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ABSTRACT

The problem of modeling and controlling the distribution of a multi-agent system

has recently evolved into an interdisciplinary effort. When the agent population is

very large, i.e., at least on the order of hundreds of agents, it is important that

techniques for analyzing and controlling the system scale well with the number of

agents. One scalable approach to characterizing the behavior of a multi-agent system

is possible when the agents’ states evolve over time according to a Markov process. In

this case, the density of agents over space and time is governed by a set of difference

or differential equations known as a mean-field model, whose parameters determine

the stochastic control policies of the individual agents. These models often have the

advantage of being easier to analyze than the individual agent dynamics. Mean-

field models have been used to describe the behavior of chemical reaction networks,

biological collectives such as social insect colonies, and more recently, swarms of

robots that, like natural swarms, consist of hundreds or thousands of agents that are

individually limited in capability but can coordinate to achieve a particular collective

goal.

This dissertation presents a control-theoretic analysis of mean-field models for

which the agent dynamics are governed by either a continuous-time Markov chain

on an arbitrary state space, or a discrete-time Markov chain on a continuous state

space. Three main problems are investigated. First, the problem of stabilization

is addressed, that is, the design of transition probabilities/rates of the Markov pro-

cess (the agent control parameters) that make a target distribution, satisfying certain

conditions, invariant. Such a control approach could be used to achieve desired multi-

agent distributions for spatial coverage and task allocation. However, the convergence

of the multi-agent distribution to the designed equilibrium does not imply the conver-

gence of the individual agents to fixed states. To prevent the agents from continuing
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to transition between states once the target distribution is reached, and thus po-

tentially waste energy, the second problem addressed within this dissertation is the

construction of feedback control laws that prevent agents from transitioning once the

equilibrium distribution is reached. The third problem addressed is the computa-

tion of optimized transition probabilities/rates that maximize the speed at which the

system converges to the target distribution.
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Chapter 1

INTRODUCTION

Over approximately the past two decades, research on the control of multi-agent

systems has gained increasing attention and has evolved into an established, interdis-

ciplinary field that is of interest to engineers, mathematicians, and biologists alike.

Graph-theoretic approaches have been widely used in the analysis and control of

multi-agent systems, and there are numerous works on such approaches; (Bullo et al.,

2009; Lewis et al., 2013; Mesbahi and Egerstedt, 2010) are excellent books dedicated

to such methods. However, many of these control approaches do not scale well to

very large agent populations. When all agents follow the same dynamics and these

dynamics are independent of agents’ identities, an alternative approach is to study a

fluid approximation of the swarm. This approach is inspired by the Eulerian model-

ing methodology used in fluid dynamics. This entails looking at fluid motion focusing

on specific locations in space through which the fluid flows, or a macroscopic per-

spective. Contrary to this approach, the Lagrangian method entails observing an

individual fluid particle as it moves through space and time, or a microscopic per-

spective. A similar modeling methodology is also employed in statistical mechanics

(Van Kampen, 1992) and biology (Brauer et al., 2012) to treat a large collection

of entities as a continuum. The term self-organization has been used in biology to

denote the emergence of ordered behavior in groups of interacting entities. Schools

of fish display such self-organized behavior. For example, without ‘leader fish,’ each

individual fish in a school is able to localize with respect to its neighbors, and the

school can form a variety of complex patterns (Hemelrijk and Hildenbrandt, 2012).

Taking inspiration from the models discussed in the previous paragraph, in the
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models considered within this dissertation, the primary assumption is that every

agent follows an identical Markov process, and then the macroscopic behavior of the

population is determined by the Kolmogorov forward equation corresponding to the

Markov process. For a population of N agents, the state space of the forward equation

is dependent on N ; however, in the limit N tends to infinity, the N -agent forward

equation is replaced by a single forward equation defined on the set of probability

densities, called the mean-field model. Because such models are independent of the

agent population size, the analysis and control of these models is scalable with the

number of agents, which is an advantage over many existing multi-agent control

techniques. A survey on mean-field models in the context of control of multi-agent

systems is presented in Elamvazhuthi and Berman (2019). Moreover, a range of tools

are available to analyze and control mean-field dynamical models, which have the

advantage of linearity in the absence of agent interactions, or are easier to analyze

than the corresponding agent-based models. A drawback of using these models is that

for low values of N , they are not accurate representations of the N -agent system; as N

becomes larger, the approximation tends to be better. We will observe that although

stability and convergence results are proven for the mean-field model, simulations of

the corresponding N -agent system demonstrate that for relatively small numbers of

agents (specific estimates of the order are provided within the chapters), the agent

distribution does in fact follow the prediction of the corresponding mean-field model.

We will now state the main contributions of this dissertation.

1.1 Contributions

The goals of this research are threefold. We shall list these next.

1. It is well-established that a Markov chain that is irreducible and positive re-

current has a unique stationary distribution. A question that is investigated for all
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models considered within this dissertation is the following inverse problem: Given a

target probability distribution, can a Markov chain be constructed such that its station-

ary distribution is this target distribution? From a control-theoretic perspective, this

implies requires proving the stabilizability of the Kolmogorov forward equation. A po-

tential application of this work is to control the distribution of large-scale multi-agent

systems over discrete or continuous state spaces that could, for instance, represent a

set of distinct locations or a domain of interest. Such a control approach could be

used, for example, in environmental monitoring, surveillance, disaster response, and

autonomous construction. Chapters 2-6 discuss the construction of control method-

ologies for allocating a swarm of robots among a set of states in a decentralized

fashion, using minimal local information or none at all.

The stabilization of macroscopic models to arbitrary measures can alternatively

be seen as an extension of the classical control problem of asymptotically stabilizing a

system to a point, which corresponds to the Dirac measure in the measure stabilization

framework.

In Chapter 2, the time evolution of each robot’s state is modeled as a continuous-

time Markov chain (CTMC) on a finite graph. We prove that by using the transition

rates as control parameters, any distribution that is strictly positive everywhere can

be stabilized. Specifically, for bidirected graphs, we construct polynomial density

feedback laws that stabilize strictly positive stationary distributions. In Chapters 3

and 5, we address the problem of stabilizing a discrete-time Markov chain (DTMC)

to a target invariant distribution, using the transition kernel as control parameter.

The transition kernel is a continuous state space analogue of the transition proba-

bility matrix of a DTMC on a discrete state space. We investigate the distribution

stabilization problem in two settings: in Chapter 3, the state space is restricted to

compact subsets of the Euclidean space, and in Chapter 5, the state space is restricted

3



to compact manifolds. In the former case, we assume that the target measure is sup-

ported a.e. on the entire state space of the system and is absolutely continuous with

respect to the Lebesgue measure, with L∞(·) density. We additionally assume that

agents evolve according to discrete-time deterministic nonlinear dynamics. In the lat-

ter case where the state space is a manifold, we address the stabilization problem for

a DTMC that evolves on a compact, smooth, connected manifold without boundary.

We consider target measures that are supported a.e. on the entire state space of the

system and are absolutely continuous with respect to the Riemannian volume with

L∞(·) density.

2. Having obtained the above stabilizability results, the next problem that we in-

vestigate is the construction of transition kernel/rates, the control parameters of the

Markov process, that maximize the system’s convergence rate to the target distribu-

tion. In Chapters 3 and 5, we formulate an infinite-dimensional convex optimization

problem to construct feedback control laws that stabilize the system to the target

invariant measure at a maximized rate of convergence. This problem has been previ-

ously solved in Boyd et al. (2004) and Berman et al. (2009) for DTMCs and CTMCs,

respectively, that are defined on a finite graph with the uniform distribution as their

invariant distribution. Similar to these earlier works, we pose the optimization prob-

lem in terms of maximizing the spectral gap of the operator that pushes forward

measures, also known from here on as the forward operator. Since the first eigenvalue

of the forward operator is 1 or 0 when time is discrete or continuous, respectively,

maximizing the spectral gap reduces to the problem of minimizing the modulus of the

second-largest eigenvalue. The optimization problem admits an exact solution in the

case where the manifold is a Lie group and the target measure is uniform. In Chapter

6, we invoke the min-max principle to characterize the modulus of the second-largest

eigenvalue of the forward operator for a Markov process that evolves in continuous
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time on a continuous state space. Hence, unlike in Chapters 3 and 5, the optimization

problem admits an exact solution for arbitrary distributions that are in L∞(·).

3. The convergence of a Markov process to an equilibrium distribution does not

necessarily imply that the agents evolving according to the process also converge

to equilibrium states. In fact, agents may continue to transition between states,

which can cause them to waste energy. To prevent agents from continuing to switch

between states at the equilibrium distribution, the third goal of this dissertation

is to construct a Markov process such that its forward operator is the identity or

zero operator at equilibrium, depending on whether time is discrete or continuous.

This results in a density-dependent operator that is a function of the distribution

and gives rise to a nonlinear Markov process. Moreover, since the operator must

be dependent on the distribution, we construct the operator to have a decentralized

structure. An operator with this structure corresponds to control laws that require

each agent to estimate the population only in its local neighborhood, rather than

obtain feedback on the entire agent distribution. In Chapter 2, in which the state

space is a finite graph, we construct distribution-dependent transition rates (feedback

control laws) that evaluate to zero at the desired equilibrium distribution. This

enables the construction of decentralized density feedback controllers, using tools

from Sum-of-Squares (SOS)-based polynomial optimization (Prajna et al., 2002), that

globally stabilize a swarm of agents modeled as a CTMC to a target state distribution

with no state-switching at equilibrium. In Chapter 4, we address this problem for a

DTMC that evolves on a compact, connected subset of Rd. The desired distribution

is assumed to be in L∞(·).

Finally, in Chapter 7, we address the problem of redistributing a swarm of agents

over a discrete state space while accounting for the physical constraint that agents

must avoid collisions with one another. In this case, we develop an agent-based
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model of the swarm using tools from the theory of interacting particle systems (IPS).

We consider a swarm of K agents that move randomly on the vertex set of a finite

connected graph, with at most one agent per vertex, i.e., two agents cannot occupy

the same vertex. An agent at vertex x chooses one of the deg(x) neighboring vertices

uniformly at random at a defined transition rate, and jumps to that vertex if and only

if it is empty. Using standard probability techniques, the set of invariant measures

of this process so defined is identified in order to study the occupation time of each

vertex, defined as the expected time during which the vertex will be occupied at

equilibrium.

1.2 Literature Review

We will now review some of the important works that have contributed to this

field of research.

We begin with the discrete state space setting; we will review works wherein

the time variable is both discrete and continuous. To stabilize DTMCs or CTMCs

to target distributions, several approaches have been developed in which the agents

are programmed to switch stochastically between states at tunable transition prob-

abilities or rates; therefore, the transition probabilities or rates are the control pa-

rameters of the Markov process. For DTMCs on discrete state spaces, the types of

distributions that can be stabilized are well-understood (Açıkmeşe and Bayard, 2015;

Elamvazhuthi et al., 2017); this stabilizability result follows from the classical Perron-

Frobenius theorem (Berman and Plemmons, 1994), which gives a sufficient condition

for the uniqueness of the stationary distribution of a Markov chain. In the continuous

time setting, optimized transition rates were computed to maximize the rate of con-

vergence to target distributions in Berman et al. (2009) for a multi-robot stochastic

task allocation scenario. There is a limitation on the kind of probability distributions
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that can be stabilized using open-loop control; specifically, distributions that have

strongly connected support can be stabilized (Elamvazhuthi et al., 2019a). This as-

sumption, however, was relaxed in Elamvazhuthi et al. (2018a) by using discontinuous

control laws. By allowing the control laws to be time-dependent, additional control

objectives can be achieved. For example, to reduce agent transitions between states

at equilibrium Hsieh et al. (2008); Mather and Hsieh (2014) construct control laws

for a CTMC that are dependent on the population density. A similar problem was

addressed for the discrete-time case in Bandyopadhyay et al. (2017). In Demir et al.

(2015), the authors construct time-dependent feedback laws for a DTMC in order to

impose safety constraints on the system in terms of an upper bound on the agent

density at each time step.

We will next consider the continuous state space setting. The distribution stabi-

lization problem that we address in Chapters 3-5 is closely related to a class of control

problems that have been investigated in the context of mean-field games (Lasry and

Lions, 2007; Bensoussan et al., 2013; Carmona and Delarue, 2018) and optimal trans-

port theory (Villani, 2003; Santambrogio, 2015). In mean-field games, the control

problem is to design a feedback control law that is a function of the agent’s state,

with the goal of optimizing an objective functional that is a function of the agent’s

state and the probability density of its position over time. The mean-field game prob-

lem for agent dynamics evolving in discrete time and continuous space is considered

in Saldi et al. (2018). Works on mean-field game theory, which has only recently been

applied to problems in swarm robotics (Liu et al., 2018), use optimal control tech-

niques to construct policies for strategic decision-making in very large populations of

interacting agents. However, control problems in the mean-field games literature usu-

ally do not include constraints on the long-time behavior of this probability density,

as we do in Chapters 3-5.
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Similar to mean-field games, optimal transport theory considers a class of measure

control problems in which the goal is to construct a map from the state space to

itself that pushes forward an initial measure to a target measure while optimizing

a given cost function. According to the Benamou-Brenier formulation of optimal

transport, when the cost function is quadratic, the problem can be framed as a

control problem for an advection equation with the velocity field as the control input.

For scenarios where the measure represents the distribution of a swarm of agents,

this classical version of the optimal transport problem corresponds to agents with

single-integrator dynamics. There has been some recent work on extending results

on optimal transport to agents that evolve in continuous time with linear dynamics

(Hindawi et al., 2011; Chen et al., 2017) and nonlinear dynamics (Rifford, 2014;

Agrachev and Lee, 2009). For discrete-time nonlinear systems, a relaxed version of

the optimal transport problem was investigated in Elamvazhuthi et al. (2019b), where

stochastic feedback laws, instead of deterministic feedback laws, were constructed to

transport a system from a given initial measure to a target measure. The problem in

Elamvazhuthi et al. (2019b) can be considered as the fixed-endpoint control version

of the problem addressed in Chapters 3-5.
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Chapter 2

CONTINUOUS-TIME MARKOV CHAIN MODELS ON DISCRETE STATE

SPACES

In this chapter, we address the problem of redistributing a large number of ho-

mogeneous agents that evolve in continuous-time among a finite set of states. These

states could represent tasks to be performed or spatial locations to occupy. In re-

cent years, approaches to this problem have been developed in which the agents are

programmed to switch stochastically between states at tunable transition rates. In

some of these approaches (Berman et al., 2009; Mather and Hsieh, 2014), the agents’

states evolve according to a continuous-time Markov chain (CTMC), and their state

distribution is controlled using the corresponding mean-field model, given by the

Kolmogorov forward equation. These methods enable the scalable design of robot

controllers due to the independence of the control methodology from the number of

agents.

We consider such an approach for controlling a swarm of robots to allocate among

a set of states in a decentralized fashion, that is, using only information that the

robots can obtain from their local environment. We model the time evolution of

each robot’s state as a continuous-time Markov chain (CTMC) and frame the control

problem in terms of the mean-field model of the system.

In some existing approaches to this problem that use Markov chain models

(Berman et al., 2009; Acikmese and Bayard, 2012), the robots continue switching

between states at equilibrium, which could unnecessarily expend energy, even though

the swarm distribution among states in the mean-field model is stabilized. This con-

tinued switching at equilibrium is due to the time- and density-independence of the
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control laws considered in these works. To address this problem, density-feedback

laws that use quorum-sensing strategies were constructed in Hsieh et al. (2008) to

stabilize a swarm to a desired distribution and reduce the amount of switching be-

tween states at equilibrium. In Mather and Hsieh (2014), the authors pose this as

a problem of controlling the variance of the agent distribution at equilibrium using

density-feedback laws. As in Mather and Hsieh (2014), we propose density-feedback

laws that stabilize a swarm of agents to a strictly positive target distribution. How-

ever, a key difference from Mather and Hsieh (2014) is that we consider feedback

laws that are polynomial functions of the state that do not violate positivity con-

straints and converge to zero at equilibrium, preventing further switching between

states. In Section 2.3, we prove the existence of a stabilizing polynomial control law

by constructing a specific example of such a control law.

In Section 2.4, we present algorithmic procedures for computing polynomial feed-

back controllers that stabilize the mean-field model to a strictly positive target dis-

tribution with no state transitions occurring at equilibrium. For this, we use the

Sum-of-Squares (SOS)-based MATLAB toolbox SOSTOOLS (Prajna et al., 2002).

These procedures could potentially incorporate additional constraints to improve the

properties of the closed-loop system response. Moreover, in contrast to the control

approaches presented in Bandyopadhyay et al. (2017); Demir et al. (2015), all com-

putations for control synthesis are done offline in our procedures rather than onboard

the robots in real-time, which reduces the robots’ computational burden.

2.1 Notation

We denote by G = (V , E) a directed graph with M vertices, V = {1, 2, . . . ,M},

and a set of NE edges, E ⊂ V ×V . We say that e = (i, j) ∈ E if there is an edge from

vertex i ∈ V to vertex j ∈ V . We define a source map S : E → V and a target map

10



T : E → V for which S(e) = i and T (e) = j whenever e = (i, j) ∈ E . We assume

that (i, i) /∈ E for all i ∈ V . There is a directed path of length s from node i ∈ V

to node j ∈ V if there exists a sequence of edges {ei}si=1 in E such that S(e1) = i,

T (es) = j, and S(ek) = T (ek−1) for all 1 ≤ k < s− 1. A directed graph G = (V , E) is

called strongly connected if for every pair of distinct vertices v0, vT ∈ V , there exists a

directed path of edges in E connecting v0 to vT . The graph G is said to be bidirected

if e ∈ E implies that ẽ = (T (e), S(e)) also lies in E .

2.2 Problem Statement

Consider a swarm of N autonomous agents whose states evolve in continuous time

according to a Markov chain with finite state space V . As an example application, V

can represent a set of spatial locations that are obtained by partitioning the agents’

environment. The graph G determines the pairs of vertices (states) between which

the agents can transition. Denoting the set of admissible control inputs by U ⊂ R,

the agents’ transition rules are determined by the control parameters ue : [0,∞)→ U

for each e ∈ E , and are known as the transition rates of the associated CTMC. An

agent in state v1 at time t decides to switch to state v2 at probability per unit time

ue(t), e = (v1, v2). Here, we have U ⊂ R+, i.e., the ue(t) obey positivity constraints,

since transition rates must always be positive for a CTMC. The evolution of the N

agents’ states over time t on the state space V is described by N stochastic processes,

Xk(t) ∈ V , k = 1, . . . , N . Each stochastic process Xk(t) evolves according to the

following conditional probabilities for every e ∈ E :

P(Xk(t+ h) = T (e)|Xk(t) = S(e)) = ue(t)h+ o(h). (2.1)

Here, o(h) is the little-oh symbol and P is the underlying probability measure defined

on the space of events Ω that is induced by the stochastic processes {Xk(t)}Nk=1.
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Let P(V) be the (M−1)-dimensional simplex of probability densities on V , defined

as P(V) = {y ∈ RM
+ :

∑
i yi = 1}. Let x(t) = [x1(t) . . . xM(t)]T ∈ P(V) be the

vector of probability distributions of the random variable Xk(t) at time t, that is,

xi(t) = P(Xk(t) = i), i ∈ V . (2.2)

The evolution of probability distributions is determined by the Kolmogorov forward

equation, which can be cast as s a bilinear control system,

ẋ(t) =
∑
e∈E

ue(t)Bex(t), x(0) = x0 ∈ P(V), (2.3)

where Be, e ∈ E , are control matrices with entries

Bij
e =


−1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

(2.4)

Here, Bij
e denotes the element in row i and column j of the matrix Be.

Note that (2.3) can be rewritten in the following form, which is common in the

Markov chain literature:

ẋ(t) = Qx(t), x(0) = x0 ∈ P(V),

where Q : RM → RM×M is the transition rate matrix, defined as Q =
∑

e∈E ue(t)Be.

In Elamvazhuthi et al. (2017, 2019a), the Perron-Frobenius theorem was used to

characterize the types of stationary distributions that can be stabilized by an irre-

ducible, positively recurrent CTMC. We can now state the main problem addressed

in this section.
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Problem 2.2.1. Given a strictly positive desired equilibrium distribution xd ∈ P(V),

compute transition rates ke : P(V)→ R+, e ∈ E, such that the closed-loop system

ẋ(t) =
∑
e∈E

ke(x(t))Bex(t), t ∈ [0,∞), (2.5)

x(0) = x0 ∈ P(V)

satisfies limt→∞ ‖x(t)−xd‖ = 0 for all x0 ∈ P(V), with the additional constraint that

ke(x
d) = 0 for all e ∈ E. Moreover, the density feedback should have a decentralized

structure, in that each ke must be a function only of densities xi for which i = S(e)

or i = S(ẽ), where T (ẽ) = S(e).

We specify that each agent knows the desired equilibrium distribution xd. This

assumption is used in other approaches to stabilizing solutions of the mean-field model

of a swarm to desired probability distributions, e.g. Acikmese and Bayard (2012);

Berman et al. (2009); Hsieh et al. (2008); Mather and Hsieh (2014).

We note that we were able to describe the state evolution of the agents by system

(2.3) when the transition rates were density-independent because the agents’ states

were independent and identically distributed (i.i.d.) random variables in that case.

However, when the density feedback control law {ue(x)}e∈E is used, the independence

of the stochastic processes Xi(t) is lost. This implies that the evolution of the prob-

ability distribution cannot be described by system (2.3). However, if we invoke the

mean-field hypothesis and take the limit N → ∞, then we can model the evolution

of the probability distribution according to a nonlinear Markov chain. In this limit,

the discrete number of agents Nv(t, ω) in state v ∈ V at time t ∈ [0, T ], where ω is

used to emphasize that Nv is a measurable function of the sample path Ω, converges

to the continuous agent population xv(t) in an appropriate sense, provided that so-

lutions of system (2.5) are defined until a given final time T > 0. A rigorous process
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for taking this limit in a stochastic process setting is described in Ethier and Kurtz

(2009); Kolokoltsov (2010).

2.3 Solution to Problem 2.2.1

We consider a target equilibrium distribution xd that is defined to be strictly

positive everywhere on the domain; i.e., xd ∈ int(P(V)), where int(P(V)) denotes the

interior of the simplex P(V). To prove the asymptotic stability of xd for bidirected

graphs, consider the continuously differentiable function V : RM → R≥0 given by

V (y) =
1

2
(y − xd)TD(y − xd) (2.6)

for all y ∈ RM , where D ∈ RM×M is defined as D = [diag(xd)]−1. This Lyapunov

function is commonly used in multi-agent consensus protocols Lewis et al. (2013).

Theorem 2.3.1. Let G be a bidirected graph. Suppose that xd ∈ int(P(V)). Let

ke : RM → [0,∞) be given by

ke(y) = [(yS(e) − xdS(e))
2 + (yT (e) − xdT (e))

2]/xdS(e) (2.7)

in system (2.5), for each e ∈ E and each y ∈ RM . Then xd is the globally asymptoti-

cally stable equilibrium point of system (2.5).

Proof. To facilitate our analysis, we rewrite system (2.5) as

ẋ(t) = G(x(t))x(t), x(0) = x0 ∈ P(V), (2.8)

where G : RM → RM×M is given by G(y) =
∑

e∈E ke(y)Be for all y ∈ RM . It is clear

that when xS(e) = xdS(e) and xT (e) = xdT (e) for all e ∈ E , G(xd) = 0, which satisfies our

requirement that the control inputs equal zero at equilibrium.

To prove the stability of system (2.8), we will again invoke LaSalle’s invariance

principle (Khalil, 2001). Consider the continuously differentiable function V : RM →
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R≥0 defined in equation (2.6). To apply LaSalle’s invariance principle, V̇ (x(t)) along

the solutions x(t) of system (2.8) is required to be negative. We can compute this

derivative as:

V̇ (x(t)) =
1

2
ẋ(t)TD(x(t)− xd) +

1

2
(x(t)− xd)TDẋ(t)

=
1

2

(
x(t)TG(x(t))Dx(t) + x(t)TDG(x(t))Tx(t)−

x(t)TG(x(t))Dxd − (xd)TDG(x(t))Tx(t)
)
.

A simple computation shows that the last two terms in the expression above are

zero. The sum of the first two terms is strictly negative; this can be confirmed by

algebraic manipulation of the sum as follows. Setting r(t) = [x1(t)/xd1 ... xM(t)/xdM ]T ,

we obtain:

1

2
x(t)TG(x(t))Dx(t) +

1

2
x(t)TDG(x(t))Tx(t)

=
1

2

∑
e∈E

−(rS(e)(t)− rT (e)(t))
2
(
(xS(e)(t)− xdS(e))

2 + (xT (e)(t)− xdT (e))
2
)
. (2.9)

The expression (2.9) is a negative sum-of-squares, and thus equals zero only when

x(t) = xd. Hence, this function is strictly negative for all x ∈ P(V)\{xd}. Moreover,

the set P(V) is invariant for the closed-loop system (2.8) since G(y) is an essentially

non-negative matrix for which each row sums to 0, for all y ∈ P(V). It follows from

LaSalle’s invariance principle that xd is the globally asymptotically stable equilibrium

point of the closed-loop system (2.8) with the control inputs ke defined in (2.7).

In Elamvazhuthi et al. (2018a), we broadened the class of possible target distribu-

tions xd to those that are not necessarily positive everywhere on the state space; that

is, xd could have a discontinuous support. This is rendered possible by using feedback

control laws that are strictly local, in the sense that these feedback laws require each

agent to know the density of agents only in the current state that it occupies, unlike
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the control laws constructed in this section, which also require the agent to know the

population densities at adjacent states. However, in contrast to the control laws in

Elamvazhuthi et al. (2018a), the control laws presented in this section are polynomial

in nature and can be computed algorithmically, as we will show next.

2.4 Nonlinear Polynomial Controller

In the previous section, we showed that the set of decentralized nonlinear control

laws that solve Problem 2.2.1 is nonempty by explicitly constructing one such control

law. Here, we present an algorithmic procedure for constructing nonlinear control

laws that solve Problem 2.2.1, using the function (2.6) in the construction. We will

construct control laws that are polynomial functions of the system state. This allows

us to frame Problem 2.2.1 as a polynomial optimization problem that can be solved

using SOSTOOLS (Prajna et al., 2002), a MATLAB toolbox for solving sum-of-

squares (SOS) programs. SOSTOOLS is widely used to provide algorithmic solutions

to problems with polynomial non-negativity constraints that are otherwise difficult

to solve. The non-negativity constraints are relaxed to a test for the existence of an

SOS decomposition, and this test is performed using semidefinite programming. We

note that our procedure is just one possible method for constructing the control laws.

We first pose Problem 2.2.1 as an optimization problem.

Problem 2.4.1. Let R[x] denote the set of polynomials (not necessarily positive),

and let Σs denote the set of SOS polynomials. Given system (2.5) with the matrix Be

defined as in (2.4), and given the function V (x) in Equation (2.6), find ke(x) ∈ R[x]
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such that

ke(x) ≥ 0, (2.10)

k(xd) = 0, (2.11)

∇V (x)TF (x) ≤ 0 (2.12)

for all x ∈ P(V), where F (x) =
∑

e∈E ke(x)Bex.

In Problem 2.4.1, the candidate Lyapunov function V (x) is fixed, and an appro-

priate control law is constructed such that V (x) is indeed a Lyapunov function for

the closed-loop system (2.5). We can easily confirm that V (x) = 0 at the equilibrium

xd, and simple algebraic manipulation shows that V (x) > 0 for all x ∈ P(V)\{xd}.

However, establishing the local negative definiteness of the gradient of V (x) on the

simplex P(V), as specified by the inequality (2.12), is a relatively difficult constraint to

encode in SOSTOOLS. We enforce this constraint by using the theory of positivestel-

lansatz (Chesi, 2011): Given a function f(z), where z ∈ Rn, and a set S ⊂ Rn, is

f(z) ≥ 0 (or, alternatively, is f(z) < 0) for every z ∈ S? In this formulation, S is a

semialgebraic set, which is defined as:

S := {z ∈ Rn | pi(z) ≥ 0, qj(z) = 0, i, j ∈ N}, (2.13)

where pi and qi are polynomial functions of the state variable z and N is the set of

natural numbers. S may also include constraints of the form pi(z) < 0 and qj(z) 6= 0.

Schmudgen’s positivestellansatz (Schmüdgen, 1991), stated below, gives sufficient

conditions for the positivity of f(z) on a compact semialgebraic set S ⊂ Rn.

Theorem 2.4.2. Suppose that the semialgebraic set (2.13) is compact. If f(z) ≥ 0

for all z ∈ S, then there exist tj ∈ R[z] and s0, si, sij, sijk, ... ∈ Σs such that

f =
∑
j

tjqj + s0 +
∑
i

sipi +
∑
i,j:i 6=j

sijpipj +
∑

i,j,k:i 6=j 6=k

sijkpipjpk + ... (2.14)
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Figure 2.1: Six-vertex bidirected graph.

In our case, the simplex P(V) is a compact semialgebraic set in RM of the form

(2.13), in which the inequalities pi ≥ 0, i = 1, ...,M , are given by x1 ≥ 0, . . . , xM ≥ 0,

and the equality q1 = 0 is given by 1−x1− . . .−xM = 0. Thus, according to Theorem

2.4.2, verifying the inequality (2.12) for all x ∈ P(V) reduces to searching for t1 ∈ R[x]

and s0, si, sij, sijk, ... ∈ Σs such that

−∇V (x)TF (x) = t1q1 + s0 +
∑
i

sipi +
∑
i,j:i 6=j

sijpipj + ... (2.15)

We can use SOSTOOLS to find polynomials t1 and s0, si, sij, ... that satisfy Equation

(2.15).

We note that Problem 2.4.1 could alternatively be formulated to search for both

the Lyapunov function and the control law simultaneously. Since this would render

the optimization problem bilinear in the variables V (x) and ke(x), it would be possible

to solve the problem by iterating between these variables. However, this approach

does not guarantee convergence to a solution.

2.5 Numerical Simulations

In this section, we numerically verify the effectiveness of the decentralized feedback

controller (2.7), defined in Theorem 2.3.1, and a controller constructed using SOS-

TOOLS, as described in Section 2.4. The controllers were designed to redistribute

populations of N = 20, N = 80, and N = 1200 agents on the six-vertex bidirected

graph shown in Fig. 2.1. The initial distribution is x0 = [0.2 0.1 0.2 0.15 0.2 0.15]T ,
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(a) Controller (2.7) with N = 80
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(b) Controller (2.7) with N = 1200
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(c) Controller via SOSTOOLS with N = 20
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(d) Controller via SOSTOOLS with N = 1200

Figure 2.2: Trajectories of the mean-field model (thick lines) and the corresponding
stochastic simulations (thin lines).

and the desired distribution was xd = [0.1 0.2 0.05 0.25 0.15 0.25]T .

The solution of the mean-field model (2.5) with each of the two controllers and

the trajectories of a corresponding stochastic simulation are compared in Fig. 2.2.

The probability that an agent i in state (vertex) S(e), e ∈ E , at time t transitions to

state T (e) at time t+ ∆t was set to:

P(Xi(t+ ∆t) = T (e)|Xi(t) = S(e)) = ke

(
1

N
Np(t)

)
∆t.

Here, {ke}e∈E is the set of feedback laws and Np(t) = [Np
1 (t) Np

2 (t) ... Np
M(t)]T , where

Np
v (t) is the number of agents in state v ∈ V at time t. We assume that each agent
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can measure the agent populations in its current state and in adjacent states. For

ease of comparison, the total agent populations were normalized to 1 in both the

mean-field model and the stochastic simulation. We observe from the plots that

both controllers drive the agent distributions to the desired equilibrium distribution,

although it appears that the controller obtained from SOSTOOLS has a much slower

convergence rate than the controller (2.7). This is because the inequalities in Problem

2.4.1 only guarantee the asymptotic stability of system (2.5). We note that if faster

convergence is desired, then this could be encoded as a constraint in SOSTOOLS.

The underlying assumption of using the mean-field model (2.5) is that the swarm

behaves like a continuum. That is, the ODE (2.5) is valid as the number of agents

N → ∞ (Kolokoltsov, 2010). Hence, it is imperative to check the performance of

the feedback controller for different agent populations. We observe that the stochas-

tic simulation follows the ODE solution closely in all the simulations, and that the

stochastic simulation exhibits smaller fluctuations about the ODE solution when the

agent population is increased (from N = 80 to N = 1200 for controller (2.7), and

from N = 20 to N = 1200 for the SOSTOOLS controller). In addition, in all sim-

ulations, the numbers of agents in each state remain constant after some time; for

the SOSTOOLS controller, the fluctuations stop earlier when N = 20 than when

N = 1200.

The results presented within this chapter are part of (Elamvazhuthi et al., 2017;

Deshmukh et al., 2018; Elamvazhuthi et al., 2018a, 2019a).
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Chapter 3

DISCRETE-TIME MARKOV CHAIN MODELS ON CONTINUOUS STATE

SPACES - PART I

In this chapter, we prove that a particular class of discrete-time nonlinear control

systems that evolve on a compact subset of Rd can be stabilized to target probability

measures that are positive almost everywhere on this subset, are absolutely continuous

with respect to the Lebesgue measure, with L∞ density. Moreover, we also pose and

numerically solve a relaxed optimization problem to obtain a stochastic feedback law

that produces fast exponential convergence of the system to the desired probability

measure. The problem of stabilizing a nonlinear control system to a target measure

has many potential applications, including the control of large-scale distributed sys-

tems, in which these measures could model the distribution of an ensemble of agents

such as a swarm of robots (e.g. Açıkmeşe and Bayard (2015); Elamvazhuthi and

Berman (2018)) or the distribution of nodes in an electric power grid or a wireless

network (Bagagiolo and Bauso, 2014).

Similar measure control problems have also been considered outside the context of

mean-field games and optimal transport theory. In Mesquita and Hespanha (2012),

piecewise-deterministic Markov processes evolving on Rd are controlled to make a

continuously differentiable probability density invariant and stable. The problem of

stabilizing measures that represent swarms of agents with single-integrator dynamics

perturbed by Brownian motion was addressed in Elamvazhuthi and Berman (2018);

Elamvazhuthi et al. (2018c). Other recent works (Vaidya et al., 2010; Raghunathan

and Vaidya, 2014; Das et al., 2017) extend classical measure-theoretic studies of de-

terministic dynamical systems (Ding and Zhou, 2010; Lasota and Mackey, 2013) to
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investigate the problem of stabilizing a control system to an attractor set from a

measure-theoretic point of view. For the corresponding system evolving on the space

of measures/densities, this means that the goal is to make the set of measures that are

supported over the attractor set, or a Dirac measure at the desired point, invariant.

In contrast, the objective in this section is to asymptotically stabilize a given measure

that is subject to particular constraints. A similar measure stabilization problem is

addressed in Chen et al. (2018), in which the authors consider an optimal control

problem that drives a linear system evolving on Rd to target Gaussian measures. Our

approach differs from this work in that we consider both the state space and the set

of controls to be compact subsets of Rd, and the set of target measures that can be

stabilized is infinite-dimensional rather than finite-dimensional.

We will first identify the types of target measures that can be stabilized by the

discrete-time nonlinear control systems that we consider, using stochastic feedback

laws. In this case, the closed-loop system defines a discrete-time Markov chain on the

continuous state space Rd. For discrete-time Markov chains on discrete state spaces,

the types of measures that can be stabilized are well-understood (Açıkmeşe and Ba-

yard, 2015). This stabilizability result follows from the classical Perron-Frobenius

theorem (Grobler, 1995), which gives a sufficient condition for the uniqueness of the

stationary distribution of a Markov chain. We need an appropriate generalization of

the Perron-Frobenius theorem for infinite-dimensional vector spaces. This generaliza-

tion has been one of the motivating forces in developing the theory of Banach lattices

and positive operators (Schaefer, 1974). At present, this theory has been developed

to the point where the classical theorems of Perron-Frobenius are known to hold un-

der very general hypotheses. A review of progress in this field is surveyed in Grobler

(1995). We use the Jentzsch-Perron theorem, a generalization of the Perron-Frobenius

theorem, to prove our results on the stabilizability of measures.
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Having obtained these stabilizability results, we next address the problem of con-

structing feedback control laws that maximize the system’s convergence rate to the

target measure. For this, we exploit properties of geometrically ergodic discrete-time

Markov chains, which converge exponentially fast to their target distributions. It is

known that a Markov chain is geometrically ergodic if the forward operator that oper-

ates on the densities of the process has a spectral gap in L2; the converse is only true

for reversible Markov chains (Roberts and Tweedie, 2001). Therefore, the convergence

rate of the Markov chain that describes our system can be characterized using this

spectral gap. Thus, to compute feedback controllers that maximize the convergence

rate of our system, we first prove the existence of a spectral gap in L2 and then define

an optimization problem that maximizes this spectral gap. Previous work has also

addressed the maximization of the convergence rate of discrete-time Markov chains

(Boyd et al., 2004; Açıkmeşe and Bayard, 2015) and continuous-time Markov chains

(Berman et al., 2009; Deshmukh et al., 2018) to stationary distributions; however,

these results are restricted to finite, discrete state spaces.

3.1 Notation

Here, we present notation that will be used in this chapter and the next. We let

det(·) stand for determinant.

We denote the state space by (Ω,B(Ω)), a measurable space. Here, Ω ⊆ Rd is a

compact set and B(Ω) represents the Borel sigma algebra on Ω corresponding to the

standard topology on Rd. The set of admissible control inputs and its corresponding

Borel sigma algebra will be denoted by (U,B(U)). We will assume that U is compact

in Rd. The dimension of the set U could be larger than d, but we are restricting it

for notational simplicity. We denote the spaces of probability measures on Ω and U

by P(Ω) and P(U), respectively. The Lebesgue measure on Rd will be denoted by
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m. For a measure ν on Rn, ν is said to be absolutely continuous with respect to m,

denoted by ν � m, if ν(E) = 0 whenever m(E) = 0. In this case, there exists a

function f : Rn → R such that dν = fdm; this function is called the Radon-Nikodym

derivative of ν with respect to m (Folland, 2013).

L+(X , ν) is the space of all measurable functions from X to [0,∞]. For topological

spaces X ,Y , if T : X → Y is an operator, it will be understood that ‖T‖ stands for

the operator norm, defined as supx
‖Tx‖Y
‖x‖X

.

Let (X ,N ,m) be a measure space, where N is the sigma algebra and m is a

measure. A transition kernel or Markov kernel (or simply kernel) is a map Q :

X × N → [0, 1], where Q(·, E) is a measurable function on X for each fixed E ∈ N

and Q(x, ·) is a measure on X for each fixed x ∈ X . Furthermore, for ν on P(X ), the

transition kernel Q induces an operator T : P(X )→ P(X ) defined as:

Tν(E) =

∫
X
Q(x,E) dν(x), E ∈ N . (3.1)

Similarly, Q can be used to define an operator on L2(X ,m). Suppose that ν is

absolutely continuous with respect to m, denoted as ν � m, and the Radon-Nikodym

derivative of ν with respect to m, dν/dm, is given by dν/dm = fν ∈ L2(X ,m).

In simple terms, fν is called the density of ν. Then Q induces an operator T ∗ :

L2(X ,m)→ L2(X ,m), the adjoint of T , defined as

T ∗f(x) =

∫
X
f(y)Q(x, dm(y)), x ∈ X , f ∈ L2(X ,m). (3.2)

We say that Q is regular if there exists a function q ∈ L∞(X × X ,m×m) such that

for each x ∈ X , the measure Q(x, ·) is absolutely continuous with respect to m and

Q(x, dy) = q(x, y)dm. The function q : X×X → R̄+ will be called the kernel function

of the transition kernel Q.

We define a continuous map F : Ω×U → Rd. We also define Fx as the map from

U → Rd when x ∈ Ω is held fixed, and Fu as the map from Ω → Rd when u ∈ U is
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held fixed. We specify that F is non-singular, which means that for all E ∈ B(Ω),

m(F−1
u (E)) = 0 and m(F−1

x (E)) = 0 whenever m(E) = 0.

The spectrum σ(T ) of a continuous linear operator T on the Banach space X is

the non-void compact set of complex numbers λ for which T − λI does not have a

continuous inverse on X . If λ ∈ σ(T ) is such that T − λI is not injective, then λ

is called an eigenvalue of T and the set σp(T ) of all eigenvalues is called the point

spectrum of T . The spectral radius of T will be denoted by r(T ) := sup{|λ| : λ ∈

σ(T )}. We denote the complement of σ(T ) by ρ(T ) and call it the resolvent set of T .

Given a Banach space X , if X ∗ is its dual space, then the duality pairing will be

denoted by 〈f, g〉(X ,X ∗), where f ∈ X , g ∈ X ∗.

A linear operator T on a real ordered vector space X is said to be positive, denoted

by T > 0, if for x ∈ X , x ≥ 0 implies that Tx ≥ 0.

3.2 Problem Formulation

Now we are ready to state the problems addressed in this section. Consider the

nonlinear discrete-time control system,

xn+1 = F (xn, un), n = Z+,

x0 ∈ Ω, (3.3)

where xn ∈ Ω for each n ∈ Z+, and (un)∞n=1 is a sequence in U such that F (xn, un) ∈

Ω. Suppose that x0 is a random variable with distribution µ0. Then (xn)∞n=1 is a

Markov chain with corresponding sequence of distributions (µn)∞n=1. In particular,

the nonlinear control system (3.3) induces a controlled flow on the space of measures

P(Ω), given by

µn+1 = F (·, un)#µn, n = 0, 1, 2, ...

µ0 ∈ P(Ω), (3.4)
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where F (·, un)# : P(Ω)→ P(Ω) is the induced forward operator corresponding to the

deterministic map F (·, un). This operator is defined as

F (·, un)#µn(E) = µn(F−1
un (E)) =

∫
Ω

χ
E(F (x, un))dx (3.5)

for each E ∈ B(Ω), where χ(·) denotes the characteristic function of a set.

We are interested in the problem of stabilizing system (3.4) to a given target

measure. Toward this end, we must determine whether there exists a sequence of

feedback laws such that starting from any initial measure, the system (3.4) converges

to the target measure. However, in Elamvazhuthi et al. (2019b), a counterexample

was provided to show that using deterministic feedback laws, the problem of reaching

desired measures in finite time is generally unsolvable. A similar argument shows

that this problem is unsolvable even without the finite-time convergence requirement.

Hence, we will instead address the relaxed version of this problem, which is formulated

as Problem 3.2.1 below.

Problem 3.2.1. (Stabilizability of target measures with stochastic control)

Given a target measure µd ∈ P(Ω) and a non-singular continuous map F : Ω× U →

Rd, determine whether there exists a state-to-control transition kernel K : Ω×B(U)→

[0, 1] such that the closed-loop system

µn+1 = Pµn, n = 0, 1, 2, . . . ; µ0 ∈ P(Ω) (3.6)

satisfies limn→∞ P
nµ0 → µd for all initial measures µ0 ∈ P(Ω), where the forward

operator P that keeps P(Ω) invariant is defined for each E ∈ B(Ω) as

(Pµ)(E) =

∫
Ω

∫
U

χ
E(F (x, u))K(x, du)dµ(x). (3.7)

This problem will be addressed in Section 3.4, wherein an explicit state-to-control

transition kernel, also referred to here as a stochastic feedback law, will be constructed
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for target measures that satisfy certain properties. Additional constraints will be

imposed on F and Ω.

Given that there exists such a state-to-control transition kernel, we then address

the problem of choosing the kernel that optimizes the convergence rate (mixing rate)

of system (3.6) to the desired measure.

Problem 3.2.2. (Optimization of convergence rate) Let K be the set of all

Markov kernels defined on Ω × B(U) → R+, and define ‖µ‖TV := supE∈B(Ω) |µ(E)|

as the total variation norm. Given a target measure µd ∈ P(Ω), a non-singular

continuous map F : Ω × U → Rd, and a constant α ∈ (0, 1), determine whether the

following optimization problem admits a solution:

min
K
α

such that ‖µn − µd‖TV ≤ αn for all n ∈ Z+, subject to the constraint

µn+1 = Pµn,

where P is the forward operator (3.7).

Markov chains that satisfy the bound αn above are called geometrically ergodic

chains. Different definitions of geometric ergodicity can be posed in terms of the

particular norm (e.g., the L1, L2, or total variation norm) that is used to quantify

the distance between the target and initial measures. The relationships among these

definitions are discussed in Roberts et al. (1997). In addition, the spectral gap in

L2 is often easier to formulate than the total variation norm. Therefore, instead of

framing the optimization problem in terms of the total variation norm, we shall pose

it as the maximization of the L2(Ω,m) spectral gap.
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3.3 Analytical Properties of the Forward Operator

For the case where the state space is discrete, Problem 3.2.2 has been solved in

Boyd et al. (2004) by maximizing the modulus of the second largest eigenvalue of

the corresponding transition probability matrix. Since the largest eigenvalue of any

stochastic matrix is 1, the problem reduces to maximizing the spectral gap of the

transition probability matrix. When the state space is continuous, the forward oper-

ator replaces the matrix, and we can optimize the convergence rate by maximizing the

spectral gap in L2(Ω,m). Before formulating the optimization problem, we establish

the existence of the L2(Ω,m) spectral gap.

Let µ ∈ P(Ω). Suppose that µ is absolutely continuous with respect to the

Lebesgue measure m (denoted as µ � m). Hence, by the Radon-Nikodym theorem

Folland (2013), there exists an m-integrable function fµ : Ω→ R such that dµ = fµdm

and fµ ∈ L1(Ω,m). Note that since µ is restricted to be a probability measure, fµ is

naturally non-negative on Ω. We will further restrict fµ to be square-integrable with

respect to m; that is, fµ ∈ L2(Ω,m). This restriction gives us the advantage of being

able to analyze the forward operator on a Hilbert space. Let K : Ω × B(U) → [0, 1]

be the transition kernel. We specify that K is regular; that is, if its kernel function

is denoted as k, then k ∈ L∞(Ω× U,m×m). Furthermore, we impose the following

constraints on k:

k(x, u)


≥ 0, for m-a.e. x ∈ Ω, u ∈ U s.t. F (x, u) ∈ Ω

= 0, otherwise

(3.8)

∫
u∈U

k(x, u)du = 1, for m-a.e. x ∈ Ω. (3.9)

These properties ensure that K is indeed stochastic.

Instead of working with P , which acts on the space of probability measures P(Ω),

we will instead use P to define two linear operators, P̄ and P̃ , that act on the spaces
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L1(Ω,m) and L2(Ω,m), respectively. We note that L2(Ω,m) has the advantage of

being a Hilbert space. The operator P̄ on L1(Ω,m) is defined by restricting P to

those measures in P(Ω) that have integrable Radon-Nikodym derivative functions

with respect to m, or equivalently, are absolutely continuous measures, denoted here

using the subscript ac, i.e., P : P(Ω)|ac → P(Ω)|ac. Let L ⊆ L1(Ω,m) be defined such

that, if µ ∈ P(Ω)|ac and dµ/dm = f , then f ∈ L. Note that since P(Ω) is not a vector

space, L is a strict subset of L1(Ω,m). Define P̄ : L → L such that d(Pµ)/dm = P̄ f .

By the linearity of P̄ , we extend it to the whole of L1(Ω,m), so we can now define P̄ :

L1(Ω,m) → L1(Ω,m). Similarly, by restricting P(Ω) to measures that have square-

integrable densities with respect to m, we define P̃ : L2(Ω,m) → L2(Ω,m). Shortly,

we will establish that these operators are well-defined, in the sense that P preserves

absolute continuity and square-integrability of the Radon-Nikodym derivatives, and

moreover is bounded. The three operators P , P̄ , and P̃ are all referred to as forward

operators, since they describe the evolution of measures/densities forward in time. We

will primarily be working with the operator P̃ , and the title of this section refers to

this operator. Note that we cannot write an explicit formula for P̃ f(·) for f ∈ L2(Ω)

directly from (3.7). The backward operator is defined to be the Banach adjoint of

the forward operator; hence, we define the backward operator P̃ ∗ on L2(Ω,m), but

again, we cannot write an explicit expression for P̃ ∗f .

We will now explore properties of the forward operator P̄ . First, we need to check

whether P̄ is bounded, linear, and well-defined. To establish these properties, we

need the following definition.

Definition 3.3.1. (Lasota and Mackey, 2013) Let (X ,M, ν) be any measure space.

Any linear operator T : L1(X , ν) → L1(X , ν) that satisfies the following two condi-

tions is called a Markov operator:
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1. Tf ≥ 0 for f ≥ 0, f ∈ L1(X , ν);

2. ‖Tf‖1 = ‖f‖1 for f ≥ 0, f ∈ L1(X , ν).

Lemma 3.3.2. If F is non-singular and continuous, then the operator P̄ is well-

defined, Markov, and bounded.

Proof. We begin by proving that P preserves those measures that are absolutely

continuous with respect to the Lebesgue measure. Given that µ ∈ P(Ω) is such that

µ� m, we must show that Pµ� m. Indeed, if E ∈ B(Ω) is such thatm(E) = 0, then

µ(E) = 0, which further implies that (µ×m)(F−1(E)) = 0. The last equality holds

true due to the non-singularity of F with respect to both variables x, u. Therefore,

we have that χE(F (x, u)) = χ
F−1(E)(x, u) = 0 m-a.e. x ∈ Ω, u ∈ U. From (3.7), we

have

(Pµ)(E) =

∫
Ω

∫
U

χ
E(F (x, u))k(x, u)dm(u)dµ(x)

≤ ‖k‖∞
∫

Ω

∫
U

χ
E(F (x, u))dm(u)dµ(x) = 0.

Therefore (Pµ)(E) = 0, and we obtain Pµ � m. Since P preserves absolutely con-

tinuous probability measures, P̄ preserves L1(Ω,m).

Next, we prove that P̄ is Markov. Condition (1) of Definition 3.3.1 follows from

property (3.8), and accordingly the integrand in (3.7) is non-negative. Condition (2)

follows from the fact that P preserves probability measures P(Ω) that are absolutely

continuous with respect to m. Thus, P̄ is Markov. Also, from condition (ii), it follows

that ‖P̄‖1 = 1.

We will be using the following result, which is straightforward to prove, several

times in this section.
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Lemma 3.3.3. Suppose that ν is a measure on Rd such that ν � m. Further, suppose

that ν(E) ≤ Cm(E) for any set E ∈ B(Rd), where C ∈ R is a constant. Then the

derivative of ν with respect to m, dν/dm, is in L∞(Rd,m).

We can rewrite P in (3.7) in terms of what we will refer to as the closed-loop

transition kernel Q : Ω× B(Ω)→ R̄+. For E ∈ B(Ω), (3.7) can be rewritten as

(Pµ)(E) =

∫
Ω

Q(x,E) dµ(x), (3.10)

Q(x,E) = (Pδx)(E). (3.11)

Here δx is the Dirac measure at x. Example 9.10 in Schilling (2017) justifies evaluation

of the integral in (3.10) against a Dirac measure. It is straightforward to confirm that

Q is a well-defined transition kernel, and that Q(x,Ω) = 1. This will aid us in proving

our next result in Proposition 3.3.4, which is at the heart of the analysis, in that it

proves the compactness of P̃ . This in turn guarantees that the spectrum of P̃ is

discrete and therefore that a spectral gap exists (which is not true for operators with

a continuous spectrum). This follows from Theorem VII.7.1 in Conway (2013), which

states that for a compact operator T on an infinite-dimensional Hilbert space H, the

spectrum of T contains 0 and is discrete; furthermore, if the eigenvalues λi exist, they

can be arranged in a decreasing order that tends to 0: |λ1| ≥ |λ2| ≥ . . . ≥ |λn| → 0.

We will also require F to satisfy Lusin’s property (Bogachev, 2007) in both the x and

u variables. For x ∈ Ω fixed, this condition is stated as follows: for Fx : (U,m) →

(Rd,m), we say that Fx satisfies Lusin’s property if m(Fx(E)) = 0 for every E ∈ U

with m(E) = 0. Lusin’s property for Fu has a similar definition.

Proposition 3.3.4. If K is regular and F is C1 differentiable and satisfies Lusin’s

property, then P̃ : L2(Ω,m)→ L2(Ω,m) is well-defined, bounded, and compact.

Proof. The proof will be divided into the following key steps.
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1. Prove that the closed-loop kernel Q defined in (3.11) is regular; that is, its kernel

function is in L∞(Ω× Ω,m×m).

2. Prove that the operator P̃ is an integral operator, as defined in Conway (2013),

on L2(Ω× Ω,m×m).

3. Apply Proposition II.4.7 of Conway (2013) to prove that P̃ indeed satisfies all

the properties stated in the proposition.

Fix z ∈ Ω and E ∈ B(Ω). Setting µ = δz in (3.7), we obtain:

(Pδz)(E) =

∫
Ω

∫
U

χ
E(F (x, u)) k(x, u) du dδz

=

∫
U

χ
E(F (z, u)) k(z, u) du (3.12)

≤ ‖k‖∞
∫
U

χ
E(F (z, u)) du (3.13)

= ‖k‖∞ m(F−1
z (E)). (3.14)

The equality (3.12) follows from Fubini’s theorem (Folland, 2013). We note that by

the non-singularity of F , m(F−1
z (E)) = 0 if µ(E) = 0. Therefore, (Pδz)(E) is an

absolutely continuous measure with respect to m. Recall the generalized version of

the change of variables theorem (Theorem 5.8.30, Bogachev (2007)) Since the change

of variables theorem can only be applied to an open set, we restrict F to int(U) (i.e.,

F |int(U)). The boundary ∂U can be excluded, since by Lusin’s property, the fact that

the measure of ∂U is 0 implies that m(Fz(∂U)) = 0. Since Fx is C1 differentiable, the

derivative of Fx with respect to u, denoted by Du(Fx), is bounded on U uniformly

over all x ∈ Ω. Hence, the quantity | detDuFx| has both upper and lower bounds,

both positive. Let c1 = infx,u | detDuFx|. The integral in (3.13) can be bounded from

above as follows:∫
U

χ
E(F (z, u))du ≤ c1

∫
U

χ
E(F (z, u))| detDuFz|du.
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Since Fz satisfies Lusin’s property, we can now apply the change of variables theorem

to the right-hand side of the above inequality to obtain,∫
U

χ
E(F (z, u))du ≤ c1

∫
Fz(U)

χ
E(y)dy = c1

∫
E∩Fz(U)

dy = c1 m(E ∩ Fz(U)) ≤ c1 m(E).

Combining this result with (3.13), we obtain Q(z, E) = (Pδz)(E) ≤ ‖k‖∞ c1 m(E).

The constant c1 is independent of z ∈ Ω and E ∈ B(Ω). Therefore, Q is regular. Let

P̃ fµ be the density function of Pµ with respect to the Lebesgue measure. Therefore

we have,

(Pµ)(E) =

∫
E

(P̃ fµ)(x)dx =

∫
Ω

Q(x,E)fµ(x)dx (3.15)

≤
∫

Ω

‖k‖∞c1m(E)fµ(x)dx = Cm(E),

where C is a constant. The second equality follows from (3.10), and the inequality

follows from computations above. Hence, we have achieved a uniform bound on

(Pµ)(E), which by Lemma 3.3.3 means that P̃ in fact takes L2(Ω,m) functions to

L∞(Ω,m). Now we can apply Theorem 1.3 of Arendt and Bukhvalov (1994), which

claims that if X is any σ-finite measure space, any bounded operator from Lp(X )

(1 ≤ p < ∞) into L∞(X ) is an integral operator. This proves that our P̃ is indeed

an integral operator.

By Lemma 3.3.3, the kernel function of Q is in L∞(Ω×Ω,m×m) ⊆ L2(Ω×Ω,m×m).

Denote the kernel function of Q by q : Ω × Ω → R+. For each x, qx : Ω → R+ is

such that Q(x, dy) = qxdm. We can now give an integral representation of P̃ . From

(3.15), we have ∫
E

(P̃ fµ)(x)dx =

∫
Ω

∫
E

q(x, y)fµ(x)dydx.

Using Fubini’s theorem and comparing the integrands of the two integrals over E

yields (P̃ fµ)(y) =
∫

Ω
q(x, y)fµ(x)dx. Since P̃ is an integral operator on L2(Ω,m)
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with its integral kernel, as defined in Conway (2013), given by q ∈ L∞(Ω×Ω,m×m),

we can apply Proposition II.4.7 of Conway (2013) to obtain our result, namely, that

P̃ is well-defined, bounded, and compact.

From the statement of Proposition 3.3.4, it can be inferred that there exists a

q ∈ L∞(Ω×Ω,m×m) such that we can define the forward operator P̃ : L2(Ω,m)→

L2(Ω,m) as:

(P̃ fµ)(y) =

∫
Ω

q(x, y)fµ(x)dx. (3.16)

Using the definition of the adjoint operator, the backward operator P̃ ∗ : L2(Ω,m)→

L2(Ω,m) is,

(P̃ ∗f)(x) =

∫
Ω

q(x, y)f(y)dy. (3.17)

In the case of finite-dimensional Markov chains, 1 is the largest eigenvalue of the

transition probability matrix, and 1 is its corresponding (right) eigenvector. Similarly,

obtaining the adjoint of P from (3.10), we evaluate (P ∗1)(x) =
∫

Ω
Q(x, dy) = 1. This

is true for every x ∈ Ω, and therefore P ∗1 = 1. Thus, 1 is an eigenvalue of P (P ∗).

Corresponding to 1, we assume that P has a eigenvector or stationary measure at

π ∈ P(Ω); that is, Pπ = π. We will further assume that π has a density function

dπ
dm

= fπ which is strictly positive on Ω, and additionally, fπ, f
−1
π ∈ L∞(Ω,m). The

reason for this choice will become clear shortly. It can be confirmed that fπ is an

eigenvector of the operator P̃ corresponding to eigenvalue 1. Therefore, from (3.16)

and (3.17), we have the following properties of q:∫
Ω

q(x, y)dy = 1 (3.18)∫
Ω

q(x, y)fπ(x)dx = fπ(y) (3.19)

We now show that 1 is the largest eigenvalue of P̃ . Toward this end, one could

prove that P̃ is a contraction, i.e. ‖P̃‖ ≤ 1, using the fact that |λ| ≤ ‖T‖ for any
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bounded linear operator T . However, P̃ is not necessarily a contraction in the L2

norm. We introduce a new bounded operator P̂ on a Hilbert space that is isomorphic

to L2(Ω,m), such that P̂ is a contraction on this new space. We will show that

the spectrum of P̃ is invariant under the transformation P̃ 7→ P̂ . Recall that π is

a stationary measure of P that satisfies both π � m and m � π. We define P̂ :

L2(Ω, π)→ L2(Ω, π). Since m and π are mutually absolutely continuous, L2(Ω,m) ∼=

L2(Ω, π) as Hilbert spaces. To express P̂ as an integral operator, we carry out the

following computations. Let f̂µ = dµ
dπ

. Then:

d(Pµ) = (P̃ fµ)dm =
(P̃ fµ)

fπ
fπ dm =

(
P̃ fµ
fπ

)
dπ = (P̂ f̂µ)dπ,

where the last equality follows from the fact that fµ
fπ

= dµ
dm

dm
dπ

= dµ
dπ

. The operator

P̂ is well-defined because π and m are mutually absolutely continuous and because

we have assumed that fπ,
1
fπ
∈ L∞(Ω,m). Now we define a multiplication operator

Mfπ : L2(Ω,m) → L2(Ω, π), Mfπg = fπg. The operator Mfπ is well-defined and

bounded according to Theorem II.1.5 of Folland (2013). P̂ can be expressed as,

P̂ f̂µ =

(
P̃ fµ
fπ

)
dπ = M−1

fπ
(P̃ fµ) = M−1

fπ
P̃

(
fµfπ
fπ

)
.

From this, we conclude that

P̂ = M−1
fπ
P̃Mfπ . (3.20)

Finally, from (3.16), (3.20), and the definition of Mfπ , we are able to express P̂ as an

integral operator:

(P̂ f̂µ)(y) =

∫
Ω

1

fπ(y)
q(x, y)f̂µ(x)fπ(x)dx =

∫
Ω

q(x, y)

fπ(y)
f̂µ(x)dπ(x). (3.21)

Note that the integral kernel for the above integral operator is q(x,y)
fπ(y)

.

Proposition 3.3.5. P̂ as defined in (3.21) is bounded with ‖P̂‖L2(π) = 1, and as a

result, r(P̃ ) ≤ 1.
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Proof. We will use Theorem 6.18 of Folland (2013) to prove the first part of the

proposition. In order to check the conditions of this theorem, we need the kernel

q(x,y)
fπ(y)

to be in L1(Ω, π) with respect to each variable x and y when the other variable

is fixed. First, we fix x and evaluate the integral
∫

Ω
q(x,y)
fπ(y)

dπ. By property (3.18), we

have ∫
Ω

q(x, y)dy =

∫
Ω

q(x, y)

fπ(y)
fπ(y)dy =

∫
Ω

q(x, y)

fπ(y)
dπ(y) = 1. (3.22)

Next, we evaluate the integral
∫

Ω
q(x,y)
fπ(y)

dπ(x). Using property (3.19), we have∫
Ω

q(x, y)fπ(x)dx = fπ(y) =⇒
∫

Ω

q(x, y)

fπ(y)
dπ(x) = 1.

Therefore, the constant C in Theorem 6.18 of Folland (2013) is 1 in this case, and

therefore ‖P̂‖L2(π) ≤ 1. This implies that r(P̂ ) ≤ ‖P̂‖L2(π) ≤ 1. Recall that P̂ =

M−1
fπ
P̃Mfπ . If λ ∈ σ(P̃ ), then (P̃−λI) is not invertible, and further, M−1

fπ
(P̃−λI)Mfπ

is not invertible, which implies that λ ∈ σ(P̂ ). From this, we also note that the

converse holds true; that is, if λ ∈ σ(P̂ ) then λ ∈ σ(P̃ ). As a consequence, we

conclude that r(P̂ ) ≤ 1.

In fact, P̂ is bistochastic, which implies that 1 is both a right and left eigenvector

of P̂ . This follows from the equations below:

P̂1 = M−1
fπ
P̃Mfπ1 = M−1

fπ
P̃ fπ = M−1

fπ
fπ = 1. (3.23)

The adjoint equation P̂ ∗1 = 1 follows from (3.22) in the Appendix.

In conclusion, in this section we showed that the forward operator (3.16) defined

on L2(Ω,m) is compact and its largest eigenvalue is 1.

3.4 Existence of a Solution to Problem 3.2.1

In this section, we will construct the forward operator P : P(Ω)→ P(Ω) and the

analogous operator on densities, P̃ : L2(Ω,m)→ L2(Ω,m), that solve Problem 3.2.1.
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This will be achieved in several steps, which are enumerated below. The proofs of

the results presented in this section are reserved for the Appendix.

We specify that the measure µd ∈ P(Ω) is such that its density function fd is

strictly positive a.e. on Ω and satisfies fd,
1
fd
∈ L∞(Ω,m). Next, we state our assump-

tions. Suppose that we are given a map F : Ω×U → Rd that satisfies the conditions

stated in Problem 3.2.1. Further, as noted in Proposition 3.3.4, for compactness of

the to-be-constructed operator P̃ to hold, we require F to be C1 differentiable and

to satisfy Lusin’s property. Moreover, as we will see, this process of construction

will require us to impose additional restrictions on Ω. Specifically, Ω must be path

connected and satisfy the cone condition, to be defined in this section. Lastly, for the

system (3.3) to be controllable, we need the following local controllability condition.

Definition 3.4.1. The system (3.3) is said to be locally controllable if there exists

r > 0 such that, for every x ∈ Ω, Br(x) ∩ Ω ⊆ F (x, U).

From here on, we will consider r to be fixed as per this definition.

The steps for constructing P and P̃ are as follows.

1. Construct a reference transition kernel, or stochastic feedback law, K : Ω ×

B(U) → [0, 1]. See (3.24). Prove that K is a well-defined Markov kernel; that

is, it is a measurable function on Ω in the first variable and a measure on U in

the second variable. See Proposition 3.4.2. Prove that K is regular; that is, it

has an L∞(Ω× U,m×m) kernel function. See Proposition 3.4.3.

2. Using the constructed K, formulate an operator S̃ : L2(Ω,m)→ L2(Ω,m). By

Proposition 3.3.4, S̃ should be well-defined, bounded, and compact.

3. Prove that S̃ is irreducible and that r(S̃) = 1, and moreover, that S̃∗1 = 1.

See Propositions 3.4.5 and 3.4.6. Corresponding to the eigenvalue 1, there must
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be an eigenvector of S̃, say fπ. Prove that fπ is in L∞(Ω,m) and is positive

on Ω m-a.e. See Proposition 3.4.7. Prove the uniqueness of the eigenvalue 1,

which in turn will guarantee that the eigenvector fπ is the unique equilibrium

of system (3.6). See Theorem 3.4.9.

4. Using S̃, construct a new operator P̃ : L2(Ω,m) → L2(Ω,m) such that the

desired function fd is its eigenvector. See (3.30).

5. Obtain an expression for the closed-loop transition kernel for the operator P ,

which we shall call Q̂ : Ω× B(Ω)→ [0, 1]. See (3.32).

6. Prove that the discreteness of the spectrum of S̃ is preserved under the trans-

formation of S̃ to P̃ . Further, prove that 1 is the spectral radius and a unique

eigenvalue of P̃ . See Theorem 3.4.12.

7. Prove that P̃ is primitive. This is to ensure that fd is the unique asymptotically

stable equilibrium of the system (3.6). See Theorem 3.4.13.

8. The final step is to confirm that there exists a state-to-control transition kernel

of P , which we will call K̂ : Ω × B(U) → [0, 1], such that Q̂ is the closed-loop

transition kernel of P . See Theorem 3.4.14.

Step 1: We now construct a suitable reference kernel K. Given x ∈ Ω, define

Ux := F−1
x (Ω). Since F is continuous in both variables, it is clear that the set Ux is

Borel measurable for each x ∈ Ω. Let W ∈ B(U). Then K is defined as

K(x,W ) =
m(W ∩ Ux)
m(Ux)

. (3.24)

We note that in general, Ux 6= U . We illustrate this with the following example. Let

Ω = [−1, 1] and U = [−0.5, 0.5]. Suppose that F (x, u) = x+u. Then for x = 1 fixed,

we do not have that for all u ∈ U , F (1, u) ∈ Ω; in fact, any u ∈ (0, 0.5] will result in
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F (1, u) ∈ (1, 1.5], which is outside our defined Ω. Therefore, the appropriate subset

of U that ensures that F (1, u) ∈ Ω is Ux=1 = [−0.5, 0] ( U .

To check that K is well-defined, we must confirm that m(Ux) is non-zero. This

requires the concept of cone condition (Definition 4.6, Adams and Fournier (2003)).

A domain D is said to satisfy the cone condition if there exists a finite cone C such

that each x ∈ Ω is the vertex of a finite cone Cx that is contained in Ω and congruent

to C. Note that Cx need not be obtained from C by parallel translation, but simply

by rigid motion.

Proposition 3.4.2. If Ω satisfies the cone condition and F is a C1 function and

satisfies Lusin’s property, then m(Ux) is non-zero for all x ∈ Ω, and hence K in

(3.24) is a well-defined Markov kernel.

Proof. Let x be an arbitrary point in Ω. In order to show that m(Ux) is non-zero, we

will use the fact that F−1
x (Br(x)∩Ω) ⊆ Ux = F−1

x (Ω) and show that m(F−1
x (Br(x)∩

Ω)) cannot be arbitrarily small. For clarity in the expressions below, we denote

Br(x) ∩ Ω by Bx. We note that by the non-singularity of Fx, m(F−1
x (Bx)) > 0 if

m(Bx) > 0.

There are two possible conditions under which m(F−1
x (Bx)) is arbitrarily small.

First, m(Bx) could be arbitrarily small. To show that this is not true, we estimate

the lower bound of m(Bx) using the cone condition as follows. According to this

condition, there is a cone C that is completely contained in Ω with x at its vertex.

Accordingly, the intersection of this cone and Bx has a positive measure. Denoting

this intersection by CB, we have that m(CB) ≤ m(Bx). Note that the lower bound

m(CB) is independent of x.

The second way in which m(F−1
x (Bx)) could be arbitrarily small is if the measure

of F−1
x of a set of positive measure is arbitrarily small. We show that this is not
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true by obtaining a lower bound on m(F−1
x (Bx)), given that m(Bx) is bounded from

below. By definition,

m(F−1
x (Bx)) =

∫
U

χ
Bx(F (x, u))du

Since F is C1, the determinant of its derivative with respect to each variable is

bounded; let

supx,u | det(DuFx)|)−1 = c2 < ∞. We bound the integral from above and apply the

generalized change of variables formula (Bogachev, 2007), as was done in the proof

of Proposition 3.3.4, to obtain the following lower bound on m(F−1
x (Bx)):∫

U

χ
Bx(F (x,u))du ≥ c2

∫
U

χ
Bx(F (x, u))| det(DuFx)|du

= c2

∫
Fx(U)

χ
Bx(y)dy = c2 m(Bx ∩ Fx(U))

= c2 m(Bx) ≥ m(CB) (3.25)

Therefore, m(F−1
x (Bx)) is non-zero, and consequently m(Ux) is non-zero, for all x ∈ Ω.

Next, we confirm that K is a well-defined Markov kernel. Toward this end, we

first fix W ∈ B(U) and check whether K(·,W ) is a measurable function on Ω. Let

G = {(x, u) ∈ Ω×W : F (x, u) ∈ Ω}. G is Borel measurable because F is continuous

in both variables. Since χ
G is a Borel measurable function, the Tonelli theorem

Folland (2013) implies that (χG)x is Borel measurable for each x ∈ Ω, and therefore

that x 7→
∫

(χG)xdu is Borel measurable. Since (χG)x(u) = χ
G(x, u), we have that∫

(χG)xdu = m(F−1
x (Ω)) = m(Ux). That is, x 7→ m(Ux) is Borel measurable, which

implies that x 7→ m(W ∩Ux)/m(Ux) = K(x,W ) is Borel measurable. Next, we check

that K(x, ·) is a measure on (U,B(U)) for each fixed x ∈ Ω. This is a straightforward

consequence of the fact that the Lebesgue measure restricted to Ux, m|Ux , is a measure

on U . Therefore, K is a well-defined Markov kernel.
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The following result ensures that K is regular; that is, it has a kernel function in

L∞(Ω× U,m×m).

Proposition 3.4.3. The transition kernel K defined in (3.24) is regular. We denote

the kernel function by k : Ω × U → R+; k ∈ L∞(Ω × U,m × m). For each x ∈ Ω,

kx : U → R+ is such that K(x, du) = kxdm.

We need a lemma before presenting the proof. To begin, let the transition kernel

K induce an operator, say A : P(Ω)→ P(U), as follows. For each measure µ on Ω,

(Aµ)(W ) =

∫
Ω

K(x,W )dµ(x), W ∈ B(U) (3.26)

defines a measure on (U,B(U)). Similar to our definition of P̄ , we define Ā :

L1(Ω,m)→ L1(U,m).

Lemma 3.4.4. The operators A and Ā are well-defined; that is, they preserve prob-

ability measures on U and L1(U,m), respectively. Moreover, A and Ā are bounded,

and Ā : L1(Ω,m)→ L∞(U,m).

Proof. Let µ ∈ P(Ω) such that µ � m. We will first show that Aµ ∈ P(U) and

Aµ � m. A straightforward computation shows that Aµ defines a measure and

(Aµ)(U) = 1, and therefore Aµ ∈ P(U). We now check absolute continuity of Aµ

with respect to m. Let W ∈ B(U) be such that m(W ) = 0. Then we have that,

(Aµ)(W ) =

∫
Ω

K(x,W )dµ(x) =

∫
Ω

m(W ∩ Ux)
m(Ux)

dµ = 0.

Hence, Aµ� m. This shows that A, and therefore Ā, is well-defined.

To prove the boundedness of A, we carry out the following computation. Recall

that we used the cone condition in the proof of Proposition 3.3.4 to establish that, for

any x ∈ Ω, there exists a cone Cx, congruent to a cone C, that is completely contained

in Ω with x at its vertex. The intersection of Cx and Br(x) ∩ Ω, denoted by CB, has
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a positive measure. In Lemma 3.4.2, we showed that m(Ux) > m(F−1
x (Br(x)∩Ω)) >

m(CB); that is, m(Ux) is lower-bounded by a constant m(CB) that is independent of

x. Further, since W ∩ Ux ⊆ W , m(W ∩ Ux) ≤ m(W ). Combining these results, we

obtain the following inequality:

(Aµ)(W ) =

∫
Ω

m(W ∩ Ux)
m(Ux)

dµ(x) ≤
∫

Ω

m(W )

m(CB)
dµ(x) ≤ m(W )

m(CB)
.

This shows that Aµ is equivalent to the Lebesgue measure, and therefore A is

bounded. Consequently, Ā is also bounded. Finally, since Aµ has a uniform up-

per bound, by Lemma 3.3.3, the operator Ā takes L1(Ω,m) to L∞(U,m).

Proof of Proposition 3.4.3. The proof follows from an application of Theorem 1.3

of Arendt and Bukhvalov (1994) in combination with the approach used in Proposition

3.3.4. �

We note that the kernel function k satisfies the properties (3.8)-(3.9).

Step 2: With the given map F and the constructed kernel K in (3.24), we define a

forward operator S : P(Ω)→ P(Ω) as per (3.7) as follows:

(Sµ)(E) =

∫
Ω

∫
U

χ
E(F (x, u))K(x, du)dµ(x), E ∈ B(Ω).

Let Q : Ω× B(Ω)→ [0, 1] be the closed-loop transition kernel of S, defined as

Q(x,E) =

∫
U

χ
E(F (x, u))K(x, du).

Denote the kernel function of Q by q. Note that q must satisfy the properties

(3.18)-(3.19). By Proposition 3.3.4, q ∈ L∞(Ω × Ω,m × m). By restricting S

to those probability measures that have L2(Ω,m) derivatives w.r.t m, we define

S̃ : L2(Ω,m)→ L2(Ω,m) as per (3.16):

(S̃f)(y) =

∫
Ω

q(x, y)f(x)dx, f ∈ L2(Ω).
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Since K is regular from Step 1, we can apply Proposition 3.3.4 to establish that S̃ is

well-defined, bounded, and compact and that it preserves L2(Ω).

Step 3: By the Perron-Frobenius theorem, the transition matrix of a finite dimen-

sional Markov chain must be irreducible to have a unique stationary distribution.

Similarly, we establish this important property for S̃. First, we present a few defi-

nitions from Eisner et al. (2015). A Banach lattice is a Banach space with an order

defined on it. In our case, L2(Ω,m) is a Banach lattice. A linear subspace I of a

Banach lattice is a lattice ideal if the following condition holds: if |g| ≤ |h| pointwise

and h ∈ I, then g ∈ I.

A positive operator T on a Banach lattice X is called irreducible if the only T -

invariant closed lattice ideals of X are the trivial ones; that is, if I ⊆ X is a closed

lattice ideal, then T (I) ⊆ I implies that either I = {0} or I = X . A topological space

X is path connected if any two points x, y ∈ X are connected by a path in X , which

is a continuous map p : [0, 1]→ X with p(0) = x, p(1) = y.

Proposition 3.4.5. If Ω is path connected and system (3.3) is locally controllable,

then S̃ is irreducible.

Before presenting the proof, we need the following characterization of ideals on a

finite-dimensional measure space from Eisner et al. (2015). On a finite-dimensional

measurable space (X ,M), for 1 ≤ p < ∞, each closed lattice ideal I ⊆ Lp(X ) has

the form IE shown below for some E ∈M:

IE :=
{
g : E ⊆

{
g = 0

}}
(3.27)

Proof of Proposition 3.4.5. For the sake of contradiction, let S̃ be reducible. Then,

let I be an S̃-invariant, non-trivial, closed ideal of S̃; that is, S̃(I) ⊆ I. Furthermore,

I must have the form (3.27) for some non-trivial E ∈ B(Ω), with m(E) > 0. Let

g = χ
Ec . Then g ∈ L2(Ω,m) and g = 0 on E. Therefore, g ∈ I. Now, let dµ = gdm.
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Then µ = m on Ec and µ = 0 on E. By our claim, S̃g ∈ I. The idea of the proof is to

prove existence of a non µ-null set in Ec from which the measure gets push-forwarded

to E, thereby obtaining a contradiction.

According to our claim, S̃g ∈ I, and so we have that for all y ∈ E, (S̃g)(y) =∫
Ec
q(x, y)g(x)dx = 0. Since g(x) = 1 only if x ∈ Ec, this computation implies that

q(x, y) = 0 for almost all y ∈ E. This further implies that

Q(x,E) = (Sδx)(E) =

∫
U

χ
E(F (x, u))k(x, u)du = 0 for µ-a.e. x ∈ Ec (3.28)

Next, we examine the two possible ways that the integral in (3.28) can be zero;

namely, when m(U) = 0 or when the integrand is zero.

First, we show the existence of a subset A ⊆ Ec of positive measure, such that for

all x ∈ A, there exist u ∈ U such that F (x, u) ∈ E. Since Ω is compact, there exists a

finite number of points x1, . . . , xN ∈ Ω, such that Ω can be covered by a finite number

of balls, each with positive radius δ and centered at xi, i ∈ {1, . . . , N}. Therefore, we

have that Ω = E ∪ Ec ⊆ ∪Ni=1Bδ(xi). We choose δ small enough such that for every

i, Bδ(xi) ∩ Ω ( Br(z) ∩ Ω for all z ∈ Bδ(xi). Since Ω is path connected, these balls

cannot be disjoint, and furthermore, there exists at least one ball which intersects

both E and Ec in sets of positive measure. That is, there exists j ∈ {1, . . . , N} such

that m(Bδ(xj)∩E) > 0 and m(Bδ(xj)∩Ec) > 0. By our choice of δ, for any point x

within Bδ(xj), Br(x) ∩ Ω strictly contains Bδ(xj) ∩ Ω. Thus, as illustrated in Figure

3.1, Br(·) of all points in Bδ(xj) ∩ Ec must also contain Bδ(xj) ∩ E, which has a

strictly positive measure. Define A := Bδ(xj) ∩ Ec, as shown in Figure 3.1.

Returning to the integral (3.28), if the measure of the domain of integration is

zero, then the integral evaluates to zero. In this case, although m(U) > 0, it is not

true that F (x, u) ∈ E for all u ∈ U and all x ∈ Ec. Fix y ∈ A. Then Br(y) ∩ Ω

contains Bδ(xj) ∩ E. Because F is non-singular, m(F−1
y (Bδ(xj) ∩ E)) > 0. Letting

44



Figure 3.1: Illustration of the subset A (shaded region) used in the proof of Propo-
sition 3.4.5.

V := F−1
y (Bδ(xj)∩E) and restricting the domain of integration in (3.28) to V , observe

that Q(y, E) ≥
∫
V
χ
E(F (y, u))k(y, u)du > 0. Since y ∈ A and m(A) > 0, we arrive

at a contradiction with (3.28), and hence S̃ is indeed irreducible. �

It is easy to see that S̃ is a positive operator. Next, we present several properties

of the spectrum of S̃ (S̃∗). For the result below, we note that S is Markov.

Proposition 3.4.6. S̃∗1 = 1 and the spectral radius r(S̃) is 1.

Similar to the procedure in Section 3.3, the proof of this proposition follows from

the fact that
∫

Ω
Q(x, dy) = 1.

Let fπ ∈ L∞(Ω,m) be the eigenvector of S̃ corresponding to the eigenvalue 1, and

let π ∈ P(Ω) be the measure such that fπ is its density. It is easy to see that π must

be an eigenvector of S corresponding to the (uniform) measure defined by constant

function 1. We establish properties of π, fπ below.

Proposition 3.4.7. We have that fπ, f
−1
π ∈ L∞(Ω,m) and fπ is positive on Ω m-a.e.

Proof. We have that,

(S̃fπ)(y) = fπ(y) =

∫
Ω

q(x, y)fπ(x)dx ≤ ‖q‖∞
∫

Ω

fπ(x)dx ≤ ‖q‖∞
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for m-a.e. y ∈ Ω. The last inequality follows from the fact that since fπ is the density

of a probability measure, its integral over Ω is 1. Therefore, fπ is bounded uniformly

by ‖q‖∞. Hence, fπ ∈ L∞(Ω,m).

The irreducibility of S̃ (proven in Proposition 3.4.5) guarantees that fπ is positive

almost everywhere on Ω. However, there could be cases where, for some x ∈ Ω,

limε→0 π(Bε(x))/m(Bε(x)) = 0, which would lead to f−1
π /∈ L∞(Ω,m). To show that

this is indeed not the case, it is sufficient to prove that for x ∈ Ω, there exists a

measurable set N (x) of positive measure, containing x, and a constant c > 0 such

that, for all z ∈ N (x),

(Sδz)(Bε(x)) ≥ cm(Bε(x)). (3.29)

First, we will assume that (3.29) is true. To see why this is a sufficient condition, we

compute the following. Fix x ∈ Ω. We evaluate

π(Bε(x)) = (Sπ)(Bε(x)) =

∫
Ω

Q(z,Bε(x))dπ(z)

=

∫
Ω

(Sδz)(Bε(x))dπ(z) ≥
∫
N (x)

cm(Bε(x))fπ(z)dz

= cm(Bε(x))

∫
N (x)

fπ(z)dz = ca(x)m(Bε(x)),

where a(x) ∈ (0, 1] is the integral of fπ overN (x). Combining the constants ca(x) into

one constant cx, we see that π(Bε(x)) ≥ cxm(Bε(x)). This implies that it will never be

true that limε→0 π(Bε(x))/m(Bε(x)) = 0. Therefore, this shows that f−1
π ∈ L∞(Ω,m).

Now we show that the condition (3.29) indeed holds true for every x ∈ Ω. Let

x ∈ Ω and 0 < ε < r/2. Choose N (x) to be Br(x) ∩ Ω. Then N (x) is measurable

and has positive measure. Further, for all z ∈ N (x), Bε(x) ∩ Ω ⊆ Br(z) ∩ Ω. This

follows from Definition 3.4.1.

From (3.24), we note that k(·, ·) is lower bounded by 1/m(U) on its support, and

we denote this lower bound as c3. Fix z ∈ N (x). For notational simplicity, denote
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Bε(x)∩Ω by Bε. The computations below closely follow those preceding (3.25); hence,

we have omitted a few steps here.

(Sδz)(Bε) =

∫
U

χ
Bε(F (z, u))k(z, u)du (from (3.12))

≥ c3

∫
U

χ
Bε(x)(F (z, u))| detDuFz|du = c3

∫
Fz(U)

χ
Bε(x)(y)dy = c3m(Bε(x))

This shows that for every x ∈ Ω, (Sδz)(Bε(x)) ≥ c3m(Bε(x)). This proves that (3.29)

holds true, and thus it is indeed true that f−1
π ∈ L∞(Ω,m).

We now establish the simplicity of the eigenvalue 1, which in turn will guarantee

the uniqueness of the eigenvector π. Toward this end, we now state the generalized

Perron-Frobenius theorem for infinite-dimensional compact operators. For a detailed

proof, the reader is referred to Grobler (1995). First, we require the following defini-

tion. An element x of an Lp space with p ∈ [0,∞) (our case) is called a quasi-interior

point if x > 0. A more general definition for quasi-interior points on general Banach

lattices is given in Schaefer (1974).

Theorem 3.4.8. (Jentzsch-Perron)(Grobler, 1995) Let T be a linear operator on

a Banach lattice X . Suppose that T > 0 and compact. If T is irreducible, then r(T )

is a positive eigenvalue of algebraic multiplicity one and its eigenspace is spanned by

x ∈ X , a unique normalized quasi-interior point.

Finally, we summarize the above results in the following theorem.

Theorem 3.4.9. The operator S̃ is irreducible, and its spectral radius 1 is simple.

Further, the eigenvector corresponding to 1, fπ, is positive on Ω m-a.e. and is in

L∞(Ω,m).

Step 4: Our goal is to construct an operator that has fd as its fixed point. Toward

this end, we define a multiplication operator D : L2(Ω,m)→ L2(Ω,m) by D(g) = gfπ
fd

.

47



Note that fπ
fd
∈ L∞(Ω,m), and therefore D is well-defined and bounded. Now we

construct P̃ as,

P̃ = (S̃ − I)εD + I, 0 < ε << 1 (3.30)

Remark 3.4.10. For ε small enough, P̃ is a positive operator.

Remark 3.4.11. The transformation (3.30) is the discrete-time analogue of a trans-

formation of the Laplacian ∆, which is the generator of a Brownian motion, into the

generator ∆D of a new stochastic process for which the target measure µd is invariant.

We previously used such a transformation to construct stochastic coverage strategies

for robotic swarms in Elamvazhuthi et al. (2016); Elamvazhuthi and Berman (2018).

Step 5: Similar to the pair S, S̃, corresponding to P̃ we can define an operator P

that acts on P(Ω). We note that P̃ is not compact, since the identity operator I is

not compact, so it cannot be represented as an integral operator with an L2 integral

kernel as in (3.16). Instead, we will show that P can be represented as (3.10) with a

Markov kernel (that does not have an L∞(·) density function). To obtain the Markov

kernel, we carry out the following computation.

Let µ ∈ P(Ω) be such that µ� m, and let fµ be its derivative with respect to m.

Let E ∈ B(Ω). We have that (Pµ)(E) =
∫
E

(P̃ fµ)(x)dx. Using (3.30), we evaluate

the right-hand side of this equation:∫
E

∫
Ω

q(x, y)a(x)fµ(x)dydx+

∫
E

(1− a(x))fµ(x)dx, (3.31)

where a(x) = εfπ(x)
fd(x)

.

We will also suppose that (Pµ)(E) =
∫

Ω
Q̂(x,E)dµ(x) for some Q̂ : Ω× B(Ω)→

R+. From (3.30), we will assume that Q̂ is of the following form,

Q̂(x,E) =

∫
E

q(x, y)a(x)dy + (1− a(x))δx(E). (3.32)
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This can be easily confirmed to be a Markov transition kernel. Now we evaluate∫
Ω
Q̂(x,E)fµ(x)dx, which equals:∫

Ω

∫
E

q(x, y)a(x)fµ(x)dydx+

∫
Ω

(1− a(x))fµ(x)δx(E)dx

=

∫
Ω

∫
E

q(x, y)a(x)fµ(x)dydx+

∫
E

(1− a(x))fµ(x)dx.

By applying Fubini’s theorem to the first term, we observe that the above expression

is exactly equal to (3.31). Hence, Q̂ is indeed the Markov kernel of P , and P can

be represented in a form similar to (3.10) as shown below. For all µ ∈ P(Ω) and all

E ∈ B(Ω),

(Pµ)(E) =

∫
Ω

Q̂(x,E)dµ(x) (3.33)

=

∫
Ω

∫
U

χ
E(F (x, u))K̂(x, du)dµ(x), (3.34)

where K̂ is the state-to-control kernel of P . The existence of K̂ will be ensured by

Theorem 3.4.14 below. As we will show in the next two theorems, Theorems 3.4.12

and 3.4.13, this constructed P is our solution to Problem 3.2.1 for µd that satisfy the

constraints mentioned at the beginning of this section.

Step 6: We now use straightforward computations to demonstrate that the con-

structed operator P̃ has 1 in its spectrum with fd and 1 as the corresponding

eigenvectors of P̃ and P̃ ∗, respectively. Since S̃∗1 = 1, we have that P̃ ∗1 =

(εD∗(S̃∗ − I) + I)1 = 1. In addition, since S̃fπ = fπ, P̃ fd = ((S̃ − I)εD+ I)fd = fd.

It is also easy to see that for P , we similarly have that P ∗1 = 1, where 1 is the

uniform measure, and Pµd = µd.

Theorem 3.4.12. The operator P̃ defined in (3.30) has 1 as its largest eigenvalue,

and this eigenvalue is algebraically simple and isolated (i.e., is not a limit point).

We require the following definitions from Hislop and Sigal (2012) for this proof.

Let T be a bounded, linear operator on a Hilbert space H with a nonempty resolvent
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set ρ(T ). An operator A is called relatively T -compact if ART (z) := A(T − zI)−1,

where RT (z) is the resolvent of T , is compact for some z ∈ ρ(T ). The essential

spectrum σess of T is defined as the complement of σp(T ) in σ(T ). The operator T is

said to be closed if its graph Γ(T ), defined as Γ(T ) := {(x,Ax) : x ∈ H}, is a closed

subset of H×H.

Proof of Theorem 3.4.12. First, we prove that the eigenvalue 1 is not an accu-

mulation point. The resolvent of D, RD(z), is bounded for all z ∈ ρ(D) by def-

inition. Further, S̃ is compact, and since the product of a compact operator and

a bounded operator is always compact, S̃RD(z) is compact; this implies that S̃ is

relatively D-compact. Moreover, by the well-known closed graph theorem, D is a

closed operator. Now, we can apply Weyl’s theorem (Theorem 18.8, Hislop and Sigal

(2012)), which states that if T is a closed operator on a Hilbert space H and A is

a relatively T -compact operator, then σess(T ) = σess(T + A). Accordingly, we have

that σess(D) = σess(S̃D − D). Since D is a multiplication operator, its spectrum is

the essential range of fπ/fd. Recall our assumption that fd, f
−1
d ∈ L∞(Ω,m), and

Proposition 3.4.7 ensures that fπ, f
−1
π ∈ L∞(Ω,m). Let σess(D) ⊆ [a, b], for a, b > 0.

Therefore we have,

σess(S̃D − εD + I) ⊆ [1− εa, 1− εb].

Note that 1 ∈ σp(P̃ ). The computation above proves that there is a strict gap

between σess(P̃ ) and 1. By Remark 1.5 (2) of Hislop and Sigal (2012), for a linear

operator T on a Banach space, σess(T ) and σp(T ) form a complete decomposition

of the spectrum. Further, by definition (Hislop and Sigal, 2012), the eigenvalues,

constituting the discrete spectrum, are isolated points. Therefore, 1 must be an

isolated eigenvalue.

Second, we show that 1 is the spectral radius and an isolated eigenvalue of P̃ . As
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per Proposition 4.1 of Schaefer (1974), for a positive operator T on a Banach lattice X ,

the spectral radius r(T ) is an eigenvalue of T . Moreover, Theorem 2.1 of Marek (1970)

guarantees that there exists at least one eigenvector x0 in the positive cone (a subset

X+ = {x ∈ X : x ≥ 0}) corresponding to r(T ) : Tx0 = r(T )x0, x0 6= 0. In addition,

there exists at least one eigenfunction x′0 in the positive dual cone corresponding to

r(T ) : T ∗x′0 = r(T )x′0, x
′
0 6= 0. In our case, since P̃ is a positive operator on L2(Ω,m),

we therefore have that r(P̃ ) ∈ σ(P̃ ), and the eigenvector corresponding to r(P̃ ) is

positive. Let r̄ be the spectral radius of P̃ , and define fr as the corresponding positive

eigenvector. Since the eigenvector fr is known to be positive, by renormalizing, we

can assume that the integral of fr over Ω is 1. Let µr be the measure on Ω defined

by fr. Then it follows that µr(Ω) = 1. Note that 1 is also an eigenvalue for P . We

then have that r̄µr(Ω) =
∫

Ω
Q̂(x,Ω)dµr(x) = 1, which implies that r̄ = 1. Thus, we

conclude that 1 is the largest eigenvalue of P̃ and that fr = fd.

Finally, we show that 1 is algebraically simple, which will enable us to conclude

that fd is indeed the unique eigenvector of P̃ (up to a normalization) corresponding

to 1. Theorem 5.2 of Schaefer (1974) states that if a positive, irreducible operator T

on a Banach lattice X with r(T ) = 1 has a non-void point spectrum and x0 = T ∗x0

for some x0 ∈ X , then 1 is the unique eigenvalue of T and is algebraically simple.

We note that P̃ satisfies all these properties, and thus we have the result that 1 is a

simple eigenvalue of P̃ , and therefore fd is its unique positive fixed point. �

Step 7: For (3.6) to be asymptotically stable, we need 1 to be the only eigenvalue of

P̃ that has modulus 1. Primitivity of P̃ is precisely the condition that ensures this.

A positive operator T is called primitive if r(T ) is the only eigenvalue on the spectral

circle (the set {λ ∈ C : |λ| = r(T )}). Note that primitivity of P̃ implies aperiodicity

of the associated Markov chain.
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Theorem 3.4.13. For all ε small enough, if fπ, fd are bounded from below, then P̃

in (3.30) is primitive.

To prove that P̃ is primitive, we require the following theorem from Grobler (1995).

Let X be a Banach lattice and T > 0 be an operator on X . Suppose there exists a

positive linear functional φ ∈ X ∗ such that T ∗φ = φ. Then T is primitive if for each

x > 0, there exists a d ∈ N such that T dx is a quasi-interior point in X (Schaefer,

1974). Here, the fact that T dx is a quasi-interior point implies that T dx > 0. In the

proof below, for ν ∈ P(Ω), ν > 0 indicates that the Radon-Nikodym derivative of ν

with respect to m, if one exists, is positive m-a.e. on Ω.

Proof of Theorem 3.4.13. We first check whether S is primitive. This is true if

for any x ∈ Ω, there exists an n0 ∈ N such that for all n ≥ n0, Snδx > 0 m-a.e. on Ω.

Here, we require a uniform n0 that satisfies this condition for all x ∈ Ω, so that we

can extend the condition to arbitrary probability measures on Ω, which in turn could

be constructed from Dirac measures.

We denote the open ball of radius δ centered at z by Vδ(z). Since Ω is compact,

there exists a finite set {x1, . . . , xN} ⊆ Ω such that Ω ⊆ ∪Ni=1Vr/2(xi). Fix x ∈ Ω

and let µ1 := Sδx. Then µ1 � m and dµ1/dm = fµ1 ∈ L∞(Ω,m) by the proof of

Proposition 3.3.4. Furthermore, the support of fµ1 contains Br(x). Now, we must

have x ∈ Vr/2(xi) for some i ∈ {1, . . . , N}. Without loss of generality, let x ∈ Vr/2(x1).

Then µ1 > 0 a.e. on Vr/2(x1). Since Ω is path connected, the sets {Vr/2(xi)}Ni=1

cannot be pairwise disjoint; therefore, there exists another open ball, say Vr/2(x2),

that intersects Vr/2(x1). Choose y ∈ Vr/2(x1)∩Vr/2(x2). Note that y ∈ Br(x). Now let

µ2 := Sµ1 = S2δx. Then µ2 � m and dµ2/dm = fµ2 ∈ L∞(Ω,m). Furthermore, the

support of fµ2 is E := ∪z∈Br(x)Br(z). We have that Vr/2(x2) ⊆ Br(y) ⊆ E. Therefore,

µ2 > 0 a.e. on Vr/2(x2). Repeating this procedure of evaluating µj := Sµj−1 at each

iteration j, we observe that µj is positive a.e. on Vr/2(xj). Since there are only N such

52



balls that cover Ω, this iterative procedure must stop at N , at which point we have

that µN := SNδx is positive a.e. on Ω. Hence, we have proved that S is primitive,

which implies the same for S̃. From this discussion, we have demonstrated how S

acts on Dirac measures. Extending this argument, we can show how S acts on any

measure in P(Ω) by noting that, for any x ∈ Ω, Q(x, ·) = (Sδx)(·). In particular, we

have that (Snµ)(·) =
∫

Ω
Snδx(·)dµ(x).

Finally, we establish the primitivity of P̃ . Let µ ∈ P(Ω). From the definition of

P̃ in (3.30), we have that

P̃ n = ((S̃ − I)εD + I)n = (εS̃D + (I − εD))n.

Consider the second expression for P̃ n above. Since S̃ is primitive, the product S̃D

preserves primitivity. In addition, by choosing a small enough ε, we can ensure strict

positivity of the term I − εD (also see Remark 3.4.10). This in turn shows that P̃ n

is a strictly positive operator for all n ≥ N . Thus, the operator P̃ is primitive. �

Step 8: Finally, we prove that K̂, the state-to-control kernel of P in (3.34), is

well-defined.

Theorem 3.4.14. Let system (3.6) be locally controllable everywhere on Ω. Then

there exists a Markov kernel K̂ : Ω × B(U) → [0, 1] such that Q̂ defined in (3.32) is

the Markov kernel of the corresponding closed-loop system, and hence the equalities

in (3.33)-(3.34) hold true.

Proof. Consider the identity map G : Ω → Ω given by G(x) = x for all x ∈ Ω. We

will also need the set-valued map F̂ : Ω ↪→ U defined as F̂ (x) = U for all x ∈ Ω. The

map F̂ is a measurable set-valued map in the sense of Definition 8.1.1 in Aubin and

Frankowska (2009). Since system (3.6) is locally controllable everywhere, we have

that F (x, F̂ (x)) ∩ {G(x)} is non-empty for every x ∈ Ω. Hence, from Theorem 8.2.8

in Aubin and Frankowska (2009), it follows that there exists a measurable function

53



v : Ω → U such that F (x, v(x)) = G(x) = x for every x ∈ Ω. Then, we define

K̂ : Ω× U → R̄+ as follows. For all W ∈ B(U),

K̂(x,W ) = a(x)K(x,W ) + (1− a(x))δv(x)(W ), (3.35)

where a(x) = εfπ(x)
fd(x)

. For a fixed x ∈ Ω, it is easy to see that all terms in (3.35)

are Borel measurable functions on Ω, except for the term δv(x)(W ). The map x →

δv(x)(·) can be written as a composition of two Borel measurable functions, x →

v(x) → δv(x)(W ), making it measurable in turn. Therefore, x → K̂(x,W ) is a

Borel measurable function on Ω. Furthermore, it is straightforward to show that

W → K̂(x,W ) is a measure on U for each x ∈ Ω.

Now we evaluate (Pµ)(E) for some E ∈ B(Ω):

(Pµ)(E) =

∫
Ω

∫
U

χ
E(F (x, u))K̂(x, du)dµ(x)

=

∫
Ω

(∫
U

χ
E(F (x, u))a(x)K(x, du) +

∫
U

χ
E(F (x, u))(1− a(x))dδv(x)(u)

)
dµ(x)

=

∫
Ω

(Q(x,E)a(x) + (1− a(x))δx(E)) dµ(x) (†)

=

∫
Ω

(∫
E

q(x, y)a(x)dy + (1− a(x))δx(E)

)
dµ(x)

=

∫
Ω

Q̂(x,E)dµ(x)

We obtained the first term in the integral (†) by using (3.12) as follows:∫
U

χ
E(F (z, u))K(z, du) = (Pδz)(E) = Q(z, E).

We obtained the second term in this integral by noting that for fixed x, v(x) is the

set of u such that F (x, u) = x. Hence, we have our required result.

3.5 Formulation of the Optimization Problem

In this section, we present a solution to a relaxed version of Problem 3.2.2. The

reason for this relaxation will be explained shortly. In the previous section, we proved

54



the existence of an operator P that satisfies the following properties: it has a spectral

gap, the desired measure µd is its unique eigenvector, and it makes µd an asymptot-

ically stable equilibrium point for the system (3.6). In this section, we investigate

whether we can pose an optimization problem to search for such an operator P such

that the system (3.6) converges exponentially fast to the equilibrium µd. The spec-

tral gap of P will determine the rate of convergence of system (3.6); the larger the

gap, the faster the convergence. Recall the assumptions on µd as stated in Section

3.4: µd � m, with fd as its density, and fd, f
−1
d are in L∞(Ω,m) and are strictly

positive a.e. on Ω. Instead of P , we will formulate the optimization problem in terms

of the operator P̃ that acts on L2(Ω,m). Specifically, we formulate an optimization

problem that maximizes the spectral gap of P̃ . Similar to Boyd et al. (2004), we

can then formulate a convex optimization problem that minimizes the second largest

eigenvalue modulus of the operator. We begin with the formulation of the objective

function in this problem.

We will pose the optimization problem for P̂ = M−1
fd
P̃Mfd , which has the same

spectrum as P̃ . The advantage here is that P̂ is bistochastic, as proved in (3.23),

which simplifies the formulation of the optimization problem as explained next. We

know that given an operator T on a Hilbert space H, for all λ ∈ σ(T ), we have

that |λ(T )| ≤ ‖T‖. Unless the operator is self-adjoint or normal, there is no convex

formula, that we know of, to characterize the moduli of the eigenvalues. Since we are

not searching for a self-adjoint or normal operator P̂ , the second largest eigenvalue

modulus of P̂ can only be bounded from above. We obtain this bound by restricting

P̂ to the subspace obtained after removing the eigenspace span(1) corresponding to

its largest eigenvalue 1:

λ2(P̂ ) = λ1(P̂ ◦ Proj1⊥) ≤ ‖P̂ ◦ Proj1⊥ ‖2, (3.36)

55



where Proj(.) is the projection operator onto a subspace, and ‖·‖2 denotes the L2(Ω, µd)

norm. The optimization objective is then to minimize the right-hand side of the equa-

tion above, knowing that it will be an upper bound for the moduli of all eigenvalues

of P̂ . This is the relaxation that we mentioned at the beginning of the section.

The projection of an arbitrary vector v ∈ L2(Ω, µd) onto the eigenspace 1 is

Proj1(v) = 〈v,1〉
‖1‖22

1, and the projection of v onto 1⊥ is Proj1⊥ = I − Proj1. Therefore,

we have (
P̂ ◦ Proj1⊥

)
v = P̂

(
v − 〈v,1〉
‖1‖2

2

1

)
= P̂ v − 〈v,1〉

‖1‖2
2

1.

We now formulate the optimization problem. The optimization variable is the

state-to-control transition kernel K. Using the variable K, the operator P from (3.7)

is defined in constraint (3.39) below. The relationship between P̂ and P̃ is enforced

as constraint (3.38) in the optimization problem, defined as follows:

min
K

∥∥∥P̂ (K) ◦ Proj1⊥
∥∥∥ (3.37)

subject to

P̂ = M−1
fd
P̃Mfd , (3.38)

Pµ(A) =

∫
Ω

∫
U

χ
A(F (x, u))K(x, du)dµ, ∀A ∈ B(Ω), µ ∈ P(Ω), (3.39)

K(x,E) ≥ 0 ∀x ∈ Ω, ∀E ∈ B(U), (3.40)∫
Ω

K(x, U)dx = 1 ∀x ∈ Ω, (3.41)

QK(x,A) =

∫
U

χ
A(F (x, u))K(x, du) ∀A ∈ B(Ω), (3.42)∫

Ω

fd(y)QK(x, dy) = fd(x) ∀x ∈ Ω. (3.43)

The constraints (3.40)-(3.41) ensure that K is indeed a Markov kernel. Constraint

(3.42) defines the closed-loop transition kernel QK in terms of K, and constraint

(3.43) ensures that fd is the stationary distribution of P̃ .
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Figure 3.2: Simulation of the additive system (3.52) in Example 1 at three times n.

We end this section by showing that the optimization problem posed above is

convex. Let K be the set of closed-loop transition kernels, defined as follows:

K =
{
K : Ω× B(U)→ R̄+ :

∫
Ω

K(x, U)dx = 1,

∫
Ω

fd(y)QK(x, dy) = fd(x) ∀x ∈ Ω
}
.

Then K is the set of decision variables. We note that each constraint in this set is

convex, therefore making K a convex set. Furthermore, the objective function is a

norm of an operator, which makes it convex.

Finally, we note that it is not immediately clear whether an optimal solution to

this problem exists. We reserve this investigation for future work.

3.6 Numerical Optimization

In this section, we present a numerical approach to solving the optimization prob-

lem (3.37)-(3.43). Our approach can be applied to control systems of the form (3.3),

in which the state space Ω and the control set U are compact subsets of R2. The

subset Ω is partitioned into nx ∈ Z̄+ sets, Ω̃ = {Ω1, . . . ,Ωnx}, where Ω = ∪nxi=1Ωi and

the sets Ωi have intersections of zero Lebesgue measure. The set of control inputs

U is approximated as a set of nu ∈ Z̄+ discrete elements, Ũ = {v1, . . . , vnu}, where

vi ∈ U for each i. Define index sets I = {1, . . . , nx} and J = {1, . . . , nu}. We define

an equivalent of the state-to-control transition kernel K, with kernel function k, in
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the discrete-time case. Let k̃il be the probability of choosing the control variable vl,

given that the system state is in Ωi. This probability is given by,

k̃il =

∫
Ωi

k(x, vl)dx.

Let K be the matrix [k̃il]i∈I,l∈J . Using this definition, we construct an approx-

imating controlled Markov chain on the finite state space I. For i ∈ I, when the

system state is in the set Ωi, we will consider the Markov chain state to be i. We

use Ulam’s method (Ding and Zhou, 2010) to construct this approximation. In the

uncontrolled setting, Ulam’s method is a classical technique to construct approxi-

mations of the pushforward map (Perron-Frobenius operators) induced by dynamical

systems. Let plij denote the probability of the system state being in the set Ωj in the

next time step, given that the system state is uniformly randomly distributed over

the set Ωi and the selected control input is vl. We define the transition probabilities

of the controlled Markov chain as follows:

plij =
m(Ωi ∩ F−1

l (Ωj))

m(Ωi)
, (3.44)

where Fl(·) = F (·, vl).

Let µ ∈ P(Ω̃) and j ∈ I. Let P be the equivalent expression for the operator P ,

defined in (3.7), in matrix form. Then P is given by:

Pµ(j) =
∑
i∈I

∑
l∈J

k̃il p
l
ijµ(i). (3.45)

Let µd ∈ P(Ω̃) be a desired distribution that is positive on Ω̃, and define a diagonal

matrix Md = diag(µd).

We can now formulate the finite-dimensional quadratic program that is equivalent

to optimization problem (3.37)-(3.43). We define a bistochastic matrix P̂ according

to (3.20). This equation is enforced as constraint (3.47) in the quadratic program,

defined as follows:
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Figure 3.3: Simulation of the unicycle system (3.53) in Example 2 at three times n.

min
K

∥∥∥∥P̂− 11T

nx

∥∥∥∥ (3.46)

subject to

P̂ = M−1
d PMd, (3.47)

Pµ(j) =
∑
i∈I

∑
l∈J

k̃il p
l
ijµ(i) ∀j ∈ I, ∀µ ∈ P(Ω̃), (3.48)

k̃il ≥ 0 ∀i ∈ I, ∀l ∈ J , (3.49)

K1 = 1, (3.50)

Pµd = µd. (3.51)

The constraint (3.48) above is written from (3.45), where plij, i, j ∈ I, l ∈ J , is

obtained via Ulam’s method as per (3.44). Note that 1 in (3.46) is a vector in Rnx .

We observe that this problem is convex and similar to the optimization problem solved

in Boyd et al. (2004).

3.7 Simulation Results

In this section, we apply the numerical optimization procedure to two control

systems of the form (3.3) evolving in R2. To solve the optimization problem (3.46)-

(3.51), we used CVX, a MATLAB package for solving convex programs (Grant and
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Boyd, 2014). Since the optimization problem is a quadratic program, it becomes

computationally intractable for very fine discretizations of the domain Ω. Therefore,

in Examples 1 and 2 below, we use a relatively coarse discretization. In Example

3, we solve a feasibility problem for which a finer discretization is possible. In all

three cases, the quadratic program (3.46)-(3.51) was solved to obtain a state-to-

control transition probability matrix K. Defining P from the resulting K according

to (3.48), we simulated system (3.6) with the initial measure µ0 set to be a Dirac

measure concentrated at the lower left corner of the domain. To quantify the degree

of convergence of the simulated measure µn to the target measure µd, we computed

the 2-norm γn = ||µn − µd||2 at selected times n.

Example 1: Additive Model

We first consider a linear additive vector field F in system (3.3):

xn+1 = xn + un, (3.52)

where xn = [x1
n x

2
n]T ∈ Ω and un = [u1

n u
2
n]T ∈ U . The state space is Ω = [0, 1]2,

and the set of control inputs is U = [−1, 1]2. The target measure is set to µd =

sin2(2πx1) + sin2(2πx2) + ε, where [x1 x2]T ∈ Ω and ε > 0 is chosen to ensure a

strictly positive measure over Ω. We use a 10×10 grid for Ω (nx = 100) and a 20×20

grid for U (nu = 400). Figures 3.2a-3.2c show snapshots of the simulation of system

(3.6) at three times. Figure 3.5 plots the natural logarithm of the error metric γn

during the simulation. It is evident from the time evolution of the snapshots, along

with the accompanying decrease in γn, that the measure converges asymptotically to

the target measure.

Example 2: Unicycle Model

We next consider a nonlinear vector field F in system (3.3) that represents a
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Figure 3.4: Simulation of the unicycle system (3.53) in Example 3 at four times n.
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Figure 3.5: The time evolution of the natural logarithm of the error between the
simulated and target measures in each example.

unicycle model:

x1
n+1 = x1

n + u1
n cos(u2

n),

x2
n+1 = x2

n + u1
n sin(u2

n). (3.53)

In this case as well, xn = [x1
n x

2
n]T ∈ Ω and un = [u1

n u
2
n]T ∈ U . The state space

is Ω = [0, 1]2, and the set of control inputs is U = [−1, 1] × [0, 2π]. The target

measure in this case is set to µd = cos2(2πx1) + cos2(2πx2) + ε, where [x1 x2]T ∈ Ω

and ε > 0 is chosen to ensure a strictly positive measure over Ω. We use a 10 × 10

grid for Ω (nx = 100) and a 20 × 20 grid for U (nu = 400). Figures 3.3a-3.3c show

snapshots of the simulation of system (3.6) at three times, and Figure 3.5 plots the

natural logarithm of the error metric γn over time. Again, the measure converges

asymptotically to the target measure.
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Example 3: Feasibility Problem

In the two previous cases, the optimization problem (3.46)-(3.51) was found to be

computationally intractable for grid sizes nx > 100, due to the fact that the problem

is quadratic in nature. Here, instead of optimizing the convergence rate of system

(3.6), we solve the feasibility problem. This entails searching for any matrix K such

that the steady-state distribution of system (3.6) is µd; i.e., any K that satisfies the

constraints (3.47)-(3.51). This serves to demonstrate that the feasibility problem can

be solved for larger grid sizes than nx = 100. The simulated system (3.3) is defined

as the unicycle model (3.53) in Example 2. We use a 40× 40 grid for Ω (nx = 1600)

and a 45 × 45 grid for U (nu = 2025). Figures 3.4a-3.4d and 3.5 show snapshots of

the simulation of system (3.6) at four times and the natural logarithm of the error

metric γn over time. We see that the measure again converges asymptotically to the

target measure.

Figure 3.5 shows that the system in this case exponentially converges to the target

distribution at a rate close to the rates observed in Examples 1 and 2. Note that the

convergence rate of Example 3 cannot be directly compared to the those of Examples

1 and 2, since the grid sizes nx and nu in Example 3 are much larger than in those

two examples. We also make note of the fact that in Examples 1 and 2, we are only

solving a relaxation of the optimization problem, as mentioned at the beginning of

Section 3.5. The relaxation is due to the fact that we are only optimizing the norm

of the operator, which is an upper bound on the moduli of all the eigenvalues of the

operator.

The results presented within this chapter are part of Biswal et al. (2019b).
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Chapter 4

DISCRETE-TIME MARKOV CHAIN MODELS ON CONTINUOUS STATE

SPACES - PART II

In this chapter, we address the problem of stabilizing a multi-agent system evolving

on a compact, connected subset of Rd to a target distribution. We consider groups of

agents that all follow the same dynamics and control policies, which are independent

of the agents’ identities. We assume that each agent can obtain local measurements

of the agent population but do not require inter-agent communication. The goals of

this chapter are threefold:

1. We design the transition kernel to stabilize the mean-field model to target mea-

sures that have L∞(·) densities, a larger class of measures than we previously con-

sidered in Chapter 3. In the previous chapter, we considered measures that have

L∞(·) densities that are strictly positive a.e. (almost everywhere) on the domain.

In general, discrete-time Markov chains cannot be stabilized to distributions that do

not have connected supports; we showed this for continuous-time Markov chains in

Elamvazhuthi et al. (2019a), and similar arguments can be applied to discrete-time

Markov chains (Açıkmeşe and Bayard, 2015). However, in this paper, we are able

to stabilize the mean-field model to distributions that are not supported everywhere,

due to the fact that, unlike in the previous chapter, the control law considered here

is density-dependent; the reason for this will be explained next.

2. The convergence of a Markov process to an equilibrium distribution does not

necessarily imply that the agents evolving according to the process also converge to

equilibrium states. To prevent agents from continuing to switch between states at

the equilibrium distribution, we construct the Markov process such that its forward
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operator is the identity operator at the desired equilibrium. This results in a time-

dependent transition kernel that is a function of the distribution and gives rise to a

nonlinear Markov process. Such stochastic processes, called density-dependent popu-

lation processes, are used to model the dynamics of logistic growth, epidemics, and

chemical reaction networks (Ethier and Kurtz, 2009).

3. Since we establish that the transition kernel must depend on the distribution,

our third goal is to construct the kernel to have a decentralized structure. A kernel

with this structure corresponds to agent control policies that require each agent to

estimate the population only in its local neighborhood. Toward this end, we construct

a kernel for the mean-field model that is defined pointwise; that is, it is a function

of the value of the distribution at the current state. We proved the existence of such

feedback control laws in the case of continuous-time Markov chains evolving on finite

graphs in Chapter 2. A similar problem is addressed in Mather and Hsieh (2014),

which develops a decentralized control approach by a priori restricting the controller

to have a decentralized structure. Another related work Demir et al. (2015) designs

a centralized controller and uses estimation algorithms to determine the entire agent

distribution in a decentralized manner.

4.1 Notation

The reader is referred to the notation section of Chapter 3. Some basic notations

used in this chapter are mentioned here. As in Chapter 3, we denote the state space

by Ω ⊂ Rd, a compact set. The set of admissible control inputs is denoted by

U ⊂ Rd. U is assumed to be compact. The Borel sigma algebras, corresponding to

the standard topology on Rd, on Ω and U are B(Ω) and B(U) respectively. We denote

the space of probability measures on Ω and U by P(Ω). We define a continuous map

F : Ω × U → Rd. We also define Fx as the map from U → Rd when x ∈ Ω is
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held fixed, and Fu as the map from Ω → Rd when u ∈ U is held fixed. We specify

that F is non-singular, which means that for all E ∈ B(Ω), m(F−1
u (E)) = 0 and

m(F−1
x (E)) = 0 whenever m(E) = 0. We also assume that F (x, 0) = x.

4.2 Problem Formulation

We now state the problem addressed in this section. Consider a system of N

agents evolving in discrete time on the set Ω ⊂ Rd. We suppose that the dynamics

of each agent k ∈ {1, . . . , N} is governed by the following nonlinear discrete-time

control system:

ξkn+1 = F (ξkn, u
k
n), n = 0, 1, 2, ...

ξk0 ∈ Ω, (4.1)

where ξkn ∈ Ω, and (ukn)∞n=1 is a sequence in U such that F (ξkn, u
k
n) ∈ Ω for each n ∈ Z+.

Let ξk0 be a random variable with distribution µ0 ∈ P(Ω).

The empirical distribution of the N -agent system over Ω at time n is given by

1
N

∑N
k=1 δξkn . Our goal is to design a feedback control law ukn that redistributes the

agents from their initial empirical distribution 1
N

∑N
k=1 δξk0 to a desired empirical dis-

tribution 1
N

∑N
i=1 δξk,d that “closely approximates” a target density fd ∈ L∞(Ω) as

n → ∞, where 1
N

∑N
i=1 δξk,d is a sample of fd. Since we assume that the agents are

identity-free, we will define the control law as a function of the current empirical dis-

tribution 1
N

∑N
k=1 δξkn rather than the individual agent states ξkn. However, 1

N

∑N
k=1 δξkn

is not a state variable of the system (4.1). In order to treat 1
N

∑N
k=1 δξkn as the state,

we consider the mean-field limit of this quantity as N →∞.

Suppose that every agent k ∈ {1, . . . , N} uses the same control law ukn = un at each

time n; that is, the control law is independent of the agent identity k. In this case,

when N → ∞, the empirical distribution 1
N

∑N
k=1 δξkn converges to a deterministic
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quantity µn ∈ P(Ω), which evolves according to the following forward equation,

µn+1 = F#(·, un)µn, µ0 ∈ P(Ω), (4.2)

where F#(·, un) : P(Ω)→ P(Ω) is the induced forward operator corresponding to the

deterministic map F (·, un). This operator is defined as

(F#(·, un)µn)(E) = µn(F−1
un (E)) =

∫
Ω

χ
E(F (x, un))dx

for each E ∈ B(Ω). Since we are interested in the problem of stabilizing system

(4.2) to a given target measure µd with density fd, we must determine whether there

exists a sequence of feedback laws un such that starting from any initial measure,

the system (4.2) converges to µd. In general, this problem cannot be solved using

deterministic feedback laws, as was shown in Elamvazhuthi et al. (2019b). Therefore,

we will construct a stochastic feedback law using a state-to-control transition kernel

K : Ω × B(U) → [0, 1]. On a continuous state space, the transition kernel plays the

role of the transition probability matrix on a discrete state space. That is, given

that an agent is at state x ∈ Ω, it chooses a subset of control inputs W ⊂ U with

probability K(x,W ). We note that deterministic control laws v : Ω → U are a

special type of stochastic control law in that K(x, du) = δv(x); that is, given the state

x, the probability of choosing the control v(x) is 1. The transition kernel K induces

a forward Kolmogorov operator P : P(Ω)→ P(Ω), defined as

(Pµ)(E) =

∫
Ω

∫
U

χ
E(F (x, u))K(x, du)dµ(x)

for each E ∈ B(Ω). The mean-field model that governs the time evolution of µn can

then be written as

µn+1 = Pµn, µ0 ∈ P(Ω). (4.3)
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Hence, taking the mean-field limit of the empirical distribution enables us to treat

the N -agent system as a continuum, as described in the Introduction. Moreover, to

achieve our goal of redistributing agents over Ω, we will construct K to be a function

of the current distribution µn.

Using K, we can define a closed-loop transition kernel Q : Ω × B(U) → [0, 1].

That is, if the Markov chain (ξkn)n induces a probability measure P on Ω∞, then an

agent k evolves on Ω according to the following conditional probability,

P(ξkn+1 ∈ E|ξkn = x) = Q(x,E), (4.4)

for each x ∈ Ω and E ∈ B(Ω). For µ ∈ P(Ω) and E ∈ B(Ω), P can be redefined as

(Pµ)(E) =

∫
Ω

Q(x,E)dµ(x). (4.5)

In this paper, instead of arbitrary measures in P(Ω), we will consider those measures

that have L1 densities (derivatives with respect to m). By restricting P to this subset

of P(Ω), we can define an operator P̃ on L1(Ω); the exact construction will be carried

out in the next section. Then (4.3) can be rewritten as

fn+1 = P̃ fn, f0 ∈ L1(Ω). (4.6)

We are now ready to state the problem that we address in this paper rigorously.

Problem 4.2.1. Let P̃ be the forward operator induced by the operator P defined in

(4.5). Given a target distribution µd ∈ P(Ω) with density fd ∈ L∞(Ω) and a non-

singular continuous map F : Ω×U → Rd, determine whether there exists a transition

kernel Q : Ω×B(Ω)→ [0, 1] such that (a) equation (4.6) satisfies limn→∞ P̃
nf0 = fd

for all initial measures f0 ∈ L1(Ω), and (b) P̃ (fd) = I, where I is the identity

operator.
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The operator P̃ governs the stochastic transitions of individual agents between

states. Thus, the condition P̃ (fd) = I ensures that all agents stop transitioning

between states once the density fd of the target equilibrium distribution is reached.

This condition leads to a nonlinear operator P̃ that depends on f . We will address

Problem 1 in Section 4.3, where we show that the construction of P̃ requires additional

conditions on Ω and F .

Having proven the existence of such an operator P̃ , in Section 4.4 we will introduce

the system of N agents that evolve according to the N -agent Markov process that is

an approximation of the mean-field model (4.3). Since P (via Q) can be constructed

such that µd is an equilibrium of the system (4.3), we observe that in simulations of the

corresponding N -agent system, presented in Section 4.5, the empirical distribution

1
N

∑N
k=1 δξkn converges to an empirical distribution that approximates fd as n→∞.

4.3 Stability Result

In this section, an operator P̃ that solves Problem 1 will be constructed. As stated

in Problem 1, fd ∈ L∞(Ω) is the density of the target measure. In the previous

chapter, we assumed that fd is supported m almost everywhere on Ω; in this chapter,

we relax this assumption. The cost of this generality comes at the price of working

with a nonlinear operator P̃ , which is necessary to ensure that agent transitions

between states stop once the equilibrium distribution is reached.

Within this chapter we impose the same assumptions that we had in Chapter

6. That is, we assume that Ω is a path connected, compact subset of Rd. We also

require Ω to satisfy the cone condition which ensures that the boundary of Ω is

regular enough. Lastly, for the system (4.1) to be controllable, we need the local

controllability condition Definition 3.4.1. From here on, we will consider r to be fixed

as per Definition 3.4.1.
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Let µ ∈ P(Ω) be such that µ � m. Further, if fµ is the derivative of µ with

respect to m, we assume that fµ ∈ L1(Ω). For an arbitrary f ∈ L1(Ω), define a

function af on Ω as

af (x) =


f(x)−fd(x)

f(x)
for m-a.e. x if f(x)− fd(x) > 0;

0 otherwise.

(4.7)

We note that af ∈ L∞(Ω) with norm 1.

Define k : Ω × U → [0, 1] to be a bounded function that satisfies the following

properties:

k(x, u)


≥ 0 for m-a.e. x ∈ Ω, u ∈ U st. F (x, u) ∈ Ω;

= 0 otherwise;

(4.8)

∫
U

k(x, u)du = 1 for m-a.e. x ∈ Ω. (4.9)

Before we proceed, we must determine whether we can construct a measurable k ∈

L∞(Ω × U,m × m) that satisfies these properties. We note that due to the first

condition (4.8), the integral in the second condition (4.9) is computed over the set

Ux := F−1
x (Ω). This integral can therefore be expressed as

∫
U
k(x, u)χUx(u)du = 1.

Since Fx is continuous, the set Ux is measurable for each x. The following lemma

proves that k is measurable.

Lemma 4.3.1. For ∀x ∈ Ω, we have the following results:

1. There exists an ε > 0 such that m(Ux) > ε.

2. The map x 7→ m(Ux) is measurable.

3. The characteristic function χ
Ux(u) is jointly measurable in x and u.

Proof. Result (1) is proved in Theorem 3.4.2. The idea of the proof is as follows.

To prove results (1) and (3), let G = {(x, u) ∈ Ω × U : F (x, u) ∈ Ω}. G is Borel
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measurable because F is continuous in both variables. Since χG is a Borel measurable

function, the Tonelli theorem Folland (2013) implies that (χG)x is Borel measurable

for each x ∈ Ω. Since, (χG)x(u) = χ
Ux(u), we have that χUx(u) is a measurable

function in both variables, proving result (2). Then, by the Tonelli theorem, we have

that x 7→
∫
U

(χG)xdu is Borel measurable. Since (χG)x(u) = χ
G(x, u), we have that∫

U
(χG)xdu = m(F−1

x (Ω)) = m(Ux). That is, x 7→ m(Ux) is Borel measurable.

The existence of a measurable function k then trivially follows from the fact that

one can set k to be the uniform kernel, k(x, u) = 1
m(Ux)

.

Next, we define a transition kernel K : Ω× B(U)→ [0, 1]. For W ∈ B(U),

K(x,W ) = K(x,W ∩ Ux) = K1 +K2, where (4.10)

K1 = afµ(x)

∫
W

k(x, u)du,

K2 = (1− afµ(x))δ0(W ).

Recall that we have assumed that F (x, 0) = x. Since this kernel is a function of

afµ , it depends on the density fµ. The kernel is defined such that the corresponding

Markov chain stays at control 0 with probability 1 − afµ(x) and moves to a control

in the set Ux with probability afµ(x), and when it moves, the distribution is given

by the density k(x, du). The integral term K1 is regular because its kernel function

k(x, u) is in L∞(Ω× U).

Remark 4.3.2. We note that the local controllability assumption, Definition 3.4.1,

implies that there exists a measurable control V (x) ∈ U such that F (x, V (x)) = x

(see Proposition 3.4.14 in Chapter 3. Therefore, the condition F (x, 0) = x is not

restrictive. However, we impose this condition here for the sake of simplicity and

note that we can extend our results even when this condition is not satisfied following

the steps in Chapter 3.
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Lemma 4.3.3. The kernel K is well-defined. That is, K(·,W ) is a measurable func-

tion on Ω for each fixed W ∈ B(U) and K(x, ·) is a probability measure on U for each

fixed x ∈ Ω.

Using K, we define a closed-loop kernel Q : Ω× B(Ω)→ [0, 1]. For E ∈ B(Ω),

Q(x,E) =

∫
U

χ
E(F (x, u))K(x, du) (4.11)

= afµ(x)

∫
U

χ
E(F (x, u))k(x, u)du + (1− afµ(x))

∫
U

χ
E(F (x, u))dδ0

= Q1 +Q2, where (4.12)

Q1 = afµ(x)

∫
U

χ
E(F (x, u))k(x, u)du,

Q2 = (1− afµ(x))δx(E).

Lemma 4.3.4. The kernel Q is well-defined; that is, Q(·, E) is a measurable function

on Ω for each E ∈ B(Ω) and Q(x, ·) is a probability measure on Ω for each x ∈ Ω.

Further, if F satisfies Lusin’s property, then Q1 is regular.

Proof. The proof that Q is well-defined is similar to the proof that K is well-defined

(Lemma 4.3.3). To prove that Q1 is regular, we first require that Q1(x, ·) � m for

every x. Indeed, if E ∈ B(Ω) is such that m(E) = 0, then due to the non-singularity

of F with respect to both variables x and u, we have that (m × m)(F−1(E)) = 0.

Therefore, for x ∈ Ω, u ∈ U , we have that χE(F (x, u)) = χ
F−1(E)(x, u) = 0 in the

integral that defines Q1 . Hence, Q1(x,E) = 0.

The full proof that Q1 has a kernel function q ∈ L∞(Ω×Ω) is given in 3.3.4. Here,

we provide a brief idea of the proof. If q exists, then for E ∈ B(Ω) and x ∈ Ω,

Q1(x,E) =

∫
E

q(x, y)dy =

∫
U

χ
E(F (x, u))K1(x, du)

=

∫
U

χ
E(F (x, u))k(x, u)du ≤ c m(E),

71



where c > 0 is a constant that is independent of x and E. The proof of Proposition

3.3.4 shows the existence of the uniformly bound c. That is, the measure Q1(x, ·)

has a uniform upper bound, and hence, we must have that its kernel function q is in

L∞(Ω× Ω) (Lemma 3.3.3).

Next, we define an operator P : P(Ω)→ P(Ω) in terms of Q as follows:

(Pµ)(E) =

∫
Ω

Q(x,E)dµ(x) (4.13)

=

∫
Ω

∫
U

χ
E(F (x, u))K(x, du)dµ(x)

=

∫
Ω

∫
U

afµ(x)χE(F (x, u))k(x, u)du dµ(x) +

∫
Ω

(1− afµ(x))δx(E)dµ(x)

=

∫
Ω

∫
U

afµ(x)χE(F (x, u))k(x, u)du dµ(x) +

∫
E

(1− afµ(x))dµ(x). (4.14)

Using expression for Q in (4.12), it is straightforward to show that Q(x,E) can also

be expressed as

Q(x,E) = (Pδx)(E). (4.15)

Due to the properties of Q (Lemma 4.3.4), we immediately have the following lemma.

Lemma 4.3.5. Operator P preserves P(Ω), and furthermore, it preserves absolutely

continuous measures.

By restricting P to those measures that are absolutely continuous w.r.t m, that

is, measures that have L1 densities, we can define P̃ : L1(Ω) → L1(Ω). The next

few steps will be toward this effort. Lemma 4.3.5 implies that Pµ� m ; let P̃ fµ be

the density, that is, for E ∈ B(Ω), (Pµ)(E) =
∫
E

(P̃ fµ)(y). We note that since Q1 is

regular, there must exist a function q ∈ L∞(Ω× Ω). Therefore, from (4.12), we have

that

Q1(x,E) =

∫
E

q(x, y)dy =

∫
U

χ
E(F (x, u))K1(x, du).
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Using this expression, (4.14) can be rewritten as follows. For E ∈ B(Ω),

(Pµ)(E) =

∫
Ω

∫
E

afµ(x)q(x, y)dyfµ(x)dx +

∫
E

(1− afµ(x))fµ(x)dx =

∫
E

(P̃ fµ)(y)dy.

Applying Fubini’s theorem Folland (2013) to the equation above, we obtain an ex-

pression for an operator P̃ defined on L1(Ω) as follows. For f ∈ L1(Ω),

P̃ = P̃1 + P̃2, where (4.16)

(P̃1f)(y) =

∫
Ω

af (x)q(x, y)f(x)dx,

(P̃2f)(y) = (1− af (y))f(y).

Since Q1 was proven to be regular in Lemma 4.3.4, we have that P̃ preserves

L1(Ω), as we state in the proposition below.

Proposition 4.3.6. We have the following two results.

1. P̃ : L1(Ω)→ L1(Ω) is well-defined. Moreover, P̃ preserves probability densities;

in other words, it is a Markov operator Lasota and Mackey (2013).

2. In fact, P̃ : L2(Ω)→ L2(Ω) is well-defined.

The second result above is a consequence of Proposition II.4.7 of Conway (2013),

detailed in 3.3.4. We will require this result in Section 4.4.

When we need to emphasize the fact that P and P̃ are nonlinear operators which

depend on µ and f , respectively, we will write these operators as P (µ) and P̃ (f).

Note that for each fixed f , P̃ (f) is a linear operator. In the following result, B(L2(Ω))

stands for the set of bounded linear operators on L2(Ω).

Lemma 4.3.7. The map from L2(Ω)→ B(L2(Ω)), defined as f 7→ P̃ (f), is uniformly

bounded; that is, for every f ∈ L2(Ω), ‖P̃ (f)‖ ≤ C for some C > 0. Moreover, this

result also holds true for P̃ as an operator on L1(Ω).
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Proof. This follows from the fact that P̃ depends on f through the af function, which

is in L∞ for any f ∈ L1(Ω) or L2(Ω). An application of Theorem 6.18 in Folland

(2013) then proves the result for P̃1. The result holds true trivially for P̃2, since it is

a multiplication operator

We will use this result in Section 4.4.

Clearly, the operator P̃ satisfies P̃ fd = fd. Further, note that P̃ is constructed to

satisfy P̃ (fd) = I, in order to ensure that all agents stop transitioning between states

when the target density fd is reached.

Next, we will show that fd is a globally asymptotically stable equilibrium of system

(4.6).

Theorem 4.3.8. For the system (4.6), fd is globally asymptotically stable in the

L1(Ω,m) norm; that is,

‖fn − fd‖1 → 0 as n→∞.

Before presenting the proof of this theorem, we make the following observation.

Consider the case when for some y ∈ Ω, fn(y) > fd(y). Then, it follows that afn(y) >

0. Expression (4.16) then becomes:

P̃ fn(y) =

∫
Ω

afn(x)k(x, y)fn(x)dx+ fd(y).

The first term in the equation above is non-negative. Therefore, one of the following

conditions must be true:

fn+1(y) ≥ fn(y) > fd(y);

fn(y) > fn+1(y) ≥ fd(y).
(4.17)

Consequently, it is not possible that fn+1(y) < fd(y) for any value of n. Next, consider

the case when y ∈ Ω is such that fn(y) ≤ fd(y). In this case, afn(y) = 0. Expression
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(4.16) then reduces to:

P̃ fn(y) =

∫
Ω

afn(x)k(x, y)fn(x)dx+ fn(y). (4.18)

Similar to the previous case, given that the first term in the equation above is non-

negative, one of the following conditions must be true:

fn+1(y) ≥ fd(y) > fn(y);

fd(y) > fn+1(y) ≥ fn(y).
(4.19)

Therefore, in this case, we observe that fn+1(y) monotonically increases with n.

Define the sets

E1
n = {y ∈ Ω : fn(y) < fd(y)},

E2
n = {y ∈ Ω : fn(y) = fd(y)},

E3
n = {y ∈ Ω : fn(y) > fd(y)}.

We note that Ω = E1
n t E2

n t E3
n, where t denotes a disjoint union.

We can now state the proof of Theorem 4.3.8. To summarize, the proof employs

an argument by contradiction that if the density fn converges to a function other

than fd, then the measure µn is pushed from sets where its density fn is greater than

fd to sets where fn < fd. This is straightforward to conclude from the definitions

of the transition kernels K and Q; however, to prove the convergence of fn to fd, it

is necessary to precisely quantify the measure that is pushed during each time step,

which is computed in the proof.

Proof of Theorem 4.3.8. To prove this result, it is sufficient to show that on the

set E1
n, ‖fn − fd‖1 → 0 as n → ∞. This follows from the fact that each fn is a

probability density on Ω. On E1
n, by (4.19), we have that fn+1 ≥ fn, and hence

that fd − fn ≥ fd − fn+1. Set Fn = (fd − fn)+, where for an arbitrary function

h : Rd → R, h+ denotes the positive part of h. Then Fn is monotonically decreasing

on Ω. The sequence (Fn)n is bounded, and monotonically decreasing, which implies
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that Fn converges pointwise to a function, say g. By the monotone convergence

theorem (Folland, 2013), we then have that
∫

Ω
Fn →

∫
Ω
g. If g = 0, then we have our

result. If g 6= 0, then since fn is a probability density on Ω,
∫

Ω
Fn →

∫
Ω
g implies

that
∫

Ω
(fn − fd)+ 6→ 0. We will next prove by contradiction that g is in fact 0.

We suppose that g 6= 0. Let
∫

Ω
g ≥ γ, where γ > 0. Define S = {x ∈ Ω : g(x) >

0}. We note that the definition of S is independent of time. Given the conditions in

(4.17) and (4.19), it follows that E1
n ⊃ E1

n+1 for all n. Due to the convergence of Fn

to g, we must have that for all n, S ⊂ E1
n. Moreover, limn→∞m(E1

n)→ m(S). Note

that, ∫
S

fd(x)− fn(x)dx ≥
∫
S

g(x)dx > γ. (4.20)

Since Ω is compact, Ω can be covered by a finite number M of balls of radius ε, where

4ε < r. That is, Ω ⊂ ∪Mi=1Bε(xi) for some xi ∈ Ω. We will denote Bε(xi) ∩ Ω by

B(xi). Choose a ball B(xj) from this cover that intersects both E1
n and (E1

n)c. Then,

m(B(xj)) = m(B(xj) ∩ S) +m(B(xj) ∩ (E1
n \ S)) +m(B(xj) ∩ (E1

n)c). (4.21)

Let m(B(xj)∩ S) ≥ ε0, for some ε0 > 0. If m(B(xj)∩ (E1
n)c) = 0 at the current time

n, then we look for a large enough time T ∈ Z+ such that m(E1
T \ S)) ≤ ε1 << ε0.

At times n ≥ T , (4.21) shows that m(B(xj) ∩ (E1
n)c) > 0, ensuring the existence of

at least one ball from the cover that has intersections of positive measure with both

S and (E1
n)c.

Next, let J = {1, . . . ,M} and define the following sets:

N1 =
⋃
i∈J

m(B(xi)∩S)>0

B(xi),

Nk =
⋃
i∈J

m(B(xi)∩Nk−1)>0

B(xi) \Nk−1, k > 1.
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Let n > T . If
∫
N1∩(E1

n)c
fn − fd is not tending to 0 with increasing n, then we must

have that
∫
N1∩(E1

n)c
fn − fd ≥ δ infinitely often (i.o), for some δ > 0. Moreover, each

time the integral exceeds δ, the measure that is pushed from N1 ∩ (E1
n)c to S can be

quantified as ∫
N1∩(E1

n)c
Q1(x, S)dµn(x)

=

∫
N1∩(E1

n)c

∫
S

afn(x)q(x, y)dyfn(x)dx

=

∫
N1∩(E1

n)c
(fn(x)− fd(x))

∫
S

q(x, y)dydx

= C1

∫
N1∩(E1

n)c
fn(x)− fd(x)dx,

where the constant C1 in the last expression is
∫
S
q(x, y)dy. Therefore, the measure

that gets pushed onto S fromN1∩(E1
n)c is C1δ at every time n when

∫
N1∩(E1

n)c
fn−fd ≥

δ. Let {tn}n be a sequence in Z+ of all such times n, with t0 > T . When the integral

exceeds δ, we have that ∫
S

fn+1(x)dx =

∫
S

fn(x)dx+ C1δ.

Consequently, for each tn we have,∫
S

ftn(x)dx =

∫
S

fn(x)dx+ C1nδ,

which implies that∫
S

fd(x)− ftn(x)dx =

∫
S

fd(x)− fn(x)dx− C1nδ.

As n → ∞, the integral on the right-hand side of the equation above tends to −∞,

contradicting the fact that this integral is an upper bound on the integral of g over

S, as per (4.20). Thus, we must have that
∫
N1∩(E1

n)c
fn − fd → 0 as n→∞.

We will now use an induction argument to show that
∫

(E1
n)c
fn− fd → 0. We have

just shown that this was true for the neighborhood of S given by N1 ∩ (E1
n)c. We
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assume that
∫
Nk∩(E1

n)c
fn− fd → 0 for some k > 1. We will prove that this also holds

true for Nk+1 ∩ (E1
n)c. Suppose that it is not true; then,

∫
Nk+1∩(E1

n)c
fn − fd ≥ δ1

i.o for some δ1 > 0. Again, denote the sequence of times when this happens by

{tn}n. By construction, Nk+1 does not intersect S; however, Nk+1 may intersect E1
n

(possibly a subset of Nk), to which it can push measure. We now demonstrate that

Nk+1 pushes most of its measure to Nk ∩ (E1
n)c. We have established that for any

n ≥ T , m(Nk ∩E1
n) ≤ m(E1

n \S) ≤ ε1, which is arbitrarily small. Hence, m(Nk ∩E1
n)

must be arbitrarily small, and therefore m(Nk ∩ (E1
n)c) must have positive measure.

Consequently, we have that∫
Nk+1∩(E1

n)c
Q1(x,Nk ∩ (E1

n)c)dµn(x)

=

∫
Nk+1∩(E1

n)c
(fn(x)− fd(x))

∫
Nk∩(E1

n)c
q(x, y)dydx

= Ck

∫
Nk+1∩(E1

n)c
(fn(x)− fd(x))dx,

where Ck =
∫
Nk∩(E1

n)c
q(x, y)dy. That is, the measure pushed from Nk+1 ∩ (E1

n)c

to Nk ∩ (E1
n)c is Ckδ1 for every tn. Using similar arguments, we can conclude that∫

Nk+1∩(E1
n)c
fn − fd → 0 as n → ∞. Since Ω is compact, this process of induction

must stop at a finite k. Therefore, we have that
∫

(E1
n)c
fn−fd → 0, and consequently,

g = 0, proving that fd is globally attractive. Since, fd − fn is strictly decreasing

on the set E1
n and

∫
fn = 1 for all n, we can conclude that, in fact, the equilibrium

distribution fd is stable in the sense of Lyapunov. This concludes the proof. �

4.4 The N -Agent System

In this section, we will define the microscopic description of the system, i.e., the

model of individual agents’ state transitions, and study how it relates to the macro-

scopic or mean-field model (4.3). The following mathematical definitions are adapted

from Del Moral et al. (1998). Consider a population of N agents evolving on the state

78



space Ω. Let the state of each agent k at time n be given by the random variable

ξkn ∈ Ω, k = {1, . . . , N}. Each agent transitions between states on Ω according to the

transition kernel Q defined in (3.11). The N -agent system can therefore be described

as a Markov chain ξn = (ξ1
n, . . . , ξ

N
n ) with state space ΩN . To a measure ν ∈ P(Ω),

we associate a measure ν⊗N = ν × . . . × ν ∈ P(ΩN). The empirical measure mN(x)

associated with the point x = (x1, . . . , xN) ∈ ΩN , where each entry xk is the state of

agent k, is given by a normalized sum of Dirac measures associated with each agent,

mN(x) =
1

N

N∑
k=1

δxk . (4.22)

The corresponding Markov process (ξn)n on (ΩN ,Fn,P) is defined by

P(ξ0 ∈ dx) = µ⊗N0 (dx), (4.23)

P(ξn ∈ dx|ξn−1 = z) = (PmN(z))⊗N(dx), (4.24)

where dx = dx1× . . .×dxN , and P is as defined in (4.14). At time n = 0, the N -agent

system can be modeled as N independent random variables ξ1
0 , . . . , ξ

N
0 with common

distribution µ0. At time n ≥ 1, define µNn := mN(ξn). Then, µNn+1 is evaluated as

µNn+1 = PmN(ξn). (4.25)

Thus, from the equation above, at time n the N -agent system is modeled as N

random variables ξ1
n, . . . , ξ

N
n that are conditional on ξn−1 and distributed according

to PmN(ξn−1). The agents’ states are therefore not independent of one another; their

distribution is dependent on the system configuration at time n − 1. Although the

evolution of each agent’s state is not Markovian, the distribution of the N -agent

system evolves according to an interacting Markov chain. At time n = 0, µN0 → µ0 as

N →∞. At times n ≥ 1, due to the aforementioned interaction between agents, the

law of large numbers does not apply. Thus, another method must be used to establish
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the limit µNn
N→∞−→ µn, where µn evolves according to (4.3). This limit is called the

mean-field limit. The work Del Moral et al. (1998) proved this limit for systems of

the form (4.3) in which the right-hand side is continuous. In Kolokoltsov (2010),

this limit is referred to as the dynamic law of large numbers; it is proven for Markov

processes whose evolution is governed by a partial differential equation (PDE).

Since the empirical measure mN is a sum of Dirac measures, it is not absolutely

continuous with respect to the Lebesgue measure. We will “mollify” the Dirac mea-

sures in order to be able to use results from the previous section and to apply the

operators P̃ and P defined in (4.14) and (4.16), respectively, to absolutely continu-

ous measures. Mathematically, this means that the measure mN is convolved with a

smooth function φ : R → R, a mollifier, to obtain a smooth function (density). The

convolution of mN and φ is carried out as

φ ∗mN =

∫
Ω

φ(x)dmN =
1

N

N∑
i=1

φ(x− xi). (4.26)

The result of this convolution is a sum of smooth functions, which is smooth. Loosely

speaking, this convolution replaces each Dirac measure by a measure with smooth

density φ. We can now apply P̃ and P to the right-hand side of this equation. In

our simulations, we have defined φ as the standard bump function with a compact

support:

φ(x) =


e
−
(

1
1−‖x‖2

)
, x ∈ (−1, 1),

0, otherwise.

(4.27)

To change the support of φ, we define a function φh on Rd for some h > 0 as follows

Folland (2013):

φh(x) = h−dφ
(x
h

)
. (4.28)

Note that
∫
φh = 1, which is independent of h. Moreover, the “mass” of φh becomes

concentrated at the origin as h → 0; that is, φh tends to a Dirac measure as h → 0.
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Figure 4.1: Visualization of two bump functions φh with h = 0.1 and one bump
function with h = 0.05.

Figure 4.1 shows a visualization of two bump functions with h = 0.1 and one with

h = 0.05. Since the integral of all bump functions is 1, to compensate for the decrease

in h, the peak of the bump function with h = 0.05 is significantly higher than the

peaks of the functions with h = 0.1.

The introduction of the mollifier also has implications for the implementation of

the N -agent system in practice. For an agent with state x, given a distribution f , the

transition kernel K in (4.10) is defined such that it requires pointwise evaluation of

the function f(x) in the term af = (f − fd)/f from (4.7). However, to evaluate the

density φ at its state x using (4.26), the agent must know the states xi of all other

agents whose states are within a distance h of its own. For example, if the agents’

states are their positions in space, mollification of the empirical measure implies that

each agent must estimate the density φ in (4.26) based on its relative distance to

all agents that are located within a neighborhood whose size is determined by the

parameter h. As h → 0, this neighborhood shrinks, and the density tends to the

Dirac measure, which is singular.

In order to derive the macroscopic (mean-field) model from the microscopic de-
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scription of the system, i.e. the dynamics of N individual agents, one typically needs

to take the mean-field limit, as described earlier in this section. Since we have intro-

duced the mollifier, a second limit needs to be proven as well. Both limits are defined

below.

1. N →∞: We now introduce a measure µhn that evolves according to the deter-

ministic difference equation

µhn+1 = P (φh ∗ µhn)µhn, µh0 ∈ P(Ω). (4.29)

Due to the introduction of the mollifier, we expect the N -agent system (4.25)

to converge to the system above, which is different from (4.3). That is,

µNn → µhn as N →∞.

This limit is usually proven in the weak topology and can be established for

discrete-time systems using results from Del Moral et al. (1998). Applying

these results requires proving that the right-hand side of (4.3) is continuous in

the weak topology, which is significantly challenging for our system. Thus, we

will reserve this investigation for future work.

2. h → 0: The second limit proves that the solution of (4.29) converges to the

solution of (4.3); that is, for all n ∈ Z+,

µhn → µn as h→ 0. (4.30)

We shall prove this convergence in the L1(·) norm in the next subsection.

4.4.1 The limit as h→ 0

We prove the limit (4.30) for a dense subset of L1(Ω); specifically, we consider

distributions µ ∈ P(Ω) that have L2(Ω) densities. Moreover, we require fd to be
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bounded from below a.e. on Ω.

Let µ0 � m with density f0 ∈ L2(Ω). In Proposition 4.3.6, we proved that P̃

preserves L2(Ω); that is, fn = P nf0 ∈ L2(Ω) for n ∈ Z+ Therefore, system (4.29) can

be rewritten on L2(Ω) as

fhn+1 = P̃ (φh ∗ fhn )fhn , fh0 ∈ L2(Ω). (4.31)

Since m(Ω) <∞, L2(Ω) ⊂ L1(Ω), and therefore we will consider system (4.6) to be a

system on L2(Ω) instead of L1(Ω). We will show that solutions of the above system

converge to those of (4.6) in the L1(Ω) norm.

Theorem 4.4.1. Suppose the initial conditions fh0 and f0 are in L2(Ω). Let fhn and

fn be solutions of (4.31) and (4.6), respectively. If fd is bounded from below a.e. on

Ω, then

‖fhn − fn‖1 → 0

for any n ∈ Z+.

To prove this result, we need the following proposition,

Proposition 4.4.2. Let g ∈ L2(Ω). If fd is bounded from below a.e. on Ω, then we

have the following convergence results:

1. For f ∈ L2(Ω),

‖P̃ (φh ∗ f)g − P̃ (f)g‖1
h→0−→ 0

2. If fi
i→∞−→ f in the L1(Ω) norm, then

‖P̃ (fi)g − P̃ (f)g‖1
i→∞−→ 0

Proof. (1) Let f ∈ L2(Ω). Then, φh ∗f ∈ L2(Ω). By Theorem 8.14 of Folland (2013),

φh ∗ f
h→0−→ f in the L2 norm. To prove convergence of P̃ (φh ∗ f) to P̃ (f) as operators
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on L1(Ω), choose g ∈ L2(Ω) (since Ω has finite measure, g ∈ L1(Ω)), and compute

the following:

‖P̃ (φh ∗ f)g − P̃ (f)g‖1

=

∫
Ω

∣∣∣P̃ (φh ∗ f)g(y)− P̃ (f)g(y)
∣∣∣ dy. (4.32)

Recall that according to (4.16), P̃ = P̃1 + P̃2. We will now evaluate the integral (4.32)

in terms of the two operators P̃1 and P̃2.

In (4.32), the component of the integrand that depends on P̃1 is given by:

P̃1(φh ∗ f)g(y)− P̃1(f)g(y) =

∫
Ω

A(x, y)dx, where

A(x, y) = aφh∗f (x)q(x, y)g(x)− af (x)q(x, y)g(x).

We now define the following sets:

E1 = {x ∈ Ω : φh ∗ f(x) > fd(x)}, E2 = {x ∈ Ω : φh ∗ f(x) ≤ fd(x)},

E3 = {x ∈ Ω : f(x) > fd(x)}, E4 = {x ∈ Ω : f(x) ≤ fd(x)}.

We will split the integral
∫

Ω
A over four sets constructed from these sets, namely,

S1 = {E1 ∩ E3}, S2 = {E2 ∩ E3}, S3 = {E1 ∩ E4}, and S4 = {E2 ∩ E4}. Note that

S1 t S2 t S3 t S4 = Ω. Consider the integral of A over S1:∫
E1∩E3

A ≤ ‖q‖∞
∫
E1∩E3

aφh∗fg − afg (4.33)

= ‖q‖∞
∫
E1∩E3

φh ∗ f − fd

φh ∗ f
g − f − fd

f
g

= ‖q‖∞
∫
E1∩E3

φh ∗ f − f
φh ∗ f

fd

f
g.

Note that on E1 ∩ E3, φh ∗ f
‖·‖2−→ f > fd > 0 and

∥∥∥fdf ∥∥∥∞ < 1. Since fd is bounded

from below a.e. on Ω, we must have that
∥∥∥ 1
φh∗f

∥∥∥
∞
<∞. Continuing the computation
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from above,

‖q‖∞
∫
E1∩E3

φh ∗ f − f
φh ∗ f

fd

f
g

≤ ‖q‖∞
∥∥∥∥ 1

φh ∗ f

∥∥∥∥
∞

∥∥∥∥fdf
∥∥∥∥
∞

∫
E1∩E3

φh ∗ f − fg

≤ ‖q‖∞
∥∥∥∥ 1

φh ∗ f

∥∥∥∥
∞

∥∥∥∥fdf
∥∥∥∥
∞
‖φh ∗ f − f‖2‖g‖2.

The second inequality above follows from Hölder’s inequality. Since we have estab-

lished that ‖φh ∗ f − f‖2 → 0 as h → 0, the integral of A over S1 must converge to

0. Next, we consider the integral of A over S2:∫
E2∩E3

A ≤ ‖q‖∞
∫

E2∩E3

−f − f
d

f
g (4.34)

≤ ‖q‖∞
∥∥∥∥f − fdf

∥∥∥∥
∞
‖g‖2 m(E2 ∩ E3).

The second inequality follows from Hölder’s inequality. In this case, we will establish

that m(E2 ∩ E3) → 0 as h → 0, which would imply that the integral of A over S2

converges to 0. We can compute m(E2 ∩ E3) as:

m(E2 ∩ E3) = m({φh ∗ f − fd ≤ 0} ∩ {f − fd > 0})

= m({(φh ∗ f − f) + (f − fd) ≤ 0} ∩ {f − fd > 0}).

Note that,

{(φh ∗ f − f) + (f − fd) ≤ 0} ⊂ {(φh ∗ f − f) ≤ 0}.

Continuing the computation from above,

m(E2 ∩ E3) ≤ m({φh ∗ f − f ≤ 0} ∩ {f − fd > 0})

= m({φh ∗ f − f < 0} ∩ {f − fd > 0})

By Proposition 2.29 of Folland (2013), since φh ∗ f − f → f in the L2 norm as h→ 0,

then φh ∗ f − f → f in measure; that is, m({φh ∗ f − f ≤ δ})→ 0 as h→ 0 for every
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δ > 0. Therefore, we must have that m(E2 ∩ E3) → 0 as h → 0, and consequently,

the integral of A over E2 ∩ E3 must converge to 0. Now, consider the integral of A

over S3: ∫
E1∩E4

A ≤ ‖q‖∞
∫
E1∩E4

φh ∗ f − f
φh ∗ f

g (4.35)

≤ ‖q‖∞
∥∥∥∥ 1

φh ∗ f

∥∥∥∥
∞
‖g‖2 ‖φh ∗ f − f‖2 m(E1 ∩ E4).

The second inequality follows from Hölder’s inequality. Since we have that ‖φh ∗ f −

f‖2 → 0 as h→ 0, the integral of A over E1∩E4 converges to 0. Finally, the integral

of A over S4 is trivially zero:∫
E2∩E4

A =

∫
E2∩E4

aφh∗fg − afg = 0. (4.36)

Thus, we have shown that
∫

Ω
A→ 0 as h→ 0.

Returning to the integral (4.32), the component of the integrand that depends on

P̃2 is given by:

P̃2(φh ∗ f)g(y)− P̃2(f)g(y) = (1− aφh∗f (y)) g(y)− (1− af (y)) g(y)

= af (y)g(y)− aφh∗f (y)g(y) := B(y). (4.37)

This term is equal to the integrand of each of the four integrals considered in (4.33)-

(4.36). Since we showed that each of these integrands tends to 0 as h→ 0, we must

have that B(y)→ 0 as well.

We can now evaluate (4.32) as

‖P̃ (φh ∗ f)g − P̃ (f)g‖1 =

∫
Ω

∣∣∣∣∫
Ω

A(x, y)dx+B(y)

∣∣∣∣ dy
=

∫
Ω

∣∣∣∣∫
S1tS2tS3tS4

A(x, y)dx+B(y)

∣∣∣∣ dy.
Since we have shown that both

∫
Ω
A→ 0 and B(y)→ 0 as h→ 0, the outer integral

converges to 0 as well, and we have our result.

(2) The proof of this result is similar to the proof of result (1).
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Remark 4.4.3. Proving convergence of the operators P̃ (φh ∗ f) and P̃ (fi) (as op-

erators on L1) in the standard topologies, such as the operator norm or the strong

operator, would have required us to prove both results in the above proposition for

any g ∈ L1(Ω), which is quite challenging for our system. Since we have established

that fn = P̃ nf0 is restricted to L2(Ω) for any initial density f0 ∈ L2(Ω), choosing

g ∈ L2(Ω) is sufficient to prove Theorem 4.4.1.

We can now prove Theorem 4.4.1.

Proof of Theorem 4.4.1. To prove this result, we will use an induction argument.

For n = 1, we have that

fh1 = P̃ (φh ∗ f0)f0,

f1 = P̃ (f0)f0.

Then, by statement (1) of Proposition 4.4.2, ‖fh1 −f1‖1 = ‖P̃ (φh∗f0)f0−P̃ (f0)f0‖1 →

0 as h→ 0. Assume that this is true for some n > 1; i.e., ‖fhn − fn‖1 → 0 as h→ 0.

We will show that this limit holds true for n+ 1 using the following computation:

‖fhn+1 − fn+1‖ =
∥∥∥P̃ (φh ∗ fhn )fhn − P̃ (fn)fn

∥∥∥
1

=
∥∥∥(P̃ (φh ∗ fhn )fhn − P̃ (fn)fhn ) + (P̃ (fn)fhn − P̃ (fn)fn)

∥∥∥
1

=
∥∥∥(P̃ (φh ∗ fhn )− P̃ (fn))fhn + P̃ (fn)(fhn − fn)

∥∥∥
1

≤
∥∥∥(P̃ (φh ∗ fhn )− P̃ (fn))fhn

∥∥∥
1

+
∥∥∥P̃ (fn)(fhn − fn)

∥∥∥
1

The bracket (fhn − fn) in the second term converges to 0 as h → 0 due to our

assumption. Considering the first term, we observe that:

lim
fhn→fn

lim
h→0

P̃ (φh ∗ fhn ) = P̃ (fn)

This follows from the fact that the inner limit tends to P̃ (fhn ) by statement (1) of

Proposition 4.4.2, and the outer limit limfhn→fn P̃ (fhn ) tends to P̃ (fn) by statement
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(2) of Proposition 4.4.2. Therefore, the bracket P̃ (φh ∗ fhn )− P̃ (fn) in the first term

tends to 0 as h→ 0, and hence we have our result. �

4.5 Simulations

In this section, we present numerical solutions of the mean-field model (4.3) and

simulations of the corresponding N -agent system. We provide verification via these

simulations that as N →∞, the simulations of the N -agent system (stochastic sim-

ulations) approach the solution of the deterministic system (4.3).

In the example below, we define the agent state space Ω ⊂ R2 as the unit square

[0, 1] × [0, 1], representing a physical domain in which the agents move. The target

distribution, shown in Fig. 4.2, is set to fd = sin2(2πx1)+sin2(2πx2), where [x1 x2]T ∈

Ω. The initial distribution is set to the Dirac measure at (0, 0). We consider a

nonlinear vector field F in system (4.1) that represents a unicycle model:

x1
n+1 = x1

n + u1
n cos(u2

n),

x2
n+1 = x2

n + u1
n sin(u2

n). (4.38)

Here, xn = [x1
n x

2
n]T ∈ Ω and un = [u1

n u
2
n]T ∈ U . The set of control inputs is defined

as U = [0, 0.1] × [0, 2π]. This map F satisfies all the required conditions stated in

Section 4.3.

To simulate the mean-field model (4.6), we use Ulam’s method that was introduced

in Chapter 3. We need to discretize both Ω and U . The set Ω is partitioned into

nx ∈ Z+ sets, Ω̃ = {Ω1, . . . ,Ωnx}, where Ω = ∪nxi=1Ωi and the sets Ωi have intersections

of zero Lebesgue measure. The set of control inputs U is approximated as a set of

nu ∈ Z+ discrete elements, Ũ = {v1, . . . , vnu}, where vi ∈ U for each i.

We now define the discretization of the mean-field model (4.3). Let µ ∈ P(Ω̃)

and j ∈ I, and let µd be the discretization of fd on Ω̃. Let P ∈ Rnx×nx be the
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Figure 4.2: Target distribution fd

discretization of the operator P defined in (4.14). Then the discretization of system

(4.3) is given by:

µn+1 = Pµn, (4.39)

Pµ(j) =
∑
i∈I

aµ(i)
∑
l∈J

k̃il p
l
ijµ(i) + (1− aµ(j))µ(j),

where aµ(i) = (µ(i)− µd(i))/µ(i) if µ(i)− µd(i) > 0, and aµ(i) = 0 otherwise. Figure

4.3 shows snapshots of the simulation of this system at several times n.

Algorithm 1 presents the program that simulates the evolution of agents over a

domain Ω with a control set U , until a specified final time Tf . An agent considers

another agent to be its neighbor if their relative distance is less than h, the parame-

ter of the bump function φh described in the previous section. We denote the set of

neighbors of agent k at any given time by N (k). At every time step, each agent com-

putes the value of the bump function based on the relative distances of its neighbors.

Computation of the bump function is provided in Algorithm 2. Note that C in Line

4 is a normalizing constant which is chosen to ensure that Φ is a probability density.

Figures 4.4-4.7 show snapshots of the N -agent simulation for agent population sizes

of N =100, 500, and 1000, with h = 0.1 in the first three figures and 0.05 in the last

figure.

We first investigate the effect of increasing N while keeping h fixed on the time
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Algorithm 1 Simulation of N agents

1: Input: Ω, U, k, F,N, fd, h, Tf

2: Initialize n = 0, ak = 0, xk0 ∈ Ω for all k = 1, . . . , N

3: while n ≤ Tf do

4: for k = 1 : N do

5: s = 0, y = xkn . y denotes current location of agent k

6: for all j ∈ N (k) do . N (k) := {agents within distance h of k}

7: z = xjn

8: s = s+ PHI(y, z, h)

9: end for

10: fn(y) = 1
|N (k)|s

11: if fn(y) > fd(y) then

12: ak = fn(y)−fd(y)
fn(y)

13: end if

14: if ak > 0 then

15: Draw v uniformly from (0, 1)

16: if v ≤ ak then

17: Draw u ∼ k(y, ·) from U

18: y = F (y, u)

19: end if

20: end if

21: xkn+1 = y

22: end for

23: n = n+ 1

24: end while
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Algorithm 2 Evaluation of the local bump function

1: function Phi(y, z, h)

2: d = ‖y − z‖2

3: if d
h
< 1 then

4: Φ = 1
C

1
h2 exp

(
−1

1−(d/h)2

)
. C := Normalizing constant

5: end if

6: return Φ

7: end function
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(c) n = 500
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(d) n = 2000

Figure 4.3: Snapshots of the simulation of system (4.39) at several times n.
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(a) n = 50
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(b) n = 200

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
-3

(c) n = 500
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(d) n = 2000

Figure 4.4: Snapshots of a stochastic simulation of N = 100 agents, with h = 0.1,
at several times n.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

3

3.5

10
-3

(a) n = 50
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(b) n = 200
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(c) n = 500
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(d) n = 2000

Figure 4.5: Snapshots of a stochastic simulation of N = 500 agents, with h = 0.1,
at several times n.

91



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

3

3.5

10
-3

(a) n = 50
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(b) n = 200
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(c) Density at time n =

500
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(d) n = 2000

Figure 4.6: Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.1,
at several times n.
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(a) n = 50
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(b) n = 200
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(c) n = 500

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
-3

(d) n = 2000

Figure 4.7: Snapshots of a stochastic simulation of N = 1000 agents, with h = 0.05,
at several times n.
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(c) N = 1000, h = 0.1
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(d) N = 1000, h = 0.05

Figure 4.8: Time evolution of the 2-norm of five randomly selected agents’ states in
each of the N -agent simulations.
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(b) N = 100, h = 0.25
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(c) N = 1000, h = 0.2
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(d) N = 1000, h = 0.25

Figure 4.9: First and second sub-figures show the time evolution of the 2-norm of
five randomly selected agents’ states in two N -agent simulations with different values
of N and h (snapshots of corresponding stochastic simulations not shown); Third
and fourth sub-figures show snapshots at time n = 2000 of stochastic simulations of
N = 1000 agents with different values of h.
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evolution of the simulated N -agent system. Figure 4.3 shows that as time n increases,

the mean-field model indeed converges asymptotically to the target distribution in

Fig. 4.2. We observe that the convergence slows down significantly after time n = 500.

Following our discussion in Section 4.4, we expect the stochastic simulations of the N -

agent system to converge to the discretization of system (4.29) in the limit N →∞.

Although system (4.29) is different from the system (4.3), note that the solutions

of the two systems (4.3) and (4.29) converge in the limit h → 0. The snapshots in

Figs. 4.4-4.6 show that as the population size N is increased with a fixed value of h,

the agent distribution in the N -agent simulation approaches the solution of system

(4.39), plotted in Fig. 4.3. In all three figures, the agent distribution converges to a

discrete approximation of the continuous target distribution.

Next, we study the effect of N on the frequency of agent state transitions. For

each of the N -agent simulations shown in Figs. 4.4-4.7, Figs. 4.8a-4.8d plot the

time evolution of the 2-norm of five randomly selected agents’ states. The plots

in Figs. 4.8a-4.8c show that the agents’ frequency of state transitions significantly

decreases with increasing N ; the agents eventually stop transitioning between states

(i.e., stop moving) for both N = 500 and N = 1000. This trend can be attributed to

our approximation of a continuous distribution by a discrete function representing the

state of the N -agent system. For low values of N , the resulting coarse discretization of

fd might yield an operator P̃ (φh∗µNn ) that is not a sufficiently accurate approximation

of P̃ (fd) = I, the condition that stops agent state transitions. Higher values of N

produce a finer discretization of fd, which improves the accuracy of the approximation

of P̃ (fd) = I. This validates our claim that control policies designed for the mean-

field model can be implemented on a population of individual agents to achieve a

target distribution, as long as this population is sufficiently large.

Finally, we investigate the effect of reducing h while keepingN fixed. Similar to the
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agent distribution in Fig. 4.6 (h = 0.1), the agent distribution in Fig. 4.7 (h = 0.05)

approaches the solution of (4.39) shown in Fig. 4.3 as N increases. However, the

relative closeness of the distributions in Figs. 4.6 and 4.7 to the distribution in Fig.

4.3 is not apparent from the figures. This can be explained by noting that in this

case, we are holding N constant and decreasing h, thereby reversing the order of limits

that we considered in Section 4.4. There is no mathematical guarantee that the limits

commute, and hence, we do not necessarily expect that with reduced h, the N -agent

simulations will more closely approach the solution of (4.39). Moreover, a lower value

of h for a fixed N yields a smaller neighborhood in which each agent evaluates the local

density, which can produce a less accurate approximation of P̃ (fd) = I. As explained

previously, this can result in persistent agent state transitions, which are evident in

the simulation of N = 1000 agents when h is reduced from 0.1 (Fig. 4.8c) to 0.05 (Fig.

4.8d). Increasing h, on the other hand, can result in the eventual cessation of agent

transitions in smaller agent populations N . This is demonstrated in Figs. 4.9a-4.9b,

which show that when h is increased from 0.2 to 0.25, the population of N agents

stops transitioning for a lower value of N . The snapshots of stochastic simulations

for N = 1000 at time n = 2000 in Figs. 4.6d, 4.7d, 4.9c, and 4.9d demonstrate that

the agent distribution becomes smoother as h is increased, due to the smoothening

effect of the mollification.

The results presented within this chapter are part of Biswal et al. (2020c,a).
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Chapter 5

DISCRETE-TIME MARKOV CHAIN MODELS ON COMPACT MANIFOLDS

In this chapter, we consider discrete-time Markov chains (DTMC) that evolve on

compact, smooth, connected manifolds without boundary. We focus on stabilizing

and optimizing the convergence rate of a DTMC to target probability measures that

are positive almost everywhere on the manifold and that are absolutely continuous

with respect to the Riemannian volume, with L∞ Radon-Nikodym derivatives. Our

primary motivation stems from applications in multi-agent control systems; specif-

ically, the problem of distributing an ensemble of identity-independent agents on a

state space of choice.

A standard assumption in the literature on multi-agent control is that the state

space of the agents is Euclidean. However, the state spaces of many mechanical sys-

tems are naturally represented as manifolds (Marsden and Ratiu, 2013). Some works

have extended multi-agent control approaches on Euclidean spaces to manifolds; for

example, consensus strategies on manifolds are presented in (Sarlette and Sepulchre,

2009), respectively.

From here on, therefore, we consider the problems addressed in the Chapter 3,

wherein the state space was a compact subset of a Euclidean space, for state spaces

that are manifolds. As we will see, most of our results in Chapter 3 carry straight-

forwardly to the results here.

5.1 Notation

Here, we introduce notation that is specific to the case when the state space is

a manifold. We denote the state space by M, a d-dimensional smooth, compact,

95



connected manifold without boundary. Let TxM denote the tangent space of the

manifold at x ∈M. We assume thatM is equipped with a bi-invariant Riemannian

metric of g : TM × TM → R̄+, where TM = ∪x∈MTxM denotes the tangent

bundle of the manifold M. In particular, the natural measure associated with the

Riemannian manifold, known as the Riemannian volume, will be denoted by mg. Let

dg : M×M → R̄+ denote the Riemannian distance on M×M. For x ∈ M and

h > 0, let Bg(x, h) = {y ∈ M; dg(x, y) ≤ h} denote the ball of radius h centered at

x. We denote the space of probability measures on M by P(M).

Consider the Hilbert space of real-valued square integrable functions L2(X ,m).

The dual space of this space is itself. For x, y ∈ L2(X ,m), 〈x, y〉 =
∫
xydm defines

an inner product on L2(X ,m). The weak topology on L2(X ,m), denoted as w, is the

topology defined by the family of seminorms {px∗ : x∗ ∈ L2(X ,m)}, where px∗(x) =

|〈x, x∗〉|. The weak∗ topology, denoted as w∗, is defined on the dual space L2(X ,m)

by the family of seminorms {px : x ∈ L2(X ,m)}, where px(x
∗) = |〈x, x∗〉|. The weak

operator topology (WOT) on B(L2(X ,m)), the space of linear bounded operators that

map L2(X ,m) to L2(X ,m), is defined by seminorms {px,y : x, y ∈ L2(X ,m)}, where

px,y(T ) = |〈Tx, y〉| for T ∈ B(L2(X ,m)). Convergence in this topology is as follows:

(Ti)i
WOT−→ T ⇐⇒ 〈Tix, y〉 → 〈Tx, y〉, ∀x, y ∈ L2(X ,m).

5.2 Problem Formulation

We begin by stating our assumptions. We consider measures in P(M) that have

square integrable Radon-Nikodym derivatives with respect to mg; this assumption

gives us the advantage of working on a Hilbert space, L2(M,mg), which significantly

simplifies the analysis. Consider the following discrete-time flow on the space of
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probability densities L2(M,mg):

fn+1 = Pfn, n = 0, 1, 2, ...

f0 ∈ L2(M,mg), (5.1)

where P : L2(M,mg)→ L2(M,mg) is the induced forward operator. To define P , let

K :M×B(M)→ [0, 1] be a transition kernel. To ensure that P preserves probability

densities, we impose the following property on K:∫
M
K(x,M)dmg(x) = 1, for mg-a.e. x ∈M. (5.2)

Using system (5.1), we define a discrete-time Markov chain (DTMC) Φ =

{Φ0,Φ1, . . .} on M that describes an agent’s dynamics on the state space. The

Markov chain induces a probability measure P on M∞, defined as follows: P(E) is

the probability of the event {Φ ∈ E}, where E ∈
∨∞
i=0 B(Mi) (the product sigma

algebra) with Mi = M for each i ∈ Z̄+. For every n ∈ Z+, we say that the ran-

dom variable Φn is distributed according to µn, the measure corresponding to fn, if

P(Φn ∈ E) = µn(E). Suppose that Φn is the current agent state and is distributed

according to µn. Then the Markov property implies that Φn+1 is distributed according

to µn+1, where the density fn+1 corresponding to µn+1 is given by (5.1).

The action of P on a function f ∈ L2(M,mg) can be represented as follows: for

E ∈ B(M), ∫
E

(Pf)(x)dmg(x) =

∫
M
K(x,E)f(x)dmg(x). (5.3)

If K is regular, then we can obtain an explicit expression for P , rather than defining

P through (5.3). Defining k : M×M → R+ as the kernel function of K, we have

that k ∈ L∞(M×M,mg×mg). From (5.3), we obtain the following: for y ∈M and

f ∈ L2(M,mg),

Pf(y) =

∫
M
k(x, y)f(x)dmg(x). (5.4)
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Operators of this form are called integral operators (Conway, 2013). The function k

is called the kernel of the integral operator.

We will first consider the problem of stabilizing system (5.1) to a target density.

Problem 5.2.1. Given a target density fd ∈ L∞(M,mg), determine whether there

exists a transition kernel K :M×B(M)→ [0, 1] such that (5.1) satisfies lim
n→∞

P nf0 =

fd for all initial densities f0 ∈ L2(M,mg), where the forward operator P is defined

in (5.3).

This problem will be addressed in Section 5.3. When the state space M is a Lie

group, we can in fact show the existence of a regular transition kernel K, in which

case P is defined in (5.4).

Given that there exists such a transition kernel, we then address the problem

of choosing the transition kernel that optimizes the convergence rate (mixing rate)

of system (5.1) to the target density. As in the Euclidean state space case, the

convergence rate is characterized by the L2 spectral gap. Toward this goal, we will

prove the existence of a spectral gap for P . Further, we will prove in the next section

that 1 is the unique largest eigenvalue of P , which implies that P is stochastic, as in

the case of DTMCs that evolve on a discrete state space. Let λ2(P ) be the eigenvalue

of P with the second-largest modulus.

Problem 5.2.2. (Optimization of convergence rate) Let K be the set of all

Markov kernels defined on M×B(M)→ [0, 1] that each correspond to a well-defined

bounded operator on L2(M,mg). Given a target density fd ∈ L∞(M,mg), determine

whether the following optimization problem admits a solution:

min
K
|λ2(P )|

subject to the constraint Pfd = fd, where P is the forward operator (5.3).
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5.3 Existence of a Solution to Problem III.1

We closely follow the steps that are laid out in Section 3.4 for the case of a

Euclidean state space. Let a target density fd be given that is strictly positive almost

everywhere on M and satisfies fd,
1
fd
∈ L∞(M,mg). In this section, we will prove

the existence of an operator P that has fd as its fixed point, i.e., Pfd = fd.

We will first address the problem for the case where the state space is M, a

compact manifold. We define a regular kernel K associated with a kernel function k

as

K(x, dmg(y)) = k(x, y)dmg(y) =
χ
Bg(x,h)

mg(Bg(x, h))
dmg(y) (5.5)

for all x, y ∈ M, where χ
(·) is the characteristic function. This transition kernel

induces the Markov chain known as the “ball walk” (Lebeau et al., 2010). Let S :

L2(M,mg) → L2(M,mg) be the operator defined by this transition kernel as per

(5.4),

Sf(y) =

∫
M
k(x, y)f(x)dmg(x), f ∈ L2(M,mg).

The resulting Markov chain has the invariant measuremg(Bg(x, h))dmg(y), i.e., Sfπ =

fπ with fπ(x) = mg(Bg(x, h)) for all x ∈ M. Note that in the case when M is a Lie

group, S is a self-adjoint operator.

Recall the definitions of irreducibility and primitivity of an operator from Section

3.4. We will now establish some fundamental spectral properties of the operator S.

For small h > 0, these results were demonstrated in Lebeau et al. (2010) using the

theory of pseudodifferential operators, along with precise quantitative estimates of

λ2(S). Here we sketch an alternative proof, using basic functional analytic principles,

that S has a spectral gap for arbitrary h > 0. We again invoke the Jentzsch-Perron

theorem, Theorem 3.4.8, to establish the simplicity of the eigenvalue 1.

We can now state the following theorem.
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Theorem 5.3.1. The operator S is compact and Sfπ = fπ, where fπ ∈ L∞(M,mg)

is given by

fπ(x) = Cmg(Bg(x, h)) (5.6)

for all x ∈ M. Here, C is a normalizing constant such that
∫
M fπ(x)dmg(x) = 1.

Moreover, r(S) = 1 is a simple eigenvalue of the operator S, and |λ2(S)| < 1.

Proof. The operator S is compact since it is an integral operator with an essentially

bounded integral kernel k (Proposition II.4.7, Conway (2013)). Let π denote a mea-

sure that is absolutely continuous with respect to mg with density fπ. In addition, let

Mfπ : L2(M,mg) → L2(M, π) be a multiplication operator, defined as Mfπg = fπg.

Since fπ ∈ L∞(M,mg), Mfπ is bounded and well-defined (Theorem II.1.5, Conway

(2013)). Consider the operator Ŝ : L2(M,mg)→ L2(M, π) that is given by

Ŝ = M−1
fπ
SMfπ . (5.7)

The operator Ŝ is an integral operator with integral kernel q̂, defined as

q̂ =
k(x, y)fπ(x)

fπ(y)
. (5.8)

Then it follows from the proof of Proposition 3.3.5 that Ŝ is a contraction, and hence

r(S) = r(Ŝ) = 1.

To establish that |λ2(S)| < 1, we consider the set Ux
0 = {x} for each x ∈ M

and inductively define the sets Ux
m = ∪y∈Uxm−1

Bg(y, h) for each m ∈ Z+. Since the

manifold M is compact, there exists n ∈ Z+, independent of x ∈ M, such that

M = Ux
n . From this, it follows that if f ∈ L2(M,mg) is a non-zero non-negative

function, then Snf is positive almost everywhere on M. Hence, from Theorem 6.1

of Grobler (1995), it follows that the operator S is primitive, and the only eigenvalue

of S with modulus 1 is r(S). This last observation can also be concluded from the

fact that Ŝ is self-adjoint. Using the fact that Snf is positive almost everywhere on
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M if f ∈ L2(M,mg) is a non-zero non-negative function, we can conclude that S is

irreducible. We can now invoke 3.4.8 to conclude that the eigenvalue 1 is simple, and

hence that |λ2(S)| < 1.

In the case thatM is a Lie Group (Lee, 2001; Kirillov, 2008), the invariant measure

characterized by fπ can be described explicitly under a particular condition on the

metric g. Let x · y denote the right-translation of x ∈M by y. Similarly, y ·x denotes

the left-translation of x by y. If the metric g is bi-invariant, then the distance dg

is invariant under translations, i.e., dg(x · y, y · z) = dg(x, y) = dg(z · x, z · y) for all

x, y, z ∈M. In this case, the invariant measure coincides with the Riemannian volume

mg, or more specifically, the Haar volume. Due to the bi-invariance of the metric, it

follows that for each x, y ∈ M, Bg(x · y, h) = Bg(x, h) · y := {z · y, z ∈ Bg(x, h)}.

Similarly, for each x, y ∈M, Bg(y ·x, h) = y ·Bg(x, h) := {y ·z, z ∈ Bg(x, h)}. Hence,

we have that mg(Bg(x, h)) = mg(Bg(e, h)) = x−1 ·mg(Bg(x, h)) = mg(Bg(x, h)) · x−1

for all x ∈M, where e ∈M is the unique identity element ofM. Therefore, Theorem

5.3.1 can be rewritten for Lie groups as follows.

Theorem 5.3.2. Let M be a Lie Group such that the metric g is bi-invariant. Then

S : L2(M,mg)→ L2(M,mg) is a compact operator, and S1 = 1. Moreover, S has a

spectral gap, and hence |λ2(S)| < 1.

Our goal is to construct an operator P that has fd as its fixed point. Toward this

end, we define a multiplication operator D : L2(M,mg)→ L2(M,mg) as D(g) = gfπ
fd

.

Since fπ
fd
∈ L∞(M,mg) (note that fd is bounded from below), D is well-defined and

bounded. We define P as

P = (S − I)εD + I, 0 < ε << 1, (5.9)

where I is the identity operator on L2(M,mg).
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Remark 5.3.3. For ε small enough, P is a positive operator.

We note that since the identity operator I is not compact, P is not compact, and

therefore it cannot be represented as an integral operator (5.4) with an L2 kernel.

Instead, we will show that P can be represented as (5.3) with a Markov kernel Q :

M×B(M) → [0, 1]. Unlike the kernel K in (5.5), Q is not regular. From (5.9), we

can write this kernel as follows:

Q(x,E) =

∫
E

k(x, y)a(x)dy + (1− a(x))δx(E), x ∈M, (5.10)

where E ∈ B(M), a(x) = εfπ(x)
fd(x)

, and δ(·) is the Dirac measure. This can be easily

confirmed to be a Markov transition kernel. Next, we establish properties of the

spectrum of the new operator P . The proof of the result closely follows the proofs of

Theorems 3.4.12 and 3.4.13, and hence we will omit the proof here.

Proposition 5.3.4. The operator P defined in (5.9) satisfies P ∗1 = 1, Pfd = fd.

The eigenvalue 1 is algebraically simple, isolated (i.e., is not a limit point), and

coincides with the spectral radius of P . Furthermore, for ε small enough, and with

fπ, fd bounded from below, P is primitive.

The construction of P concludes our discussion on the existence of an operator

that has a unique fixed point at fd. We note that such an operator P is not necessarily

unique. Next, we move on to optimizing over all such operators in order to maximize

the convergence rate of system (5.1) to fd.

5.4 Formulation of the Optimization Problem

As we did for the case of a Euclidean state space, in this section, we present a

solution to a relaxed version of Problem 5.2.2. Recall our assumptions that fd is in

L∞(M,mg) and is a.e. strictly positive onM. Let µd be a measure that is absolutely

continuous with respect to mg with density fd.

102



Instead of constructing P , we will pose this optimization problem for P̂ =

M−1
fd
PMfd , defined as in (5.7), which has the same spectrum as P . The advantage here

is that P̂ is doubly stochastic, which simplifies the formulation of the optimization

problem. Recall that we are bounding from above the modulus of the second-largest

eigenvalue, as is expressed in (3.36).

We now formulate the optimization problem. The optimization variable is the

transition kernel function K in the definition (5.3) of P . The relationship between P̂

and P is enforced as constraint (5.12) in the optimization problem, defined below.

min
K

∥∥∥P̂ (K) ◦ Proj1⊥
∥∥∥ (5.11)

subject to

P̂ = M−1
fd
PMfd , (5.12)

K(x,E) ≥ 0 ∀x ∈M, E ∈ B(M), (5.13)∫
M
K(x,M)dx = 1 ∀x ∈M, (5.14)∫

M
fd(y)K(x, dy) = fd(x) ∀x ∈M, (5.15)

K(x,M\Bg(x, r)) = 0, ∀x ∈M. (5.16)

The constraints (5.13), (5.14) ensure that K is indeed a transition kernel. Constraint

(5.15) ensures that fd is the stationary distribution of P . Equation (5.16) imposes

a localization constraint on the corresponding Markov chain; that is, starting from

any point x ∈M, the probability of choosing a point lying outside a ball of specified

radius r is zero. This constraint captures physical limitations on an agent’s motion

as it traverses the state space, which restrict the agent to moving a distance bounded

by r in a single time step.

We will discuss the convexity of the optimization problem in the next section.
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5.5 Optimal Solution

In this section, we show that an optimal solution to the optimization problem

(5.11)-(5.16) exists. In order to show this, we must prove that the set of decision

variables, which will be defined shortly, is compact in some topology and that the

objective function (5.11) is continuous on this set with respect to the chosen topology.

We begin with a definition. Operators that are described by expression (3.2),

where the kernel is not necessarily regular, are called pseudo-integral operators

(Sourour, 1979); integral operators form a subset. Suppose that (X ,N , µ) is a fi-

nite Borel measure space.

Definition 5.5.1. A bounded linear operator T : L2(X , µ)→ L2(X , µ), where µ is a

kernel, is called a pseudo-integral operator if T is given by the expression

(Tf)(x) =

∫
f(y)µ(x, dy), m-a.e. (5.17)

for every f ∈ L2(X , µ).

Remark 5.5.2. In fact, the kernel is uniquely determined by the operator in the sense

that if ν(x, dy) satisfies (5.17), then µ(x, ·) = ν(x, ·) for m-almost every x.

The following result (Theorem 3.1, Sourour (1979)) will be used in our upcoming

discussion.

Theorem 5.5.3. Let T be defined as in (5.17). Then T is a pseudo-integral operator

with a positive kernel if and only if T is a positive operator.

The decision variable in the optimization problem is the transition kernel K.

However, in view of the remark and theorem above, we shall instead define a set of

operators that satisfy the optimization constraints and identify the transition kernels
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with these operators. This formulation will significantly simplify our analysis. To

begin, we define the following set.

P =
{
P : L2(M,mg)→ L2(M,mg) is a pseudo-integral operator with a kernel

K :M×B(M)→ [0, 1], P1 = 1, P ∗fd = fd for fd ∈ L2(M,mg),

Pf(x) =

∫
Bg(x,r)

f(y)K(x, dmg(y)) for x ∈M
}
. (5.18)

Here, the constraint Pf(·) =
∫
Bg(·,r) fK(·, dmg) is equivalent to the condition

K(x,M\Bg(x, r)) = 0 in (5.16). For sufficiency, we obtain this condition by choosing

f to be the constant function 1. The necessary direction is straightforward to prove.

Note that the set P is defined in terms of operators that are of the form (3.2) due

to the statement of Theorem 5.5.3, which involves operators of the form (5.17).

Proposition 5.5.4. The set P is closed in the WOT topology.

Proof. Let (Pi)i be a sequence in P, and suppose that (Pi)i converges to P in WOT.

We will show that P ∈ P. WOT convergence implies that 〈Pif, g〉
i→∞−→ 〈Pf, g〉 for

all f, g ∈ L2(M,mg). In particular, take f = 1. Since Pi1 = 1 for all i, we have

that 〈P1, g〉 = 〈1, g〉 for all g 6= 0, which implies that P1 = 1. Similarly, P ∗fd = fd.

We now show that P is a positive operator. Suppose that f, g ∈ L2(M,mg) are

positive functions. Then, Pif is non-negative for every i. Since R̄+ is closed, the limit

〈Pf, g〉 must be non-negative, which implies that P must be a positive operator.

From Theorem 5.5.3 and the condition P1 = 1, we conclude that P must be a

pseudo-integral operator with a kernel K taking values in [0, 1]. We now consider the

last constraint in the set (5.18). Let f, g ∈ L2(M,mg) be positive functions. Again,

from the definition of the WOT topology, we have that limi〈(Pi−P )f, g〉 = 0; that is,

limi

∫
M(Pi−P )fgdmg = 0. Since Pi, P are positive operators, this implies that (Pi−

P )fg → 0 in L1. Therefore, there exists a subsequence such that limj((Pi)j−P )fg = 0
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a.e. (Folland, 2013). Since g is positive, this implies that limj((Pi)j − P )f = 0 a.e.

Finally, for all i and fixed x ∈M, (Pif)x is non-zero over the set Bg(x, r), and since

f is positive, we conclude that the limit Pf(x) must be zero everywhere outside the

ball Bg(x, r). Hence, P ∈P.

Remark 5.5.5. We note that P is a set of operators of the form (3.2), whereas

we are interested in the adjoints of these operators, which are of the form (3.1).

Therefore, we require that P∗ := {T ∗, T ∈P} be closed in the WOT topology, which

follows from the fact that the map P → P ∗ is WOT continuous.

Since the optimization problem is a minimization problem, it is sufficient for us to

prove that the objective function is only lower-semicontinuous, rather than continu-

ous. We prove this in the following proposition.

Proposition 5.5.6. The map P 7→ ‖M−1
fd
PMfd ◦ Proj11 ‖ is lower-semicontinuous

on P and convex.

Proof. It is clear that the map P → M−1
fd
PMfd ◦ Proj1⊥ is continuous. Further, by

Problem 109 in Halmos (2012), the operator norm is weak∗ lower-semicontinuous on

the dual space L2(M,mg). We observe that the objective function is a composition of

a lower-semicontinuous function and a continuous function, and is therefore a lower-

semicontinuous function on P. Convexity follows from the fact that the objective

function is defined as a norm function.

We can now state the following result, which proves the existence of an optimal

solution.

Theorem 5.5.7. The optimization problem (5.11)-(5.16) has an optimal solution.

Proof. We know that the unit ball in B(H) is compact in WOT (Theorem 5.1.3, Kadi-

son and Ringrose (1997)). In addition, Theorem 5.3.1 guarantees the existence of an

106



operator P that satisfies the constraints of the optimization problem, and is therefore

an element of P and is bounded. The optimization algorithm will hence generate

bounded operators with norms that do not exceed the norm of P . Accordingly, these

operators will form a bounded subset of P, which we will refer to as P ′. Since P

is closed in WOT by Proposition 5.5.4, we conclude that P ′ is closed and bounded

in WOT, and is therefore compact in WOT. By Theorem 5.5.3, we can identify a

positive kernel K with each pseudo-integral operator P . Therefore, the set of kernels

K that satisfy the constraints of the optimization problem is compact in the topology

induced by this bijective identification. We denote this set by K′.

Finally, in view of Proposition 5.5.6, the infimum of the map K 7→

‖M−1
fd
P (K)Mfd ◦Proj11 ‖ over the set K′ can indeed be achieved; that is, there exists

an optimal (minimal) solution.

5.6 Special Case

In the case where M is a Lie group and fd corresponds to 1, the uniform dis-

tribution, we know that there exists a regular transition kernel K, defined in (5.5).

Then, the optimization problem (5.11)-(5.16) can be posed in terms of the kernel

function k. In this case, i.e. when M is a Lie group and fd = 1, we can expect an

exact minimization of the second largest eigenvalue modulus of P̂ . This is because

the inequality in (3.36) is in fact an equality when the operator P̂ is self-adjoint, and

we have shown that there exists at least one solution to the optimization problem,

the operator S constructed in Section 5.3, that is self-adjoint. In this subsection, we

outline a proof of the existence of the optimal solution in this case.

Let c be a positive constant and r be the radius in constraint (5.16). In contrast to

our approach for the general case, in which we identified the kernels K (the decision

variables) with a set of operators P , here we can directly define a set of L∞ kernel
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functions, denoted by K, that satisfy the constraints of the optimization problem:

K =
{
k ∈ L∞(M×M,mg ×mg) : 0 ≤ ‖k‖∞ ≤ c,

∫
M
k(x, z)dmg(z) = 1,∫

M
k(z, y)dmg(z) = 1, k(x, y) = 0 if dg(x, y) > r ∀x, y ∈M

}
. (5.19)

Now, K is the set of decision variables.

Proposition 5.6.1. K is compact in the weak∗ topology and is convex.

Proof. Since M has finite measure, we have that K ⊆ L∞(M ×M,m × m) ⊆

L2(M × M,m × m). First, we will show that K is closed and bounded in the

topology induced by the ‖ · ‖2 norm. Let (ki)i ∈ K be such that ki
‖·‖2−→ k̄. That is,∫

|ki−k̄|2 → 0. We will show that k̄ ∈ K. It is straightforward to show that the limit k̄

must satisfy 0 ≤ ‖k̄‖∞ ≤ c. Next, we observe that
∣∣∫ (ki − k̄)

∣∣ ≤ ∫ |ki− k̄| ≤ ‖ki−k‖2

(by Holder’s inequality). Therefore, we have that
∣∣∫ (ki − k̄)

∣∣→ 1, which implies that∫
k̄ = 1. We now consider the last constraint in (5.19). Note that ki(x, y) = 0 for all

x, y ∈ M such that dg(x, y) > r. Since ki → k̄ in ‖ · ‖2, there exists a subsequence

(kij)j that converges to k̄ mg-a.e. It then follows that k̄(x, y) = 0. Hence, K is

closed in the ‖ · ‖2 norm. The boundedness of K follows trivially from the condition

‖k(·, ·)‖∞ ≤ c.

The convexity of K follows from brief algebraic computations which show that the

constraints in (5.19) are convex. An application of Mazur’s theorem (Proposition 12.2,

DiBenedetto (2002)) proves that K is closed in the weak topology. On the real-valued

function space L2, this implies that K is in fact closed in the weak∗ topology. Finally,

we obtain our result by applying Alaoglu’s theorem (Corollary 3.15, Clarke (2013)),

which states that a set that is weak∗ closed and bounded is also weak∗ compact.

In the proposition below, we will prove lower-semicontinuity of the map considered

in Proposition 5.5.6.
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Proposition 5.6.2. The map k 7→ ‖M−1
fd
P (k)Mfd ◦ Proj11 ‖ is weakly lower-

semicontinuous on K and convex.

Proof. Let (ki)i ∈ K be such that (ki)i → k ∈ K in the weak∗ topology. Let

Pi, P ∈ B(L2(M,mg)) be the corresponding operators defined by ki and k, respec-

tively. Consider the WOT topology on B(L2(M,mg)). We will show that Pi → P

in WOT. Convergence in WOT entails showing that 〈Pif, g〉
i→∞−→ 〈Pf, g〉 for all

f, g ∈ L2(M,mg), which implies that:∫
M

∫
M
ki(x, y)f(x)g(y)dmg(x)dmg(y)

i→∞−→
∫
M

∫
M
k(x, y)f(x)g(y)dmg(x)dmg(y).

The tensor product for functions f, h ∈ L2(M,mg) is denoted by f ⊗ h :M×M→

R, which is defined as f ⊗ h(x, y) := f(x)h(y). By exercise 1.4.25 of Tao (2010),

f ⊗ h ∈ L2(M×M,mg ×mg). Therefore, the equation above can also be written as∫
M×M

ki(z)(f ⊗ g)(z)dz
i→∞−→

∫
M×M

k(z)(f ⊗ g)(z)dz.

This is exactly the definition of convergence of (ki)i to k in weak∗. Therefore, we have

that (Pi)i → P in WOT. The rest of the proof is similar to the proof of Proposition

5.5.6.

In conclusion, the objective function is weak∗ lower-semicontinuous on the com-

pact setK, and therefore the infimum of the objective function can indeed be achieved.

5.7 Numerical Optimization

In this section, we present a numerical approach to solving the optimization prob-

lem (5.11)-(5.16). As stated previously, we assume that the state space M is a

compact smooth connected manifold, without boundary, of dimension d. The subset

M is partitioned into N ∈ Z̄+ sets, M̃ = {M1, . . . ,MN}, where M = ∪Ni=1Mi and

the sets Mi have intersections of zero Riemannian volume. We define an equivalent
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of the transition kernel K for this discretized state space. Let k̃ij be the probability

of jumping to Mj, given that the system state is in Mi. This probability is given by,

k̃ij =

∫
Mi

K(x,Mj)dx.

We define K as the matrix [k̃ij]i,j∈I , where I = {1, . . . , N}. We use K to construct

an approximating Markov chain on the finite state space I. Let G = (I, E) be a

graph defined on I with edge set E = {(i, j) : i, j ∈ I, k̃ij > 0}, which specifies the

transitions of the Markov chain. An edge (i, j) is in the edge set E if the distance

between the centers of Mi and Mj does not exceed r, as per the constraint (5.16).

Let µ ∈ P(M̃) and P ∈ M(RN), the space of real-valued matrices. Then P

defined below is equivalent to the operator defined in (5.3):

(Pµ)(j) =
∑
i∈I

k̃ijµ(i), j ∈ I. (5.20)

Let µd ∈ P(M̃) be a desired distribution that is positive on M̃, and define a diagonal

matrix Md = diag(µd).

We can now formulate a finite-dimensional quadratic program that is equivalent

to optimization problem (5.11)-(5.16) as follows:

min
K

∥∥∥∥P̂− 11T

N

∥∥∥∥ (5.21)

subject to

P̂ = M−1
d PMd, (5.22)

(Pµ)(j) =
∑
i∈I

k̃ijµ(i) ∀j ∈ I, ∀µ ∈ P(M̃), (5.23)

k̃ij ≥ 0 ∀i, j ∈ I, (5.24)

K1 = 1, (5.25)

µdK = µd, (5.26)

k̃ij = 0 ∀(i, j) /∈ E . (5.27)
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(d) Target measure µd

Figure 5.1: Simulation of the system (5.28) at different times n.

Note that 1 in (5.21) is a vector in RN . The constraint in (5.22) ensures that the

matrix P̂ is bistochastic. The constraint (5.27) is equivalent to (5.16). Observe that

this optimization problem is convex and is similar to the optimization problem solved

in Boyd et al. (2004).

5.8 Simulation Results

In this section, we apply our numerical optimization procedure to an example

system evolving on a torus in R3. The numerical optimization problem is solved with

the MATLAB package CVX (Grant and Boyd, 2014). Recall that, as described in

Section 3.5, we are solving a relaxation of the optimization problem in Problem 5.2.2.

The state spaceM in our example is the torus in R2 embedded in R3. This state

space is discretized into a 15 × 15 grid (N = 225). We define the initial and target

measures on the discretized space as shown in Figs. 5.1a and 5.1d, respectively. The

value of r in constraint (5.16) is chosen to be 0.2, a number greater than the partition

size 1/15. We solve the optimization problem (5.21)-(5.27) to obtain a transition

probability matrix K. Defining P from the resulting K, we simulate the following

version of system (5.1):

µn+1 = Pµn. (5.28)

Figures 5.1a-5.1c show snapshots of the simulation of system (5.28) at three dif-

ferent times. It is evident from the time evolution of the snapshots that the simulated
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measure µn converges asymptotically to the target measure µd. To quantify this de-

gree of convergence, we computed the 2-norm error metric γn = ||µn − µd||2 at the

times of the snapshots. The corresponding values of γn for n = 0, 10, and 35 are

0.7611, 0.0824, and 6.7382×10−4, which clearly shows that µn is tending toward µd.

The results presented within this chapter are part of Biswal et al. (2019a).
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Chapter 6

CONTINUOUS-TIME MARKOV CHAIN MODELS ON CONTINUOUS STATE

SPACES

In Chapters 3 and 5, we constructed operators that stabilize a given target distri-

bution for a discrete-time Markov process and also optimize the convergence rate to

this distribution. However, except for a special case of the state space (see Section

5.6), the optimization problem posed in both chapters was not exact, meaning that

we were able to minimize only an upper bound on the eigenvalues of the operator

rather than the modulus of the second largest eigenvalue.

As a next step, in this chapter we consider swarms of agents whose dynamics evolve

over a continuous state space in continuous time; in particular, the dynamics of each

agent can be modeled as a stochastic differential equation (SDE). The Kolmogorov

forward equation in this case is a partial differential equation (PDE) that is commonly

known as the Fokker-Planck equation. We construct a partial differential operator that

stabilizes target swarm distributions that are bounded and positive almost everywhere

on the domain. In particular, the operator that we construct has a structure similar

to the divergence form operator, which is known to be self-adjoint. The advantage

in this case is that we can invoke the min-max principle to characterize the modulus

of the second largest eigenvalue of the operator, which characterizes the asymptotic

convergence rate of the swarm to the target distribution. Hence, unlike in our previous

works, the optimization problem is exact. However, not all divergence form operators

are Fokker-Planck equations; that is, they do not all give rise to SDEs. Instead

of working with a restricted class of divergence form operators that do give rise to

SDEs, we will work with general divergence form operators, and consider the SDE
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description of agent dynamics only formally. See Stroock (1988) for a discussion on

divergence type operators that correspond to diffusion semigroups.

We begin by briefly reviewing literature on the topic of using PDE models to

control the distribution of a swarm of agents. In the field of multi-robot systems,

a number of works utilize PDEs to model and control the collective behaviors of

robotic swarms. A PDE model with a constant velocity field to simulate a swarm of

small robots performing an inspection task is investigated in in Prorok et al. (2011).

In Kingston and Egerstedt (2011), the authors design swarm control strategies that

mimic fluid flow behavior by constructing state-feedback laws that are piecewise con-

stant with respect to space. PDEs with feedback laws that are functions of population

densities are used in Hamann and Wörn (2008) to model collective migration and

collective perception in swarms. To simulate the phenomenon of emergent taxis, the

authors construct mean-field feedback laws in the sense that the velocity fields and

diffusion coefficients are functions of the population densities, as in biological mod-

els of chemotaxis. The work Elamvazhuthi et al. (2018b) applies optimal control of

PDEs and PDE-constrained optimization to design time-dependent robot controllers

for problems of stochastic spatial coverage and feature mapping by robotic swarms.

With regard to characterizing the spectral gap of Fokker-Planck equations or in

general, diffusion equations, the Bakry-Emery method allows one to establish convex

Sobolev inequalities and to compute exponential decay rates toward equilibrium for

solutions of diffusion equations (Bakry et al., 2013). In Arnold et al. (2001), the

authors quantify convergence rates of Fokker-Planck equations using convex Sobolev

inequalities. In Jafarizadeh (2018), the author poses the spectral optimization prob-

lem for a Fokker-Planck equation in R1 using the min-max principle. In contrast

to our work, the domain is restricted to R1 and the constraint is posed in terms of

minimizing the variance of the corresponding Markov process.
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6.1 Notation

We denote the state space by Ω ⊂ Rd, an open, bounded connected set. The

boundary of Ω is denoted by ∂Ω, which is assumed to be Lipschitz continuous (Gris-

vard, 2011).

The space L2(Ω) is a Hilbert space equipped with the standard inner product

〈·, ·〉2 : L2(Ω) × L2(Ω) → R given by 〈f, g〉2 =
∫

Ω
f(x)g(x)dx, for all f, g ∈ L2(Ω).

The symbol ‖ ·‖2 will be reserved for the L2(·) norm. For a given real-valued function

h ∈ L∞(Ω), (weighted)

L2
h(Ω) =

{
f :

∫
Ω

|f(x)|2|h(x)|dx <∞
}
.

In this case, L2
h(Ω) is a Hilbert space with respect to the weighted inner product

〈·, ·〉h : L2
h(Ω)× L2

h(Ω)→ R given by

〈f, g〉h =

∫
Ω

f(x)g(x)h(x)dx.

We let ‖ · ‖F stand for the weighted L2
F norm. Let fxi denote the first-order weak

partial derivative of the function f with respect to coordinate xi. We define the

Sobolev space H1(Ω) ⊂ L2(Ω) functions whose partial derivatives, in the weak sense,

are also in L2(Ω). This is a Hilbert space with the norm:

‖f‖H1 = ‖f‖2
2 +

(
d∑
i=1

‖fxi‖2
2

)1/2

for f ∈ H1(Ω).

Correspondingly, for h ∈ L∞(Ω) we define the space

H1
h(Ω) =

{
f ∈ L2

h(Ω) : (fh)xi ∈ L2(Ω) for 1 ≤ i ≤ d
}
,

equipped with the norm

‖f‖H1
a

=
(
‖f‖2

a +
d∑
i=1

‖(af)xi‖2
2

)1/2

.
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Let X be a Hilbert space. Let A be a closed linear operator that is densely defined

on a subset D(A) ⊂ X , the domain of the operator. If A is a bounded operator, then

‖A‖op will denote the operator norm induced by the norm defined on X . The spectrum

σ(A) of A is the non-void compact set of complex numbers λ for which A− λI does

not have a continuous inverse on X . The operator A is said to be positive, denoted

by A > 0, if for x ∈ X , x ≥ 0 implies that Ax ≥ 0.

6.2 Problem Formulation

We begin by setting up the problem that we address in this section. Let F ∈

L∞(Ω) such that F (x) > 0 a.e. be the target steady-state probability density function

for a swarm of robots. Then F must satisfy the condition
∫

Ω
F (x)dx = 1.Define ΩTf =

Ω×(0, Tf ) for some fixed final time Tf . Let p : ΩTf → Rn denote a probability density

function. The forward Kolmogorov equation, also called the Fokker-Planck equation,

gives the evolution of probability densities on the state space Ω. In continuous time

and continuous space, this equation is a partial differential equation (PDE) of the

form:

∂

∂t
p(x, t) =

1

2

d∑
i,j=1

∂2

∂xi∂xj
[Dij(x, t)p(x, t)]−

d∑
i=1

∂

∂xi
[ai(x, t)p(x, t)]. (6.1)

Here, the coefficients Dij and aij represent diffusion and advection parameters, respec-

tively. In this paper, however, we will not be working with such a general formulation.

For reasons that will be made clear later, we require the partial differential operator

associated with the PDE to be self-adjoint. This is not true for the PDE (6.1). We

will therefore introduce an operator, formally, which is self-adjoint.

Let aij : Ω → Rd for i, j = 1, . . . , d, with aij = aji, be in L∞(Ω). Further,

we assume that the coefficients satisfy the uniform ellipticity condition; that is,

there exists a constant α such that for every vector ξ ∈ Rd and every x ∈ Ω,
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∑d
i,j=1 aij(x)ξiξj ≥ α|ξ|2. Consider the following unbounded operator,

LFu =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂(u/F )

∂xj

)
. (6.2)

We note that this operator has the advantage of being self-adjoint. Moreover, the

operator is almost in the standard divergence form (Evans, 2010); however, the in-

clusion of F makes it non-standard. It is clear that the inclusion of F ensures that

LFF = 0; that is, the PDE generated by this operator has F as an equilibrium point.

Without the inclusion of F , there are only a few special cases in which Eq. (6.2) can

be rewritten as Eq. (6.1), and vice versa.

Remark 6.2.1. We note that the operator (6.2) is not defined rigorously. This is

because the L∞ condition on the coefficients aij makes it impossible to define the oper-

ator on H1(Ω) or H2(Ω) (defined similarly to H1(Ω), but comprised of functions that

are twice weakly differentiable and are in L2); either space is not necessarily preserved

under the multiplication of an L∞ function and an H1 or H2 function. Therefore, in

order to proceed, we will instead define a weak formulation of the operator (6.2) via

forms.

Note that according to our notation, as per standard definitions, H1
F and L2

F norms

entail a multiplication by F ; that is, ‖f‖F =
∫

Ω
|f |2|F |. However, in this paper, the

norm entails a division by F ; that is, ‖f‖F =
∫

Ω
|f |2|1/F |.

We define a bilinear form BF [u, v] : H1
F (Ω)×H1

F (Ω)→ R as follows:

BF [u, v] =

∫
Ω

d∑
i,j=1

aij(x)
∂(u/F )

∂xj

∂(v/F )

∂xi
dx (6.3)

The space H1
F (Ω) is called the domain of BF , D(BF ). We associate with the form B

an operator L̂F : D(L̂F ) ⊂ L2
F (Ω)→ L2

F (Ω), defined as L̂Fu = f if BF [u, v] = 〈f, v〉F

for all v ∈ H1
F (Ω) and u ∈ D(L̂F ) = {g ∈ H1

F (Ω) : ∃h ∈ L2
F (Ω) s.t. BF [g, ϕ] =

117



〈h, ϕ〉 ∀ ϕ ∈ H1
F (Ω)}. The operator L̂F so defined is a weak formulation of the opera-

tor (6.2). Defining L̂F via the bilinear form BF is similar in spirit to the formulation

of weak solutions to elliptic equations. A detailed treatment of the interplay between

forms and operators is provided in Schmüdgen (2012). In the specific case where

the coefficients aij and the function F are uniformly Lipschitz functions, then L̂F

coincides with the operator (6.2), with H2(Ω) as its domain (Grisvard, 2011).

Although the bilinear form (6.3) simplifies the analysis, we lose the guarantee that

the generated PDE corresponds to a stochastic differential equation. Only in the case

where the coefficients aij are uniformly Lipschitz continuous does the operator (6.2)

give rise to a forward equation (Friedman, 2006). However, one can make sense of

the stochastic differential equations that divergence form operators give rise to in a

non-classical way; see Lejay (2006) for this description.

We consider the following PDE generated by the operator LF in (6.2). Note that

this is only a formal statement because of the explanation in the previous paragraphs.

∂p

∂t
= −LFp on ΩTf (6.4)

d∑
i,j=1

aij
∂(p/F )

∂xj
ni = 0 on ∂Ω× (0, Tf ) (6.5)

p(x, 0) = p0(x) on Ω. (6.6)

Equation (6.5) represents the zero flux boundary condition, also called the Neumann

boundary condition; ni is the ith unit normal vector to Ω, pointing outward.

We now state the problem that we solve in this paper. To address this problem, in

the next section we will prove that 0 is the unique largest eigenvalue of the operator

−L̂F , with all other eigenvalues located in the left half-plane. Therefore, the con-

vergence rate of the PDE (6.4) to its equilibrium is characterized by the L2
F spectral

gap. First, however, we will need to prove the existence of this spectral gap for L̂F .
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Problem 6.2.2. Given F , determine whether there exist time-independent, spatially-

dependent parameters aij : Ω→ Rn, for i, j ∈ 1 . . . d, such that F is an exponentially

stable equilibrium point for the PDE (6.4). Toward this end, determine whether the

following optimization problem admits a solution.

min
aij
|λ2(L̂F )|

Due to the definition of the operator L̂, we need not impose the condition L̂FF = 0

as a constraint. In Section 6.4, we will characterize the eigenvalues of L̂F via the

min-max principle, which is only true for a self-adjoint operator. We chose to work

with divergence form operators in order to be able to characterize their eigenvalues

via this principle.

6.3 Analytical Properties of L̂F

We begin by proving a few properties of the operator L̂F ; proofs for general func-

tions F and general domains Ω are given in Elamvazhuthi et al. (2018c). Therefore,

only those parts of the proofs that are specific to our case are detailed below.

Proposition 6.3.1. The operator L̂F is closed, densely defined, self-adjoint, and

positive. Moreover, the operator L̂F has a purely discrete spectrum.

Proof. First we prove that the bilinear form (6.3) is closed; that is, the space D(BF ) =

H1
F (Ω) equipped with the norm ‖u‖B = (‖u‖2

F +BF [u, u])1/2 for each u ∈ D(BF ) must

be complete (Schmüdgen, 2012). To see this, we note that by the uniform ellipticity

condition on the coefficients aij, we have that

BF [u, u] =

∫
Ω

[
∂(u/F )
∂x

]
A

[
∂(u/F )
∂x

]T
≥
∫

Ω

α

∣∣∣∣∂(u/F )

∂x

∣∣∣∣2 ,
where A = [aij]. We also have that

‖A‖∞
∫

Ω

∣∣∣∣∂(u/F )

∂x

∣∣∣∣2 ≥ BF [u, u].
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Therefore, the norm ‖ ·‖B is equivalent to ‖u‖H1
F

. It has been shown in Elamvazhuthi

et al. (2018c) that H1
F (Ω) is complete. Therefore, BF is closed.

Next, from Elamvazhuthi et al. (2018c), we can show that BF is densely defined;

that is, D(BF ) must be dense in L2
F (Ω), which is true in this case. Furthermore, BF is

symmetric, that is, BF [u, v] = BF [v, u] for each u, v ∈ D(BF ), and BF is semibounded,

that is, BF [u, u] ≥ m‖u‖2
F for some m ∈ R, for each u ∈ D(BF ). The latter property

is true for m = 0. By Theorem 10.7 of (Schmüdgen, 2012), these properties imply that

L̂F is self-adjoint, which further implies that L̂F is also closed and densely defined.

Finally, we have that H1
F (Ω) = D(BF ) equipped with the norm ‖ · ‖B is compactly

embedded in L2(Ω). By Proposition 10.6 of Schmüdgen (2012), this condition is

sufficient for the operator L̂F to have a discrete spectrum.

Proposition 6.3.2. The spectrum of the operator L̂F satisfies σ(L̂F ) ∈ (∞, 0]. Fur-

thermore, 0 is a unique eigenvalue of L̂F .

Proof. From the definition of the bilinear form, we observe that the operator −L̂F

must be negative semidefinite. Hence, σ(−L̂F ) ∈ (∞, 0]. Consider the bilinear form

(6.3) with F = 1. In this case, it is clear that L̂11 = 0; that is, 1 is an eigenvector

corresponding to the eigenvalue 0. To prove the uniqueness of 0, we use the Poincaré

inequality (Evans, 2010): there exists a constant C such that
∫

Ω
|u(x) − uΩ|dx ≤

C
∫

Ω
|∇u(x)|2, where uΩ = 1

m(Ω)

∫
Ω
u(x)dx, and m(Ω) stands for the Lebesgue measure

of the set Ω. Using the uniform ellipticity condition and assuming that α ≥ C, we

have that ∫
Ω

|u(x)− uΩ|dx ≤ α

∫
Ω

|∇u(x)|2 (6.7)

≤ αBF [u, u] = α

∫
Ω

[
∂u
∂x

]
A(x)

[
∂u
∂x

]T
.

If u is an eigenvector other than 1, then the right-hand side of the inequality above
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evaluates to 0 while the left-hand side is positive, leading to a contradiction. There-

fore, the eigenvalue 0 must be unique. For general F we define the multiplication

map MF : L2(Ω) → L2
F (Ω) that takes a function u ∈ L2

F (Ω) to u/F ∈ L2(Ω). Note

that L̂F = L̂1MF . From this observation we can infer that 1 is an eigenvector of L̂1

for the eigenvalue 0 if and only if F is an eigenvector of L̂F .

In the case where α ≤ C, we can replace α by C/α in equation (6.7), and the

analysis remains the same.

Due to the lack of smoothness of the functions aij and F , the PDE (6.4) might

not have solutions that are continuously differentiable in the classical sense, or even

solutions that are weakly twice differentiable. Using the above properties, one can

show that the PDE (6.4) has a mild solution (Engel and Nagel, 2000), which can

be represented as a semigroup of linear operators. This follows from the Lumer-

Phillips theorem by noting that the operator L̂F is self-adjoint and dissipative. See

Elamvazhuthi et al. (2018c) for details. Since D(L̂F ) is a subset of H1
F (Ω), it follows

that if the initial condition is in D(L̂F ), then the mild solution lies in H1
F (Ω) for

all time t ≥ 0. One can also show that the semigroup is analytic, and hence has

regularizing properties. This implies that even if the initial condition is known to be

only in L2(Ω), the solution of the PDE (6.4) lies in H1
F (Ω) for all t > 0.

6.4 Formulation of the Optimization Problem

Recall the conditions on F , the desired density function: it is in L∞(Ω) and is

strictly positive almost everywhere. We have established that F is a unique eigenvec-

tor of the operator −L̂F corresponding to the largest eigenvalue 0. Furthermore, we

have showed the existence of a spectral gap of L̂F . In this section, we solve Problem

6.2.2.

The Courant-Fisher min-max principle provides a way to formulate the objec-
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tive function of the optimization problem in Problem 6.2.2. Let (T,D(T )) be a

lower-semibounded, self-adjoint operator on a Hilbert space H with a purely dis-

crete spectrum. Let (λn(T ))n be the increasing sequence of eigenvalues of T , counted

with multiplicities. The min-max principle gives a variational characterization for the

eigenvalues that are below the bottom of the essential spectrum (Schmüdgen, 2012).

Let Ek be a linear subspace of H of dimension k. Then the eigenvalues λk can be

defined as:

λk(T ) = max
Ek

min
v∈D(T ),‖v‖=1,

v∈E⊥k

〈Tv, v〉.

The inner product in this definition is called the Rayleigh quotient.

In our case, the operator L̂F satisfies the properties listed above, and therefore

we can characterize the second largest eigenvalue of L̂F by restricting L̂F to the

subspace obtained after removing the eigenspace F corresponding to the eigenvalue

0. The objective function is hence formulated as,

λ2(−L̂F ) = λ1(−L̂F ◦ ProjF⊥) = min
v∈D(L̂F ), ‖v‖F=1

∫
Ω v=0
〈−L̂Fv, v〉F . (6.8)

Here Proj(·) is the projection operator onto a subspace. We note that removing the

negative sign changes the minimization problem to a maximization problem. Further,

the outer optimization, that is, the maximization can be omitted, since E0 ⊂ D(L)

is just {0}. The integral constraint in the equation above represents the projection

onto F⊥. To see this, let v ∈ F⊥; then 〈v, F 〉F = 0, and this is exactly the integral∫
Ω
v = 0.

The constraints of the optimization problem are listed below.

aij ≤ c, for some c > 0 (6.9)

aij = aji (6.10)

d∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2, ∀ξ ∈ Rd. (6.11)
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Constraint (6.9) ensures that the coefficients are bounded in the L∞ norm. Constraint

(6.11) ensures that the coefficients satisfy the uniform ellipticity condition. Equations

(6.8)-(6.11) formulate the optimization problem that we will solve in this paper.

The set of decision variables is given by

A = {(aij) ∈ (L∞(Ω))
d(d+1)

2 : aij ≤ c,
d∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2,∀ξ ∈ Rd, i, j ∈ 1, . . . , n},

where d(d+1)/2 is the number of upper triangular elements in the coefficient matrix.

In the next result we prove the continuity of eigenvalues of the operator L̂F with

respect to the coefficients following the approach outlined in Henrot (2006), where

the authors consider the special case when F = 1.

Theorem 6.4.1. Let L̂nF be the sequence of operators corresponding to a sequence

of functions anij that is bounded in L∞(Ω) for each i and j, such that the functions

converge almost everywhere to a function aij for each i and j. Let L̂F be the elliptic

operator as defined in (6.2) by the functions aij. Then each eigenvalue of L̂nF converges

to the corresponding eigenvalue of L̂F .

Proof. From Henrot (2006)[Theorem 2.3.3] it is known that under the convergence

conditions on the function anij, for each fixed f ∈ L2(Ω), (L̂n1)−1f converges to (L̂1)−1f

in norm. To prove the result in our modified case we let MF : L2(Ω) → L2
F (Ω) be

the multiplication map that takes u ∈ L2
FΩ to u/F ∈ L2(Ω). Since L̂nF = L̂n1MF ,

we can infer that for each fixed f ∈ L2(Ω), (L̂nF )−1f converges to (L̂F )−1f in norm.

From this, we can conclude that the resolvents of the operators L̂nF strongly converge

to the resolvent of the operator L̂F (Theorem 2.3.2, Henrot (2006)). The operators

L̂nF and L̂F have a compact resolvent since H1
F (Ω) is compactly embedded in L2

F (Ω).

Therefore, it follows from (Theorem 2.3.1, Henrot (2006)) that the eigenvalues of the

operators L̂nF converge to the respective eigenvalues of the operator L̂F .
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6.5 Numerical Optimization

In this section, we numerically solve the optimization problem. Instead of dis-

cretrizing the operator L̂F , we discretize the inner product in the objective function

(6.8). Discretizing the inner product, rather than discretizing the operator L̂F and

substituting it into the objective function, significantly reduces the computational

complexity of solving the optimization problem. From the bilinear form (6.3), we

have that for u ∈ D(L̂F ), BF [u, u] = 〈L̂Fu, u〉F . Therefore, the objective function

can be recast as the following expression:

〈−L̂Fu, u〉F = −
∫

Ω

d∑
i,j=1

(
aij(x)

∂(u/F )

∂xj

∂(u/F )

∂xi

)
dx (6.12)

We demonstrate our numerical optimization procedure for a domain Ω ⊂ R2. In

this case, the above equation can be simplified to:

−
∫

Ω

[
∂v(x,y,t)

∂x
∂v(x,y,t)

∂y

]
A(x, y)

∂v(x,y,t)
∂x

∂v(x,y,t)
∂y

 dxdy, (6.13)

where v = u/F and A = [aij] is the coefficient matrix in R2×2.

In our example, we define Ω = [0, 1]× [0, 1]. We partition Ω into an N ×N grid

and define h = 1/N . Let I be the index set {1, . . . , N}. Then Ω = ∪i,j∈IΩ̃ij, where

Ω̃ij = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] for i, j ∈ I. Let wij(t) = v(xi, yj, t) be evaluated

at the midpoint of each grid cell Ω̃ij. Let F̃ (i, j) = F (xi, yj). Note that we can

remove the negative sign in the objective function (6.8) and pose the optimization

problem as a maximization problem. The finite-dimensional optimization problem

that is equivalent to (6.8)-(6.11) can be stated as:

max
w

1

N2

N−1∑
i=1

N−1∑
j=1

wi+1,j−wi,j
h

wi,j+1−wi,j
h


T

A(i, j)

wi+1,j−wi,j
h

wi,j+1−wi,j
h

 (6.14)
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subject to

N∑
i,j

wijF̃ (i, j) = 0 (6.15)

‖wF̃‖2
F = ‖w

√
F̃‖2

2 = 1 (6.16)

Equations (6.9)− (6.11)

Constraint (6.15) ensures that the vector u (before discretization) is perpendicular

to F . Constraint (6.16) ensures that the weighted 2-norm of u is 1. The objec-

tive function (6.14) is nonlinear. Further, it is difficult to prove that it is convex.

Therefore, the nonlinear optimization solver KNITRO (Nocedal, 2006) was used to

solve this problem. This solver implements both interior-point and active-set methods

for solving nonlinear optimization problems. The problem was solved in AMPL (A

Mathematical Programming Language) (Fourer et al., 2003). We ran two test cases,

described below.

In the first case, F was defined as the uniform distribution 1. Four different grid

sizesN×N and two different values of c, c = 1 and c = 10, were tested. The eigenvalue

−λ2 was computed for each combination of grid size and c value, and the results are

tabulated in Table 6.1. This table shows that as the discretization becomes finer,

the eigenvalue converges. Note that for c = 1, the operator (6.2) corresponds to the

Neumann Laplacian, accordingly, the computed second-largest eigenvalue, which is

close to −12, is closer to −π2 ≈ −9.87 (the second largetst eigenvalue of the Neumann

Laplacian).

In the second case, F was defined as the non-uniform distribution F =

(sin(2πi/N))2 + (sin(2πj/N))2 + ε, where ε was chosen to be 0.1 to ensure strict

positivity of F over Ω. In this case, we also investigate how the eigenvalue changes

in magnitude with respect to the L∞(Ω) bound c on the parameters aij. Table 6.2

shows the eigenvalue −λ2 that was computed for each combination of nine different
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Table 6.1: Eigenvalue −λ2 for the case F = 1

N ×N c = 1 c = 10

20× 20 11.9 154.604

40× 40 11.97 155.65

80× 80 11.99 155.9

100× 100 11.995 155.94

Table 6.2: Eigenvalue −λ2 for the non-uniform F case

N ×N c = 1 c = 2 c = 5

20× 20 71.82 163.15 437.386

40× 40 91.74 211.5 570.883

60× 60 102.64 237.58 642.505

80× 80 108.96 252.72 684.042

100× 100 113.06 262.52 710.958

140× 140 118.03 274.44 743.7

200× 200 121.979 283.91 769.75

300× 300 125.189 291.62 790.95

grid sizes N ×N and three different values of c, and Fig. 6.1 graphs the data in this

table. We observe that the magnitude of the eigenvalue depends on the magnitude of

the parameter c, and that the convergence rate of the eigenvalue in this case is much

slower than in the case where F = 1.

The results presented within this chapter are part of Biswal et al. (2020b).
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Figure 6.1: Plots of the eigenvalue −λ2 as a function of c and N for the non-uniform
F case.

127



Chapter 7

THE SIMPLE EXCLUSION PROCESS ON FINITE CONNECTED GRAPHS

The main objective of this chapter is to initiate the study of simple exclusion

processes, defined below, on general finite connected graphs: an agent at vertex x

jumps to a vertex chosen uniformly at random among the deg(x) neighbor(s) of x. If

the chosen vertex is occupied by another agent, then the agent at x does not move.

We assume that the rate at which agents jump depends on their location, with the

agent at x jumping at rate ρx. This modeling approach is motivated by applications

in multi-agent systems, such as the spatial redistribution of robotic swarms, in which

agents represent robots moving on a finite graph and avoiding each other. As a first

step, we study the invariant measures of the system and prove a monotonicity property

for the occupation times at different vertices that holds for all finite connected graphs

and all choices of the rates ρx.

The simple exclusion process, introduced in Spitzer (1970), is one of the most

popular interacting particle systems, along with the voter model (Clifford and Sud-

bury, 1973; Holley and Liggett, 1975) and the contact process (Harris, 1974). These

three models can be viewed as spatial stochastic models of diffusion, competition, and

invasion, respectively. In particular, the simple exclusion process consists of a system

of symmetric random walks by agents that move independently on a connected graph

except that jumps onto already occupied vertices are suppressed (exclusion rule) so

that each vertex is occupied by at most one agent.

All three models have been studied extensively on infinite lattices, and we refer

to Liggett (1985, 1999) for a review of their main properties. The voter model and

the contact process have also been studied on the torus in Zd (the time to consensus
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of the voter model on the torus is studied in Cox (1989) and the time to extinction

of the contact process on the torus is studied in Durrett and Liu (1988); Durrett and

Schonmann (1988); Durrett et al. (1989)), as well as on various finite deterministic

and random graphs. In contrast, to the best of our knowledge, there is no work about

the simple exclusion process on finite graphs in the probability literature, with the

notable exception of the asymmetric nearest neighbor exclusion process on the finite

path (each agent jumps to its immediate left or right with different probabilities)

introduced in Liggett (1975) and reviewed in (Liggett, 1999, Chapter III.3). The pri-

mary motivation in that work, however, was to study the properties of the stationary

distribution on a long path and relate them to those of an infinite path.

7.1 Main results

Here we present the theorems that constitute the main results of this section. The

proofs of these theorems are given in Section 7.2.

Letting G = (V ,E ) be a finite connected graph on N vertices, with vertex set V

and edge set E , the process is a continuous-time Markov chain whose state at time t

is a configuration

ηt : V → {0, 1} where ηt(x) =


0 if vertex x is empty

1 if vertex x is occupied by a agent.

Motivated by potential applications in robotic swarms, we assume that agents may

jump at a rate that depends on their location, and denote by ρx the rate attached to

vertex x. To describe the dynamics, for all x, y ∈ V , we let τx,y η be the configuration

(τx,y η)(z) = η(x) 1{z = y}+ η(y) 1{z = x}+ η(z) 1{z 6= x, y}

obtained from η by exchanging the states at x and y. Then, for all η, ξ ∈ {0, 1}V , the
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process jumps from configuration η to configuration ξ at rate

q(η, ξ) =
ρx

deg(x)
1{ηt(x) = 1 and ξ = τx,y η for some (x, y) ∈ E }.

In words, the agent at x, if there is one, chooses one of the neighbors of x uniformly

at random at rate ρx, and jumps to this vertex if and only if it is empty. It will be

convenient later to identify each configuration η with the subset of vertices occupied

by an agent:

η ≡ {x ∈ V : η(x) = 1} ⊂ V .

This defines a natural bijection between the set of configurations and the subsets of the

vertex set, and it will be obvious from the context whether η refers to a configuration

or a subset.

The main objective of this section is to study the fraction of time each vertex is

occupied in the long run. We can prove that these limits exist and only depend on

the initial configuration through its number of agents, so we will write from now on

pK(x) = lim
t→∞

P (x ∈ ηt | card(η0) = K) for all 0 < K ≤ N and x ∈ V . (7.1)

To state our results, for all 0 < K ≤ N and B ⊂ V , we define

Λ+
K(B) = {η ∈ ΛK : B ∩ η = B} and Λ−K(B) = {η ∈ ΛK : B ∩ η = ∅}

where ΛK is the set of configurations with K agents. In addition, for each vertex z ∈

V , each subset η ⊂ V , and each collection C of subsets of V , we let

D(z) =
deg(z)

ρz
, D(η) =

∏
z∈η

D(z) and Σ(C ) =
∑
η∈C

D(η).

Using that the sets ΛK are closed communication classes as well as reversibility to

identify the stationary distribution on each ΛK , we prove that the limits in (7.1) are

characterized as follows.
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Theorem 7.1.1 (Occupation time). – For all 0 < K ≤ N and x ∈ V ,

pK(x) =
Σ(Λ+

K(x))

Σ(ΛK)
. (7.2)

In particular, the limits in (7.1) are characterized by

pK(x)

pK(y)
=

Σ(Λ+
K(x))

Σ(Λ+
K(y))

and
∑
z∈V

pK(z) = K. (7.3)

Even though the right-hand side of (7.2) cannot be simplified in general, some in-

teresting properties can be deduced from this expression for arbitrary finite connected

graphs. It is intuitively clear that, the graph being fixed, the probability pK(x) in-

creases with K. It can also be proved that this probability increases with D(x) while

a more precise and challenging analysis shows that, though the occupation time at x

is smaller than the occupation time at y when D(x) < D(y), the ratio of the two

occupation times converges monotonically to one as the number of agents increases.

Theorem 7.1.2 (Monotonicity). – For all 1 < K < N − 1,

D(x)

D(y)
=
p1(x)

p1(y)
<
pK(x)

pK(y)
<
pK+1(x)

pK+1(y)
<
pN(x)

pN(y)
= 1 when D(x) < D(y).

It follows from (the proof of) the theorem that, when all the D(x) are equal, all

the vertices are equally likely to be occupied at equilibrium. In particular, assuming

for simplicity that the agents always jump at rate ρx ≡ 1, all the vertices are occupied

with the same probability K/N for the process on finite regular graphs. Along these

lines, the probabilities in (7.2) can be computed explicitly when ρx ≡ 1 and most of

the vertices have the same degree.

7.2 Proof of Theorem 7.1.1

Note that the simple exclusion process is not irreducible because configurations

with different numbers of agents do not communicate. However, the set of configu-

rations with K agents forms a closed communication class, so the process restricted
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to ΛK is irreducible and converges to a unique stationary distribution. To find this

stationary distribution and prove the theorem, we will also use reversibility. To show

that ΛK is a communication class, we first prove that any two configurations in ΛK

that only differ in two vertices communicate.

Lemma 7.2.1. – For all η ∈ {0, 1}V and x, y ∈ V ,

P (ηt = τx,y η | η0 = η) > 0 for all t > 0.

Proof. The result is obvious when η(x) = η(y) because in this case τx,y η = η. The

result is also clear when x and y are not in the same state but connected by an edge

because

q(η, τx,y η) = lim
ε↓0

P (ηt+ε = τx,y η | ηt = η)

ε
=

ρx
deg(x)

for all (x, y) ∈ E . (7.4)

To deal with the nontrivial case when the vertices are neither in the same state nor

connected by an edge, we may assume without loss of generality that, in configura-

tion η, vertex x is occupied and vertex y empty. Because the graph G is connected,

there exists a self-avoiding path

(z1, z2, . . . , zl) ⊂ V with (zi, zi+1) ∈ E , z1 = x and zl = y

connecting x and y. Due to the absence of cycles, we have also l ≤ N . To remove

the agent at x and put a agent at y without changing the state of the other vertices,

we let

{i : zi ∈ η} = {zi(1), zi(2), . . . , zi(k)} with 1 = i(1) < i(2) < · · · < i(k) < l

be the set of vertices along the self-avoiding path that are occupied in configuration η.

It is also convenient to set i(k + 1) = l. To obtain configuration τx,y η from η, the

basic idea, is to move the agent at zi(k) to zi(k+1), then the agent at zi(k−1) to zi(k), and
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so on. To prove that this sequence of events indeed occurs with positive probability,

note that, because the vertices zi(k)+1, zi(k)+2, . . . , zi(k+1) are empty,

τzi(k),zi(k+1) η = (τzi(k+1)−1,zi(k+1)
◦ · · · ◦ τzi(k)+1,zi(k)+2

◦ τzi(k),zi(k)+1
)(η).

This, together with (7.4), implies that

P (ηt = τzi(k),zi(k+1)
η | η0 = η) > 0 for all t > 0.

Similarly, we prove by induction that, for j = 1, 2, . . . , k,

P (ηt = τzi(j),zi(k+1)
η | η0 = τzi(j+1),zi(k+1)

η)

= P (ηt = τzi(j),zi(j+1)
(τzi(j+1),zi(k+1)

η) | η0 = τzi(j+1),zi(k+1)
η) > 0

(7.5)

for all t > 0. In addition, for j = 1, 2, . . . , k,

τzi(j),zi(k+1)
η = (τzi(j),zi(j+1)

◦ · · · ◦ τzi(k−1),zi(k)
◦ τzi(k),zi(k+1)

)(η). (7.6)

Using (7.5) and (7.6), and that zi(1) = x and zi(k+1) = y, we deduce that

P (ηkt = τx,y η | η0 = η) ≥
k∏
j=1

P (η(k−j+1)t = τzi(j),zi(k+1)
η | η(k−j)t = τzi(j+1),zi(k+1)

η)

=
k∏
j=1

P (ηt = τzi(j),zi(k+1)
η | η0 = τzi(j+1),zi(k+1)

η) > 0

for all t > 0. This completes the proof.

Lemma 7.2.2. – For all K = 0, 1, . . . , N , the set ΛK is a closed communication

class.

Proof. The fact that ΛK is closed is an immediate consequence of the fact that the

number K of agents is preserved by the dynamics. To prove that this set is also a

communication class, fix two configurations η and ξ with K agents, and define the

sets

S = {z ∈ V : η(z) = 1, ξ(z) = 0} and T = {z ∈ V : η(z) = 0, ξ(z) = 1}
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that we call respectively the source set and the target set. Because η and ξ have the

same number of agents, these sets have the same number of vertices, and we write

S = {x1, x2, . . . , xk} ⊂ V and T = {y1, y2, . . . , yk} ⊂ V .

By definition of the source and target sets,

ξ = (τx1,y1 ◦ τx2,y2 ◦ · · · ◦ τxk,yk)(η).

In particular, letting σj = τx1,y1 ◦ · · · ◦ τxj ,yj and using Lemma 7.2.1, we get

P (ηkt = ξ | η0 = η) ≥
k∏
j=1

P (ηjt = σj η | η(j−1)t = σj−1 η)

=
k∏
j=1

P (ηt = τxj ,yj(σj−1 η) | η0 = σj−1 η) > 0

for all t > 0. Since this holds for any two configurations in ΛK and since configurations

outside ΛK cannot be reached from ΛK , the result follows.

We now use reversibility to identify the stationary distributions.

Lemma 7.2.3. – For all K = 0, 1, . . . , N , the distribution

πK(η) =
D(η)

Σ(ΛK)
for all η ∈ ΛK

is a reversible distribution concentrated on ΛK.

Proof. Let η, ξ ∈ ΛK , η 6= ξ. Then,

q(η, ξ) = q(ξ, η) = 0 when ξ 6= τx,y η for all (x, y) ∈ E

in which case it is clear that

πK(η) q(η, ξ) = πK(ξ) q(ξ, η) = 0. (7.7)

When ξ = τx,y η for some (x, y) ∈ E , with say η(x) = ξ(y) = 1,

q(η, ξ) =
ρx

deg(x)
and q(ξ, η) =

ρy
deg(y)

.
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In this case, because η \ {x} = ξ \ {y},

πK(η) q(η, ξ) =
D(η)

Σ(ΛK)
q(η, ξ) =

D(η \ {x})
Σ(ΛK)

(
deg(x)

ρx

)
q(η, ξ)

=
D(η \ {x})

Σ(ΛK)
=
D(ξ \ {y})

Σ(ΛK)
= πK(ξ) q(ξ, η).

(7.8)

Combining (7.7) and (7.8) gives the result.

Proof of Theorem 7.1.1. According to Lemma 7.2.3, πK is a reversible distribution

so this is also a stationary distribution. See e.g. (Lanchier, 2017, Sec. 10.3) for a proof.

Now, according to Lemma 7.2.2, the set ΛK is a finite closed communication class

for the simple exclusion process therefore there is a unique stationary distribution

that concentrates on ΛK , and this distribution is the limit of the process starting

from η0 ∈ ΛK . See e.g. (Lanchier, 2017, Sec. 10.4) for a proof. In particular,

lim
t→∞

P (ηt = η | η0 = ξ) = πK(η) =
D(η)

Σ(ΛK)
for all η, ξ ∈ ΛK

from which it follows that

pK(x) =
∑

η∈ΛK :x∈η

πK(η) =
∑

η∈ΛK :x∈η

D(η)

Σ(ΛK)
=

∑
η∈Λ+

K(x)

D(η)

Σ(ΛK)
=

Σ(Λ+
K(x))

Σ(ΛK)
.

This shows the second part of the theorem, and

pK(x)

pK(y)
=

Σ(Λ+
K(x))

Σ(ΛK)

Σ(ΛK)

Σ(Λ+
K(x))

=
Σ(Λ+

K(x))

Σ(Λ+
K(y))

.

Finally, using that the expected value is linear, we get

∑
z∈V

pK(z) = lim
t→∞

∑
z∈V

E(1{z ∈ ηt}) = lim
t→∞

E

(∑
z∈V

1{z ∈ ηt}
)

= E(K) = K.

This completes the proof. �
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7.3 Proof of Theorem 7.1.2

In the presence of one or N agents, we have

Σ(Λ+
1 (x))

Σ(Λ+
1 (y))

=
D(x)

D(y)
=
ρy deg(x)

ρx deg(y)
and

Σ(Λ+
N(x))

Σ(Λ+
N(y))

=
D(V )

D(V )
= 1. (7.9)

In all the other cases, however, the ratios above become much more complicated.

Also, the theorem cannot be proved using direct calculations. The main ingredient is

given by the next lemma whose proof relies on a somewhat sophisticated construction.

Lemma 7.3.1. – For all 0 < K < N , we have Σ(ΛK+1) Σ(ΛK−1) < (Σ(ΛK))2.

Proof. The key is to find partitions P of ΛK+1 × ΛK−1 and Q of ΛK × ΛK such that

1. partition P has less elements than partition Q,

2. each Ai ∈ P can be paired with a Bi ∈ Q such that card(Ai) ≤ card(Bi),

3. for all (η, η′) ∈ Ai and (ξ, ξ′) ∈ Bi, we have D(η)D(η′) = D(ξ)D(ξ′).

Let x1, x2, . . . , xN denote the N vertices. To construct the partitions, let

S2K = {(u1, u2, . . . , uN) ∈ {0, 1, 2}N : u1 + · · ·+ uN = 2K}

and φ : ΛK+1 × ΛK−1 → S2K and ψ : ΛK × ΛK → S2K defined as

φ(η, η′) = u = (u1, u2, . . . , uN) where ui = 1{xi ∈ η}+ 1{xi ∈ η′}

ψ(ξ, ξ′) = u = (u1, u2, . . . , uN) where ui = 1{xi ∈ ξ}+ 1{xi ∈ ξ′}.
(7.10)

The two functions have the same expression but differ in that they are not defined

on the same sets of configurations. The two partitions are then given by

P = {φ−1(u) : u ∈ S2K and φ−1(u) 6= ∅}

Q = {ψ−1(u) : v ∈ S2K and ψ−1(u) 6= ∅}.
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The function ψ is surjective. In contrast, φ(η, η′) has card(η \ η′) ≥ 2 coordinates

equal to one therefore it is not surjective:

S∗2K = {u ∈ S2K : φ−1(u) 6= ∅} 6= S2K

from which it follows that

card(P) = card(S∗2K) < card(S2K) = card(Q). (7.11)

This proves the first item above. Now, let

K1 = card{i : ui = 1} and K2 = card{i : ui = 2},

with K1 ≥ 2. To count the number of preimages (η, η′) and (ξ, ξ′) in (7.10), note

that the vertices that are either empty or occupied in all four configurations are

uniquely determined by u. This leaves K1 vertices that are occupied in two of the

four configurations, and we have that:

• the number of choices for η is the number of choices of K + 1 − K2 vertices

among K1 vertices to be occupied in configuration η but not η′,

• the number of choices for ξ is the number of choices of K−K2 vertices among K1

vertices to be occupied in configuration ξ but not ξ′.

Using also that K1 + 2K2 = 2K < 2K + 1, we get

card(φ−1(u)) =

(
K1

K + 1−K2

)
=

(
K1 −K +K2

K + 1−K2

)(
K1

K −K2

)
<

(
K1

K −K2

)
= card(ψ−1(u)),

(7.12)

which shows the second item above. Finally, for all (η, η′) ∈ φ−1(u),

D(η)D(η′) =
∏
z∈η

deg(z)

ρz

∏
z∈η′

deg(z)

ρz
=

∏
z∈η∆η′

deg(z)

ρz

∏
z∈η∩η′

(
deg(z)

ρz

)2

=
N∏
i=1

(
deg(xi)

ρxi

)ui
= D̂(u)
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is a function D̂(u) of the vector u only. The same holds for (ξ, ξ′) ∈ ψ−1(u). This

implies that the third item above is also satisfied in the sense that

D(η)D(η′) = D(ξ)D(ξ′) = D̂(u) for all (η, η′) ∈ φ−1(u), (ξ, ξ′) ∈ ψ−1(u). (7.13)

Combining (7.11)–(7.13), we conclude that

Σ(ΛK+1) Σ(ΛK−1) =
∑
u∈S∗2K

∑
(η,η′)∈φ−1(u)

D(η)D(η′)
(7.13)
=

∑
u∈S∗2K

∑
(η,η′)∈φ−1(u)

D̂(u)

(7.12)
<

∑
u∈S∗2K

∑
(ξ,ξ′)∈ψ−1(u)

D̂(u)
(7.13)
=

∑
u∈S∗2K

∑
(ξ,ξ′)∈ψ−1(u)

D(ξ)D(ξ′)

(7.11)
<

∑
u∈S2K

∑
(ξ,ξ′)∈ψ−1(u)

D(ξ)D(ξ′) = (Σ(ΛK))2.

This completes the proof.

With the previous technical lemma, we can now prove the theorem.

Proof of Theorem 7.1.2. To simplify the notations, we write

AK = Σ(Λ+
K({x, y})) and BK = Σ(Λ−K−1({x, y})).

Then, we can rewrite

Σ(Λ+
K(x)) = Σ(Λ+

K(x) ∩ Λ+
K(y)) + Σ(Λ+

K(x) \ Λ+
K(y))

= Σ(Λ+
K({x, y})) +D(x) Σ(Λ−K−1({x, y})) = AK +D(x)BK .

Using some obvious symmetry, we deduce that

pK(x)

pK(y)
=

Σ(Λ+
K(x))

Σ(Λ+
K(y))

=
AK +D(x)BK

AK +D(y)BK

. (7.14)

Now, applying Lemma 7.3.1 to the configurations on V − {x, y}, we get

AKBK+1 = Σ(Λ+
K({x, y})) Σ(Λ−K({x, y}))

= D({x, y}) Σ(Λ−K−2({x, y})) Σ(Λ−K({x, y}))

< D({x, y}) Σ(Λ−K−1({x, y})) Σ(Λ−K−1({x, y}))

= Σ(Λ+
K+1({x, y})) Σ(Λ−K−1({x, y})) = AK+1BK .
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This, together with D(x) < D(y), implies that

D(x)AK+1BK +D(y)AKBK+1 < D(x)AKBK+1 +D(y)AK+1BK

which is equivalent to

(AK +D(x)BK)(AK+1 +D(y)BK+1)

< (AK+1 +D(x)BK+1)(AK +D(y)BK).

(7.15)

Combining (7.14) and (7.15) gives

PK(x ∈ ηt)
PK(y ∈ ηt)

=
AK +D(x)BK

AK +D(y)BK

=
AK+1 +D(x)BK+1

AK+1 +D(y)BK+1

=
pK+1(x)

pK+1(y)
. (7.16)

The theorem is then a combination of (7.9) and (7.16). �

The results presented within this chapter are part of Biswal and Lanchier (2020).
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Chapter 8

CONCLUSION AND FUTURE WORK

In this dissertation, we have used both discrete- and continuous-time mean-field

models to describe the evolution of a multi-agent system on Euclidean spaces and

manifolds. Specifically, decentralized agent control laws were designed to drive the

agents asymptotically to a target state distribution. In the case where the agents are

required to stop transitioning at the equilibrium distribution, control laws that only

require knowledge of the local agent density, for example the density of agents within

an agent’s sensing range, were designed. The mean-field model considered within this

dissertation is the forward Kolmogorov equation of a Markov process according to

which the agents’ states evolve. In the case of a continuous state space, the mean-

field models were stabilized to arbitrary distributions that have L∞(·) densities with

respect to the Lebesgue measure. Moreover, in some cases, the Markov process can

be constructed such that its forward operator is the identity operator at the desired

distribution. This prevents agents from switching between states once the equilibrium

distribution is reached. In Chapter 2 and 4, although stability and convergence

results were proven for the mean-field model, simulations of the corresponding N -

agent system demonstrate that even when the number of agents is relatively small,

the agents indeed redistribute themselves to the target distribution and thereafter

cease switching between states.

8.1 Future Research

In most of the topics that are discussed within this dissertation, we have almost

exclusively concentrated on mean-field, or macroscopic, models. There are several
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reasons to work with mean-field models: usually, the mean-field model is linear or

much more amenable to analysis and control than the agent dynamics, which could be

quite complex. Second, when the number of agents is large, one is usually interested

in predicting or controlling some macroscopic quantity; for example, the agent distri-

bution. The underlying assumption one makes when designing feedback control laws

for macroscopic models is that the these control laws would produce the same pop-

ulation dynamics in the corresponding N -agent system. This assumption is justified

by taking the mean-field limit (i.e., the limit as N tend to infinity). However, there

may not actually exist a correspondence between the mean-field model and the micro-

scopic, or agent-level, model. One such example is given in the Chapter 6, wherein we

assumed that the macroscopic dynamics are governed by a divergence-type operator,

but only under stricter conditions on the coefficients aij does the operator correspond

to a stochastic differential equation (SDE). One possible research direction, therefore,

is to develop more physically realistic microscopic models and characterizing the re-

sulting macroscopic behavior. Here, we provide two examples of scenarios that could

be explored.

1. First, the agent-level models used in this dissertation ignore the constraints

that robots occupy a finite volume and that the paths of any two robots should be

separated by a certain distance in order to avoid inter-robot collisions. Introducing

these constraints into the microscopic model would render the i.i.d. assumption in-

valid. Searching for a closed-form expression for the corresponding mean-field model

would be extremely challenging. In this case, at best we can hope to establish bounds

on the difference between the trajectories of this microscopic model and those of an

idealized model that ignores such constraints.

2. Achieving the goal wherein the agents must stop transitioning between states

when the stationary distribution is reached leads to the construction of a nonlinear
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Markov process. In the models considered here, the transition kernels were designed to

have a decentralized structure. However, there may be scenarios in which a particular

parameter should be optimized, wherein a centralized feedback law may be preferred.

At the agent level, this would imply that each agent needs to know the distribution

of the swarm over the entire domain. Evaluation of this quantity requires a central

observer. However, one of the challenges in the control of multi-agent systems is to

develop decentralized strategies for the agents. In fact, some researchers, e.g. Musco

et al. (2016), have drawn inspiration from ant models to develop a decentralized

algorithm for density estimation. Therefore, the second question that that could be

addressed is the following: using measurements of local population densities by each

agent, can the entire swarm distribution be constructed? This question is known in

the control theory literature as the observability problem. One could also add noise

to the agents’ estimates to model more realistic scenarios.

Additionally, one could work with the SDE description of the microscopic models.

These result in forward equations that are partial differential equations (PDEs), which

offer much richer dynamics than ODEs or difference equations. The models arising

from PDEs also more accurately describe many physical multi-agent scenarios of

interest. However, the main challenge in this approach is that the resulting control

systems can have infinite degrees of freedom. Much of the control theory literature

addresses the simple case in which the control inputs of a PDE are linearly dependent

on the state. On the other hand, in many practical cases, the control parameter

could be a reaction rate, velocity field, or a diffusion parameter. In such scenarios,

the control-to-state dependence is nonlinear. Thus, there are a number of extensions

one could potentially investigate, this approach to multi-agent systems is still in its

nascency.
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Demir, N., U. Eren and B. Açıkmeşe, “Decentralized probabilistic density control of
autonomous swarms with safety constraints”, Autonomous Robots 39, 4, 537–554
(2015).

Deshmukh, V., K. Elamvazhuthi, S. Biswal, Z. Kakish and S. Berman, “Mean-
field stabilization of Markov chain models for robotic swarms: Computational ap-
proaches and experimental results”, IEEE Robotics and Automation Letters 3, 3,
1985–1992 (2018).

DiBenedetto, E., Real analysis (Springer, 2002).

Ding, J. and A. Zhou, Statistical properties of deterministic systems (Springer Science
& Business Media, 2010).

Durrett, R. and X. F. Liu, “The contact process on a finite set”, Ann. Probab. 16,
3, 1158–1173 (1988).

Durrett, R. and R. H. Schonmann, “The contact process on a finite set. II”, Ann.
Probab. 16, 4, 1570–1583 (1988).

Durrett, R., R. H. Schonmann and N. I. Tanaka, “The contact process on a finite set.
III. The critical case”, Ann. Probab. 17, 4, 1303–1321 (1989).

Eisner, T., B. Farkas, M. Haase and R. Nagel, Operator theoretic aspects of ergodic
theory, vol. 272 (Springer, 2015).

Elamvazhuthi, K., C. Adams and S. Berman, “Coverage and field estimation on
bounded domains by diffusive swarms”, in “2016 IEEE Conference on Decision
and Control (CDC)”, pp. 2867–2874 (2016).

Elamvazhuthi, K. and S. Berman, “Nonlinear generalizations of diffusion-based cov-
erage by robotic swarms”, in “2018 IEEE Conference on Decision and Control
(CDC)”, (2018).

145



Elamvazhuthi, K. and S. Berman, “Mean-field models in swarm robotics: A survey”,
Bioinspiration & Biomimetics 15, 1, 015001 (2019).

Elamvazhuthi, K., S. Biswal and S. Berman, “Mean-field stabilization of robotic
swarms to probability distributions with disconnected supports”, in “2018 Annual
American Control Conference (ACC)”, pp. 885–892 (IEEE, 2018a).

Elamvazhuthi, K., S. Biswal and S. Berman, “Controllability and decentralized sta-
bilization of the Kolmogorov forward equation for Markov chains”, Provisionally
accepted to Automatica. (2019a).

Elamvazhuthi, K., P. Grover and S. Berman, “Optimal transport over determinis-
tic discrete-time nonlinear systems using stochastic feedback laws”, IEEE Control
Systems Letters 3, 1, 168–173 (2019b).

Elamvazhuthi, K., M. Kawski, S. Biswal, V. Deshmukh and S. Berman, “Mean-field
controllability and decentralized stabilization of Markov chains”, in “2017 IEEE
56th Annual Conference on Decision and Control (CDC)”, pp. 3131–3137 (IEEE,
2017).

Elamvazhuthi, K., H. Kuiper and S. Berman, “PDE-based optimization for stochastic
mapping and coverage strategies using robotic ensembles”, Automatica 95, 356–367
(2018b).

Elamvazhuthi, K., H. Kuiper, M. Kawski and S. Berman, “Bilinear controllability of
a class of advection-diffusion-reaction systems”, IEEE Transactions on Automatic
Control DOI: 10.1109/TAC.2018.2885231 (2018c).

Engel, K.-J. and R. Nagel, One-parameter semigroups for linear evolution equations,
vol. 194 (Springer Science & Business Media, 2000).

Ethier, S. N. and T. G. Kurtz, Markov Processes: Characterization and Convergence,
vol. 282 (John Wiley & Sons, 2009).

Evans, L. C., Partial differential equations (American Mathematical Society, 2010).

Folland, G. B., Real analysis: modern techniques and their applications (John Wiley
& Sons, 2013).

Fourer, R., D. M. Gay and B. W. Kernighan, AMPL: A modeling language for math-
ematical programming (Thomson, 2003).

Friedman, A., Stochastic differential equations and applications (Dover Publications,
2006).

Grant, M. and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 2.1”, http://cvxr.com/cvx (2014).

Grisvard, P., Elliptic problems in nonsmooth domains (SIAM, 2011).

146



Grobler, J., “Spectral theory in Banach lattices”, in “Operator theory in function
spaces and Banach lattices”, pp. 133–172 (Springer, 1995).

Halmos, P. R., A Hilbert space problem book, vol. 19 (Springer Science & Business
Media, 2012).

Hamann, H. and H. Wörn, “A framework of space–time continuous models for algo-
rithm design in swarm robotics”, Swarm Intelligence 2, 2-4, 209–239 (2008).

Harris, T. E., “Contact interactions on a lattice”, Ann. Probability 2, 969–988, URL
https://doi-org.ezproxy1.lib.asu.edu/10.1214/aop/1176996493 (1974).

Hemelrijk, C. K. and H. Hildenbrandt, “Schools of fish and flocks of birds: their shape
and internal structure by self-organization”, Interface focus 2, 6, 726–737 (2012).

Henrot, A., Extremum problems for eigenvalues of elliptic operators (Springer Science
& Business Media, 2006).

Hindawi, A., J.-B. Pomet and L. Rifford, “Mass transportation with LQ cost func-
tions”, Acta Applicandae Mathematicae 113, 2, 215–229 (2011).

Hislop, P. D. and I. M. Sigal, Introduction to spectral theory: With applications to
Schrödinger operators, vol. 113 (Springer Science & Business Media, 2012).

Holley, R. A. and T. M. Liggett, “Ergodic theorems for weakly interacting in-
finite systems and the voter model”, Ann. Probability 3, 4, 643–663, URL
https://doi-org.ezproxy1.lib.asu.edu/10.1214/aop/1176996306 (1975).
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