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ABSTRACT

Mosquitoes are the greatest killers of mankind, and diseases caused by mosquitoes

continue to induce major public health and socio-economic burden in many parts

of the world (notably in the tropical sub-regions). This dissertation contributes in

providing deeper qualitative insights into the transmission dynamics and control of

some mosquito-borne diseases of major public health significance, such as malaria

and dengue. The widespread use of chemical insecticides, in the form of long-lasting

insecticidal nets (LLINs) and indoor residual spraying, has led to a dramatic de-

cline in malaria burden in endemic areas for the period 2000-2015. This prompted

a concerted global effort aiming for malaria eradication by 2040. Unfortunately, the

gains recorded are threatened (or not sustainable) due to Anopheles resistance to all

the chemicals embedded in the existing insecticides. This dissertation addresses the

all-important question of whether or not malaria eradication can indeed be achieved

using insecticides-based control. A novel mathematical model, which incorporates

the detailed Anopheles lifecycle and local temperature fluctuations, was designed to

address this question. Rigorous analysis of the model, together with numerical simula-

tions using relevant data from endemic areas, show that malaria elimination in meso-

and holo-endemic areas is feasible using moderate coverage of moderately-effective

and high coverage of highly-effective LLINs, respectively. Biological controls, such as

the use of sterile insect technology, have also been advocated as vital for the malaria

eradication effort. A new model was developed to determine whether the release of

sterile male mosquitoes into the population of wild adult female Anopheles mosquito

could lead to a significant reduction (or elimination) of the wild adult female mosquito

population. It is shown that the frequent release of a large number of sterile male

mosquitoes, over a one year period, could lead to the effective control of the targeted

mosquito population. Finally, a new model was designed and used to study the trans-
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mission dynamics of dengue serotypes in a population where the Dengvaxia vaccine

is used. It is shown that using of the vaccine in dengue-naive populations may induce

increased risk of severe disease in these populations.
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Chapter 1

INTRODUCTION

1.1 Mosquito-Borne Diseases (MBDs)

Mosquitoes are the principal vectors of numerous mosquito-borne diseases (MBDs)

of major public health concern, including malaria (Cailly et al., 2012; Chitnis et al.,

2008; Mordecai et al., 2013; WHO et al., 2017), dengue (Esteva and Vargas, 2000; Iboi

and Gumel, 2018; Wu et al., 2009), West Nile virus (Abdelrazec and Gumel, 2017;

Lewis et al., 2006; Wan and Zhu, 2010), Zika (Abdelrazec and Gumel, 2017; Yakob and

Walker, 2016) and Chikungunya (Abdelrazec and Gumel, 2017; Yakob and Walker,

2016). Of the over 3,500 described species of mosquitoes, about 200 are known to

be capable of transmitting infectious diseases to humans (CDC, 2019a). Malaria is

the most devastating of all the MBDs, accounting for approximately 214 (149-303)

million cases and 438,000 (236,000-635,000) deaths annually, with the majority of

deaths occurring in children under the age of five and in pregnant women (WHO,

2018b). Dengue is another MBD of major public health importance. It accounts for

an estimated 390 (284-528) million dengue infections each year with about half of the

world’s population now at risk of the infection (WHO, 2019). Overall, MBDs account

for approximately 600 million cases and over 1 million deaths globally (WHO, 2019).

Figure 1.1 depicts the global distribution of some MBDs.

The life-cycle of a mosquito alternates between the free-flying adult stage and sev-

eral aquatic juvenile stages (eggs, larval, and pupae stages) (Abdelrazec and Gumel,

2017; Afrane et al., 2005; Bayoh and Lindsay, 2003; Dao et al., 2006). Adult female

mosquitoes require a blood meal for the development of eggs. Upon successful de-
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Figure 1.1: Global Distribution of Mosquito-Borne Diseases (Lyons, 2015).

velopment of the eggs, the adult female mosquito oviposits directly onto standing

water, where the eggs hatch, releasing larvae that pass through four instars and then

develop into pupae (Abdelrazec and Gumel, 2017; Afrane et al., 2005; Bayoh and

Lindsay, 2003; Dao et al., 2006). Adult mosquitoes emerge from the pupae following

metamorphosis and then fly away as depicted in Figure 1.2.

1.2 Transmission and Global Distribution of MBDs

1.2.1 Malaria

Malaria, the deadliest of all MBDs, is a parasitic disease caused by protozoan Plas-

modium parasites (Carter and Mendis, 2002; Loy et al., 2017; WHO, 2016, 2017a). It

spread between humans via the bite of infected adult female Anopheles mosquitoes.

The disease is endemic in 91 countries, and caused 219 million cases and 435,000

deaths in 2017 (Camara et al., 2018; Gates, 2016; WHO, 2018b). Malaria burden is

concentrated in the African Region, accounting for about 90% of cases and mortal-
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Figure 1.2: The Mosquito Lifecycle. Adapted from (Eikenberry and Gumel, 2018).

Figure 1.3: Malaria as a Tropical Disease (Eikenberry and Gumel, 2018; WHO, 2015a)
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ity (with the majority of deaths occurring in children under the age of five) (WHO,

2017a). Other populations at high-risk of malaria include pregnant women and those

living with HIV/AIDS (owing to their weakened immune systems) (Mohammed-Awel

and Numfor, 2017; WHO, 2016). Malaria transmission dynamics is greatly affected

by numerous abiotic and biotic factors, such as the increased mobility of people (the

reservoir for the malaria parasite), the altered distribution of disease vectors (Anophe-

les mosquitoes) due to climate and environmental changes, and malaria’s incursions

into new areas (e.g., East African tropical highlands (Himeidan and Kweka, 2012)).

Of the over 3500 Anopheline species, approximately 30-40 (species of this genus) have

been shown to be efficient vectors of malaria (Cohuet et al., 2010; Sinka et al., 2010).

As noted by (Cohuet et al., 2010), to be efficient malaria vector, the Anopheles

species must habitually bite humans (some anopheline species prefer to bite other

non-human primates), must be susceptible to Plasmodium infection and must be

able to live long enough to complete the sporogonic cycle (i.e., the maturation of

the Plasmodium parasite in the mosquito). The dominant anopheline species in sub-

Saharan Africa are A. gambiae, A. arabiensis, A. funestus, with A. gambiae by far

the most important species, and, consequently the focal point of the over-whelming

majority of malaria modeling efforts (Eikenberry and Gumel, 2018; Sinka et al., 2010).

There is significant heterogeneity in habitat preferences within the anopheline

species. For instance, the A. gambiae complex tends to prefer conditions associated

with anthropogenic (man-made) alteration of the environment (Sinka et al., 2010).

Further, as noted by (Minakawa et al., 1999, 2004), the larvae of both A. gambiae

and A. arabiensis prefer small, temporary, sunlit pools with little vegetation (the

kind generated by deforestation, construction and livestock hoofprints). On the other

hand, A. funestus (another major vector in sub-Saharan Africa), although also aided

by deforestation, tends to prefer larger permant or semipermant habitats with estab-
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lished vegetation (Eikenberry and Gumel, 2018; Minakawa et al., 2005). Figure 1.3

depicts the global distribution of malaria.

In the context of malaria, the adult mosquito (Anopheles) lifecycle is centered on

the gonotrophic cycle, which entails the following three stages (Detinova et al., 1962;

Okuneye et al., 2019):

Stage I : host-seeking and taking of a bloodmeal

Stage II : digestion of bloodmeal and egg maturation

Stage III : search for, and oviposition into, a suitable body of water

There are currently five Plasmodium species that transmit human malaria, namely P.

falciparum, P. vivax, P. Ovale, P. malariae and P. knowlesi (Antinori et al., 2012). Of

the five species, P. falciparum and P. vivax are dominant and responsible for nearly

all of malaria deaths (Eikenberry and Gumel, 2018; Iboi et al., 2019a; Okuneye et al.,

2019; WHO, 2015a, 2017a, 2018b). In particular, P. falciparum is responsible for over

90% of all malaria mortality in sub-Saharan Africa (WHO, 2015a, 2017a, 2018b).

1.3 Control Strategies

The control of malaria in endemic areas relies mainly on the implementation of

vector-reduction strategies, such as adulticiding (use of pyrethroid-based long-lasting

insecticidal nets (LLINs), indoor residual spraying (IRS)), larvacides (to kill imma-

ture mosquitoes) and treatment of confirmed cases using artemisinin-based therapy

(Gerardin et al., 2015; Marsh, 1998; Yeung et al., 2004).The widespread Anopheles

resistance to the insecticides embedded in LLINs and IRS, and also Plasmodium re-

sistance to the artemisinin-therapy (Marsh, 1998; White et al., 1999; Yeung et al.,

2004), prompted the call for anti-malarial biological control (such as the sterile in-

sect technology (SIT), Wolbachia, larvivorous fish, genetically modified mosquitoes

5



(CRISPR-cas9)) (Eikenberry and Gumel, 2018; Iboi et al., 2019a,b; Mutabingwa,

2005).

Great successes have been recorded in the fight against malaria since about the

year 2000, largely owing to concerted global public health efforts, such as the Roll

Back Malaria initiative and the United Nations Millennium Development

Goals (MDGs)(Huijben and Paaijmans, 2018; WHO, 2015b). Unfortunately, how-

ever, malaria remains a major public health challenge for about half of the world’s

population (Gething et al., 2016; WHO, 2012, 2015a).

New concerted global efforts, such as The Global Technical Strategy for Malaria

2016–2030 (approved by the World Health Assembly in May 2015 (WHO, 2015b)) and

the Zero by 40 Initiative (an initiative of five chemical companies with the support of

the Bill & Melinda Gates Foundation and the Innovative Vector Control Consortium

(Gates, 2016; Willis and Hamon, 2018)), aimed at eradicating malaria by 2030 or 2040,

respectively, are currently underway. Central to these laudable malaria eradication ef-

forts is the widespread use of insecticide-based vector control interventions, including

pyrethroid-based insecticide-treated nets (ITNs; LLINs), IRS and larvacides (WHO;

Barbosa and Hastings, 2012; Huijben and Paaijmans, 2018; Okumu and Moore, 2011),

complemented by artemisinin-based combination drug therapy. Five major classes of

insecticides are used in malaria control efforts, namely pyrethroids, organochlorines,

organophosphates, carbamates and the recent addition of neonicotinoids. Although

all five are used in IRS (WHO, 2018a), only the pyrethroids is used in LLINs (owing

to their low mammalian toxicity and irritant effect on mosquitoes) (Kabula et al.,

2014).

It is notable that the earlier WHO’s (World Health Organization’s) Global Malaria

Eradication Programme (1955–1969) relied almost exclusively on the use of DDT

(Dichlorodiphenyltrichloroethane) and other insecticidal compounds for vector control,
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with the theoretical goal of interrupting malaria transmission via decreasing adult

survival times, rather than decreasing mosquito abundance per se, a goal largely based

on the mathematical model of the malariologist George Macdonald (Macdonald, 1957;

Nájera et al., 2011).

Long-lasting insecticidal bednets have been used to great success in reducing the

global malaria burden (Bhatt et al., 2015). This success is partly attributed to com-

munity protection. In particular, if the coverage of bednet usage exceeds a certain

threshold level, overall mosquito densities and malaria transmission are impacted suf-

ficiently to also protect those individuals not using a bednet (Killeen and Smith, 2007;

Levitz et al., 2018; Okumu and Moore, 2011).

1.3.1 Dengue

Dengue is a mosquito-borne viral disease caused by any of the four closely-related

virus serotypes (DENV1-4) of the genus Flavivirus. The disease, which is endemic in

over a hundred countries (mostly the tropical and sub-tropical regions of the world;

Figures 1.4-1.7), accounts for over 50 million infections and 20,000 deaths annually

(Andraud et al., 2012b; Chowell et al., 2007; Halstead, 1982; Shekhar, 2007). The

disease is transmitted to humans via the bite of a dengue-infected adult female Aedes

aegypti mosquito (Bancroft, 1906). The adult female Aedes mosquitoes bite humans

in search of blood meal needed for eggs development. These mosquitoes typically

reside in urban areas, where water-holding containers serve as their main breeding

sites (Morales et al., 2017).

The incidence of dengue has consistently risen globally over the last five decades

due to numerous factors, including the geographic expansion and transmission intensi-

fication in endemic tropical and subtropical regions (see Hladish et al. (2016) and some

of the references therein). The disease causes life-threatening complications, such
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as Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS) in some

dengue-infected people (Gubler and Kuno, 1997; Halstead et al., 1970; Kawaguchi

et al., 2003). These complications are often triggered due to immune responses to

secondary infections (see, for instance, (Halstead et al., 1970; Halstead, 1982; Paul

et al., 2016) for discussion on the antibody-dependent enhancement (ADE) in the

context of dengue disease).

1.4 Control Strategies

The control of dengue disease in endemic areas relies mainly on vector-reduction

strategies, such as larvacides (to kill immature mosquitoes) and adulticides (to kill

adult mosquitoes), although biological controls (such as the sterile insect technology

(SIT), Wolbachia, larvivorous fish, genetically modified mosquitoes (CRISPR-cas9))

(Eikenberry and Gumel, 2018; Iboi et al., 2019a,b; Mutabingwa, 2005) have also been

suggested (and deployed in some settings). Another strategy is the use of vaccine

against dengue (Dengxavia R©, a recombinant chimeric live-attenuated DENV vaccine

based on a yellow fever 17D vaccine backbone (Ferguson et al., 2016), developed by

Sanofi Pasteur Ltd.) approved by the U.S. Food and Drug Administration (FDA) in

2019 (CDC, 2019b).

Dengue poses unique challenges for effective control owing to the fact that humans

may be infected multiple times with different viral serotypes (and secondary infec-

tions are associated with an increased risk for severe disease) (Hladish et al., 2016).

Infection with one dengue serotype induces lifelong immunity against acquiring infec-

tion from that serotype, and a temporary cross-immunity against the other serotypes

(Burke et al., 1988; Halstead, 1982).
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Figure 1.4: Spatial Distribution of Reported Confirmed Cases of DENV1 Since 1943.

Darker-Colored Areas Represent Cases that were Confirmed in the Given Decade Under

Consideration, Whereas Lighter-Colored Areas Represent Cases that had been Previously

Reported but not in the Current Decade. Figure Taken from (Messina et al., 2014).

1.5 Research Objectives

The control of MBDs in endemic areas relies mainly on the implementation of mosquito-

reduction strategies, such as the use of long-lasting insecticidal nets (LLINs) and in-

door residual spraying (IRS) and treatment of confirmed cases (Mutabingwa, 2005).

However, adult female mosquitoes have started developing resistance to the chemicals

currently being used in the production of IRS and LLINs (Figure 1.8). Furthermore,

in the context of malaria, the Plasmodium parasite has started developing resistance

to the artemisinin-based therapy (Lubell et al., 2014; Ouji et al., 2018; Yeung et al.,

2004). Hence, there is urgent need to explore other measures for vector control. Bio-

logical controls, such as sterile insect technology (SIT) (fre, 2017; Benelli et al., 2016;
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Figure 1.5: Spatial Distribution of Reported Confirmed Cases of DENV2 since 1943.

Darker-Colored Areas Represent Cases that were Confirmed in the given Decade Under

Consideration, Whereas Lighter-Colored Areas Represent Cases that had been Previously

Reported but not in the Current Decade. Figure Taken from (Messina et al., 2014).

Cai et al., 2014; Huang et al., 2017; Patil et al., 2015; Thomé et al., 2010; Zheng

et al., 2019), are being used to achieve this objective.

This dissertation work addresses three main research themes, namely:

1. The design of a modeling framework for assessing the population-level impact

of the anti-dengue Dengvaxia vaccine (developed by Sanofi Pasteur Ltd.) on

curtailing the spread of two dengue serotypes in a community.

2. The development a modeling framework for assessing the link between insecti-

cide resistance and malaria epidemiology.

3. The development of a modeling framework for assessing the community-wide

impact of SIT on malaria control. The effectiveness of SIT under various levels
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Figure 1.6: Spatial Distribution of Reported Confirmed Cases of DENV3 Since 1943.

Darker-Colored Areas Represent Cases that were Confirmed in the given Decade Under

Consideration, Whereas Lighter-Colored Areas Represent Cases that had been Previously

Reported but not in the Current Decade. Figure Taken from (Messina et al., 2014).

of local temperature fluctuations will also be assessed.

1.6 Outline of the Dissertation

The dissertation work is focused on the use of mathematical modeling approaches,

coupled with dynamical systems analysis, computation and statistical data analytics,

to gain insight into the population ecology of mosquitoes and the burden of the associ-

ated diseases they cause in humans. In particular, I studied the population ecology of

two mosquito species, namely Aedes mosquitoes (which cause arboviral diseases, such

as dengue fever, Chikungunya and Zika) and Anopheles mosquitoes (which causes

malaria). Chapter 1 provides comprehensive introduction of the dissertation.

Chapter 2 of the dissertation contains material on modeling the population-level
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Figure 1.7: Spatial Distribution of Reported Confirmed Cases of DENV4 Since 1943.

Darker-Colored Areas Represent Cases that were Confirmed in the Given Decade Under

Consideration, Whereas Lighter-Colored Areas Represent Cases that had been Previously

Reported but not in the Current Decade. Figure Taken from (Messina et al., 2014).

impact of the Dengvaxia vaccine against dengue (Iboi and Gumel, 2018). A new

mathematical model for the dynamics of two dengue serotypes, in the presence of

the vaccine, is developed. The model, which takes the form of a 27-dimensional de-

terministic system of nonlinear differential equations, is rigorously analysed to gain

insight into its dynamical features. Detailed global uncertainty and sensitivity analy-

ses of the parameters of the model, together with numerical simulations to assess the

population-level impact of the vaccine are also reported.

Chapter 3 is based on modeling the impact of the use of long-lasting insecticidal

nets (LLINs) and local temperature fluctuations on the transmission dynamics of

malaria in an endemic setting. This work is motivated by the fact that the widespread

use of LLINs (and, to a smaller extent, the indoor residual spray) has led to a dramatic
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Figure 1.8: Red: Confirmed Resistance, Yellow: Possible Resistance and Green: Suscepti-

bility (irmapper, 2019).

reduction in malaria incidence and burden globally for the period 2000-2015 (Huijben

and Paaijmans, 2018; WHO, 2015b). Unfortunately, such widescale use of LLINs has

also resulted in vector resistance to all five currently-available insecticides used in

LLINs (WHO; Barbosa and Hastings, 2012; Huijben and Paaijmans, 2018; Okumu

and Moore, 2011).

In chapter 4 of the dissertation, the possible population-level impact of the periodic

release of sterile male mosquitoes on the local population abundance of mosquitoes

is studied. The motivation for this work stems from the general thinking within the

ecology community that, owing to the absence of a safe and effective vaccine against

deadly mosquito-borne diseases (such as malaria) and vector insecticide resistance

to all currently-available insecticides used in LLINs and IRS, the global effort to

eliminate or eradicate malaria may have to hinge on using biological controls, such

as the aforementioned sterile insect technology (SIT) approach.
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Chapter 2

TRANSMISSION DYNAMICS OF DENGUE SEROTYPES: ROLE OF

DENGVAXIA VACCINE

2.1 Introduction

As stated in chapter 1, dengue is a mosquito-borne viral disease that exudes significant

public health burden in endemic areas (comprising of over 100 countries in the tropical

and sub-tropical regions of the world). The disease, caused by any of the four closely-

related virus serotypes (DENV1-4) of the genus Flavivirus, accounts for over 50 million

infections and 20,000 deaths annually (Andraud et al., 2012b; Chowell et al., 2007;

Halstead, 1982; Shekhar, 2007). It is transmitted to humans via the bite of an infected

by adult female Aedes mosquitoes (Bancroft, 1906).

Although vector control (i.e., mosquito reduction), using larvacides (to kill mosquito

larvae) and adulticides (to kill adult Aedes mosquitoes), has been the main option or

strategy to combat the spread (and mitigate the impact) of dengue disease, these vec-

tor control programs are generally limited and unsustainable (Hladish et al., 2016).

Consequently, a vaccine against dengue known as Dengxavia R© vaccine, was devel-

oped by Sanofi Pasteur Ltd. in 2017 (CDC, 2019b). Dengvaxia, a recombinant

chimeric live-attenuated DENV vaccine based on a yellow fever 17D vaccine back-

bone (Ferguson et al., 2016), developed by Sanofi Pasteur Ltd.) was approved for

use by the U.S. Food and Drug Administration (FDA) in 2019 (CDC, 2019b). The

vaccine was licensed for use in numerous countries, such as the US territories of

American Samoa, Puerto Rico and the US Virgin Islands (CDC, 2019b). As noted by

Ferguson et al. (2016), the development of this vaccine was considerably more chal-
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lenging (in comparison to the development of vaccines for other Flaviviruses) because

of the immunological interactions between the four dengue serotypes and the risk of

antibody-dependent enhancement (ADE) (Halstead et al., 1970; Halstead, 1982; Paul

et al., 2016).

Results from Phase III clinical trials of the Dengvaxia vaccine conducted in Latin

America showed an estimated vaccine efficacy of 64.7% (95%CI [58.7, 69.8]), while

the estimate from a trial in South East Asia was 56.5% (95%CI [43.8, 66.4]) (Hladish

et al., 2016). Furthermore, as noted by (Hladish et al., 2016), pooled analysis of these

two trials indicated vaccine efficacy was significantly higher for participants with pre-

existing dengue neutralizing antibodies (81.9%; 95%CI [67.2, 90.0]) compared to those

who were sero-negative at the time of vaccination (52.5%; 95%CI [5.9, 76.1]).

Vaccine efficacy against hospitalization for dengue in Latin America was 80.3%

(95%CI [64.7, 89.5]) and in South East Asia was 67.2% (95%CI [50.3, 78.6]), and

vaccine efficacy estimates varied by serotype in both trials (Capeding et al., 2014;

Hadinegoro et al., 2015; Hladish et al., 2016; Villar et al., 2015) (in particular, DENV1

(50.2%, 95% CI 35.6%-61.5%), DENV2 (39.6%, 95% CI 18.7%-55.2%), DENV3 (74.9%,

95% CI 65.1%-82.0%) and DENV4 (76.6%, 95% CI 65.0%-84.4%)) WHO et al. (2017).

Figures 1.4- 1.7 depicts the global distribution of the four serotypes, dating back to

1943 (Messina et al., 2014). Recent report by Sanofi Pasteur (Aguiar, 2018), based

on a six-year clinical trial, show that while Dengvaxia provides long-term persistent

protective benefit against dengue fever in people who had dengue infection prior to

vaccination, the vaccine could induce more cases of severe disease (in the long-term)

in dengue-naive populations. In fact, it is recently reported in the Philippines that

up to three deaths may be attributable to the vaccine during a trial (Aguiar, 2018).
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2.2 Literature Review on Mathematical Modeling of Dengue Serotypes

Numerous mathematical models have been designed and used to assess the potential

impact of dengue vaccines (see, for instance, (Chao et al., 2012; Coudeville and Gar-

nett, 2012; Ferguson et al., 2016; Garba et al., 2008; Hladish et al., 2016; Rodriguez-

Barraquer et al., 2014)). Ferguson et al. (2016) used a PDE model that accounts for

history of infection to assess the hypothesis that the Dengvaxia vaccine acts like a

silent natural infection in priming or boosting host immunity. Hladish et al. (2016)

used an agent-based dengue model to study the effectiveness of various vaccine sce-

narios on dengue transmission dynamics in Yucátan, Mexico. Coudeville and Garnett

(2012) developed an age-structured compartmental model to study the impact of vac-

cination against the four dengue serotypes. Rodriguez-Barraquer et al. (2014) used

a similar (age-stratified) model to evaluate the impact of a vaccine that is partially

effective against three of the four dengue serotypes. Chao et al. (2012) showed, using

compartmental and agent-based modeling approaches, that a dengue vaccine with

efficacy between 70% to 90% against all four dengue serotypes has the potential to

significantly reduce the frequency and magnitude of dengue epidemics in the short and

medium terms (Morales et al., 2017). Using a deterministic compartmental model for

two dengue strains, Morales et al. (2017) shows that vaccination and duration of cross

immunity decrease the frequency and magnitude of dengue outbreaks (depending on

vaccine interaction and dengue strain type). Garba et al. (2008) showed the presence

of backward bifurcation in dengue transmission dynamics.

2.3 Main Objectives

The purpose of this chapter is to design, and rigorously analyse, an improved mecha-

nistic model for assessing the population-level impact of the Sanofi Dengvaxia vaccine
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against the four co-circulating dengue serotypes. In this chapter, the four dengue

serotypes will be categorized as two vaccine-preventable dengue strains, where strain

1 consists of the three serotypes (DENV1, 3, 4) in whom the Sanofi vaccine is most

effective, and strain 2 represents serotype 2 (the dengue strain for which the vaccine

has reduced efficacy) (WHO et al., 2017). The model to be developed will also be

used to evaluate the hypothesis that the Dengvaxia vaccine might increase the risk of

severe disease in people who have never been exposed to the virus (i.e., dengue-naive

populations).

2.4 Mathematical Formulation

The modeling work in this chapter is based on my paper (Iboi and Gumel, 2018).

In particular, the model to be designed is for the transmission dynamics of the four

dengue serotypes in a population in the presence of an anti-dengue vaccine. In this

chapter, the three dengue serotypes with the highest vaccine efficacy (DENV1, 3 and

4) are categorized as “strain 1”, while DENV2 is termed as “strain 2” (Hladish et al.,

2016) ((Morales et al., 2017) also categorized the four dengue serotypes based on two

strains, depending on which co-circulating serotypes are most dorminant).

The total human population at time t, denoted by NH(t), is sub-divided into the

mutually-exclusive compartments of unvaccinated susceptible (SUH(t)), vaccinated

susceptible (SV H), unvaccinated individuals who are exposed (infected but not symp-

tomatic) to strain i (EUHi), where (i, j = 1, 2; i 6= j) represents the two strain classes,

unvaccinated infectious (symptomatic) individuals with strain i and are susceptible

to strain j (IUHi), individuals who recovered from strain i and are now susceptible to

strain j (WUij), individuals who recovered from strain i and are now exposed to strain

j (EUij), unvaccinated infectious individuals with strain i and are now recovered from

strain j (IUij), vaccinated individuals who are exposed (infected but not symptomatic)
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to strain i (EV Hi), vaccinated infectious individuals with clinical symptoms of strain

i and susceptible to strain j (IV Hi), vaccinated individuals who recovered from strain

i and are now susceptible to strain j (WV ij), vaccinated individuals who recovered

from i and are now exposed to strain j (EV ij), vaccinated infectious individuals with

strain i and are now recovered from strain j (IV ij), and individuals who recovered

from both strains (W ), so that (Iboi and Gumel, 2018)

NH(t) = SUH(t) + SV H(t) +
2∑
i=1

[EV Hi(t) + EUHi(t) + IUHi(t) + IV Hi(t)]

+
2∑
i=1

2∑
j=1
i 6=j

[IUij(t) + IV ij(t) + EV ij(t) + EUij(t) +WUij(t) +WV ij(t)] +W (t).

The total mosquito population at time t, denoted by NV (t), is sub-divided into sub-

populations of immature (LM(t)) and adult female (NM(t)) mosquitoes, where NM(t)

is split into adult female mosquitoes who are susceptible (SM(t)), infected with strain

1 (IM1(t)) and infected adult female mosquitoes with strain 2 (IM2(t)). Hence,

NV (t) = LM(t) +NM(t) = LM(t) + SM(t) + IM1(t) + IM2(t).

The model for dengue transmission dynamics in a population, in the presence of a

vaccine against the four serotypes of dengue, is given by the following 27-dimensional

(i, j = 1, 2; i 6= j) deterministic, non-linear differential equations (a dot represents

differentiation with respect to time t) (Iboi and Gumel, 2018):
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ṠUH = ΠH + ωSV H −
2∑
i=1

λHiSUH − (ξ + µH)SUH ,

ṠV H = ξSUH −
2∑
i=1

λHi(1− εi)SV H − (ω + µH)SV H ,

ĖUHi = λHiSUH − (σUi + µH)EUHi; i = 1, 2,

İUHi = σUiEUHi − (γUi + µH + δUHi)IUHi; i = 1, 2,

ẆUij = γUiIUHi − ηUijλHjWUij − µHWUij; i, j = 1, 2; i 6= j,

ĖUij = ηUijλHjWUij − (αUij + µH)EUij; i, j = 1, 2; i 6= j,

İUij = αUijEUij − (τUij + µH + δUij)IUij; i, j = 1, 2; i 6= j,

ĖV Hi = λHi(1− εi)SV H − (σV i + µH)EV Hi; i = 1, 2,

İV Hi = σV iEV Hi − (γV i + µH + δV Hi)IV Hi; i = 1, 2,

ẆV ij = γV iIV Hi − ηV ijλHj(1− εj)EV ij − µHWV ij; i, j = 1, 2; i 6= j,

ĖV ij = ηV ijλHj(1− εj)WV ij − (αV ij + µH)WV ij; i, j = 1, 2; i 6= j,

İV ij = αV ijEV ij − (τV ij + µH + δV ij)IV ij; i, j = 1, 2; i = 1, 2,

Ẇ =
2∑
i=1

2∑
j=1
i 6=j

(τUijIUij + τV ijIV ij)− µHW,

L̇M = αL

(
1− LM

KM

)
NM − ψLLM − µLLM ,

ṠM = fψLLM −
2∑
i=1

λMiSM − µMSM ,

İM1 = λM1SM − µMIM1,

İM2 = λM2SM − µMIM2,

(2.4.1)

where,
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λH1 =
βHbMIM1

NH

, λH2 =
βHbMIM2

NH

,

λM1 =
βMbM(θV 1IV H1 + IUH1 + θ12IU12 + θ1IV 12)

NH

,

λM2 =
βMbM(θV 2IV H2 + IUH2 + θ21IU21 + θ2IV 21)

NH

.

(2.4.2)

A flow diagram of the model is depicted in Figure 2.1, and the state variables and

parameters of the model are described in Tables 2.1-2.2.

In the model (2.4.1), with (2.4.2), the parameter ΠH is the recruitment (either by

birth or by immigration) rate of individuals into the community (these individuals

are assumed to be susceptible to both strains) and ω is the rate at which the vaccine

wanes. Susceptible humans acquire infection, following an effective bite by an adult

female Aedes aegypti mosquito, at a rate λHi (i = 1, 2). Similarly, bM is the per

capita biting rate of adult female Aedes aegypti mosquitoes, βM is the probability

that a susceptible mosquito acquires dengue infection per bite (from an infectious

human carrying either of the two strains) and βH is the probability that a susceptible

human acquires dengue infection per bite (from an infected female mosquito carry-

ing either of the two strains). The modification parameters θV 1, θ12 and θ1 account

for the assumed variability in the infectiousness (i.e., transmissibility) of individuals

in the IV H1, IU12 and IV 12 classes, respectively in comparison to those in the IUH1

class. Similarly, θV 2, θ21 and θ2 represent, respectively, modification parameters for

the assumed variability of the infectiousness of individuals in the IV H2, IU21 and IV 21

classes, in relation to those in the IUH2 class.

Susceptible humans are vaccinated (against the two strains) at a rate ξ (it is as-

sumed that the vaccine is imperfect, with protective efficacy 0 < εi < 1 against strain

i (Hladish et al., 2016)). Natural death rate occurs in all human compartments at a

rate µH . Furthermore, σUi(σV i), with i = 1, 2, represents the rate at which individuals
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in the EUHi(EV Hi) class develop clinical symptoms of dengue, while the parameter

γUi(γV i) represents the rate at which symptomatic individuals in the IUHi(IV Hi) class

recover. The parameter αUij(αV ij) (i, j = 1, 2; i 6= j) represents the rate at which

individuals in the EUij(EV ij) class develop clinical symptoms of the disease while

τUij(τV ij) is the rate at which individuals in the IUij(IV ij) class recover from both

strains. Individuals in the infectious (symptomatic) IUHi, IUij, IV Hi and IV ij classes

suffer additional dengue-induced mortality (at a rate) δUHi, δUij, δV i and δV ij (it is

assumed that δV Hi > δV ij, δUHi, δUij) (Aguiar, 2018), respectively. Furthermore,

0 < ηUij, ηV ij < 1 is the modification parameter for the assumed reduction in the

rate of acquisition of infection with strain j after recovery from infection with strain

i (due to assumed partial cross immunity).

For computational convenience, the immature mosquito population is lumped into

a single ecological compartment denoted by LM(t). Eggs are laid by adult female

Aedes aegypti mosquitoes at a logistic growth rate αL

(
1− LM (t)

KM

)
, where αL is the

eggs oviposition rate and it is assumed that the population of immature mosquitoes

is limited by a carrying capacity, KM (with KM > LM(t) for all t; KM depends

on the available nutrients and breeding sites (Horsfall, 1955; Hoshen and Morse,

2004; Imbahale et al., 2011; Okuneye and Gumel, 2017)). The population of imma-

ture mosquitoes is decreased by the maturation (from eggs to larvae to pupae) of

adult female Aedes aegypti mosquitoes (at a rate of ψL) and natural death (at a rate

µL). Susceptible adult female Aedes aegypti mosquitoes acquire dengue infection with

strain i, following an effective contact with an infectious human with strain i, at a

rate λMi, as defined in (2.4.2).

The model (2.4.1) is an extension of numerous models for dengue transmission

dynamics in the literature (such as those in (Do et al., 2014; Feng and Velasco-

Hernández, 1997; Garba and Gumel, 2010; Garba et al., 2008; Kyle and Harris, 2008;
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Morales et al., 2017; Reich et al., 2013)). In particular,

(i) it extends the the two-strain dengue transmission model in (Garba and Gumel,

2010), by including an anti-dengue vaccine;

(ii) it extends the dengue vaccination models in (Garba et al., 2008; Morales et al.,

2017), by including the dynamics of immature mosquitoes (i.e., the compart-

ment LM).

Furthermore, the 27-dimensional model (2.4.1) extends the 17-dimensional two-strain

dengue transmission model with vaccination in (Morales et al., 2017) by, inter alia:

(i) including waning rate of the vaccine (ω 6= 0) and disease-induced mortality in

the host population (δUHi, δV Hi, δUij, δV ij 6= 0; i, j = 1, 2; i 6= j);

(ii) splitting the population of exposed ( primary and secondary) individuals

(EUHi, EV Hi; i = 1, 2) into vaccinated exposed and unvaccinated exposed in-

dividuals with strain 1 or strain 2 (these populations are not categorized ac-

cording to) vaccine status in (Morales et al., 2017). There is also similar ex-

tension with respect to the populations of individuals with disease symptoms

(IV Hi, IUHi; i = 1, 2);

(iii) splitting the population of individuals who recovered from strain i but are sus-

ceptible to strain j (WV ij,WUij; i, j = 1, 2; i 6= j) according to vaccination

status.

2.4.1 Basic Qualitative Properties of the Model

The basic properties of the model (2.4.1) will now be explored.

Let µV (t) = min{µL(t), µM(t)}. Consider, first of all, the equation for the rate of

22



change of the total human, immature mosquito and adult female mosquito popula-

tions, given, respectively, by

ṄH(t) = ΠH − µHNH(t)−
2∑
i=1

δUHiIUi(t)−
2∑
i=1

δV HiIV i(t)−
2∑
i=1

2∑
j=1
i 6=j

δUijIij(t)

−
2∑
i=1

2∑
j=1
i 6=j

δV ijIV ij(t),

(2.4.3)

ṄM(t) = fψLLM(t)− µMNM(t), (2.4.4)

and,

L̇M(t) = αL

[
1− LM(t)

KM

]
NM(t)− (ψL + µL)LM(t). (2.4.5)

Lemma 2.4.1. Consider the model (2.4.1) with non-negative initial data satisfying

NH(0) > 0, LM(0) > 0 and NM(0) > 0. Then, the model has a unique solution and

all the state variables remain non-negative for all t > 0.

Proof. The proof is based on the approach in (Hale and Verduyn Lunel, 1993; Hews

et al., 2010). First, since the right-hand sides of the equations in (2.4.1) are continuous

and Lipschitzian at t = 0, a solution of system (2.4.1), with non-negative initial

conditions, exists and is unique on [0, t∗) for some t∗ > 0. Suppose there exists a t1

such that t∗ > t1 > 0, SUH(t1) = 0 and each variable of the model (2.4.1) is positive

at time t for t ∈ (0, t1). It follows from the first equation of the model (2.4.1) that:

ṠUH(t) > −

[
2∑
i=1

λHi(t) + ξ + µH

]
SUH(t).

Hence,

SUH(t1) > SUH(0) exp

{
−
∫ t1

0

[
2∑
i=1

λHi(t) + ξ + µH

]
dt

}
> 0,
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which contradicts SUH(t1) = 0. Furthermore, suppose there exists a t1 such that

t∗ > t1 > 0, LM(t1) = 0 and each variable of the model (2.4.1) is positive at time t

for t ∈ (0, t1). It follows from the equation for the rate of change of the immature

mosquito population (L̇M(t)) that:

L̇M(t) > −
(
αLNM(t)

KM

+ ψL + µL

)
LM ,

so that,

LM(t1) > LM(0) exp

{
−
∫ t1

0

[(
αLNM(t)

KM

+ ψL + µL

)]
dt

}
> 0,

which contradicts LM(t1) = 0. Similar contradictions can be obtained for the remain-

ing variables of the model (2.4.1). Thus, for any non-negative initial data, the model

(2.4.1) has a unique non-negative solution for all t ∈ [0, t∗).

It is convenient to define (for i, j = 1, 2; i 6= j):

X= (SUH , SV H , EUHi, EV Hi, EUij, EV ij, IUHi, IV Hi, IUij, IV ij,WUij,WV ij,W, LM , SM , IMi).

Further, let D = {X ∈ R27
+ | NH(t) ≤ ΠH

µH
, LM(t) ≤ KM , NM(t) ≤ fψLKM

µM
, for t ≥

0}.

Lemma 2.4.2. The region D is positively-invariant with bounded solutions.

Proof. It follows from Equations (2.4.3), (2.4.4) and (2.4.5) that (noting that, in D,

NH(t) ≤ ΠH/µH , LM(t) ≤ KM and NM(t) ≤ fψLKM/µM for all t ≥ 0) :

ṄH(t) = ΠH − µHNH −
2∑
i=1

δUHiIUi −
2∑
i=1

δV HiIV i −
2∑
i=1

2∑
j=1
i 6=j

δUijIij

−
2∑
i=1

2∑
j=1
i 6=j

δV ijIV ij ≤ ΠH − µHNH(t),

(2.4.6)
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ṄM(t) = fψLLM(t)− µMNM(t) ≤ fψLKM − µMNM(t), (2.4.7)

and,

L̇M(t) = αL

[
1− LM(t)

KM

]
NM(t)− (ψL + µL)LM(t),

≤ αL

[
1− LM(t)

KM

]
NM(t),

≤ αLfψLKM

µM
− αLfψLLM

µM
.

(2.4.8)

Thus, NH(t), NM(t) and LM(t) are decreasing functions of t if NH(t) > ΠH
µH

, NM(t) >

fψLKM
µM

and LM(t) > KM , respectively. Consider, next, the following upper solutions

of the systems in (4.4.12), (2.4.7) and (2.4.8):

ṄH(t) = ΠH − µHNH(t),

L̇M(t) =
αLfψLKM

µM
− αLfψLLM(t)

µM

ṄM(t) = fψLKM − µMNM(t).

(2.4.9)

The general solutions of the equation in (2.4.9) are given, respectively, by:

NH(t) =
ΠH

µH
+ e−µH t

[
NH(0)− ΠH

µH

]
,

LM(t) = KM + e
−
(
αLfψL
µM

)
t
[LM(0)−KM ] ,

NM(t) =
fψLKM

µM
+ e−µM t

[
NM(0)− fψLKM

µM

]
,

(2.4.10)

from which it follows, by comparison principle (Lakshmikantham and Leela, 1969),

that:
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NH(t) ≤ ΠH

µH
, if NH(0) ≤ ΠH

µH
,

LM(t) ≤ KM , if LM(0) ≤ KM ,

NM(t) ≤ fψLKM

µM
, if NM(0) ≤ fψLKM

µM
.

(2.4.11)

Thus, the region D is positively-invariant with bounded solutions. Hence, it is suffi-

cient to consider the dynamics of the model (2.4.1) in D (where, the usual existence,

uniqueness and continuation results hold for the system (Forouzannia and Gumel,

2014; Hethcote, 2000)).
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Figure 2.1: Flow Diagram of the Model (2.4.1).

2.5 Analysis of the Model

It is instructive to, first of all, analyze the dynamics of the model. It is convenient to

define the quantity r0 =
αLfψL

µM(ψL + µL)
, the production rate of new adult female Aedes

aegypti mosquitoes. The model has two disease free-equilibria, namely the trivial

disease-free equilibrium (denoted by To) and the non-trivial disease free-equilibrium

(denoted by T1), given below (for i, j = 1, 2; i 6= j).
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Table 2.1: Description of the State Variables of the Dengue Model (2.4.1)

State variables (i, j = 1, 2; i 6=j) Interpretation

SUH Population of unvaccinated individuals susceptible to both strains

SV H Population of susceptible individuals vaccinated against both strains

EV Hi Population of vaccinated individuals exposed to strain i

EUHi Population of unvaccinated individuals exposed to strain i

EUij Population of unvaccinated individuals who recovered from strain i and are

exposed to strain j

EV ij Population of vaccinated individuals who recovered from strain i and are

exposed to strain j

IV Hi Population of vaccinated individuals symptomatic with strain i and are

susceptible to strain j

IUHi Population of unvaccinated individuals symptomatic with strain i and are

susceptible to strain j

IUij Population of unvaccinated symptomatic individuals with strain i and

exposed to strain j

IV ij Population of vaccinated symptomatic individuals with strain i and are

exposed to strain j

WV ij Population of vaccinated individuals who recovered from strain i and are

susceptible to strain j

WUij Population of unvaccinated individuals who recovered from strain i and are

susceptible to strain j

W Population of individuals who recovered from both strains

LM Population of immature mosquitoes

SM Population of susceptible adult female Aedes aegypti mosquitoes

IMi Population of infected adult female Aedes aegypti mosquitoes with strain i

λj(j = Hi,Mi) Infection rate for susceptible humans and susceptible mosquitoes
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Table 2.2: Description of Parameters of the Dengue Model (2.4.1)

Human Parameters Interpretation

ΠH Rate of recruitment of individuals into the community

µH Natural mortality rate for humans

ξ Vaccination rate

ω Vaccine waning rate

εi Vaccine efficacy against infection with strain i

δUHi, δV Hi, δUij, δV ij Disease-induced death rate for humans

βH Probability of an infection from an infected human to a susceptible mosquito

βM Probability of an infection from an infected mosquito to a susceptible human

σV i(σUi) Progression rate from the exposed vaccinated(unvaccinated) class

to symptomatic vaccinated(unvaccinated) class

αV ij(αUij) Progression rate from the exposed vaccinated(unvaccinated) class

to symptomatic vaccinated(unvaccinated) class

γV i, γUi Progression rate from the symptomatic vaccinated(unvaccinated) class

to the recovered vaccinated(unvaccinated) class

τV ij, τUij Progression rate from the infected vaccinated(unvaccinated) class

to recovered vaccinated(unvaccinated) class

θij, i 6= j Modification parameters for the reduction in infectiousness of individuals in IUij

in relation to IUHi

θV i Modification parameters for the reduction in infectiousness of individuals in IV Hi

in relation to IUHi

θi Modification parameters for the reduction in infectiousness of individuals in IV ij

in relation to IUij

ηUij, ηV ij Modification parameters for the reduction in infectiousness due to cross-immunity

Vector Parameters Interpretation

bM Per capita biting rate of mosquitoes on susceptible humans

αL Per capita egg deposition rate

ψL Maturation rate of immature mosquitoes

µL Per capita death rate for immature mosquitoes

µM Natural death rate for adult female Aedes aegypti mosquitoes

KM Carrying capacity of immature mosquitoes

f Proportion of new adult mosquitoes that are female
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Table 2.3: Values and Ranges of the Parameters of the Dengue Model (2.4.1)

Parameters (i, j = 1, 2; i 6=j) Range (per day) Baseline values (per day) Reference

ΠH (50, 400) 155 Brinkhoff (2017)

µH (0.0000315, 0.000043) 1/(70× 365) [157]

ξ (0.08, 0.41) 0.245 Estimated

ω (0.15, 0.28) 0.215 [85]

ε1 (0.6, 0.8) 0.7 Implied from [105]

ε2 (0.2, 0.4) 0.3 Implied from [105]

δUHi, δV Hi, δUij, δV ij (0.0009, 0.0011) 0.001 [85]

βH (0.66, 0.85) 0.76 Estimated

βM (0.68, 0.83) 0.75 Estimated

σV i(σUi) (0.125, 0.25) 0.19 [157]

αV ij(αUij) (0.05, 0.083) 0.063 [157]

γV i, γUi (0.067, 0.25) 0.16 [157]

τV ij, τUij (0.33, 0.5) 0.42 Estimated

θij, i 6= j (0.6, 0.8) 0.7 Estimated

θV i (0.4, 0.7) 0.5 Estimated

θi (0.4, 0.6) 0.5 Estimated

ηUij, ηV ij (0.45 ,0.55) 0.5 Estimated

bM (0.3, 1) 0.7 [14]

αL (200, 500) 300 [7]

ψL (0.08, 0.35) 0.14 [57; 80]

µL (0.07, 0.3) 0.18 [57; 80]

µM (0.05, 0.07) 0.06 [157]

KM (1× 106, 5× 106) 3× 106 [7]

f (0.4, 0.6) 0.55 Estimated
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Table 2.4: PRCC Values for the Parameters of the Model (2.4.1) Using Total Number

of Unvaccinated Individuals who are Exposed to Strain i, Vaccinated Individuals who

are Exposed to Strain i, Unvaccinated Individuals who Recovered From Strain i and

are now Exposed to Strain j, Vaccinated Individuals who Recovered From Strain i

and are now Exposed to Strain j as Output. The Top (most dominant) Parameters

that Affect the Model with Respect to each of the Eight Response Function are

Highlighted in Bold Font. Parameter Values and Ranges Used are as Given in Table

2.3 (with δH = 0).

Parameters EUH1 EU12 EU21 EUH2 EV H1 EV 12 EV H2 EV 21

ΠH 0.3019 0.2422 0.2318 -0.1142 -0.0084 0.0984 -0.0385 0.0643

µH 0.0152 0.0606 0.0214 0.0282 0.0597 0.0385 -0.0492 0.0836

ξ 0.5002 -0.0937 -0.0511 -0.0654 -0.0380 0.1129 0.0527 0.0663

ω -0.1658 0.0567 0.0049 0.0166 -0.0789 -0.0859 0.0091 -0.0643

ε1 0.4506 -0.0079 0.0359 -0.0045 -0.0068 -0.1606 0.0076 0.7915

ε2 0.1982 -0.0534 0.0394 -0.0575 -0.0072 0.2265 -0.2065 -0.0395

δUH1 0.0872 0.0299 -0.0013 -0.0365 -0.0159 -0.0629 -0.0332 -0.0767

δUH2 -0.0414 0.0327 -0.0513 -0.1023 0.0090 0.0265 0.0396 0.0707

δV H1 -0.0429 0.0427 0.0154 0.0559 -0.0028 -0.0238 -0.0121 -0.0408

δV H2 0.0038 -0.0089 0.0362 -0.0090 0.0216 -0.0897 0.0184 0.0466

δU12 - 0.0257 -0.0869 -0.0156 -0.0074 0.0459 -0.0028 -0.0124 -0.0384

δU21 0.0302 0.0686 0.1154 -0.0186 0.0606 -0.0422 0.0905 -0.0036

δV 12 -0.0330 -0.0116 -0.0360 -0.0111 0.0127 0.0389 -0.0242 0.0447

δV 21 0.0241 0-0.0769 -0.0101 0.0649 0.0103 0.0141 -0.0294 -0.0359

βH -0.2628 -0.2869 -0.3003 0.1336 0.2101 -0.2566 0.1603 -0.0070

βM -0.1811 -0.2091 -0.1948 0.0860 0.2419 -0.2238 0.0988 -0.0808

σV 1 -0.0203 -0.0201 -0.0131 0.0503 0.0599 0.1292 0.0519 -0.0425

σV 2 -0.0139 -0.0033 0.0645 -0.0579 -0.1138 0.0384 -0.0256 0.3044

σU1 -0.0618 0.2571 -0.1672 0.0906 0.1485 -0.0104 0.0355 -0.0845

σU2 - 0.1128 -0.1521 0.1521 0.0413 0.0506 -0.1081 0.0890 0.0281

αV 12 -0.0293 -0.0463 -0.0736 0.0372 0.0297 0.0183 0.7826 0.0166

αV 21 0.0030 -0.0513 -0.0183 0.0781 0.0620 -0.0246 -0.0244 0.0497

αU12 -0.0671 -0.0918 -0.0144 0.7899 0.0380 0.0407 -0.0035 -0.0215

αU21 -0.0143 0.0107 0.0050 0.0694 0.8394 0.0016 0.0262 0.0563
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Table 2.5: PRCC Values for the Parameters of the Model (2.4.1) Using Total Number

of Unvaccinated Individuals who are Exposed to Strain i, Vaccinated Individuals who

are Exposed to Strain i, Unvaccinated Individuals who Recovered from Strain i and

are now Exposed to Strain j, Vaccinated Individuals who Recovered From Strain i

and are now Exposed to Strain j as Output. The Top (most dominant) Parameters

that Affect the Model with Respect to each of the Eight Response Function are

Highlighted in Bold Font. Parameter Values and Ranges Used are as Given in Table

2.3 (with δH = 0).

Parameters EUH1 EU12 EU21 EUH2 EV H1 EV 12 EV H2 EV 21

γV 1 -0.0241 -0.0075 0.0836 0.0078 -0.0266 0.6034 0.2545 0.1061

γV 2 -0.0477 0.1394 0.0932 -0.0437 0.0798 0.0873 -0.0299 0.7787

γU1 0.0468 0.5680 0.2614 0.3673 -0.1668 0.0005 0.0449 0.1235

γU2 0.1783 0.3671 0.4735 -0.1163 0.4637 0.3115 -0.1635 -0.1174

τV 12 0.0449 0.0532 0.0328 -0.0539 -0.0436 0.0355 -0.9312 0.0617

τV 21 0.0818 -0.0846 -0.0050 -0.0445 0.0607 -0.0642 0.0216 -0.0188

τU12 -0.0744 -0.0746 0.0016 -0.9291 -0.0249 -0.0879 0.0062 0.0744

τU21 0.1006 0.0706 0.0224 -0.0376 -0.9445 0.0304 -0.0086 0.0458

θ12 -0.0353 -0.0277 -0.0637 0.0351 -0.0165 -0.0110 -0.0067 0.0458

θ21 0.0158 -0.0111 0.0258 0.0252 0.0005 -0.0407 -0.0058 -0.0386

θV 1 -0.0536 -0.0014 -0.0840 0.0476 0.1163 -0.0273 -0.0515 -0.0601

θV 2 -0.0331 -0.0879 0.0233 -0.0304 0.0378 -0.1409 0.6639 0.0669

θ1 0.0443 -0.0005 0.0025 0.0392 -0.0909 0.0454 -0.0132 -0.0234

θ2 -0.0655 -0.0259 0.1096 0.0365 0.0271 -0.0119 0.0962 0.0201

ηU12 -0.0445 -0.3050 0.0406 0.1444 -0.0991 -0.0718 -0.1124 -0.0447

ηU21 -0.0193 -0.0407 -0.1156 -0.0665 0.1841 0.0291 -0.0412 -0.0619

ηV 12 0.0441 -0.0436 0.0019 0.0142 0.0611 -0.2247 0.1213 -0.0412

ηV 21 -0.0328 -0.0243 0.0136 0.0838 0.0171 -0.0642 -0.0139 -0.0293

bM -0.9235 -0.9304 -0.9225 0.8514 0.8743 -0.9041 0.8124 -0.6079

αL -0.4926 -0.4504 -0.4125 0.3634 0.4528 -0.3855 0.3407 0.0868

ψL -0.9106 -0.8989 -0.9000 0.8215 0.8626 -0.8681 0.7992 -0.5292

µL 0.0584 -0.0063 0.0187 -0.0607 -0.0300 0.1510 -0.0046 0.0157

µM -0.0002 0.0676 0.0499 -0.1365 -0.0311 0.0433 0.0816 0.0399

KM -0.7948 -0.7876 -0.8205 0.6214 0.6623 -0.7566 0.6246 -0.3883

f -0.4963 -0.5133 -0.04526 0.4611 0.4217 -0.4512 0.3904 -0.2559
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(a) (b)

Figure 2.2: Boxplots of the Vaccination Reproduction Numbers of the Model (2.4.1), as a

Function of LHS Runs. (a) Rvac1 (b) Rvac2. Parameter Values and Ranges Used are as

Given in Table 2.3.
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(2.5.1)

(ii) NDFE :

T1 =
(
S∗UH , S

∗
V H , E

∗
V Hi, E

∗
UHi, E

∗
Uij, E

∗
V ij, I

∗
V Hi, I

∗
V ij, I

∗
UHi, I

∗
Uij,W

∗
V ij,W

∗
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∗
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∗
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)
= (a1o, a2o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a3o, a40, 0, 0) ,

(2.5.2)

where a1o =
ΠH(ω + µH)

µH(ω + ξ + µH)
, a2o =

ξΠH

(ω + ξ + µH)
, a3o = KM

(
1− 1

r0

)
and a40 =

ψLKM

(
1− 1

r0

)
µM

.
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Figure 2.3: Simulations of Model (2.4.1), Showing the Total Number of Dengue Cases

as a Function of Time with (a) φ < 0 (Using ε1 = 0.2, σU1 = 0.25, σV 1 = 0.19, γU1 =

0.067, γV 1 = 0.16 and θV 1 = 1), (b) φ = 0 (Using ε1 = 0.3, σU1 = 0.25, σV 1 = 0.19,

γU1 = 0.067, γV 1 = 0.16 and θV 1 = 1) and (c) φ > 0 (Using ε1 = 0.4, σU1 = 0.25,

σV 1 = 0.19, γU1 = 0.067, γV 1 = 0.16 and θV 1 = 1). Parameter Values and Ranges Used are

as Given in Table 2.3.

2.5.1 Asymptotic Stability of Disease-Free Equilibria

It follows from (2.5.2) that the NDFE exists if and only if r0 > 1. Furthermore,

it can be shown (by linearizing the model around the TDFE) that the TDFE is

globally-asymptotically stable (GAS) whenever r0 ≤ 1 (see, for instance, (Dumont

and Chiroleu, 2010; Okuneye and Gumel, 2017)).

Let r0 > 1 (so that the NDFE exists). The local stability of the NDFE (in

C([0],R27
+ ) \ {To}) will now be explored using the next generation operator method

(Diekmann et al., 1990; van den Driessche and Watmough, 2002). Using the notation
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Figure 2.4: Simulations of the Model (2.4.1) Showing Contour Plots of Rvac1, as a Function

of the Fraction of Individuals Vaccinated Against Strain 1 at Steady-State (f =
S∗
VH
N∗
H

) and

Vaccine Efficacy (ε1). Parameter Values Used are as Given in Table 2.3 with ε1 = ε2 = 1,

ηij = ηV ij = 0 (i, j = 1, 2; i 6= j) and δH = 0 (so that, by Theorem 2.5.4, Backward

Bifurcation does not occur when R∗∗vac = 1).

in (van den Driessche and Watmough, 2002), it follows that the matrices F of new

infection terms and V of the remaining transfer terms associated with the version of

the model are given, respectively, by

F =

 09×9 F1

F2 F3

 ,V =

 V1 09×9

V2 V3

 ,
where the matrices F1, F2, F3, V1, V2 and V3 are given in Appendix A (and 09×9 is the

zero matrix of order 9). It is convenient to define: N∗H = ΠH
µH
, K1 = ξ + µH , K2 = ω+

µH , K3 = σU1 +µH , K4 = γU1 +µH +δUH1, K5 = α12 +µH , K6 = τ12 +µH +δU12, K7 =

σU2 + µH , K8 = γU2 + µH + δUH2, K9 = α21 + µH , K10 = τ21 + µH + δU21, K11 =

σV 1 + µH , K12 = γV 1 + µH + δV H1, K13 = αV 12 + µH , K14 = τV 12 + µH + δV 12, K15 =
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(a) (b)

(c)

Figure 2.5: Simulations of the Model (2.4.1), Showing (a) The Cumulative Number of

Deaths for Naive Population SV H and Individuals with Prior Infection WV ij with ε1 = 0.7

and ε2 = 0.3, (b) The Number of New Cases for Naive Population SV H and Individuals

with Prior Infection WV ij with ε1 = 0.7 and ε2 = 0.3 and (c) The Number of New Cases

for Naive Population SV H and Individuals with Prior Infection WV ij with ε1 = ε2 = 0.8.

Parameter Values and Ranges Used are as Given in Table 2.3.
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σV 2 + µH , K16 = γV 2 + µH + δV H2, K17 = αV 21 + µH , K18 = τV 21 + µH + δV 21, K19 =

ψL + µL. The vaccination (effective) reproduction number of the model, denoted by

Rvac, is given by

Rvac = max{Rvac1,Rvac2}, (2.5.3)

where Rvac1 and Rvac2 are given, respectively, by

Rvac1 =
√
g1g3 + g2g4, Rvac2 =

√
g5g7 + g6g8, (2.5.4)

with,

g1 =
βMS

∗
UHbMσU1

N∗HK3K4

, g2 =
βMS

∗
V HbMσV 1(1− ε1)

N∗HK11K12

,

g3 =

(
βHbMS

∗
M

N∗H

)(
1

µM

)
, g4 = θV 1g3,

g5 =
βMS

∗
UHbMσU2

N∗HK7K8

, g6 =
βMS

∗
V HbMσV 2(1− ε2)

N∗HK15K16

,

g7 =

(
βHbMS

∗
M

N∗H

)(
1

µM

)
, g8 = θV 2g7.

The result below follows from Theorem 2 of (van den Driessche and Watmough, 2002).

Theorem 2.5.1. The NDFE of the model (2.4.1) is locally-asymptotically stable

(LAS) in C([0],R27
+ ) \ {T0} if Rvac < 1, and unstable if Rvac > 1.

The threshold quantity Rvac, measures the average number of new dengue in-

fections in the vector(host) generated by an infected host(vector) introduced into a

community where a certain proportion of the susceptible host population is vacci-

nated against the two co-circulating dengue strains (Anderson and May., 1982, 1991;

Diekmann et al., 1990; Hethcote, 2000). Similarly, the quantities Rvac1 and Rvac2

represent the average number of new cases generated by an infected host (vector)

with strain 1 or 2, respectively.
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Interpretation of the Vaccination Reproduction Number (Rvac)

Interpretation of Rvac1: The reproduction number of strain 1 (Rvac1) is interpreted

as follows. The term g1 in Rvac1 represents the average number of new unvaccinated

symptomatic humans with strain 1 generated by a mosquito infected with strain 1. It

is the product of the infection rate of unvaccinated susceptible humans (
βM bMS

∗
UH

N∗
H

), the

proportion of exposed humans that survived the unvaccinated exposed class (EUH1)

and move to the symptomatic IUH1 class (σU1

K3
) and the average duration in the IUH1

class ( 1
K4

). Similarly, g2 is the average number of new vaccinated symptomatic humans

with strain 1 generated by an infected mosquito with strain 1. It is the product of the

infection rate of vaccinated susceptible humans (
βM bM (1−ε1)S∗

VH

N∗
H

), the proportion that

survived the vaccinated exposed class (EV H1) and move to the IV H1 class (σV 1

K11
), and

the average duration in the IV H1 class ( 1
K12

). The term g3 measures the average num-

ber of new infected mosquitoes generated by an unvaccinated symptomatic human

with strain 1 (IUH1). It is the product of the infection rate of susceptible mosquitoes

with strain 1 (
βHbMS

∗
M

N∗
H

) and the average lifespan of adult female mosquitoes ( 1
µM

). Fi-

nally, g4 is the average number of new infected mosquitoes generated by a vaccinated

symptomatic human with strain 1.

Interpretation of Rvac2: The reproduction number of strain 2 (Rvac2) is interpreted

as follows. The term g5 in Rvac1 represents the average number of new unvaccinated

symptomatic humans with strain 2 generated by a mosquito infected with strain 2. It

is the product of the infection rate of susceptible humans (
βM bMS

∗
UH

N∗
H

), the proportion

of exposed humans that survived the unvaccinated exposed class (EUH2) and move to

the IUH2 class (σU2

K7
) and the average duration in the IUH2 class ( 1

K8
). Similarly, g6 is

the average number of new vaccinated symptomatic humans with strain 2 generated

by an infected mosquito with strain 2. It is the product of infection rate of susceptible
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humans (
βM bM (1−ε2)S∗

VH

N∗
H

), the proportion that survived the vaccinated exposed class

(EV H2) and move to the IV H2 class (σV 2

K15
), and the average duration in the IV H2

class ( 1
K16

). The term g7 measures the average number of new infected mosquitoes

generated by an unvaccinated symptomatic human with strain 2 (IUH2). It is the

product of the infection rate of susceptible mosquitoes (
βHbMS

∗
M

N∗
H

) and the average

lifespan of adult female mosquitoes ( 1
µM

). Finally, g8 is the average number of new

infected mosquitoes generated by a vaccinated symptomatic human with strain 2.

The maximum of Rvac1 and Rvac2 gives Rvac. Theorem 2.5.1 shows that the use of

the Dengvaxia vaccine can lead to the effective control of the disease in the community

if the initial sizes of the infected human and vector populations are in the basin of

attraction of the NDFE (T1). For such control to be independent of initial conditions,

global asymptotic stability result must be established for the NDFE.

2.5.2 Backward Bifurcation Analysis

It is instructive, first of all, to characterize the type of bifurcation the model (2.4.1)

may undergo. Typically, models for the spread of vector-borne diseases (such as

dengue (Garba and Gumel, 2010; Garba et al., 2008), malaria (Feng et al., 2015; Niger

and Gumel, 2008), leishmaniasis (Hussaini et al., 2016; Iboi et al., 2018) and West Nile

virus (Blayneh et al., 2010; Jiang et al., 2009)) undergo a backward bifurcation when

the associated reproduction number of the model is less than unity. The implication

of backward bifurcation, which is characterized by the co-existence of a stable endemic

equilibrium and the stable disease-free equilibrium when the reproduction number of

the model is less than unity, is that the classical epidemiological requirement of having

the reproduction number of the model to be less than unity, while necessary, is no

longer sufficient for the effective control (or elimination) of the disease. The possibility

for the presence of backward bifurcation in the model (2.4.1) is now explored.
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For mathematical tractability, the analysis will be carried out for the special case of

the model where the vaccine offers 100% protection against all four dengue serotypes

(i.e., ε1 = ε2 = 1) and disease-induced mortality in the host population is the same

(i.e., δUHi = δUij = δV Hi = δV ij = δH for i, j = 1, 2; i 6= j). It is convenient to define

δcH =
−[2a1(1+µH)+a4]−

√
[2a1(1+µH)+a4]2−4a1[a1(1+µH)2+a4(1+µH)+a2+a3]

2a1
> 0

(where the constants, a1, a2, a3 and a4, are given in Equation (B-4) in Appendix B1)

and,

R̃vac = Rvac|ηij=ηV ij=0, δUHi=δUij=δVHi=δV ij=δH (i, j = 1, 2; i 6= j).

Theorem 2.5.2. The special case of the model (2.4.1) with δUHi = δUij = δV Hi =

δV ij = δH , ηij = ηV ij (i, j = 1, 2; i 6= j) = 0 and ε1 = ε2 = 1 undergoes a backward

bifurcation at R̃vac = 1 whenever δH > δcH > 0.

The proof of Theorem 2.5.2, based on using Center Manifold theory (Carr, 1981;

Castillo-Chavez and Song, 2004; van den Driessche and Watmough, 2002), is given in

Appendix B1. The analysis in Appendix B1 shows that the aforementioned special

case of the model (2.4.1) exhibits a backward bifurcation at R̃vac = 1, whenever the

disease-induced mortality in the host population (δH) exceeds the threshold value

δcH . That is, this study shows that the phenomenon of backward bifurcation occurs

when the disease-induced mortality is high enough (δH > δcH) and that this dynamic

phenomenon persists even if the vaccine offers perfect protection against both strains

(i.e., ε1 = ε2 = 1). It should further be mentioned that the backward bifurcation

persists whenever ε1 6= 1 and ε2 6= 1 (regardless of the value of δH ; see also Theorem

2.5.4).

Theorem 2.5.3. The special case of the model (2.4.1) with δH = 0 and ηij = ηV ij = 0

(i, j = 1, 2; i 6= j) undergoes a backward bifurcation at

R∗vac = Rvac|δH=ηij=ηV ij (i,j=1,2; i 6=j)=0 = 1 if ε1 6= 1 and ε2 6= 1.
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The proof of Theorem 2.5.3 is given in Appendix B2. The results of Theorems

2.5.2 and 2.5.3 show that the backward bifurcation phenomenon persists in the model

(2.4.1) if either the disease-induced mortality in the host population is high enough

(i.e., δH > δcH), or if the vaccine efficacy against each of the two strains is not perfect

(i.e., ε1 6= 1 and ε2 6= 1).

Theorem 2.5.4. The special case of the model (2.4.1), with ε1 = ε2 = 1, ηij =

ηV ij = 0 (i, j = 1, 2; i 6= j) and δH = 0, does not undergo a backward bifurcation at

R∗∗vac = R∗vac|ε1=ε2=1 = 1.

Proof. Setting ε1 = ε2 = 1, δH = 0 and ηij = ηV ij = 0 (i = 1, 2, i 6= j) in the

expression for the backward bifurcation coefficient a (given by Equation (H.0.1) in

Appendix B1), and simplifying, shows that the bifurcation coefficient (a) reduces to:

a = 2
v3σ

2
U1β

2
M(β∗H)2(x∗25)2µ4

Hx
∗
1w

2
3b

4
MK2

µ2
MΠ4

HK
2
4 (ω ξ −K1K2)

− 2
β∗Hb

3
Mx
∗
1µ

3
Hv3σ

2
U1w

2
3β

2
Mx
∗
25

µ2
MΠ3

HK
2
4

. (2.5.5)

Since the eigenvectors w3 and v3 (given in Appendix B1) are positive and ω ξ−K1K2 =

−µH(ξ+ω+µH) < 0, it follows from (3.5) that the bifurcation coefficient a < 0 (ruling

out backward bifurcation in this case, in line with Theorem 4.1 in (Castillo-Chavez

and Song, 2004)).

Thus, this study shows that the backward bifurcation phenomenon of the model

(2.4.1) can be removed if the following conditions hold:

(i) disease-induced mortality in the host population (δH) is small enough (e.g.,

δH = 0);

(ii) vaccine efficacy against each strain is perfect (i.e., ε1 = ε2 = 1).

In other words, the phenomenon of backward bifurcation persists in the model (2.4.1)

if Item (i) or Item (ii) does not hold. To completely rule out backward bifurcation
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when the aforementioned Conditions hold (i.e., when δH = 0 and ε1 = ε2 = 1), a

global asymptotic stability result is established for the NDFE of the model under

this scenario (and also, for computational convenience, setting ηij = ηV ij = 0 (i, j =

1, 2; i 6= j)) below. It should be mentioned that the requirement ηij = ηV ij = 0 (i, j =

1, 2; i 6= j) is not necessary for the removal of backward bifurcation in the model (it is

only chosen to simplify the mathematical analysis; the backward bifurcation property

persists regardless of the values of ηij and ηV ij (i, j = 1, 2; i 6= j) provided δH > δcH or

ε1 6= 1 and ε2 6= 1).

Theorem 2.5.5. Consider the model (2.4.1) with ε1 = ε2 = 1, ηij = ηV ij = 0 (i, j =

1, 2; i 6= j) and δH = 0. The NDFE (T1) of this special case of the model is GAS in

C([0],R27
+ ) \ {To} whenever R∗∗vac < 1.

The proof of Theorem 2.5.5, based on using the approach in (Dumont and Chiroleu,

2010; Kamgang and Sallet, 2008), is given in Appendix C. The epidemiological im-

plication of Theorem 2.5.5 is that, for the special case of the model (2.4.1) with no

disease-induced mortality in the host population (i.e., δH = 0) and with perfect vac-

cine efficacy against the two strains (i.e., ε1 = ε2 = 1), bringing (and maintaining)

the threshold quantity R∗∗vac to a value less than unity will lead to the elimination of

all four dengue serotypes from the community.

2.5.3 Uncertainty and Sensitivity Analyses

The model (2.4.1) contains 49 parameters, and uncertainty in their estimates are

expected to arise. The effect of such uncertainties is assessed using uncertainty and

sensitivity analysis (Cariboni et al., 2007). In particular Latin Hypercube Sampling

(LHS) and Partial Rank Correlation Coefficients (PRCC) is used for the model (2.4.1)

below. The purpose of sensitivity analysis is to determine effects of parameters on
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model outcomes (Cariboni et al., 2007). A highly sensitive parameter should be

more carefully estimated, since a small change in that parameter can cause a large

quantitative changes in the result (Cariboni et al., 2007). On the other hand, a

parameter that is not sensitive does not require as much attempt to estimate (because

a small change in that parameter will not cause a large variation to the quantity of

interest) (Blower and Dowlatabadi, 1994; Cariboni et al., 2007; Marino et al., 2008).

We use the range and baseline values of the parameters in Table 2.3.

Figure 2.2 depicts boxplots of the reproduction number of the model against strain

1 in the absence of disease-induced mortality in the host population as a function of

the number of LHS runs. The results obtained show a distribution of Rvac1 in the

range [0.2286, 6.7857] (with a mean of Rvac1=1.5973) (Figure 2.2a), while the values

of Rvac2 lie in the range [0.2356, 8.2638] (with a mean of Rvac2=1.5982) (Figure 2.2b).

Since Rvac = max{Rvac1,Rvac2 > 1} = 1.5982, it follows from these simulations that,

although the use of the Dengvaxia vaccine will reduce the disease burden in the com-

munity, it is unable to lead to the effective control (or elimination) of the two dengue

strains in the community (in other words, the singular use of a vaccination program,

using Dengvaxia, will not lead to the effective control or elimination of the disease

in Oaxaca, since the efficacy of Dengvaxia against the two strains (ε1 = 0.7, ε2 = 0.3

(Hladish et al., 2016)) is not sufficiently high enough to bring (and maintain) Rvac to

a value less than unity). (Morales et al., 2017) reported a distribution of Rvac (the

notation R0 is used in (Morales et al., 2017)) for their dengue model with vaccination

in the range [0.4– 2].

Furthermore, using the population of unvaccinated individuals who are exposed

to strain 1 (EUH1) as the response function, it is shown in Tables 2.4-2.5 that the top

PRCC-ranked parameters (with PRCC value ≥ 0.5 in magnitude) are the biting rate

of mosquitoes (bM), the maturation rate of immature mosquitoes (ψL) and the carry-
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ing capacity of immature mosquitoes (KM). It is further evident from Tables 2.4-2.5

that these three parameters remain the most dominant ones if the populations of un-

vaccinated individuals who are exposed to strain 2 (EUH2), unvaccinated individuals

who are exposed to strain 1 (EUH1) and vaccinated individuals who are exposed to

strain 2 (EV H2) are used as the response functions, respectively. In summary, this

study identifies three parameters that play the most dominated role on the transmis-

sion dynamics of the four dengue serotypes (i.e., strains 1 and 2) in the community,

namely the mosquito biting rate (bM), maturation rate of immature mosquitoes (ψL)

and the carrying capacity of immature mosquitoes (KM). It is worth noting that the

human-related parameters of the model (including the vaccine parameters) do not

feature prominently in the PRCC rankings.

2.6 Theoretical Assessment of Vaccine Impact

The model (2.4.1) will now be analysed to assess the population-level impact of the

dengue vaccine against strain 1 (i.e., dengue serotypes 1, 3 and 4). Similar analysis

can be used to assess the impact of the vaccine against strain 2 (i.e., dengue serotype

2). To achieve this, a threshold analysis is carried out on the vaccination threshold

for dengue strain 1 in the absence of disease-induced mortality in the host population

(i.e., Rvac1). The quantity Rvac1 is, first of all, expressed as a function of the fraction

of susceptible individuals vaccinated at steady-state (fv =
S∗
VH

N∗
H

). That is,

(Rvac1)2 = (Rvac1)2(fv) =
βMβH(1− fv)b2

MσU1S
∗
M

µMN∗HK3K4

+
βMβHfvb

2
MσV 1(1− ε1)θV 1S

∗
M

µMN∗HK11K12

,

(2.6.1)

where, now, K4 = γU1 +µH and K12 = γV 1 +µH . Differentiating Rvac1 partially with

respect to fv gives

∂Rvac1

∂fv
=

(∆− 1)(R0)2

2Rvac1

, (2.6.2)
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where,

∆ =
σV 1(1− ε1)θV 1K3K4

σU1K11K12

, (R0)2 =
βMβHb

2
MσU1S

∗
M

µMN∗HK3K4

,

and,

Rvac1(fv) =

√
βMβH(1− fv)b2

MσU1S∗M
µMN∗HK3K4

+
βMβHfvb2

MσV 1(1− ε1)θV 1S∗M
µMN∗HK11K12

.

It follows from Equation (2.6.2) that ∂Rvac1
∂fv

< (>)0 whenever ∆ < (>)1. That is,

Rvac1 is a decreasing (increasing) function of the vaccinated fraction, fv, whenever

∆ < (>)1. Furthermore, since a reduction in reproduction number implies a reduction

in the burden of the disease, the above analyses shows that a dengue vaccine will have

a positive (negative) impact in reducing (increasing) the disease burden whenever

∆ < (>)1. This result is summarized below.

Theorem 2.6.1. Consider the model (2.4.1). The use of the Dengvaxia vaccine

against strain 1 will have the following properties:

(i) a positive population-level impact (i.e., reduce disease burden) if ∆ < 1;

(ii) no population-level impact if ∆ = 1;

(iii) a negative (detrimental) population-level impact (i.e., increase disease burden)

if ∆ > 1.

The result of Theorem 2.6.1 can be expressed in terms of the vaccine efficacy against

strain 1 (ε1), by setting ∆ = 1 and solving for ε1 = εc1, giving

εc1 = 1− H1

H2

, (2.6.3)

where H1 = σU1K11K12 and H2 = σV 1θV 1K3K4 (it should be noted that H1 < H2 is

needed to ensure 0 < εc1 < 1). These results are summarized below.
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Theorem 2.6.2. Consider the model (2.4.1). The use of the Dengvaxia vaccine

against strain 1 will have the following properties:

(i) a positive population-level impact if ε1 > εc1;

(ii) no population-level impact if ε1 = εc1;

(iii) a negative population-level impact if ε1 < εc1.

Using the parameter values in Table 2.3 with σU1 = 0.25, σV 1 = 0.19, θV 1 = 0.7, γU1 =

0.067 and γV 1 = 0.16 (Morales et al., 2017), the value of εc1 is computed to be

εc1 = 0.58 < ε1 = 0.7 (Hladish et al., 2016). Thus, since εc1 = 0.58 (i.e., 58% efficacy

against strain 1) is less than the reported efficacy of the vaccine against strain 1 (i.e.,

ε1 = 0.7 (Hladish et al., 2016)), it follows from Theorem 2.6.2 that the community-

wide use of the Dengvaxia vaccine will induce a positive population-level impact

against strain 1 (i.e., dengue serotypes 1, 3 and 4).

Furthermore, following (Blower et al., 1998; Podder and Gumel, 2010), the effec-

tiveness of the vaccine can be measured in terms of the vaccine impact factor (denoted

by 0 < φ < 1), by rewriting Rvac1 as

(Rvac1)2 = (R0)2

{
1− fv

[
1− (R0V )2

(R0)2

]}
, (2.6.4)

where,

(R0V )2 =
βMβHb

2
MσV 1(1− ε1)θV 1S

∗
M

µMN∗HK11K12

, (2.6.5)

is the reproduction number of the model when every member of the community is

vaccinated. Using the notation in (Blower et al., 1998; Podder and Gumel, 2010), it

follows from (2.6.4) that the vaccine impact factor is given by

φ = fv

[
1− (R0V )2

(R0)2

]
. (2.6.6)
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It should be noted from (2.6.6) that if R0V < (>)R0, then the vaccine impact factor

(φ) is positive (negative), so that the community-wide implementation of the vacci-

nation program will reduce (increase) the reproduction number (Rvac1). Hence, the

vaccine will have positive (negative) impact (i.e., reduce (increase) disease burden)

in this case. Furthermore, if R0V > (<)R0 , then φ(> 0) < 0, so that vaccination

will have negative (positive) impact in the community. If φ = 0, then R0V = R0,

and the vaccine will have no population-level impact in this case. These results are

summarized below.

Theorem 2.6.3. Consider the model (2.4.1). The use of the Dengvaxia vaccine

against strain 1 will have the following properties:

(i) a positive population-level impact if φ > 0 (R0V < R0);

(ii) no population-level impact if φ = 0 (R0V = R0);

(iii) a negative population-level impact if φ < 0 (R0V > R0).

The result of Theorem 2.6.3 is illustrated in Figure 2.3. Further, a contour plot of the

reproduction number of strain 1 (Rvac1), as a function of the vaccine efficacy against

strain 1 (ε1) and the function of susceptible individuals vaccinated at steady-state

(fv =
S∗
VH

N∗
H

), is depicted in Figure 2.4. This figure shows, with the 70% Dengvaxia

efficacy against strain 1 (WHO et al., 2017), the vaccine is unable to bring the repro-

duction number to a value less than unity (even if 100% of the susceptible population

is vaccinated). Hence, although routine vaccination using Dengvaxia vaccine reduces

disease burden, it is unable to lead to the elimination of the disease (strain 1). Similar

result is obtained for strain 2 (not repeated here).

The model (2.4.1) is simulated to test the recent report by Sanofi Pasteur Ltd.

that the Dengvaxia vaccine may increase the risk of severe disease in people who
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have never been exposed to the dengue virus (Aguiar, 2018). Figure 2.5a depicts the

cumulative dengue-induced mortality for dengue-naive vaccinated individuals and in-

dividuals who recovered from dengue strain i and exposed to dengue strain j (i 6= j),

showing that, indeed, the dengue-induced mortality is higher in the dengue-naive pop-

ulation than in the population with prior dengue infection (similar result is obtained

for the cumulative new cases, as shown in Figure 2.5b). Thus, this study supports

the recent claim that the use of Dengvaxia vaccine in dengue-naive populations could

induce additional risk of severe disease in these populations. It is worth noting that

the result does not change even if the efficacy of the dengue vaccine (against both

strains) is significantly increased (Figure 2.5c).

2.7 Discussion and Conclusions

Dengue, a mosquito-borne disease that is endemic in over 100 countries in the tropical

and sub-tropical regions of the world, continues to inflict major public heath burden

in the affected areas (accounting for over 50 million infections and 20,000 deaths

annually). This Chapter is based on the use of mathematical modeling approaches to

assess the population-level impact of the Dengvaxia vaccine against the four dengue

serotypes (DENV1, 2, 3, 4; but categorized into two strains, namely strain 1 and

2, in this study for computational convenience). A new deterministic model for the

temporal dynamics of the two strains of the disease in the presence of the Dengvaxia

vaccine, was designed.

Rigorous analysis of the model show that, as in other models for the transmis-

sion dynamics of vector-borne diseases (with disease-induced mortality in the host

population), the model undergoes the phenomenon of backward bifurcation when the

associated disease-induced mortality in the host population exceeds a certain thresh-

old value (i.e., δH > δcH) or the vaccine efficacy against the two dengue strains is not
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high enough (i.e., ε1 6= 1 and ε2 6= 1). The public health implication of the backward

bifurcation phenomenon (which is characterized by the co-existence of multiple stable

attractors when the associated reproduction number of the model is less than unity)

is that bringing the reproduction number to a value less than unity, while necessary,

is no longer sufficient for the effective control of the disease. In such a scenario,

more needs to be done (e.g., increase vaccine coverage) to decrease the reproduction

number further below unity (outside the backward bifurcation range)to enhance the

prospect of disease elimination.

It is shown that, in the absence of this dynamic phenomenon, the disease-free

equilibrium of the model is globally-asymptotically stable whenever the associated

reproduction number is less than unity. Hence, in this case, a routine vaccination

program, based on using the Dengvaxia vaccine, can lead to the effective control (or

elimination) of the disease.

Using data relevant to dengue transmission dynamics in Oaxaca, Mexico, our

simulations for parameter uncertainty show that the reproduction number of strain

1 (strain 2) lie between Rvac ∈ [0.2286, 6.7857] ([0.2356, 8.2638]), with a mean

Rvac=1.5973 (1.5982). Thus, although the Dengvaxia vaccine can significantly re-

duce the burden of each of the two strains, it is unable to lead to the elimination of

any of the two strains (since elimination of a strain requires the reproduction number

of that strain to be less than unity).

Using clinical trial data from the Philippines, Sanofi Pasteur Ltd. (the makers

of Dengvaxia vaccine) recently reported that the use of the vaccine in dengue-naive

population can induce additional risk of severe disease in this population (Aguiar,

2018). The simulations strongly supports this claim. Thus, in a community this

complication must be fully taken into account before a decision to deploy the vaccine

is made.

49



Chapter 3

INSECTICIDE RESISTANCE AND MALARIA EPIDEMIOLOGY

3.1 Introduction

As stated in chapter 1, malaria is a deadly parasitic disease caused by the protozoan

Plasmodium parasites. The disease, which is spread in humans via the bite of in-

fected adult female Anopheles mosquitoes (WHO, 2016, 2017a), affect over 2.5 billion

people who reside in tropical and sub-tropical regions of the world (Gething et al.,

2011; Johnston et al., 2013). It is endemic in 91 countries, and causes 500,000 deaths

annually (Camara et al., 2018; Gates, 2016; WHO, 2018b). Control efforts against

malaria are largely focused on mosquito reduction strategies, such as larvaciding (to

kill immature mosquitoes), adulticiding (using LLINs and IRS to kill adult Anopheles

mosquitoes) and the use of artemisinin-based therapy to treat infected individuals (Al-

liance, 2018; Huijben and Paaijmans, 2018). Dramatic successes have been recorded

in the fight aginst malaria in sub-Saharan Africa during 2000-2015, largely owing to

the widespread use of insecticide-based interventions (notably LLINs and IRS).

It has been estimated that LLINs bednets and IRS accounted for 81% of the re-

duction in malaria burden recorded during the period 2000 and 2015 (with most of the

benefits resulting from the use of bednets) (Bhatt et al., 2015). The dramatic success

of pyrethroid-based LLINs (over IRS) is likely due to multiple factors, including the

fact that LLINs target indoor-biting mosquitoes, are effective as a physical barrier to

biting, and pyrthroids have an excito-repellent effect that may diverting mosquitoes

before they feed on the (protected) human host. However, at the most basic level,

the success of LLINs is likely simply due to the enormous scale of implementation in
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endemic areas, especially in sub-Saharan Africa: Nearly 1.5 billion pyrethroid-based

bednets have been deployed in endemic areas since 2010, with 1.25 billion distributed

in sub-Saharan Africa (Alliance, 2018; Huijben and Paaijmans, 2018).

Unfortunately, this widespread and heavy use of insecticides has resulted in the

emergence of vector resistance to nearly every currently-available agent used in the

insecticides (Alout et al., 2017; Dondorp et al., 2009; Imwong et al., 2017; WHO,

2017b) with pyrethroid resistance via multiple molecular mechanisms now widely

observed across the African continent (Hemingway et al., 2016). Given this, and the

dominant role of LLINs in malaria mortality reductions, any threat to their efficacy

via resistance is of foremost importance.

This chapter is based on the design, analysis and simulations of an improved

mathematical model for assessing the impact of insecticide resistance on malaria

epidemiology in malaria-endemic areas that adopt wide-scale use of LLINs.

3.2 Literature Review of Modeling of Insecticides and Malaria Epidemiology

A number of mathematical models have been designed and used to assess the impact

of insecticide resistance on malaria transmission dynamics. For example, (Barbosa

and Hastings, 2012) developed a genetic model to predict changes in mosquito fitness

and resistance allele frequency (parameters that describe insecticide selection, fitness

cost as well as LLINs and synergist (PBO) are incorporated). The results of their

investigation suggested that resistance was most sensitive to selection coefficients,

fitness cost and dominance coefficients.

Chitnis et al. (2008) developed and analysed a linear difference equation model for

the dynamics of host-seeking adult female mosquitoes in a heterogeneous population

of hosts in a community where ITNs are used. In addition to incorporating the

gonotrophic cycle of the malaria vector and the aforementioned host heterogeneity,
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other notable features of the model in (Chitnis et al., 2008) include stage-structure

in Anopheles feeding cycle and that such cycle varies across mosquitoes as well as

allowing for the assessment of various mosquito control interventions. Consistent

with previous studies for the impact of ITNs on malaria epidemiology in both ITN-

protected and unprotected hosts, the (Chitnis et al., 2008) study shows beneficial

effects to unprotected humans at both, low and high, ITN coverage levels.

Birget and Koella (2015a) developed a population-genetic model of the spread

of insecticide-resistance in Anopheles mosquitoes in response to ITNs and larvicides,

which suggested indoor ITNs were less likely to select for resistance. Brown et al.

(2013) developed a mathematical model to investigate optimal (cost-effective) strate-

gies for mosquito control in the presence of insecticide resistance. Consistent with

previous studies, their results show that fitness costs are the key elements in the

computation of economically optimal resistance management strategies.

Mohammed-Awel and Gumel (2018) designed a novel deterministic model for

assessing the population-level impact of mosquito insecticide resistance on malaria

transmission dynamics and to evaluate the community-wide impact of the use ITNs,

IRS and their combination. Their study showed that the prospect of the effective

control of malaria spread in endemic settings (while minimizing the risk of insecticide

resistance in the female adult mosquito population), using ITNs and IRS, is quite

promising (provided the effectiveness and coverage levels are at optimal levels).

Birget and Koella (2015b) proposed a model to assess the relative importance

in different epidemiological contexts of repellent and insecticidal properties of ITNs.

Gu and Novak (2009) used an agent-based model that incorporated the killing and

avoidance of individual mosquitoes exposed to ITNs in a hypothetical village setting

with 50 houses and 90 aquatic habitats. Smith et al. (2009) used a mathematical

model to establish the relationship between P. falciparum parasite rate (PfPR) and
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ITNs coverage.

Killeen and Smith (2007) proposed a model that describes the interaction of a

blood-seeking mosquito with either bednet-protected or unprotected hosts as a two-

stage process, whereby mosquito are either diverted from the attempt, or engage in an

attempt and then either die or succeed in taking a bloodmeal. Similar bednet-human

interaction and feeding cycle models are described in (Glunt et al., 2018; Killeen et al.,

2011; Le Menach et al., 2007; Okumu et al., 2013).

3.3 Main Objectives

The main objective of this chapter is to develop an improved mathematical modeling

framework for assessing the impact of insecticide resistance on malaria epidemiology

(in malaria-endemic areas that adopt wide-scale use of LLINs). The main motivation

is twofold. The first motivation is the fact that LLINs are the core intervention

(due to their superior success over IRS) for National Malaria Prevention Programs

(WHO, 2015c, 2017c). The second motivation is the fact that the impact of pyrethroid

resistance on malaria transmission/epidemiology is not well-understood and remains

a subject for considerable debate within the malaria control community (Alout et al.,

2017; Kleinschmidt et al., 2018; Protopopoff et al., 2018; Toe et al., 2018).

The model to be developed, which will take the form of a deterministic sys-

tem of nonlinear differential equations, incorporates key features of aquatic and

adult mosquito dynamics (including the aquatic developmental stages, adult mosquito

gonotrophic cycle, parasite sporogony and schizogony in the hosts population), disease

transmission in humans, and the use of bednets as the sole control strategy.
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3.4 Mathematical Formulation

The model to be developed in this chapter describes the temporal dynamics of imma-

ture and adult mosquitoes and humans. The total immature mosquito population is

split into compartments for eggs (E(t)), four larval instar stages (Li(t); i = 1, 2, 3, 4

and pupae (P (t)). As dicussed in chapter 1, the dynamics of the adult female Anophe-

les mosquito is governed by the following three gonotrophic cycle stages (Corbel et al.,

2004; Okuneye et al., 2019):

Stage I : host-seeking and taking of a bloodmeal

Stage II : digestion of bloodmeal and egg maturation

Stage III : search for, and oviposition into, a suitable body of water

The populations of vectors in Stages I, II and III of the gonotrophic cycle at time t are

denoted by X(t), Y (t) and Z(t), respectively. With respect to Plasmodium infection

and the sporogonic cycle, vectors in each gonotrophic stage is further subdivided

into susceptible (SX(t), SY (t), SZ(t)), exposed (i.e., infected but not yet infectious)

(EX(t), EY (t), EZ(t)) and infectious (IX(t), IY (t), IZ(t)) compartments. Thus, the

total number of adult female Anopheles mosquitoes at time t, denoted by NM(t), is

given by

NM(t) = SX(t) + EX(t) + IX(t) + SY (t) + EY (t) + IY (t) + SZ(t) + EZ(t) + IZ(t).

The total human population at time t, denoted by NH(t), is split into the total num-

ber of humans who are protected by bednets (i.e., those who consistently sleep under

an LLIN), denoted by NHp(t), and those who are not protected, denoted by NHu(t).

The population of protected and unprotected individuals is further subdivided into

susceptible SHp(t)(SHu(t)), exposed EHp(t)(EHu(t)), infectious IHp(t)(IHu(t)) and re-

covered RHp(t)(RHu(t)) humans, so that
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NH(t) = NHp(t) +NHu(t),

= SHp(t) + SHu(t) + EHp(t) + EHu(t) + IHp(t) + IHu(t) +RHp(t) +RHu(t).

The Flow Diagram of the Model to be Developed in This Chapter is Depicted in

Figure 3.1.

Figure 3.1: Flow Diagram of the Model {(3.4.1), (3.4.2), (3.4.4)}.

3.4.1 Equations for the Dynamics of Immature Mosquitoes

It is convenient to define L =
4∑
j=1

Lj. The equations for the dynamics of immature

mosquitoes are given by (where a dot represents differentiation with respect to time

t) (Iboi et al., 2019b)

Ė = ψEϕZ

(
1− E

KE

)
+

(SZ + EZ + IZ)− [σE(TW ) + µE(TW )]E,

L̇1 = σE(TW )E − [σL1(TW ) + µL(TW ) + δLL]L1,

L̇j = σLj−1(TW )Lj−1 − [σLj(TW ) + µL(TW ) + δLL]Lj; j = 2, 3, 4,

Ṗ = σL4(TW )L4 − [σP (TW ) + µP (TW )]P,

(3.4.1)
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where TA and TW represent air and water, temperature, respectively. In (3.4.1), ψE

is the number of eggs laid per oviposition, ϕZ is the rate at which female mosquitoes

transition from Stage III to Stage I of the gonotrophic cycle (i.e., the rate of oviposition

for mosquitoes in Stage III) and KE is the environmental carrying capacity of eggs

(the notation r+ = max{0, r} is used to ensure the non-negativity of the logistic

term). The quantity δLL represents the density-dependent larval mortality rate

(Agusto et al., 2015). Further, µi and σi (i = E,L, P ) represent the natural death and

maturation rates of immature mosquitoes of type i, respectively. The temperature-

dependence of the developmental and survival parameters is presented in Section

3.4.4.

3.4.2 Equations for the Dynamics of Adult Female Anopheles Mosquitoes

As stated above, the dynamics of the adult female Anopheles mosquitoes is governed

by the gonotrophic cycle. The total vector population is split into the aforementioned

nine compartments (SX , EX , IX , SY , EY , IY , SZ , EZ , IZ) corresponding to the three

gonotrophic cycle stages (Okuneye et al., 2019). We let πp represent the proportion

of humans that are protected by a bednet (i.e. consistently sleep under an LLIN),

while πu = 1−πp is the unprotected portion. In other words, 0 < πp ≤ 1 is the bednet

coverage. Bednet-mosquito interactions are defined by three basic parameters: εdeter,

εdie,i, and εbite,i, as described now. We let εdeter represent the chance that an adult

female mosquito is deterred from entering an LLIN-protected hut (or house), relative

to an unprotected hut (or house). That is,

εdeter = Number of mosquitoes in control group−Number of mosquitoes in the protected hut
Number of mosquitoes in the control group

.

It should be emphasized that, in the context of this study, “deterrence” (as measured
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by the parameter εdeter) means that the mosquito is deterred from entering the house

before any attempt is made to take a bloodmeal. Thus, the parameter εdeter does not

include any direct “barrier” property of the net.

We let εdie,i (with i = {p, u}; p=protected; u=unprotected) represent the probabil-

ity that an adult female mosquito dies following entry into a protected (unprotected)

house. The parameters εbite|die,i and εbite|∼die,i represent, respectively, the probability

that an adult female mosquito successfully takes a bloodmeal from the human host,

given that the mosquito did or did not die, with i (p or u) indicating the bednet

protection status of the targeted human (Figure 3.2 depicts the associated decision

tree of the aforementioned probabilities).

Figure 3.2: A Decision Tree of Probabilities of the Model {(3.4.1), (3.4.2), (3.4.4)}.

The (temperature-dependent) equations for adult female mosquito dynamics are
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given by (Iboi et al., 2019b):

Stage I


ṠX = fσP (TW )P + ϕZSZ + bH(Q2 +Q3)SX − [bHQ1 + µX + µM(TA)]SX ,

ĖX = ϕZEZ + bH(Q2 +Q3)EX − [bHQ1 + κV (TA) + µX + µM(TA)]EX ,

İX = ϕZIZ + κV (TA)EX + bH(Q2 +Q3)IX − [bHQ1 + µX + µM(TA)]IX ,

(3.4.2)

Stage II



ṠY = bH [(1− βV ωp)R1 + (1− βV ωu)R2]SX − [θY (TA) + µM(TA)]SY ,

ĖY = bH(βV ωpR1 + βV ωuR2)SX + bH(R1 +R2)EX

−[θY (TA) + κV (TA) + µM(TA)]EY ,

İY = κV (TA)EY + bH(R1 +R2)IX − [θY (TA) + µM(TA)]IY ,

Stage III


ṠZ = θY (TA)SY − [ϕZ + µM(TA)]SZ ,

ĖZ = θY (TA)EY − [ϕZ + κV (TA) + µM(TA)]EZ ,

İZ = θY (TA)IY + κV (TA)EZ − [ϕZ + µM(TA)]IZ .

where,

Q1 = πp(1− εdeter) + πu,

Q2 = πp(1− εdeter)(1− εdie,p)(1− εbite|∼die,p),

Q3 = πu(1− εdie,u)(1− εbite|∼die,u),

R1 = πp(1− εdeter)(1− εdie,p)εbite|∼die,p, (3.4.3)

R2 = πu(1− εdie,u)εbite|∼die,u,

ωp =
IHp
NHp

,

ωu =
IHu
NHu

,

with ωp (ωu) representing the fractions of protected (unprotected) humans that are

infectious.
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In (3.4.2) and (3.4.2), the term fσP (0 < f < 1) represents the proportion of

new adult mosquitoes that are females. Susceptible adult mosquitoes in Stage I of

the gonotrophic cycle encounter hosts at a rate bHQ1 (where bH is the mosquito-

host encounter rate per unit time, and Q1 is defined above). The rate bH(Q2 + Q3)

represents failure to take a bloodmeal ending in survival (and thus a return to stage

I of the gonotrophic cycle), while bH(R1 +R2) is the rate at which encounters result

in successful bloodmeals and survival.

It should be emphasized that, in the formulation of the model (3.4.2) questing

adult female mosquitoes that do not succeed in biting bednet-protected humans will

not necessarily have to bite an unprotected human. They will simply look for a

bloodmeal from another human who may be protected or not (see Figure 3.1). The

parameter κV represents the maturation rate of malaria parasite in the mosquito

(i.e., 1
κV

is the average duration of the sporogonic cycle), while the parameter θY is

the progression rate from Stage II to Stage III of the gonotrophic cycle. Susceptible

adult female mosquitoes in Stage II of the gonotrophic cycle acquire malaria infection

at the rate bH(βV ωpR1 + βV ωuR2), where βV is the transmission probability from

infectious human to a susceptible mosquito, ωp and ωu are the fractions of protected

and unprotected infectious humans, respectively, and µM is the natural mortality rate

of adult female mosquitoes. Following Chitnis et al. (2008), we assume an additional

mortality rate, µX , for adult female mosquitoes in the host-seeking stage, as this

stage of the gonotrophic cycle is expected to be most hazardous to the adult female

mosquitoes. Moreover, this helps account for a survival cost potentially incurred

when the adult female mosquitoes are deterred from protected hosts and, thus, must

expend more energy in questing for bloodmeal. Furthermore, as noted by Cator

et al. (2012), sporozoite-infected Anopheles gambiae females are more likely than

uninfected females to take bloodmeal from multiple hosts in the same night, and they
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suffer higher feeding-associated mortality. It should, however, be mentioned that

very little is known about adult mosquito mortality in the field, and the degree that

mortality is associated with bloodfeeding events is unknown. Such valuable data,

when available, will undoubtedly enhance the predictive power of malaria modeling

studies.

From the above formulation, the (time-varying) entomological inoculation rates

(EIRs; the average numbers of infectious bites per human per unit time (Eikenberry

and Gumel, 2018)) for protected and unprotected hosts are given, respectively, by

EIRp(t) = bH
IX(t)
NHp (t)

πp(1− εdeter)
[
εbite|die,p εdie,p + εbite|∼die,p(1− εdie,p)

]
,

EIRu(t) = bH
IX(t)
NHu (t)

πu
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
.

Similarly, the biting (infectious or uninfectious) rates for protected and unprotected

host are given, respectively, by

bitingp(t) = bH
[SX(t)+EX(t)+IX(t)]

NHp (t)
πp(1− εdeter)

[
εbite|die,p εdie,p + εbite|∼die,p(1− εdie,p)

]
,

bitingu(t) = bH
[SX(t)+EX(t)+IX(t)]

NHu (t)
πu
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
.

Estimation of Bednet-related Parameters: Clinical Hut Trial

The parameters related to the use of LLINs in the community (i.e., bH , πp, πu, εdeter,

εbite|∼die,p, εbite|∼die,u, εbite|die,p, εbite|die,u, εdie,p and εdie,u) have been estimated for vari-

ous mosquito-bednet pairings using experimental hut trial data conducted in various

parts of sub-Saharan Africa. We assume, in this chapter, that εbite|∼die,i = εbite,i, for

i = u, p. In brief, such trials typically include a control net and several treated nets

that may be of different classes (conventional ITN vs. LLIN), subject to different

degrees of wear (e.g. washing and/or artificial holing), and conducted in areas with

different levels of local Anopheline pyrethroid resistance (or employ lab strains).
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Volunteers sleep under nets in these trials, and the total number of mosquitoes

collected in each hut, the total bloodfed, and the total dead are typically reported.

We identified 26 publications conducted in Africa that reported sufficient detail to

calculate the above metrics (Asale et al., 2014; Asidi et al., 2004, 2005; Bayili et al.,

2017; Camara et al., 2018; Chandre et al., 2000; Corbel et al., 2004, 2010; Djènontin

et al., 2015; Djènontin and Cédric, 2018; Fanello et al., 1999; Ketoh et al., 2018; Koffi

et al., 2015; Kweka et al., 2017; Malima et al., 2013, 2008; N’Guessan et al., 2001;

Ngufor et al., 2011, 2014, 2016; N’Guessan et al., 2007, 2010; Oxborough et al., 2013;

Pennetier et al., 2013; Randriamaherijaona et al., 2015; Tungu et al., 2010),

Every mosquito-hut pairing reported in these trials gives a value for εdie,p, εbite,p,

and εdeter. Moreover, each pairing represents some “effective” level of insecticide

resistance (i.e. an ineffective net and a sensitive mosquito and effective net but highly

resistant mosquito may both represent pairings of high effective resistance). These

pairings can be used to estimate how εdie,p and εbite,p systematically co-vary as effective

resistance changes, and a functional relationship between εdie,p (the probability of

death following encounter with a protected host) and εbite,p (the probability of taking

a bloodmeal from a protected host) can been estimated, as depicted in Figure 3.3.

We choose the exponential relation,

εbite,p = a0 exp (−b0 εdie,p),

where the best-fit values of the constants a0 and b0 are found, using weighted nonlinear

least squares (weighting by number of mosquitoes collected in each trial), to be a0 =

0.55 and b0 = 2. The value of this relationship is that it allows effective bednet

resistance to be described by a single parameter, εdie,p, with εbite,p determined as a

function of εdie,p.

Following Randriamaherijaona et al. (Randriamaherijaona et al., 2015), we es-
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timate the probability that a mosquito takes a bloodmeal from a person sleeping

without a net or under an extremely holed untreated net is on the order of 70-80%,

while the probability of death is ≤ 5%. Hence, we take εbite,u = 0.7 and εdie,u = 0.05

as baseline parameters for encounters with unprotected hosts. The parameter εdeter

is assumed to vary between 0.01 to 0.4.

For simulation purposes, the following three effectiveness levels of the LLINs are

considered (given in Table 3.4), as also highlighted in Figure 3.3:

(i) Weakly-effective net: this is a net that has low killing efficacy and high biting

probability. For this setting, we choose εdie,p = 0.25, εbite,p = 0.33. Here, the

adult mosquitoes are highly resistant to the net.

(ii) Moderately-effective net: this is a net with moderate killing efficacy and mod-

erate biting probability. Here, we set εdie,p = 0.5, εbite,p = 0.2, and the adult

mosquitoes are moderately resistant to the net.

(iii) Highly-effective net: this is a net with very high killing efficacy and very low

biting probability. Here, we set εdie,p = 0.9, εbite,p = 0.1. This corresponds to

the case where the adult mosquitoes are weakly resistant to the net.

3.4.3 Equations for the Dynamics of Human Population

The equations for the dynamics of the human population are given by (Iboi et al.,

2019b)
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Figure 3.3: Data-Points Showing Probability of Death (εdie,p) and Blood Feeding (εbite,p)

for Various Mosquito-net Pairings Drawn from Experimental Hut Trial Data. Each Point

is Coded According to Net Type by Symbol Shape, and According to Mosquito Resistance

Class (Either Pyrethroid Resistant or Sensitive). Additionally, Representative Points on

the Exponential Curve Fit Relating εbite,p to εdie,p are Marked, Signifying Parameters for

a Highly Effective (εdie,p = 0.9, εbite,p = 0.1), Moderately Effective (εdie,p = 0.5, εbite,p

= 0.2), and Weakly Effective (εdie,p = 0.25, εbite,p = 0.33) Bednet. Data for the Curves

is Drawn from the References (Asale et al., 2014; Asidi et al., 2004, 2005; Bayili et al.,

2017; Camara et al., 2018; Chandre et al., 2000; Corbel et al., 2004, 2010; Djènontin et al.,

2015; Djènontin and Cédric, 2018; Fanello et al., 1999; Ketoh et al., 2018; Koffi et al., 2015;

Kweka et al., 2017; Malima et al., 2013, 2008; N’Guessan et al., 2001; Ngufor et al., 2011,

2014, 2016; N’Guessan et al., 2007, 2010; Oxborough et al., 2013; Pennetier et al., 2013;

Randriamaherijaona et al., 2015; Tungu et al., 2010), as Described Further in the Text.
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ṠHp = Ππp + ηHRHp − (λV Hp + µH)SHp ,

ĖHp = λV HpSHp − (γH + µH)EHp ,

İHp = γHEHp − (αH + µH + δH)IHp ,

ṘHp = αHIHp − (ηH + µH)RHp ,

ṠHu = Ππu + ηHRHu − (λV Hu + µH)SHu ,

ĖHu = λV HuSHu − (γH + µH)EHu ,

İHu = γHEHu − (αH + µH + δH)IHu ,

ṘHu = αHIHu − (ηH + µH)RHu ,

(3.4.4)

where, λV Hp(t) = βM EIRp(t) and λV Hu(t) = βM EIRu(t).

In (3.4.4), Π represents the recruitment rate of individuals (by birth or immigra-

tion) into the population (with πp and πu as defined in Section 2). The parameter ηH

represents the loss of immunity by individuals who recovered from malaria. Suscepti-

ble protected humans acquire malaria infection from infectious mosquitoes at a rate

λV Hp (λV Hu), with βM being the probability of infection per bite and EIRp (EIRu)

as defined in Section 2. Natural mortality occurs in all human compartments at a

rate µH . Infected individuals develop clinical symptoms of malaria at a rate γH , and

recover at a rate αH . Finally malaria-induced death occurs in the infectious human

population at a rate δH .

The model {(3.4.1), (3.4.2), (3.4.4)} is a modification of the model in Okuneye

et al. (2019) by:

(i) explicitly including the dynamics of the adult mosquitoes under the influence

of bednet usage (in Stages I and II of the gonotrophic cycle);

(ii) stratifying the human population in terms of bednets usage (only one class for
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susceptible, exposed, infectious and recovered humans was used in Okuneye

et al. (2019)).

The 23-dimensional nonlinear continuous-time model {(3.4.1), (3.4.2), (3.4.4)} is also

an extension of the 3-dimenisonal, linear, difference equation model developed by

Chitnis et al. (2008) by:

(i) explicitly including the dynamics of the immature mosquitoes (i.e., adding equa-

tions for the dynamics of eggs, the four larval instars and the pupal stages of

the aquatic cycle; this was not included in Chitnis et al. (2008)) ;

(ii) explicitly incorporating the deterrence property of the bednet (this was not

explicitly included in Chitnis et al. (2008));

(iii) explicitly including the dynamics of the adult mosquitoes under the influence

of bednet usage (in Stages I and II of the gonotrophic cycle);

(iv) including the dynamics of humans vis a vis malaria transmission, and stratifying

the human population in terms of bednets usage (the dynamics of humans is

not explicitly incorporated in the model in Chitnis et al. (2008), making the

model linear);

(v) explicitly incorporating the effect of temperature variability on the population

ecology of immature and adult mosquitoes (this was not considered in Chitnis

et al. (2008)).

Furthermore, unlike in the case of the model in Chitnis et al. (2008), the model

{(3.4.1), (3.4.2), (3.4.4)} is simulated subject to three effectiveness levels (low, mod-

erate and high) of the bednets used in the community. This allows for the assessment

of various levels of insecticide resistance in the community (these bednets effectiveness

levels are not considered in Chitnis et al. (2008)).
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The state variables and parameters of the model {(3.4.1), (3.4.2), (3.4.4)} are

described in Tables 3.1-3.3. Baseline values and ranges of the parameters of the

model are tabulated in Table 3.5 (more detailed descriptions may be found in Okuneye

et al. (2019)). All bednet-related parameters vary with net effectiveness, as described

above, with the sole exception of εdeter, which we fix at 0.1 for all simulation results,

unless otherwise stated.

Table 3.1: Description of State Variables of the Model {(3.4.1), (3.4.2), (3.4.4)}.

Variables Interpretation

E Number of eggs

Lj (j = 1, 2, 3, 4) Number of larvae at instar Stage j

P Number of pupae

SX , EX , IX Number of susceptible, exposed, and infectious

female mosquitoes in gonotrophic Stage I, respectively

SY , EY , IY Number of susceptible, exposed, and infectious

female mosquitoes in gonotrophic Stage II, respectively

SZ , EZ , IZ Number of susceptible, exposed, and infectious,

female mosquitoes in gonotrophic Stage III, respectively

SHp(SHu) Number of protected (unprotected) susceptible humans

EHp(EHu) Number of protected (unprotected) exposed (infected but not yet infectious) humans

IHp(IHu) Number of protected (unprotected) infectious (symptomatic) humans

RHp(RHu) Number of protected (unprotected) recovered humans

3.4.4 Temperature-Dependent Parameters

Both vector and parasite are ectothermal (dependent on ambient temperature). Thus,

their life histories are significantly affected by temperature. For instance, adult and

immature aquatic mosquito survival is maximized for temperature values in the mid-

20s (◦C), with survival tailing off rather symetrically at higher and lower temperatures

66



Table 3.2: Description of Bednet-Independent Parameters of the Model {(3.4.1),

(3.4.2), (3.4.4)}.

Parameters Interpretation

µM Mortality rate for the mosquito population

µX Additional mortality rate for those mosquitoes deterred from entering the protected hut

δL Density-dependent mortality rate of larvae

κV Progression rate of exposed adult female mosquito to infectious stage

ϕZ Oviposition rate for adult in Stage III of the gonotrophic cycle (Stage III to Stage I transition)

βV Transmission probability from infected human to a susceptible mosquito

βM Transmission probability from infected mosquito to a susceptible human

ωp(ωu) Fraction of protected (unprotected) humans that are infectious

θY Progression rate for Stage II of the gonotrophic cycle

f Proportion of adult mosquitoes that are females

ψE Number of eggs per oviposition event (Stage III to Stage I transition)

KE Carrying capacity of eggs

σE Maturation rate from egg to larvae

σL Maturation rate from larvae to pupae

σP Maturation rate from pupae to adult mosquitoes

µE Mortality rate of eggs

µL Mortality rate of larvae

µP Mortality rate of pupae

Π Recruitment rate of humans into the population

λV H Infection rate of susceptible humans

γH Progression rate of humans from exposed to infectious (symptomatic) class

δH Malaria-induced mortality rate for humans

αH Recovery rate of infected humans

ηH Rate of loss of infection-acquired immunity

µH Natural mortality rate of humans
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Table 3.3: Description of Bednet-Related Parameters of the Model {(3.4.1), (3.4.2),

(3.4.4)}.

Parameters Interpretation

πp Proportion of protected hosts

πu Proportion of unprotected hosts

εdeter Chance repelled before entering protected hut relative to unprotected

εbite|∼die,p Probability of bloodmeal in protected houses

εbite|∼die,u Probability of bloodmeal in unprotected houses

εbite|die,p Probability of bloodmeal, given death, in protected houses

εbite|die,u Probability of bloodmeal, given death, in unprotected houses

εdie,p Probability of death in protected houses

εdie,u Probability of death in unprotected houses

Table 3.4: Parameters for Bednet Effectiveness Levels.

Bednet effectiveness εdie,p εbite,p

Weakly-effective net 0.25 0.33

Moderately-effective net 0.5 0.2

Highly-effective net 0.9 0.1

(Eikenberry and Gumel, 2018). Further, the development rates of Plasmodium par-

asites, immature Anophelines and mosquito eggs generally increase with increasing

temperature to, at least, about 30◦C (Eikenberry and Gumel, 2018; Paaijmans et al.,

2010). Thermal response functions for temperature-dependent parameters are deter-

mined from experimental lab data as follows.

Death rate of adult female mosquitoes (µM(TA)). The mean survival times

for adult Anopheles gambiae under laboratory conditions, and under constant ambient
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Table 3.5: Ranges and Baseline Values of Temperature-Independent Parameters of

the Model {(3.4.1), (3.4.2), (3.4.4)}. The Estimate for KE is Defined in Terms of the

Total Human Population at the Disease-Free Equilibrium ( Π
µH

) to Ensure that the

Mosquito: Host Ratio Falls within the Realistic Range of 0.1 to 10 Mosquitoes per

Person per Day Typically Encountered in the Field (Macdonald, 1957).

Parameters Range (per day) Baseline Value (per day) Reference

µM 0.0431—0.1000 0.0431 Adapted from Okuneye et al. (2019)

µX 0—0.1 0.05 Estimated

δL 0—0.0001 0.00002 Adapted from Okuneye et al. (2019)

κV 0.070—0.0973 0.0851 Adapted from Okuneye et al. (2019)

βV 0.0200—0.2500 (dimensionless) 0.1500 (dimensionless) (Charlwood et al., 1997; Lines et al., 1991)

βM 0.0100—0.5000 (dimensionless) 0.5000 (dimensionless) (Rickman et al., 1990; Smith et al., 2009)

θY 0.4000—0.4964 0.2807 Adapted from Okuneye et al. (2019)

f 0.5000—0.8000 (dimensionless) 0.5000 (dimensionless) Okuneye et al. (2019)

ψE 10—150 eggs per oviposition 65 Takken et al. (1998)

ϕZ 0.5000—4.000 2.000 Detinova et al. (1962)

KE 1.0× 104—1.0×106 100× Π
µH

Okuneye et al. (2019)

σE 0.3300—1.0000 0.4499 Dao et al. (2006)

σLj (j = 1, 2, 3, 4) 0.3599—0.5399 0.4499 Adapted from Okuneye et al. (2019)

σP 0.3300—1.0000 0.4499 Bayoh and Lindsay (2003)

µE 0.0608—0.0912 0.0760 Adapted from Okuneye et al. (2019)

µL 0.0608—0.0912 0.0760 Adapted from Okuneye et al. (2019)

µP 0.0608—0.0912 0.0760 Adapted from Okuneye et al. (2019)

Π 4.000—5.5000 humans 4.5000 Okuneye et al. (2019)

γH 1/17—1/14 1/14 Okuneye et al. (2019)

δH 0.0001–0.0030 0.0021 (Alles et al., 1998; Dondorp et al., 2010; Reyburn et al., 2005)

αH 1/1500—1/100 1/30 (Ashley and White, 2014; Jeffery and Eyles, 1954; Sama et al., 2004)

ηH 1/(3× 365)− 1/(7× 365) 1/(3× 365) Filipe et al. (2007)

µH 1/(50× 365)− 1/(70× 365) 1/(60× 365) Okuneye et al. (2019)

temperatures ranging from 5 to 40oC (5 oC intervals), are taken from (Bayoh, 2001).

1

µM(TA)
= max(0.01, a+ bTA + cT 2

A), (3.4.5)

where a = -11.8239, b = 3.3292 and c = -0.0771.

Transition rate from Stage II to Stage III of gonotrophic cycle (θY (TA)).

We describe the rate at which mosquitoes complete Stage II of the gonotrophic cycle

(that is, the transition from the Y to Z compartment(s)), using a Briere function
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(Briere et al., 1999), such that

θY (TA) = cTA(TA − T 0
A)(TmA − TA)

1
2 , (3.4.6)

and parameter values are adopted from Mordecai et al. (Mordecai et al., 2013), with

c = 0.000203, TmA = 42.3oC and T 0
A = 11.7oC .

Sporogony (κ(TA)). We follow Paaijmans et al. (Paaijmans et al., 2010) and use

a Briere function for κ(TA), given by the right-hand side of (3.4.6) with parameters

c = 0.000112, TmA = 35oC , and T 0
A = 15.384oC .

Death rate of immature mosquitoes (µE(TW ), µL(TW ), µP (TW )). We assume

that temperature-dependent death rates are equal for eggs, larvae, and pupae, and use

laboratory larval survival times reported by Bayoh and Lindsay (Bayoh and Lindsay,

2004), to fit a per-capita death rate (inverse of survival time) with the fourth-order

polynomial,

µi(TW ) = 8.929×10−6T 4
W−0.0009271T 3

W +0.03536T 2
W−0.5814TW +3.509, i = E,L, P.

(3.4.7)

Development rate of immature mosquitoes (σE(TW ), σL(TW ), σP (TW )).

We adopt the relationship between water temperature and overall time from egg to

adult, l(TW ), given by Bayoh and Lindsay (Bayoh and Lindsay, 2003) (based on

laboratory data),

l(TW ) = (a+ bTW + ceTW + de−TW )−1, (3.4.8)

with a = −0.05, b = 0.005, c = −2.139 × 10−16 and d = −281357.656. We assume

that the duration of all six immature stages (egg, four larval instars, and pupa) is

equal, giving (Okuneye et al., 2019). We determined stage-specific development

times as a function of temperature from Figure 1 of Bayoh and Lindsay (Bayoh

and Lindsay, 2003), as shown in Figure 3.4. Development times are similar across

all immature stages, with appreciable overlap in the temperature-dependent curves.
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Therefore, we simply assume all stages have the same duration, and the uniform

temperature-dependent development rates are given as

σE(TW ) = σP (TW ) = σL(TW ) = 6
1

l(TW )
. (3.4.9)

We have assumed, for this study, that near the surface of the water, air and water

temperature are approximately equal ((Agusto et al., 2015; Iboi and Gumel, 2018)),

giving TA = TW (unless otherwise stated, a default value of TA = TW = 25 ◦C will

be used to compute each of the aforementioned temperature-dependent parameters

of the model). Further, since (by using fixed temperature values) the aforementioned

temperature-dependent parameters take constant values, the model {(3.4.1), (3.4.2),

(3.4.4)} is autonomous. This assumption is made for mathematical tractability.

Figure 3.4: Development Times of the Dynamics of the Immature Mosquitoes. Adapted

from Bayoh and Lindsay (2003).
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3.4.5 Basic Qualitative Properties of the Model

The basic qualitative properties of the model {(3.4.1), (3.4.2), (3.4.4)} in the absence

of density-dependent mortality rate in the larvae stage (δL = 0) are explored in this

section, with the positivity and boundedness of the solutions of the model established.

Let,

AX = SX + EX + IX ,

AY = SY + EY + IY ,

AZ = SZ + EZ + IZ ,

and,

NM(t) = AX(t) + AY (t) + AZ(t).

Further, define(
E,L1, L2, L3, L4, P, SX , EX , IX , SY , EY , IY , SZ , EZ , IZ , SHp , EHp ,

IHp , RHu , SHu , EHu , IHu , RHu

)
.

It is convenient to group the variables of the model {(3.4.1), (3.4.2), (3.4.4)} as follows:

B1 = (E,L1, L2, L3, L4, P ) ,

B2 = (SX , EX , IX , SY , EY , IY , SZ , EZ , IZ) ,

B3 =
(
SHp , EHp , IHp , RHu , SHu , EHu , IHu , RHu

)
.

(3.4.10)

Consider the feasible region Ω = Ω1×Ω2×Ω3 for the model {(3.4.1), (3.4.2), (3.4.4)},

where:

Ω1 =
{
B1 ∈ R6

+ : E(t) ≤ KE, L1(t) ≤ L�1, L2(t) ≤ L�2, L3(t) ≤ L�3, L4(t) ≤ L�4, P (t) ≤ P �
}
,

Ω2 =

{
B2 ∈ R9

+ : NM(t) ≤ fσPP
�

µM

}
, Ω3 =

{
B3 ∈ R8

+ : NH(t) ≤ Π

µH

}
,

(3.4.11)

with, L�1 = σEKE
σL1

+µL
, L�2 =

σL1
L�
1

σL2
+µL

, L�3 =
σL2

L�
2

σL3
+µL

, L�4 =
σL3

L�
3

σL4
+µL

and P � =
σL4

L�
4

σP+µP
.

We claim the following result.
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Lemma 3.4.1. Consider the model {(3.4.1), (3.4.2), (3.4.4)}.

(a) Each component of the solution of the model, with non-negative initial condi-

tions, remains positive and bounded for all time t > 0.

(b) The set Ω is positively-invariant and attracting region for the model.

The proof of Lemma 3.4.1 is given in Appendix C.

3.5 Mathematical Analysis

In this section, the model {(3.4.1), (3.4.2), (3.4.4)} is rigorously analysed to show the

existence and asymptotic stability of its disease-free equilibrium, and to characterize

the bifurcation structure of the model. We define the threshold quantity, N0, as

N0 =

ψEϕZσEfσP θYC2

4∏
i=1

σLi

(C1K9K11 − C2θY ϕZ)
6∏
i=1

Ki

, (3.5.1)

where C1 = K7 − bH(Q2 +Q3), C2 = bH(R1 + R2), K1 = σE + µE, Kj = σLj−1
+

µL (j = 2, ..., 5), K6 = σP + µP , K7 = bHQ1 + µX + µM , K9 = θY + µM and K11 =

ϕZ + µM . Furthermore (noting the definitions of C9, C10 and C11 given in Appendix

D), C1K9K11 − C2θY ϕZ = µ3
M + µ2

MC9 + µMC10 + C11 > 0. Hence, N0 > 0.

The quantity N0, which is the extinction threshold for the mosquito population

of the model, measures the average number of new adult female mosquitoes produced

by one reproductive mosquito during its entire reproductive period (Eikenberry and

Gumel, 2018; Okuneye et al., 2019).

3.5.1 Existence of the Disease-Free Equilibria

The model {(3.4.1), (3.4.2), (3.4.4)} has the following disease-free equilibrium (DFE):
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(i) A trivial disease-free equilibrium (TDFE ), given by:

T1 =
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, S∗Hp , 0, 0, 0, S
∗
Hu , 0, 0, 0

)
,

=

(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Π πp
µH

, 0, 0, 0,
Ππu
µH

, 0, 0, 0

)
.

The TDFE is ecologically unrealistic (since it is associated with the total absence

of mosquitoes in the community). Hence, it is not analysed.

(ii) A unique non-trivial disease-free equilibrium (NDFE ), given by:

T2 =
(
E∗, L∗1, L

∗
2, L

∗
3, L

∗
4, P

∗, S∗X , 0, 0, S
∗
Y , 0, 0, S

∗
Z , 0, 0,

Ππp
µH

, 0, 0, 0, Ππu
µH

, 0, 0, 0
)
,

where,

E∗ = KE

(
1− 1

N0

)
, L∗1 =

σEE
∗

K2

, L∗2 =
σL1L

∗
1

K3

, L∗3 =
σL2L

∗
2

K4

,

L∗4 =
σL3L

∗
3

K5

, P ∗ =
σL4L

∗
4

K6

, S∗X =

[
fσEσPKE

(
1− 1

N0

)
K9K11

] 4∏
i=1

σLi

(C1K9K11 − C2θY ϕZ)
6∏
i=2

Ki

,

S∗Y =
C2S

∗
X

K9

, S∗Z =
θY S

∗
Y

K11

.

(3.5.2)

It is clear from Equation (3.5.2) that the NDFE (T2) exists if and only if N0 > 1 (it

is assumed from here on that N0 > 1, so that the non-trivial disease-free equilibrium,

T2, exists). It is worth noting that the NDFE is the non-extinction equilibrium for

the mosquito population coupled with the trivial disease-free equilibrium (T1) for the

human population. Hence, in the absence of the vectors and the disease, the two

subsystems (T1 and T2) are uncoupled.

3.5.2 Asymptotic Stability of the NDFE

Consider the model {(3.4.1), (3.4.2), (3.4.4)}. It can be shown, using the next gener-

ation operator method (van den Driessche and Watmough, 2002), that the associated
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reproduction number R0 of the model is given by:

R0 =
√

(RHpV +RHuV )×RV H , (3.5.3)

where,

RHpV =
γHβVN

∗
HuQpR1

K13K14

, RHuV =
γHβVN

∗
HpQuR2

K13K14

, (3.5.4)

and,

RV H =
bHβMS

∗
X

N∗HpN
∗
Hu

κV ϕZθY [(K9 +K12)C3 +K9K11]

(C3K10K12 − C2θY ϕZ) (C1K9K11 − C2θY ϕZ)
, (3.5.5)

with,

Qp = bHπp(1− εdeter)
[
εbite|die,p εdie,p + εbite|∼die,p(1− εdie,p)

]
,

Qu = bHπu
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
,

N∗Hp = Ππp
µH

, N∗Hu = Ππu
µH

, C3 = K8 − bH(Q2 +Q3), K8 = bHQ1 + κV + µX + µM ,

K10 = θY +κV +µM , K12 = ϕZ +κV +µM , K13 = γH +µH and K14 = αH +δH +µH .

It can be shown that C3K10K12−C2θY ϕZ = bH [C4κ
2
V +2κV

(
µM + θY

2
+ ϕZ

2

)
C5 +

C6 +C7] +C8 > 0 (where the coefficients Ci (i = 2, ..., 8) are constants, and are given

in Appendix D). Hence, RV H > 0 (and thus R0 is also automatically positive).

Theorem 3.5.1. Let N0 > 1. The NDFE, T2, of the model {(3.4.1), (3.4.2), (3.4.4)}

is locally-asymptotically stable (LAS) in Ω \ T1 if R0 < 1, and unstable if R0 > 1.

The epidemiological implication of Theorem 3.5.1 is that malaria can be effectively

controlled (or eliminated) from the population if the initial sizes of the subpopulations

of the model {(3.4.1), (3.4.2), (3.4.4)} are in the basin of attraction of the non-trivial

disease-free equilibrium (T2 ). In other words, in this case, a small influx of malaria-

infected individuals into the community will not generate large outbreaks.
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It is notable that the value of the reproduction number (R0) for the worst-case

scenario (i.e., bednet coverage is zero), denoted by R̃0∗ and computed using the

baseline parameter values in Table 3.3, is R̃0∗ ' 11.4 (see Appendix E for the

formulation of the special case of the model {(3.4.1), (3.4.2),(3.4.4)} with no bednet

coverage). This high value of the reproduction number is typically seen in holo-

endemic malaria regions (Gething et al., 2010). It should be mentioned that, for the

computation of the value of the reproduction number for this (holo-endemic) setting,

we assumed (in Table 3.3) that there are, on average, 100 eggs per human (which

translates to about 10 adult mosquitoes per human). When we reduce the number of

eggs per human to 10 per human, so that we have one mosquito per human (which is

more typically the case in meso-endemic regions (Gething et al., 2010)), the value of

R0 reduces to R̃0∗ ' 4.2. Hence, these computations (together with Theorem 3.5.1)

show that, for the worst-case scenario (with no bednets used in the community),

the disease will persist in both the holoendemic and the mesoendemic regions (since

R̃0∗ > 1 in both cases), as expected.

3.5.3 Existence of Backward Bifurcation

The phenomenon of backward bifurcation has been observed in numerous models

(such as those in Blayneh et al. (2010); Feng et al. (2015); Garba and Gumel (2010);

Garba et al. (2008); Iboi et al. (2018); Iboi and Gumel (2018)) for spread of malaria

and other vector-borne diseases that incorporated disease-induced death in the host

population. A backward bifurcation is characterized by the co-existence of two

asymptotically-stable equilibria when R0 < 1: an endemic equilibrium point (EEP)

and a disease-free equilibrium point (DFE). Thus, the classical epidemiological re-

quirement that R0 be less than one for elimination of the disease, while necessary,

is no longer sufficient to eliminate malaria when it already exists in the population.
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That is, while R0 ≥ 1 remains a condition for malaria to spread within a previously

unexposed population, pushing R0 < 1 via control measures does not necessarily

guarantee elimination of the disease.

Theorem 3.5.2. The model {(3.4.1), (3.4.2), (3.4.4)} undergoes a backward bifurca-

tion at R0 = 1 whenever a bifurcation coefficient, denoted by a (given in Appendix

F), is positive.

Proof. The proof of Theorem 3.5.2, based on using Center Manifold theory (Carr,

1981; Castillo-Chavez and Song, 2004), is given in Appendix F. The result given by

Theorem 3.5.2 is numerically illustrated by simulating the model {(3.4.1), (3.4.2),

(3.4.4)} using parameter values such that the backward bifurcation condition, given

in Appendix F, is satisfied (Figure 3.5).

The range for backward bifurcation for a weakly-effective net (i.e., a net with

εdie,p = 0.25, εbite,p = 0.33) is βM ∈ (0.526394,∞), a moderately-effective net (i.e.,

a net with εdie,p = 0.5, εbite,p = 0.2) is βM ∈ (0.503682,∞) and that for a highly-

effective net (i.e., a net with εdie,p = 0.9, εbite,p = 0.1) is βM ∈ (1.4009823,∞), where

βM is the chosen backward bifurcation parameter (see Appendix F). Hence, this study

shows that the phenomenon of backward bifurcation is more likely to occur using a

moderately-effective net than when either a weak or highly-effective net is used.

Theorem 3.5.2 shows that elimination is dependent on the initial sizes of the

infected vector and human populations. For elimination to be independent of the size

of the infected populations, a global asymptotic stability property must be explored

for the non-trivial disease-free equilibrium (T2). We claim the following.

Theorem 3.5.3. The NDFE, T2, of the model {(3.4.1), (3.4.2), (3.4.4)}, with δH = 0

and N0 > 1, is globally-asymptotically stable (GAS) in Ω \ T1 if R̃0 = R0|δH=0 < 1.
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Figure 3.5: Backward Bifurcation Diagram of the Model {(3.4.1), (3.4.2), (3.4.4)}, Showing

a Plot of IHp(t) as a Function of the Reproduction Number R0, Where βM is the Chosen

Bifurcation Parameter. Parameter Values Used are as Given in Table 3.5 with: πp =

0.5, πu = 0.5, εdeter = 0.75, εbite|∼die,p = 0.1, εbite|∼die,u = 0.7, εbite|die,p = 0.1, εbite|die,u =

0.7, εdie,p = 0.9, εdie,u = 0.05, bH = 2, µX = 0.005, ψE = 5, δH = 0.0005, ηH = 1/14, βV =

0.5,Π = 1 and KE = Π
µH

(so that the Bifurcation Coefficient, a (Defined in Appendix F),

is Given by a=5.42 × 10−6 > 0 and R0 = 1). It Should be Mentioned that in order to

Generate this Figure, the Values of Five Parameters (αH , ηH , δH , βV and Π) have to be

Chosen Outside their Biologically-Feasible Ranges Given in Table 5.
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The proof of Theorem 3.5.3, based on using Lyapunov function theory and LaSalle’s

Invariance Principle, is given in Appendix G. The epidemiological implication of The-

orem 3.5.3 is that, for the special case of the model {(3.4.1), (3.4.2), (3.4.4)} with no

disease-induced mortality in the host population (i.e., δH = 0), bringing and maintain-

ing the associated reproduction threshold (R̃0) to a value less than one is necessary

and sufficient for complete elimination of malaria in the community, regardless of

initial conditions.

3.6 Numerical Simulations: Populations at Equilibrium

3.6.1 Interaction Between Bednet Coverage and Bednet Efficacy Parameters

To assess the population-level impact of bednets on malaria transmission dynamics

in the community under equilibrium conditions (i.e., the model is numerically simu-

lated until an endemic equilibrium is reached), the model {(3.4.1), (3.4.2), (3.4.4)} is

simulated using various bednet coverage and effectiveness levels, where bednet effec-

tiveness is jointly defined by εbite,p and εdie,p. Unless otherwise stated, all simulations

use the baseline parameter values in Table 3.5, and temperature is fixed at 25◦C (i.e.,

the values of all the temperature-dependent parameters of the model are obtained

by evaluating each of the functional forms in Section 2 at the fixed temperature

T=25◦C).

Figure 3.6 illustrates the nonlinear relationships between bednet coverage frac-

tion, πp, disease prevalence in the two human populations (bednet-protected and

unprotected), R̃0 (i.e., R0 for the case when the disease-induced mortality in the

human population, δH , is set to zero), and EIR (again, in the bednet-protected and

unprotected populations), at endemic equilibrium and for baseline parameters. No-

tably, this figure shows that EIR decreases with increasing bednet coverage (top right
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panel). This result is consistent with that reported in the modeling study by chitnis

et al. (Chitnis et al., 2008), which used data relevant to malaria transmission dynam-

ics in Ifakara, Tanzania (i.e., data for Anopheles gambiae feeding on a heterogenous

human population, with no cattle), to show that bednets are effective in reducing

malaria transmission. Our result is also consistent with the results of the field trials

on permethrin-treated bednets in western Kenya reported by Hawley et al. (Hawley

et al., 2003).

Further, as evident from the graph in the lower left panel of Figure 3.6, human

disease prevalence varies hyperbolically with EIR (i.e., prevalence increases with in-

creasing EIR), such that, for a high baseline EIR, a large reduction in EIR is required

before any meaningful malaria control is realized. A five-fold reduction in overall EIR,

however, is achieved with roughly 20% bednet coverage (see upper right panel of Fig-

ure 3.6). Thus, although even a relatively low bednet coverage can aid somewhat in

malaria control, the simulations in Figure 3.6 show that much higher bednet cover-

age (and a decrease in EIR of two orders of magnitude) is needed to achieve malaria

elimination. Finally, there is a similar, although less marked, hyperbolic relationship

between increasing R̃0 and increasing disease prevalence (bottom right panel).

We explore how changes in εbite,p and εdie,p (i.e. net effectiveness) affect R̃0,

starting from either a baseline R̃0 value of 13.7, presumably representing holoendemic

malaria, or 4.3, which is more appropriate for mesoendemic malaria. In particular, we

generate contour plots of R̃0 as a function of εbite,p and εdie,p, for either low (20%) or

high (80%) bednet coverage levels (Figure 3.7). The inscribed curve on each contour

plot of Figure 3.7 shows how εbite,p and εdie,p co-vary, based upon the experimental

hut data discussed in Section 3.4.2. In these plots, the highlighted points indicate

highly, moderately, and weakly effective nets. It follows from Figure 3.7 that, for

the mesoendemic baseline, even a moderately effective net is capable of pushing R̃0
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to a value less than one when bednet coverage is high (80%). Further, for this

(mesoendemic baseline scenario) even low bednet coverage (20%) may substantially

improve malaria control.

In the holoendemic baseline, on the other hand, only a highly effective net with

high coverage can have a chance to approach malaria elimination. Thus, these sim-

ulations show that our study only supports the claim in the malaria modeling study

by (Chitnis et al., 2008) (based on data relevant to malaria dynamics in Ifakara, Tan-

zania) and the permethrin-treated bednets field trial in western Kenya by (Hawley

et al., 2003) that bednets reduce malaria transmission if the malaria region being

considered is mesoendemic. For holoendemic malaria regions, our study shows that

only a highly-effective net, coupled with very high coverage, can lead to effective

control of malaria. Ifakara and western Kenya are considered regions of high malaria

endemicity (Githeko et al., 1992; Holzer et al., 1993).

Figure 3.7 also suggests that high coverage of weakly effective (i.e. low killing

efficiency) nets is better than low coverage with highly effective (i.e. high killing ef-

ficiency) nets. For example, in the holoendemic setting, 20% coverage with a highly

effective net pushed R̃0 from 11.7 to 5.5, while 80% coverage with a weakly effec-

tive net gives R̃0 of 3.6. Given the nonlinear relationship between R̃0 and disease

prevalence, widespread use of even marginally effective bednets may better control

malaria than lower coverage rates with better (more effective) nets. Finally, Figure

3.8 shows the nonlinear relationship between R̃0 and EIR, such that EIR must be

pushed very close to zero before R̃0 drops below one. In other words, Figure 3.8

shows that a significant reduction in EIR is needed in order to bring the reproduction

number R̃0 to a value less than 1 (so that, by Theorem 3.5.3, malaria elimination can

be achieved).

We also examine how deterrence, as measured in the model by εdeter, interacts
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with bednet coverage and net effectiveness to determine R̃0, as shown in the contour

plots in Figure 3.9. Perhaps surprisingly, increasing deterrence generally results in

an increase in R̃0. This is likely because increasing εdeter focuses mosquito biting

upon the unprotected subpopulation, resulting in more intense malaria transmission

among this subpopulation and an overall increase in R̃0.

It should be emphasized here that this increased biting on unprotected persons

is not an assumption directly imposed on the model, but is a natural consequence of

the fact that, if a mosquito does not attempt a bloodmeal on a net-protected human

she has encountered, due to deterrence, she will continue in her search and likely

ultimately encounter an unprotected person (although this comes at an increased

mortality, denoted by µX in the model 3.4.2).

3.6.2 Effects of Temperature

We examine the effect of changing mean ambient temperature (assumed equal to

water temperature) upon R̃0 and EIR, as shown in Figure 3.10. We see an asymmetric

increase in R̃0 and EIR from low temperatures to peaks around 29–30◦C, followed by

rapid drop-offs at higher temperatures. In other words, malaria burden is maximized

for temperature values in the range 29–30◦C, and such burden decreases for increasing

temperatures thereafter. This peak is similar to that reported by (Okuneye et al.,

2019), but higher than the reported value by the well-known (Mordecai et al., 2013)

study. Furthermore, although the results in Figure 3.10 are obtained using a highly

effective net with KE = 100 × Π/µH , it should be stated that qualitatively similar

results are obtained regardless of net type and KE value.

To determine if temperature alters the qualitative interaction between bednet

efficacy, bednet coverage, and control, we have generated a series of contour plots

showing R̃0 as a function of εdie,p and εbite,p, for different ambient temperatures;
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Figure 3.6: Relationships Among EIR, Fraction of Infected Humans, Bednet Coverage

Level, and R̃0, at the Endemic Equilibrium, as Determined from Numerical Simulation

of the Model {(3.4.1), (3.4.2), (3.4.4)}, and for Fixed Temperature (25◦C). Results are

Disaggregated Between the Protected, Unprotected, and Overall (Bednet-Protected and

Unprotected human) Populations. Results are Determined Using Baseline Parameter Values

with a Highly Effective Net in a Holoendemic Setting (KE = 100 Π
µH

, R̃0 = 11.7 with no

Bednet Coverage).

several surfaces are given in Figure 3.11. While altering the maximum R̃0 value,

changes in temperature have no meaningful effect upon the qualitative contour shape.

That is, while maximum R̃0 varies between about 1.3 and 4.5 in the contours shown

in Figure 3.11, the surface shapes are essentially invariant. Mirroring Figure 3.10,

maximum R̃0 increases up to nearly 30◦C and then falls off. Thus, it is concluded

that bednet coverage and temperature independently affect malaria risk.
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Figure 3.7: Contour Plots of the R̃0 of the Model {(3.4.1), (3.4.2), (3.4.4)}, as a Function

of εdie,p and εbite,p (the Respective Probabilities that a Mosquito Dies or takes a Blood

Meal Upon Encountering a Protected Human), for Four Different Permutations of Bednet

Coverage and Baseline R̃0. The Top Panels useKE = 100 Π
µH

to Approximate a Holoendemic

Baseline, while the Bottom Panels use KE = 10 Π
µH

as an Approximation of a Mesoendemic

Baseline. Bednet Coverage is Either 20% (left) or 80% (right).
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Figure 3.8: Numerically Determined Relationship Between Overall EIR and R̃0 at the

Endemic Equilibrium, where Variability in EIR is Generated by Changing Bednet Coverage,

πp. For Larger EIR, R̃0 Decreases Nearly Linearly with Falling EIR, while for Very Small

EIR, R̃0 decreases dramatically with Falling EIR. Thus, EIR Must be Pushed Very Close

to Zero for Malaria Elimination. Results are Generating Using Baseline Parameter Values

with a Highly Effective Net in a Holoendemic setting (KE = 100 Π
µH

).

3.7 Discussion and Conclusions

Great successes have been recorded in the concerted global effort against malaria

between the year 2000 to 2015, thanks largely to the large-scale use of long-lasting

insecticidal bednets (LLINs) and indoor residual spraying (IRS) in malaria-endemic

regions within sub-Saharan Africa. There is now a strong global push to eradicate

malaria (particularly the “Zero by 40” initiative of five chemical companies, with

support of the Bill & Melinda Gates Foundation and the Innovative Vector Control

Consortium (Gates, 2016; Willis and Hamon, 2018)). Given the widespread emergence

of vector resistance to pyrethroid-based insecticides (the only chemical agent approved
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Figure 3.9: Contour Plots Showing R̃0 as a Function of εdeter and πp (Bednet Coverage),

for Weakly, Moderately, and Highly Effective Nets. For this Figure, We use KE = 100 Π
µH

to Approximate a Holoendemic Baseline.

for use in LLINs), and the uncertainty surrounding how this affects (and will affect)

malaria epidemiology, mathematical modeling studies are a promising to examine the

interaction between bednet resistance and malaria epidemiology.

This chapter presents a novel mathematical model, of the form of deterministic

system of nonlinear differential equations, for gaining insight into the transmission

dynamics of malaria in a population where a certain percentage of the populace use

LLINs (consistently and correctly). In addition to incorporating many critical features

of malaria disease (e.g., the four main cycles associated with malaria disease, namely

immature mosquito life cycle, adult mosquito gonotrophic cycle, parasite sporogony

in the mosquito and schizogony in humans; stratifying human population according to

bednet usage; etc.), the model allows for the assessment of the killing and deterrence

properties of the LLINs (in particular, in addition to killing adult mosquitoes (with

86



Figure 3.10: The Left Panel Shows how R̃0 Varies with Mean Temperature, Using a Fixed

πp = 0.5, KE = 100 Π
µH

, and a Highly Effective Net. The Right Shows the Numerically

Determined Equilibrium Values of EIR for Protected, Unprotected, and Overall Human

Populations as a Function of Temperature (and for the Same Parameter Values). Both R̃0

and EIR, Across Populations, Peak Around 29◦C.

some efficacy) upon encounter, the nets can also deter the mosquito from entering

the house and/or from biting the human host). The model has been parametrized

using ecological data and parameter values relevant to malaria transmission dynamics

in holo- and meso-endemic regions of sub-Saharan Africa, and was used to evaluate

the population-level impact of various LLINs coverage and effectiveness levels. For

numerical simulation purposes, the effectiveness levels of the bednets described in

Section 3.4.2 are considered.

The model {(3.4.1), (3.4.2), (3.4.4)} was rigorously analysed to gain insight into

its dynamical features (thereby allowing for the determination of important ecological

and epidemiological thresholds that govern the persistence, effective control and/or
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Figure 3.11: Contours of R̃0 as a Function of εdie,p and εbite,p for Four Different Ambient

Temperatures, and for Different Net at 50% Bednet Coverage (with KE = 100 Π
µH

). The

Qualitative Shape of the Contour Plots does not Appreciably Vary with Temperature.
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elimination of the disease in a population). It is, first of all, shown, using the theory

of center manifold (LaSalle and Lefschetz, 1976), that the model undergoes the phe-

nomenon of backward bifurcation, when the reproduction number of the model is less

than 1, whenever a certain bifurcation coefficient attains positive values. This con-

dition is associated with the disease-induced mortality in the host population being

set to zero (Iboi et al., 2018; Iboi and Gumel, 2018). The epidemiological implica-

tion of this phenomenon is that the usual epidemiological requirement of having the

reproduction number of the model being less than 1, while necessary, is no longer

sufficient for the effective control of the disease. Thus, when a backward bifurcation

exists, greater control effort is needed to eradicate disease.

However, the phenomenon of backward bifurcation does not exist in the model

developed in this study if all the values of the parameters are chosen from their

biologically realistic ranges in Table 3.5, for a holoendemic setting, with five parameter

values chosen outside the given range to illustrate a backward bifurcation. Thus, the

study in this Chapter shows that, for a holoendemic malaria setting, the backward

bifurcation phenomenon in the developed model is essentially a mathematical artifact

which may not be realizable using realistic data (or set of parameter values). This

result is consistent with those reported in (Garba and Gumel, 2010; Garba et al.,

2008; Iboi et al., 2018; Iboi and Gumel, 2018), which also showed that backward

bifurcation is not realizable using realistic parameters.

The backward bifurcation phenomenon is known to exist in vector-borne disease

models that incorporate disease-induced death in the host(s) population(s). This is

confirmed, in this Chapter, by showing that such bifurcation does not occur in the

special case of the model with no disease-induced death in the human population (we

showed, using Lyapunov function theory together with LaSalle’s Invariance Principle,

that the disease-free equilibrium of the special case of the model with no disease-
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induced death rate and no density-dependent larval mortality is, indeed, globally-

asymptotically stable whenever the associated reproduction number is less than 1).

The impact of coverage level of the LLINs is monitored by simulating the model

using various coverage levels. The simulation results obtained show, expectedly, that

the disease prevalence in the host population (including those protected, by sleeping

under a net, and the unprotected ones who do not sleep under a net) decreases with

increasing coverage levels.

We observe LLINs at 20% coverage to reduce the reproduction number, at the

holoendemic baseline (approximated by KE = 100×Π/µH), from a baseline value of

about 13.7 to either 10.7, 8.3, or 6.1, under weakly, moderately, or highly effective

bednets, respectively. Increasing coverage to 80% yields R̃0 values of 4.3, 1.9, and

0.8, for the same respective net efficacies. Thus, malaria elimination in holoendemic

regions will require highly effective nets at high coverage levels. At the mesoendemic

baseline, approximated by KE = 10 × Π/µH and giving R̃0 = 4.3 without bednets,

we see similar relative reductions in R̃0. However, given the lower baseline R̃0, even

weakly effective nets give R̃0 = 1.3 under 80% bednet coverage, near the elimination

threshold, and both moderately and highly effective nets push R̃0 well below zero.

Bednet coverage of 20%, in this case, improves malaria control, but is insufficient for

elimination.

The widespread use of insecticide-based vector control interventions, including

pyrethroid based insecticide-treated nets (ITNs; later replaced by long-lasting insec-

ticidal nets (LLINs)) has resulted in the emergence of vector resistance to nearly

every currently-available agent used in the insecticides (Alout et al., 2017; Don-

dorp et al., 2009; Imwong et al., 2017; WHO, 2017b) with pyrethroid resistance now

widely observed across the African continent (Hemingway et al., 2016). Most nets

distributed to-date are pyrethroid-only nets (although pyrethroid nets with the syn-
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ergist PBO and pyrethroid nets with a second active ingredient are now available),

and pyrethroid-only nets will likely remain a core vector control intervention over

the next few years. As such it is critical to understand their current impact - now

resistance to their active ingredients is so widespread - on malaria epidemiology. This

study suggests that high coverage of weakly effective (i.e. low killing efficiency) nets

is better than low coverage with highly effective (i.e. high killing efficiency) nets.

The impact of the deterrence property of LLINs to repel mosquitoes from enter-

ing protected house has also been examined, and we find, perhaps unexpectedly, that

higher deterrence almost uniformly increases R̃0. This is likely because mosquitoes

repelled from protected persons now focus their efforts on the unprotected subpop-

ulation, thus increasing transmission within this group and potentially hampering

elimination efforts.

The transmission cycle of malaria is greatly affected by changes in the environ-

ment. In particular, the life-cycles of the malaria vector (adult female Anopheles

mosquito) and parasites (Plasmodium) are both strongly affected by changes in am-

bient temperature, while suitable aquatic habitat is necessary for immature mosquito

development. Therefore, we have examined how malaria burden changes with mean

ambient temperature, and how this interacts with bednet coverage. We find R̃0 and

EIR to both peak at just under 30◦C, with this true regardless of bednet coverage lev-

els. Indeed, we observe bednet coverage and temperature to essentially independently

influence R̃0. Thus, somewhat colder regions, such as the eastern African highlands,

may see an increase in malaria potential with climate change, while warmer western

regions may be little affected.
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Chapter 4

IMPACT OF STERILE INSECT TECHNOLOGY ON THE ECOLOGY OF

MALARIA MOSQUITOES

4.1 Introduction

As stated in chapter 1, mosquitoes are the principal vectors of numerous MBDs, such

as malaria, dengue, West Nile virus, Zika, Yellow fever and Chikungunya. Further,

about 200 of the 3500 adult mosquito species can transmit MBD to humans. The

control of MBDs (such as malaria) in endemic areas relies mainly on the implementa-

tion of mosquito-reduction strategies, such as larviciding, the use of LLINs and IRS

and the treatment of confirmed cases (Mutabingwa, 2005). However, adult female

mosquitoes have developed resistance to all five chemicals currently being used in the

production of IRS and LLINs (see Figure 1.8 and (Alout et al., 2017; Dondorp et al.,

2009; Imwong et al., 2017; WHO, 2017b)). Furthermore, in the context of malaria,

the Plasmodium parasite has started developing resistance to the artemisinin-based

therapy (Lubell et al., 2014; Ouji et al., 2018; Yeung et al., 2004). Hence, there is

urgent need to explore other measures for vector control. Biological controls, such as

sterile insect technology (SIT) (fre, 2017; Benelli et al., 2016; Cai et al., 2014; Huang

et al., 2017; Patil et al., 2015; Thomé et al., 2010; Zheng et al., 2019), are being used

to achieve this objective.

SIT is based on the repeated release of large numbers of sterile male mosquitoes

aimed at disrupting the natural reproductive process of mosquitoes (Benelli et al.,

2016; Cai et al., 2014; Thomé et al., 2010). One key feature of SIT is that female

mosquitoes that mate only with sterile males will produce no offspring. If sufficient
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numbers of wild females mate with sterile males, the target population will decline

and possibly collapse. Sterile male mosquitoes can be mass produced using several

different techniques, including exposure of male pupae to sterilizing radiation and

infection with sterilizing vertically-transmitted bacteria such as Wolbachia (Benelli

et al., 2016; Cai et al., 2014; Esteva and Yang, 2005; Thomé et al., 2010). Although

controversial, certain forms of gene drive, engineered using CRISPR-CAS9 technology,

may also lead to population declines through male sterility (Noble et al., 2017).

SIT was first successfully implemented in Florida, USA, in 1958 to eradicate screw-

worm flies Cochliomya omnivorax (Bartlett and Staten; Benelli et al., 2016; Esteva

and Yang, 2005; Knipling, 1979). In this instance, about 50 million sterile flies were

released each week over an 18 month period within an 85,000 square mile area (Esteva

and Yang, 2005). The technique has also been successfully used against a range of

agricultural pest insects, such as fruit flies, moths and tsetse flies (Dyck VA and AS,

2005). Sterile mosquitoes have so far been used in the Cayman Islands, Brazil, USA,

Panama and India (Patil et al., 2015).

Recently, the company Verily (formerly Google Life Sciences) released 20 million

sterile male mosquitoes in two neighborhoods in Fresno County over a period of 20

weeks in an effort to reduce the population of Aedes aegypti mosquitoes (the primary

vector of dengue, chikungunya, yellow fever and Zika viruses) which have been present

in California’s central valley since 2013 (fre, 2017). Zheng et al. (2019) recently studied

the combined impact of using incompatible insect techniques (IIT) and SIT to control

the population abundance of Aedes albopictus mosquitoes in Guangzhou province of

China during the peak mosquito breeding seasons between 2016 and 2017 (based on

the weekly release of over 160,000 of these mosquitoes per hectare).

Although the use of SIT has been proven to be effective (in reducing the abundance

of the targeted mosquito species population in a community) under certain conditions,
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it comes with a number of challenges (Benelli et al., 2016; Cai et al., 2014; Esteva and

Yang, 2005; Gentile et al., 2015; Patil et al., 2015; White et al., 2010; Zheng et al.,

2019). Depending on the distribution and abundance of the target species, large

numbers of sterile males may have to be reared and released over a large area (Esteva

and Yang, 2005; Gentile et al., 2015; Patil et al., 2015; White et al., 2010; Zheng

et al., 2019). Even larger numbers of sterile males will be required if sterilization

also reduces male mating fitness, since this will increase the likelihood of adult female

mosquitoes mating with fertile adult wild male mosquitoes (Gentile et al., 2015).

Furthermore, although SIT is highly species-specific and, therefore, less likely to have

unintentional adverse environmental consequences (Benelli et al., 2016; Cai et al.,

2014; Esteva and Yang, 2005; Gentile et al., 2015; Patil et al., 2015; White et al.,

2010; Zheng et al., 2019), this specificity may be problematic in settings where there

are multiple competent vector species requiring control.

As stated in chapters 1 and 3, another important factor that affects the dynamics

of mosquito population is the seasonal variabilities in climate factors, such as temper-

ature and precipitation (Abdelrazec and Gumel, 2017; Agusto et al., 2015; Eikenberry

and Gumel, 2018; Githeko et al., 1992; Iboi and Gumel, 2018; Imbahale et al., 2011;

Lambrechts et al., 2011; Okuneye and Gumel, 2017; Okuneye et al., 2019; Parham

and Michael, 2010; Polwiang, 2015; Scott et al., 2000; SE and AB, 2019). In par-

ticular, changes in temperature is known to significantly affect the distribution and

ecology of Anopheles mosquitoes by altering their maturation, survival and biting

rates (Abdelrazec and Gumel, 2017; Eikenberry and Gumel, 2018; Githeko et al.,

1992; Imbahale et al., 2011; Okuneye et al., 2019; Polwiang, 2015; SE and AB, 2019).

Consequently, this chapter will additionally assess how such seasonal variability will

affect the effectiveness of the SIT program in curtailing the abundance of the targeted

mosquito population.
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4.2 Main Objectives

The primary objective of this chapter is to use mathematical modeling and simulations

to assess the impact of the periodic release of sterile male mosquitoes (using SIT)

on the local abundance of Anopheles mosquitoes. The potential impact of seasonal

variations in temperature on the population-level effectiveness of the SIT control

strategy will also be assessed. In other words, we will seek to determine whether

or not local (seasonal) changes in temperature might affect the utility of the SIT

vector control strategy. To achieve these objectives, an improved mathematical model,

which takes the form of an impulsive, deterministic system of nonlinear differential

equations, will be developed.

4.3 Literature Review of Modeling of Sterile Insect Technology

Numerous mathematical models have been developed and used to assess the population-

level effectiveness of SIT on the population abundance and dynamics of mosquito

populations (see, for instance, (Anguelov et al., 2012; Cai et al., 2014; Dumont and

Tchuenche, 2012; Esteva and Yang, 2005; Gentile et al., 2015; Thomé et al., 2010;

White et al., 2010)). Anguelov et al. (2012) used a deterministic model to analyze

the impact of the SIT as a measure for the control of Anopheles mosquito. Cai et al.

(2014) formulated a model of the interactive dynamics of wild and sterile mosquitoes

by incorporating different strategies in releasing sterile mosquitoes. Dumont and

Tchuenche (2012) formulated and analysed a model of SIT to prevent, reduce, elimi-

nate or stop an epidemic of Chikungunya.

Esteva and Yang (2005) proposed a model to assess the effect of irradiated (or

transgenic) male insect introduction in a previously infested region. Gentile et al.

(2015) used agent-based modelling of emerging and theoretical implementations of
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transgenic SIT in Anopheles gambiae for the control of malaria. Thomé et al. (2010)

presented a mathematical model to describe the dynamics of mosquito population

when sterile male mosquitoes (produced by irradiation) are introduced as a biological

control along with the application of insecticide. Finally, White et al. (2010) used a

stage-structured model to explore the impact of pulsed releases of sterile males on a

mosquito population in which sterilized males suffer a reduction in mating fitness.

4.4 Mathematical Formulation

The improved model to be formulated in this chapter is based on the dynamics of

Anopheles mosquitoes. The total mosquito (immature and mature) population at

time t, denoted by NV (t), is subdivided into subpopulations of eggs (E(t)), lar-

vae (L(t)), pupae (P (t)), unmated female adult mosquitoes (Fu(t)), female adult

mosquitoes that mated with fertile wild males (Fm,w(t)), female adult mosquitoes

that mated with sterile males (Fm,s(t)), wild adult male mosquitoes (Mw(t)) and

sterile adult male mosquitoes (Ms(t)). Hence,

NV (t) = E(t) +
4∑
j=1

Lj(t) + P (t) + Fu(t) + Fm,w(t) + Fm,s(t) +Mw(t) +Ms(t).

First of all, upon emergence, adult female mosquitoes search for male mosquitoes to

mate (Mike, 2008). Let β represent this (mating) rate. The mean time required for

an adult female mosquito to find a mating partner (i.e., an adult male mosquito) is

inversely proportional to the local density of adult male mosquitoes that are able to

mate (J. Rankin and Kokko, 2007; Stone, 2013; White et al., 2010). It is assumed

that while all wild-type adult male mosquitoes are able to mate, only a fraction,

0 < η ≤ 1, of adult sterile male mosquitoes are able to mate (this is due to a

number of factors, such as development, culturing and production processes, including

storage temperature and compaction rate (Chung et al., 2018; Dame et al., 2009;
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Dyck VA and AS, 2005; Munhenga et al., 2016; White et al., 2010; Zheng et al.,

2019)). Therefore, once an adult male mosquito is found, it is assumed that the

mating process is completed within ζ units of time (Aldersley and Cator, 2019).

Hence, the mean time for an adult female mosquito to find an adult male mosquito

(and mate with it), denoted by Hmean, is given by:

Hmean = ζ +
1

β(Mw + ηMs)
.

Furthermore, the per capita rate at which adult female mosquitoes mate with adult

male mosquitoes (denoted by Ya(t)) is inversely proportional to this time. That is,

Ya(t) = −Fu
1

Hmean

= −Fu
β(Mw + ηMs)

1 + βζ(Mw + ηMs)
.

Likewise, the rates at which adult female mosquitoes mate with adult male wild-

type (denoted by Yb(t)) or sterile male mosquitoes (denoted by Yc(t)) are given,

respectively, by

Yb(t) = β

[
Mw

1 + βζ(Mw + ηMs)

]
Fu and Yc(t) = β

[
ηMs

1 + βζ(Mw + ηMs)

]
Fu.

Figure 4.1 depicts the possible mating outcomes between sterile male mosquitoes

and adult wild female mosquitoes. It is worth emphasizing that the model to be

designed in this study accounts for the seasonal fluctuations in temperature. In par-

ticular, fluctuations in both ambient/air temperature (denoted by TA(t)) and water

temperature (denoted by TW (t)) will be incorporated into the model.
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Figure 4.1: Mating Outcomes Between Sterile Male Mosquitoes and Wild Adult Female

Mosquitoes. Colors: Blue–Sterile Male Mosquitoes; Brown–Wild male Mosquitoes; Green–

Unmated Female Mosquitoes; Purple–Mated Female Mosquitoes that Would be Laying

(Nonhatching) Eggs.

The model for the population dynamics of Anopheles mosquitoes, which incorpo-

rates, in addition to mosquito lifecycle dynamics, the intermittent release of sterile

male mosquitoes and the seasonal fluctuation in temperature, is given by the following

deterministic, impulsive, non-autonomous system of non-linear differential equations
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(where a dot represents differentiation with respect to time t) (Iboi et al., 2019a):

Ė = φEψE

(
1− E

KE

)
∗
Fm,w − [σE(TW ) + µE(TW )]E,

L̇1 = σE(TW )E − [σL1(TW ) + µL(TW ) + δLL]L1,

L̇j = σLj−1
(TW )Lj−1 −

[
σLj(TW ) + µL(TW ) + δLL

]
Lj,

Ṗ = σL4(TW )L4 − [σP (TW ) + µP (TW )]P,

Ḟu = rσP (TW )P −
[

β(Mw+ηMs)
1+βζ(Mw+ηMs)

+ µq(TA)
]
Fu,

Ṁw = (1− r)σP (TW )P − µq(TA)Mw,

Ḟm,w =
[

βMw

1+βζ(Mw+ηMs)

]
Fu − µq(TA)Fm,w,

Ḟm,s =
[

βηMs

1+βζ(Mw+ηMs)

]
Fu − µq(TA)Fm,s,

Ṁs = −µqMs,



t 6= nτ

E(nτ+) = E(nτ),

L1(nτ+) = L1(nτ),

Lj(nτ
+) = Lj(nτ),

P (nτ+) = P (nτ),

Fu(nτ
+) = Fu(nτ),

Mw(nτ+) = Mw(nτ),

Fm,w(nτ+) = Fm,w(nτ),

Fm,s(nτ
+) = Fm,s(nτ),

Ms(nτ
+) = Ms(nτ) + CR,



t = nτ, n = 0, 1, 2, · · · .

(4.4.1)
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It is convenient to define L =
4∑
j=1

Lj. A schematic diagram of the model (4.4.1)

is depicted in Figure 4.2, and the state variables and parameters of the model are

described in Table 4.1.

In the formulation of the model (4.4.1), it is assumed, first of all, that only adult

female mosquitoes that have mated with wild male mosquitoes (i.e., Fm,w mosquitoes)

lay eggs (i.e., adult female mosquitoes that mate with sterile male mosquitoes will

not lay eggs, owing to the assumed 100% effectiveness of SIT to inhibit egg laying

(Anguelov et al., 2012; Esteva and Yang, 2005)). Eggs laying occurs at a logistic

rate φEψE

(
1− E

KE

)
∗
, where φE is the egg oviposition rate, ψE is the number of

eggs laid per oviposition and KE (the notation r∗ = max{0, r} is used to ensure the

non-negativity of the logistic term) is the carrying capacity for eggs (a measure of

the exhaustion of space for laying the eggs) (Horsfall, 1955; Hoshen and Morse, 2004;

Iboi and Gumel, 2018; Imbahale et al., 2011; Okuneye and Gumel, 2017).

Eggs hatch into larvae at a temperature-dependent rate σE(TW ), larvae mature

into pupae at temperature-dependent rates σLj(TW ) (with j = 1, 2, 3, 4 accounting

for the four larval instar stages), and pupae mature into adult mosquitoes at a

temperature-dependent rate σP (TW ). Among these newly emerging adult mosquitoes,

it is assumed that a proportion, r (0 < r < 1), are females (and the remaining

proportion, 1 − r, are males). Natural mortality occurs in all mosquito life stages

at a temperature-dependent rates µE(TW ), µL(TW ), µP (TW ) and µq(TA), respectively,

while larvae are also additionally lost due to density-dependent mortality at a rate

δLL (Abdelrazec and Gumel, 2017) (where δL = 1/KL, with KL being the carrying

capacity of larvae).

Finally, sterile adult male mosquitoes are released to the environment periodically.

That is (Dumont and Tchuenche, 2012; Gentile et al., 2015),
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Ms(nτ
+) = Ms(nτ) + CR,

where τ is the time lag between successive sterile male mosquito releases and nτ+

is the moment immediately after the nth sterile release. At each release time nτ , a

constant number of sterile male mosquitoes (CR) are released to the environment. For

instance, during the summer of 2015, a joint US-China research team released 7,000

to 10,000 sterile male mosquitoes in the Sand island (a small island in Guandong

province of China) thrice a week in March (Huang et al., 2017). Similarly, in a

more recent field study in Guangzhou province of China (Zheng et al., 2019), over

160,000 sterile male mosquitoes were released per hectare every week (during the

peak mosquito breeding seasons between 2016 and 2017). Sterile male mosquitoes

are typically released in areas where the density of wild female mosquitoes reaches a

certain threshold level (Huang et al., 2017).

Figure 4.2: Flow Diagram of the Model.

The model (4.4.1) extends numerous mathematical models that incorporate the im-

plementation of SIT vector control strategy, such as those in (Anguelov et al., 2012;

Cai et al., 2014; Dumont and Tchuenche, 2012; Esteva and Yang, 2005; Gentile et al.,
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2015; Thomé et al., 2010; White et al., 2010), in several ways. In particular,

(i) it extends the models in (Anguelov et al., 2012; Cai et al., 2014; Dumont and

Tchuenche, 2012; Esteva and Yang, 2005; Gentile et al., 2015; Thomé et al.,

2010; White et al., 2010) by including the dynamics of immature mosquitoes

(i.e., the compartments E, Lj(j = 1, 2, 3, 4) and P );

(ii) it extends the models in (Anguelov et al., 2012; Cai et al., 2014; Esteva and

Yang, 2005; Gentile et al., 2015; Thomé et al., 2010) by including periodic

releases of sterile male mosquitoes (i.e., Ms(nτ
+) = Ms(nτ) + CR);

(iii) it extends the models in (Anguelov et al., 2012; Cai et al., 2014; Dumont and

Tchuenche, 2012; Esteva and Yang, 2005; Gentile et al., 2015; Thomé et al.,

2010; White et al., 2010) by including a novel mating function that realistically

accounts for the detailed mating processes and outcomes;

(iv) it extends all of the aforementioned studies by incorporating the effect of local

(seasonal) temperature variability on the dynamics of the mosquito population

(in fact, to the best of the authors’ knowledge, seasonal variation in temperature

has not previously been investigated in SIT-based mosquito control modeling

studies, despite the fact that mosquito and many other arthropod populations

are strongly affected by seasonal changes in temperature and precipitation)

(Abdelrazec and Gumel, 2017; Afrane et al., 2005; Agusto et al., 2015; Bayoh

and Lindsay, 2003; Cailly et al., 2012; Iboi and Gumel, 2018; Mordecai et al.,

2013; Wu et al., 2009).
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Figure 4.3: Geography and Household Locations in Kipsamoite Area (Within Nandi Hills

District) of Kenya (Ernst et al., 2006).

4.4.1 Formulation of Thermal-Response Functions

The functional forms of the temperature-dependent parameters in the model (4.4.1)

are based on the biology of Anopheles mosquitoes, and are formulated as follows.

First of all, we adopt the relationship between water temperature and overall time

from egg to adult, DEA(TW ), given by Bayoh and Lindsay (Bayoh and Lindsay, 2003)

(based on laboratory data):

1

DEA(TW )
= −0.05 + 0.005TW − 2.139× 10−16eTW − 2.81357× 105e−TW .

For the parameters related to the mosquito development rates in the immature

stages, we determined stage-specific development times as a function of water tem-

perature from Figure 1 of Bayoh and Lindsay (Bayoh and Lindsay, 2003), as shown

103



in Figure 3.4. It can be seen from Figure 5 that the development times are simi-

lar across all immature stages of the mosquito lifecycle, with appreciable overlap in

the temperature-dependent curves. Hence, it is assumed that the average duration

in all immature stages are the same. Further, the uniform temperature-dependent

development rates are given as (recalling that L = L1 + L2 + L3 + L4):

σE(TW ) = σP (TW ) = σL(TW ) = 6
1

DEA(TW )
. (4.4.2)

It is worth mentioning that some field studies suggest that the distribution of hatching

time in Anopheles gambiae is relatively constant (Dao et al., 2006).

The functional forms of the per capita death rates (µE for eggs; µL for larvae and

µP for pupae) are obtained by fitting the data on larval survival times reported by

Bayoh and Lindsay (Bayoh and Lindsay, 2003), to the following quartic polynomial

(note that survival time is the inverse of death rate):

µi(TW ) = 8.929× 10−6T 4
W − 9.271× 10−4T 3

W + 3.536× 10−2T 2
W − 0.5814TW + 3.509;

i = E,L, P. The temperature-dependent mortality rate of adult mosquitoes (µq(TA))

is given by (Bayoh, 2001):

1

µq(TA)
= max(−11.8239 + 3.3292TA − 0.0771T 2

A, 0.1).

In the formulation of the model (4.4.1), it is assumed, for simplicity, that near the

surface of the water, air and water temperature are approximately equal (Agusto

et al., 2015; Iboi and Gumel, 2018) (so that, TA(t) = TW (t) = T (t)). The following

piecewise-constant function is proposed to model temperature variability:

T (t) = v(Tobs − Tmean) + Tmean, (4.4.3)

where Tmean is the mean annual temperature in the chosen community, Tobs is the

observed mean monthly temperature and v is a parameter that governs the amplitude

104



of seasonal fluctuations around the mean annual temperature. The observed mean

monthly temperature for Kipsamoite area of Kenya for the year 2016 is tabulated in

Table 4.2 (Lag, 2017). This formulation allows us to study the impact of increasing

seasonal variation in temperature using temperature profiles typical of areas with

moderate to high densities of wild adult female Anopheles mosquitoes. In particular,

we note that the model (4.4.1) reduces to a non-seasonally-forced model when the

parameter v is set to 0.

4.4.2 Timing of Release of Sterile Male Mosquitoes

Following White et al. (2010), we define the release effect statistic, denoted by R(t),

given by:

R(t) =

∫ t+τ
τ

N1(s)ds∫ t+τ
τ

N0(s)ds
, (4.4.4)

where N1 is the total abundance of adult females over a period of time with the control

(SIT) and N0 is the total abundance of adult females over that same period without

the control. Following White et al. (2010), Equation (4.4.4) yields the following

three ecological interpretations for the release statistic R:

(i) If R(t) < 1, then the sterile male release (i.e., SIT control) has a negative

(desirable) effect on the wild adult female mosquito population (i.e., the SIT

control decreases the population abundance of the wild adult female mosquito).

(ii) If R(t) = 1, then the SIT control has no relative effect on the wild adult female

mosquito population (i.e., SIT control does not increase or decrease the wild

adult female mosquito population).

(iii) If R(t) > 1, then the SIT control has a positive (detrimental) effect on the wild

adult female mosquito population (i.e., SIT increases the population abundance
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of the wild adult female mosquitoes).

In other words, an SIT-based mosquito control strategy that has an associated re-

lease effect statistic value less than unity will lead to an effective control of the local

abundance of the targeted (wild) adult mosquito population.

4.4.3 Basic Qualitative Properties of the Model

The basic qualitative properties of the model (4.4.1) will now be analysed. Let R+ =

[0,∞), R11
+ = {B ∈ R11

+ : B ≥ 0}, where

B = (E(t), Lj(t), P (t), Fu(t), Fm,w(t), Fm,s(t),Mw(t),Ms(t)); j = 1, 2, 3, 4.

Consider the following ecologically-feasible region of the model (4.4.1):

Ω =
{
B ∈ R11

+ : E(t) ≤ KE, L1(t) ≤ L�1, L2(t) ≤ L�2, L3(t) ≤ L�3, L4(t) ≤ L�4,

P (t) ≤ P �, Fu ≤ F �u ,Mw ≤M�
w, Fm,w ≤ F �m,w, Fm,s ≤ F �m,s,Ms ≤M�

s

}
,

where,

L�1 =
σEKE

σL1 + µL
, L�2 =

σL1L
�
1

σL2 + µL
, L�3 =

σL2L
�
2

σL3 + µL
, L�4 =

σL3L
�
3

σL4 + µL
, P � =

σL4L
�
4

σP + µP
,

M�
w =

(1− r)σPP �

µq
, F �u =

rσPP
�

Q1

, F �m,s =
Q2

µq
, F �m,w =

Q3

µq
, M�

s =
CRe

−µq(t−nτ)

1− e−µqτ
,[

β(M�
w + ηM�

s )

1 + βζ(M�
w + ηM�

s )
+ µq

]
≤ Q1,

βM�
w

1 + βζ(M�
w + ηM�

s )
≤ Q2, and

βηM�
s

1 + βζ(M�
w + ηMs)

≤ Q3.

(4.4.5)

Furthermore, it is worth recalling the following definitions:

Definition 4.4.1. (Huang et al., 2017; Lakshmikantham V and PS, 1989). Let r(t) =

r(t, t0, x0) be a solution of (4.4.1) on [t0, t0 + a). Then r(t) is said to be a maximal
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solution of (4.4.1), if for any solution x(t) = x(t, t0, x0) of (4.4.1) existing on [t0, t0+a),

the inequality

x(t) ≤ r(t), t ∈ [t0, t0 + a) (4.4.6)

holds. A minimal solution ρ(t) may be defined in a similar way by reversing the

inequality of (4.4.6)

Definition 4.4.2. (Huang et al., 2017; Lakshmikantham V and PS, 1989). Let V :

R+ × R11
+ −→ R+. Then V is said to belong to a class V0 if V satisfies:

1. V is continuous on (nτ, (n+ 1)τ ]× R11
+ and lim

(t,y)→(nτ+,x)
V (t, x) = V (nτ+, x) for

every x ∈ R11
+ , n ∈ N ;

2. V is locally Lipschitz continuous with respect to x.

Definition 4.4.3. (Huang et al., 2017; Lakshmikantham V and PS, 1989). Let V ∈

V0, for (t, x) ∈ (nτ, (n+ 1)τ ]×R11. Define the upper right derivative with respect to

(2.4.1) as

D+V (t, x) = lim
h→0+

sup
1

h
[V (t+ h, x+ hf(t, x))− V (t, x)].

Theorem 4.4.1. (Huang et al., 2017; Lakshmikantham V and PS, 1989). Let V :

R+ × R11
+ −→ R+, V ∈ V0. Suppose

D+V (t, x) ≤ g(t, V (t, x)), t 6= tn, n = 1, 2, · · · ,

V (t+n ) ≤ mn(V (tk)), t = tn, n = 1, 2, · · · ,
(4.4.7)

where g ∈ C(R+ × R+,R),mk ∈ C(R,R) and mn(u) is non-decreasing in u for each

n = 1, 2, ..... Let r(t) be the maximal solution of the scalar impulsive differential

equation

u̇(t) = g(t, u), t 6= tn,

u(t+n ) = mn(u(tn)), t = tn

u(t0) = u0,

(4.4.8)
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which exists on [t0,∞). Then, V (t+0 , x0) ≤ u0 implies that V (t, x(t)) ≤ r(t) for t ≥ t0

where x(t) = x(t, t0, x0) is any solution of (4.4.1) on [t0,∞). Similar result can be

obtained when all the directions of the inequalities in Theorem 4.4.1 are reversed and

mn(u) is non-increasing.

Remark 4.4.1. In Theorem 4.4.1, the function g must be smooth enough to guarantee

the existence and uniqueness of solution for (4.4.8). Hence, r(t) is indeed the unique

solution of (4.4.8).

Let x(t) = (E(t), Lj(t), P (t), Fu(t), Fm,w(t), Fm,s(t),Mw(t),Ms(t))
T , with j = 1, 2, 3, 4,

be a continuous solution of the model (4.4.1) on (nτ, (n+1)τ ], n ∈ Z+ , and x(nτ+) =

lim
t→nτ+

x(t) exists. Then, the global existence and uniqueness of solutions of the model

(4.4.1) is determined by the smoothness of f = (g)T where g is the right-hand side

vector of the model (4.4.1).

Consider, now, the impulsive component of the model (4.4.1), given by:

Ṁs = −µsMs, t 6= nτ,

Ms(nτ
+) = Ms(nτ) + CR, t = nτ,

Ms(0
+) ≥ 0.

(4.4.9)

We claim the following result.

Lemma 4.4.1. The impulsive system (4.4.9) has a unique positive periodic solution

and M�
s (t) is globally-asymptotically stable, where

M�
s (t) =

CRe
−µq(t−nτ)

1− e−µqτ
, nτ < t ≤ (n+ 1)τ,

M�
s (0+) =

CR
1− e−µqτ

.

(4.4.10)

Proof. It follows from the first equation of system (4.4.9) that,

Ms(t) = Ms(nτ
+)e−µq(t−nτ), nτ < t ≤ (n+ 1)τ.
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The following stroboscopic map can be established using the second equation of

(4.4.9)(Yang et al., 2013):

Ms[(n+ 1)τ+] = Ms[(n+ 1)τ ] + CR = Ms(nτ
+). (4.4.11)

Hence, the unique positive (periodic) solution of (4.4.9) is given by

M�
s (t) =

CRe
−µq(t−nτ)

1− e−µqτ
, nτ < t ≤ (n+ 1)τ,

M�
s (0+) =

CR
1− e−µqτ

.

(4.4.12)

We further claim the following positivity result.

Theorem 4.4.2. Consider the model (4.4.1). Each component of the solution of

the model, with non-negative initial conditions, remains positive and bounded for all

time t > 0.

Proof. The positivity of Ms(t) follows from Lemma 4.4.1. It should be noted that the

right-hand side of each of the first ten equations of the model (4.4.1) is continuous and

locally-Lipschitz at t = 0. Hence, a solution of the model with non-negative initial

conditions exists and is unique for all time t > 0. Now, to show that the periodic

solution Ms(t) is bounded, it can be recalled from Lemma 4.4.1 that system (E.0.3)

has a globally-asymptotically stable positive periodic solution. This solution satisfies

lim
t→∞

Ms(t) ≤M�
s (t). Furthermore, since φEψE

(
1− E

KE

)
∗
≥ 0, it follows from the

first equation of the model (4.4.1) that E(t) ≤ KE for all time t > 0.

Similarly, it follows from the second equation of the model (4.4.1) that

L̇1 = σEE − (σL1 + µL)L1 ≤ σEKE − (σL1 + µL)L1,
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so that lim sup
t→∞

L1(t) ≤ σEKE

σL1 + µL
= L�1. Using a similar approach, it can be shown

that lim sup
t→∞

L2(t) ≤ σL1L
�
1

σL2 + µL
= L�2, lim sup

t→∞
L3(t) ≤ σL2L

�
2

σL3 + µL
= L�3, lim sup

t→∞
L4(t) ≤

σL3L
�
3

σL4 + µL
= L�4, lim sup

t→∞
P (t) ≤ σL4L

�
4

σP + µP
= P �, lim sup

t→∞
Mw(t) ≤ (1− r)σPP �

µq
= M�

w,

lim sup
t→∞

Fu(t) ≤
rσPP

�

Q1

= F �u , lim sup
t→∞

Fm,s(t) ≤
Q2

µq
= F �m,s, lim sup

t→∞
Fm,w(t) ≤ Q3

µq
=

F �m,w, where

[
β(M�

w + ηM�
s )

1 + βζ(M�
w + ηM�

s )
+ µq

]
≤ Q1,

βM�
w

1 + βζ(M�
w + ηM�

s )
≤ Q2 and

βηM�
s

1 + βζ(M�
w + ηMs)

≤ Q3.

Hence, all solutions of the model (4.4.1) are bounded for all time t > 0.

In summary, it follows from the above analyses that the model (4.4.1) is well-posed

mathematically. Hence, it is sufficient to study its dynamics in the invariant region

Ω.

4.5 Numerical Simulations

The model (4.4.1) will now be simulated, using the mosquito ecology data in

Table 4.3 (together with the mean monthly temperature data for the Kipsamoite

area in the Nandi Hills District of Kenya in Table 4.2), to gain insight into the local

mosquito dynamics in the absence or presence of SIT and seasonal variation in local

temperature.

4.5.1 Mosquito Ecology in the Absence of SIT and Seasonality

Here, the model (4.4.1) is simulated in the absence of SIT (i.e., CR = 0) and seasonal

variation in temperature (i.e., v = 0). These simulations allow for the determination

of the worst-case mosquito abundance (since CR = 0) for the case where the mean

110



annual temperature is used (i.e., no seasonal variation in temperature). That is, for

these simulations, the temperature-dependent parameters of the model (4.4.1), given

in Section 2, are computed using the mean annual temperature for the Kipsamoite

area (which is 22.2◦C (Lag, 2017)). The simulation results obtained show that the

population of mosquitoes (both immature and adult) rapidly reaches a non-trivial

(endemic) steady-state (Figures 4.4a-e). Since no sterile male mosquitoes are released

in these simulations, the release effect statistic (R) is unity (Figure 4.4f).

The effect of mean monthly temperature on the local population abundance of

immature and adult mosquitoes is monitored by simulating the model (4.4.1), using

the various values of the mean monthly temperature for the Kipsamoite area given

in Table 4.2. The results obtained (depicted in Figure 4.5) show that the maximum

abundance of both the immature and adult mosquitoes is achieved when the mean

monthly temperature is about 30◦C (which is 7.2◦C higher than the current mean

annual temperature for the Kipsamoite area or Nandi Hill region (Lag, 2017)).

4.5.2 Assessment of the Impact of SIT on Mosquito Abundance

The model (4.4.1) is also simulated to assess the impact of SIT-based vector control

on the local population abundance of the wild adult female Anopheles mosquitoes.

The model is, first of all, ran for a period of one year (so that the system settles at its

non-trivial (endemic) steady-state). A fixed number of sterile male mosquitoes (CR)

are then released after every release period (τ). For these simulations, CR is initially

set at 10,000 sterile male mosquitoes. Further, three periods of release (τ) are chosen,

namely weekly (in line with the SIT-IIT implementation in two islands in Guangzhou

province of China during peak mosquito seasons in 2016-2017 (Zheng et al., 2019)),

bi-weekly and every three weeks. For these simulations, we consider the cases with

and without seasonal variation in temperature, as described below.
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No seasonal variation in temperature (v = 0)

The model (4.4.1) is simulated using the parameter values tabulated in Table 4.3, for

the case with no seasonal variation in temperature (i.e., v = 0). Furthermore, the

temperature-dependent parameters of the model are evaluated at the mean annual

temperature of 22.2◦C. As stated above, the model, under this setting, is initially ran

for a period of one year before the sterile male mosquitoes are released for another

one year duration (Figure 4.6a). For these simulations, CR is initially set to 10,000

sterile male mosquitoes.

The simulation results obtained show a dramatic decrease in the population of eggs

and the first three larval instars (from the pre-SIT baseline equilibrium values), before

settling down to a positive (mosquito-persistent) steady-state following the release of

the sterile male mosquitoes for a period of one year (Figures 4.6b-c). Surprisingly, such

weekly release (of 10,000 sterile male mosquitoes) resulted in an increase (from the

pre-SIT baseline) in the fourth larval instar and pupal stages, leading to convergence

to a stable endemic level (Figure 4.6c).

Furthermore, an increase in the population abundance of the mated adult female

mosquitoes was observed (Figure 4.6d). This is a direct consequence of the decrease

in the population of fertilized wild adult female mosquitoes, and the increase in the

population of fertilized female mosquitoes that would be laying nonhatching eggs

(Figure 4.6e). Finally, for these simulations, the release effect statistic (R) exceeds

unity (Figure 4.6f). Thus, it follows from the simulations in Figure 4.6 that the weekly

release of 10,000 sterile male mosquitoes (CR = 10, 000 with τ = 7) in the community,

for the case when seasonal variation in temperature is not accounted for (i.e., v = 0),

increases the population abundance of adult female mosquitoes. Hence, this level

of sterile male release and frequency of release (CR = 10, 000 and τ = 7) induces
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detrimental effect to the community (by increasing the local abundance of the mated

adult mosquito population..... since both classes of mated adult female mosquitoes

can transmit disease to humans, the epidemiological consequence of this SIT-induced

increase in the mated adult female mosquito population is a corresponding increase

in malaria burden in the community). Qualitatively similar trends were observed

when the period of release is increased to bi-weekly, every three or four weeks (Figure

4.7). This result differs from one of the main conclusions in the White et al. study

(White et al., 2010), which suggests that the control of the Anopheles population is

more effective when smaller numbers of sterile male mosquitoes are released more

frequently (as against releasing larger numbers less frequently).

Additional simulations were carried out for the case when the number of sterile

male mosquitoes released (CR) is increased (from CR = 10,000) to CR = 100, 000

(Figure 4.8a). These simulations (depicted in Figure 4.8) show qualitatively differ-

ent dynamics, in comparison to the simulation results depicted in Figures 4.6 and

4.7. In particular, these simulations show a rapid decrease in the population of the

immature mosquitoes, leading to extinction (Figures 4.8b and 4.8c). Furthermore,

the population of mated adult female mosquitoes initially increases (during the first

three to four months of SIT implementation), followed by a rapid decline leading to

extinction (Figure 4.8d). This is a consequence of the rapid decrease in the pop-

ulation of the mated wild adult female mosquitoes, and the gradual decline (after

three to four months of SIT implementation) in the population of mated adult female

mosquitoes that will be laying nonhatching eggs (Figure 4.8e). Additionally, the re-

lease effect statistic (R) increases during the first three to four months of the one year

SIT implementation period, and then significantly decreases for the remaining SIT

implementation duration (Figure 4.8f).

In summary, the above simulations show that, when a large number of sterile male
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mosquitoes are released (e.g., CR = 100, 000) for a weekly period (τ = 7 days), there is

an initial time-lag (of about three to four months, on a one year SIT release protocol),

before the full population-level impact of the SIT release (vis a vis reduction in local

mosquito abundance) is achieved. In fact, this combination of CR and τ values can

lead to the extinction of the adult mosquito population if implemented weekly for

a one year period (Figure 4.8). Unlike for the case where only 10,000 sterile male

mosquitoes were released (Figures 4.6-4.7), the weekly release of 100,000 sterile male

mosquitoes can significantly reduce (and potentially lead to the extinction of) the

adult mosquito population (while the former cannot eliminate the adult mosquito

population).

It is worth mentioning that White et al. (White et al., 2010) and Dumont and

Tchuenche (Dumont and Tchuenche, 2012) also showed that the control of the wild

adult female mosquito population is highly dependent on the rate at which the ster-

ile male mosquitoes are released, with only high release rates giving sufficient con-

trol. Our result is also consistent with that reported in the field study conducted

in Guangzhou province of China by Zheng et al. (Zheng et al., 2019) (based on the

weekly release of over 160,000 sterile male mosquitoes during the SIT implementation

period).

Although similar qualitative trends were observed when the period between re-

leases (τ) is increased from weekly to bi-weekly, every three and four weeks (Figure

4.9), such scenario, while greatly reducing the population abundance of the adult

mosquitoes, does not lead to the extinction of the adult mosquito population. In

general, the simulations in Figures 4.6-4.9 show that, for the case when no sea-

sonal variation in temperature is allowed, releasing more sterile male mosquitoes

(e.g., CR = 100, 000) over a one year period with relatively shorter duration between

releases (e.g., weekly, bi-weekly or even monthly) does better (in terms of reducing
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the population abundance of mosquitoes) than releasing smaller numbers of sterile

male mosquitoes (e.g., CR = 10, 000) over the same time period and frequency of

release. The modeling studies in (Dumont and Tchuenche, 2012; Huang et al., 2017;

White et al., 2010) also advocate for more frequent (but smaller) sterile male releases.

The effect of density-dependent mortality in the larval stage (δL)on the population

dynamics of the mosquito and the effectiveness of SIT is monitored by simulating the

model (4.4.1) using various values of δL for different quantities of sterile male mosquito

released (CR). The results obtained, depicted in Figure 4.10, show that, for relatively

small values of δL (such as δL = 0.00002), the biweekly release of the sterile male

mosquitoes (below a certain threshold value) initially increases the total mated female

population until a peak is reached and decreases briefly before settling to a positive

(mosquito persistent) state. However, when larval density-dependent mortality is

increased (e.g, to δL = 0.0001 or δL = 0.001), the release also led to a dramatic

increase in the population abundance, but followed by a rapid decrease, which may

result in extinction depending on the amount released. Furthermore, much higher

values of sterile release amount (CR) are needed to achieve mosquito elimination for

small values of δL. In particular, while about 300, 000 mosquitoes need to be released

to achieve elimination when δL = 0.00002 (Figure 4.10a), only about 50, 000 need

to be released to achieve such elimination if δL is increased to δL = 0.0001 (Figure

4.10b). For δL = 0.001, however, elimination can be achieved by releasing only

10, 000 sterile male mosquitoes weekly for one year (Figure 4.10c). In other words,

this study shows that larval density-dependent mortality decreases the number of

sterile male mosquitoes that need to be released to achieve effective mosquito control

or extinction. Hence, SIT-based mathematical models for mosquito (immature and

adult) population dynamics that do not incorporate density-dependence in the larval

stage of the immature mosquito lifecycle may under-estimate or over-estimate the
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effectiveness of SIT implementation on the local mosquito population abundance.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Simulations of the Model (4.4.1), Showing the Dynamics of the Various Mosquito

Lifecycle Stages in the Absence of SIT (i.e., CR = 0) and Seasonal Variation in Temperature

(i.e., v = 0), as a Function of Time. Other Parameter Values Used are as Given in Table

4.3.
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(a) (b)

(c) (d)

Figure 4.5: Simulations of the Model (4.4.1), Showing the Dynamics of the Various Mosquito

Lifecycle Stages as a Function of the Mean Monthly Temperature (for Kipsamoite Area of

Kenya) in the Absence of SIT Release (i.e., CR = 0) and Seasonal Variation in Temperature

(i.e., v = 0). Other Parameter Values Used are as Given in Table 4.3.
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Seasonal variation in temperature (v 6= 0)

The effect of SIT implementation will now be assessed for the case when the assump-

tion for no seasonal variation in temperature (v = 0) is relaxed. That is, the model

(4.4.1) will now be simulated for the case when v 6= 0. In particular, we set v = 1

(i.e., the temperature at time t equals the actual observed temperature at time t, as

given in equation (4.4.3)). Here, too, the model is, first of all, simulated for one year

prior to the release of the sterile male mosquitoes, followed by the release of 10, 000

sterile male mosquitoes weekly for a one year duration (Figure 4.11a).

The simulation results obtained, depicted in Figures 4.11b-e, show oscillatory

dynamics in the mosquito population (unlike the monotone dynamics observed in

Figures 4.6-4.9). Further, although this strategy leads to the overall decline in some

of the mosquito populations (Figures 4.11b-c), it also resulted in an overall increase

in some of the other mosquito populations (Figures 4.11c-e). For these simulations,

the release effect statistic (R) always exceeds unity (Figure 4.11e). Thus, for the

case when seasonal variation in temperature is accounted for (i.e., v 6= 0), the weekly

release of 10,000 sterile male mosquitoes will not lead to the effective control of the

mosquito population (since it resulted in an overall increase in the mated adult female

mosquito population). Similar trends were observed when the period between releases

was increased to bi-weekly and every three weeks (Figure 4.12).

However, when the number of sterile male mosquitoes released is increased to

100, 000, the simulation results obtained show that mosquito extinction is feasible if

such release is made on a weekly basis for one year (Figure 4.13a). However, when

such release is made bi-weekly (Figure 4.13b), every three (Figure 4.13c) or every

four (Figure 4.13d) weeks, these simulation results show that mosquito extinction is

not feasible. Thus, this study shows that seasonal fluctuation in mean monthly tem-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Simulations of the Model (4.4.1), Showing the Dynamics of the Various

Mosquito Lifecycle Stages in the Presence of SIT (with CR = 10, 000), no Seasonal Variation

in Temperature (v = 0), and (τ = 7 days). Parameter Values Used are as Given in Table

4.3.
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(a) (b)

(c) (d)

Figure 4.7: Simulations of the Model (4.4.1), Showing the Effect of the Frequency of Release

of Sterile Male Mosquitoes (τ) on the Dynamics of Mated Female Mosquitoes. (a) τ = 7

days (b) τ = 14 days (c) τ = 21 days and (d) τ = 28 days. The Simulations were ran for

One Year Without the Release of the Sterile Male Mosquitoes, Followed by the Release of

Sterile Male Mosquitoes for a Period of 1 Year. Parameter Values Used are as Given in

Table 4.3, with CR = 10, 000 and v = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Simulations of the Model (4.4.1), Showing the Dynamics of the Various

Mosquito Lifecycle Stages in the Presence of SIT (with CR = 100, 000) and the Seasonal

Variation in Temperature (v = 0). Other Parameter Values Used are as Given in Table 4.3,

with τ = 7 days.
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(a) (b)

(c) (d)

Figure 4.9: Simulations of the Model (4.4.1), Showing the Effect of the Frequency of Release

of Sterile Male Mosquitoes (τ) on the Dynamics of Mated Female Mosquitoes. (a) τ = 7

days (b) τ = 14 days (c) τ = 21 days and (d) τ = 28 days. The Simulations were ran for

One Year without the Release of the Sterile Male Mosquitoes, Followed by the Release of

Sterile Male Mosquitoes for a Period of 1 Year. Parameter Values Used are as Given in

Table 4.3, with CR = 100, 000 and v = 0.
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(a) (b)

(c)

Figure 4.10: Simulations of the Model (4.4.1), Showing the Dynamics of the Total Number

of Mated Female Mosquitoes for Several Different Choices of CR. (a) δL = 0.00002. (b) δL =

0.0001 and (c) δL = 0.001. The Simulations were ran for One Year Without the Release of

the Sterile Male Mosquitoes (to reach the mosquito-present endemic equilibrium), Followed

by the Release of Sterile Male Mosquitoes for a Period of One Year. Other Parameter

Values Used are as Given in Table 4.3.
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perature (v 6= 0) necessitates more frequent releases of the sterile male mosquitoes

(in comparison to the corresponding case where such seasonal variation is not incor-

porated into the numerical simulation of the model) to achieve effective control or

extinction of the local mosquito population.

4.6 Discussion and Conclusions

Diseases caused by mosquitoes, such as chikungunya, dengue fever, malaria, West Nile

virus and Zika, continue to pose major public health challenges in areas inhabited

by more than one-third of the world’s population. These diseases are transmitted to

humans via the bite of infected adult female mosquitoes (in search of blood needed

for egg development and oviposition). Malaria is the deadliest of all mosquito-borne

diseases (accounting for over 500,000 deaths every year, mostly in children under the

age of five (Huang et al., 2017)).

In the absence of a safe and effective vaccine for use in humans against some of

these diseases (particularly malaria), control measures against diseases vectored by

the mosquito are mostly limited to implementing strategies that target the mosquito

population. These strategies primarily include the use of insecticides (for example,

in the form of IRS and LLINs in the context of malaria) to reduce the local pop-

ulation abundance of the mosquito in the targeted community. Unfortunately, the

widespread use of these insecticides in endemic areas has resulted in the emergence

of insecticide resistance in the adult mosquito population (Figure 1.8). Consequently,

other alternative methods for mosquito control (notably using biological measures

(fre, 2017; Cai et al., 2014; Patil et al., 2015; Thomé et al., 2010; Zheng et al., 2019))

are urgently needed

Sterile insect technology (SIT), based on the release of sterile male mosquitoes

into a wild adult female mosquito population, is one of the promising mosquito-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Simulations of the Model (4.4.1), Showing the Effect of Seasonal Fluctuation

in Temperature (v = 1), and SIT (with CR = 10, 000) on Mosquito Abundance. Parameter

Values Used are as Given in Table 4.3, with τ = 7 days.

126



(a) (b)

(c) (d)

Figure 4.12: Simulations of the Model (4.4.1), Showing the Effect of the Frequency of

Release of Sterile Male Mosquitoes (τ) on the Dynamics of Mated Female mosquitoes. (a)

τ = 7 days (b) τ = 14 days (c) τ = 21 days and (d) τ = 28 days. Parameter Values Used

are as Given in Table 4.3, with CR = 10, 000 and v = 1.
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(a) (b)

(c) (d)

Figure 4.13: Simulations of the Model (4.4.1), Showing the Effect of the Frequency of

Release of Sterile Male Mosquitoes (τ) on the Dynamics of Mated Female Mosquitoes. (a)

τ = 7 days (b) τ = 14 days (c) τ = 21 days and (d) τ = 28 days. The Simulations were ran

for One Year Without the Release of the Sterile Male Mosquitoes, Followed by the Release

of Sterile Male Mosquitoes for a Period of 1 Year. Parameter Values Used are as Given in

Table 4.3, with CR = 100, 000 and v = 1.
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reduction strategies being advocated in many endemic regions for mosquito-borne

diseases (Cai et al., 2014; Thomé et al., 2010). SIT which entails the periodic release

of sterile male mosquitoes, into the wild mosquito population, targets the population

of the wild (i.e., susceptible to biological control) adult female mosquitoes. SIT is a

biological control mechanism that entails the alteration of the natural reproductive

process of the target mosquito population (by chemical or physical means (Huang

et al., 2017)). In particular, it is associated with the genetic modification of adult

male mosquitoes to be sterile, while still being able to be sexually active. The sterile

male mosquitoes are then periodically released into the environment, typically into

areas with abundance of adult wild female mosquitoes, and the expectation is that an

adult wild female mosquito that mates with the released sterile adult male mosquito

will either not reproduce at all or produce eggs that do not hatch into larvae (Huang

et al., 2017). Ultimately, the hope is that the release of the sterile male mosquitoes

may eventually lead to the effective control of the abundance of (or even eliminating)

the adult wild female mosquitoes (thereby eliminating the disease(s) they vector).

This Chapter aimed to provide insight into the effectiveness of such biological

control strategy in combating the targeted mosquito population. This was achieved

via the development, analysis and simulations of a novel mathematical model for

the temporal dynamics of the mosquito (both immature and adult) population in a

community. In addition to incorporating many pertinent features of the mosquito

population dynamics (such as the entire lifecycle of the mosquito, density-dependent

larval mortality etc.), the model developed in this study also incorporated the effect of

seasonality in the mosquito dynamics (to account for the fact that seasonal variations

in local climate variables, such as temperature, significantly affect many aspects of

the mosquito dynamics, such as reproduction, parasite development, larval and adult

survival etc. (Abdelrazec and Gumel, 2017; Agusto et al., 2015; Cailly et al., 2012;
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Huang et al., 2017; Iboi and Gumel, 2018; Mordecai et al., 2013; Wu et al., 2009).

The novel model developed in this chapter was used to assess the impact of such

changes on the population abundance of mosquitoes in Kipsamoite area of Kenya. The

simulation results obtained show that maximum population of both the immature and

adult female mosquito is recorded in the Kipsamoite area whenever the mean monthly

temperature is about 30◦C. This value is 7.2◦C greater than the current mean annual

temperature for the province. The implication of this result is that increases in mean

annual temperature (due to global warming) could make the province more vulnerable

to increased malaria burden.

The model developed in this chapter was also used to assess the population-level

impact of the release of a certain number of sterile male mosquitoes (with a certain

frequency) on the population biology of Anopheles mosquitoes in a malaria-endemic

community. Simulations were carried out for the case where local seasonal variation

in temperature is (or is not) accounted for. In the absence of the seasonal variation

in temperature, numerical simulations of the model showed that the weekly release

of 10,000 sterile male mosquitoes, over a one year period, induces a detrimental effect

to the malaria-endemic community. This is because such release resulted in an in-

crease in the population of mated adult female mosquitoes. Similar qualitative result

was obtained when the release period was increased to bi-weekly or every three or

four weeks. This result differs from that reported by White et al. (White et al.,

2010), which showed that control is more effective if smaller numbers of sterile male

mosquitoes are released more frequently (rather than larger and less frequent re-

leases). However, when the number of sterile male mosquitoes released was increased

to 100,000, the population of the mated adult female mosquitoes initially increased

(for a period of 3 to 4 months) followed by a rapid decline (leading to extinction)

for the reminder of the one year sterile release duration. The ecological implication

130



of this result is that, when seasonal variation in temperature is not accounted for,

effective control or extinction of the mosquito population is feasible by releasing a

large number of sterile male mosquitoes for a very short frequency of release period

(e.g., weekly). White et al. (White et al., 2010) and Dumont and Tchuenche (Du-

mont and Tchuenche, 2012) also emphasized the importance of larger sterile male

releases on mosquito control. Although (for this level of sterile male release) the pop-

ulation of mosquitoes is greatly reduced when the frequency of release is increased

from weekly to bi-weekly or every three weeks or monthly, such does not result in

mosquito extinction.

The model was also used to study the effect of density-dependent larval mortality

on the population abundance of mosquitoes and the effectiveness of the SIT-based

mosquito control strategy. Such density-dependence occurs when larvae compete for

space and nutrients (Abdelrazec and Gumel, 2017; Iboi and Gumel, 2018). Simula-

tions of the model, for the case with no seasonal variations in temperature, showed

that for small values of the larval density-dependent mortality, the bi-weekly release of

sterile male mosquitoes resulted in an increase in the population abundance of mated

adult female mosquitoes. On the other hand, higher values of density-dependent mor-

tality rates could lead to mosquito extinction depending on the number of the sterile

male mosquitoes released. The implication of this result is that the effect of (higher

values of) larval density-dependent mortality is to decrease the number of sterile male

mosquitoes that need to be released in order to achieve effective control or extinction

of the mosquito population.

For the case where seasonal variation in temperature is accounted for, the simula-

tions of the model showed very different qualitative dynamics than the case without

such variation. For instance, unlike the monotone dynamics observed for the case with

no seasonal variations, rich oscillatory dynamics were observed when such variations
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are taken into account. Here, too, the release of 10,000 sterile male mosquitoes failed

to result in the extinction of the mosquito population. However, when 100,000 sterile

male mosquitoes were released (under this scenario with seasonal temperature varia-

tion), our simulation results showed that mosquito extinction is feasible if the sterile

male mosquitoes are released weekly (such extinction is not feasible if the frequency of

release exceeds a week). The implication of this result is that incorporating seasonal

variation in temperature necessitate more frequent releases of the (large number) of

the sterile male mosquitoes. In summary, our simulations for the population-level im-

pact of SIT suggest that the prospects of an SIT-based mosquito control strategy (for

a one-year duration) are very bright if large numbers of the sterile male mosquitoes

(CR = 100, 000) are released.
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Table 4.1: Description of State Variables and Parameters for the Model (4.4.1)

Variables Interpretation

E Total number of eggs

L =
4∑
j=1

Lj Total number of larvae

P Total number of pupae

Fu Population of new unmated wild adult female mosquitoes

Mw Population of wild adult male mosquitoes

Fm,w Population of fertilized wild adult female mosquitoes that have mated

Fm,s Population of fertilized female mosquitoes that would be laying (nonhatching) eggs

Ms Population of sterile male mosquitoes released

Parameters Interpretation

β Mating rate of wild female mosquitoes with males (either Mw or Ms)

η Fraction of sterile males that are able to mate

ζ Time required for mating to be completed

r Proportion of new adult mosquitoes (based on gender status)

φE Egg oviposition rate

ψE Number of eggs laid per oviposition

σE(TW ) Maturation rate from egg to larvae

σL(TW ) Maturation rate from larvae to pupae

σP (TW ) Maturation rate from pupae to adult mosquitoes

µE(TW ) Natural mortality rate of eggs

µL(TW ) Natural mortality rate of larvae

µP (TW ) Natural mortality rate of pupae

δL Density-dependent mortality rate of larvae

µq(TA) Natural mortality rate of adult female and male mosquitoes

CR Rate of release of sterile male mosquitoes
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Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature (0C) 24 26 25 23 21 20 20 21 21 22 21 22

Table 4.2: Mean Monthly Temperature (in 0C) for Kipsamoite,

Kenya for the Year 2019 (Lag, 2017).

Parameters Values Reference

ψE 65 (Afrane et al., 2005; Takken et al., 1998)

φE 0.4 (Afrane et al., 2005; Takken et al., 1998)

β 0.7 (Esteva and Yang, 2005)

ζ 0.000174 Estimated

η 0.75 (White et al., 2010)

CR 104 Variable

δL 0.00005 Assumed

r 0.5 (Okuneye et al., 2019)

Table 4.3: Values of Temperature-independent Parameters of the Model (4.4.1).
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J. A. Nájera, M. González-Silva, and P. L. Alonso. Some lessons for the future from
the global malaria eradication programme (1955–1969). PLoS medicine, 8(1), 2011.

R. N’Guessan, F. Darriet, J. Doannio, F. Chandre, and P. Carnevale. Olyset net R©
efficacy against pyrethroid-resistant anopheles gambiae and culex quinquefasciatus
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F1 =



0 0 0 0 0 0 0
βHbMS

∗
UH

N∗
H

0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
βHbMS

∗
UH

N∗
H

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
βHbM (1−ε1)S∗

VH

N∗
H

0


,

F2 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
βM bMS

∗
M

N∗
H

0
βHbMθ12S

∗
M

N∗
H

0 0 0 0 0

0 0 0 0 0
βM bMS

∗
M

N∗
H

0
βM bMθ21S

∗
M

N∗
H

0


,

F3 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
βHbM (1−ε2)S∗

VH

NH
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

βM bMθV 1S
∗
M

N∗
H

0
βM bMθ1S

∗
M

N∗
H

0 0 0 0 0 0

0 0 0 0
βM bMθV 2S

∗
M

N∗
H

0
βM bMθ2S

∗
M

N∗
H

0 0


,

V1 =



K3 0 0 0 0 0 0 0 0
−σU1 K4 0 0 0 0 0 0 0

0 0 K5 0 0 0 0 0 0
0 0 −α12 K6 0 0 0 0 0
0 0 0 0 K7 0 0 0 0
0 0 0 0 −σU2 K8 0 0 0
0 0 0 0 0 0 K9 0 0
0 0 0 0 0 0 −α21 K10 0
0 0 0 0 0 0 0 0 K11


,
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V2 =



0 0 0 0 0 0 0 0 −σV 1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

V3 =



K11 0 0 0 0 0 0 0 0
0 K13 0 0 0 0 0 0 0
0 −σV 12 K14 0 0 0 0 0 0
0 0 0 K15 0 0 0 0 0
0 0 0 −σV 2 K16 0 0 0 0
0 0 0 0 0 K17 0 0 0
0 0 0 0 0 −σV 21 K18 0 0
0 0 0 0 0 0 0 µM 0
0 0 0 0 0 0 0 0 µM


.
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Consider the the model (2.4.1) with δUHi = δUij = δV Hi = δV ij = δH , ηij = ηV ij =

0 (i, j = 1, 2; i 6= j) and R̃vac ≤ 1. Further, let δH > δcH and ε1 = ε2 = 1. It is
convenient to carry out the following change of variables: SUH = x1, SV H = x2,
EUH1 = x3, IUH1 = x4, WU12 = x5, EU12 = x6, IU12 = x7, EUH2 = x8, IUH2 = x9,
WU21 = x10, EU21 = x11, IU21 = x12, EV H1 = x13, IV H1 = x14, WV 12 = x15, EV 12 =
x16, IV 12 = x17, EV H2 = x18, IV H2 = x19, WV 21 = x20, EV 21 = x21, IV 21 = x22,
W = x23, LM = x24, SM = x25, IM1 = x26, IM2 = x27. Using the vector notation
X = (x1, ......x27)T and F = (f1, ....f27)T , the aforementioned special case of the model
(2.4.1), can then be written in the form dX

dt
= (f1, ....f27)T , as follows:
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ẋ1 ≡ f1 = ΠH + ωx2 −
2∑
i=1

λHix1 −K1x1,

ẋ2 ≡ f2 = ξx1 −K2x2,

ẋ3 ≡ f3 = λH1x1 −K3x3,

ẋ4 ≡ f4 = σU1x3 −K4x4,

ẋ5 ≡ f5 = γU1x4 − η12λH2x5 − µHx5,

ẋ6 ≡ f6 = η12λH2x5 −K5x6,

ẋ7 ≡ f7 = α12x6 −K6x7,

ẋ8 ≡ f8 = λH2x1 −K7x8,

ẋ9 ≡ f9 = σU2x8 −K8x9,

ẋ10 ≡ f10 = γU2x9 − η21λH1x10 − µHx10,

ẋ11 ≡ f11 = η21λH1x10 −K9x11,

ẋ12 ≡ f12 = α21x11 −K10x12,

ẋ13 ≡ f13 = −K11x13,

ẋ14 ≡ f14 = σV 1x13 −K12x14,

ẋ15 ≡ f15 = γV 1x14 − µHx15,

ẋ16 ≡ f16 = −K13x16,

ẋ17 ≡ f17 = αV 12x16 −K14x17,

ẋ18 ≡ f18 = −K15x18,

ẋ19 ≡ f19 = σV 2x18 −K16x19,

ẋ20 ≡ f20 = γV 2x19 − µHx20,

ẋ21 ≡ f21 = −K17x21,

ẋ22 ≡ f22 = αV 21x21 −K18x22,

ẋ23 ≡ f23 = τ12x7 + τ21x12 + τV 12x17 + τV 21x22 − µHx23,

ẋ24 ≡ f24 = αL

(
1− x24

KM

)
(x25 + x26 + x27)−K19x24,

ẋ25 ≡ f25 = fψLx24 −
2∑
i=1

λMix25 − µMx25,

ẋ26 ≡ f26 = λM1x25 − µMx26,

ẋ27 ≡ f27 = λM2x25 − µMx27,

(B.0.1)

with the infection rates, λHi and λMi (i = 1, 2), now given, respectively, by (with

NH =
23∑
i=1

xi):

λH1 =
βHbMx26

NH

, λH2 =
βHbMx27

NH

,
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λM1 =
βMbM(x4 + θ12x7 + θV 1x14 + θ1x17)

NH

,

λM2 =
βMbM((x9 + θ21x12 + θV 2x19 + θ2x22)

NH

.

Without loss of generality, consider R̃vac = max{R̃vac1, R̃vac2} = 1 when R̃vac1 = 1
and R̃vac2 < 1 (the same approach also works if R̃vac2 = 1 and R̃vac1 < 1 are chosen).
Suppose, further, that βH = β∗H is chosen as a bifurcation parameter. Solving for

βH = β∗H from R̃vac = max{R̃vac1, R̃vac2} = 1 gives

βH = β∗H =
Π2
HβMb

2
Mx
∗
25σU1x

∗
1

K3K4µ2
HµM

.

The Jacobian of the transformed system (H.0.1), evaluated at the DFE (T1) with
βH = β∗H , is given by

J(β∗H) =

[
J1 010×10 J2

010×10 J3 010×7

J4 J5 J6

]
,

J1 =



−K1 ω 0 0 0 0 0 0 0 0
ξ −K2 0 0 0 0 0 0 0 0
0 0 −K3 0 0 0 0 0 0 0
0 0 σU1 −K4 0 0 0 0 0 0
0 0 0 γU1 −µH 0 0 0 0 0
0 0 0 0 0 −K5 0 0 0 0
0 0 0 0 0 α12 −K6 0 0 0
0 0 0 0 0 0 0 −K7 0 0
0 0 0 0 0 0 0 σU2 −K8 0
0 0 0 0 0 0 0 0 γU2 −µH


,

J2 =



0 0 0 0 0 −β∗
HbMx

∗
1

x∗1+x∗2
−β∗

HbMx
∗
1

x∗1+x∗2
0 0 0 0 0 0 0

0 0 0 0 0
β∗
HbMx

∗
1

x∗1+x∗2
0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
β∗
HbMx

∗
1

x∗1+x∗2
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,
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J3 =



−K9 0 0 0 0 0 0 0 0 0
α21 −K10 0 0 0 0 0 0 0 0
0 0 −K11 0 0 0 0 0 0 0
0 0 σV 1 −K12 0 0 0 0 0 0
0 0 0 γV 1 −µH 0 0 0 0 0
0 0 0 0 0 −K13 0 0 0 0
0 0 0 0 0 αV 12 −K14 0 0 0
0 0 0 0 0 0 0 −K15 0 0
0 0 0 0 0 0 0 σV 2 −K16 0
0 0 0 0 0 0 0 0 γV 2 −µH


,

J4 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 τ12 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 −βM bMx
∗
25

x∗1+x∗2
0 0 −βM bMx

∗
25θ12

x∗1+x∗2
0 −βM bMx

∗
25

x∗1+x∗2
0

0 0 0
βM bMx

∗
25

x∗1+x∗2
0 0

βM bMx
∗
25θ12

x∗1+x∗2
0 0 0

0 0 0 0 0 0 0 0
βM bMx

∗
25

x∗1+x∗2
0


,

J5 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 τ21 0 0 0 0 τV 12 0 0 0
0 0 0 0 0 0 0 0 0 0

0 −βM bMx
∗
25θ21

x∗1+x∗2
0 −βM bMx

∗
25θV 1

x∗1+x∗2
0 0 −βM bMx

∗
25θ1

x∗1+x∗2
0 −βM bMx

∗
25θV 2

x∗1+x∗2
0

0 0 0
βM bMx

∗
25θV 1

x∗1+x∗2
0 0

βM bMx
∗
25θ1

x∗1+x∗2
0 0 0

0
βM bMx

∗
25θ21

x∗1+x∗2
0 0 0 0 0 0

βM bMx
∗
25θV 2

x∗1+x∗2
0


,

J6 =



−K17 0 0 0 0 0 0
αV 21 −K18 0 0 0 0 0

0 τV 21 −µH 0 0 0 0

0 0 0 −αLL
∗
M

KM
−K19 αL

(
1− L∗

M

KM

)
αL

(
1− L∗

M

KM

)
αL

(
1− L∗

M

KM

)
0 −βM bMx

∗
25θ2

x∗1+x∗2
0 fψL −µL 0 0

0 0 0 0 0 −µM 0

0
βM bMx

∗
25θ2

x∗1+x∗2
0 0 0 0 −µM


.

The Jacobian J(β∗H) has a simple zero eigenvalue (and all other eigenvalues having
negative real parts). Hence, the center manifold theory (Carr, 1981; Castillo-Chavez
and Song, 2004; van den Driessche and Watmough, 2002) can be used to analyse the
dynamics of (H.0.1) near βH = β∗H . This entails carrying out the following com-
putations. Eigenvectors of J(T1) |βH=β∗

H
The Jacobian of the transformed system
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(H.0.1), evaluated at the DFE (T1) with βH = β∗, has a right eigenvector (associated
with the zero eigenvalue) given by

w = (w1, ...., w27)T ,

where,

w1 =
β∗Hx

∗
1b

2
MσU1βMx

∗
25w3K2

µMK4 (x∗1 + x∗2)2 (ω ξ −K1K2)
, w2 =

ξ β∗Hx
∗
1b

2
MσU1βMx

∗
25w3

µMK4 (x∗1 + x∗2)2 (ω ξ −K1K2)
,

w3 = w3 > 0, w4 =
σU1w3

K4

, w5 =
γU1σU1w3

µHK4

,

w6 = w7 = w8 = w9 = w10 = w11 = w12 = 0,

w13 = w14 = w15 = w16 = w17 = w18 = w19 = w20 = w21 = w22 = w23 = w24 = 0,

w25 = −σU1βMx
∗
25w3bM

µMK4 (x∗1 + x∗2)
, w26 =

σU1βMx
∗
25w3bM

µMK4 (x∗1 + x∗2)
, w27 = 0,

with ω ξ −K1K2 = −µH(ξ + ω + µH) < 0.
The matrix J(T1) |βH=β∗

H
has a left eigenvector v = (v1, ....., v27), associated with

the zero eigenvalue, given by

v1 = v2 = 0, v3 = v3, v4 =
βMβ

∗
Hx
∗
25x
∗
1v3b

2
M

µMK4 (x∗1 + x∗2)2 , v5 = 0, v6 =
θ12α12βMβ

∗
Hx
∗
25x
∗
1v3b

2
M

µMK6K5 (x∗1 + x∗2)2 ,

v7 =
θ12βMβ

∗
Hx
∗
25x
∗
1v3b

2
M

µMK6 (x∗1 + x∗2)2 , v8 = v9 = v10 = v11 = v12 = 0, v13 =
θV1σV1βMβ

∗
Hx

∗
25x

∗
1v3b

2
M

µMK12K11(x∗1+x∗2)
2 ,

v14 =
θV1βMβ

∗
Hx
∗
25x
∗
1v3b

2
M

µMK12 (x∗1 + x∗2)2 , v15 = 0, v16 =
αV12θ1βMβ

∗
Hx
∗
25x
∗
1v3b

2
M

µMK14K13 (x∗1 + x∗2)2 ,

v17 =
θ1βMβ

∗
Hx
∗
25x
∗
1v3b

2
M

µMK14 (x∗1 + x∗2)2 , v18 = v19 = v20 = v21 = v22 = v23 = v24 = v25 = 0,

v26 =
β∗HbMx

∗
1v3

µM (x∗1 + x∗2)
, v27 = 0.

Computations of bifurcation coefficients of a and b :

By computing the associated non-zero partial derivatives of F (x) evaluated the DFE,
it follows from Theorem 4.1 in (Castillo-Chavez and Song, 2004) that the associated
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bifurcation coefficients, a and b, are given, respectively, by

a =2
v3β

∗
Hx
∗
1b

3
MσU1

2β2
M(x∗25)2w3

2K2

µM 2K4
2 (x∗1 + x∗2)3 (ω ξ −K1K2)

(
β∗HbM
x∗1 + x∗2

− β∗HbMx
∗
1

(x∗1 + x∗2)2

)
− 4

v3ξ β
∗
H

2(x∗1)2b4
Mσ

2
U1β

2
Mx

2
25w

2
3

µ2
MK4

2 (x∗1 + x∗2)5 (ω ξ −K1K2)

− 4
v3w

2
3σU1βMx

∗
25b

2
Mβ
∗
Hx
∗
1

µMK4 (x∗1 + x∗2)3 − 4
v3σ

2
U1w

2
3βMx

∗
25b

2
Mβ
∗
Hx
∗
1

K4
2µM (x∗1 + x∗2)3 − 4

v3σ
2
U1w

2
3βMx

∗
25b

2
Mβ
∗
Hx
∗
1

µHK4
2µM (x∗1 + x∗2)3

− 2
β∗H

2b4
Mx

2
1v3σ

2
U1β

∗
M

2(x∗25)2w2
3K2

µ2
MK

2
4 (x∗1 + x∗2)5 (ω ξ −K1K2)

− 2
β∗Hb

3
Mx
∗
1v3σ

2
U1w

2
3β

2
Mx
∗
25

µ2
M (x∗1 + x∗2)3K2

4

,

(B.0.2)

and,

b =
v3σU1βMx

∗
25w3b

2
Mx
∗
1

µMK4 (x∗1 + x∗2)2 > 0. (B.0.3)

Hence, it follows from Theorem 4.1 of (Castillo-Chavez and Song, 2004) that the trans-
formed model (H.0.1) undergoes a backward bifurcation at R̃vac1 = 1 and R̃vac2 < 1
if the bifurcation coefficient a (given by (H.0.2)) is positive. Solving the Inequality
a > 0, in terms of the disease-induced mortality in the host population (δH), gives
a > 0 whenever

δH >
−[2a1(1+µH)+a4]−

√
[2a1(1+µH)+a4]2−4a1[a1(1+µH)2+a4(1+µH)+a2+a3]

2a1
= δcH ,

where,

a1 = −4v3w
2
3σ

2
U1β

2
M(S∗M)2b4

MΠ2
H(S∗UH)2K3µ

3
Hµ

2
M(S∗UH + S∗V H)2(ξ + µH + ω) < 0,

a2 = 4 v3Π4
Hβ

4
Mb

8
Mσ

4
U1 (S∗UH)4(SM)4w2

3ξ,

a3 = 2 v3Π4
Hβ

4
Mb

8
Mσ

4
U1 (S∗UH)3(S∗M)4w2

3K2 (S∗UH − S∗V H) ,

a4 = −2 v3w
2
3σ

3
U1β

2
M(S∗M)2b4

MΠ2
H(S∗UH)2K3µ

2
Hµ

2
M(S∗UH + S∗V H)2 [bMβMµH + 2µM + 2µHµM ] < 0.

(B.0.4)
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Consider the special case of the model (2.4.1) with ηij = ηV ij (i, j = 1, 2; i 6= j) =
0, δH = 0 and ε1 6= 1 and ε1 6= 1. It can be shown, using the approach in Appendix
B1, that the associated bifurcation coefficient (a) is given by

a =− 2
v3(β∗H)2µ4

Hb
4
M [ω x∗2(1− ε1) +K2x

∗
1]σU1

2β2
M(x∗25)2K2

12K
2
11w

2
3

K2
4 [b2

Mβ
∗
HβMµ

2
HσV1θV1x∗2x

∗
25(ε1 − 1) +K11K12Π2

HµM ]
2

(ω ξ −K1K2)

+2
(β∗
H)3µ6Hx1v3b

6
MθV1σV1βM

3(x∗25)3σU1
2K2

12K
2
11w

2
3(−K1x∗2ε1+ξ x1+K1x∗2)(1−ε1)

[b2Mβ∗
HβMµ

2
HσV1 θV1x

∗
2x

∗
25(ε1−1)+K11K12ΠH

2µM ]
3
K2

4 (ω ξ−K1K2)

− 2
β∗Hµ

3
HΠHK

2
12K

2
11x
∗
1v3b

3
MσU1

2w2
3β

2
Mx
∗
25

[b2
Mβ
∗
HβMµ

2
HσV1θV1x∗2x

∗
25(ε1 − 1) +K11K12Π2

HµM ]
2
K2

4

+ 2
(β∗H)2µ5

HΠHK
2
12K

2
11x
∗
1v3b

5
MσV1x2 (−1 + ε1)σU1

2β3
M(x∗25)2w2

3θV1

[b2
Mβ
∗
HβMµ

2
HσV1θV1x∗2x

∗
25(ε1 − 1) +K11K12Π2

HµM ]
3
K2

4

,

(C.0.1)

so that the model undergoes a backward bifurcation at

R∗vac = Rvac|δH=ηij=ηV ij (i,j=1,2; i 6=j)=0 = 1

if the bifurcation coefficient, a (given by B-5) is positive.
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Consider the model (2.4.1) with ε1 = ε2 = 1, δH = 0 and ηij = ηV ij = 0 (i, j =
1, 2; i 6= j). Let R∗∗vac < 1. The proof is based on the approach in (Dumont and
Chiroleu, 2010; Kamgang and Sallet, 2008). It is convenient to re-write this special
case of the model in the form;

ẊS = A1(X)(XS −XNDFE,S) + A12(X)XI ,

ẊI = A2(X)XI ,
(D.0.1)

where XS represents the non-transmitting compartments and XI represents the in-
fected compartments (Kamgang and Sallet, 2008). That is,

XS = (SUH , SV H ,WV ij,WUij,W, LM , SM)T ,

XI = (EV Hi, EUHi, Eji, EV ij, IV Hi, IV ij, IUHi, Iij, IMi)
T ,

XNDFE,S = (S∗UH , S
∗
V H , 0, 0, 0, 0, 0, L

∗
M , S

∗
M)T ,

with,

A1(X) =

[
A∗1 09×9

09×9 09×9

]
,

A∗1(X) =



−K1 ω 0 0 0 0 0 0 0
ξ −K2 0 0 0 0 0 0 0
0 0 −µH 0 0 0 0 0 0
0 0 0 −µH 0 0 0 0 0
0 0 0 0 −µH 0 0 0 0
0 0 0 0 0 −µH 0 0 0
0 0 0 0 0 0 −µH 0 0

0 0 0 0 0 0 0 −(
αLS

∗
M

KM
+ ψL + µL) αL

(
1− LM

KM

)
0 0 0 0 0 0 0 fψL −µM


,

A12(X) =

[
A1

12 A2
12

09×9 09×9

]
,

A1
12(X) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 γU1 0 0 0 0 0 0 0
0 0 0 0 0 γU2 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 τ12 0 0 0 τ21 0
0 0 0 0 0 0 0 0 0
0 −βM bMSM

NH
0 −βM bMθ12SM

NH
0 −βM bMSM

NH
0 −βM bMθ21SM

NH
0


,

A2
12(X) =



0 0 0 0 0 0 0 −βMbMSUH
NH

−βMbMSUH
NH

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
γV 1 0 0 0 0 0 0 0 0
0 0 0 0 γV 2 0 0 0 0
0 0 τV 12 0 0 0 τV 21 0 0

0 0 0 0 0 0 0 αL

(
1− LM

KM

)
SM αL

(
1− LM

KM

)
SM

−βMbMθV 1SM
NH

0 −βMbMθ1SM
NH

0 −βMbMθV 2SM
NH

0 −βMbMθ2SM
NH

0 0



,
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A2(X) =

[
A1

2 A2
2

A3
2 A4

2

]
,

where,

A1
2(X) =



−K3 0 0 0 0 0 0 0 0
σU1 −K4 0 0 0 0 0 0 0
0 0 −K5 0 0 0 0 0 0
0 0 α12 −K6 0 0 0 0 0
0 0 0 0 −K7 0 0 0 0
0 0 0 0 σU2 −K8 0 0 0
0 0 0 0 0 0 −K9 0 0
0 0 0 0 0 0 α21 −K10 0
0 0 0 0 0 0 0 0 −K11


,

A2
2(X) =



0 0 0 0 0 0 0 βHbMSUH
NH

0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 βHbMSUH

NH
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

A3
2(X) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 βM bMSM

NH
0 βM bMθ12SM

NH
0 0 0 0 0

0 0 0 0 0 βM bMSM
NH

0 βM bMθ21SM
NH

0


,

and,

A4
2(X) =



−K12 0 0 0 0 0 0 0 0
0 −K13 0 0 0 0 0 0 0
0 αV 12 −K14 0 0 0 0 0 0
0 0 0 −K15 0 0 0 0 0
0 0 0 σV 2 −K16 0 0 0 0
0 0 0 0 0 −K17 0 0 0
0 0 0 0 0 αV 21 −K18 0 0

βM bMθV 1SM
NH

0 βM bMθ1SM
NH

0 0 0 0 −µM 0

0 0 0 βM bMθV 2SM
NH

0 0 βM bMθ2SM
NH

0 −µM


.

It can be seen that the eigenvalues of the Metzler matrix (i.e., M-matrix) A1(X) are
real and negative. Hence, the system ẊS = A1(X)(XS − XNDFE,S) is GAS at the
non-trivial DFE, XNDFE,S (Kamgang and Sallet, 2008). It should be noted that the
matrix A2(X) is also an M-matrix (since its off diagonal entries are non-negative).
The result below is needed to complete the proof of Theorem 2.5.5.
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Theorem D.0.1. (Dumont and Chiroleu, 2010). Let D ⊂ U = R18×R9. The system
(11) is of class C1, defined on U , if:

1. D is positively invariant relative to (11),

2. The system ẊS = A1(X)(XS −XNDFE,S) is GAS at XNDFE,S,

3. For any x∈ D, the matrix A2(X) is Metzler irreducible,

4. There exist a matrix Ā2, which is an upper bound of the set
M = {A2(X) ∈M18(R) : x ∈ D} with the property that if A2 ∈ M, for any
x̄ ∈ D such that A2(x̄) = Ā2, then x̄ ∈ R9 × {0},

5. The stability modulus of Ā2 satisfies γ(Ā2) ≤ 0.

Condition 1 of Theorem C.1 is automatically satisfied by model (2.4.1) (since, by
Lemma 2.4.1, D is positively-invariant). Furthermore, Condition 2 holds since the
eigenvalues of the M-matrix A1(X) are real and negative. Similarly, Condition 3 holds
since the matrix A2(X) is Metzler irreducible. For Condition 4, it is convenient to
define an upper bound for the set of matricesM. This upper bound (in our notation)
is the matrix Ā2(X), given by (where N̄H is bounded above by ΠH

µH
)

Ā2(X) =

[
Ā1

2 Ā2
2

Ā3
2 Ā4

2

]
,

where,

Ā1
2(X) =



−K3 0 0 0 0 0 0 0 0
σU1 −K4 0 0 0 0 0 0 0
0 0 −K5 0 0 0 0 0 0
0 0 α12 −K6 0 0 0 0 0
0 0 0 0 −K7 0 0 0 0
0 0 0 0 σU2 −K8 0 0 0
0 0 0 0 0 0 −K9 0 0
0 0 0 0 0 0 α21 −K10 0
0 0 0 0 0 0 0 0 −K11


,

Ā2
2(X) =



0 0 0 0 0 0 0 βHbMSUHµH
ΠH

0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 βHbMSUHµH

ΠH
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,
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Ā3
2(X) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 βM bMSMµH

ΠH
0 βM bMSMθ12µH

ΠH
0 0 0 0 0

0 0 0 0 0 βM bMSMµH
ΠH

0 βM bMSMθ21µH
ΠH

0


,

and,

Ā4
2(X) =



−K12 0 0 0 0 0 0 0 0
0 −K13 0 0 0 0 0 0 0
0 αV 12 −K14 0 0 0 0 0 0
0 0 0 −K15 0 0 0 0 0
0 0 0 σV 2 K16 0 0 0 0
0 0 0 0 0 −K17 0 0 0
0 0 0 0 0 αV 21 −K18 0 0

βM bMSMθV 1µH
ΠH

0 βM bMSMθ1µH
ΠH

0 0 0 0 −µM 0

0 0 0 βM bMµHSMθV 2
ΠH

0 0 βM bMSMθ2µH
ΠH

0 −µM


.

To check for Condition 5, it is convenient to use Proposition 3.1 in (Kamgang and
Sallet, 2008), which is a characterization of Metzler stable matrices (reproduced be-
low):

Lemma D.0.1. (Kamgang and Sallet, 2008) Let M be a Metzler matrix, which is
block decomposed:

M =

[
A B
C D

]
where A and D are square matrices. Then M is Metzler stable if and only if A and
D−CA−1B are Metzler stable.

It should be noted that the matrix A (which is the same as the M-matrix Ā1
2(X)

in our notation) is Metzler stable (since all the elements on the diagonal of Ā1
2(X)

are negative). It follows then (after some algebraic computations) that D−CA−1B
(which is equivalent to Ā4

2(X)− Ā3
2(X)[Ā1

2(X)]−1Ā2
2(X)) is a stable Metzler matrix if

and only if

RG = max{RG1 ,RG2} ≤ 1, (D.0.2)

where,

RG1 =
βHβMb

2
MσU1S

∗
UHS

∗
Mµ

2
H

K3K4µMΠ2
H

and RG2 =
βHβMσU2b2

MS∗UHS∗Mµ
2
H

K7K8µMΠ2
H

.
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(a) It should be noted, first of all, that the right-hand side of each of the equations
of the model {(3.4.1), (3.4.2),(3.4.4)} is continuous and locally-Lipschitz at t = 0.
Hence, a solution of the model with non-negative initial conditions exists and is
unique in Ω = Ω1 × Ω2 × Ω3 for all time t > 0 (see also (Iboi et al., 2018; Okuneye

et al., 2019)). Furthermore, since
(

1− E
KE

)
+
≥ 0, it follows from the first equation

of the sub-system (3.4.1) that E(t) ≤ KE for all time t > 0. Similarly, it follows from
the second equation of the sub-system (3.4.1) that

L̇1 = σEE − (σL1 + µL)L1 ≤ σEKE − (σL1 + µL)L1,

so that lim sup
t→∞

L1(t) ≤ σEKE

σL1 + µL
= L�1. Using a similar approach, it can be shown

that lim sup
t→∞

L2(t) ≤ σL1L
�
1

σL2 + µL
= L�2, lim sup

t→∞
L3(t) ≤ σL2L

�
2

σL3 + µL
= L�3, lim sup

t→∞
L4(t) ≤

σL3L
�
3

σL4 + µL
= L�4 and lim sup

t→∞
P (t) ≤ σL4L

�
4

σP + µP
= P �. That is, all solutions of the

sub-system (3.4.1) are bounded for all time t > 0.
For the boundedness of the solutions of the sub-system (3.4.2), we consider the

following equation (for the rate of change of the total adult mosquito population):

ṄM = fσPP − µXSX − µXEX − µXIX − µMNM + bH(Q2 +Q3 −Q1 +R1 +R2)AX ,
(E.0.1)

where, NM = AX +AY +AZ (with AX , AY , AZ , Q1, Q2, Q3, R1 and R2 are as defined
in Section 2). It can be shown that Q2 + Q3 − Q1 + R1 + R2 < 0. Hence, Equation
(E.0.1) can be re-written as

ṄM = fσPP − µXSX − µXEX − µXIX − µMNM

+ bH(Q2 +Q3 −Q1 +R1 +R2)AX ≤ fσPP − µMNM ,
(E.0.2)

so that,

lim sup
t→∞

NM(t) ≤ fσPP
�

µM
.

Hence, the solutions of the equations of the sub-system (3.4.2) are bounded for all
time t > 0. Similarly, consider the equation for the rate of change of the total human
population, given by:

ṄH = Π− µHNH − δH(IHp + IHu) ≤ Π− µHNH , (E.0.3)

from which it follows that lim sup
t→∞

N(t) ≤ Π

µH
. Thus, the solutions of the sub-system

(3.4.4) are bounded for all t > 0. Since the solutions of the three sub-systems of the
model {(3.4.1), (3.4.2),(3.4.4)} are bounded, it follows that the solutions of the model
are bounded. This concludes the proof of Item (a).

(b) The proof for the invariance of the region Ω1 follows from the bounds established in
Item (a) (i.e., 0 < lim sup

t→∞
L1(t) ≤ L�1, 0 < lim sup

t→∞
Lj(t) ≤ L�j and 0 < lim sup

t→∞
P (t) ≤
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P �) and the fact that Ė(t) < 0 whenever E(t) > KE, L̇1(t) < 0 whenever L1(t) > L�1
and L̇j(t) < 0 whenever Lj(t) > L�1 (j = 2, 3, 4), respectively.

For the invariance of the region Ω2, it is convenient to consider the following
equation for the rate of change of the total mosquito population given by:

ṄM = fσPP − µXSX − µXEX − µXIX − µMNM

+ bH(Q2 +Q3 −Q1 +R1 +R2)AX ≤ fσPP − µMNM .

It follows that ṄM < 0 whenever NM(t) > fσPP
�

µM
. Thus, the region Ω2 is invariant

with respect to the sub-system (3.4.2) of the model {(3.4.1), (3.4.2),(3.4.4)}.
Finally, consider the equation for the total human population given by

ṄH = Π− µHNH − δH(IHp + IHu) ≤ Π− µHNH .

It follows that ṄH < 0 whenever NH(t) > Π
µH

. Thus, the region Ω3 is invariant with

respect to the sub-system (3.4.4) of the model {(3.4.1), (3.4.2),(3.4.4)}. Since the
regions Ω1, Ω2 and Ω3 are positively-invariant and attracting, it follows that Ω = Ω1×
Ω2 ×Ω3 is positively-invariant and attracting for the model {(3.4.1), (3.4.2),(3.4.4)}.
This concludes the proof of Item (b).
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C1 = bH
{
πp(1− εdeter)[(1− εdie,p)εbite|∼die,p + εdie,p] + πu[(1− εdie,u)εbite|∼die,u + εdie,u]

}
+ µX + µM > 0,

C2 = bH [πp(1− εdeter)(1− εdie,p)εbite|∼die,p + πu(1− εdie,u)εbite|∼die,u] > 0,

C3 = bH
{
πp(1− εdeter)[(1− εdie,p)εbite|∼die,p + εdie,p] + πu[(1− εdie,u)εbite|∼die,u + εdie,u]

}
+κV + µX + µM > 0,

C4 =
{
πp(1− εdeter)[εdie,p(1− εbite|∼die,p) + εbite|∼die,p] + πu[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]

}
κ2
V > 0,

C5 = 2κV

(
µM +

θY
2

+
ϕZ
2

)
C4 > 0,

C6 = πp(1− εdeter)
{

[εdie,p(1− εbite|∼die,p) + εbite|∼die,p]µ
2
M + (θY + ϕZ)[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]µM + εbite|∼die,pθY ϕZ

} > 0,

C7 = πu
{

[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]µ
2
M + (θY + ϕZ)[εdie,u(1− εbite|∼die,u) + εbite|∼die,u]µM + εbite|∼die,uθY ϕZ

}
> 0,

C8 = (µM + κV )K10K12,

C9 = ϕZ + θY + bH
{
πp(1− εdeter)[1− (1− εdie,p)(1− εbite|∼die,p)] + πu[1− (1− εdie,u)(1− εbite|∼die,u)]

}
> 0,

C10 = θY ϕZ + bH(θY + ϕZ)
{
πp(1− εdeter)[1− (1− εdie,p)(1− εbite|∼die,p)] + πu[1− (1− εdie,u)(1− εbite|∼die,u)]

}
> 0,

C11 = bHθY ϕZ [πpεdie,p(1− εdeter) + εdie,uπu] > 0.
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In the absence of the bednet-based intervention, the sub-systems of the model
involving the adults and human dynamics, given by Equations (3.4.2) and (3.4.4),
reduce, respectively, to the following sub-systems:

Stage I


ṠX = fσPP + ϕZSZ + bHQ3SX − (bH + µX + µM)SX ,

ĖX = ϕZEZ + bHQ3EX − (bH + κV + µX + µM)EX ,

İX = ϕZIZ + κVEX + bHQ3IX − (bH + µX + µM) IX .

Stage II


ṠY = (1− βV ω)R2SX − (θY + µM)SY ,

ĖY = bHβV ωR2SX + bHR2EX − (θY + κV + µM)EY ,

İY = κVEY + bHR2IX − (θY + µM) IY .
(G.0.1)

Stage III


ṠZ = θY SY − (ϕZ + µM)SZ ,

ĖZ = θYEY − (ϕZ + κV + µM)EZ ,

İZ = θY IY + κVEZ − (ϕZ + µM) IZ ,

Human


ṠH = Π− (λV H + µH)SH + ηHRH ,

ĖH = λV HSH − (γH + µH)EH ,

İH = γHEH − (αH + δH + µH)IH ,

ṘH = αHIH − (ηH + µH)RH .

(G.0.2)

The equations for the aquatic dynamics, given by (3.4.1), remain unchanged. Hence,
the reduced (no-bednets) model consist of the equations {(3.4.1), (3.4.2), (G.0.2)}.

It can be shown, using the next generation operator method (as in Section 3),
that the basic reproduction number of the reduced model {(3.4.1), (3.4.2), (G.0.2)}
is given by

R̃0∗ =

√
bHβV J1J3S0

XβMγHθY ϕZκV [(K9 +K12)J5 +K9K11]

K13K14N∗H(J5K10K12 − J6θY ϕZ)(J4K9K11 − J6θY ϕZ)
, (G.0.3)

where,
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J1 = bH
[
εbite|die,u εdie,u + εbite|∼die,u(1− εdie,u)

]
, J2 = (1− εdie,u)(1− εbite|∼die,u),

N∗H =
Π

µH
, J3 = (1− εdie,u)εbite|∼die,u, J4 = (bH + µX + µM)− bHJ2,

J5 = (bH + κV + µX + µM)− bHJ2, J6 = bHJ3, N0∗ =

(ψEϕZσEfσP θY J6)
4∏
i=1

σLi

(J4K9K11 − J6θY ϕZ)
6∏
i=1

Ki

,

S0
X =

[
fσEσPKE

(
1− 1

N0∗

)
K9K11

] 4∏
i=1

σLi

(J4K9K11 − J6θY ϕZ)
6∏
i=2

Ki

.

Substituting the baseline parameter values in Table 4 (for the holo-endemic setting)
shows that the worst-case scenario basic reproduction number (R̃0) of the model
{(3.4.1), (3.4.2), (3.4.4)}, or, equivalently, the reduced model {(3.4.2), (G.0.2)}, given
by (G.0.3), is R̃0∗ = 11.4.
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The proof of Theorem 3.5.2 is based on using center manifold theory (Carr, 1981;
Castillo-Chavez and Song, 2004). It is convenient to define the following change
of variables for the model {(3.4.1), (3.4.2), (3.4.4)}: E = x1, L1 = x2, L2 = x3,
L3 = x4, L4 = x5, P = x6, SX = x7, EX = x8, IX = x9, SY = x10, EY = x11,
IY = x12, SZ = x13, EZ = x14, IZ = x15, SHp = x16, EHp = x17, IHp = x18,
RHp = x19, SHu = x20, EHu = x21, IHu = x22, RHu = x23. Using the vector notation
X = (x1, ......x23)T and F = (f1, ....f23)T , the model can then be written in the form
dX
dt

= (f1, ....f23)T , as follows:

ẋ1 ≡ f1 = ψEϕZ

(
1− x1

KE

)
+

(x13 + x14 + x15)− (σE + µE)x1,

ẋ2 ≡ f2 = σEx1 − (σL1 + µL)x2,

ẋ3 ≡ f3 = σL1x2 − (σL2 + µL)x3,

ẋ4 ≡ f4 = σL2x3 − (σL3 + µL)x4,

ẋ5 ≡ f5 = σL3x4 − (σL4 + µL)x5,

ẋ6 ≡ f6 = σL4x5 − (σP + µP )x6,

ẋ7 ≡ f7 = fσPx6 + ϕZx13 + bH(Q2 +Q3)x7 − (bHQ1 + µX + µM)x7,

ẋ8 ≡ f8 = ϕZx14 + bH(Q2 +Q3)x8 − (bHQ1 + κV + µX + µM)x8,

ẋ9 ≡ f9 = ϕZx15 + κV x8 + bH(Q2 +Q3)x9 − (bHQ1 + µX + µM)x9,

ẋ10 ≡ f10 = bH [(1− βV ωp)R1 + (1− βV ωu)R2]x7 − (θY + µM)x10,

ẋ11 ≡ f11 = bH(βV ωpR1 + βV ωuR2)x7 + bH(R1 +R2)x8 − (θY + κV + µM)x11,

ẋ12 ≡ f12 = κV x11 + bH(R1 +R2)x9 − (θY + µM)x12,

ẋ13 ≡ f13 = θY x10 − (ϕZ + µM)x13,

ẋ14 ≡ f14 = θY x11 − (ϕZ + κV + µM)x14,

ẋ15 ≡ f15 = θY x12 + κV x14 − (ϕZ + µM)x15,

ẋ16 ≡ f20 = Ππp − (λV Hp + µH)x16 + ηHx19,

ẋ17 ≡ f21 = λV Hpx16 − (γH + µH)x17,

ẋ18 ≡ f22 = γHx17 − (αH + δH + µH)x18,

ẋ19 ≡ f23 = αHx18 − (ηH + µH)x19,

ẋ20 ≡ f24 = Ππu − (λV Hu + µH)x20 + ηHx23,

ẋ21 ≡ f25 = λV Hux20 − (γH + µH)x21,

ẋ22 ≡ f26 = γHx21 − (αH + δH + µH)x22,

ẋ23 ≡ f27 = αHx22 − (ηH + µH)x23,
(H.0.1)
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where,

EIRp = bH
x9

NHp

πp(1− εdeter)
[
εbite|die,pεdie,p + εbite|∼die,p(1− εdie,p)

]
,

EIRu = bH
x9

NHu

πu
[
εbite|die,uεdie,u + εbite|∼die,u(1− εdie,u)

]
,

λV Hp = βM EIRp,

λV Hu = βM EIRu,

ωp =
x18

NHp

, ωu =
x22

NHu

.

Let R0 = 1 and suppose, further, that βM = β∗M is chosen as a bifurcation parameter.
Solving for βM = β∗M from R0 = 1 gives

βM = β∗M =
Ππpπu (C3K10K12 − C2θY ϕZ) (C1K9K11 − C2θY ϕZ)

µ2
HbHx

∗
7κV ϕZθY [(K9 +K12)C3 +K9K11](RHpV +RHuV )

.

The Jacobian of the transformed system (H.0.1), evaluated at the DFE (T2) with
βM = β∗M , is given by

J(β∗M) =

[
J1 J2

J3 J4

]
,

where,

J1 =



−ψEϕZx
∗
13

KE
−K1 0 0 0 0 0 0 0 0 0 0 0

σE −K2 0 0 0 0 0 0 0 0 0 0
0 σL1 −K3 0 0 0 0 0 0 0 0 0
0 0 σL2 −K4 0 0 0 0 0 0 0 0
0 0 0 σL3 −µH 0 0 0 0 0 0 0
0 0 0 0 σL4 −K5 0 0 0 0 0 0
0 0 0 0 0 fσP −C1 0 0 0 0 0
0 0 0 0 0 0 0 −C3 0 0 0 0
0 0 0 0 0 0 0 κV −C1 0 0 0
0 0 0 0 0 0 C2 0 0 −K9 0 0
0 0 0 0 0 0 0 C2 0 0 −K10 0
0 0 0 0 0 0 0 0 C2 0 κV −K9


,

J2 =



ψEϕZ(1− x∗1
KE

) ψEϕZ(1− x∗1
KE

) ψEϕZ(1− x∗1
KE

) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
ϕZ 0 0 0 0 0 0 0 0 0 0
0 ϕZ 0 0 0 0 0 0 0 0 0
0 0 ϕZ 0 0 0 0 0 0 0 0

0 0 0 0 0 − bHR1βV x
∗
7

x∗16
0 0 0 − bHR2βV x

∗
7

x∗20
0

0 0 0 0 0
bHR1βV x

∗
7

x∗16
0 0 0

bHR2βV x
∗
7

x∗20
0

0 0 0 0 0 0 0 0 0 0 0



,
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J3 =



0 0 0 0 0 0 0 0 θY 0 0
0 0 0 0 0 0 0 0 0 θY 0
0 0 0 0 0 0 0 0 0 0 θY
0 0 0 0 0 0 0 −βMQp 0 0 0
0 0 0 0 0 0 0 βMQp 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −βMQu 0 0 0
0 0 0 0 0 0 0 βMQu 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


,

and,

J4 =



−K11 0 0 0 0 0 0 0 0 0 0
0 −K12 0 0 0 0 0 0 0 0 0
0 κV −K11 0 0 0 0 0 0 0 0
0 0 0 −µH 0 0 ηH 0 0 0 0
0 0 0 0 −K13 0 0 0 0 0 0
0 0 0 0 γH −K14 0 0 0 0 0
0 0 0 0 0 αH −K15 0 0 0 0
0 0 0 0 0 0 0 −µH 0 0 ηH
0 0 0 0 0 0 0 0 −K13 0 0
0 0 0 0 0 0 0 0 γH −K14 0
0 0 0 0 0 0 0 0 0 αH −K15


.

The Jacobian J(β∗M) has a simple zero eigenvalue (and all other eigenvalues having
negative real parts). Hence, the center manifold theory (Carr, 1981; Castillo-Chavez
and Song, 2004) can be used to analyse the dynamics of (H.0.1) near βM = β∗M . This
entails carrying out the following computations.

Eigenvectors of J(T2) |βM=β∗
M

: The Jacobian of the transformed system (H.0.1),
evaluated at the DFE (T2) with βM = β∗M , has a right and left eigenvectors (associated
with the zero eigenvalue) (the expression for the eigenvector wi and vi, i = 1, 2, .., 23,
are given in the Supplementary Material).
Computations of bifurcation coefficients of a and b :

By computing the associated non-zero partial derivatives of F (x) evaluated the the
DFE, it follows from Theorem 4.1 in (Castillo-Chavez and Song, 2004) that the
associated bifurcation coefficients, a and b, are given, respectively, by

a =−2bH

[
(−w22R2w7v11βV +v21QuβMw9(w22+w21+w23))x∗20+w22βV R2x∗7v11(w20+w21+w22+w23)

(x∗20)2

]
−2bH

[
(−w18βV R1w7v11+QpβMw9(w18+w19+1))x∗16+w18(x∗20)2βV R1x∗7v11(w16+w18+w19+1)

(x∗16)2

]
,

(H.0.2)

and,
b = bHw9 (Quv21 +Qp) > 0. (H.0.3)

Hence, it follows from Theorem 4.1 of (Castillo-Chavez and Song, 2004) that the
transformed model (H.0.1) undergoes a backward bifurcation at R0 = 1 if the bifur-
cation coefficient a (given by (H.0.2)) is positive.
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PROOF OF THEOREM 3.5.3.
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Consider the special case of the model {(3.4.1), (3.4.2), (3.4.4)} without disease-
induced mortality in the host population (i.e., δH = 0). Further, let N0 > 1 (so that
the NDFE, T2, exists) and R̃0 ≤ 1. Setting δH = 0 in the model {(3.4.1), (3.4.2),
(3.4.4)} gives NH(t) → Π

µH
as t → ∞, and K̄14 = αH + µH . Hence, from now on,

NH(t) is replaced by its limiting value, Π
µH

. Furthermore, consider the following linear

Lyapunov function:

F = g1EHp + g2IHp + g3EHu + g4IHu + g5EX + g6IX + g7EY + g8IY + g9EZ + g10IZ ,

where,

g1 = βVNHuγHbHR1SXκV ϕZθY (C3 (K9 +K12) +K9K11) ,

g2 = βVNHubHR1SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13,

g3 = βVNHpγHbHR2SXκV ϕZθY (C3 (K9 +K12) +K9K11) ,

g4 = βVNHpbHR2SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13,

g5 =
C2βMγHθ

2
Y ϕ

2
Zκ

2
V SXβV (C3(K9+K12)+K9K11)2(NHpQuR2SHu+NHuQpR1SHp)
(C3K10K12−C2θY ϕZ)(C1K9K11−C2θY ϕZ)C3

+
K9K11K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ)κV

C3

,

g6 = K9K11K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ) ,

g7 =
βMγHθ

2
Y ϕ

2
Zκ

2
V SXβV (C3(K9+K12)+K9K11)2(NHpQuR2SHu+NHuQpR1SHp)

(C3K10K12−C2θY ϕZ)(C1K9K11−C2θY ϕZ)
,

g8 = θYK13K̄14ϕZNHpNHu (C3K10K12 − C2θY ϕZ) ,

g9 =
C2βMγHθ

2
Y ϕ

3
Zκ

2
V SXβV (C3(K9+K12)+K9K11)2(NHpQuR2SHu+NHuQpR1SHp)

(C3K10K12−C2θY ϕZ)(C1K9K11−C2θY ϕZ)K12C3

+
ϕZK9K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ)κV (K11 + C3)

K12C3

,

and, g10 = ϕZK9K13K̄14NHpNHu (C3K10K12 − C2θY ϕZ) .

The Lyapunov derivative of F (where a dot represents differentiation with respect to
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t) is given by:

Ḟ = g1ĖHp + g2İHp + g3ĖHu + g4İHu + g5ĖX + g6İX + g7ĖY + g8İY + g9ĖZ + g10İZ ,

= g1(λV HpSHp −K13EHp) + g2(γHEHp − K̄14IHp) + g3(λV HuSHu −K13EHu)

+ g4(γHEHu − K̄14IHu) + g5(ϕZEZ − C3EX) + g6(ϕZIZ + κVEX − C1IX)

+ g7[(bHβV ωpR1 + bHβV ωuR2)SX + C2EX −K10EY ] + g8(κVEY + C2IX −K9IY )

+ g9(θYEY −K12EZ) + g10(θY IY + κVEZ −K11IZ),

=

(
g1βMQpSHp

NHp

+
g3βMQuSHu

NHu

− g6C1 + g8C2

)
IX +

(
g7bHβVR1SX

NHp

− g2K̄14

)
IHp

+

(
g7bHβVR2SX

NHu

− g4K̄14

)
IHu + (−g1K13 + g2γH)EHp + (−g3K13 + g4γH)EHu

+ (−g5C3 + g6κV + g7C2)EX + (−g7K10 + g8κV + g9θY )EY
+ (−g9K12 + g10κV + g5ϕZ)EZ
+ (−g8K9 + g10θY )IY + (−g10K11 + g6ϕZ)IZ .

Since SHp(t) ≤ NHp, SHu(t) ≤ NHu, NHp(t) = Ππp
µH

and NHu(t) = Ππu
µH

in Ω for all

t > 0, it follows that:

Ḟ =≤ K13K̄14NHpNHu(C1K9K11 − C2θY ϕZ)(C3K10K12 − C2θY ϕZ)(R̃2
0 − 1)IX

+ βVNHubHR1SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13K14(R̃2
0 − 1)IHp

+ βVNHpbHR2SXκV ϕZθY (C3 (K9 +K12) +K9K11)K13K14(R̃2
0 − 1)IHu

+
ϕ2
Z(NHpQuR2SHu+NHuQpR1SHp)κ2V βV (C3(K9+K12)+K9K11)2θ2Y SXγHβM

bHK12C3(C1K9K11−C2θY ϕZ)

(
1− 1

R̃2
0

)
EY .

Hence, Ḟ ≤ 0 if R̃0 < 1 with Ḟ = 0 if and only if IX = IHp = IHu = EY = 0.
Therefore, F is a Lyapunov function in Ω and it follows from LaSalle’s Invariance
Principle (LaSalle and Lefschetz, 1976) that every solution to the equations in {(3.4.1),
(3.4.2), (3.4.4)} (with δH = 0 and initial conditions in Ω) converges to T2 as t → ∞
That is,

(EX(t), IX(t), EY (t), IY (t), EZ(t), IZ(t), EHp(t), IHp(t), RHp(t), EHu(t), IHu(t), RHu(t))

→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t→∞.

Thus, X (t)→
(
E∗, L∗1, L

∗
2, L

∗
3, L

∗
4, P

∗, S∗X , 0, 0, S
∗
Y , 0, 0, S

∗
Z , 0, 0,

Ππp
µH

, 0, 0, 0, Ππu
µH

, 0, 0, 0
)

as t→∞ for R̃0 ≤ 1. Hence, the NDFE, T2, is globally-asymptotically stable in Ω if
R̃0 ≤ 1 for the special case of the model {(3.4.1), (3.4.2), (3.4.4)} with δH = 0.
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