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ABSTRACT

C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize
C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-
algebra is one which is isomorphic to an inductive limit of finite dimensional C*-
algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle for
higher rank graphs and show that the lack of such an object is necessary for the
associated C*-algebra to be AF. Here, I give a class of examples of categories of paths
whose associated C*-algebras are Morita equivalent to a large number of periodic
continued fraction AF algebras, first described by Effros and Shen in 1980. I then
provide two examples which show that the analogue of cycles proposed by Evans and
Sims is neither a necessary nor a sufficient condition for the C*-algebra of a category

of paths to be AF.
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Chapter 1

INTRODUCTION

Directed graphs and their associated C*-algebras have been objects of study for
several decades (see, e.g., (12) for an introductory treatment). As it turns out, many
C*-algebras can be realized as graph algebras including, at least up to Morita equiv-
alence, all AF algebras (2). One of the advantages of graph algebras is the ability
to see certain structure in the associated C*-algebra simply by observing structure in
the graph, and one such example is that the presence or lack of a cycle in the graph
completely determines whether or not the C*-algebra is AF (8, Theorem 2.4).

In (7), Kumjian and Pask introduced the concepts of higher rank graphs and their
C*-algebras, where by “higher rank”, we might think of the paths in the graph as
being multi-dimensional. This generalized the concept of graph algebras, broadening
the class of algebras which can be represented, but the more complicated structure
meant many questions were much less tractable than in the 1-graph case. One such
question is when the C*-algebra of a higher rank graph is AF, which was addressed
by Evans and Sims in (6) in which they give a necessary condition, the lack of a
“generalized cycle” in the graph, but it was unclear if this condition was sufficient.

More recently, Spielberg introduced the idea of categories of paths and their C*-
algebras in (16) generalizing (among other things) higher rank graph C*-algebras
(see also (17)). It’s natural to then ask when such a C*-algebra is AF and it was this
question, together with the work in (6) which was the original motivation for the this
thesis.

This question is, for now, beyond our reach, although we show in the penultimate

section that the notion of a generalized cycle, in the sense of Evans and Sims, is not
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the appropriate characterization in the setting of categories of paths. The bulk of
this thesis is dedicated to a class of examples of categories of paths which give rise to

a large number of continued fraction AF algebras (in the sense of (3)).



Chapter 2

PRELIMINARIES

In this section, we will establish some preliminary definitions and standard nota-
tion. We shall use Z, R, C, and T for the integers, reals, complex numbers, and unit
circle in the complex plane respectively. By N we mean the non-negative integers,
and will use Z™* for the positive integers.

The C*-algebra of a category of paths will be defined as that of an appropriate
groupoid, and we will define both categories of paths and groupoids in terms of small
categories.

Definition 2.0.1. A set A is called a small category if the following hold:

1. There is a subset A° C A, called the set of units.
2. There are source and range maps s, 7 : A — A” such that s|y0 = idpyo = 7p0.

3. Let A2 = {(a,8) € A x A : s(a) = r(8)}. There is a map A®> — A, denoted

(o, B) — af, such that r(af) = r(a), s(af) = s(B) and (af)y = a(F7v)
whenever s(a) = r(f) and s(8) = r(7).

4. For all a € A, we have r(a)a = a = as(a).

We can now standardize some of the notation which will be used with groupoids

and categories of paths.

Notation 2.0.2. Let A be a small category and v,u € A°. Then vA = {u € A :
r(p) = v}k, Au = {u € A: s(u) = u}, and vAu = vANAu = {p € A : r(u) =
vand s(u) =u}. Forpe Ajlet uyA={uve A:ves(uAland A pu={vuneA:ve

Ar(p)}-



Definition 2.0.3. A category of paths is a small category A which contains no
non-trivial inverses, but is left- and right-cancellative. That is, for any p € A\ AY,

and any p,o,7 € A
1. pv,vp ¢ AY for any v € A.
2. po = pt implies 0 = 7.
3. pr = oT implies p = 0.

Definition 2.0.4. A category of paths A is finitely aligned if for every pair of

elements o, p € A, there is a finite subset F' C A such that oA N pA = U, cpTA.

Definition 2.0.5. A groupoid is a small category G in which every element has an
inverse; i.e., for every u € G, there is a v € G such that vy = s(pu) and pv = r(p).

We will denote such a v as p~! (which is unique).

Definition 2.0.6. Let G be a groupoid, and x € G°. We define the orbit of z to be
the set r(Gz) = {y € G° : y = r(n) some p € Gz}. G is transitive if for any two
Y,z € G°, thereis a u € G such that s(u) = y and 7(u) = 2; equivalently, r(Gw) = G°
for all w € G°. The isotropy at x is the set zGzr = {u € G : s(p) = r(u) = z}.
The isotropy of G is Iso(G) := UyegoxGa O G°. The point x has trivial isotropy

if tGx = {z}, and G is principal if all isotropy is trivial.



Chapter 3

A FIRST EXAMPLE

For a detailed treatment of categories of paths and their C*-algebras, see (16). In
this paper, we will be concerned with a number of examples.

3.1 Defining the Category of Paths A

Our first example will be the category of paths defined by the 1-graph in figure

3.1 together with the identification
@ifiy1 = Biipa

for i > 1. We wish to make the above description more precise (and hopefully more

clear), and we do so below. Let

zi = {aiaﬂivf}/i} for 4 >1
X o= Up12
¥ = {0pmomi1.-.0n 0, €5, 1<m<n}

A = {v :i1>1}

At V2 V3
U1 </_\ V2 </_\ U3 </_\ (1
B Ba B3

Figure 3.1: The 1-Graph of the First Example



Define r',s" : 3* — AY by r'(0,,...0,) = U, and §'(0,,...0,) = Vpy1. For

u,v € X* define u ~ v if one of the following holds:

(1) p = 00;fi417 and v = o BT
(2) p = 0By and v = o0 BT

B)p=v

where 0,7 € ¥* with s(0) = v; and 7(7) = v;49.

Now define y ~ v if there are ©4,...,0, € ¥* with ©;, = p©, ©, = v, and
O, = O, for 1 <i < p. It is clear that if y ~ v then r'(u) = r'(v) and §'(n) = §'(v),
and so if p ~ v, then v'(u) = r'(v) and §'(u) = §'(v). Further, for p € ¥* we can
define the length of u to be |u| = |m ... ptn| = n— m + 1 where p,,, € ¥, and
tn € ¥,. By convention, we will have |v;] = 0 for v; € A% Tt is clear from the

definitions of ~ and ~ that |u| = |v] if p ~ v.
Proposition 3.1.1. As defined above, ~ is an equivalence relation.

Proof. Suppose ji ~ v and v ~ ¢. Then there are ©4,...,0,,0,...,0, € £* such
that 4 =01, v =0, =0}, and 0 = O, with ©;, * ©,;; 1 <i <pand ©; = O],
I1<i<r.Forl<i<rletO,,;, 1 =0;. Then y=0;,0=0,,_1,and ©; = 0,1,
for 1 <¢<p+r—1so that u ~ v, and ~ is transitive
Reflexivity is clear so suppose that ;1 ~ v. Then there are ©4,...,0, € X* with
O, =u, 0, =v,and ©; = 0,4 for 1 < ¢ < p. Now if ©;, = ©;;; we have three
possibilities:
(i) ©; = O,41
(ii) O, = M1aj5j+1ﬂz
and ©;1 = 1B 100
(iii) ;= Mlﬂj%’ﬂuz
and ©,4; = Ml%‘ﬁjﬂﬁ@
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In the case of (i), we have ©;,; ~ ©; by (3) in the definition of ~. In the cases of (ii)
and (iii), we have ©,;1 = ©; by (2) and (1) respectively in the definition of ~. Then
@le@iforl§i<p,solet@;:®p_j+1f0r1§j<p. Then v = O}, u = 0O,

and ©; ~ ©;,, for 1 <i < pand v ~ p so that ~ is an equivalence relation. O

Next, we look to characterize the equivalence classes in X* under ~. If u ~ v,
it’s clear from the definition that pu; = ~; iff v, = ~; and hence if © ~ v, then

wi = v iff v; = ;. Now suppose p =~ v with p # v and without loss of generality,

p = ma;Bitane and v = m B 1m2. Further suppose that p; = v; = v, e = 9 = g
and fu, # v, # v, for j <n < k. Then p = p17;07,p2, and v = 017,0"y,02 where O

and © are words in a and 3. We have three possibilities:
(1) = plaiBiy1p{7;0Vkp2
V= pllﬂiai+1plll7j@7kp2
(2) = p17010:Bi11027kp2
v = p17;01 Biciz1027kp2
(3) 1= p17;ONMPrifit15

v = p17;OVpaBictis1py

In any case, we have
Hi:pi=ap, j<i<k} = Hi:vi=awa, j<i<kl}
and {7 1 =0 j<i<k} = |{i:v=p0 j<i<k}

That is, in (imprecise) words, if ;1 & v, then between two edges which are 4’s; and for

which there are no other 7’s in between, then p and v must have the same number
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of edges which are a’s and the same number which are 3’s. Similar arguments show
the following:

If there is a j such that u; = v; = v; and p; # v # v; for @ > j, then
i =i j<i} = Hi:vi=ai j<il

and [{i : =0, j<i}| = Hi:vi=08, j<il|

If there is a j such that pu; = v; = v; and p; # v # v; for @ < j, then
{i: mi=ai, i<j}l = {i:vi=a, 1<)}

and if u; # v; # v; for any 4, then
{i: =i} = {i:vi=a}

and {i : =0} = Hi:vi=p51}

Roughly speaking, if u ~ v, then p and v must have the same number of a’s and
B’s as edges before the first v and after the last v, and if no edges in p or v are v’s,
then p and v must agree on their numbers of o’s and 8’s. Since the above holds when
1~ v, it is clear that it holds when pu ~ v.

On the other hand, consider the equivalence class of
= pya™ ram g Q" [y
where we suppress subscripts for ease of notation, and where """ = «a...af ...
with m >0 a’s and n > 0 #’s. Now let v € ¥* with
v = pyalfiiai2pB2 o' B yo where
Ko k
Zp:l p = szl my
Ko k
Zp:l Jp = szl Np
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(that is, a7 ... o 7% is a permutation of o™ 3™ ...a™3™). Then it is clear
from the definition of ~ and ~, and the presentations of 1 and v above, that v is in
the equivalence class of p.

Similarly, if p = o™ ™ ... "™ "~ then
v =B a3y where
Zl;/:1 ip = 21;21 myp
Zl;/:l Jp = Zlgzl My
is in the class of u. If p = p'va™ g™ a™2 "2 .. o™k (™ then
v = pyal BB o B9 where
Z];lﬂ ip = ZI;:1 mp
Z];lzl Jp = Ziﬂ p
is in the class of p. Finally, if p = o™ g™ ... a™ 3™ then

v ="/, o' 3% where
k. k
Zp:l p = szl my
k' . k
Zp:l Jp = Zp:l np

is in the class of u. These observations, together with the previous arguments show:
Proposition 3.1.2. For pu,v € X*, y ~ v if and only if the following conditions hold:
1. () =7'(v) and §'(u) = s'(v)
2. wi =i iff vi =

S If wy = = v, e =Y = vk, and p; # i # vi for j <i <k, then
Hi =, j<i<k} = Hi:vi=a j<i<kl}

and {i - =0 j<i<k} = i :v=0,j<i<k}



4- If py =y = vy, and p; # ;i # vi for j <1, then

|{Z : [Ll:OZZ,j<Z}| = ’{Z : Vi:ai,j<i}|
and [{ i+ pi=p0; j<i}t = [{i:vi=p j<il

5. 1f py =5 = vj, and w; # i # vi for i < j, then

’{Z : /Ll:OéZ,Z<]}’ = ’{Z : Vi:ai,i<j}‘

6. If u; # ~; # v; for any i, then

Hi:tm=a}] = [{i:vi=a}

and |{i : =06} = {1 : vi=p5}

We can now define our category of paths.

Definition 3.1.3. Let A = AU X*/. (recall that A = {v; : ¢ >11}). The set of

units in A will be A°. Define 7,5 : A — A as

r(() = () for pe s
s([u]) = §'(w) for p e X
r(v;) = wv; for v; € AY

s(v;) = w; for v; € A
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noting that we have shown the first line in the definition to be well-defined. Set
A? ={ (u,v) € Ax A :s(u) =r(v) } (dropping the equivalence class notation
for ease). For (u,v) € A% define composition as follows: If y = [i//], v = [V/] with
W, v e ¥*, then uv = [p/][v] = [W'V'] where p/v' is concatenation in ¥*. If p = r(v),
then uv = v, and if v = s(u), then pv = p.

We check that composition is independent of the choice of 1/ and v/ (noting that
there is nothing to check if p or v is a unit). Suppose we have p/, ", v'v" € ¥* with
p ~p" and v/ ~ V", Then there are ©,...,0,,0],...,0, € £* with ¢/ = 0,1 =

O,V =01,V =0, and 6, ~ 0;;; for 1 <i<pand ©; ~O;,, for 1 <i<r. Let

0,0, , p<i<p+r

Then p'v' = @4, p"v" = ®,4,, and ®; = &, for 1 <7 < p+r, so that p'v' ~ p"v".
Associativity of composition is clear since concatenation in ¥* is associative, and

the definition of composition forces r(u)pu = p = ps(p) for all p € A, so that A is a

small category.
Theorem 3.1.4. A is a category of paths.

Proof. We must show that A contains no inverses and is left- and right-cancellative.
For [u],[v] € A\ A° since |uv| is independent of the choice of representatives, and
clearly |uv| = |p| + |v| > 2, we conclude that [uv] is not a unit.

Now suppose p, v, 0 € ¥* with uo ~ vo. Proposition 3.1.2 applied to po and vo
shows that conditions (2), (3), and (5) must hold for x4 and v. We must check that
(1), (4), and (6) hold as well. To check (4), suppose there is a j such that p; = v; = v;
and p; # ~v; # v; for and @ > j. First suppose o, = 7 for some k with o; # ; for and

i < k. Then Proposition 3.1.2(3) applied to po and pv tells us that
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Hi: (o)i=ay j<i<k} = |{i: (wo)i=a; j<i<k}

and {7 : (po);=p0;, j<i<k} = |[{i: (vo)i=p;, j<i<k}

But clearly,

+ H{i: o=, i<k}

and
Hi: wo)i=ay, j<i<k} = {i:vi=a, j<il

+ Hi:o=a, i<k}
sothat [{i @ w=a; j<i} =i : v =a 7 <i}| A nearly identical
argument shows that [{ ¢ : =0, j<i} =|{7 : vi=p; j<i}| sothat (4)
holds in this case.

Now if o), # 7, for any k, then a similar argument (applying (4) instead of (3) to
po and vo) again shows that [{ ¢ : wy =0y, j<i}| =i : vi=a; j<i}| and
i =0, j7<i}=1{i: v,=p0, j<i}| sothat (4)holds for s and v.

Showing that Proposition 3.1.2(6) holds for p and v is similar; assume p; # v; # v;
for any i. If oy, = v with o; # ~; for ¢ < k, we apply (5) to po and vo and argue as
above. If o; # 7, for any ¢, we apply (6) to o and vo and again argue as above, so
that (6) holds for x4 and v.

It’s clear that 7'(u) = r'(uo) = 1’(vo) = r'(v) using Proposition 3.1.2(1) for
the middle equality and the definition of ' for the other two. Further, s'(u) =
r'(c) = §'(v) so that (1) holds for g and v and hence u ~ v and therefore A is
right-cancellative. A symmetric argument shows that left-cancellation holds and we

conclude that A is a category of paths. O]
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Before moving on to C*(A), we give some preliminary definitions and prove a

corollary to Proposition 3.1.2, which will be useful in the sequel.

Definition 3.1.5. Given a category of paths I', for A\,0 € I', we say that )\ is an
initial segment of o if there exists a 0’ € s(A)I" such that A\’ =0, i.e. 0 € AI'. In
such a case, we also say that 0 extends A. We can define a partial order < on I' by
declaring A < ¢ if A is an initial segment of . A subset C' C I' is directed if it is
directed under this partial order; that is, for all \,c € C, \'Nel’'NC # ). C is said
to be hereditary if for each A € C and each initial segment A" of A, we have X' € C.
Finally, p, v € T" are said to have a common extension if there exist p/ € s(u)I" and

V' € s(v)T such that pu' = v/, ie. if uI' 0T £ 0.

Corollary 3.1.6. Suppose u,v € A have a common extension and neither extends
the other. Let p = min{|u|, |v|} and ¢ = max{ j : p; =~; =v; }, where ¢ =0 if

this set is empty (note that ¢ < p). Then p; # v; and v; # ~y; for any j > q.

Before proving the corollary, we will try to clarify its contents. Given u and v as
in the corollary, if, say, i is longer than v, then it’s conceivable that p has a v as an
edge somewhere after the p™ edge (say pp41 = Yp+1). The corollary states that this
can’t happen (in fact, it makes a slightly stronger statement; neither path can have

a v as an edge after the ¢ edge).

Proof. 1f |u| = |v|, the result is immediate from Proposition 3.1.2, so without loss
of generality, assume |p| > |v|. Since g and v have a common extension, there are
o,7 € A such that uo = vr. By Proposition 3.1.2, (uo); = v; iff (v7); = 7; so that
pj # v; # vj for any ¢ < j < p = |v|. Now suppose p, = v, for some k > p with
pj # ~y; for any p < j < k. By Proposition 3.1.2, (v7), = v and (v71); # ~; for any
q<j<k.

Now if

13



i vi=anqg<id < {i:pm=anq<i<k)

and Hi:vi=06,q<i} < {i:wm=08, q<i<k}|,

then p extends v. Therefore we may suppose without loss of generality that

Hi :vi=a, g<i} > {i:m=a, ¢<i<k}

Then
Hi: (vr)i=a;, g<i<k} > Hi:vi=a;, q<il
> i m=ang<i<k)

= H{i: (ur)i=ay, g<i<kl}

and Proposition 3.1.2 implies v1 # uo.

]

Recall from Definition 2.0.4 that A is finitely aligned if for every pair of elements

o,p € A, there is a finite subset F' C A such that oA N pA = U, cp7TA.

Proposition 3.1.7. A is finitely aligned.

Proof. Fix o,p € A. If 0 and p have no common extension then there is nothing

to show, so assume oA N pA # (). Suppose first that one extends the other, say, o

extends p. Then oA C pA so that pANoA = dA.

Now suppose neither o nor p extend the other and let i > 1 be such that r(o) =

v; = r(p). Let p and ¢ be as in the statement of Corollary 3.1.6 so that, for some

N, T € Vipg\, we have

0O = O0i...0444-17]

and p = pi...Pitg1T = 0i...0i4q1T,

14



where the second equation follows from an application of Proposition 3.1.2. By Corol-

lary 3.1.6, n and 7 have only a’s or 3’s as edges. Set
ro= max{[{j:n; = o}, [{7: 75 = a;}[}

and s = max{|{j:n; = G}, {j: 7 = B;}}
If A extends o and p, then an application of Proposition 3.1.2 shows that A =
Tio Oipqa1Qigq - - Qitgir—1Bivgir - - - Bitgrrrs— A for some X' € vipgpr4sA. Then

oANpA=0i...0i1g-10iq - Qitgrr—1Bitgtr - - Bitgrrs—1 1\ L

3.2 Defining the C*-algebra C*(A)

To build a C*-algebra from A, we will build a (Hausdorff, etale) groupoid G from
the data in A and then define C*(A) to be C*(G), constructed in the usual way. We
will be following the construction and applying the results in (16, Section 7), which
applies to finitely aligned categories of paths.

To build a groupoid GG, we begin with the following definitions:

Definition 3.2.1. For v € A° let X be the collection of all directed hereditary
subsets of vA and X* the maximal elements of X. Set X* = U,cp0 X, and X™* =

UyenoX™ and define a topology on X* by taking as a basis the collection of sets
B*={Z(\\U'1Z(0;) : A\ o; €A and o; extends A }

where Z(A\) ={ z € X* : A€z }. Let X be the closure of X** in X* and write X,

for X N X.

Remark 3.2.2. Each X, is locally compact and Hausdorff. See the discussion pre-
ceding (16, Lemma 4.1) together with (16, Definition 7.5) and (16, Theorem 7.6)
which identify the X,.
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For the infinite directed hereditary sets (those without a maximal element), we
find it convenient to identify them with “infinite paths” in A; more precisely, with

infinite words

T = 2;Tit1 ... where x; € vjAv; 4
Definition 3.2.3. Given an infinite word x = x;x;,1 ..., we define the range of x to
be 7(z) := r(x;) = v;. We will typically drop the tilde and simply write r(x). Given

two infinite words x and y, we say x is equivalent to y if the following conditions

hold:

2. =y ity =y
3. faj = = y;, T = Y& = Yk, and x; # v; # y; for j <@ <k, then
Hi:zi=a, j<i<k} = H{i:y=ap j<i<k}

4. lf xj =v; = y,, and x; # v; # y; for j <4, then

{i:azi=a, j<i} = [{i:y=m j<i}
5. If x; = v; = y;, and x; # ; # y; for i < j, then
{i:zi=ai<j} = Hi:vi=a i<j}

16



6. If x; # v; # y; for any 7, then

Hi:zm=a}] = i y=a}

and [{¢ : x; =06} = Hi:y=0}

We are identifying infinite words in a way analogous to the way we identify ele-
ments of ¥* as in Proposition 3.1.2 with some slight changes. There is no reasonable
sense of a source, and the sets in (4) and (6) may be infinite; in fact, at least one
pair of equal sized sets must be. This clearly defines an equivalence relation and we
will denote the class of x as [x] when necessary, but will frequently write x when (we
hope) there is no risk of confusion.

We make the identification between infinite words and infinite elements of X* as
follows: Given a class of an infinite word [z] as above with x = z;x;,1 ..., we identify

this class with the element 2’ € X* where
Y ={YilYis1--- Yo t yEx],n>1}

That is, 2’ is the collection of all initial segments of representatives of [z]. It is
clear that 2’ is hereditary and infinite, both by construction. This set must also be
directed since any two p,r € x’ must be initial segments of representatives of the
same equivalence class. By the way that class is defined, we can always find a long
enough initial segment (of any representative) that extends both p and v. Therefore,
e X*.

To realize an infinite directed hereditary set as an infinite word, fix such a set x
and let S ={ i :3Jo € z,0;, = } € N. Given any two paths p and v in x with
p = |u| < |v|, for these two paths to have a common extension, an application of

Proposition 3.1.2 shows that { ¢ :pu; =vi<p}={i : v; =~ i <p}. Moreover,
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for any i < j € S with k ¢ S fori < k < j, the values [{ k : i <k < j,00 = oy }|
and [{ k : i < k < j,0, = B }| are independent of the choice of o, so long as
s(o) = v, with £ > j. If S is infinite, then these observations define an infinite word
z and we can realize z as 2’ as above.

If S is finite, let & = max S. Then any ¢ € x with s(o) = v, and £ > k + 1 will

have o; € { a;, 5; } for k < i < £. Since z is infinite, we have three possibilities:

1. There is some m € N such that for any o € =, |{i : 0; = 4,7 > k}| < m and
for all n € N there is a 0 € x with |{i : 0; = ;,7 > k}| = n. That is, « contains

only paths with at most m «a’s and arbitrarily many (£’s after ;.

2. There is some m € N such that for any o € z, [{i : 0; = §;,7 > k}| < m and for
all n € N there is a 0 € x with |{i : 0; = a;,7 > k}| = n. That is, x contains

only paths with at most m [(’s and arbitrarily many o’s after ;.

3. For all ¢,d € N, there exists 0 € z with s(o) = vy, £ > k + 1, and such that
{i:o; =a;i >k} =cand [{i: 0, = F,1 > k}| = d. That is, x contains

paths with arbitrarily many o’s and (’s after ~;.

Each of these three define an infinite word, unique up to our identification. Take
any 0 € z with s(o) = vgy1. In the first case above, take the infinite word z =
OQpi1 -+ Oy Brtma1 Brimat - - - and we can realize x as 2’ as done above. The second
case is similar, and in the third case, we realize x as z’ where
2 = 011 Brr 20k 30k14 - - -

We can make a similar identification between finite directed hereditary sets and
finite words, and under this identification, the cylinder set Z(\) represents the set
of all classes of words which contain A\ as an initial segment. The classes of infinite

words where S (as above) is infinite, or as in case (3) when S is finite, represent the
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maximal elements. To see this, fix an infinite word x and S as above with either
S infinite or as in (3). Suppose y is a directed hereditary set with = C y and fix
o € y \ . Then either there exists an i ¢ S such that o; = 7;, or without loss of
generality (the other cases follow similarly) there are i < j € S such that o; = ~;,

o; =", 0k # Y for any ¢ < k < j and for any 7 € x with |7]| > |o],
’{k‘ : ak:ak,i<k<j}]7é\{k : Tk:ak,i<k<j}’.

In either case, pick 7 € = with || > |o|. Since x C y, 7 € y and hence, there in
some A € y extending o and 7, say oo’ = A = 77’. In the first case, Proposition
3.1.2 implies v; = 0, = \; = 7; # ;, a contradiction. In the second case, the same

proposition implies

{k:ov=ap i<k<j} = [{k: M=oy i<k<j}

= H{k:m=api<k<jl}

which is again a contradiction.

Now fix an infinite word = with S (as above) finite and suppose (1) holds. Let
k= maxS and m = min{n € N: [{i : 0; = a;,i > k}| < nfor all ¢ € z}. Letting
r(x) = vy, define y = 2 U {2, ... 2p_ 171 - - - Ugrmt2Bktm+3 - - - Bomtjrz + J = 0}
so that x C y. It is clear that y is hereditary; fix o € y\ x and ¢’ an initial segment of
o. If{i:o,=0a;,1 > k}| <m, then o’ € z and if [{i: 0] = o;,7 > k}| = m+ 1, then
o' € y\ x. To see that y is directed, fix 0,7 € y. If 0,7 € x then they have a common
extension in y D x since x is directed. If o, 7 € y \ x and, without loss of generality,
|o| > |7], then o extends 7 so they have a common extension in y. Suppose o € z

and 7 € y\ x. If |o| < k—r, then o is an initial segment of x,. ... x,_17; so T extends
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0. Then suppose |o| > k —r and that 7 does not extend o. Let

Then d > 0 since otherwise, 7 would extend o. Letting s(7) = wv,, the element
TBs ... 0Bsra—1 extends o (and 7) and is in y. Therefore y is directed and = is not
a maximal element of X*. The case where S is finite and (2) holds is similar, and
finally, if = is a finite word with, say, s(x) = v,, then the word y = x, represents a

directed hereditary set which properly contains .

Proposition 3.2.4. The set X, which is the closure in X* of the maximal elements

described above, is the set of all infinite directed hereditary sets.

Proof. Given an infinite word = and any Z(\) \ U ,Z(0;) containing x, Z(\) \
" ,Z(o;) must also contain one of the maximal directed hereditary sets as de-
scribed above. To see this, note that A\ € z but o; ¢ x for any i. Then there
must be some z; ...z, € x which extends A but none of the o; and which is longer
than all of the o;. Then the infinite word y = z; ... ZmYmt+10m+2B8m+30m+aBmts - - -
represents a maximal element (of the form (3) on page 18) which is contained in
Z(A)\ U Z(0;). This follows since we have A € y by construction, and if o5 € v,
then o4, and ;... 2, Ym+1 have a common extension. Then there exist p,v € A such
that opp = ;... Ty Y. Since |z, ... 2m] > |0k|, fimt1 = Ym+1 and Proposition
3.1.2 implies oyfty, . - . fom = Tj ... T,y € x Where v, = s(0oy), but this implies oy, € .
On the other hand, if x = z;x;41...2, is a finite word representing a finite
directed hereditary set, then Z(x) \ (Z(2Vm+1) U Z(xami1) U Z(xfmy1)) is an open
set containing x but no infinite directed hereditary set, and hence, no maximal ones.
Thus, the set X defined previously is precisely all infinite directed hereditary sets (or

all infinite words under our identification). O
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We make one final note which will be needed to define our groupoid. Given
p € A, we think of p as inducing a map 7% : X,y — X,(,) where z € X, is sent
to pux € X, (. Similarly, there is a map o# : uXy,) — Xy, defined by the equation
ot (ny) = y.

We are now ready to finish defining our groupoid.
Definition 3.2.5. Let

G' = UpenoA, X Ay, X X,

Define a relation ~ on G’ by (u,v,x) ~ (¢/,/,2’) if there exists a z € X and

9,0" € A2 such that

1. =6z

2. 2 =0z
3. pud =
4. vd =V

This is an equivalence relation by (16, Lemma 4.15).

Example 3.2.6. [aq, aq, f22]~ = [B1, b1, a2z]~

Definition 3.2.7. The groupoid of A is the set G = G’/ with composable pairs
G ={([wv,2l,lo,79]) + va =0y}

with multiplication given as follows: For ([u,v, ], [0, 7,y]) € G?, since vx = oy, by

(16, Lemma 4.12) there exist z,&,n such that x = £z, y = nz and v = on. Then

[, v, zl[o, 7, y] = [pg, ™, 2]
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Inversion is given by [u, v, 2] ™! = [v, u, x] with source and range maps defined by
s([u,v,z]) = [v,v,x] and r([u, v, z]) = [@, u, z]. The units are elements of the form
(1, 1, ] = [r(p), r(p), pz], and we will frequently identify the unit [r(z),r(z), x] with

the element x € X.

Example 3.2.8. (of composition)

[rylaﬁha@x][al)ﬁlaﬁ?w] = [’710'/27ﬂla27x][alﬁ275162ax] = [710527/81/62"%‘]

Definition 3.2.9. For v € A let &, denote the collection of all sets of the form
Z(u) \ U, Z(v;) where r(n) = v, and v; € uA. Let A, be the collection of all finite
disjoint unions of sets in &,. Let B = {[u, v, E] : s(u) = s(v),E € Ayy} where
v, B} = {[p, v, 2] = x € E}.

Remark 3.2.10. B is a base for a topology on G making G' a Hausdorff, ample, étale

groupoid by (16, Proposition 4.10)

We proceed to build a C*-algebra from G in the usual way: We make C.(G) into

a *-algebra by defining multiplication as convolution:

frgla) =2, f(b)glc)

and involution is given by:

We then take C*(G) to be the completion of C.(G) in the norm ||f|| = sup, ||7(f)]|

where the supremum is taken over all representations 7 of C.(G).
Definition 3.2.11. The C*-algebra of A is defined as C*(A) = C*(G).

To analyze C*(G), we make a simplification which will allow us to determine

C*(G) up to Morita equivalence. First, we let X; = { [v,vy,2] : x € Z(v;) } C G°
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and we will consider C*(G|x, ) where G|x, = X;G X1, i.e., the subgroupoid of G whose
elements have range and source in X;. The reason for this is the following from (10,

Example 2.7):

Theorem 3.2.12. Given a Hausdorff, second-countable, locally compact topological
groupoid G and T C G°. If T is closed and transversal, i.e., for all x € G°, there is a

v € G such that s(y) = x and () € T, and if r|g, and s|g, are open maps (where
Gr={y€G:s(y) €T}), then C*(G) is Morita equivalent to C*(Gr).

We can see that X is closed since GV \ Z(v;) = U2, Z(v;) and to check that it is
transversal, fix r € G° with r(z) = v;. Then [ ... a;_1,v;, 2] has source = and range
aj ... 1x € Xy. Since G is étale, r and s are open, and since X; = Z(v;) is clopen,
G, is open and therefore the restrictions of r and s to G'x, are open maps. To keep
notation clean, we will drop the subscript and simply write G for the groupoid with
this now restricted unit space.

We will realize C*(G) as an inductive limit of sub-algebras. To this end, we let
Gr:=(lo,m,z] : |o]=|71] <1).

Proposition 3.2.13. The elements of G1 are, up to equivalence, of the form:

[al-“akaﬁl--'ﬁkvw] [’}/10[2...0%,51...55,,1']

[041 O, V152 - B, y] [71042 c O, Y1P2 - B, Z]

together with inverses (and the units from Xi).

Proof. Let G denote the set of elements of G of the above form and their inverses.
We will show that G} = G;.
Direct computations show that
[Oél, 517 xl][ala 617‘%‘2] o [Oél,ﬁl,xn] == [Oél < Oy, 61 cee 6%7 .1:]
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for appropriate x,zy,...,z, (i.e., such that the multiplication is defined). Further,

we have:
[y, 00, 2)[or oo, Bre oy Byl = M2, B By Y
(1. m, By By @] [Brsv, y] = a1 .camiBa- .y B, 2
[v1, a1, zl[oq oo, B By Yl [B1, M1, 2] = e a1 B2y B Yl

again, when the multiplication is defined. Similar computations give inverses, and
hence G} C G.

On the other hand, it’s clear that generators of GGy are elements of Gj. Suppose
inductively that any product of n generators of Gy is an element of G, [u,v,y| €
G is such a product, and [g, h,x] is a generator (and not a unit). To compute
lg, h, x][u, v, y], first suppose u extends h. Then there is ¢/ € A with hy' = p, so we
may as well assume p; = h. By (16, Lemma 4.12), there are o, 7, z such that = = oz,

y =7z, and ho = ut = hyy ... g, 7. Cancellation then gives o = py ...y, 7 so that
g, hy @]l v, y] = [g,h,oz][u, v, 72]
= (g, b 2oy 72|, v, 72]
= (gt s Ppeo - - gy, T2) 1 v, T2
= lgpa- - - i), 15 Y] ls v, Y]

= [g/J“Q"'/MMaVay]
which has one of the forms claimed (up to equivalence) since p; # 7; and v; #
for + > 1. To belabor the point about equivalence, note that if, say, ¢ = a; and

Vy.oo V| = Q2. . Oy, then
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gz - s vyl = loapa ., v,y
= [ pyp—10)s V10 - Oy, Y]

= |- cHp-1, V102 - Oy 1, Oé|u|y]

Now suppose p does not extend h. For the multiplication to be defined, u and
h must have a common extension, which implies h # v, and u; # 7;; if both edges
were 1 then p would extend h, and if one were but not the other, then Proposition
3.1.2 would imply they have no common extension. Then h = a; and p = §; ... 8
or h= [ and g = ay...q),.

In the first case, we have o, 7, 2z such that x =0z, y = 72, and a0 = ho = ur =
By ... BT Fix k such that (ho)r = v, = (u7)r and (ho); # v; # (u1); for j < k,

taking k = |ho| + 1 = |u7| + 1 if no such k exists. Proposition 3.1.2 implies
{j:(ho)j=a5 j<k} = [{Jj: (wr)j=a; j<k}[=1

and [{ j @ (ho); =85, 7<k} = [j : (ur); =05 5 <k} =]ul

Then, again by Proposition 3.1.2, there exists ¢’, 7" such that
aifs .. -B|p|+10' = 10
= Bi... Byt
= Bi- Bt

= aifs... /B\quT/

and by cancellation, ¢’ = 7', 0 = 5 ... fjy+10’, and T = a,417. Then we have
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g, b, 2]l v 9] =g, h,oz][p, v, 72]
= |[go, ho, z|[uT, vT, 2]
= |[go,ur, z)[ur, v, 2]
= |[go,vT, 2]
= [96s.. ~5lul+1‘7,> VOé|m+1T/7 Z]
= [9B2... BT vayuat, 2]

= [9B2.. -B|,u|+1> Vo )41, 7'2]
which has the form claimed (noting that v; = «; for i > 1 by assumption, and g # a4
since [g, h, 2| is not a unit).
The case where h = [ is similar, as is the case for multiplication by a generator

on the right. By induction, G; C G} and hence G| = G. O
3.3 Analysis of C*(Gy)

To analyze C*(G1), we partition the unit space X into the following two sets:

Uy = {ze€X;:x; =, somei>1}

FF = X3\Uy={x€ Xy :2;#,anyi>1}

We first observe that U, is open: given € Uy, we can write & = &1 ... 2j_17;Tj41 - - -
where j > 1. Then x € Z(z;y...x;-17;) € U;. Moreover, U; is invariant for Gy, in
the sense that any element in GG; whose source is in U; also has range in U;. This
is easily seen given our observations in Proposition 3.2.13 about the elements of Gj.

Then Fy = U7 is closed and invariant, so by (15, Proposition 4.3.2), C*(Gyy,) is an
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ideal in C*(G,) and the quotient by that ideal is C*(Gyr,) yielding the short-exact

sequence:
0 — C*(Ghy,) — C*(G1) — C*(Gyp) — 0

We'll see below that the ideal is AF and the quotient type I so that C*(G1) is nuclear
and hence GG is amenable by (15, Theorem 4.1.5). We first analyze the ideal.

For each ¢ > 2 1let Qy ={ x1... 201 : x; # v, 1 <i<{}. Then define
E, = {zxe€elU :xy=r,and x; #; for any 1 <i < (}

- |—|U€Qg Z(UVZ>
which is evidently compact-open since the union is finite. Furthermore the E, are

each invariant for Gy and are pairwise disjoint, so we have Uy = | |,~, £. Now for

f € Ce(Gyy,) and ¢ > 2 we have

frxela) = 2y F(b)xn,(c)
st(b):a f(0)xE,(s(b))

= f(a)xg,(s(a))
f(a) s(a) € Ey
0 else.

Then we may write f = > _,., f * x5, where the sum is finite since the support of

f is compact. From this we can deduce that

C*(Gro,) = Dys0 C*(Guip,)-
Proposition 3.3.1. For each { > 2

C*(Ghig,) = Mar—1 @ C(Xe1a),
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where Xpp1 = Z(vgy1).
Proof. For ¢ > 2, write
Ej=A{zxy...xp1 2 £ y,0 > 11 x {7y} x Xogr.
For pug, p, v € {x1 ... 201 : x; # 7,1 > 1} and F C X4, compact-open, the maps
Xl (e xXesn] = €uv @ Lo(Xey)
Xlpo.k0,F] 77 Cpopo O XF

define a *-isomorphism from a dense *-sub-algebra of C*(Gyjg,) to a dense *-sub-
algebra of My_1 ® C'(Xy11). Note that there are 2¢ — 1 choices for p € {zy ... 2,1}
There are ¢ choices when x; # 7, since there are evidently ¢ words of the form
o= o...a;B+1...01 (including one with no «’s). Similarly, there are ¢ — 1

choices for p when z; = 4. ]

Now we can conclude that

C*(Gun,) = @522(1\424—1 ® C(Xey1))

Next we turn our attention to the quotient C*(Gyjr,) and our first step is to

decompose F;. We first introduce some notation.

Definition 3.3.2. For each 7 > 1 and j, k > 0 with j +k = oo, let 7°(j, k) denote the
(class of) infinite word(s) whose range is v; and which have j edges which are a’s, k

edges which are ’s, and no appearances of v’s.

As above, we will frequently identify n*(j, k) with the unit [v;,v;, n'(5, k)] € G°,

which we do now. Let
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Fe = {n'(00,00),7177°(00,00)}
F) = F\FX={n'(j,k),nn*(m,n) : j,k not both co, m,n not both oo}

Note that F® is closed (being finite) and invariant for Gy so that F} is open (relatively

in F}) and invariant. Then similarly as above, we get a short exact sequence:

0— C*<G1|F10) — C*(G1|F1) — C*(Gl\Floo) — 0

We begin by examining the quotient C*(GY, Ff"’)' Each of the two units has isotropy

group isomorphic to Z:
[Ulavhnl(ooa OO)]GuFfO [U17U1,7]1(007 o0)] = {[041751,772(00700)]n :n € 7}
and

[717 71, 772<OO> Oo)}GHFIOO [’71a 1, 772(00’ OO)] =
{[717 ay, 772(007 OO)] [ala 617 nz(ooa OO)]n[ala T, 772(007 OO)] ne Z}
We can see the first equation (and claimed isomorphism) above as follows: inductively,
since
[051 <o Qi ﬁl s ﬁ?ﬁ 77”+1(OO7 OO)] [ala 617 772(007 OO)]

"+2(00, 00)eu, B, Ba -« B (00, 00)]

= [al---anaﬁl '~-5n7an+1n

= [a1 o Oy, B B, 7}"“(00, 00)][@152 o Bt B B, 77””(00, OO)]

= [Oé1 ce g1, B B, 7]n+2(007 OO)];

(and similarly if multiplying in the opposite order) it follows that

[041,517772(007 00)]" = [ ..., B ... 5n,77n+1(007 00)]
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for all n > 0. Similarly, for n < —1,

(a1, Br, (00, 00)]" = [B1, a1, m?(00,00)] ™ = [B1 ... By 1 ..y, " (00, 00)]

For 0 < m < n, we compute

[+ - s B+ B 171(00, 00)][B1 -+ By 1+« s 7™ (00, 00)]
= o B By (00, 00)][Bi - . - By €01 - - s B+ - - Bty (00, 00)]
= o Br e By (00, 0N (B - - By -+ - Con Bt « - By 17 (00, 00)]
= 1. 01 CmBts - - By (00, 00)]
= a1 s B Bamy Onmst - - - Qatf 1 (00, 00))]

= [al o O, 61 o 6n7m7 Un_mH(OO, OO)}

m m

[041,517772(00700)]n[041,517772(00aOO)]_ :[0417517772(00700)]n_

Similar computations show that

[o1, B1, 1% (00, 00)] 7™ [a, B, (00, 00)]" = a1, fr, n* (00, 00)]" ™

[041751,7]2(00,OO)]m[Oghﬁl,?]z(OO?OO)]_n = [Ozhﬁl?T]Q(OO,OO)]m_n

and [ai1, B1,1%(00, 00)] ", B, 17 (00, 00)]™ = [au, Bi, m? (00, 00)]™ "
Now if r[u, v,n"+ (00, 00)] = s[u, v,n"*1(c0,00)] = n'(c0,00), then u;,v; €

{ai, B;} for all i < |u| = |v| so for some j, k > 0, up to equivalence,

1, v, 77'“'“(007 o0)] = [ai.. By -5|u|, ar. .. 0Byt -6|u|,77‘”‘+1(007 0)]
[051 --‘Oéjfkaﬁl’”ﬁj*lﬁlr]j_k—‘rl(ooaoo)] j 2 k
Br Bk, r ..y, "Ik_jH(OOa o0)] k> j.
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Then
Z = {layg,B1,m*(c0,0)|" :n € Z}

[vy, v1, 771(00a OO)]Gl\FfO [vy, v1, nl(oo, 00)]

The other claimed equivalence and isomorphism follow similarly noting that, using

computations similar to those above

[71, a1, m? (00, 00)][ar, Br, n* (00, 00)][ar, 71,77 (00, 00)]

[71042 Q1,12 - -5n+1;77"+2(007 OO)] n=0

() =

[7152 o Bty M O 77n+2(007 OO)] n <0,

and that if r[u, v, nl#*1 (0o, 00)] = s[u, v, " (c0,00)] = 1n?(c0,00), then u; =
v1 =y and g, v; € {ay, i} for all 1 < i < |u| = |v|. Then reasoning similar to the
previous case shows this element must one of the forms in (x) above.

In light of this, we might expect to find two copies of C'(T) in the quotient, and

indeed this is the case:
Proposition 3.3.3. C*(Gyjpx) = M, @ C(T)

Proof. We first note that G1|p is transitive since [y1, a1, n*(00, 00)] has source
n' (00, 00) and range y11*(00, 00). Letting u = n'(co, 00), so that uGy|pu = Z, the

claim follows from (10, Theorem 3.1). O

We can realize this isomorphism explicitly with the maps

Xla1,81,m2(c0,00)] F* €11 & 2

X[ ,01,n2(c0,00)] > €21 @ 1.

Next we turn to the ideal.
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Proposition 3.3.4. C*(Gypo) = LS K

Proof. Let F{'' = {n*(c0, k), in?(c0, k) : k € N} and F* = {n'(k, 00), in?(k, o0) :
k € N} so that FO = F'UFY?. Since Z(By ... Bi)\Z(Bi - .. B )N EV = {n' (00, k)}
and Z(v1B2...0:) \ Z(nPs- .. Bre1) N FYY = {yn?(co, k)}, F' is discrete (like-
wise with F"?) and hence closed. Each is invariant for Gy, so that C*(Gy] Fo) =
C*(G1|F10*1) ® C*(G1|F10'2)'

Now let u = n1(00,0) so that uG:|pou = {u} (see Claim 3.5.12 for a full charac-
terization of isotropy in G). The element [ay ..., S ... Bk, 7" (00, j)] has source
n'(co,j + k) and range n'(oco,j) and [yian...aw, B ... Bk, n* (00, )] has source
1' (00, j+k) and range y17*(00, j) so that G |po is transitive. Then (10, Theorem 3.1)
implies C*(G1[rp) = C® K = K. An analogous argument shows C*(G1[p02) = K

and the claim follows. O

Again, we can realize this isomorphism (or really C*(Gyjpo) = My ® (K @ K))

explicitly with the maps

X[/Bl~~-,,3j,0¢1...ozj,nj+1(07oo)] = e ® (0 P €0j)
X[Bri.m2(0,00] — €12 ® (0D eq)
Xlag...a;,B1....8;,m 1 (00,0)]  F7 €11 ® (603' o) 0)

X[al,'yl,nQ(oo,O)] = e ® (600 D O)

Thus our previous short-exact sequence becomes:
0— My® (K®K) 5 C*(Gyyp) & My © C(T) — 0

This induces the six-term exact sequence
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o

72 s Ko(CH(Gyr)) —2s

; ’j

7 s—— K\(C*(GyR)) +—

1%

The element u = €11 ® 2+e22®1 is a unitary whose class generates K, (M@ C(T)).
By (14, Proposition 9.2.2), if we can find a partial isometry v in C*(Gyjp, ) such that
m(v) = u then §;[u]; = [1 —v*v]g — [1 — vv*]y. The element u corresponds to

U = Xay,81,m2(c0,00)] T X[vi,v1,7112(00,00))]

and the desired partial isometry is

U = Xa1,81,{n2(jik):j+k=00}] T X[v1,01,Z(71)NF1]

It’s easily checked that v is a partial isometry, and determining its image in the
quotient amounts to checking the intersection of [ay, 81, {n*(j, k) : 7 + k = co}] and
[v1,v1, Z(71) N F1] with Gy and this indeed gives us the sets defining u.

We compute

I = 0" = X[u; 01,51 (00,0)]

I — 00" = X[uy 01,51 (0,00)]

representing rank-one projections in the left and right summands of K@K respectively.
Then §;[u]; = (1,—1) and hence the image of the index map is Z(1, —1). This also

shows that the image of 7, is 0, so
Ki(C*(Gyr)) = ker(my,) = im(i1,) = 0.
We take [X(v, vt (c00)]0 = (1,0) to be our second generator of Ko(C*(Gyjpo)) and

since Z(1,—1) is the kernel of if we get a short exact sequence

0 —Z — Ko(C*(Gyr,)) — Z — 0
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where the normal sub-group in the sequence is generated by (1,0) = [X[v, 01,1 (c0,0)])0>
and the quotient is generated by the rank-one projection e;; ® 1 = [vy, vy, n' (00, 00)].
Since the quotient is free abelian, the sequence splits, and the middle term is generated
by the left generator and a lift of the right generator. An appropriate lift in this case is
[X[o1,01,2(81 )01 Jo since Z (81 82) NFINFY® = 1! (00, 00). The reason for this particular
choice will become clear later.

We now turn our attention back to the short-exact sequence

0 — Dpoa(Ma1 ® C(Xes1)) — C*(G1) — C*(Gyp) — 0

and investigate the corresponding K-theory. We saw that the quotient has trivial K;
group, and as for the ideal, X, is a Cantor set, so that C'(Xyy1) is AF and therefore
the ideal is AF. Thus K of the ideal is trivial, and therefore K;(C*(Gy)) is trivial.
We know the K group of the quotient, and as for the ideal, again since X, is a
Cantor set, Ko(C'(Xy11)) = C(Xpq1,7Z). We then have a short-exact sequence of the

Ky groups:

0 — D0 C(Xp41,Z) — Ko(C*(Gh)) — 22 — 0

Again we have a free abelian group in the quotient, so Ky(C*(G1)) is isomorphic to
the direct sum of the left and right groups, generated by the generators of the left, and
lifts of the generators on the right. Our lift of [X{u, v, (00,0010 13 [X[o1,01,2(a0)\Z(a1 82)])0
(since Z(aq) \ Z(a1f2) N Fy = n'(00,0)) and our lift of [X{u,,u1,2(8:8)n )]0 18
Xior.on. 288010

Our final step in analyzing C*((G) is to compute the positive cone of Ko(C*(Gy)).

First we establish some notation. Let
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a € Ko(C*(G1)) = (Bys0 C (X1, Z)) & Z°

We write
my
a= Z Z CeilX{z01xFrido + MIXz(@\ 21820 + nX2(8182)]0
>2 i=1
where

{zo;:1<i<mpy={ai...0py : & Fyforl<i<il}

and Fy; € Xpyq is compact-open. We adopt the convention that for each ¢, the
collection {Fy; : 1 <i<my } form a partition of Xy, taking ¢,; = 0 if necessary,
and refining the collection if F,; N F,; # () for any i # j.

We also must make a few observations which will be used shortly when character-
izing positive elements, as well as other times in the sequel. First note that, for any

j>0andk > j,

Z(Oél . CY]‘) \ Z(Oél ce ijﬁ]qu)
= Z(oyg...avm)U(Z(ag...ajm) \ Z(og ... aj11842))
= Z(Oél Ce aj’yj—&—l) L Z(Oél e Olj+1’}/j+2)

L (Z(Ozl L. Oéj_;,_g) \ Z(oq S Oéj_:,_gﬁj_;,_g))

= (W1 Z (e cec1ve)
L (Z(oq...ax) \ Z(oa ... axPri1))
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Also note that

Z(ar...c;) = Zlan...a;y1) U (Z(ar. .. 1) U Z(oq ... 0;8541))
= Z(oy...a;41) U Z(0r ... a;B541)
U (Zlay...aj1)\ Z(og ... 0;B;41))
= Z(ay...ajy41)UZ(oq ... o;0541)

L (Z(Oél e aj+1) \ Z(O&l e Oéj+1ﬁj+2))

Now, if o = py...pp and v = vy...v, with p;,v; € {«a;, 5;} for i > 1, then for
r,y € 2(Uny1), [t vs2), [V, 1, y] € Gy by Proposition 3.2.13 and xz ~ xzw) in

C*(G,) via the partial isometry X(,.,z( Then together with the observations

vn+1)} :

above, we have

k
(1) XzZ@n\z@B)lo = D ralXZ(arar170)]0 + [XZ(ar.am)\Z(ar...arBrsr)]0

and
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[Xz(8:82)]0

[XZ(ara2)]0

(X2(a10293)]0 + [XZ(a10205)\ Z (@1 02038 [0 + [XZ(01028)]0

(by partitioning Z(ajaz) as above)

XZ(a1a299)]0 + [XZ(@10205)\ Z(a1 02060 )0

[XZ(a1asas)]o (using equivalence as noted in the paragraph above)
XZ(@azm)o + [Xz(@10000)\ 201020580 )0

[XZ(alozgag'm)]O + [XZ(a1a2a3a4)\Z(a1a2a3a4,35)]0 + [XZ(a1a2a3ﬁ4)]O

ZIZ:?, XZ(ar..ar_170)lo + 25:3[XZ(oq...aj)\Z(a1...ocjﬁj+1)]0
[XZ(01...a1)]0

22:3 [XZ(a1..ae-170)]0

S s i1 Xz a0 + [XZ(aar )\ Z (e - Brsn) o)
(partitioning Z(aq ... ) \ Z(oy ... aj5;41) as above)

[XZ(al...ak)]O
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= Z];:g[XZ(al...w_m)]o

+ Yol = 3) Xarariwlo

+ (k= 2)[XZ(a1..an)\ Z(a1..anBrir)]0
+  [XZ(a..ap)o

= s (0= 2) Xz apre))o

+ (k= 2)[X2(a1..an\Z(a1.arBisn)]o

+ [XZ(ozl,..ak)]O

Then for m,n € Z, and for £ > 2, zp = o ... ay_17y and Xy = U; Fy; a finite union

of compact-open sets, we have

M[XZ(a)\Z(er2)]0 + X 2(8182) )0
k
= m Z£:2 [XZ(Oc1---ae—1w)]0
+ m[XZ(Oq---ak)\Z(Otl---Oékﬁk-u)]0
(by using (f1))
k
+ n ZZ::}M - 2)[XZ(&1~~C!471’Y£)]0
+ n(k - 2) [XZ(al.‘.Oék)\Z(Ofl...akﬁlﬁfl)]O + n[XZ(alak)]o
(from the previous computations)
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= Cia(m+ (0= 2)n) Xz 10)o

+ (m+ (k= 2)1)[XZ(a1..a0)\Z(on .- Bi11)]0
+ ”[XZ(al...ak)]o

= lezz doi(m 4 (€ —=2)n)[X iz xm,]o

+ (m + (k - 2)”)[XZ(OZI---Oék)\Z(Oél---akBlH-l)]O + n[XZ(Oél---ak)]O

We are now ready to give a necessary and sufficient condition for positivity in Kj.

Proposition 3.3.5. Fiz a € Ko(C*(Gy)) and write

my
a= 3" ctlXznixdo + mixzenz@smlo + nlxz@mlo
0>2 i=1

with the conventions outlined above. Then a > 0 if and only if for all ¢ and i we have

coi+m+ (0 —2)n>0.

Proof. First suppose that for all £, ¢, we have ¢g; +m+ (¢ —2)n > 0. Since the double
sum in a must be finite, we know ¢,; = 0 for large enough ¢. Then also we must have
n > 0 since otherwise, we would have m + (¢ — 2)n < 0 for large enough ¢. Choose k

such that ¢,; = 0 for all £ > k and using our computations above, write

a = 2422 Z?ZI Ce,i [X{Zé,i}XFZ,i]O + m[XZ(al)\Z(Oélﬁz)]O + n[XZ(5132)]0
k m
= D=2 i (Cei+m+ (€ =2)n)[X(z x50
+ (m + (k - 2)71) [XZ(Oé1-~ak)\Z(Otl~~-C¥kﬁk+1)]0 + n[XZ(Oélmak)]O
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If n > 0, we may also choose k such that m + (k —2)n > 0 and the above shows that
a > 0. If n = 0 then our initial assumption implies m > 0 (since it must hold when
ce; = 0) and again, the above shows a > 0.

Now suppose we have a € Ky(C*(Gy))+ and write a as above with the outlined

conventions. Fix x € U; and write
T =T1...Toz)—1Ye(z)T
where x; # v; for 1 < i < {(x) and 2" € Xy)41. Define a x—homomorphism
e C*(Gilv,) — Mog(zy—1
by taking
f €0 (Gilt,) = Dyso(C(Xeg1, Mar-1))

where f = (fo, f3,..., fj,...) with f; € C(Xj11, Myj—1) to mo(f) = fe)(2'). Since

C*(G1|y,) is an ideal, 7, extends to a representation
7~Tx : C*(Gl) — M%(w)fl

Let
Q = {le--aﬂ%(x)—l }
= {a...aifipr. Buwy—1Ve@) - 050 <L) }

U {moe...aifipr- - Buay—1Ve@) + 1 <i<l(x) }
and for each 1 < k < 2¢(x) — 1, define
Pr = X{pe}xXo(my41

so that ﬁ'z(pk) = ek € MQg(z)_l. Let Z(ZE) c {1, ce ,mg(x)} be such that 2/ € Fé(x),i(x)
and let k(a) € {1,...,20(x) — 1} be such that @) = o1 ... Qy@)-17¢)- Then since

a > 0, we have
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0 < 7.(a)
= To(Drme 2oimn CilX{zxFeilo + MXZ(@)\Z(182)]0 T X 2(8182)]0)

- 2422 Z?ZI Coy [WZ(X{Ze,i}XFe,i)]O

20(x)—1
+ m[ﬂ'x( k;:(l) Dk * XZ(al)\Z(Oélﬂ2))]0

20(x)—1
+ [ (e ™ P * X))o

= Cy(z)i(x) [7% (X{ze(m)’i(m)}ng(m),i(m) )]o
+ m[ma(pra)]o
T (X ez o) PR)Jo
= Ca),iz) + M+ (U(x) —2)n
noting that there are ¢(x) — 2 choices for u; € Z(/5152); namely,

M S { a7 ... ai5i+1 .. -Bf(x)flfyf(x) - 0 S 1< f(l’) }

where 0 < i < {(x) — 2. Finally, if a € K¢(C*(G})) is positive, then for any choice of
i and ¢ there exists x € X such that ¢ =i(x) and ¢ = {(x), so the inequalities above

hold. ]

For now, this completes our analysis of C*(G;) and we turn our attention to

C*(G;) for i > 1.
3.4 Definition and Analysis of C*(G;)

Our definition and analysis of C*(G;) will follow a very similar path as that of G;.

First, define
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Gi=(lo,m2] : |o| =] <1)
We will adopt the convention that for [0, 7, 2] € G;, if

{7 :oj=ajand o #,k>7}=m>0

H7:m=oand 7 # v, k>j }=n>0
then we write [o,7,2] = [0/, 7', a; ... ®j4p—17] where p = min{m,n}. In words, if &
and 7 both have o’s as edges after the last -, we take the representative of [0, T, z]

where we “factor” the common number of these edges into the tail. We do the same

for shared edges which are 3’s. Now, define

G; = { [HJO‘WHl o Oy, I/,6|,,|+1 Ce 5m, x], [0ﬁ|0‘+1 .. .,6n, TO(|.,-|+1 Oy, y] .

\ls L ol 1T <4 i = Vs Vil = Mol Olo) = Viols Tirl = Vel }

Proposition 3.4.1. Given our convention for elements in G;, we claim that G; = G.

Proof. Direct computations show that

[Oél, 517 xl][ala 617‘%‘2] o [Oél,ﬁl,xn] == [Oél < Oy, ﬁl o 6%7 x]
for appropriate z, x1, ..., z, (i.e., such that the multiplication is defined). Moreover,
o a1 ..o, z)[ar .. an, B By ylBr - B Ty 2] = [00sn - TRt - - -y s Y

for j,k <i,n (again, when the multiplication is defined). Similar computations give
inverses, and hence G} C G;.

Conversely, it’s clear that generators of G; belong to G. We will show that G/ is
closed under multiplication by generators of G;. Suppose [0, T, z] € G} and let [y, v, y]
be a generator of G;. Consider [u, v, y|[o, T, z] (assuming throughout that the product

is defined).

If o extends v then we may as well assume 0 = vo, 41 ... 0|y and we have
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v yllo,m,x] = [poju4 - - Olo), VO 41 - - - Olol, &[0, T, @]

= [pojt1-- .0, T, ).

Similarly, if v extends o, then writing v = ov|5|41 ... 1) We have

[,ua V?Z/HO'?Tax} = [,U,TI/|T‘+1 .- 'V\l/|7y]'

After factoring common a’s or f’s after the last v into the tail, both of these have
the desired form. Namely, in the first two coordinates, neither has + as an edge after
the " edge since neither p, v, o, nor 7 do.

Now suppose neither of o or v extends the other. Let p = min{|o|, |v|} and
g=max{ j : o; =7; =v;,j <p }. Forthe product to be defined, o and v must
have a common extension, and this fact together with an application of Proposition

3.1.2 implies that

with 07...0, ~ 14...1, in ¥* (i.e. Proposition 3.1.2 applies) and |o’|, || > 0 (or
else one of 1 or v would extend the other). Corollary 3.1.6 implies that o’ # ~; and
v} # v, for any j; that is, 0’ and v/ are words in a’s and ’s only. Since neither of o

nor v extend the other, we must have
oo = Hi:oj=a;} <va:=H{j:vj=a}

and og = [{j:o0j =0} >vs = [{j:v; =06}
or o, > v, and g < vg. Without loss of generality, assume the first pair of inequalities

holds. Then
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v, yllos o] = (v vt yllon .. og0’ T, @)
= [Bu+1 - - Blul+vs—os: VBu+1 - - - Blul+vs—os: 2]
'[0'05\0|+1 Ce Oé‘UH_Ja_Va, TO&|U|+1 . Oé|U|+Ua_Va, Z]

= [,u,ﬁw_,_l . ‘B\,u\-l-l/ﬁ—aga TOé|U|+1 Ce Oé|a|+aa_ya, Z].
After factoring any common «’s or 5’s into the tail, this has the form of elements in
G} since p; # ~; and 7; # ; for j > i. Then everything in G; has the form of some

element of G, so that G; C G and therefore G; = G.. O
Now we analyze C*(G;).

Theorem 3.4.2. There are positive integers m(i), and n(f) for ¢ > i, a closed in-

variant set F; C X4, and exact sequences

(1) 0 — P (M) @ C(Xa1)) — C*(Gi) — C*(Gyyr,) — 0,

>4

Proof. Similarly to the case when ¢ = 1, we let
U = {xe€X;:x;=r;, some j>i}

F, = Xi\U={re Xy:x;#~,;,any j >i}.
With Proposition 3.4.1 in mind, it is evident that U; is invariant for G;. If x € U;,
with x; = 7, for some j > i, then x € Z(x;...x;_17;) C U;, so that U; is open. Then

F; is closed and invariant, and similarly to the ¢ = 1 case, we have
0 — C*(Gyjy,) — C*(G;) — C*(Gyp,) — 0.
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As before, we begin by looking at the ideal, C*(Gyv, ).

For ¢ >, let Qy={21...0p-1 : x; #, 1 <j <L} Then define
E, = {x €U :zy=ry,and z; #; for any i < j < (}

= I—IOGQZZ(OV}/E)-
Q) is finite so Ey is compact-open, and we observe that by Proposition 3.4.1 each Ej,
is invariant for G;. Also, U; =| | ¢>; e and the same argument as the case when i =1

shows
C*(Gi|Ui) = @ém’ C*(GilEe)'

A nearly identical proof as in the previous case shows that
C*(Gyg,) = My @ C(Xeya)

where n({) is some integer depending on ¢. (Recall that X,y1 = Z(vs41)). Then we

conclude that

C*(Gijvy) = Dsi (M) ® C(Xps1))-

We now turn to C*(Gr,) and similarly to before, we decompose F; as follows: let
Fpeo = {on 1} (00,00) : 0| < 4,010 =0l }

F) = F\F={on"(j,k) : |o] <i,00 =), j, k not both oo }.

()

Then F™ is closed, being finite, and invariant for G; so that F) is open in Gir, and

invariant. This gives us the short exact sequence
0— C*(G“FZ_O) — C*(Gyr,) — C*(Gyp=) — 0.

Similarly to the case for G1, the maps
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Xa1,81,m2(00,00)] 7 €11 @ 2

X[U,al...aw,77‘”“*’1(00,00)] g1 ® 1

where |o| < i and 0}, = 75| define a x—isomorphism from C*(Gjjp=) to My, @C(T),

where m(i) is the number of choices for o. Further, the maps
X[B1..8; 01y mit1(0,00)) > €11 @ (0D eqy)
X[B1..8, oo 1+1(0,00)] F7 €lo @ (0 eno)
Xaroaj BrBymiti(eo0)] F> €11 @ (eg; ©0)
Xlar..ap,mlm 1 (00,0)] 7 €17 & (€00 ©0)

where |o|, |7| < i, 05 = 7)o|, and 7, = 7| define a x—isomorphism from C* (G} po)

to My ® (K @ K). This yields

0 — Mpp @ (KD K) = C(Gyr) = Myu ® C(T) — 0

Theorem 3.4.3. K,(C*(Gi|r,)) =0 and Ko(C*(G:i|r,)) = Z?, with generators

[X[m,vl,nl(O0,0)]}O and [X[U17U17Z(61-~-ﬁi+1)mFi]]0'

Proof. The exact sequence (2) in Theorem 3.4.2 induces the six-term exact sequence

7 — Ko(C*(Gyr)) —= Z

of |

L1x

The element
u = e;;®z+ Z;n:(;)(ej] & 1)

X[on,61,72(00,00)] T 2o Xfon on,0ml 41 (00,00)]
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where |o| <4, 015 = 7)o is a unitary generating K (M) © C(T)) = Z. Now
U = Xfar 1, 2GR +h=oo}] T 2o Xlor,01,2(0)0F]
where |o| < i, )] = v is a partial isometry such that 7(v) = u. We compute
1 = 0" = Xfor 01,1 (00,0))
1= 00" = Xpor 1.1 (0,00))

which, like the GGy case, are rank-one projections in the left and right summands of
K& K. Then §;[u]; = (1, =1) so 6,(Z) = Z(1,—-1). As before, K;(C*(G;r,) = 0, we
take [X[o;01.11(c0,0)1J0 = (1,0) to be our second generator of Ko(C*(Gypo) = Z, and we

again have a short-exact sequence
0 — Z — Ko(C*(Gyp,) — Z — 0.

Just as before, we conclude Ko(C*(Gyjr,) = Z?, generated by
(1,0) = [Xp1,01.m (00,0)])0, the generator of the left term, and a lift of [e;; ® 1] =

[X[o1,01,11 (c0,00)1 0> the generator of the right term
L = Ko(C*(Giree) = Ko(Mpy @ C(T)).
The lift we choose is [X[u,v1,2(81...8:1)7F]]0- O
Theorem 3.4.4. K,(C*(G;)) = 0 and Ko(C*(G))) = (D~ C(Xe41,2)) & Z2.
Proof. Recall the exact sequence (1) from Theorem 3.4.2:
0 — Dpoi(Mnie) ® C(Xp1)) — C*(Gi) — C*(Giyp) — 0

As we saw in the earlier case, the ideal is AF, so has trivial K;-group, and its Kg-
group is ., C(X¢11,Z). We saw in Theorem 3.4.3 that K,(C*(Gy|r,)) = 0 so that

K,(C*(G;)) = 0 and we have a short-exact sequence of K(-groups
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0 — @, C(Xp1,Z) — Ko(C*(Gy)) — 7> — 0

and again, Ko(C*(G,;)) is the direct sum of the left and right Ky-groups. We pick

[X[o1,01,2 (01 0\ Z(ar.asBis )]0 A [Xor,01,2(81...8:.1)) )0 s lifts of the generators

(X101, (00,0)1]0 AN [X[oy 01,2818, )00 Of Ko(C*(GilFR,)) = 7Z? to be generators of
Ko(CH(Gy)) = (B C(Xepn, 2)) © 22

together with the generators of the left term. O

Positive elements in K will have a characterization similar to the previous case,
and we first make some observations generalizing those from before.
First, if p = py ...y and v = vy ... v, with p;,v; € {o;, B} for j > 4, then the

partial isometry X{..,z(v,,) gives an equivalence between xz(,) and xz(,) in C*(G;).

Un+1

Then using the observations preceding Proposition 3.3.5,

X2(51..8:0)]0 = [XZ(a1.-.aiy)]0
= [Xz(a1aipmi2)]0 T XZ(ar a2\ Z(01 . aiaBin]o + [XZ(a1.ai1i42)]0
= [XZ(ar.cimira)]0 T [XZ(a1aiza)\ 201 aiiaBiss)]0 T [XZ(a1.air10is2)]0
= XZ(a1..ais1ms2))o T Xz(ar a2\ Z (a1 aiseirs)]0

+ [XZ(a1---Oéi+2%‘+3)]0 + [XZ(Oll---Oéi+3)\Z(0ll---ai+35i+4)]0 + [XZ(Oél---Oéi+2,3i+3)]0
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k k
- Zf:i—}—Q [XZ(Oél...ag_l’yZ)]O + Z]‘:i+2 [XZ(Ocl...aj)\Z(Oél...Ocjﬁj+1)]0
+ [XZ(al...ock)]O
k
= ZE:i+2 [XZ(aluae—ﬂe)]O
k k
+ Zj:i+2(2€:j+1[XZ(al...aeflw)]O + [XZ(quak)\Z(al-~~akﬁk+1)]0)
=+ [XZ(al...ak)]O
k
= Zﬁzi+2 [XZ(a1~~~ae71’Ye)]0
k .
+ ZZ:H-?,(E - (Z + 2))[XZ(a1...ae71w)]0
—I— (k - (Z —I— 1))[)(2(0110%)\2(041ak5k+1)]0
+ [XZ(oq...ozk)]O
k .
= Yl = (i + 1) [Xz(01. a0 1700
+ (k - (Z + 1))[XZ(aln-Ozk)\Z(al--~ak5k+1)]0

+ [XZ(al...ak)]O-

Then for m,n € Z, and for £ > i, zp = o ... p_17, and Xy = U;F}; a finite union

of compact-open sets, we have
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k
m[XZ(al-~~Oéi)\Z(Oél~~~ai/3i+l)}O + n[XZ(ﬁ1~~~ﬁi+1)]0 =m ZZzi—i—l[XZ(aL..azfl’Yz)]O

+ MXZ(a1...ax)\Z(a1..crBry1)]0

+ n3oia(C = (0 D)Xz el
4+ n(k — (i + 1)) [XZ(ar..an)\Z(a1...axBrs1)]0
+ n[XZ(al.l.ak)]O

= > ira (m A+ (€= (i 4 1)) [X (e cr10))0
+ (m+ (k= (1 + 1))n) [XZ(a1..a)\ Z(u .. Brsr))0
+ nXZz(a1...a)0

= S 2o (m A (€= (i 4 1)n) Xz, o
+ (m+ (k= (1 + 1))n) [XZ(a1..ar)\ Z(a1..apBrs1)]0

+ n[XZ(al---Oék)]O‘

We can now prove

Proposition 3.4.5. Fiz a € Ko(C*(G;)) and write

me
a= Z Z Ce.j [X{ZLJ'}XFM}O + m[XZ(al---O‘i)\Z(al---aiﬁi+l)]0 + n[XZ(Bl--ﬂi-‘rl)]O
>i j=1

where each Fy; C Xyiq is compact-open and for each ¢, { Fi; : 1 <j<my} isa
partition of Xy11. As on page 35,
{zoj 1 <j<my}={@1...017 @ z;F#v fori<j<{}

20



Then a > 0 if and only if for all ¢ and j we have ¢;; +m + ({ — (i +1))n > 0.

The proof is nearly identical to the case when ¢ = 1, making some obvious changes

to indices.

Proof. Suppose for all ¢, j, we have ¢;; + m + (¢ — (i +1))n > 0. Similar to before,
we must have ¢y ; = 0 for large enough /¢, and therefore n > 0. Choose k such that

ce; = 0 for all £ > k and using our computations above, write

a = D i 2y Coj[X iz, yxFe o F MXZ(ar 0\ Z(or ~aupi))o T PIX2(51 8]0
k m .
= Zﬁzi—&-l ijll (Cf,i +m+ (ﬁ - (Z + 1))”) [X{Zz,j}XFz,j]O

+ (m + (k - (Z =+ 1>>n>[XZ(QI~--C¥k)\Z(&1~~~ak6k+l)]O + n[XZ(quak)]O'

If n > 0, also choose k such that m + (k — (¢ + 1))n > 0 and the above shows that
a > 0. If n = 0 then our initial assumption implies m > 0 and the above shows a > 0.
Now suppose we have a € Ky(C*(G;))+ and write a as above with the outlined
conventions. Fix x € U; and write
T =1 . Ty(e)—1Ve(@) T

where x; # v; for i < j < {(x) and 2" € Xg)41. Define a x—homomorphism

e : C*(G;

v:) — Mi(uay)
as follows: For
[ € C*(Gilv,) = Dysi(C(Xeyr, Myy))

with f = (fis1, fixes- -5 fo, ... ) where fi € C(Xpj1, My), we define m,(f) =
fe@ (@'). We saw that C*(Gj|y,) is an ideal in C*(G;), so 7, extends to a repre-

sentation
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Let

U

ﬁ'x : C*(GZ) — Mn(g(x))

{ M1y -5 Hne(z)) }
{ o aiBjri - Bewy1vew) + 0<j <L(z) }

{ OQg|+1 - - B -5[(35)—1’7@(9;) c0<o| < 1 Olo| = Yol o] <j<{l(z)}

and for each 1 < k < n(l(x)), define

Pr = X{ue}x Xg(a)41

so that 7,(pr) = ewn € Mpw)- Let j(z) be such that 2’ € Fyy) ) and pre) =

Xt} Xe(ay 41 where figa) = Q1 . .. Qyz)—1Ve(2)- Since a > 0,

7 (a)

T (D g Z;n:el Coj [X{ze,j}xFe,j]o + MXZ(a1..a)\Z(an..aiBis)]o + PX 281 8i01)]0)
D rmi 2jey CeglTa(X gz 3 < Fey)o

mlms (S bk X z(r 00\ Z(araisin)]o

n[ra(CrE b Xa1..8000)No

Co(@)3 (@) [Te (X{zua) o % Py o )10

Mg (Pr(a))]o

T2 (2 ke (8. 81403 PR)]0

Cofa),j(x) T M+ (U(z) — (i + 1))n.
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We note that there are ¢(z) — (i + 1) choices for ux € Z(f5...Bix1); those py €
{oar.. ;B Buwy-1Yuwy : 0 <5 < Ll(x) } where 0 < j < l(x) — (i + 1) (since
iy must have at least i + 1 edges which are 3). If a € Ko(C*(G;)) is positive, then

for any j and ¢, there is x € X with j = j(x) and ¢ = {(x) so the inequalities above
hold. ]

We are now equipped to analyze C*(G), the limit of {C*(G;),¢}.
3.5 Analysis of C*(G)

Our first step in identifying C*(G) is to consider the connecting maps
Ko(C*(Gy)) = Ko(C*(Git1))

and to do so, we will need a lemma, the argument for which was provided by

Spielberg. For ease of notation, we will suppress subscripts and write o/gF =
ar... B Bk and o/ BFy = on LB Bk ik

Lemma 3.5.1. Fizn >0 and let
W,={x¢€Z(vg) : xi#~ fori<n}.
Put

P = {Z(a™ )\ Z(a" 5 j <)
PP = {Z(a?pm)\ Z(a7H1 g 1 j < n}
PP = {Z(a?B%) 1 j+k>n, k< j<n}
P = {Z(a*Biy): j+k>n, k<j<n}
PY = {Z(am1pmH))

p, = u_ P,
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Then P, is a partition of W, that refines Z(v) for every v € voA with |v| = n and

vi # i Jor i <.

Proof. First we show that W,, = UP,. It’s clear that UP, C W,,. To show the other
inclusion, fix + € W, and let p = min{j : z; = 5} son+1 < p < co. We have

several cases to consider
1. Suppose p < 2n+ 1. Then x € Z(ad3%y) where n < j + k < 2n.

(a) If k < j < n, then Z(a?B%y) € PY.
(b) If j > n, then k < n. Then Z(a?B*y) C Z(aH1 %)\ Z(a™t!3F+1), which

is a set in P,El).

(c) If j < k < n, then Z(a’Bk~) € PY.
(d) If k > n, then j < n. Then Z(a?B%y) C Z(a?B™1)\ Z(a?13"H1), which

i1s a set in P,SQ).

2. Suppose p > 2n + 1. If x ¢ Z(a™™p"1), a set in P then there are two

possibilities.

(a) If ¢ =1|{j <p:z; =pB;}| <n, then z € Z(a" B\ Z(a" 1), a set in
P,
(b) fle=|{j <p:z; =0} <n,then z € Z(a’'F")\ Z(a*T15"1) aset in

P2

Then in all cases, we have x € UP, so W,, = UP,.

Next let v € vyA with [v| = n and v; # ~; for j < n. Let S € P, be such
that SN Z(v) # 0. We will show that S C Z(v). Let v = o*3" " so that Z(v) =
Z(a®)Nn Z(pF).
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First suppose S € P so § = Z(a"1p7) \ Z(a"*137+1) for some j < n. Then
S =Z(@™nZ(p)\ Z(B). Since Z(v) NS # 0, we know Z(B"F) N (Z(87) \
Z(B71)) # 0, hence n—k < j. Therefore Z(57)\ Z(87!) C Z(8"~*), and since k < n,
Z (o) C Z(ak). Therefore S = Z(a™) N Z(B9) \ Z(p1) C Z(aF) N Z(F) =
Z(v). If S e P? | the argument is analogous.

Now suppose S € PP g0 8§ = Z(a/B%) with j + ¢ > n and £ < j < n. Then
S = (Z()\ Z(a@)) N Z(B\ Z(BY)). Since Z(v) NS #D, k<jandn—k </,
hence S C Z(v). The argument where S € P is analogous.

Finally, since k,n —k < n+1, we have Z(a"* ") C Z(v). Therefore P, refines
Z(v).

Lastly we show the elements of P, are pairwise disjoint. For S € P, we consider
how many occurrences of a’s and [3’s, before the first occurrence of a v, there must
be in elements of S.

Elements of PV are distinguished from each other by the number of (’s, and
elements of P are distinguished from each other by the number of a’s. Elements
of PV are distinguished from elements of p? by the fact that the former have at
most n [3’s while the latter have at least n 4+ 1. For an element in PP or PV the
number of a’s and (’s are exact, and different for different elements. Both are less
than n + 1 which makes these sets disjoint from PV and PP, Finally, every set in
U;‘:ZIPT(LT) has at most one occurrence of at least one of a or 3, which makes it disjoint

from Z(a"t1pnt) O

Recall for p € A the map 7 : X,y — X, () that takes x € X, to px € X, (.

Lemma 3.5.1 implies the following:

Proposition 3.5.2. Fizn > 0 and let

Qu=U{r"(Py) < lu < 0 gy =y, |l +m =}
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where Py, is as in Lemma 3.5.1. Then Q,, is a partition of Z(vy) that refines Z(v)

for all v € voA with |v] < n.

Proof. Fix n > 0 and p # v € v with || < |v| < n and suppose z € pP,,, and
y € vP,y. If |u| = |v|, then u ¢ y and v ¢ = (and hence x ¢ v P, and y ¢ uP,,) since
otherwise they have a common extension, say uyu’ = A = vv/. But then Proposition
3.1.2 implies pt = Ay ... Ay = v. If |u| < |v|, then x| # 7}, while y},| = 7)) so that
again, r ¢ vP,, and y ¢ puP,,. In either case, uP,, and vP,, are pairwise disjoint.
Any two sets in uP,, are disjoint since any two sets in F,, must be.

To see that @, refines Z(v), first suppose |v| = n and write v = nf where ), = v,
and 0; # ~; for any 7. Define 6 by ¢; = 6;_};|. Then by Lemma 3.5.1,

Z(0) = U{w € Pg :w C Z(0')}

and therefore

Z(v) =U{nw:w € Pg,w C Z(#')}

where |n| + |0] = n so each nw € @,. Now if |v] < n and m = n — |v|, then
Z(v) = Ujpj=mZ (vp). For each such p, Z(vp) is a disjoint union of sets in @, by the
above, and hence

Z(v) = U{w € Qn:w C Z(vp),|p| = m}

which we can take to be disjoint by throwing out repeated w’s. That (), partitions

Z(v) follows readily. O
Recall that
Eo(C*(Gh) = (Dysi C(Xen1, 2) © 22

where a typical generator of the leftmost direct sum is [x(, ,}x#,,]o-
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Lemma 3.5.3. For each a = [x{., ,}xF,,Jo € Ko(C*(Gy)), there is h > i such that un-
der the induced map Ko(C*(G;)) — Ko(C*(Gh)), the image of a lies in the summand
Z? for Ko(C*(Gp)).

Proof. For ¢ > i+ 2, it is clear that
Xtz yxm,lo € Ko(C*(Gi)) = [X{ze3xm,lo € Ko(C*(Giga))
Ifé=1 +1 and ng' = Xg+1, then in Ko(c*(Gz)),

[X{Ze,j}XFe,j]O = [XZ(a1---Oéi’Yi+1)]0

- [XZ(CU---Oéi"/i+1)\Z(a1---Oti%+1/3i+2)]0 + [XZ(O‘I---OCi'Yi+15i+2)]O

Now in Ko(C*(G;41))
[XZ(al~~~Oéz'%+1)\Z(041~~~Oti%+1ﬂi+2)]0 = [XZ(CH~~~Oéi+1)\Z(a1~~~ai+1ﬁi+2)]0

and [XZ(al--~az‘+1%+1,3i+2)]0 = [XZ(51~~31+2)}0

so we have

[X{Zé,j}XX£+1]O S KO(C*<G1)) = [XZ(oq---Oéi+1)\Z(al---ai+1ﬁi+2)]0 + [XZ(ﬁl---ﬂi+2)]0 S
Ko(C*(Git))

where the elements on the right are generators of the summand Z? in Ko(C*(Gi11)).

Now suppose ¢ = i+1 and take F} ; C Xy, compact-open. Since Fy; is compact,

=

it suffices to consider the case when Fy; = Z(v) \ UjL,Z () where the vy extend v.

Fix n > |v|, |vx| for all k. Then Proposition 3.5.2 implies that for each k,
Zw) = WHwe@,:wC Z(w)}
and Z(v) = WHwe@Q,:wZv)}
s0 ZW)\UpZ(vg) = WHweQ,:wC Z(v),w L Z(v) any k}.
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Each w € @,, has the form

Z(pa™B*) \ Z(pa™ B,

Z(pa*B™) \ Z(pa*tgm),

Z(palBry), Z(pa'Bry),
or Z(pa™p™)

so that {z;} x w has the form

Z(z 0™ BF)\ Z (20510 BHHY),

Z(z0jpuc B™) \ Z (20 5pa™ ™),

Z(zgpuatBry),  Z(z uatBry),
or Z(zgjpa™B™).

Then for each {2,;} x w, there is a k such that X, .}xw ~ Xz Where

E e {Z(Oél .. .Oék> \ Z(Oél .. .Oékﬁk+1), Z(ﬁl .. 'Bk—i-l)}-

Therefore, for some large enough h, [x{z,,1x#Jo is a sum of generators of the 72

summand in Ko(C*(Gy)). O

Lemma 3.5.4. The induced map Ko(C*(G;)) = Ko(C*(Gi11)) carries the summand
Z? of Ko(C*(G;)) into the summand Z* of Ko(C*(Giy1)), and this restriction is im-

plemented by the matriz (2 1).
Proof. We have

[XZ(1..ai\ (a1 aipisn]o = XZ(arai\Z(araii 8]0 T [XZ(aramin]o
= [XZ(a1-aisi\Z (01 -ai1Bi42)]0 T [XZ (01 i)\ Z (@1 aivis1 Biva) |0

+ [XZ(Oé1A-~a¢%+1Bi+2)]U~

Since
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[XZ(al--~Oéi’Yi+1)\Z(041~~~a¢%‘+1,3i+2)]0 = [XZ(al~--Oéi+1)\Z(al~--04i+1ﬁi+2)]0
and [XZ(a1--~Oéi+1’Yi+1ﬂi+2)]0 = [XZ(ﬁl-uﬂiJrQ)]O
in Ko(C*(G;41)), we see that
[XZ(a.ai\Z(ar..aiBir)]0 7 2[XZ(ar s i)\ Z(ar i1 Bis2)]0 T+ [XZ(B1...Bisn)]0-

Finally,

[Xz(ﬁl---ﬁu»l)]o = [XZ(,Bl--ﬂi+1)\Z(51---Bi+2)]0 + [XZ(51.../31'+2)]0

so that

Xz(1.8:0]0 = IXZ (01 0000\ Z (0 i B42) )0+ (X281 8142) )05
again, using equivalences in Ko(C*(Gi11)).
Theorem 3.5.5. K,(C*(G)) = Z2.

Proof. 1f we let {;} be the connecting maps in K, induced by the inclusions

C*(Gi) = C*(Girr) and C*(Gy) — C*(G), then for
a € Ko(C*(G)) = Uin1ti (Ko (C*(GY)))

with

my
@ =" ol yrn,lo + MXZ(ar .00\ Z(arauBian)o + X218 )0
>i j=1

for some 7, note that

my
Z Z Ce,j [X{Z@j}ng’j]O

>i j=1

is a finite sum. Given our observations about the maps

Ko(C*(Gi)) = Ko(C™(Giya))

29



namely that generators of Z? in Ky(C*(G;)) map to generators of Z? in Ko(C*(G11)),
and generators of @,.,; C(Xy41,Z) in Ko(C*(G;)) must map to generators of Z* in

Ko(C*(Giyx)) for sufficiently large k, we conclude that for some p > i,

a= mp[XZ(al...ap)\Z(cxll..apoJrl)]O + np[XZ(ﬁl...ﬁpH)]O

in Ko(C*(G,)). Thus,
Ko(CH(G)) = 2°

the limit of the inductive sequence
72— 71— 7> — -

with the connecting maps given by the matrix

by Lemma 3.5.4. O
Using the above, we will compute Ky(C*(G)).

Theorem 3.5.6. Let 7 = %5 Then
Ko(C*(G))y = {(';) €Z?:y+r1x >0}
Proof. The i'" group in the inductive sequence defining Ko(C*(G)) is generated by
a; = [XZ(a1..a)\Z(01. aiBii1)]0

and b; = [XZ(/Bln-BiJrl)]O

60



If a = ma; + nb;, then Proposition 3.4.5 implies a > 0 if and only if m,n > 0, so that

the positive cone in each term of the inductive sequence is the standard N2. Letting

we will compute

Un>1A™(N?) = Ko(C*(@))+

using the fact that A is an isomorphism of Z2.

To compute A"(N?), we first diagonalize A = X DX ! where

3+2\/5 0
D =
35
0 2
2 )
X = 1+v5 1-V5
1 1
2
X1 = _i ! 1=v5
V5
-1 —_2
1+v5
Let A = %5 and Ay = %5 so that
A O
D=
0 X
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Straightforward computations show

2 2 A2 \n
1 0 1 1 1 1+v5 1—\/5</\_f)
X X -
A V5 A
o ) o 1= ()
and
1 0 0 1 1+ (32)"
X X! - '
A \/5 2 2 /)
0 (,\_?)n ]‘ 1,\/5 - 1+\/5()\_T)n
Since 0 < f\‘—2 <1,
1
1 0 1 2
X x| ||
A2\n 1
0 (/\—1) 0 v
and
1 0 0 "
X X1 — Ve
A2 \n
0 (/\—f) 1 5_2\/5

These vectors lie on the same line, namely the line through the origin with slope

2 = _ 1+2\/§' Therefore, Ko(C*(G)), is the upper half-plane defined by this line,

1-v5
which we determine since, say, (1,1) € Ko(C*(G;))4 for every i > 1.

To identify C*(G) we will appeal to classification results, and to do so we will

need to show it has a unique tracial state. Our first step will be showing that there

is a unique invariant Borel probability measure on G°. To this end, we first create a

sequence of partitions of G° (which we will frequently identify with v;X). We begin

with an observation:
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Z(Ul) = Z(Oél)UZ(ﬂl)UZ(’Yl)
= (Z(an) \ Z(a1B2)) U (Z(Br) \ Z(B1B2)) U Z(B1f2) U Z( 1)
= (Z(an) \ Z(a1B2)) U (Z(B1) \ Z(B152)) U (Z(1) \ Z(7152))

U Z(B1B2) U Z(7152).

In general, we can make the following decompositions:

Z()\ Z(pBu+1) = Z (Y1) U (Z (peypn) \ Z (o)1 Bjul+2))

and Z(v) = (Z() \ Z(vfui2)) U Z(WBisa).

Now define
Ay = {Z(a1) \ Z(auBs), Z(B1) \ Z(B1B2), Z(1) \ Z(7152) }

By = {2(5152)7 Z(1152) }a

and for ¢ > 1, we will recursively define collections A; and B; where each E € A;
has the form £ = Z(u) \ Z(1B)u4+1) and each E € B; has the form £ = Z(v) where
Vy| = By and such that the elements in A; and B; are pairwise disjoint. It’s clear
that the collections A; and B; have these properties, so for ¢ > 1, define A;,; and
B; 1 as follows.

Observe that for Z(u) \ Z(pB)+1) € A;, we can write

Z()\ Z(pBu+1) = Z (1) U (Z (peyp1) \ Z (o1 Bju)+2)),

Z(p 1) = (Z o) \ Z e o1 Bu2)) U Z (v 1Bu+2)

and for Z(v) € B;,

2() = (Z0)\ ZWBin)) U Z (i),
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Now let

By ={ Z(pyu+1) = Z() \ Z(pBu+1) € Ai }

Since the elements of A; and B; are pairwise disjoint, it’s clear that this is true of B;

and B as well. Then define
Ay = {ZW\Z0Bun) ¢ Z(v) € BU B
U A{ Z(oap+1) \ Z(0is111B0142) = Z(0)\ Z(0P0j+1) € Ai }

B = { Z(uB+1) = Z(p) € BiU B }.
Since the elements of A; and B; are pairwise disjoint, the decompositions above used
to define A;,; and B;,; show that the elements of A;,; and B;,; are also pairwise
disjoint.

We make several observations about A; and B; for i > 1:

First, for Z(u) \ Z(pB)u+1) € A; and Z(v) € B;, we have |u| =7 and |v| =i + 1.
This is clearly true for A; and B;. Suppose it holds for some i > 1. For Z(uyju4+1) €
Bj, |p| = i since Z(p)\ Z(1tBju+1) € Ai. Then for Z(vfyj41) € Bita, [VBw 41| = V| +1
where Z(v) € B; U Bj, so [v| =i+ 1 and hence |vf),|41| =i + 2.

Further, for Z(v) \ Z(vB)y41) € Aiy1 where Z(v) € B; U B, then |[v| =i+ 1. On
the other hand, if Z(coysi41) \ Z(00o|11B)0)+2) € Air1 Where Z(0) \ Z(0Pj0)+1) € As,
then |o| =i so that |ooe1q| =1+ 1.

Also note that for each ¢ > 1, A; U B; is a partition of Z(v;). This is clearly
true for A; U By, and is true for ¢ > 1 since each A; 1 U B;y 1 refines A; U B;. To
see this, let Z(0) € B;. Then Z(0fs11) € Biy1 and Z(0) \ Z(0fjo+1) € Aita
so Z(0) = Z(0Bsj41) U Z(0) \ Z(0Bs|41). Now let Z(v) \ Z(vfj4+1) € Ai. Then
Z(Wi+1) € Bi 80 Z(vwj41) \ Z(WYw+1Bpi+2) € Airr and Z(vYpyj+18p)+2) € Biva.
Also Z(vayy41) \ Z(voy 41 Bpi42) € Aiyr. Then
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ZW)\ Z(vBp1) =
(Z(vap1) \ ZvapaBu2)) U Z(w111) \ 20341 B8p142)) U Z (00 418)+2) -

This shows that U(AZ'+1 L Bi+1) = U(AZ L Bz)

We can also see that for ¢ > 1,
[Ail = faire

and |Bz’ = f2i+1

where f; is the j Fibonacci number (using here and throughout the convention that
fo = 0). Observe that this claim is true for |A;| = 3 = f; and |By| = 2 = f3. Now

suppose |A;| = foiso and |B;| = foi41 for some i > 1. Then
|Aia| = |Bi| +|Bj] + Al
= |Bi| + |Ai| + | A
= Jfaiy1 + foire + fait2
= foiyz + foire
= foiya

= fagi+1)+2

and
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[Biv1| = |Bi| + |Bj]
= [Bi| +|Ai]
= Jait1 + faite
= Jfours

= f2(i+1)+1-

Now, suppose u is an invariant Borel probability measure on G°. Note that for

Z(0)\ Z(oBio141), ZW) \ Z(Buji1) € As,

s(lo, v, Z(Buj1)])) = ZW)\ Z(vBu41)

and ’I“([O‘, v, Z(ﬁlqu)c]) = Z(U) \ Z(O-ﬁ|0\+1)
so that

p(ZW)\ ZWP11)) = i(Z(0) \ Z(0Bi(11))

since p is invariant. Similarly, for Z(o), Z(v) € B;,

(o0, Zo)l) = Z()
and r([o,v, Z(vy11)]) = Z(o)

so that u(Z(v)) = u(Z(o)).
Now for each i > 1, pick Z(0) \ Z(0Bs+1) € A; and Z(v) € B; and let a; =
(Z(0)\ Z(0Pjs)+1)) and b; = u(Z(v)). These are well-defined by the previous obser-

vations. Observe
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Z(U) \ Z(Uﬁ\aHl) = Z(U%a\ﬂ) L Z(UCV|U\+1) \ Z(UOZ|0|+15\J\+2)
= Z(0Yol+1) \ Z(0Vo|41B)0]+2)
U Z(oajs1) \ Z(00s141P0]+2)

U Z(oVo|+180]+2)

so that a; = 2a,.1 + b; for every ¢ > 1. Similarly,

Z(v) =ZW)\ Z(WBy+1) U Z(WPB+1)

so that, for each @ > 1, b; = a;11 + b;11. Recalling the maps

2 1 1 -1
B = and A= B! =
1 1 -1 2
we have
Ait1 a; a; Ait+1
B = and A =
bit1 b; bi bit1

We will make extensive use of the following lemma.

Lemma 3.5.7. Given

1 -1
A —
-1 2
andn > 1,
Jonm1 —Jfon
A" =
_f2n f2n+1

where f,, is the m'™ Fibonacci number (with fo =0).
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Proof. The proof is by induction. Clearly,

L -1 fi =/

Al = pu—
-1 2 —f2 f
so suppose for some n > 1 that
f2n—1 _f2n
A" =
_an f2n+1
Then
A" = AAN

I -1 Joano1 —fon

-1 2 —fon font1
Jon-1+ fon = fon — fons1

—Jfon-1 = 2fan  fon + 2font1

Jon+a — fon+2

—fon+1 — fon  Joni2 + 2 2041
Jont1 —fons2

—font2  fan+4s

Jotmrn—1 = fomt1)

_f2(n+1) f2(n+1)+1
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]

We will now compute a; and by, and subsequently, a; and b; for ¢ > 1. Fix n > 1.

Then by Lemma 3.5.7
Ap+1 ai f2n—1 _f2n ai f2n-1a1 - f2nb1
bny1 by —fon font1 by — fona1 + fony1b1

Since A; U By partitions Z(vy) and p is a probability measure, we have 3a; + 2b; = 1

so by = 1229 Then

Ant1 aq
— A"
bn+1 bl
1 —3a; 2a1 fon—1 + 3a1 for, — fon
f2n—1a1 - f2n 9 9
1-3 —2ay fon — 3a1 fon .
— fona1 + fonst a1 a1 fs a1 fons1 + fons
2 2
a1(2fon—1 + 3fan) — fon a1(fons1 + fono1 + 2fon) — fon
_ 2 _ 2
—a1(2fon + 3font1) + font1 —a1(font2 + fon + 2fons1) + fons1
2 2

a1(2f2n+1 + f2n) - f2n

. 2
—a1(2fanto + font1) + font1
2
a1(font1 + font2) — fon a1 fonts — fon
—a1(fonto + fonts) + font1 fon+1 — a1 fonta
2 2

Then
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__ a1font3z—fon
an—f—l - 92

and bn+1 _ f2n+1_;1f2n+4'

Since p is a probability measure, we have

a1f2n+3 - f2n

0< <1
= 5 =
and
0< f2n+1 - a1f2n+4 <1,
so that
2
f2n S a S f2n +
f2n+3 f2n+3
and
f2n+1 Z a Z f2n+1 - 27
f2n+4 f2n+4
and therefore
f2n+3 f2n+4

We will now apply Binet’s formula, which states f; = \/Lg(Tj — (1 = 7)7) where

7 = (14++/5)/2. Then (%) becomes

2n _ 2n 2n+1 o 2n+1
27' (1—1) <a < T (1—1) )
T n+3 __ (1 _ 7—)27L+3 7—2n+4 _ (1 _ T>2n+4

We will use these inequalities to show a; = % but first we need the following obser-

vation. Note that

1+ V4 14+V9

5 <7< 5

2

1<

SO

—1>-7>-2

and

O0>1—7>-1
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Since 7 > 1, 0 < % <1, so —% > —1. Therefore,

1—17 1
>—— > —1
T T

0>

and hence

— 0 asn — oo.
-

Then returning to (1), beginning with the left term, we see

T e Y o
T3 (1 —7)2n43 3 (1—7)3 (I—TT)Q"
1
—
and on the right
7_2n—i-1 _ (1 _ )2n+1 1— (;>2n+1
T2n+4 _ (1 _ )2n+4 - 3 _ (1 _ T)3 (%T>2n+1
1
]

and from this we conclude a; = T%

Before computing b; and then a; and b; for all ¢« > 1, we give a lemma which will

be used several times.

Lemma 3.5.8. Forn >0 and 7 = (1++/5)/2,

in = (=1)"(fut1 — fu7)

T

where f; is the j™ Fibonacci number.

Proof. The proof is by induction on n. When n = 0,
1o
= (=D°(1-07)
= (=1)°(fi = for)
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Now suppose

L Y s — fa)

n

for some n > 0. Then, using 1/7 =7 — 1 and 72 = 7 + 1,

We can now compute

1
=

-

(=1)"(far1 — fuT) 7

(=1)" (a1 = fur)(T = 1)

(1) (fa1T = fosr = fuT? + fuT)
(=" (foaT = fora = ful(T + 1) + fu7)
(=" (farT = frta = JoT = fu + faT)
(=" (forT = frt1 — Jfu)

(=1)"(frrT = frt2)

(_1)n+1(fn+2 - fn-i—lT)‘ O
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_ 13((=D3(fa—fs7)
2

1-3(—(3—27))
2

1-3(27—3))
2

_ 1-6749
- 2
_10-67
- 2

= 5—-3r

and we are now ready to prove:

Proposition 3.5.9. Let p be an invariant Borel probability measure on G° and 7 =

(1++/5)/2. Forn>0 and any o = 0y ...0, € v,A let

an = p(Z(0)\ Z(oBs+1))

bn = W(Z(0Bs41))

Then a, = 1/72""! and b, = 1/72+2.
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Proof. The proof will be in two parts; we first prove the claim for n > 1 by inducting

on n, and then compute directly for the case when n = 0. We saw above that

1
=3 and b; = i
so suppose that
1
an = P and b, = 22
for some n > 1. Since
An41 Qp,
= A
bn+1 bn
1 -1 ay,
-1 2 by,
Ap — bn
2b, — a,

then (using (7 —1) = 1)
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Apt1 = an_bn
—  2nFl T 2n¥2

_1 ( _ l)
—  2ntl T

= s
_ 1
— R2hthTl
Since 72 = 7 + 1, we have
1 2 2
S =T-1)=r-2r+1l=7+1-2r1+1=2-71
-
so that
bn—i—l = 2bn — Qp
2 1
- 7—2n+2 7—2n+1

= TQTL%(Q_T)

. L
= Tnt2 " 2

1
T2(ni)t2

For the case when n = 0, note that

Z(Pr) = Z(B1) \ Z(B152) U Z(B152)

SO
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bp = a1 +b

— 2

Since p is a probability measure, u(Z(v1)) = 1 and therefore

ap = p(Z(P1)°)

= wu(Z(vn)) — u(Z(p))

T

-

]

The proposition above shows that there is at most one invariant Borel probability
measure on G°. Defining a measure pg on cylinder sets as above gives a finitely
additive measure on the algebra A generated by cylinder sets. Since the sets in A

are compact, any countable disjoint union in A is equal to a finite disjoint union, so
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o is a premeasure. Then o extends to a measure p on the Borel subsets of G, so
we have a unique Borel probability measure on GY. The following argument provided
by Spielberg is based on the argument in (11, Proposition 1.1) (see also (9, Corollary
1.2)) and shows that traces on C*(G) are in one-to-one correspondence with invariant
Borel probability measures on G (so that C*(G) has a unique tracial state). We will
see shortly (Claim 3.5.12 and the remarks following it) that G satisfies the conditions

of the following proposition.
Proposition 3.5.10. Let G be a Hausdorff étale groupoid. Suppose

1. the orbits with nontrivial isotropy are infinite (i.e. if tGx # {x} then r(Gx) is

an infinite set);
2. Iso(G) \ G is a discrete subset of G.
Then every trace on C!(Q) factors through the conditional expectation E.

Proof. Let 7 be a trace on C;(G). Define a measure 1 on G° by 7|cyqoy = [0 -dp. We
first show that p is invariant. Let U be an open bisection with compact closure and
choose ¢, € C.(G°) with 0 < ¢,, < Xy and ¢, 7 Xy Pub ¥, = xp-1 % @ % X =
¢u(U - U™). Then 0 < 1, < Xy and ¥, 2 xesy. Let fo = o5 % xu and

gn — 711/2 * Xyu-1- Then fn *Ggn = ¢na gn * fn = wna and

u(r(U)) = lign/%du =l 7(fn * gn) = W7 (g * fn) = 1i5n/wndu = pu(s(U)).

Since p is invariant, for o € G, p({s(@)}) = p({r(a)}) so that if Q@ C G° is an
orbit, then u({z}) = p({y}) for all x,y € Q. If the isotropy on {2 is nontrivial, then
2 is infinite by (1) so that p(2) = 0 since u is a probability measure (since 7 is a
trace).

Now suppose h € C.(G) with supp(h) N G° = ). Using a standard partition of

unity argument, we may as well assume supp(h) C U for some open bisection U with
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compact closure and UNG® = (), and also that h > 0. By (2), U contains only finitely
many elements of Iso(G), say a, ..., ap,. Write h = pxxy with p € C.(r(U)). Choose
a sequence (p,) in C.(G°) with 0 < p, < p, p, = 0 near ay, ..., q,,, and such that
prn — p pointwise on 7(U) \ {r(au),...,7(cum)}. Since orbits with nontrivial isotropy
have measure zero, it follows that p, — p in u—measure. Let h,, = p, * xy. We show
that 7(h,) = 0. Cover supp(h,,) with finitely many open bisections W,,; C U such
that W, ; NIso(G) = 0. Using a partition of unity we may write h,, as a sum » _, h,
with supp(hy,;) € W,,;. Since W, ;NIso(G) = 0, for « € W,,;, r(a) # s(a), so that
« has a neighborhood V' such that (V') N s(V) = (. Then we may as well assume
r(Whi) N s(Wy;) = 0. Defining p,; by hni = pni * Xw,, with supp(pn;) € 7(Wy,)

we have

1/2 1/2
T(hng) = 7(0i7 % pi/7 % xw,.)
= 7(p/? % xw. % p7)

— (02 D s (W™ W )% 5 X )

since pnilsw, ;) = 0. Therefore 7(h,) = 0. Recall the Cauchy-Schwartz inequality
for states: if w is a state on a C*-algebra, then |w(ab)| < w(aa*)'/?w(b*b)/2. Now we

have
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h—h, = (p—pn)*xv

1/2

= (p—p)"?x((p— pa)** % xv)

=: F, xGy;
[T(h=hn)l = |7(Fy % Gn)
< 7(Fy* EOY21(Gr: % G,)Y?
= 7(p = pa)*1(xv-1 * (p = pn) * x0)"2.
But
T(xu—1 % (p = pa) = x0)'? = 7((p—pu)(U-U))
= Jeolp = pn)(UzU)dp(z)
= Joo(p — pn)dp, by invariance
= 7(p— pn)-
Thus
[T(h—h)| < 7(p—pn)
= [(p—pn)dp
— 0
and therefore 7(f) = 0 so that 7 must factor through E. O

We are nearly ready to show that C*(G) is isomorphic to the continued fraction

AF algebra (in the sense of (3)) for the continued fraction expansion of

T=(1+V5)/2=1,1,1,...]
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Let A, denote this algebra. For a concise analysis of A, see (1, Section VI.3) which

we reference here.
Theorem 3.5.11. C*(G) = A,

Proof. We will show that Ell(C*(G)) = Ell(A;) (where Ell denotes the Elliot invari-
ant) and then appeal to recent classification results. To this end, as in (1), we note
that

Ko(A,) = Z?

with positive cone
xr 2
Ko(Ar)+ ={ ) €2 y+1x >0},
4]0 = ((1)), and with a unique state o, (coming from a unique trace o) given by

o (7)) =yt

To this point, we have realized Ky(C*(G)) as an isomorphic copy in the first term

of the inductive sequence
7 — 7 — 7> — -

with connecting maps (% 1) between the terms and where the first term is generated

by
() = Xz\z@snlo

and <(1)) = [XZ(/81/82)]0

Note that since
Z(v) = Z(ea) \ Z(a1B2) U Z(B1) \ Z(B1B2) U Z(1) \ Z(7152)

UZ(B1B2) U Z(11 54
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The position of the unit in the first term is (g) Since the connecting maps are
constant and isomorphisms, we can “prepend” two more terms to the beginning of

the inductive sequence, the new first term being Z? generated by
(o) = 2xz@yeo + Ixzenlo

and (1) = [xz@lo

and the second being Z? generated by
(o) = Dxzenelo

and (1) = [xz()o
with the same connecting maps (71). Since the connecting maps are all the same
and isomorphisms, we can realize Ky(C*(G)) as an isomorphic copy now in the first
term of our new inductive sequence. The same analysis as before gives us a positive

cone of
{ (m) €7 y+71r>0}.
Y

We also have
2

2 1 3
o =
1 1 2
0
1
= [XZ(’Ul)]O

Now if ¢r is the unique trace on C*(G) and tr, the induced state on Ko(C*(G)),

then
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tro(s) = tr(2xze) + Xz(3))

SN

TS
= 2(r—1)+ (1 —1)?
= 2r—2+72—-27+1
= —1+(7+1)

= 7
and tr,(0) = tr(xz()) = 1 so that tr, = o, and thus, ElI(C*(G)) = El(A,).

It remains to check that C*(G) is classifiable. We will do this by verifying that
C*(G) is separable, simple, unital, nuclear, Z—stable, and UCT, and then it will
follow from the final theorem of (19) that C*(G) is classified by El(C*(G)). Our
first step will be to show that C*(G) has finite nuclear dimension.

Recall for 7 > 0 the short-exact sequences

0= P (M ® C(Xet1)) = C*(Gy) = C*(Gi

>4

and

0= Myu @ (KD K) = C*(Gilp,) = My @ C(T) =0
By (20, Remark 2.2(iii)),
dimyye M) @ (K@ K) =0
and by (20, Proposition 2.4 and Corollary 2.8(i)),
dimyye M) ® C(T) = dimT =1
(where dim denotes covering dimension). Then by (20, Proposition 2.9),

dimyge C*(G;

) <2
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Now since each X, is a Cantor set, ®yi( M@y @ C(X41)) is AF, so by (20, Remark
2.2(ii)),

dimnuc @(Mn(ﬁ) & O(XZ+1)> =0

0>1

Another application of (20, Proposition 2.9) then shows that

Since this holds for all i > 0, (20, Proposition 2.3(iii)) shows that dim,,.C*(G) < 3.
By (20, Remark 2.2(i)), C*(G) is nuclear, so by (15, Theorem 4.1.5 and Theorem
4.1.7) G is amenable and C*(G) satisfies the UCT.

To see that C*(G) is simple, we will show that G is topologically free (that is
{2ze€G® : 2Gr = {x} } is dense in G°) and minimal (for every z € G°, the orbit
of z is dense in G°). Then applications of (15, Lemma 4.2.3 and Theorem 4.3.6) will
show that C*(G) is simple.

To check topological freeness, we first make the following claim:

Claim 3.5.12. For any pn € vol\, the element un"*1 (00, 00) has non-trivial isotropy,

and xGx = {x} for any unit x such that x # un**1(co, 00) for any p € A.

To see this claim holds, first fix some p € voA and m > |u| and consider

a= [Ma|u|+l e Oy, Mﬁ|u|+l B ﬁmv nm+1(ooa OO)]

Then s(a) = r(a) = un*+*(co, 00) so that any such element is in the isotropy group
of (o0, 00).

Now consider a unit « not of the form un**!(co, 00). Then, thinking of x as an
infinite word as in Definition 3.2.3, we have three possibilities; x; = =; for infinitely
many j, |[{j : z; = a;}| is finite, and |{j : z; = §;}| is finite.

Suppose first that x; = ~; for infinitely many j, and let [0, 7,y] € G with oy =

7y = x. Choose p > |o| = |7| such that z, = 7, and write
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oy =T1Y = oyY

= THHY
Definition 3.2.3 applied to oy17,y = Ty17,y" shows that Proposition 3.1.2 applies to
oy; and 7y, so that oy; = 7y; and hence 0 = 7 and [0, 7, y| is a unit.
Now suppose |[{j : x; = a;}| is finite and again let [0, 7,y] € G with oy = Ty = =.
If there exists a p with y, = 7, then the previous argument applies, so suppose
y; € {ay, B;} for all j > |o| = |7|. Let p =max{j : 0; = v; = 7;}, taking p = 0 if the

defining set is empty. Then
{j:(oy);=a;i>pt = Hio;=a;j>p}
+ Hi:y = a5}
and {j : (ry); = a;,5 >p}l = Hi:7m=a;j>p}

+ Ky = a5}

Since {j : y; = a;}| < oo, {j : 05 = a;,j > p}| = [{j: 7 = a;,j > p}|. Since
lo| = |7] (and r(o) = r(7)), we must also have [{j : 0; = 8,7 > p}| = |{J :
7; = fB;,j > p}|- Definition 3.2.3 applied to oy = 7y and then an applications of
Proposition 3.1.2 shows that oy ...0, = 71 ... 7, so that ¢ = 7 by another application
of Proposition 3.1.2.

The argument when |{j : x; = ,}| is finite is analogous, and we conclude zGx =
{z} so that Claim 3.5.12 holds.

Claim 3.5.12 above and the first paragraph of its proof show that G satisfies
condition (1) of Proposition 3.5.10. To see that condition (2) is satisfied, suppose we

have

0,7, 2] € [0,7, Z(vj741)] N Iso(G) \ G°
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so that oo = T2. If x; = ~; for some j, then Definition 3.2.3 and Proposition 3.1.2
imply 0% 5|41 ... & = TZ|r41 - .. 2, so that [0, 7, 2] is a unit. This together with Claim

3.5.12 imply
0,7, Z(03142)] 1) T50(G)\ G° = {[o,7.5/" (o0, 00)}.

We now show that G is topologically free.

Claim 3.5.13. Fiz x = un**'(co,00) € G°. Then x is a limit point of { © € G° :
xGr = {z} }.

To prove this claim, fix any Z(\) \Uj_, Z(0;) containing x. Since A € x but o; ¢ x
for any j, there must be some z; ...z, € v which extends A but none of the o; and
which is longer than all of the o;. Then y = 1 ... 2 Ym41Ym+2 ... is a unit which
is contained in Z(A) \ Uj_; Z(o;). This follows since we have A € y by construction,
and if o, € y, then o, and 1 ... 2,,Vm 1 have a common extension. Then there exist
w,v € A such that oppu = 1 ... T Ymprv. Since |x1... 2, > |0k, tmi1r = Ymtt
and Proposition 3.1.2 implies ogfip . .. fh, = X1 ... 2y €  where n = s(oy,), but this
implies o, € x. Claim 3.5.12 shows that y has trivial isotropy, and the conclusion of
Claim 3.5.13 follows.

We next show that G is minimal. Fix x € G° and consider its orbit r(Gz). Note
that for any p € v;A and 2’ € X, 41 such that x = pa’, and any v € v;A with
lu| = |v|, we have va’ € r(Gzx) since [u,v, 2] has range vz’ and source z. Now fix
any Z(A\) \Uj_,Z(0;) # 0 and y € Z(\) \ U}, Z(0;). Since A € y and o ¢ y for any
J, choose y1 ...y, € y which extends A and is longer than all the o;. Let 2’ € X,, 11
be such that x = z1... 2, 12" and let 2 = y1 ... Y Ym+12’. The same argument as in
the proof of Claim 3.5.13 shows that z € Z(A) \ U}, Z(0;) and the remarks at the

beginning of this paragraph show that z € r(Gz) so that 7(Gz) is dense in G°.
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3 8 21 5}

Figure 3.2: The Bratteli Diagram of A

Thus we conclude that C*(G) is simple. It is unital since G° is compact and
separable since A is countable. Finally, C*(G) is Z—stable by (19, Theorem A) since,
as we saw, it has finite nuclear dimension. Then C*(G) is classified by its Elliot

invariant by the final theorem in (19) so that C*(G) = A.. O
This mostly concludes our analysis of C*(G) but we make two final observations.

Remark 3.5.14. While C*(G) is AF, G is not an AF groupoid. This follows since
G has nontrivial isotropy groups, and AF groupoids must be principal (see, e.g., (13,

I11.1)).

Remark 3.5.15. There exists an AF algebra A which is a proper subalgebra of and
isomorphic to C*(G), and is the limit of a sequence of finite-dimensional subalgebras

of C*(G). We show this below.

Proof. Recall the sets A; and B; defined beginning on page 63. We saw that each A;

contained fo; 10 sets of the form Z(zy...x;) \ Z(z1...x;8:41) and each B; contained

faiy1 sets of the form Z(zy ... 2;8i41). Now, for Z(p) \ Z(uB)u+1), Z(W)\ Z(vBu41) €
A; and Z(0B\541), Z(0P)91+1) € B;, the maps

Xlpw 2B Cuw D0

and X[0.0,Z(Bjo11)] 7 0D eqp
define an isomorphism from a subset of C.(G) onto My,,,, & My,, ,. This defines an
inductive sequence with associated Bratteli diagram in figure 3.2 where the multi-

plicities follow from our observations about A;,; and B;;; refining A; and B; (noting
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that the diagonal elements are of the forms yp where D € A; U B;). The generators
of the K group of each term are identical to those of the corresponding term in the
inductive sequence we used to define Ko(C*(G)) and essentially the same analysis
shows that the AF algebra defined above is isomorphic to C*(G).

To see that this is a proper subalgebra, we first show the following:

Claim 3.5.16. For any ¢ > 0, and any p,v,0,0 € A with |u| = |v| = |o| = 10| =i
such that Z(u) \ Z(uPis1), Z(w) \ Z(vBis1) € A; and Z(0fiy1), Z(08i41) € B, we
have

[ala ﬁla 772(007 OO)] ¢ [M? v, Z(ﬂi-l—l)c]’ [07 9’ Z(ﬁl-ﬁ-l)]

To see this, first, since 700, 00) ¢ Z(Bis1)", [an, Bu,7%(00,00)] ¢ [ v, Z(Bian )]
for any ¢ and p, v such that Z(u) \ Z(ufiv1), Z(v) \ Z(vBit1) € A;.

To show that [ay, B31,7%(c0,00)] € [0,0, Z(Bi11)] for any o, such that
Z(0Bit1), Z(0Bis1) € B, we will induct on . When i =1, B, = { Z(7152), Z(152) }-
Since [ay, 81, 1m%(00,00)] is not a unit, [ay, B1,n*(c0,00)] & [v1,v1, Z(0Ps)] for either
Z(0By) € By. It’s also clear that [y, 81, n?(00,00)] is in neither [31, 71, Z(82)] nor
[v1, B1, Z(B2)] since the source and range of [ay, 81, 1m%(00, 00)] contain no +’s.

Now suppose for some i > 1 and any Z(o), Z(0) € B; that [ay, 81, n*(00,00)] ¢

0,0, Z(v;12)]. Following our construction beginning on page 63, we have

Biy1 ={ Z(0Bit2), Z(1vis1Biv2) + Z(0) € Bi, Z(p) \ Z(uBiv1) € Ai }

Again, since [y, 81, n?(00, 00)] is not a unit, it is not in [0, o, Z(Bi,2)] for any

Z(0Biy2) € Biy1. Consider the remaining possible bisections; they are of the form
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(1) [0Bit2,08i+2, Z(viys)] Z(0),Z(0) € B;
(2)  [0Big2, it1Bive, Z(vigs)]  Z(o) € By, Z(u) \ Z(1uPiv1) € A;
or  [wYit1Bive, 0Biva, Z(vViys))

(3) [vie1Bive, vYis1Bive; Z(vigs)] Z(p) \ Z(pBiv1), Z(w) \ Z(vBiy1) € A
Since the source and range of [y, 31, n?(00, 00)] contain no 7’s, it is not in any of the

sets of the form in (2) or (3). Since

(08142, 0Biv2, Z(vig3)] = [0,0, Z(Bir2)] C [0,0, Z(viy2)]

and [y, 81, n?(00,00)] € [0, 0, Z(viy2)] by assumption, [ay, 31, n*(co, 00)] is not in any
of the sets of the form in (1). This proves the claim.

We can now show that A is a proper subalgebra. Let u = [v1, v1, 7' (00, 00)] and 7,
be the regular representation of C.(G) on ¢*(G,). Let h = [ay, B1,n?*(00,00)] € G,
I = Xfa1,81,2(2)] € Ce(G), and g be any characteristic function in the sequence defining

A (so that g(h) = 0, by Claim 3.5.16 above). Then

<7T(f - g>5uaéh> = <(f - g) * 5U75h>

= Yeea,(f = 9)(zuT")(0z, 0n)

= (f —g)(hu)
= (f—g)(h)
— 1

Then
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I1f — g

cr@ = lmu(f = 9)llop - [10ul] - [[0n]]

> 1

for any ¢ in the inductive sequence and therefore f ¢ A.
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Chapter 4

GENERALIZING THE PREVIOUS EXAMPLE

Our next goal is to generalize the previous example. Consider the category of
paths A given by the 1-graph in figure 4.1 where for some m € Z*, k; = ky,; for
every ¢ > 1 and where o;83;11 = Biai1-

Much of the work in defining and analyzing C*(A) will closely resemble that of
the first example. Many analogues of the previous results hold with fairly obvious
changes. To mitigate repetition, we will try to point out these without spending much
or any time on the details, but also slow down when the differences are significant.

The precise definition of A is done nearly the same as in chapter 3, with the
modification that

Ei:{anﬁiﬁf 1<j<k}fori>1

We define equivalence of paths in the same way, and following the arguments preceding

it, adding superscripts where appropriate, we have the analogue of Proposition 3.1.2:

o V5 V5
v & T~ Uy & T~ U3 & T 1y

W W W
B B2 B3
Figure 4.1: The 1-Graph Defining the General Example
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Proposition 4.0.1. For p,v € ¥*, u and v define the same element of A if and only

if the following conditions hold:
1. r(p) =rv) and s(u) = s(v)
2. Mz‘Z%j iff vi :%j
8 If py = = v, pjr = %’3’ = vj, and p; # ¢ # v; for j <i < j and any (, then
{i:m=a, j<i<j}| = Hi:vi=a j<i<j}
and |{ i : =0, j<i<j } = {Hi:vi=08 j<i<j }

4. If pj = fy;? =vj, and w; # ¢ # v; for j <i and any ¢, then

|{Z : m:ozl,j<2}| = ’{’l : Vi:Oéi,j<i}|

5. If pj = 7;“ =v;, and p; # 5 # v; fori < j and any {, then
Hi: =, i<j} = Hi:vi=a,i<jl}
and |{ i : =0, i<j} = |[{i:vi=08,1<j}
6. If u; # 5 # v; for any i, €, then

i m=a}] = [{i: v=aj

and {1 : =01} = |{i: vi=05}

Using this and arguing as in the proof of Corollary 3.1.6, we have its analogue:
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Corollary 4.0.2. Suppose p,v € A have a common extension and neither extends
the other. Let p = min{|u|, |v]} and ¢ = max{ j : pf =~ =v},j <p, somek },

where ¢ = 0 if this set is empty. Then ,u;? #* %’? and l/j’-c # 7}“ for any 3 > q and any k.

We define a groupoid G in the same way as before, including identifying directed
hereditary sets with (possibly infinite) words in A. We identify infinite words with

the analogue of Definition 3.2.3:

Definition 4.0.3. Given an infinite word x = x;z;,1 ..., we define the range of x
to be 7(z) := r(x;) = v;, typically written r(x). Given two infinite words = and y, we

say x is equivalent to y if the following conditions hold:

L. r(x) =r(y)
2. xi:'yij iff y; :'yf

3. If a; :fy;“ =Y, Ty = ’y]"?f =y, and x; # v # y; for j < i < j' and any ¢, then
{i:m=a, j<i<j}l = {i:y=a, j<i<j}
and\{le:ﬁl,j<z<j’}\ = ‘{Zyl:ﬁl,j<Z<j,}‘

4. If ;= oF = y;, and 2; # 7} # y; for j < i and any ¢, then

{i:zi=ai, j<i}] = [{i:y=a,j<il}

5. Ifz; = ’y]’-“ =y;, and x; # v # y; for i < j and any ¢, then
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Hi:zi=a;, i<} = H{i:vi=api<j}
and [{i : z;, =0, i<j} = {i:y=0 1<j}

6. If x; # ¢ # y; for any i, £, then

{i:zi=ai}] = {i:wyi=a}

and {7z =06} = {Hi: yi=pi}
We will make the same simplification as before, namely, consider G|y,, for the
same reason as before, and will drop the subscript and simply writing G henceforth.

We will again realize C*(G) as an inductive limit of sub-algebras C*(G;). Unlike

before, we will only treat the general i** case. First we define
Gi = < [O’,T,.T] : ‘U’ = ‘T’ <1 >
and adopt the convention that for [o, 7, 2] € G;, if

{j: o;=aqa;and oy #~5, k> jand any (}| =m > 0

{Jj: 7=qa;and 7, #9f,k > jand any (}| =n >0

then we write [0, 7, 2] = [0/, 7/, ... aj4p_12] where p = min{m, n} and likewise for
B’s (again, we are “factoring” the common number of o’s and f’s after the last v’s in

o and 7 into the third coordinate).

Proposition 4.0.4. Given the convention outlined above,

Gi = { [uozLqu o Oy, l/ﬂ|y|+1 e 5m, .23], [Uﬁ|0‘+1 .. .ﬂn, TO(|.,.|+1 Oy, y] .

|l (v 1ol 17| < s g = s Vel = Vg Olol = Vo) Tl = 2 some j, k, £,m}.

93



Proof. The proof is nearly identical to the proof of Proposition 3.4.1, making some

obvious changes in notation. O]
We now begin our analysis of C*(G;).

Theorem 4.0.5. There are positive integers m(i), n(f) and k, for ¢ > i, a closed

mvariant set F; C X4, and exact sequences

(1) 0 — EB(@(M”(@) ® C(Xep))) — C*(G;) — C*(Gyp,) — 0,

>0 j=1

(2) 0 — My @ (K ®K) = C*(Gijr,) = Mgy @ C(T) — 0

Proof. Let
Ui = {xeXl:wj:’}/f,somej>i,1§k§kj}

F, = Xi\Ui={ze Xy :a; #~}, any j > i}.
Given Proposition 4.0.4, it is evident that U; is invariant for GG; and it’s open by an

argument similar to before. Then F; is closed and invariant so we have

As before, we begin by looking at the ideal, C*(Gy,).

For ¢ > i, let Qp={21...2p-1 : l‘j?é’yf, i < j<{}. Then define
E, = {xEUi:xg:%",some1§m§kgandxj7é7]’?,anyi<j<€,anyk’}

L :
= I—IUGQz(l—'je:lZ(U%))-
Each E, is compact-open, and by Proposition 4.0.4, is invariant for G;. Also, U; =

|l,~; B¢ and again we have
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C*(GﬂUi) = @ém‘ C*(Gi|Ee)'

For pg, p,v € Qp, FF C X;y1 compact-open, and 1 < j < ky, the maps

Xlpwfi}xXepa] ™ e ® Lo
Xlposio oy ] = Ehopo © XF
give an isomorphism
C*(Gir,) = B, (M) ® C(Xe11))
where n(¢) € N depends on ¢, so that
C*(Giv,) = @D yoi (D) (M) © C(Xp41))).

For C*(Gjr,) decompose F; into
P = {7 (o0,00) + 0< o] <1}
and FO = F,\ Fe

= {ont1(j,k) : 0<|o| <1, j, k not both co }.
Again, we get a short exact sequence
0 — C*(Gypo) — C*(Gijr) — C*(Gyppe) — 0.
The maps

X[a1,81,m%(00,00)] > €11 @ 2
X[Uvalmam,n“"“(oo,oo)] —ep1 ®1

where 0 < |o| < i define a x—isomorphism from C*(Gjpe) to My, @ C(T), where

m(i) is the number of choices for . The maps
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X[ﬁl..ﬂj,al...aj,nj"'l(o,oo)] = e ® (0 % GOj)
X[BroBopole#1000)] €10 @ (0@ eoo)
X ...atj,B1..,85,m3 1 (00,0)] = en® (eﬂj @ 0)

X[cn...a‘7.|,7',77""‘+1(oo,0)] = e ® (600 ® O)
where 0 < |of, |7| < ¢ define a x—isomorphism from C*(G;po) to M) ® (K & K).
This yields

]

Nearly identical reasoning as in the first example, beginning on page 46, show
that K(C*(Gi|r,)) = 0 and Ko(C*(G;|p,)) = Z?, generated by [X(u, 0. (c00)]0 and

[X[o1,01,2(81...8)nF;)o- Then, again, we have

KolC*(G)) = (@ (@, C(Xen, ) & 22

where the right summand is generated by [X[v,,01,2(a1...0s-1)\Z(ar..cr_1 8] J0 and
[X[vl,m,Z (61..‘52-)}]0- We should point out that the indices on the generators were chosen
to be one lower than those in the previous example (see, for example, the proof

of Theorem 3.4.4). This was done to facilitate the computation of Ky(C*(G))+ (in

ki-i'—l 1 )

particular, so that the connecting maps B; defined on page 103 are given by ( 1

and not (ki“ﬂ 1))

ki+1 1

Positive elements in Ky(C*(G;)) have a similar characterization to those in our

first example, but we feel some of the details are significant enough to treat carefully.

Like before, for a € Ko(C*(G;)) write

96



ke ™y

a=> 3" crjklXtz o + MXZ(ar0i )\ Z(arair 8]0 + X251 .80 )0
>i j=1 k=1

where each Fj ;i C X4 is compact-open and for each ¢ and 1 < j < Ky, { Fi
1 <k <mj, } is a partition of X,;;. Now, for each ¢, we take {F};} to be a common

refinement of { Fy r : 1 <k <mj, }fil and we may write

ke my

a= Z Z Z Cog kX {20y xFur)o T MIXZ (a1 ai 1)\ Z(on..oi18)]0 T X 2(81...50) |0

>1 j=1 k=1

Observe now that

Z(og...o5) \ Z(oy ... aj_15;)
= U, Z(a .. ca i) U Z(ar o) \ Z(og - aBta)
- (U2 Z 0 - ay17)
L (W Z (o . )

L Z(oy ... ajH) \Z(o ... Oéj+15j+2)

= Ui (U Z 0 aea)

U Z(ay...ap) \ Z(ag ... apBri1)

and
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Z(Oél . Oéj) = UI;j:Jrll (Z(Oél e aj’Y;—l-l)) L Z(Oél e aj6j+1)
L Z(Oél e Oéj+1) \ Z(Oél e O[j+1/6j+2).

Then (similar to the work preceding Propositions 3.3.5 and 3.4.5) we have

[XZ(ﬁl.--ﬁi)]O = [XZ(al...ozi)]O

_ kit1

- Z’]‘:l [XZ(a1...oci'yiT+1)]O + [XZ(Oél...O¢i+1)\Z(Oé1...Oci+1ﬁi+2)]0 + [XZ(Oél...ai,BiJrl)]O

= Z];:z'ﬂ(Zfi1[XZ(a1---az—wZ)]0)

+ Y1 X Z(0r o\ 2o g541) )0

+ [XZ(al...ozk)]O

= Z?:iﬂ(Zfzzl[XZ(al--aefw?)]O)

+ Z?:i—&-l(Z?:j—&—l(ZfZ:l[XZ(Q1-~~04£—1’YE)]0) + [XZ(oa~~~ak)\Z(a1--~akﬁk+1)]0)

+ [XZ(al...ozk)]O

k k
= Ze:i_u(Zri1[XZ(a1...ae_w§)]0)

k . k
+ Dr—iro (= (E+ 1) (3200 X Z(0n a0 1) ]0)
+ (k - i)[XZ(OéL--Oék)\Z(Oél---akﬂk-u)]o
=+ (XZ(ar...an)]0
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= Z?:H—l(f - i)(zljzﬂ[XZ(ou...ae_wE)]O)

+ (/{: — /i)[XZ(al...Oék)\Z(Oél---akﬂk+1)]0

+ [XZ(oq...ak)]O-

Then if we fix m,n € Z, zj = o ... 17, Xey1 = UjFy; a finite union of compact-

open sets, we have

MXZ(ar.ai)\Z(orai-18)]0 + X Z(81..8)]o0
= m E?:i Zfeﬂ[XZ(aluuefwﬁ)]O
+ MXZ(1...ax)\Z(arcBipn)]0
+ n Z’z:iﬂ(f - i)(Zfil[XZ(al...ag,wg)]o)
+ n(k =) [XZ(on...00)\Z(01...cnBrs1) 0
+ N[XZ(ar...ar)]o
= Ym A (€= 0)n) X [XZ(anapsop) o
+  (m+ (k= 0)n)[X2(1..an\Z(01..axBrs1) 0
+ nXZ(a1...a)0
= Y(m+ (0= in) o (3 X gepy e, Jo
+  (m A+ (k= 0)n)[X2(r..an)\Z(1..anBrs1)]0

+ n[XZ(al...ak)]O-
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With these observations, we can prove the following.

Proposition 4.0.6. Fiz a € Ko(C*(G;)) and write

ke  my

a= Z Z Z Cez.jzk [X{Zf,j,k}XFZ,k:IO + m[XZ(al...ai_l)\Z(al...ai_lﬁi)]o + n[XZ(ﬂlﬁl)]O

>i j=1 k=1

where each Fyy, C Xoiq is compact-open and for each €, { Fi = 1 <j<my} isa
partition of Xei1. Then a > 0 if and only if for all £, j, and k we have ¢ +m +

(¢ —i)n > 0.

Proof. The reverse direction is nearly identical to that in the proof of Proposition 3.4.5
using the computations above. The forward direction is similar as well: Suppose we
have a € Ko(C*(G;))+ and write a as above with the outlined conventions. Fix x € U;

and write

T=2... Ig(m)_ﬂ;(%)x’

where x; # 75 for i < j < {(z) and any s, 1 < r(x) < k), and 1" € Xy(z)41. Define
a *—homomorphism
o+ C*(Gilu,) — Ma(u(ay)
as follows: For
IS C*<Gi|Ui) = ®é>i(@§il(O(Xf+1’ Mn(é))))

with f = (fis1, fizor s for - ) and fo = (fu1,. .., far,), we define

m(f) = fg(m)w(m) (). The remainder of the proof is nearly identical, with some
obvious additions of superscripts (e.g., when defining the set 2) and noting that the
index on the two rightmost summands of a have been shifted down by one when

compared to those in Proposition 3.4.5 O]
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To identify C*(G), we first note than an analogue of Lemma 3.5.1 holds. In
its statement, we will write (j) for 7’/ to prevent confusion with the shorthand

superscript for the a’s and (’s.

Lemma 4.0.7. Fizn >0 and let
W,={x¢€Z(vy) : x;#v(j) fori <n and any j }.
Put
P = {Z(a"1B)\ Z(a" LI 1 j < n}
PP = {Z(a7B)\ Z(ad 1B 1 j <}
P = {Z(a7By(m)) ik >n, k<j<n1<m< ki)
P = {Z(FBym) i+ k>n, k<j<nl<m <kl
PP = {Z(am1gm )}

P, = U_P".
Then P, is a partition of W,, that refines Z(v) for every v € vy with |v| = n and

Vl-;éfyf fori <n and any j.

Proof. The proof is nearly the same as the proof of Lemma 3.5.1. The only sig-
nificant change is in showing that sets in P and PV are disjoint. We now have
Z (a3 Br~(m)), Z(ad BFy(m')) € P ie., the same number of a’s and B’s, but note
that this only occurs when m % m/, so the sets are disjoint. The same is true for sets

in PW, O

This gives us the analogue of Proposition 3.5.2, which has a similar proof.
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Proposition 4.0.8. Fizn > 0 and let
Qn = {T"(P) : | <1 pyy =, some 1 <G < kyy, |p| +m = n}

where Py, is as in Lemma 4.0.7. Then Q, is a partition of Z(vy) that refines Z(v)

for all v € voA with |v| < n.

To compute (Ko(C*(G)), Ko(C*(G))+), note that for n > 0

Z(ay...on)\ Z(ay ... anBni1)
= (U7 Z(an - o))
U Z(og...oni1) \ Z(ag ... a1 Bni2)
(U 2 0hn) \ 2 0 rs2)
L (U Z (e Y41 Bnt2))

LJ Z(al...anH)\Z(al...an+1ﬁn+2)

and
Z(Bl---ﬁn+1) = Z(ﬁlﬁn+1)\z(ﬁlﬁn+2) uZ(ﬁl"-ﬁnJrQ)

so that in Ko(C*(Gi11)),

(XZ(ar.ar N\ Z(araia8)lo = (ki + 1) [XZ(1.ai\Z(a1.aiBis)]0
+  kilXz@B1. 800
and [xz@,.8)l0 = [XZ(a1.ai\Z(a1.aiBis)]0

+ [XZ(/Bl-..ﬁi+1)]0
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These observations, together with Proposition 4.0.8 and reasoning similar to that fol-
lowing Proposition 3.5.2 in the previous example allow us to conclude that Ky(C*(G))

is the inductive limit of the sequence
72 — 72— 7% — -

where each term has positive cone N? (by Proposition 4.0.6) and the i connecting

map is given by the matrix

ki+1 1
Bi -
k; 1
For each i, let
1 -1
Ai = B;l -
—k; k41

and A = Ay... Ap. Let 0 = [ky,1,ko,1,... Ky, 1] (that is, the periodic continued

fraction
ki + L
1
1+ k2+1
and
P Q
R S

be the matrix representation of the fractional linear transformation which fixes 6 (see,

e.g., (18) for a treatment of continued fractions); i.e.

PO+Q

RO+ S f
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Lemma 4.0.9.

Proof. Let

Then

S —-R
A:
-Q P
1 1 01
T = and S =
01 10

= ThSTSTHSTS ... TFSTS
S
1 k 01 11 01
0 1 10 0 1 10
1 Kk 01 11 01
0 1 10 01 10
ko1 11 km 1 11
1 0 10 1 0 10
ki +1 Kk km +1 kp,
1 1 1 1
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Now, if m = 1, then

P Q k+1 Kk
R S 1 1
and
1 -1 S —R
A == Al == —
-k ki +1 -Q P
Next, suppose
P Q kl +1 kl km—l +1 km—l
R S 1 1 1 1
and
1 -1 S —-R
A=A,... A, 1= =
—ky ki1 +1 -Q P
Then
P Q km +1 kp, Plk,+1)4+Q Pk,+Q
R S 1 1 R(kym+1)4+ S Rkp+ S
and
S —R 1 -1 RE,, + S —(R(ky + 1)+ 5)
AAm = frd
-Q P —ky kg +1 —(Pkn, + Q) Pk, +1)+Q

so that the claim holds for all m > 1.

We will need the following lemma.
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Lemma 4.0.10. Let P,QQ,R,S > 1, and

_ Pz+Q
" Rz+ S

()

and let 0 > 0" € R satisfy I'(0) = 6, and T'(0") = 0. Suppose

has two real eigenvalues Ay > Ay and p = ¥ where (z) 1s an eigenvector of Ay. If

PS—QR=1, then 0 = —p.

Proof. Straightforward computations show that the eigenspace of \; is spanned by

S—A1

so that p = (S — A\;)/R. Since
det(A—X) = A —tr(A)\ + det(A)

= M- (S+P)A+1

we have
S+P+\/(S+P)*—4
A =
2
hence
_ 54+P+4/(S+P)2—4-25

2R

P—S+/(S+P)2—4
2R
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On the other hand, 6 is a root of Rz* + (S — P)z — @ so that

_ P—-S+./(S—P)?+4QR
B 2R

6

Since PS — QR =1,4 =4SP — 4Q R and therefore
(S—P)?>+4QR = S?-2SP+ P?+4QR
= S*+28P+P?—4

= (S+P) -4
so that § = —pu. O]

We now show that for A as defined above and p as in the previous lemma, p < 0.
Note that P > 1 and @, R, S > 0 which is easily seen (beginning on page 105) when

computing (g g) Now

S-nN S-P-/(S+PP-1
H="fr = 2R )

so showing p < 0 amounts to showing S — P < /(S + P)? — 4. This is straightfor-

ward; since S, P > 0, 4 < 4SP so that
(S—P)? = S8?2-25P+ P?
< S?4+25P+P2—4

= (S+P)P*-14
Computation of the positive cone is similar to the case when k1 = ky = --- =

k., = 1. In particular, we first diagonalize A = X DX ! where
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X S—\1 S—X2
1 1
R
P 1 LR v
vdet X
-1 R
S—A1

Straightforward computations show

R
R 10 - 1 | s
o
det X

0 (32)" 0 1
and
1 0 0 __RrRT
1 (A2—S)(S—A1)
X X1 —
det X
0 (52" 1 =

as n — o0. These vectors lie on the same line; the one through the origin with

S-M _

slope ==t = . Since the maps B; are positive, A maps N? into the upper half plane

defined by p. Then we conclude that

(1) € (G ().

Y
iff y > px; ie.
Ko(CH(G))s = { (y) €2 y—pr>0}
Now

Koda)s = ( (1) €22 5 y+0020)

where Ay is the continued fraction AF algebra associated to @, so that

Ko(C*(G))+ = Ko(Ap)+-
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Similarly to our first example, we wish to show that there is a unique trace on
C*(G) and our first step will be to show there is at most one invariant Borel probability
measure on G°. Let u be such a measure. As we did in the first example, for each

1> 0, let
a; = ,u(Z(al e Oéi) \ Z(Ozl ce aiﬁiﬂ))

and b; = wp(Z(Br...Bi+1))

For a given 7, we have seen that
Z(al e Oéi) \ Z(Oél e aiﬁi—l—l) = (l_I?gllZ(al RN Oéi’}/g+1> \ Z(Oél . Oéi’}/g+1ﬁi+2))
k; 1
L (Uj;LllZ(Oél e ai’}/g+1ﬁi+2))

L Z(a1 ce O{Z'+1) \ Z(a1 e ai+1ﬁi+2)

and
ZBr- Biv1) = (Z(Br -+ Bix)) \ Z(Br - Bir2)) U Z(B1 - - Bira)

Hence, a; = (kit1 + 1)aj41 + kiy1bip1 and b; = a; 41 + biyq. Letting

kiyi +1 ki

A -
1 1
then, we have
a; | @it
— A,
bi bit1

More generally, given our period of m, fix i > 1 and let



so that
k

a; - P Q Ofmait1
b, R S Dremtit1
for all £ > 1 and N
Akm4i+1 B P Q @i
bkmtit1 RS b;

Note that det(A;) =1 for all j so that det (£9) =1 and hence

-1

Also, since k; > 1 for all j, it is clear that P > 2 and @, R,S > 1. Given these
. 2 . . . P
observations, we have \* — (P 4+ S)A + 1 as the characteristic polynomial of ( R g),

which has real roots

P+S+.+/(P+S5)2—4 P+S—\/(P+S5)?2—14
A= + S5+ ; +.5) o= + ; +.9) 50

Diagonalizing, we find

P Q
= XDX!
R S
where
Q Q 1 Q
x AM—P X—P x-1 1 P—Xz
- ’ o det X ’
1 1 -1 ©
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D = , and = l
det X V(P+5)?2—-4
0 X
so that
S —-Q Ail 0
=X X1
-R P 0 /\LQ

Our goal moving forward is to compute the right side of

k

Am+i+1 S _Q a;
brm+i+1 -R P bi

and use the fact that p is a probability measure to bound the resulting above 0. We
will use this to show that a; is bounded above and below by terms which both converge
to the same limit as £ — oo. The computations are laborious but straightforward,

and follow now:

k

Akm+i+1 S —Q Q; a;
= = XD X!

brmrit1 -R P b; bi
Q 1\k sz

1 ; 0 i
_ 1 XD+ P—x || 1 ¥ (55) +P—)\2
det X det X
AN — P A2 AN —P




_ L I N=P N-P A
det X
1 k sz
1 1 ()\—2) ()\1 _p a1>
1., Qb; Q L x [ Qb Q
B Y <GZ+P—/\2)(/\1—P LS WAl Gvenyzhe Z’)(&—P)
det X
o (o 525 )+ o (325 )
(i)k ( @, Q(P — Xo) + @%b, n (i)k Q*b; — a;Q(A\y — P) )
_ 1 M7\ + M) P — Mg — P? X'\ MA2 — (AL + M) P + P?
detX 1 k az(P — )\2) + sz 1 k sz — ai<)\1 — P)
G (SRR v o (P

(i)k <aiQ(P — Xo) + Q%b; i)k; Q%*; — a;Q(\ — P))
1 AT \N(P+S)P—-1-P? X2’ \1—(P+S)P + P2

)ik
)ik
R
)ik

R

T () ()
)ik
R
R
)ik
R
|

det X ( 1 )k ai(P - )‘2) + sz
A P—)X

szi - aiQ()\l - P))

OR

det X (i)k (az(P—)\z)‘i‘le
At

1 <aiQ(P — Xo) + Q2

P— )

()

ai(/\l —P) — Qb;
)

1 ()\_l)k R

o det X (i)k (ai(P—)\Q)+Qbi i)k‘ (le —Cli(>\1 —P))
A1 P—X A2 A= P

Now, similarly to the first example, Z(v;) is partitioned by sets of the form

Z(zy...xj) \ Z(z1...2Bj41) and Z(zy...x;Bj41) for each j > 0, so there exist
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fi» gi € Z* such that f;a; + ¢g;b; = 1 and hence b; = (1 — f;a;)/g;- Then equating top

entries in the previous string of equalities, we have

akmﬂﬂzﬁ((i)k(axp—;fwc)bi)+(i>k(ai(xl—§)—Qbi))

_ 1 L., M(P—)\z)—l—Q(l_g—f;ai) 1., ai(Al_P)_Q<1_g—f;ai)

_ 1 ((i)k (aigi(P — X)) +Q — inaz’))
B det X \ "\ Ry;

n 1 <(i)k (aigi(/\l_P)_Q+inai>>
det X )\2 Rgz

_ 1 <)‘I2€(aigi(P — ) + Q — Qfia;) + Ni(aigi(M — P) — Q + sz‘ai)>

- W(A’Sai(gi(f’ —Xo) — Qf) + X5Q + MNeai(g;(\ — P)+ QFf;) — \FQ)

Since 0 < @yprir1, We have

(A]f - )‘IQC)Q < Q;

Rgidet X — Ry, o Q2P = X0) = Qf) + M(g:(\ — P) +Qf:))

Since det X = (/(P + 5)2 —4)/R, R, g; > 0, we have

(AF = M)Q < ai(N5(gi(P — A2) — Qf:) + Al (g:(A1 — P) + QFf))

Note that
NQF; = NsQfi = (A= \)Qf; >0
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since A; > Ay (and @, f; > 0). Moreover

P—S+(P+5)?2—-14
P—) = il <2 *+5) >0

since P > 2 and S > 1, and therefore \/(P + 5)? —4 > S, and similarly

S—P+\/(P+5)2—-4
A\ — P = i (2 +5) > 0.

Then

X5(9i(P = A2) = Qfi) + A (g:(M = P) + Qf:) > 0
and therefore

(M =)@
A5(gi(P = A2) — Qfi) + Mi(gi(M — P) + Qf;)

a;

A (1= (/M)HQ
A (A2 /A)R(gi(P — A2) — Qfi) + (g:(M — P)+ Qf:)

Since 0 < Ay < Ay, the right side converges to

Q
gi(M — P)+Qf;

as k — 0.

Similarly, we have
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s = e (1 (A2 L 1 (@t

- e (G ()

= e (0 (05 ))

B 1 (A’;(P — M) (a;gi(P — Xg) +Q — sz-a»)
 gidet X (P = A)(P = A)

1 )\If(P — Xo)(aigi(M — P) — Q + Qfia;)
+ gidet X ( (P—=M)(P—X9) )

Since 0 < bypriv1, we have

(P =) (P = X2)
)
(

— X2)(aigi(M — P) — Q + inai):|
P—X)(P—Xo)

1 { (P

1 [A’;(P
- at

Now, g;,det X > 0 and we saw that (P—As), (A —P) > 0so that (P—\A;)(P—X3) <0
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50
0 > @A (P—M)(gi(P = X2) = Qfi) + A5(P — M)Q
+ @ N[(P = X)(g:(M — P) + Qfi) = M (P — 2)Q
Rearranging,
a;(A5(P = M)(g:(P = Xa) = Qfi) + M (P = X2)(g:(\ — P) + Qf,))
< QAT(P = X9) = A5(P — A1)
Since P — A; < 0,P — Xy > 0, and Ay < Ay,
AS(P = A1)gi(P = A2) + M{(P = A2)gi(A — P)
= N (P = A)gi(P — A2) = Ni(P = X2)gi(P — A1)
= (A5 = A)(P = M)(P = Ao)gi

> 0.

Moreover,
“X3(P = M)Qfi + M (P = X)Qfi > 0

so that
Ns(P = A1) (gi(P = X2) = Qfi) + Ai(P — X)(g:(M — P) + Qfi) > 0

and therefore

o< AP = A)Q = AS(P = \)Q
b AQ(P - Al)(gi(P - )\2) - sz’) + Alf(P - /\2)(9i(>\1 - P) + sz‘)

(P —X)Q — (Aa/M)F(P — \)Q

(A2/A)F(P = M) (9i(P — A2) = Qfi) + (P — A2)(g:s(M — P) + Qf:)
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Since 0 < Ay < Ay, the right side converges to

(P —X2)Q Q

(P—=X)(gi(M = P)+Qfi) g9\ — P)+Qf;

so that
a; = @
(M —P)+Qf;

Then for each i, there is only one possibility for a; and hence, the same holds for

b; and this forces p to be unique (if it exists).

Next, we will produce a state on
(Ko(C™(G)), Ko(CT(G))+, [1]o)

Essentially the same argument as in the first example shows that C*(G) has finite
nuclear dimension; namely, there is a uniform bound on the terms in the inductive
sequence defining C*(G). Then C*(G) is nuclear and therefore exact which means
this state must come from a trace (14, Theorem 5.2.2). Proposition 3.5.10 still applies
in this more general case, so that traces on C*(G) are in one-to-one correspondence
with invariant Borel probability measures on G, so that this trace must be unique.

Let § =1/(0 + 1) and define
T: Ko(C*(G)) — R

(z) — 0(0x +y)

This map is clearly a homomorphism, and if z + y > 0, then 6(0x + y) > 0 so that

1

it is also positive. We claim that [1]o = (]

), which we see by noting

Z(v1) = Z(B1) U Z(v1) \ Z(B1)

Now T(}) = 0(6 + 1) = 1 and therefore T is a state. Using classification results as

we did before, we conclude C*(G) is isomorphic to the AF algebra with ordered K
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group and order unit
(2% {(2,y) € Z* : y + 02 > 0}, (1, 1))

which is stably isomorphic to the continued fraction AF algebra Ay which has the

same ordered Ky group and order unit (0, 1).
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Chapter 5

TWO FINAL EXAMPLES

The previous examples were originally investigated in an attempt to shed light on
the question of when the C*-algebra of a category of paths is AF. In (6), the authors
address this question in the context of k—graphs. They give a necessary condition
(which we shall describe below) for the algebra of a higher-rank graph to be AF but
leave open the question of whether or not the condition is sufficient. The examples
that follow show that the condition is not sufficient in the setting of k—graphs, and
not even necessary in the setting of categories of paths. Before stating this condition
we need some definitions.

Definition 5.0.1. Let A be a higher rank graph. For p, v € A, a common extension
A of and v is minimal if M’ < X\ and A’ # X implies )\’ is not a common extension of
w and v. We denote the set of minimal common extension of x and v by MCE(p, v).
We say A is finitely aligned if MCE(y,v) is finite for all y,v € A. Let v € A°.
A subset F' C vA is exhaustive if for every u € vA, there is a v € F such that
MCE(u,v) # (0. A subset H C A is hereditary if s(HA) C H and saturated if for

all v € A% if there is a finite exhaustive set I at v with s(F) C H, then v € H.

The next definitions were first given in (6) in the context of k—graphs, and we

use them in the more general setting of categories of paths.

Definition 5.0.2. Let A be a category of paths and p,v € A with p # v, s(u) =
s(v), and r(u) = r(v). The pair (u,v) is called a generalized cycle if, given any
7 € s(u)A the elements p7 and v have a common extension. A generalized cycle

(u,v) is said to have an entrance if there exists 7 € s(v)A such that g and v7 have
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-1 Do b
Figure 5.1: Skeleton of A’

no common extension (that is, a generalized cycle (u,v) has an entrance if (v, p) is

not a generalized cycle).
In (6), Evans and Sims proved the following.

Theorem 5.0.3. (6, Theorem 8.4) Let A be a finitely-aligned k—graph. If C*(A) is

AF, then A contains no generalized cycles.
In fact, they use this theorem to prove a slightly stronger corollary.

Corollary 5.0.4. (6, Corollary 3.11) Let A be a finitely aligned k—graph. Suppose
there erists a saturated hereditary subset H C A° such that A\ AH contains a gener-

alized cycle. Then C*(A) is not AF.

Their proof of Theorem 5.0.3 is given in two parts, one for cycles with an entrance
and one without. The argument in the proof of (16, Theorem 10.18) shows that in a
category of paths, the presence of a generalized cycle with an entrance gives rise to
an infinite projection in the associated C*-algebra (so that it is not AF). Below we
shall give an example of a category of paths which has a generalized cycle (without
an entrance), but for which the C*-algebra is AF (in fact, finite dimensional). We

first show that the converses of Theorem 5.0.3 and Corollary 5.0.4 do not hold.

Example 5.0.5. Let A’ be the 2-graph which has skeleton depicted in figure 5.1 and

factorization rules o,7;,, = 7/0;11 where 0,7 € {a, 5}. We will use the convention
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that d(a;) = d(B;) = (1,0) and d(a}) = d(B]) = (0,1). Now fix p,v € A’ with
r(p) = r(v), s(u) = s(v), and p # v. Let d(u) = (m,n) and d(v) = (k,¢) and fix
p,o,7,m € N with up = po, v =1n, d(p) = (m,0), d(o) = (0,n), d(7) = (k,0), and
d(n) = (0,0).

If X extends pu, then the factorization rules imply that any time we factor A = ¢
with d(v) = (p,0) and d(§) = (0, ¢), then v = py/ for some /. In words, any extension
of 1 where we factor all solid edges to the front must begin with the unique sequence
of solid a’s and (’s that is p, and the same is true for any extension of v. Similarly,
if A\ extends p and A = ~v¢ with d(y) = (0,p) and d(§) = (¢,0) then v = o'+ with
d(o') = (0,n) and where 0} = a iff 0,4 = o, ;. That is, if we factor the first n
dashed edges to the left in any A extending p, then the number and order of o’’s and
B"’s making up the first n edges must be the same as the number and order in o, and
again the analogous statement is true for v.

Now if m = k (and hence n = ¢), then either p # 7 or 0 # n. If p # 7 and A
extends i and v, then the observations above show A has two factorizations p\ and
TN with d(p) = d(7), d(N) = d(\"), but p # 7. Hence p and v have no common
extension. If o # 7, then writing u = o’p, v = n/7" with d(¢’) = d(1/) = (0,n), then
o' # 1 and arguing as above shows u and v have no common extension.

If m > k and, say, px+1 = ag41, then g and v, 41 have no common extension. If
A = NN were such an extension with d(\') = (p,0) and d(\") = (0, q), then extending
p would imply A} ., = a4 while extending v would imply A ,; = By41. Analogously,
if pp+1 = Br41, then p and vay, 41 have no common extension. Now write p = o'p/
and v = 17" with d(o’) = (0,n), d(n') = (0,¢) (with £ > n). If o}, ., = o, ,, then v

and p3),,, have no common extension, and if 7, = f,,,, then v and paj, ., have

pl+1
no common extension. If m < k, we make an analogous argument and this shows

that (i, v) is not a generalized cycle.
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Figure 5.2: The 1-Graph Defining A”

Thus, A’ is a 2-graph without generalized cycles. Now (5, Proposition 3.16) (see
also (4, Corollary 5.1)) implies that two row-finite 2-graphs with no sinks or sources
and the same skeleton have C*-algebras with the same Ky and K; groups. Using this

result in the remarks following (4, Figure 4.3), Evans shows that the C*-algebra of a

1
2

2-graph with the same skeleton as A’ has K; group isomorphic to Z[5] and therefore
is not AF. This shows that the converse of Theorem 5.0.3 does not hold. To show
the converse of Corollary 5.0.4 does not hold, it remains to show that (A’)° has no
nontrivial saturated hereditary subsets.

Suppose @ # H C (A’)Y is saturated and hereditary and fix v; € H. For any
J > i, the path o; ... ;1 € HAN and s(o ... -1) = v; so that v; € H since H is
hereditary. Now for j <4, let F; = {a;,a’;, 3;, 8}, which is clearly a finite exhaustive
set at v;. Since s(F;_1) = {v;} € H and H is saturated, v;_; € H, and now by

induction, v; € H for every j < i and hence H = (A")°.

Our final example demonstrates that for categories of paths, even a generalized

cycle need not preclude an AF algebra.

Example 5.0.6. Let A” be the category of paths given by the 1-graph in figure 5.2
where a3 = s and ayag = (5152, Explicitly,

A" = {v1,v9,v3, a1, i, By, Ba, 1, a1 B2} where (A”)° = {vy,v9,v3}, (A”)?

= {(a, ), (a1, f2), (B1, a2), (B1, B2)} with the obvious range and source maps, and
ranges for multiplication. It’s clear that this is a small category, without inverses since

the commuting relations preserve length, and there is no (non-trivial) cancellation to
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check. Note that (aq, ;1) is a generalized cycle (without an entrance). Since the
category is finite, the associated groupoid will be finite, and hence C*(A”) is finite

dimensional.
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Chapter 6

FURTHER RESEARCH

We close this paper with an outlook on further research, and there are some obvi-
ous avenues forward. First is broadening the class of examples in this paper to include
continued fraction AF algebras Ay for arbitrary . We see two primary hurdles to
overcome before this happens. One is to represent Ay where 6 = [ky,1, ko, 1, k3, 1,...],
i.e. 0’s expansion has the same pattern of alternating 1’s, but is not necessarily peri-
odic. We are confident that this will arise from generalizing the example in chapter
4 in the obvious way, having k; +’s in v;Av; 1. The reason this is so promising is the
following: Given a continued fraction ¢ = [ay, as,as,...], the ordered K —theory of
A, is determined entirely by the connecting maps (% }) (see, for example, (1, VL.3)

for details) and then to realize the connecting maps in our example factor as

ki+1 1 11 [k 1

ki 1 10 1 0

so that we are getting precisely the ordered K —theory of A;,4. The main sticking
point is in showing that the algebra we build has a unique trace; it was the fact that
our connecting maps were periodic that allowed us to bound measures of cylinder sets
and then show their measure must be unique. We believe a further approximation
argument will solve this, but as yet we have not discovered it.

A method for eliminating the alternating 1’s in [1, k1, 1, ko, ...] is less clear. The
factorization above makes it evident in one sense where the 1’s are coming from, but

it is not yet clear to this author what changes need to be made in the category of
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Figure 6.1: The 1-Graph of the Rank 3 Analogue

paths to eliminate them. Some ad-hoc attempts have been made, but the solution
will take some more thought.

We would also like to generalize the examples in this paper to include the categories
of paths defined by figure 6.1 where the a, f;,7; form a 3-graph (and potentially
analogues for k—graphs with £ > 3). Some thought has been given to this and
while it doesn’t seem to be an obvious generalization of the work here, some similar
techniques can be applied, and the problem appears to be tractable.

More broadly, we would like to apply techniques such as the ones demonstrated
in this paper to problems involving k—graph algebras. For example, showing that
C*(G) had finite nuclear dimension relied heavily on realizing it as an inductive limit
of algebras of subcategories. There is a limited amount of freedom to do so in the
context of k—graphs, since a subcategory need not be a sub k—graph, but we can
still take advantage of the degree functor when appropriate. The 7’s also seemed to
play a critical role in generating subgroupoids whose C*-algebras were manageable,
and the key property seemed to be that they do not commute with any edges. If we
could identify a structure in a k—graph with a similar property, it may be possible
to develop a criterion for when a k—graph C*-algebra has finite nuclear dimension.
Unfortunately, it’s not clear to this author that such a structure should even exist,

and a problem like this will take some thought.
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