has been

derived in [3]. The PD achieved by the log-likelihood ratio is an upper bound for the

PD achievable by any other test statistic. Thus, comparing the detectors discussed in

this study with the log-likelihood ratio tells us how well do these detectors perform

in comparison with the highest achievable performance.

Figures 6.16 - 6.19 show the comparison of ROC curves between the sample co-

herence |ρ̂c|, the sample variance ratio r̂, the log-likelihood test statistic, and the

two-stage change detector for α = 0.1 for different scenarios assumed under H0 and

H1, for the case of N = 5. Note that unlike the detectors discussed in this study, the
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Figure 6.17: Comparison of ROC Curves for the Case σf0 = σf1 = σg0 = σg1 = 1
(R0 = 1 and R1 = 1), ρ0 = 0.9, and ρ1 = 0

log-likelihood test statistic depends directly on the values σf0, σg0, σf1, σg1, ρ0, and ρ1

(the subscript i indicates the value of the parameter under Hi), i.e. the dependence

on these terms is not only through R and |ρ|.

Figures 6.16 and 6.17 show the comparison of ROC curves for the four detectors for

the case when change is given by ρ only. Since we know that under these conditions,

|ρ̂c| and |ρ̂a| give the same performance, the ROC curves for |ρ̂a| have not been plotted

in these two figures, in order to make these plots easily readable. In both the figures,

ρ under H1 is zero, whereas |ρ| under H0 is 0.8 and 0.9 in Figures 6.16 and 6.17

respectively. By comparing the two figures, we can see that when the values of ρ

under H0 and H1 are further away from each other, the detection performance of

each of these detectors is better. Furthermore, it was shown in the previous section,

that under this type of change, the PD achieved by the two-stage detector by setting

α = 0.1 is almost equal to that of |ρ̂c| (or |ρ̂a|), and this can also be seen in Figures
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Figure 6.18: Comparison of ROC Curves for the Case σf0 = σf1 = σg0 = 1,

σg1 =
√

0.2 (R0 = 1 and R1 = 5), ρ0 = 0.9, and ρ1 = 0

Figure 6.19: Comparison of ROC Curves for the Case σf0 = σf1 = σg0 = 1,

σg1 =
√

0.1 (R0 = 1 and R1 = 10), ρ0 = 0.9, and ρ1 = 0
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6.16 and 6.17. Thus, the two-stage detector, |ρ̂c|, and |ρ̂a| display significantly better

performance as compared to r̂, which performs poorly. Figures 6.18 and 6.19 show

the comparison of ROC curves when change is given by both R and ρ. By comparing

Figures 6.16, 6.18, and 6.19, we can see that for fixed values of ρ under H0 and H1,

as the value of R under H1 deviates further from one, the performance of r̂ starts

improving, and eventually it outperforms |ρ̂c| uniformly. The two-stage detector and

|ρ̂a| achieve a higher PD as compared to both |ρ̂c| and r̂. The increase in PD achieved

by the two-stage detector with respect to |ρ̂c| increases as R1 deviates further from

one, whereas the increase in PD of the two-stage detector with respect to r̂ decreases

as R1 deviates further from one. In all of the cases, it is evident that the log-likelihood

statistic achieves higher PD as compared to any other detector.

Thus, the comparison of the ROC curves between |ρ̂c|, |ρ̂a|, r̂, and the two-stage

detector for α = 0.1 have been shown in this section. Summarizing, for the case when

change is due to |ρ| only, |ρ̂c| (and |ρ̂a|) outperforms r̂ significantly, and the two-stage

detector achieves performance almost equal to that of |ρ̂c|. When the change is given

by R and |ρ| both, r̂ starts outperforming |ρ̂c| as R under H1 starts deviating further

from one. In this case, the two-stage detector and |ρ̂a| perform better than r̂. Thus,

the two-stage detector for α = 0.1 and |ρ̂a| give a better overall detection performance

as compared to r̂ and |ρ̂c|, where the two-stage detector performs slightly better than

|ρ̂a|.

The overall improvement in detection performance shown by |ρ̂a| as compared to

|ρ̂c| and r̂ is both unexpected and interesting. In Section 3.3, it was mentioned that

|ρ̂a| is an accurate estimator of |ρ| only under the condition R = 1. However, we

have seen in this section that |ρ̂a| gives a significantly higher probability of detection

as compared to |ρ̂c| when R 6= 1. This unexpected improvement in performance is

explained in [2], and is because as R deviates from one, the arithmetic mean present in
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the denominator of (3.7) becomes greater than the geometric mean in the denominator

of (3.5), and thus |ρ̂a| becomes lesser than |ρ̂c|. Since |ρ̂a| ≤ |ρ̂c|, it becomes easier

to detect change using |ρ̂a| as compared to |ρ̂c|, considering the form of Z1 for both

these detectors. Thus, even though |ρ̂a| does not provide accurate estimates of the

coherence when R 6= 1, it gives better change detection performance as compared to

|ρ̂c|.
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Chapter 7

EXPERIMENTAL RESULTS

In this chapter, the four change detectors are implemented on a SAR data set,

made available publicly by the Air Force Research Laboratory, as described in [17].

Figures 7.1 and 7.2 are the two SAR images, and the goal is to generate an image which

shows whether a pixel has undergone change. It is important to note that throughout

this entire thesis, binary thresholding algorithms have been discussed, which classify a

pixel as change or no change. Thus, applying the detectors to the SAR data set must

result in a binary (black and white) image, where a black pixel denotes change and a

white pixel denotes no change. However, Figure 7.3 is a gray scale image, where every

pixel contains the actual value of |ρ̂c| for that pixel, and this image can be used as a

reference to determine areas of change or no change. Some areas of change have been

described in [17], which are shown in Figure 7.3. Small clusters of dark pixels shown

in the elliptical region correspond to car displacements, and the dark region showed

near the top left corresponds to changes caused by moving foliage. Apart from these,

other distinctive features in Figure 7.3 can also be considered as references, like the

vertical elongated rectangle-like path situated above the elliptical region.

Figures 7.4 - 7.7 show the change images for r̂, |ρ̂a|, |ρ̂c|, and the two-stage detector

respectively, for N = 4. As discussed in the previous chapter, the two-stage detector

with α = 0.1 has been considered in this chapter. We can see that even though none

of the detectors produce a good change image, r̂, |ρ̂a|, and the two-stage detector do

detect some areas of change, whereas |ρ̂c| does not perform as good as the other three.

As we increase the value of N to 9, all the detectors show a significant improvement in

change detection, as seen in Figures 7.8 - 7.12. The car displacements can be thought
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of as significant changes, and thus r̂ does a better job in detecting them as compared

to |ρ̂c|. The two-stage detector and |ρ̂a| show considerably good change images in this

case.

As we further increase the value of N to 12 and 16, all four detectors generate

significantly good change images. Even for these higher values of N , |ρ̂c| does not

do as great a job as the other three detectors in detecting the car displacements.

However, it detects the subtle changes due to moving foliage better than r̂. This can

be seen from the more densely-packed black pixels in the foliage region of the image

generated by |ρ̂c|. We can see that for lower values of N , r̂ performs better, whereas

|ρ̂c| requires higher values of N to produce better performance. Overall, |ρ̂a| and the

two-stage detector perform better than r̂ and |ρ̂c|. Also, the images generated by |ρ̂a|

and the two-stage detector are almost similar, thus only |ρ̂a| can be used to detect

changes, as it provides a simpler alternative as compared to the two-stage detector.

Figure 7.1: Reference SAR Image
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Figure 7.2: Mission SAR Image

Figure 7.3: Gray Scale Change Image showing Raw Statistic |ρ̂c|
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Figure 7.4: Change Image for r̂, N = 4.

Figure 7.5: Change Image for |ρ̂a|, N = 4
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Figure 7.6: Change Image for |ρ̂c|, N = 4

Figure 7.7: Change Image for Two-Stage Detector with α = 0.1, N = 4.
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Figure 7.8: Change Image for r̂, N = 9.

Figure 7.9: Change Image for |ρ̂a|, N = 9
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Figure 7.10: Change Image for |ρ̂c|, N = 9

Figure 7.11: Change Image for Two-Stage Detector with α = 0.1, N = 9
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Figure 7.12: Change Image for r̂, N = 12.

Figure 7.13: Change Image for |ρ̂a|, N = 12
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Figure 7.14: Change Image for |ρ̂c|, N = 12

Figure 7.15: Change Image for Two-Stage Detector with α = 0.1, N = 12

63



Figure 7.16: Change Image for r̂, N = 16.

Figure 7.17: Change Image for |ρ̂a|, N = 16
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Figure 7.18: Change Image for |ρ̂c|, N = 16

Figure 7.19: Change Image for Two-Stage Detector with α = 0.1, N = 16

65



Chapter 8

CONCLUSION

The problem of detecting areas of change between SAR images of the same scene,

captured at two different time instants is explored in this study. Particularly, the

two-stage change detector proposed by [2] has been studied in detail. This detector is

a two-dimensional detector, where the dimensions correspond to the sample variance

ratio R̂, and the Berger’s coherence estimator |ρ̂a|. It has been shown that replacing

the sample variance ratio test statistic by the symmetric detector r̂ yields a simpler

form for the two-stage detector. The probability density function and the cumulative

distribution function for this symmetric ratio detector have been derived. The prob-

ability density function for the modified two-stage detector has also been derived.

An approach for computing the thresholds with the help of this density function for

a fixed probability of false alarm constraint is proposed. It is shown that in order

to uniquely determine the thresholds, the introduction of another parameter α is re-

quired. The two-stage detector effectively reduces to the symmetric sample variance

ratio detector when α = 1, whereas when α ≈ 0, it reduces to the Berger’s coher-

ence estimator. α taking a value between 0 and 1 results in the two-stage detector

behaving as a combination the two statistics |ρ̂a| and r̂.

The dependence of the detection performance on α is explored in detail, and it

has been shown that the optimal value of α depends on the true value of R and

|ρ|. However, considering a fixed value of α = 0.1 gives a better detection perfor-

mance as compared to the classical coherence estimator and the r̂. Theoretical ROC

curves of all the four detectors were compared with the optimal log-likelihood ratio

detector, which demonstrated that the two-stage detector with α = 0.1 gives a better
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performance compared to the other three detectors. However, since the probabil-

ity of detection achieved by Berger’s estimate is only slightly less than that of the

two-stage detector, Berger’s estimate may be a better option since it only involves a

single threshold. All of the four detectors were implemented on a SAR data set, and

qualitatively better change images were generated by |ρ̂a| and the two-stage detector

as compared to r̂ and |ρ̂c|.
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APPENDIX A

DERIVATION OF PDF OF r̂
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This test statistic R̂, which is an estimator of the ratio of the true variances , has
probability density function(pdf) given by :

pR̂ (x;R, |ρ|, N) =
Γ(2N)

Γ(N)2
(1− |ρ|2)N(x+R)RNxN−1

[(x+R)2 − 4xR|ρ|2]N+ 1
2

for 0 < x <∞. (A.1)

where R = σ2
f/σ

2
g is the ratio of the true variances, ρ is the complex correlation coef-

ficient between the two complex random radar returns and Γ(.) denotes the gamma
function. The symmetric detector r̂ is given by :

r̂ =

{
R̂ when R̂ ≤ 1

R̂−1 when R̂ > 1
(A.2)

The approach to derive the pdf of r̂ is similar to the one used in [7]. It can be seen
from (A.2) that the support of the pdf of r̂, pr̂ (x;R, |ρ|, N) is 0 ≤ x ≤ 1. Thus, for
0 ≤ a < b ≤ 1, we can write

Pr(a < r̂ < b ; R, |ρ|, N) = Pr(a < R̂ < b , R̂ ≤ 1 ; R, |ρ|, N)

+ Pr(a < R̂−1 < b , R̂ > 1 ; R, |ρ|, N) (A.3)

Since a and b lie between 0 and 1, we can see that the event R̂ ∈ [a, b] is a subset of

the event R̂ ≤ 1, and thus

Pr(a < R̂ < b , R̂ ≤ 1 ; R, |ρ|, N) = Pr(a < R̂ < b ; R, |ρ|, N) (A.4)

Similarly, R̂−1 ∈ [a, b], which can also be written as R̂ ∈ [1/b, 1/a], is a subset of the

event R̂ > 1. Hence,

Pr
(
a < R̂−1 < b , R̂ > 1 ; R, |ρ|, N

)
= Pr

(
1

b
< R̂ <

1

a
; R, |ρ|, N

)
. (A.5)

Thus, using (A.4) and (A.5) in (A.3), we get

Pr(a < r̂ < b ; R, |ρ|, N) = Pr(a < R̂ < b ; R, |ρ|, N)

+ Pr

(
1

b
< R̂ <

1

a
; R, |ρ|, N

)
(A.6)
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We now consider pR̂ (x−1;R−1, |ρ|, N), which can be obtained from the expression
for pR̂ (x;R, |ρ|, N) which is given in (A.1).

pR̂
(
x−1;R−1, |ρ|, N

)
=

Γ(2N)

Γ(N)2
(1− |ρ|2)N(x−1 +R−1)R−Nx1−N

[(x−1 +R−1)2 − 4x−1R−1|ρ|2]N+ 1
2

=
Γ(2N)

Γ(N)2
(1− |ρ|2)N

(
x+R
xR

)
R−Nx1−N

[
(
x+R
xR

)2 − 4 xR
(xR)2
|ρ|2]N+ 1

2

=
Γ(2N)

Γ(N)2
(1− |ρ|2)N(x+R)R−Nx1−N

[(x+R)2 − 4xR|ρ|2]N+ 1
2

. (xR)2N

=
Γ(2N)

Γ(N)2
(1− |ρ|2)N(x+R)RNxN−1

[(x+R)2 − 4xR|ρ|2]N+ 1
2

.x2

pR̂
(
x−1;R−1, |ρ|, N

)
= pR̂ (x;R, |ρ|, N) .x2. (A.7)

We now go back to (A.6), and consider the second term in the right hand side of
(A.6),

Pr

(
1

b
< R̂ <

1

a
; R, |ρ|, N

)
=

1/a∫
1/b

pR̂ (x;R, |ρ|, N) dx. (A.8)

Using the substitution x = 1/y, we get dx = −(1/y2)dy, and

Pr

(
1

b
< R̂ <

1

a
; R, |ρ|, N

)
= −

a∫
b

pR̂

(
1

y
;R, |ρ|, N

)
dy

y2

=

b∫
a

pR̂

(
1

y
;R, |ρ|, N

)
dy

y2
. (A.9)

Now, using the property given by (A.7), we get

Pr

(
1

b
< R̂ <

1

a
; R, |ρ|, N

)
=

b∫
a

pR̂

(
y;

1

R
, |ρ|, N

)
dy. (A.10)

Thus, substituting this result in (A.6), we get

b∫
a

pr̂ (y;R, |ρ|, N) dy =

b∫
a

[
pR̂ (y;R, |ρ|, N) + pR̂

(
y;

1

R
, |ρ|, N

)]
dy (A.11)

which gives us the final result

pr̂ (y;R, |ρ|, N) = pR̂ (y;R, |ρ|, N) + pR̂

(
y;

1

R
, |ρ|, N

)
(A.12)
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which can be written as

p(r̂;R, |ρ|, N) =
Γ(2N)

Γ(N)2
r̂N−1(1− |ρ|2)N

.

(
RN(r̂ +R)

[(r̂ +R)2 − 4r̂R|ρ|2]N+ 1
2

+
R−N(r̂ +R−1)

[(r̂ +R−1)2 − 4r̂R−1|ρ|2]N+ 1
2

)
(A.13)

for 0 ≤ r̂ ≤ 1 and zero elsewhere. Furthermore, using a = 0 and b = η in (A.11), we
get

η∫
0

pr̂ (y;R, |ρ|, N) dy =

η∫
0

pR̂ (y;R, |ρ|, N) dy +

η∫
0

pR̂

(
y;

1

R
, |ρ|, N

)
dy. (A.14)

The integral on the left hand side gives the cdf of r̂, and the two integrals on the
right hand side are in terms of the cdf of R̂, under true parameter values R and R−1.
Thus, the cdf of r̂ is given by :

Fr̂(η;R, |ρ|, N) = FR̂(η;R, |ρ|, N) + FR̂(η;R−1, |ρ|, N) (A.15)

where FR̂(η;R, |ρ|, N) is the cdf of R̂, given by (5.5).
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APPENDIX B

DERIVATION OF JOINT PDF OF |ρ̂a| AND r̂
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The joint pdf of R̂ and |ρ̂a| is given by :

p|ρ̂a|,R̂(x, y;R, |ρ|, N) =
(1− |ρ|2)NΓ(2N)

Γ(N)Γ(N − 1)

x

2(y + 1)2

.

[
y

(y + 1)2
− x2

4

]N−2
.

[
x|ρ|+ y +R

(y + 1)
√
R

]−2N
.2F1

(
1

2
, 2N ; 1;

2x|ρ|
x|ρ|+ y+R

(y+1)
√
R

)
(B.1)

for 0 ≤ y <∞, x ≤ [4y/(y + 1)2]1/2 and zero elsewhere. We begin by considering

P (a < r̂ < b , c < |ρ̂a| < d ; R, |ρ|, N) =

P (a < R̂ < b , c < |ρ̂a| < d , R̂ ≤ 1 ; R, |ρ|, N)

+P (a < R̂−1 < b , c < |ρ̂a| < d , R̂ > 1 ; R, |ρ|, N)
(B.2)

where 0 ≤ a < b ≤ 1 and 0 ≤ c < d ≤ 1. Similar to (A.4) and (A.5), we can write
the above equation as

P (a < r̂ < b , c < |ρ̂a| < d ; R, |ρ|, N) = P (a < R̂ < b , c < |ρ̂a| < d ; R, |ρ|, N)

+ P (
1

b
< R̂ <

1

a
, c < |ρ̂a| < d ; R, |ρ|, N)

(B.3)

Considering p|ρ̂a|,R̂(x, y−1;R−1, |ρ|, N),

p|ρ̂a|,R̂(x, y−1;R−1, |ρ|, N) =
(1− |ρ|2)NΓ(2N)

Γ(N)Γ(N − 1)

x

2(y−1 + 1)2
.

[
y−1

(y−1 + 1)2
− x2

4

]N−2
.

[
x|ρ|+ y−1 +R−1

(y−1 + 1)
√
R−1

]−2N

.2F1

1

2
, 2N ; 1;

2x|ρ|
x|ρ|+ y−1+R−1

(y−1+1)
√
R−1


=

(1− |ρ|2)NΓ(2N)

Γ(N)Γ(N − 1)

xy2

2(y + 1)2
.

[
y

(y + 1)2
− x2

4

]N−2
.

[
x|ρ|+ y +R

(y + 1)
√
R

]−2N
.2F1

(
1

2
, 2N ; 1;

2x|ρ|
x|ρ|+ y+R

(y+1)
√
R

)
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p|ρ̂a|,R̂(x, y−1;R−1, |ρ|, N) = p|ρ̂a|,R̂(x, y;R, |ρ|, N).y2 (B.4)

which is similar to (A.7). Considering the second term in the right hand side of (B.3),

P (
1

b
< R̂ <

1

a
, c < |ρ̂a| < d ; R, |ρ|, N) =

d∫
c

1/a∫
1/b

p|ρ̂a|,R̂(x, y;R, |ρ|, N)dydx

=

d∫
c

b∫
a

p|ρ̂a|,R̂(x,
1

z
;R, |ρ|, N)

dzdx

z2

=

d∫
c

b∫
a

p|ρ̂a|,R̂(x, z;
1

R
, |ρ|, N)dzdx (B.5)

where the substitution y = 1/z and (B.4) have been used. We can now write (B.3)
as :

d∫
c

b∫
a

p|ρ̂a|,r̂(x, z;R, |ρ|, N)dzdx =

d∫
c

b∫
a

p|ρ̂a|,R̂(x, z;R, |ρ|, N)dzdx

+

d∫
c

b∫
a

p|ρ̂a|,R̂(x, z;
1

R
, |ρ|, N)dzdx (B.6)

and thus we get the final result for the expression for the joint pdf of r̂ and |ρ̂a| as

p|ρ̂a|,r̂(x, z;R, |ρ|, N) = p|ρ̂a|,R̂(x, z;R, |ρ|, N) + p|ρ̂a|,R̂(x, z;
1

R
, |ρ|, N) (B.7)
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