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ABSTRACT  

   

There has been a renewed interest to understand the degradation mechanism of 

concrete under radiation as many nuclear reactors are reaching their expiration date. Much 

of the information on the degradation mechanism of concrete under radiation comes from 

the experiments, which are carried out on very small specimens. With the advent of finite 

element analysis, a numerical predictive tool is desired that can predict the extent of 

damage in the nuclear concrete structure.  

A mesoscale micro-structural framework is proposed in Multiphysics Object-

Oriented Simulation Environment (MOOSE) finite element framework which represents 

the first step in this direction. As part of the framework, a coupled creep damage algorithm 

was developed and implemented in MOOSE. The algorithm considers creep through 

rheological models, while damage evolves exponentially as a function of elastic strain and 

creep strain. A characteristic length is introduced in the formulation such that the energy 

release rate associated with each element remains the same to avoid vanishing energy 

dissipation with mesh refinement. A creep damage parameter quantifies the effect of creep 

strain on the damage that was calibrated using three-point bending experiments with 

varying rates of loading.  

The creep damage model was also validated with restrained ring shrinkage tests on 

cementitious materials containing compliant/stiff inclusions subjected to variable drying 

conditions. The simulation approach explicitly considers: (i) moisture diffusion driven 

differential shrinkage along the depth of the specimen (ii) viscoelastic response of aging 

cementitious materials (iii) isotropic damage model with Rankine′s failure initiation 

criterion, and (iv) random distribution of tensile strengths of individual finite elements. 
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The model was finally validated with experimental results on neutron-irradiated 

concrete. The simulation approach considers: (i) coupled hygro-thermal model to predict 

the temperature and humidity profile inside the specimen (ii) radiation-induced volumetric 

expansion of aggregates (RIVE) (iii) thermal, shrinkage and creep effects based on the 

temperature and humidity profile and (iv) isotropic damage model with Rankine’s criterion 

to determine failure initiation.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The nuclear power plants are generally decommissioned from use after 40 to 80 years of 

operation. Nuclear power plants in the US are given a renewal of 20 years by the U.S. 

Nuclear Regulatory Commission (NRC) only if it has reasonable confidence regarding its 

safe operation (“NRC: Backgrounder on Reactor License Renewal”). NRC is currently 

reviewing renewal application for 17 reactors, 8 of which are due to expire by 2025. The 

process of decommissioning a nuclear power plant is extremely long and costly process as 

it must be ensured that the residual radioactivity is below a minimum threshold in these 

reactors (“What’s the Lifespan for a Nuclear Reactor? Much Longer Than You Might 

Think”). The possibility to extend the operations of these nuclear power plants has been 

one of the leading points of discussion in the nuclear industry (“NRC: Backgrounder on 

Reactor License Renewal”; Giorla Alain B., Le Pape Yann, and Dunant Cyrille F. 2017; 

Pomaro 2016). This has renewed interest in understanding the degradation mechanism of 

concrete under radiation. Concrete walls are used as a shield inside nuclear power plants 

to arrest radiations. The primary support structure for the reactor pressure vessel is also 

made of concrete and is exposed to chronic irradiation during its operation. However, this 

chronic irradiation damages the concrete, severely reducing its strength and capability to 

arrest further radiation. A mesoscale microstructure framework is implemented in MOOSE 

to simulate the expansion under irradiation induced swelling of otherwise elastic 

aggregates and corresponding damage propagation in the paste undergoing creep, thermal 

strain, and drying shrinkage. As part of this framework, a coupled creep damage algorithm 
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is also implemented and tested against three-point bend experiments and early age 

shrinkage tests. The framework is validated with the experimental results of Maruyama et 

al. (Maruyama et al. 2017), which to date feature the most comprehensive set of tests on 

irradiated concrete. The framework considers the effect of elevated temperature, moisture 

condition and high neutron fluence on the mortar and aggregates separately. This numerical 

framework presents the first step towards having a numerical tool that can aid the 

researchers to ascertain the design life of concrete structure under chronic radiation. 

1.2 Objective 

The main objectives of the present study are: 

a) Implementing a coupled creep damage algorithm in MOOSE framework, a finite 

element analysis tool kit developed by Idaho National Laboratory. 

b) Analyzing the effect of creep strain on damage propagation using experimental 

three-point bend results under different rates of loading. 

c) Using the coupled creep damage model for analyzing the cracking time in 

restrained ring shrinkage tests with changing relative humidity and the effect of 

soft/stiff inclusions 

d) Utilizing the coupled creep damage model to simulate damage propagation in 

irradiated concrete using coupled hygro-thermal analysis and a coupled creep 

damage model. 

1.3 Dissertation Layout 

This dissertation is primarily composed of three research papers with each being published, 

submitted or under preparation for submission.  
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Chapter 2 presents the literature review on experiments and numerical simulation for 

concrete undergoing early age shrinkage and irradiation. It also describes the literature 

review on the constitutive model used for solving such problems. Chapter 3 discusses the 

MOOSE framework, the finite element analysis toolkit used in the analysis and its 

capabilities. This section also talks about the Jaobian free Newton Krylov technique and 

the modular architecture of MOOSE that make it easy to add new capabilities in the 

existing framework. It also describes the theory and numerical implementation of the 

existing creep and hygro-thermal model in MOOSE. Chapter 4 describes the 

implementation of a coupled creep damage model in the MOOSE framework and its 

verification using single element tests and its validation using three-point bend experiments 

under different rates of loading. Chapter 5 describes the validation of the model using ring 

test experiments using moisture diffusion theory and creep damage algorithm. Chapter 6 

validates the model by simulating irradiation induced concrete expansion and damage. 

Chapter 7 summarizes the results and presents the conclusion of this study.  
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CHAPTER 2 

LITERATURE REVIEW 

The preceding literature review is composed of three sections. The first section talks about 

the radiation induced volumetric expansion of concrete and corresponding damage in 

concrete structures and the mechanisms and conditions to be considered while developing 

a numerical tool to predict the damage in such conditions. The second section talks about 

restrained shrinkage test and the conditions for the numerical tools to predict the damage 

under such condition. The third section talks about the various constitutive models for 

concrete available in the literature. These models comprise both the hygro-thermal model 

that simulate the heat and water diffusion in concrete and the mechanical models that can 

predict mechanical behavior such as creep, damage and its interaction.  

2.1 Radiation Induced Volumetric Expansion of Concrete 

The possibility to extend the operation of nuclear power plants requires to understand the 

various degradation phenomenon that takes place in concrete as it is widely used in the 

construction of nuclear power plants. Much of the experimental investigations on irradiated 

concrete was done till early seventies (Elleuch, Dubois, and Rappeneau 1972; Dubrovskij 

et al. 1966; Alexander 1963; Blosser et al. 1958; Cristiani, Granata, and Montagnini 1972; 

Dubrovskii et al. 1967; Gray 1972; Kelly et al. 1969) after which it was mostly disregarded. 

Recently, Maruyama et al. (Maruyama et al. 2017) carried out tests on irradiated concrete, 

which to date feature the most comprehensive set of tests on irradiated concrete. These 

tests provided conclusive evidence that radiation induced volumetric expansion of 

aggregate due to metamictization (also called amorphization in some works) coupled with 

drying of paste due to radiolysis and gamma heating cause damage in the specimen. 
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However, there was a vide disparity in these experiments in terms of neutron fluence, type 

of aggregate, type of cement paste, water cement ratio, irradiation conditions to name a 

few. A majority of tests were reviewed by Hilsdorf et al. (Hilsdorf, Kropp, and Koch 1978) 

and concluded that degradation of concrete starts at fluence level of 1x1019 n/cm2 and 

decreases monotonically up to 1x1020n/cm2, which is usually set as the reference level for 

neutron irradiation beyond which concrete is no longer considered sound. The study also 

concluded 2x105 kGy as the limit for gamma energy deposition after which the concrete is 

no longer considered sound. It should be noted that the irradiated conditions in the test 

reactors differ vastly in comparison to actual scenario in a light water reactor (Field, 

Remec, and Pape 2015). Therefore, to extrapolate the results of these experiments to actual 

reactors requires an efficient numerical framework. The framework should consider the 

various time dependent mechanisms such as creep, shrinkage, radiation and high 

temperature induced expansion that takes place in concrete under an irradiated scenario. 

This requires correct estimation of all the conditions such as temperature, moisture and 

radiation profile inside the concrete. While temperature in a lightweight reactor (LWRs) is 

close to around 65oC, it can vary significantly in test reactors from 50oC to 500oC. These 

high temperature can affect kinetic of moisture transport (Bai, Wang, and Xi 2020; Wang 

and Xi 2017), which can then affect the creep and shrinkage properties (Zdeněk P. Bažant 

1983; Zdenek P. Bažant and Baweja 2000; Acker and Ulm 2001). The actual moisture 

condition is difficult to assess as it is typically not measured during the experiments. 

Gamma radiation is subsequently produced during neutron irradiation. In light water 

reactors the total dose at the end of 80 years could be around 200 MGy. The gamma rays’ 

dosages are not sufficient to cause metamictization of aggregates, however, it causes 
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radiolysis of water present in the hardened cement paste (Maruyama et al. 2017; “Impact 

of Gamma-Ray Irradiation on Hardened White Portland Cement Pastes Exposed to 

Atmosphere | Elsevier Enhanced Reader” ). The gamma rays are ultimately converted to 

heat, referred as gamma heating and cause drying shrinkage due to loss of water from the 

specimen. The elevated temperature also has a healing effect that reduces the radiation 

induced volumetric expansion of aggregates (Bykov et al. 1981). Le Pape et al. (Le Pape, 

Field, and Remec 2015) developed a micro mechanical model for concrete using 

homogenization of random media. Salomoni et al. (Salomoni et al. 2014, 4) carried out 

simulations on a meso-scale model by considering mortar and aggregate separately, 

however, they did not consider RIVE in their simulations. Using constant pore humidity 

and temperature profiles over the specimen, Giorla et al. (A. Giorla et al. 2015) also carried 

out 2D simulations on mesoscale concrete specimens. A constant pore humidity and 

temperature profile is a good first approximation for comparatively thin sections used in 

test reactors. However, it is necessary to consider the variation in temperature and moisture 

profiles if the numerical framework is to be used for simulation of actual nuclear structures, 

the depth of which could be in meters such as that of a containment wall. 

2.2  Restrained Ring Shrinkage Tests 

Volume changes in early-age concrete occur as a result of loss of moisture, temperature 

changes, and mismatch in the volumes of the reactants and products. When these volume 

changes are restrained, residual stresses are developed. When the residual stress exceeds 

the tensile strength of concrete, early-age cracking occurs (Bentz 2008; Henkensiefken et 

al. 2009; W. Jason Weiss, Yang, and Shah 1998; Neithalath, Pease, and Attiogbe 2005). It 

is well known that early-age cracking is a function of the geometry of the structure, 
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temperature change, rate and heat of reaction (hydration), temporal development of 

mechanical properties (including tensile strength, stiffness and viscoelasticity), the thermal 

characteristics of the concrete (i.e., heat capacity and coefficient of thermal expansion, 

which depend on the concrete constituents), and the imposed external conditions 

(temperature, relative humidity, and wind speed) (Holt and Leivo 2004; Altoubat and 

Lange 2001; Hooton et al. 1999; W. Jason Weiss, Yang, and Shah 2000; Carlson and 

Reading 1988). The restrained ring test (ASTM C 1581 and AASHTO T 334) has been 

commonly used to determine the residual stress development and cracking potential of 

concrete at early ages (S. W. Dean et al. 2010; Schlitter, Bentz, and Weiss 2013; See, 

Attiogbe, and Miltenberger 2003; W. Jason Weiss, Yang, and Shah 2000; Passuello, 

Moriconi, and Shah 2009). In its basic form, the ring tests consists of a concrete annulus 

cast in between two steel (or Invar, which has a very low coefficient of thermal expansion) 

rings (dual ring test), or around an inner ring. Expansion of concrete is restrained by both 

the inner and outer rings, which impose a compressive stress in the concrete annulus, while 

shrinkage is restrained by the inner ring, which causes circumferential tensile stresses to 

develop in the concrete annulus. Restrained ring tests have been used to investigate the 

influence of cement type, supplementary cementitious materials, and admixtures on the 

cracking response of cement-based materials (Passuello, Moriconi, and Shah 2009; W. J. 

Weiss and Shah 2002). Several variants of the ring test exist: changing the thickness of the 

steel/invar rings to simulate differing degrees of restraint (Hossain and Weiss 2004), 

changing the thickness and height of the concrete annulus (Hossain and Weiss 2006; W. J. 

Weiss and Shah 2002), and changing the ring geometry (circular/elliptical) (Dong et al. 

2017; Zhou, Dong, and Oladiran 2014). Recently, the influence of inclusion type (soft or 
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stiff) on cracking behavior also has been elucidated using the ring test (Wei, Falzone, Das, 

et al. 2017b), where microencapsulated phase change materials (PCM) are used as soft 

inclusions and quartz particles as hard inclusions. PCMs are combined sensible-and-latent 

thermal energy storage materials that can be used to store and dissipate energy in the form 

of heat (Fernandes et al. 2014; Aguayo et al. 2016; Khudhair and Farid 2004). Their 

efficiency in controlling early-age cracking, when used as a concrete ingredient in 

microencapsulated form, has been demonstrated (Fernandes et al. 2014). The numerical 

simulation for these tests requires consideration of the moisture diffusion driven 

differential shrinkage, aging viscoelasticity and random strength distribution. Since the 

viscoelastic properties are experimentally difficult to measure for early age cementitious 

materials, previous numerical studies on restrained ring shrinkage tests have simplified the 

viscoelastic behavior using an effective elastic modulus (Moon and Weiss 2006; Dong et 

al. 2017; S. Dean et al. 2006; Zhou, Dong, and Oladiran 2014) or derived the viscoelastic 

parameters by matching the stresses in the restrained ring with those obtained from the 

numerical simulations (Raoufi et al. 2011). Many studies also oversimplified the shrinkage 

by considering plane stress assumptions, as such did not consider shrinkage variation along 

the depth of ring (Raoufi et al. 2011). 

2.3  Constitutive Model for Concrete 

As seen above, there are a multitude of complex mechanisms that takes place in concrete 

during experiments. The complexity arises from the various time dependent mechanisms 

and its interaction that take place in concrete (Zdeněk P. Bažant, 1988; Acker and Ulm 

2001; Altoubat and Lange 2001; Di Luzio 2009; Zdenek P. Bažant and Baweja 2000). 

These mechanisms depend upon a variety of factors such as the age of concrete, 
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environmental conditions, the moisture state inside the concrete, modulus of aggregate, 

volume of aggregate, maximum aggregate size, degree of hydration etc. The experiments 

that characterize the mechanical behavior of concrete are usually carried out at constant 

temperature and humidity. In actual structures or experiments as in Section 2.1 and 2.2, the 

temperature and/or humidity conditions are never constant. Moreover, moisture transport 

takes place inside the concrete under elevated temperature (Bai, Wang, and Xi 2020; Stefan 

2015; Wang and Xi 2017). Therefore, in such cases, a hygro-thermal analysis is required 

as the state of moisture and/or temperature is continuously changing inside the concrete 

structures. The development of hygro-thermal model in concrete will be described in the 

next section and theory and numerical implementation of the model available in MOOSE 

framework will be described in detail in Chapter 3. Apart from the hygro-thermal model, 

the mechanical constitutive model for concrete describes it mechanical behavior under 

different loading conditions. Under quasi-static conditions, the behavior of concrete is 

considered elastic. However, if there is a time component involved, concrete is considered 

as a viscoelastic material. If the applied stress exceeds the material strength, a damage 

model is usually employed. The development of damage model (Pijaudier-Cabot and 

Mazars 2001) for concrete will be discussed in Section 2.1.2. It is also well known that 

fracture that occurs in concrete is also rate sensitive and there exists enough evidence that 

creep and damage are related. Therefore, a correct prediction of the behaviour of concrete 

structures requires a correct understanding of all the possible coupled mechanisms that take 

place inside the concrete. Some of the models available in literature will be described in 

the Section 2.1.2 while the theory and implementation of creep damage model for this work 

will be described in Chapter 4. 
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2.3.1  Coupled Hygro-Thermal Model for Concrete 

 The moisture transport characteristics for a porous material is usually characterized using 

theory of partially saturated porous media (Bear 1991; Ingham and Pop 1998; Du Plessis 

and Masliyah 1988). These theories are very difficult to apply to a material like concrete 

as the parameters to account for such processes are very hard to determine for concrete. As 

a result, simpler models such as (Z. P. Bažant and Najjar 1971; Ababneh, Benboudjema, 

and Xi 2003) are used which use fewer parameters and can be easily calibrated from 

experiments. Much of the evaporable water of concrete remains in the nanopores and is 

called hindered adsorbed water and its movement is controlled by surface forces of 

adsorption. Under isothermal condition, its movement can be described by the water mass 

balance equation per unit volume, 

𝜕𝑊

𝜕𝑡
= ∇. 𝐽𝑊 +

𝜕𝑊𝑑

𝜕𝑡
(2.1) 

where, 𝑊 is the total water content, 𝐽𝑊 = 𝐶∇W is the moisture flux. 𝑊𝑑 is the total mass of 

free evaporable water released into the pores by dehydration of cement paste. Also, it has 

been shown that the evaporable water content could be replaced by relative humidity inside 

the pore. This is called pore relative humidity and is equal to the partial vapor pressure of 

water vapor divided by the saturated vapor pressure. This pore humidity is the primary 

unknown in the moisture diffusion equation. The governing moisture diffusion equation is 

then formulated as 

𝜕𝑊

𝜕𝐻

𝜕𝐻

𝜕𝑡
= ∇(𝐽𝐻) +

𝜕𝑊𝑑

𝜕𝑡
(2.2) 

where, H is the pore relative humidity, J𝐻 is also the moisture flux but expressed as 

𝐽𝐻 = 𝐷𝐻∇H (2.3) 
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Both moisture capacity 
𝜕𝑊

𝜕𝐻
 and moisture diffusivity D𝐻 depends on the relative humidity 𝐻 

which makes this equation highly nonlinear. The moisture capacity 
𝜕𝑊

𝜕𝐻
 can be considered 

constant if 𝐻 lies between 0.2 and 1 (Powers and Brownyard 1946). It can also be obtained 

from desorption isotherms. Additionally, it can also be obtained from the empirical relation 

for desorption isotherms provided by Xi et al. (Xi, Bažant, and Jennings 1994) which is 

based on the Brunauer-Emmett-Teller (BET) adsorption isotherm theory. The model has 

been shown to predict the moisture capacity for a range of water cement ratio, cement type, 

curing time and temperature. The moisture diffusivity is a complex function of temperature 

𝑇, relative humidity 𝐻, and pore structure of concrete. There are indeed various diffusion 

mechanisms taking place simultaneously due to the different size of the pores. Kunzel 

(Künzel 1995) proposed a diffusion model that combined pressure difference induced 

water vapor diffusion, liquid water diffusion through micropores and capillary pores, and 

the moisture diffusion due to gradient in relative humidity in larger pores. Most models for 

concrete, however, are empirical in nature and do not account for different diffusion 

mechanisms and tend to reproduce the overall trend. Among the first such work for 

concrete was proposed by Bazant and Najjar (Z. P. Bažant and Najjar 1971) which 

considered a S- shape curve and Mensi (Mensi, Acker, and Attolou 1988) which considered 

an exponential curve that describes the diffusion coefficient in terms of relative humidity 

in the pores of concrete. The model by Bazant and Najjar (Z. P. Bažant and Najjar 1971) 

was later expanded to include the effect of temperature as in Bazant and Thonguthai 

(Bazant and Thonguthai 1978). The effect of water cement ratio and age for cement paste 

was considered as in (Xi et al. 1994). This was further extended to a concrete using 

composite theory by Ababneh (Ababneh, Benboudjema, and Xi 2003).  
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In regular service of concrete structures, the temperature is usually below 50oC, however, 

it can go as high as ~ 70oC in nuclear reactors, ~200oC in irradiation experiments and ~ 

1000oC in a fire accident scenario. These high temperatures can have substantial effect on 

the moisture transport characteristic which in turn can affect the creep and shrinkage 

kinetics. It is therefore necessary to have a model that can realistically predict behavior of 

concrete at elevated temperature. The pioneering work in coupled moisture-heat transfer 

in capillary porous solids was done by Luikov et al. (Luikov 1975). In this study moisture 

diffusion takes place not just under liquid concentration gradient but also under a 

temperature gradient, commonly known as Soret effect. The study also considers that as 

liquid moves, the enthalpy transfer occurs as well. Luikov proposed the coupled differential 

equations for heat and mass transfer in the capillary porous bodies using Fourier’s equation 

for heat transfer, Fick’s equation for mass transfer and their interaction. The three basic 

assumptions used in these equations were as follows: (i) Body volume always remains 

constant. (ii) The different phases have equal temperature which is same as that of the mass 

skeleton. (iii) Mass content of liquid is equal to the mass content of water, i.e. mass of 

water vapor and air are considered negligible. Bažant and Thonguthai (Bazant and 

Thonguthai 1978; Zdeněk P. Bažant and Thonguthai 1979; Zdeněk P. Bažant, Chern, and 

Thonguthai 1982) extended this theory to concrete for coupled heat and moisture transfer 

in concrete at high temperature. They simplified the expression by assuming that vapor 

pressure causes mass transfer in the concrete. Using heat equilibrium, the governing partial 

differential equation for coupled heat and moisture transfer was given by (Bazant and 

Thonguthai 1978; Zdeněk P. Bažant and Thonguthai 1979; Zdeněk P. Bažant, Chern, and 

Thonguthai 1982), 
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𝜌𝐶
𝜕𝑇

𝜕𝑡
= ∇(k∇T) + 𝐶𝑤J∇T + 𝐶𝑎

𝜕𝑊

𝜕𝐻

𝜕𝐻

𝜕𝑡
+ 𝑄 (2.4) 

where, 𝜌𝐶
𝜕𝑇

𝜕𝑡
 represents heat consumed due to the change in temperature per unit volume 

per unit time, with 𝜌 being the density, 𝐶 being the specific heat (per unit mass), 𝑇 is the 

temperature. ∇(k∇T) represents rate of heat supplied by thermal conduction with k being 

thermal conductivity of concrete. 𝐶𝑤J∇T represents the convective heat transport due to 

water movement with 𝐶𝑤 being the isobaric heat capacity of water. 𝐶𝑎
𝜕𝑊

𝜕𝐻

𝜕𝐻

𝜕𝑡
 represents the 

heat flow due to adsorption of free water molecules. 𝑄 represents the volumetric heat 

source. The thermal capacity and conductivity of mortar is assumed to be constant as it 

doesn’t change appreciably below 100oC (Kodur, Wang, and Cheng 2004). The modified 

governing equation for moisture diffusion in concrete is given by, 

𝜕𝑊

𝜕𝐻

𝜕𝐻

𝜕𝑡
= ∇(Dℎ∇H) + ∇(Dℎ𝑡∇T) +

𝜕𝑊𝑑

𝜕𝑡
(2.5) 

where, Dℎ𝑡 is the coupled moisture diffusivity under the influence of a temperature 

gradient. The theory and numerical implementation of this model in MOOSE is described 

in Chapter 3. 

2.3.2  Creep Damage Constitutive Model for Concrete 

The mechanical response of concrete to loading is highly complicated and even the 

sophisticated model available cannot cover all the material properties. The increased use 

to concrete as a structural material necessitated the use of sophisticated material model to 

a variety of loading situations. In order to simulate high level loading under a long duration, 

such as the one in this work, it becomes necessary to understand creep, damage and its 

interaction. Damage arising due to creep is usually not included in the analysis of 
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reinforced concrete structures (C Mazzotti and Savoia 2001; Claudio Mazzotti and Savoia 

2003; Pijaudier-Cabot et al. 2005). However, it becomes necessary to consider the effect 

of creep on fracture and failure in massive structures such as dams and nuclear power plants 

(C Mazzotti and Savoia 2001; Claudio Mazzotti and Savoia 2003; Zdenek P. Bažant and 

Gettu 1992; Giorla Alain B., Le Pape Yann, and Dunant Cyrille F. 2017; Zdenek P. Bažant 

and Baweja 2000; Altoubat and Lange 2001). It has been shown that creep is likely to 

reduce the expected life span of these structures (Giorla Alain B., Le Pape Yann, and 

Dunant Cyrille F. 2017; Challamel, Lanos, and Casandjian 2005). To realistically simulate 

such behavior, a combined creep-damage model is highly desirable. Cementitious 

materials can be considered to be linear viscoelastic at low stress levels (stress < 40-60% 

of the strength). Since the principle of superposition is valid for linear viscoelastic 

materials, the constitutive equation can be expressed as: 

𝜀(̅𝑡) = ∫ 𝐽(𝑡, 𝑡′):
𝜕𝜎̅(𝑡′)

𝜕𝑡′
d𝑡′

𝑡

0

𝜎̅(𝑡) = ∫ 𝑅(𝑡, 𝑡′):
𝜕𝜀(̅𝑡′)

𝜕𝑡′
d𝑡′

𝑡

0 }
 
 

 
 

(2.6) 

where, 𝐽(𝑡, 𝑡′) and 𝑅(𝑡, 𝑡′) are the creep compliance and relaxation functions, and 𝜀 ̅and 𝜎 

are the strain and stress tensor, respectively. The creep compliance or relaxation function 

can be obtained from creep or relaxation tests. Creep compliance can also be obtained using 

formulations such as the double power law (BP model (Zdeněk P. Bažant, 1988)), which 

is used in the present study. Creep is generally modeled using generalized Kelvin-Voigt 

(Figure 2-1(a)) or Maxwell models (Figure 2-1(b)) to represent the rheological behavior. It 

is easier to represent creep data using a generalized Kelvin-Voigt model, while relaxation 

data is more easily represented using a generalized Maxwell model (Zdeněk P. Bažant and 
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Wu 1974; 1973). To model the complex relaxation/creep behavior of aging concrete, the 

spring/dashpot properties can be varied, for e.g., with time, temperature or relative 

humidity (A. B. Giorla 2017). 

  

(a) (b) 

Figure 2-1. (a) Generalized Kelvin-Voigt Model and (b) Generalized Maxwell Model 

Significant progress has been made to simulate damage in quasi brittle materials, such as 

concrete (Kurumatani et al. 2016; Zdeněk P. Bažant and Lin 1988; Zdeněk P. Bažant and 

Oh 1983; Hillerborg, Modéer, and Petersson 1976; Zdenek P. Bažant and Planas 1997). In 

these materials, the crack tip is surrounded by a large fracture process zone which 

encapsulates a region of distributed microcracking (Pijaudier-Cabot, Bažant, and Tabbara 

1988; Zdeněk P. Bažant et al. 1984; Zdeněk P. Bažant and Lin 1988). This causes strain 

softening in the material such that there is a gradual decline of stress with increasing strain. 

In continuum models, strain softening causes incorrect convergence of solutions causing 

vanishing energy dissipation as the mesh is refined (Pijaudier-Cabot, Bažant, and Tabbara 

1988; Zdeněk P. Bažant and Lin 1988; de Vree, Brekelmans, and van Gils 1995). However, 

continuum models are still preferred over discrete models because of the ease with which 

they can be incorporated into computational frameworks. Moreover, modeling distributed 

cracking using the discrete crack approach is difficult. The problem of incorrect 

convergence of energy dissipation due to strain softening has been tackled using the crack 

band approach (Zdeněk P. Bažant and Oh 1983), regularization or non-local methods 
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(Zdeněk P. Bažant and Lin 1988; Zdeněk P. Bažant and Pijaudier‐Cabot 1989; Pijaudier‐

Cabot and Bažant 1987), or energy equivalence (also called cohesive crack) approach 

(Kurumatani et al. 2016; Hillerborg, Modéer, and Petersson 1976; Zhang et al. 2002). The 

crack band approach involves fixing the size of the mesh to avoid incorrect convergence, 

keeping the fracture energy constant (Zdeněk P. Bažant and Oh 1983). The regularization 

method uses an internal length, the definition of which has been quite ambiguous. Here, it 

is assumed that the strain at a point is dependent on the strain at nearby points lying inside 

a sphere with a radius equal to the internal length. While this can be related to distributed 

cracking in the sense that strain at a point is governed by microcracks occurring in the 

fracture zone, there has never been a consensus regarding what is an appropriate value of 

internal length. Baẑant and coworkers (Pijaudier-Cabot, Bažant, and Tabbara 1988; 

Zdeněk P. Bažant and Pijaudier‐Cabot 1989; Pijaudier‐Cabot and Bažant 1987) have 

routinely used a value of 3𝑑, with 𝑑 being the largest aggregate size, as the internal length. 

Values ranging from 2𝑑 to 13𝑑 have also been found to give reasonable global response 

for specimens under three-point bending (Le Bellégo et al. 2003). In the energy equivalence 

approach, first proposed by Hillerborg et al. (Hillerborg, Modéer, and Petersson 1976), the 

fracture energy is specified as one of the material parameters. The fracture process zone of 

concrete is modeled as a discrete crack which is characterized by a stress-displacement law 

and not by stress-strain relations. Kurumatani et al. (Kurumatani et al. 2016) included the 

cohesive zone modeling approach in the constitutive equation by including the 

characteristic length for each element. The stress-strain response of each element is varied 

based on the characteristic length of the element, keeping the fracture energy constant. 

Consequently, there is no need to specify or calibrate the internal length as in the 
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regularization method. The advantage in using this approach is that it only requires small 

modifications in the constitutive relations to capture the mesh-independent strain softening 

behavior.  

 

In recent works, incorporation of creep and damage to model fracture propagation in 

cementitious materials has been accomplished through a rate-dependent softening model 

with either linear viscoelasticity in the bulk of the specimen (Zdeněk P. Bažant and Li 

1997; Di Luzio 2009) or a time-dependent cohesive model in an elastic solid for crack 

propagation (Rosa et al. 2012). While these models can be used in specific cases such as 

in a three-point bending specimen where the behavior of the material under different 

loading rates is known a priori, a generalized creep-damage model is required to model 

time-dependent fracture in situations where creep and damage properties are obtained 

separately(Pijaudier-Cabot et al. 2005). The concrete material properties such as elastic 

modulus, compressive strength and tensile strength are obtained at a certain rate usually 

specified in the ASTM standards. However, all the damage analysis is done in a time-

independent manner. This can work for a range of loading rates similar to the rate at which 

these properties are estimated. At rates that differ significantly from those test conditions, 

the results could be entirely different. At lower rates particularly, the creep in the material 

interferes with the fracture and the strength of the material.  
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CHAPTER 3 

MOOSE 

3.1  Background and Overview 

MOOSE is a high-performance, open source, C++-based FE framework, with customizable 

modules for multi-physics simulations (INL). MOOSE is designed to solve large systems 

of coupled equations simultaneously without using the traditional operator split method 

(MacNamara and Strang 2016). It utilizes a modular approach, which makes it 

straightforward to add new models to create new, fully coupled Multiphysics applications 

tailored to specific purposes (D. R. Gaston et al. 2015). MOOSE employs the Jacobian-

free Newton-Krylov (JFNK) solution technique to solve systems of coupled physics 

equations in a fully coupled, implicit manner. The MOOSE architecture capitalizes on the 

fact that JFNK implementation requires only residual evaluations of the discrete system. 

For optimal convergence, the Jacobian-free approach calls for effective preconditioning 

for optimal convergence. MOOSE provides access to a variety of options for 

preconditioning to achieve parallel scalability and balanced use of computational resources 

(Derek Gaston et al. 2009). A relevant example of an application that takes advantage of 

MOOSE to model specific physical phenomena is the Grizzly code, which is being used to 

model the evolution of degradation mechanisms in concrete, considering the coupled 

effects of thermal and moisture transport and mechanical deformation (Huang and Spencer 

2016).  

3.2  Solving Technique 
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The Newton-Raphson method is the most popular iterative technique to solve the nonlinear 

algebraic equations. The residual system of equations of the weak form of the set of the 

partial differential equations (PDE’s) to be solved is given by, 

𝑹𝒊(𝒖) = 0 (3.1) 

where 𝐮 is the solution vector and is approximated as, 

𝒖 =∑𝑢𝑗𝜑𝑗

𝑁

𝑗=1

 (3.2) 

where, 𝜑𝑗 are the shape functions. 𝑢𝑗  are the coefficients which are solved in Equation 3.1. 

In Galerkin finite element method, the number of equations (𝑖 in Equation 3.1)) are same 

as the coefficients to be solved. The coefficients are obtained using the Newton-Raphson’s 

method as follows, 

𝑱(𝒖𝒏)𝛿𝒖𝒏+𝟏 = −𝑹(𝒖𝒏) (3.3) 

where, the Jacobian matrix 𝑱(𝐮𝒏) in the current iteration n is given as, 

𝑱𝑖𝑗(𝒖𝒏) =
𝜕𝑹𝒊(𝒖𝒏)

𝜕𝑢𝑗
(3.4) 

The updated solution is then given by, 

𝒖𝒏+𝟏 = 𝒖𝒏 + 𝛿𝒖𝒏+𝟏 (3.5) 

 

The iteration continues until 𝐮𝒏+𝟏 − 𝐮𝒏 < 𝜹𝒕𝒐𝒍. The problem with Newton method is that 

for large number of equations (with increasing number of elements in the analysis) and a 

highly nonlinear problem which converges slowly, the cost of evaluating and storing 

Jacobian increases.  

3.2.1  Krylov Iteration and GMRES 
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Krylov iterative procedures are used, which do not require the Jacobian matrix but 

approximates the multiplication of the Jacobian with any vector using a Krylov subspace. 

To solve 𝐀𝐱 = 𝐛, a Krylov subspace is used (Knoll and Keyes 2004), 

𝑲𝒋 = 𝒔𝒑𝒂𝒏(𝒓0, 𝑨𝒓0, 𝑨
2𝒓0, … . , 𝑨𝑗−1𝒓0) (3. 1) 

where 𝐫0 = 𝐛 − 𝐀𝐱0 are the initial residual vector and the vectors 𝒗 =

𝐫0, 𝐀𝐫0, 𝐀
2𝐫0, … . , 𝐀𝑗−1𝐫0 are called Krylov vectors. Generalized minimum residual method 

(GMRES) is one of the Krylov iteration scheme which gives an approximate solution 𝐱𝑛 

that minimizes Euclidean norm of the residual vector, 𝐫n = 𝐛 − 𝐀𝐱𝑛. 

3.2.2  Jacobian Free Newton-Krylov Technique 

In the JFNK approach, Equation 3.3 is solved by utilizing the Krylov iteration using an 

initial guess δ𝒖0. The initial residual vector at a fixed iteration 𝑛 is then given by,  

𝒓0 = −𝑹(𝒖) − 𝑱(𝒖)𝛿𝒖𝟎 (3. 2) 

As per GMRES, the lh Krylov iteration is then given by, 

𝛿𝒖𝑙 = 𝛿𝒖0 +∑𝜷𝒋(𝑱)
𝒋𝒓0

𝒍−𝟏

𝒊=𝟎

(3.8) 

where, 𝜷𝒋 are scalars used to minimize the residual.  In Equation 3.8, the Jacobian is not 

explicitly needed but its action on Krylov vectors is required. This is approximated using 

a finite difference approach (Derek Gaston et al. 2009; Knoll and Keyes 2004).  

𝑱(𝒖)𝒗 =
𝑹(𝒖 + 𝜀𝒗) − 𝑹(𝒖)

𝜀
(3.9) 

where, 𝜀 is a small perturbation. The disadvantage with this approach is that iterations are 

required to solve any nonlinear problem to advance through a time step. 
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3.2.3  Preconditioned JFNK 

Preconditioning reduces the number of iterations required in Krylov iterations. The 

traditional preconditioner that are usually used to are Jacobi, ILU and SSOR (D Gaston et 

al. 2009). Jacobi uses the diagonal of the matrix as the preconditioner, ILU uses splits the 

original matric into lower and upper triangles while in SSOR the original matrix is split 

into diagonal, lower and upper triangles.    

MOOSE uses right preconditioning, which is given as, 

(𝑱𝑴−𝟏)(𝑴𝛿𝒖) = −𝑹(𝒖) (3.10) 

where, M is the preconditioning matrix. The above equation is solved in two steps 

(𝑱𝑴−𝟏)(𝒘) = −𝑹(𝒖) (3.11) 

𝒘 is obtained in the above equation by a slight modification in equation (3.9) as follows 

𝑱(𝒖)𝑴−𝟏𝒗 =
𝑹(𝒖 + 𝜀𝑴−𝟏𝒗) − 𝑹(𝒖)

𝜀
(3.12) 

and then δ𝐮 is obtained as 

𝛿𝒖 = 𝑴−𝟏𝒘 (3.13) 

3.2.4  Physics Based Conditioner 

Preconditioning reduces the number of iterations required in Krylov iterations. The 

traditional preconditioner that are usually used to are Jacobi, ILU and SSOR (D Gaston et 

al. 2009). Jacobi uses the diagonal of the matrix as the preconditioner, ILU uses splits the 

original matric into lower and upper triangles while in SSOR the original matrix is split 

into diagonal, lower and upper triangles. MOOSE uses right preconditioning, which is 

given as, 

(𝑱𝑴−𝟏)(𝑴𝛿𝒖) = −𝑹(𝒖) (3. 3) 



  22 

where, M is the preconditioning matrix. The above equation is solved in two steps 

(𝑱𝑴−𝟏)(𝒘) = −𝑹(𝒖) (3. 4) 

𝒘 is obtained in the above equation by a slight modification in Equation 3.9 as follows 

𝑱(𝒖)𝑴−𝟏𝒗 =
𝑹(𝒖 + 𝜀𝑴−𝟏𝒗) − 𝑹(𝒖)

𝜀
(3.16) 

and then δ𝐮 is obtained as 

𝛿𝒖 = 𝑴−𝟏𝒘 (3. 5) 

Moose employs incomplete LU decomposition as default preconditioner.  

3.3  Structure of MOOSE 

Figure 3-1 illustrates how a few different types of modules to represent specific physical 

phenomena can be integrated into the MOOSE architecture. MOOSE handles the finite 

element solution and provides interfaces for a variety of software objects that perform 

numerical operations or represent physics to be plugged into the system. One of the most 

commonly used modules, called the Kernel, represents an individual term in the weak form 

of the partial differential equation (PDE) to be solved. Boundary conditions can also be 

customized and represent surface terms in the PDE. Material objects compute values at 

volume or surface integration points, and are used to compute quantities describing local 

material behavior, which are then used by the kernels (Permann et al. 2019). MOOSE uses 

the libMesh FE framework(Kirk et al. 2006) to provide core finite element functions, mesh 

input-output, and interfaces to solver packages. Extensive documentation of the MOOSE 

framework is available(Slaughter et al. 2015; Permann et al. 2019). MOOSE is made 

publicly available through GitHub( "Https://Github.Com/Idaholab/Moose"), which also 

provides a platform for peer review and testing of all new code contributions. 
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Figure 3-1. Modular Structure of MOOSE, Showing a Few of the Provided Pluggable 

Interfaces for Defining Physics-Specific Models (Permann et al. 2019) 

The kernels, boundary conditions and materials will be explained next using the Tensor 

Mechanics kernel of MOOSE.  

3.3.1  Tensor Mechanics Kernel 

The Tensor Mechanics kernel in the MOOSE framework consists of libraries that help to 

solve mechanics problem. The governing equation when a material deforms under stress is 

given by, 

𝛻. (𝝈 + 𝝈0) + 𝒃 = 0 (3.18) 

with the boundary conditions as  

𝒖 = 𝒖𝒑
𝝈. 𝒏 = 𝒕

(3.19) 

where, 𝝈 is the Cauchy stress tensor, 𝝈0 is the additional stress, 𝒃 is the body force, 𝒖 is 

the displacement, 𝒖𝒑 is the prescribed displacement at the boundary, 𝐧 is the unit normal 

to the boundary and 𝒕 is the prescribed traction on the boundary. The weak form of 

Equation 3.18 is given as (neglecting the body force), 

∫ 𝛻𝜑𝑚(𝝈 + 𝝈0)
𝛺

+∫ 𝜑𝑚𝒕
Г

= 0 (3.20) 
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The first term is the kernel while the last term is a boundary condition in the above equation. 

The first term is handled by StressDivergenceKernel() in MOOSE 

(“Www.Mooseframework.Org: StressDivergenceTensors Class Reference”). The 

constitutive model for a linear elastic material is given as: 

𝛔̅ = 𝐂(𝛆̅ − 𝛆𝟎̅̅ ̅) (3.21) 

where, 𝛔̅, 𝐂 and 𝛆̅ are the stress, elasticity tensor and strain tensor respectively, and 𝛆𝟎̅̅ ̅ is 

the stress-independent strain. The MOOSE implementation of mechanics uses a modular 

architecture(“Parallel Multiphysics Finite Element Framework”) based on the 

aforementioned Material system, in which 𝛔̅, 𝐂, 𝛆̅ and 𝛆𝟎̅̅ ̅ are defined as separate Material 

objects that can be combined together in a variety of ways to provide the desired behavior. 

Of these four tensors, the first three are required for any mechanics problem, while the 

latter one is optional. There are separate base classes for all of these basic types of Material 

objects, which used together, compute the material behavior at the quadrature points, which 

can be represented by scalars, vectors, or tensors(“Parallel Multiphysics Finite Element 

Framework”). These values are assigned at each quadrature point. The values are declared 

inside a kernel easily using declareProperty<TYPE>() syntax. To use a material property, 

getMaterialProperty<TYPE>() is used inside a kernel or any other object. In some cases, 

it might be necessary to store the old values of a variable, in that case 

declarePropertyOld<TYPE>() is used.  

3.3.2  Strain Materials Class 

The base class to create a second order strain tensor is called ComputeStrainBase(). This 

base class creates a material object total_strain, which must be initialized in the overriding 
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classes. In case of incremental strains, ComputeIncrementalBaseclass() creates a material 

object strain_increment, rotation_increment etc. which must be overridden in classes 

inheriting from this class. These properties then become available for all the kernels, 

materials, boundary conditions etc.  

MOOSE has small total strain, small incremental strain and finite incremental strain 

formulation. These strains are computed as follows 

𝜺𝒔𝒕 = 0.5(∇𝒖 + ∇𝒖𝑇)

𝜺𝒔𝒊 = 0.5(𝑭 + 𝑭𝑇)

𝜺𝑭𝒊 = 𝑫 × 𝑑𝑡

(3.22) 

where, 𝑢 is the displacement vector, 𝐹 is the deformation gradient and 𝑫 is the stretching 

rate tensor. 𝑑𝑡 is the increment of time. 

3.3.3  Elasticity Tensor 

The base class to create a fourth order elasticity tensor is called 

ComputeElasticityTensorBase(). It creates a material object elasticity_tensor which is to 

be initiated in the derived class. One such class is called ComputeElasticityTensor() which 

builds the elasticity tensor based on the symmetry required by the user (“Compute 

Elasticity Tensor|MOOSE”).  

3.3.4  Stress Materials 

The base class to create a second order stress tensor is called ComputeStressBase 

(“Www.Mooseframework.Org: ComputeStressBase Class Reference”). All the overriding 

class must override the function computeQPStress(). A variety of classes are available to 

compute elastic stress, plastic stress, creep stress, stress using a smeared cracking model, 

etc. and multiple sources of inelastic strains can be accounted for in the stress calculation 

with the ComputeMultipleInelasticStress (“Parallel Multiphysics Finite Element 



  26 

Framework”) class . In this class, the inelastic strains are computed first using the specified 

inelastic model. The effective stress is then computed, assuming that the material is 

undamaged. The effect of damage is then accounted for in the effective stress based on the 

computed isotropic damage index in the damage class. In the next section, the 

implementation of the existing creep model in MOOSE will be described.  

3.4  Creep Model in MOOSE 

Using Newmark finite difference scheme, the constitutive equation for the material 

described by the generalized Kelvin-Voigt or Maxwell models is given by  (A. B. Giorla 

2017): 

𝝈̅(𝒏+𝟏) = 𝑪̿𝒆𝒒
(𝑛+1): [𝜺̅ (𝑛+1) − 𝜶𝒆𝒒

(𝑛)] (3.23) 

where the apparent stiffness tensor 𝑪̿𝒆𝒒
(𝑛+1)

 and apparent internal strain 𝜶𝒆𝒒
(𝑛)

 for a 

generalized Kelvin-Voigt model are given as (A. B. Giorla 2017): 

𝑪̿𝒆𝒒
(𝑛+1) = [𝑪̿𝟎

−1 +∑[(1 +
𝜂𝑖

∆𝑡(𝑛+1)𝜃𝑖
) 𝑪̿𝒊]

−1𝑁

1

]

−1

𝜶𝒆𝒒
(𝑛) =∑(

𝜂𝑖

∆𝑡(𝑛+1)𝜃𝑖
)

𝑁

1

[𝜶𝒊
(𝑛) + ∆𝑡(𝑛+1)(1 − 𝜃𝑖)𝜶̇𝒊

(𝑛)
]

(3.24) 

For a generalized Maxwell model, the corresponding expressions are (A. B. Giorla 2017): 

𝑪̿𝒆𝒒
(𝑛+1) = 𝑪̿𝟎 +∑[(

1

1 +
𝜂𝑖

∆𝑡(𝑛+1)𝜃𝑖

) 𝑪̿𝒊]

𝑁

1

𝜶𝒆𝒒
(𝑛) = [𝑪̿𝒆𝒒

(𝑛+1)]
−𝟏

:∑ 𝑪̿𝒊: (

𝜂𝑖
∆𝑡(𝑛+1)𝜃𝑖

1 +
𝜂𝑖

∆𝑡(𝑛+1)𝜃𝑖

)

𝑁

1

[𝜶𝒊
(𝑛) + ∆𝑡(𝑛+1)(1 − 𝜃𝑖)𝜶̇𝒊

(𝑛)]

(3.25) 
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where 𝜶𝒊 and 𝜶̇𝒊 are the strain and strain rate in the 𝒊𝒕𝒉 viscous dashpot (𝒊 ranging from 1 

to N). 𝑪̿𝟎 and 𝑪̿𝒊 are the elasticity tensors of the standalone and 𝒊𝒕𝒉 spring in the Kelvin-

Voigt or Maxwell chains. 𝜂𝑖 is the characteristic time, which defines viscosity of the 

dashpot (𝑬̿𝒊) as: 

𝑬̿𝒊 = 𝜂𝑖𝑪̿𝒊 (3.26) 

𝜃𝑖 is a numerical parameter to control the convergence properties of the finite difference 

scheme. For unconditional convergence, 𝜃𝑖 ≥ 0.5. ∆𝑡(𝑛+1) is the change between the 

current and previous time step.  

The elasticity tensor of the material is given as:  

𝑪̿𝒐𝒓𝒊𝒈 = 𝑪̿𝟎 𝑓𝑜𝑟 𝐾𝑒𝑙𝑣𝑖𝑛 − 𝑉𝑜𝑖𝑔𝑡 𝑚𝑜𝑑𝑒𝑙

𝑪̿𝒐𝒓𝒊𝒈 =∑𝑪̿𝒊

𝑵

𝒊=𝟎

𝑓𝑜𝑟 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 𝑚𝑜𝑑𝑒𝑙
(3.27) 

For aging materials such as concrete, the spring elasticities and dashpot viscosities are time 

dependent. Once the apparent stiffness and apparent internal strain are known, the actual 

creep strain increment is estimated as (A. B. Giorla 2017): 

∆𝜺̅𝒄𝒓
(𝑛+1) = 𝜺̅𝒎𝒆𝒄𝒉

(𝑛+1) − [𝑪̿𝒐𝒓𝒊𝒈
(−1): 𝑪̿𝒆𝒒

(𝑛+1)]: [𝜺̅ (𝑛+1) − 𝜶𝒆𝒒
(𝑛)] − 𝜺̅𝒄𝒓

(𝑛) (3.28) 

The stress increment is computed as: 

𝜟𝝈̅(𝒏+𝟏) = 𝑪̿𝑜𝑟𝑖𝑔𝜟𝜺̅𝒄𝒓
(𝑛+1) (3.29) 

The effective stress is then computed as: 

𝝈̅(𝒏+𝟏) = 𝝈̅(𝒏) + 𝑪̿𝑜𝑟𝑖𝑔𝜺̅𝒊𝒏𝒄 − 𝜟𝝈̅(𝒏+𝟏) (3.30) 

The details of the derivation are available in (A. B. Giorla 2017).  

3.5  Hygro-Thermal Model in MOOSE 
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As stated in Section 2.1.2, the two partial differential equation to be solved for coupled 

hygro-thermal analysis are as follows: 

𝜌𝐶
𝜕𝑇

𝜕𝑡
= ∇(k∇T) + 𝐶𝑤J∇T + 𝐶𝑎

𝜕𝑊

𝜕𝐻

𝜕𝐻

𝜕𝑡
+ 𝑄 (3.31) 

𝜕𝑊

𝜕𝐻

𝜕𝐻

𝜕𝑡
= ∇(Dℎ∇H) + ∇(Dℎ𝑡∇T) +

𝜕𝑊𝑑

𝜕𝑡
(3.32) 

The individual components for the weak form are the kernels (in MOOSE terminology) to 

be solved. In the equations above, the isobaric heat capacity of water is given by, 

𝐶𝑤 = 350000(374.15 − 𝑇)
1
3 (3.33) 

The empirical relation developed for cement paste mix is given by, 

𝑊 =
𝐶𝑘𝑉𝑚𝐻

(1 − 𝑘𝐻)[1 + (𝑐 − 1)𝑘𝐻]
(3.34) 

where, 𝑊 is the quantity of vapor absorbed (g/g of cement paste). 𝑉𝑚 is the mass of 

adsorbate required to cover the adsorbent with a single molecular layer. It is given by the 

following relation with 𝑉𝑡, 𝑉𝑤𝑐, and 𝑉𝑐𝑡 denoting the age of mix, water cement ratio and 

cement type. 

𝑉𝑚 = 𝑉𝑡𝑉𝑤𝑐𝑉𝑐𝑡 (3.35) 

The three constants are given by, 

𝑉𝑡 = {
0.068 −

0.22

𝑡
𝑉𝑡(5)

𝑡 > 5 𝑑𝑎𝑦𝑠
𝑡 ≤ 5 𝑑𝑎𝑦𝑠

(3.36) 

𝑉𝑤𝑐 = {
0.85 +

0.45𝑤

𝑐
𝑉𝑤𝑐(0.3)

0.3 <
𝑤

𝑐
> 0.7

𝑤

𝑐
≤ 0.3

(3.37) 
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𝑉𝑐𝑡 = {

0.9
1

Type I cement
Type II cement

0.85
0.6

Type III cement
Type IV cement

(3.38) 

𝐶 and 𝑘 are empirical constant which are given by, 

𝐶 = exp (
855

𝑇 + 273.15
) (3.39) 

𝑘 = 0 ≤ (
(𝑛 − 1)𝐶 − 1

𝑛(𝐶 − 1)
) ≤ 1 (3.40) 

where, n depends upon the same factors as 𝑉𝑚 and is expressed as, 

𝑛 = 𝑁𝑡𝑁𝑤𝑐𝑁𝑐𝑡 (3.41) 

with the constants given as below, 

 

𝑁𝑡 = {2.5 +
1.5

𝑡
5.5

𝑡 > 5 𝑑𝑎𝑦𝑠
𝑡 ≤ 5 𝑑𝑎𝑦𝑠

(3.42) 

𝑁𝑤𝑐 =

{
 
 

 
 0.33 +

2.2𝑤

𝑐
0.3 <

𝑤

𝑐
> 0.7

𝑁𝑤𝑐(0.3)
𝑤

𝑐
≤ 0.3

𝑁𝑤𝑐(0.7)
𝑤

𝑐
≥  0.7

(3.43) 

𝑁𝑐𝑡 = {

1.1
1

Type I cement
Type II cement

1.15
1.5

Type III cement
Type IV cement

(3.44) 

More details about the implementation could be found in (Huang and Spencer 2016). 
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CHAPTER 4 

CREEP DAMAGE MODEL THEORY AND NUMERICAL IMPLEMENTATION  

The coupled creep-damage model for concrete is implemented in this work within the 

framework of MOOSE, a finite element environment developed by Idaho National 

Laboratory, for the solution of coupled multiphysics problems. The developed framework 

can be augmented with additional features such as a bilinear softening model (Hoover and 

Bažant 2014) or a nonlocal continuum approach for strain softening (Zdeněk P. Bažant and 

Lin 1988; Pijaudier‐Cabot and Bažant 1987). In ComputeMultipleInelasticStress (“Parallel 

Multiphysics Finite Element Framework”)  class, the inelastic strains are computed first 

using the specified inelastic model. The effective stress is then computed, assuming that 

the material is undamaged. The effect of damage is then accounted for in the effective 

stress based on the computed isotropic damage index in the damage class. In the next 

section, the theory and implementation of the damage class will be described. 

4.1  Damage Model 

Damage is characterized in this work by an isotropic damage (scalar) variable 𝑑 such that 

the stress in the body can be expressed as: (Kurumatani et al. 2016; Giorla Alain B., Le 

Pape Yann, and Dunant Cyrille F. 2017) 

𝝈̅ = (1 − 𝑑(𝜅))𝑪̿: 𝜺̅𝒆𝒍 (4.1) 

where, 𝝈̅, 𝜺𝒆𝒍̅̅ ̅̅ , and 𝑪̿ are the second order stress and elastic strain tensors, and fourth-order 

elasticity tensor, respectively. The value of the damage parameter 𝑑(𝜅) ranges from 0 for 

an undamaged specimen to 1.0 for a completely damaged specimen and is a function of the 

state variable 𝜅 used to describe the evolution of damage. 𝜅 captures the strain history in 

the material up to a considered instant of time. The underlying assumption is that the 
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material remains isotropic even after the damage has occurred. This assumption is valid for 

highly heterogeneous materials like concrete (Kurumatani et al. 2016; Pijaudier-Cabot and 

Mazars 2001; Fichant, La Borderie, and Pijaudier-Cabot 1999) since the random 

orientation of pores and defects present in the pristine material as well as in the damaged 

state makes it difficult to quantify damage as a function of orientation as is done for typical 

composite materials (Khaled et al. 2019). A simplifying assumption is made in this case 

that damage results in a reduction in the Young’s modulus of the specimen. Such an 

isotropic model has been used to predict damage in uniaxial and mixed mode fracture cases 

(Kurumatani et al. 2016; Pijaudier-Cabot and Mazars 2001; C Mazzotti and Savoia 2001). 

However, damage-induced anisotropy should be considered in problems where failure 

occurs due to multiaxial extensions (Fichant, La Borderie, and Pijaudier-Cabot 1999).  

The evolution of damage depends on how stress decays with strain increment in the post-

peak region and occurs only when the equivalent strain, 𝜀𝑒𝑞 >  𝜅 with 𝜅 either increasing 

or remaining constant. In a one-dimensional case, this strain is the maximum principal 

strain. However, expanding it to a three-dimensional case requires the use of a strain 

invariant that is a function of the components of the strain tensor. The equivalent strain has 

been defined in multiple ways (de Vree, Brekelmans, and van Gils 1995; Mazars 1986; 

Mazars, Hamon, and Grange 2015). In this study, a modified von Mises strain is used as 

the equivalent strain (de Vree, Brekelmans, and van Gils 1995),(Kurumatani et al. 2016), 

and is defined as: 

𝜅 = 𝜀𝑒𝑞 = 𝑓(𝜺̅𝒆𝒍) =
𝑘 − 1

2𝑘(1 − 2𝜈)
𝐼1 +

1

2𝑘
√(

𝑘 − 1

1 − 2𝜈
𝐼1)

2

+
12𝑘

(1 + 𝜈)2
𝐽2 (4.2) 
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where 𝜈, 𝑘 are the Poisson’s ratio and the ratio of compressive to tensile strength, 

respectively. 𝐼1 and 𝐽2 are the first and second invariants of elastic strain, 𝜺̅𝒆𝒍 and the elastic 

strain deviator tensor, and are given as: 

𝐼1 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧 (4.3) 

𝐽2 =
1

3
(𝜀𝑥𝑥

2 + 𝜀𝑦𝑦
2 + 𝜀𝑧𝑧

2 − 𝜀𝑥𝑥𝜀𝑦𝑦 − 𝜀𝑦𝑦𝜀𝑧𝑧 − 𝜀𝑥𝑥𝜀𝑧𝑧 + 3(𝜀𝑥𝑦
2 + 𝜀𝑦𝑧

2 + 𝜀𝑥𝑧
2 )) (4.4) 

Mazars has proposed an alternate definition of equivalent strain (Pijaudier-Cabot and 

Mazars 2001) as: 

𝜀𝑒𝑞 = √∑⟨𝜀𝑖⟩
2

3

𝑖=1

(4.5) 

where ⟨𝜀𝑖⟩ are the tensile components of principal strain. While Mazars’s equivalent strain 

appears to be more intuitive, numerical results show that this approach overestimates the 

peak and post-peak response in comparison to the experimental results, as shown later in 

this document.  

Considering that stress decays in an exponential manner with strain (Gopalaratnam and 

Shah 1985), the damage evolution can be stated as: 

𝑑(𝜅) = 1 −
𝜅0
𝜅
e−𝛽(𝜅−𝜅0) (4.6) 

where 𝜅0, 𝛽 are the equivalent strain at which cracking begins and the initial slope of 

exponential softening (Figure 4-1), respectively. 𝛽 controls the shape of the exponential 

softening. A higher value implies sudden failure (low fracture energy) while a lower value 

implies gradual softening (higher fracture energy). Thus, 𝛽 depends on the fracture energy 
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of the specimen. The fracture energy is therefore taken as a material property. 

Mathematically, it can be stated as: 

𝐺𝐹 = ∫ 𝜎𝜕𝑤
∞

0

 (4.7) 

where 𝑤 is the crack opening displacement, which is a function of the characteristic length 

ℎ𝑐𝑒 given by: 

𝑤 = (𝜅 − 𝜅0)ℎ𝑐𝑒 (4.8) 

In finite element analysis, the characteristic length is generally related to the size of a 

typical element(Kurumatani et al. 2016) as: 

ℎ𝑐𝑒 =

{
 
 

 
 √2𝐴𝑒

2 𝑓𝑜𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

√𝐴𝑒
2 𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

√5𝑉𝑒
3

𝑓𝑜𝑟 𝑡𝑒𝑡𝑟𝑎ℎ𝑒𝑑𝑟𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

√𝑉𝑒
3 𝑓𝑜𝑟 ℎ𝑒𝑥𝑎ℎ𝑒𝑑𝑟𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

(4.9) 

where, 𝐴𝑒 and 𝑉𝑒 are the area and volume respectively of each finite element under 

consideration. The coefficients 2 and 5 in Eq. (10) implies that at least two triangles are 

required to form a quadrilateral and at least five tetrahedrons are required to form a 

hexahedron. Substituting Eq. (9) in (8), we have: (Kurumatani et al. 2016) 

𝐺𝐹 = ∫ 𝜎ℎ𝑐𝑒𝜕(𝜅)
𝜅𝑓

0

(4.10) 

Using the assumption of exponential decay of stress as described earlier, the fracture 

toughness can be restated as:  

𝐺𝐹 =
𝐸𝜅0ℎ𝑐𝑒
𝛽

(4.11) 
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To handle potential convergence problems in the softening region, a lower limit is set for 

the residual strength (𝜎𝑟𝑒𝑠) of the material (see Figure 4-1). The limiting value of 

equivalent strain is set as: 

𝜅𝑙𝑖𝑚 = 𝜅0 −
1

𝛽
ln (

𝜎𝑟𝑒𝑠
𝑓𝑡

) (4.12) 

If 𝜅 > 𝜅𝑙𝑖𝑚, damage is recomputed using the following equation: 

𝑑(𝜅) = 1 −
𝜎𝑟𝑒𝑠
𝐸𝜅

(4.13) 

Once the damage is computed, 𝑓𝑦 is determined as: 

𝑓𝑦 = max(𝑓𝑡e
−𝛽(𝜅−𝜅0), 𝜎𝑟𝑒𝑠) (4.14) 

 
Figure 4-1. Damage Evolution Based on Exponential Decay of Stress 

4.2  Creep-Damage Model 

In the proposed creep-damage formulation, the total strain is decomposed into individual 

contributing parts as shown in Eq. (16). 

𝜺̅(𝑡) = 𝜺̅𝒆𝒍(𝑡) + 𝜺̅𝒄𝒓(𝑡) + 𝜺̅𝟎(𝑡) 

= 𝜺̅𝒎𝒆𝒄𝒉(𝑡) + 𝜺̅𝟎(𝑡) (4.15) 

where, 𝜺̅(𝑡)is the total strain tensor, 𝜺̅𝒆𝒍(𝑡), 𝜺̅𝒄𝒓(𝑡) and 𝜺̅𝟎(𝑡) are the elastic strain, creep 

strain and stress-independent eigenstrain tensors, respectively. The eigenstrain includes 
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stress-independent inelastic strains, e.g., thermal and shrinkage strains. The sum of the 

elastic and creep strains is denoted as the mechanical strain 𝜺̅𝒎𝒆𝒄𝒉(𝑡).  

Once the creep strain is known, the stress is computed per Eq. (2) as: 

𝝈̅ = (1 − 𝑑(𝜅))𝑪̿: [𝜺̅ − 𝜺̅𝒄𝒓 − 𝜺̅𝟎 ] (4.16) 

In damage computations, it is assumed that a fraction of the creep strain also causes damage 

(C Mazzotti and Savoia 2001; Pijaudier-Cabot et al. 2005). Thus, the equivalent strain in 

Eq. (3) becomes 

𝜅 = 𝜀𝑒𝑞 = 𝑓(𝜺̅𝒆𝒍 + 𝛽′𝜺̅𝒄𝒓) (4.17) 

where 𝛽′ is termed as the creep-damage parameter. 𝛽′ is a multiplier to account for the 

influence of creep strain on damage. A value of 1.0 for 𝛽′ implies very strong coupling 

where all the creep strain contributes to damage, whereas a value of 0 implies that creep 

strain does not contribute to damage. 

4.3  Implementation of the Creep-Damage Model in MOOSE 

In this work, a new class that computes stress using the assumptions as stated in the 

description of the damage model was created and added to the MOOSE framework. The 

algorithm developed for creep-damage implementation is described below. 

Step 1. Input the elastic material parameters, i.e., 𝐸 and 𝜈, and the fracture parameters, i.e., 

𝐺𝐹, 𝑓𝑡 and 𝜎𝑟𝑒𝑠.  

Step 2. Compute 𝑪̿𝒐𝒓𝒊𝒈 using 𝐸 and 𝜈. This is computed in the 

ComputeIsotropicElasticityTensor class. The strain increment is computed using the 

ComputeIncrementalSmallStrain class as shown in Eq. (20). 

Step 3. Initialize 𝑪̿𝒅 = 𝑪̿𝒐𝒓𝒊𝒈, 𝑑 = 0, and 𝑓𝑦 = 𝑓𝑡 and crack_flag = 0 at the current time step; 

crack_flag = 0 denotes that cracking has not occurred.  
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Step 4. Add the strain increment to the previous value to get the total strain. This is 

implemented in the ComputeMultipleInelasticStress class. 

Step 5. If the damage parameter, 𝑑𝑛−1, and the tensile strength are greater than zero, then 

update the elasticity tensor using the value of damage in the previous state as:  

𝑪̿𝒏
𝒅 = (𝟏 − 𝒅𝒏−𝟏)𝑪̿

𝒐𝒓𝒊𝒈 (4.18) 

Step 6. The effective stress as computed in Eq. (28) is also updated based on previous 

damage state as follows: 

𝝈̅(𝒏+𝟏) = (𝟏 − 𝒅𝒏−𝟏)𝝈̅
(𝒏+𝟏) (4.19) 

Step 7. Compute the maximum principal stress from the updated stress tensor. If the value 

of the equivalent strain is greater than 𝑓𝑦/𝐸 and cracking has occurred for the first time, 

then 𝜅0 is specified as the equivalent strain and crack_flag is set to 1. The damage value is 

updated using Eq. (7) and (14), and 𝑓𝑦 using Eq. (15). Else, if crack_flag = 1 and loading 

is increased, 𝜅𝑛 > 𝜅𝑛−1, the damage value is updated and 𝑓𝑦 is computed. To account for 

creep-induced damage, the value of 𝜅 is computed using Eq. (18).  

Per steps 5 and 6, the elasticity tensor and the stress are dependent on the previous state of 

damage. The stress is not corrected further after computing damage in the current time step 

as it leads to convergence issues. The downside of this approach is that the solution depends 

on the time step between two iterations. The error increases with larger time steps. Thus, a 

small-time step is chosen to ensure convergence to the correct solution. This algorithm is 

shown in the form of a flowchart in Figure 4-2. In this work, the steps in the isotropic 

damage block in Figure 4-2 are implemented in the new class. 
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Figure 4-2. Flowchart for the Isotropic Damage Model Implemented in MOOSE 

4.4  Verification of Numerical Model 

Three verification tests to ascertain whether the constitutive model for isotropic damage 

has been implemented correctly are described in this section. The first test consists of a 

single element loaded in tension in a displacement-controlled manner and then unloaded 

to evaluate its response during unloading, loading in compression, unloading and finally 

reloading in tension. The second test consists of a simple shear test in which displacement-

controlled loading is applied. In the last test, convergence behavior of the algorithm is 

verified. In these tests, the simulation results are verified against the analytical curve which 

is obtained outside of MOOSE using the input properties. 
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Model: A single element of size 50 x 50 x 50 mm is loaded in a displacement-controlled 

manner in tension, unloaded, and then loaded in compression, unloaded, and finally 

reloaded in tension. Figure 4-3(a) shows the boundary conditions. The displacement-

controlled loading was applied in the Z-direction as shown in Figure 4-3(b) and details of 

the applied displacement history are provided in Table 4-1. The material properties are 

specified in Table 4-2.  

Table 4-1. Applied Displacement With Time 

Pseudo Time (s) 0 30 40 50 60 70 

Applied displacement (mm) 0 0.04 0 -0.25 0 0.07 

 

Table 4-2. Material Properties for Use in Uniaxial Verification Test 

Property Elastic Modulus, E (same 

in tension and 

compression) 

Poisson’s 

Ratio, ν 

Tensile 

Strength, ft 

Fracture Energy, 

GF 

Value 20000 N/mm2 0.2 3 MPa 0.1 N-mm/mm2 

 

Results: Figure 4-3(c) shows the analytical curve and the response computed by the 

algorithm. The analytical curve is estimated by computing β based on the input fracture 

energy (see Eq. (12)). For the uniaxial case, 𝜅0 is equal to 𝐺𝐹/𝐸 and is equal to 0.00015. 

During this initial segment of the loading history, the stress is computed using Eq. (2) and 

(7). As the loading is unidirectional, the maximum principal stress decays in the same 

manner as the input curve as shown in Figure 4-3(c). Once the direction of applied 

displacement is reversed, the specimen unloads with the damaged modulus which in this 

case is 1420 N/mm2. The specimen then starts to load in compression with the same 

modulus. The implemented model adequately reproduces the material’s tensile stress-strain 

softening behavior as shown. The strain shown in Figure 4-3(c) is the strain in the zz 
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direction, which is the maximum tensile and compressive strain for this case. The strains 

in the xx and yy directions are lower due to Poisson’s effect while all the shear strains are 

zero (not shown here).  

 
 

 

 
(a) (b) (c) 

Figure 4-3. FE Model for Uniaxial Loading, Showing a Single Element With: (a) 

Boundary Conditions, (b) Loading Conditions, and (c) Computed Stress-Strain 

Response  

 

4.4.2  Simple Shear 

Model: A single element of size 50 x 50 x 50 mm was loaded in simple shear by applying 

displacement in the X-direction for the nodes lying at z = 50. The boundary conditions and 

applied displacement are shown in Figures 4-4(a) and 4-4(b) respectively. The applied 

displacement is increased from 0 to 0.5 mm in 100 s (pseudo time). The material properties 

shown in Table 4-2 are used here.  

Results: Once the maximum principal stress is reached, the element starts degrading based 

on the exponential evolution law specified earlier. The evolution of damage is computed 

by estimating the equivalent cracking strain at which the degradation starts (𝜅0 in Eq. (7)) 

and then using Eq. (7) to compute the damage.  

For an isotropic material, the shear stress is given as: 

𝜏 =
𝐸

2(1 + 𝜈)
(2𝜀) (4.20) 
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where, 𝜏 and 𝜀 are the shear stress and strain respectively. Under simple shear, the 

maximum principal stress will be equal to the shear stress at a plane inclined at 45o. 

Substituting 𝜏 as 3 MPa and 𝐸 and 𝜈 as given in Table 4-2 gives 𝜀 as 0.00018, 𝐽2 as 3.24 x 

10-8 (Eq. (5)) and 𝜅0 as 8.22 x 10-5(Eq. (3)). The damage evolution as a function of 

equivalent strain is plotted in Figure 4-4(c). As shown in this figure, the simulated curve 

matches the analytical curve, demonstrating that the predicted damage evolution with 

equivalent strain is accurate. In this case, all the strains except that in the xz direction are 

observed to be zero (not shown here).  

 

 

(a) 

 

 (b) (c) 
Figure 4-4. FE model for Simple Shear Showing a Single Element With: (a) Boundary 
Conditions, (b) Loading Conditions, and (c) Damage Evolution With the Equivalent 

Strain  
4.5  Time Convergence 

Model: A single element of size 50 x 50 x 50 mm was loaded in a displacement-controlled 

manner in tension, unloaded and then loaded in compression, unloaded, and finally 

reloaded in tension. The simulations were carried out with time steps of 1, 0.1 and 0.05 s. 
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Results: The results of the simulations are shown in Figure 4-5. Decreasing the time step 

is found to result in convergence with little difference noted in the response for time steps 

of 0.1 s and 0.05 s. As described earlier, the stress is not corrected to account for damage 

in the current time step as it leads to convergence issues. To account for such effects, the 

time step is decreased. A time step of 0.1 s is found to be satisfactory, and hence used in 

this simulation. A similar convergence analysis was performed for all the remaining 

verification and validation tests and the optimal time steps used in the simulations are 

reported along with the simulation results.  

 
Figure 4-5. Uniaxial Tensile Stress-Strain Response as a Function of Different Time 

Steps: dt = 0.05, 0.1 and 1 s 

4.6  Verification Tests for Creep-Damage Interaction 

Three verification tests for the coupled creep-damage algorithm are discussed in this 

section. The intention of the verification tests is to examine if the creep-damage algorithm 

can predict the appropriate material behavior that is established through experiments. Only 

a qualitative assessment is made in this section while quantitative assessment and 

validation of creep-damage algorithm are carried out in a later section.  

4.6.1  Effect of Creep Damage Parameter 
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Model: A single element of unit size is loaded in a displacement-controlled manner. The 

loading and boundary conditions are shown in Figures 8(a) and (b). The applied 

displacement is varied linearly with time, reaching a displacement of 0.002 mm in 10 

seconds. The material properties are shown in Table 4-3. The material is defined by a 

generalized Maxwell model with nine Maxwell units and a standalone spring, the 

properties of which are given in Table 4-3. The Maxwell material properties were 

calibrated from the BP model in (Zdeněk P. Bažant, 1988) using the rate type creep 

formulation (Zdeněk P. Bažant and Wu 1974). The relaxation function using the BP model 

is given as: 

𝑅(𝑡, 𝑡1) =
1

𝐽(𝑡, 𝑡1)
=

𝐸0
1 + 𝜑[(𝑡′)−𝑚 + 𝛼](𝑡 − 𝑡′)𝑛

(4.21) 

where 𝑅(𝑡, 𝑡1), 𝐽(𝑡, 𝑡
′) and 𝐸0 are the relaxation function, creep compliance function and 

initial elastic modulus, 𝑡 and 𝑡1 are the current time and the time at which relaxation started, 

𝑚 =1/3, 𝑛 =1/8, 𝛼=0.05, 𝜑=3 are the fitting parameters for the BP model. Three different 

𝛽′ values: 0, 0.5 and 1.0 are used in the simulations.  

Table 4-3. Material Properties for Use in Identifying the Influence of Creep Damage 

Parameter 

Property Value 

Elastic Modulus, 𝐸0 (same in 

tension and compression) 

56000 N/mm2 

Poisson’s Ratio, ν 0.2 

Modulus and corresponding 

characteristic time of each unit in 

the Maxwell model 

7070 MPa 

560 MPa 

6930 MPa 

5910 MPa 

8690 MPa 

7550 MPa 

6810 MPa 

0.0001 s 

0.01 s 

1 s 

100 s 

1.00E+04 s 

1.00E+06 s 

1.00E+08 s 
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4650 MPa 

3250 MPa 

4580 MPa 
 

1.00E+10 s 

1.00E+12 s 

∞ s 
 

Tensile Strength, ft 4.0 MPa 

Fracture Energy, GF 0.001 N-mm/mm2 

 

Results: Figure 8(c) shows the average stress-strain response of the specimen. The stresses 

and the strains are the average of the values obtained from all the eight quadrature points. 

The optimal time step for this case was found to be 0.01 s. 

 
 

 

(a)  (b) (c) 

Figure 4-6. FE Model Showing a Single Element With: (a) Boundary Conditions, (b) 

Loading Conditions, and (c) Uniaxial Tensile Stress-Strain Response (Solid Lines) 

and the Crack Damage Parameter (Dashed Lines).  

It is evident that that a non-zero value of the parameter 𝛽′ increases the damage in the 

specimen, indicated by the reduction in the peak and post-peak stresses. As described 

earlier, the resulting damage will be underestimated if 𝛽′ is taken as zero as multiple studies 

have shown that creep strain also causes damage in the specimen, especially when the 

tertiary creep region is reached (C Mazzotti and Savoia 2001; Claudio Mazzotti and Savoia 

2003; Omar et al. 2009; ZDENEK P. Bažant 1995).  

Furthermore, using the same model, instead of displacement, load is applied. The loads 

correspond to a stress of 3.0 MPa which is 75% of the tensile strength of the material. 
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Figure 4-7 shows the variation of strain with time. The time step used for this case was 0.1 

s. A coupled creep-damage algorithm with 𝛽′ equal to a non-zero value captures the tertiary 

creep region and imminent failure at a stress lower than the tensile strength, which would 

not be possible with an uncoupled algorithm as shown in this figure when 𝛽′ is taken as 

zero.  

 
Figure 4-7. Total Strain as a Function of Time With a Constant Stress Applied on One 

Face, and Different Imposed Crack-Damage Parameters. 

 

4.6.2  Effect of Rate of Loading 

Model: The same model and boundary conditions used in the test explained in the previous 

section are used here, but with varying loading rates. Two cases have been analyzed – in 

the first case, the maximum displacement of 0.002 mm is reached in 10 s, and in the second 

case, in 10000 s. The creep damage parameter 𝛽′ is taken as 0.5 in both the cases.  

Results: Figure 4-8 shows the stress-strain response, averaged from all eight quadrature 

points in the single element.  
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Figure 4-8. Uniaxial Tensile Stress-Strain Response (Solid Lines) and Isotropic 

Damage Parameter Evolution (Dashed Lines) for Different Rates of Loading. 

 

The effect of loading rate on the tensile strength of the specimen is evident. A slower 

loading rate results in specimen failure at lower stress levels, which is in line with reported 

results(Zdenek P. Bažant and Gettu 1992; “Researches Toward a General Flexural Theory 

for Structural Concrete” 1960). Due to the damage induced by a relatively higher creep 

strain for slowly applied loading, the total fracture energy of the specimen is also reduced, 

which has also been observed in many studies (Zdenek P. Bažant and Gettu 1992; Ping 

1992; Rosa et al. 2012; Ruiz et al. 2011).  

4.7  Validation of Numerical Model 

Experimental results from published literature are used to validate the developed 

constitutive model. Two different types of tests have been used in this validation exercise. 

In the first test, a notched specimen under uniaxial tension is simulated without considering 

the effect of creep to validate the damage portion of the constitutive model. The second 

tests consist of three-point bending specimens subjected to various loading rates. Coupling 

of damage and creep is considered in the second validation tests. 

4.7.1  Fracture under Uniaxial tension (No Creep) 
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Model: In this section, deformation-controlled tests reported in (Hordijk and Reinhardt 

1990) are simulated. The specimen size is 150 mm x 60 mm x 50 mm with two saw cuts 

each of depth 5 mm in the middle. Figure 4-9(a) shows the full specimen while Figure 4-

9(b) shows the single quadrant of the specimen modeled in the simulations by taking 

advantage of symmetry planes. The width of the notch is 5 mm. The specimen ends were 

glued to steel plates. The bottom platen was fixed while the upper platen was connected to 

the actuator of a servo-hydraulic loading machine. The model with boundary conditions 

and loading are shown in Figures 4-9(c) and (d). The material properties used for this 

simulation are given in Table 4-4. Figure 4-10 shows the details of the finite element 

meshes with varying levels of refinement used in the convergence study.  

    

(a) (b) (c) (d) 

Figure 4-9. FE Model Showing: (a) the Full Specimen and the Quarter Model 

(Inside) Used in the FE Simulation, (b) Geometric Details of the Specimen 

(Dimensions in mm), (c) FE Nodal Fixity Conditions, and (d) Applied Loading. 

 

Results: In the experiments, the force was measured using a load cell. The stress in the 

notched section is obtained by dividing the force by the cross-sectional area at the notch. 
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The displacements were measured using four 35 mm extensometers positioned along the 

notched face of the specimen. In the simulation, the stress in the notched section is obtained 

by summing the reactions of all the nodes at the bottom and dividing by the cross-section 

area at the notch. The displacements were computed by subtracting the displacements of 

nodes at 17.5 mm below the center from the displacements of nodes at 17.5 mm above the 

center (Figure 4-9(b)). The results of simulations and experiments are shown in Figure 4-

11. 

 
Mesh 1 

No. of elements 
4025 

No. of nodes 
954 

 
Mesh 2 

No. of elements 
21359 

No. of nodes 
4387 

 
Mesh 3 

No. of elements 
37393 

No. of nodes 
7435 

 
Mesh 4 

No. of elements 
417152 

No. of nodes 
76665 

 
Mesh 5 

No. of elements 
658142 

No. of nodes 
72380 

(a) (b) (c) (d) (e) 

Figure 4-10. FE Meshes Used in the Simulation of the Validation Specimen Under 

Uniaxial Tension. (A)-(D) Mesh 1 Through 4 Have Tetrahedral Elements, (E) Mesh 5 

Has Hexahedral Elements. 
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Table 4-4. Material Properties for Uniaxial Notched Concrete Specimens 

Elastic modulus  18660 N/mm2 

Poisson’s ratio 0.2 

Tensile Strength  2.75 MPa 

Fracture Energy  0.077 N-mm/mm2 

Residual Stress  0 MPa 

 

   
(a) (b) (c) 

Figure 4-11. (a) Results of FE Simulations of Specimen Subjected to Uniaxial 

Tension, and Damage State at the End of the Simulation for (b) Mesh 1 and (c) Mesh 

5. Experimental Data from (Hordijk and Reinhardt 1990)   

 

Discussion: Figure 4-11(a) shows that the simulated load-displacement responses are only 

mildly affected by changes in element size within the considered range, since energy 

dissipation with varying mesh sizes and element types are the same. The convergence 

analysis was also carried out for hexahedral meshes and the results of only the finest mesh 

are shown to avoid repetition. The response in the post-peak region is overestimated (i.e., 

higher load for the same displacement) when Mazars’ equivalent strain is used (Mesh 4 is 

used to implement Mazars’ equivalent strain model, as an example). As explained earlier, 

this necessitated the use of von Mises equivalent strain even though Mazars’ formulation 

is intuitively simpler to implement. Figure 4-11(b) shows the typical damage state at the 

end of the simulation for Mesh 1 while Figure 4-11(c) shows the damage state for Mesh 5.  
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4.7.2  Fracture Under Three-Point Bending (Combined Creep and Damage) 

The three-point bending tests carried out at varying loading rates on concrete specimens 

reported in (Zdenek P. Bažant and Gettu 1992) and (Rosa et al. 2012) were used to validate 

the rate dependence of the creep-damage constitutive model. The experimental details are 

described followed by the model and material properties.  

Experiments: In the first experiment simulated, the depth of the beam is 152 mm while in 

the second case, the depth is 100 mm. These tests will be referred to as D152 and D100 in 

the following discussion. The specimen details are listed along with Figure 4-12(a). The 

D152 tests are carried out at three different rates described by the authors in (Zdenek P. 

Bažant and Gettu 1992) as usual, slow and very slow based on the time it took to reach the 

peak load, which was around 500 s, 13,650 s and 253,000 s respectively. In the D100 tests, 

displacement loading rates of 5.5 x 10-4 mm/s and 1.74 x 10-5 mm/s was applied which will 

be referred to as usual and slow. Load-crack mouth opening displacement (CMOD) 

responses were obtained experimentally and are compared with simulated values.  

FE model: The FE meshes used in the simulations are shown in Figure 4-12(b) and 4-12(c) 

for the D152 and D100 specimens respectively. A plane stress analysis is carried out in this 

case as the specimen geometry and the loading meet the required plane stress conditions. 

The load is applied at the center of the top steel block. 

 

Dimensions D152 D100 

Beam depth, D 152 mm 100 mm 

Beam width, B 38 mm 100 mm 

Beam span, S 380 mm 450 mm 

Notch width, b 1.8 mm 5 mm 

Notch depth, a 25 mm 50 mm 

(a) 
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(b) 

 
(c) 

Figure 4-12. FE Model Showing: (a) Dimensions for the Simulated Specimens Used 

for Combined Creep-Damage Tests, and (b) and (c): Meshed D152 and D100 Beams 

Respectively. 

 

Material Properties for D152: Material properties used in the simulation of the D152 tests 

are shown in Table 4-5. The elastic modulus, 𝐸0 is taken as 56000 N/mm2 which is the 

initial slope of stress-strain curve (Zdenek P. Bažant and Gettu 1992). The total fracture 

energy, 𝐺𝐹 is taken as approximately 2.5 times the initial fracture energy 𝐺𝑓 (area under 

the initial tangent of the stress-displacement plot) obtained from Bažant’s size effect law 

(Z P Bažant 1999). For the usual loading rate case, the total fracture energy was obtained 

as 0.06 N-mm/mm2. For slow and very slow loading rates, this value was taken as 0.07 N-

mm/mm2. A slightly higher fracture energy is taken for the specimen tested at slow and 

very slow rate of loading as these were cured for a longer duration than the specimens tested 

at the usual loading rate. The tensile strength was obtained as a function of compressive 

strength using the following relationship (Raphael 1984): 

𝑓𝑡 = 0.437 × 𝑓𝑐
2
3⁄  in MPa (4.22)  
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To model the viscoelastic behavior, a generalized Maxwell model with ten Maxwell chains 

and a standalone spring were used, and the Maxwell material properties were determined 

based on Eq. (32) (Zdenek P. Bažant and Gettu 1992) using the rate type creep formulation 

(Zdeněk P. Bažant and Wu 1974).  

Material Properties for D100: The elastic modulus is taken as 1.5𝐸28 per (Zdeněk P. 

Bažant, 1988) where 𝐸28 is the secant modulus obtained at 28 days and is equal to 33.9 

GPa(Rosa et al. 2012). The total fracture energy, 𝐺𝐹 was measured as per RILEM 

recommendations (RILEM FMC-50 1985) and the modifications proposed in (Guinea, 

Planas, and Elices 1992; Planas, Elices, and Guinea 1992), and is provided as 0.128 N-

mm/mm2. The split tensile strength value provided in the experiments was used as the 

tensile strength. The Maxwell material properties were again calibrated using the relaxation 

function obtained from the BP model (Eq. (32)).  

Table 4-5. Material Properties Used in the Simulation of Three-Point Bend Specimens 

Material 

property 

D152 Notes D100 Notes 

Elastic modulus, 

𝐸0 

56000 N/mm2 (A) 51000 N/mm2 (F) 

Poisson’s ratio, 𝜈 0.2 (B) 0.2 (B) 

Tensile Strength  4.85 MPa (C) 5.2 MPa (A) 

Fracture Energy  0.06 (usual) and 0.07 

(slow and very slow) N-

mm/mm2 

(D) 0.128 (A) 

Modulus and 

corresponding 

characteristic time 

of each unit in the 

Maxwell model 

7070 MPa,     1E-4 s 

560 MPa,     1E-2 s 

6930 MPa,           1 s 

5910 MPa,     1E+2 s 

8690 MPa,     1E+4 s 

7550 MPa,     1E+6 s 

6810 MPa,     1E+8 s 

4650 MPa,   1E+10 s 

(E) 6400 MPa,    1E-4 s 

500 MPa,    1E-2 s 

6300 MPa,          1 s 

5400 MPa,   1E+2 s 

7900 MPa,   1E+4 s 

6900 MPa,   1E+6 s 

6200 MPa,   1E+8 s 

4200 MPa, 1E+10 s 

(E) 
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3250 MPa,   1E+12 s 

4580 MPa,         ∞        

3000 MPa, 1E+12 s 

4200 MPa,        ∞    

Creep Damage 

Parameter 

0.1, 0.9 (B) 0.1, 0.9 (B) 

(A) Experimental Data in (Zdenek P. Bažant and Gettu 1992; Rosa et al. 2012), (B) 

Commonly adopted/assumed value for concrete, (C) Obtained using Eq. (33), (D) 

Calibrated using experimental data, (E) Obtained using rate type creep law (Zdeněk P. 

Bažant and Wu 1974), (F) Based on secant elastic modulus at 28 days as per (Zdeněk P. 

Bažant, 1988). 

 

Results: The load-CMOD responses at various loading rates with two different values of 

the creep damage parameter (𝛽′ = 0.1, 0.9) are shown in Figure 4-13. 

Discussion: As observed from Figure 4-13, the simulation results match quite well with the 

experimental results for all the cases considered, when 𝛽′= 0.1. The peak load is accurately 

predicted by the model. The post peak response also matches the experimental data 

reasonably well. It is not known if the reported experimental response is the average 

response of one or several replicated specimens for D152. For D100, the experimental 

curves shown in Figures 4-13(d) and (e) correspond to the upper and lower bound of four 

replicated specimens. For all of these cases, it is observed that a value of 0.1 for 𝛽′ 

(indicative of weak coupling between creep and damage) predicts the experimental 

response quite well, as opposed to a strong coupling factor (0.9 for 𝛽′). Thus, a value of 

creep-damage parameter of 0.1 is recommended based on the proposed modeling 

framework and the validation results. This value is similar to the value obtained for a 

compression creep test in an earlier work (C Mazzotti and Savoia 2001).  
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(a)  (b)  

 
(c) 

  
(d) (e) 

Figure 4-13. Results of FE Simulation and Comparison With Experimental Results of 

Three-Point Bend Specimens at Various Loading Rates: (a) Usual (b) Slow and (c) 

Very Slow Loading Rates for D152 Specimens, and (d) Usual and (E) Slow Loading 

Rates for D100 Specimens. 

 

4.8  Summary and Conclusions 

This work describes the numerical implementation of an isotropic damage model to 

simulate failure in concrete specimens including the coupled creep-damage effect in the 
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MOOSE framework, which is an open source C++ based finite element framework. The 

developed model considers linear viscoelasticity using generalized Maxwell and Kelvin-

Voigt rheological models. A creep damage parameter is used to link non-linear creep and 

damage. To avoid convergence issues with vanishing energy dissipation, the characteristic 

length of each element is used such that the energy release rate for each element remains 

constant. The proposed formulation captures the interaction between creep and damage, 

and with a modification in the elastic damage model, can capture the behavior of concrete 

under slowly applied loading rates. The reduction of tensile strength and fracture energy 

under slower loading due to creep effects is captured by the model. Thus, the rate 

dependence of crack growth is implicitly reproduced by the proposed formulation. 

The constitutive model was verified with various uniaxial and shear test cases. The model 

was then validated against the test results of notched specimens under uniaxial loading for 

the damage-only case. The model adequately captures the peak and post-peak behavior of 

the specimen, thus validating the damage model. The creep-damage model was also used 

to simulate the results of experimental tests whose duration varied from minutes to a few 

days. All the input material properties, such as the elastic modulus, tensile strength and 

fracture energy were taken as the ones corresponding to typical rates of quasi-static 

loading. These properties were then used to simulate the behavior at rates significantly 

lower than the typical quasi-static loading rates. The results showed that a strong coupling 

between creep and damage overestimates the damage and underpredicts the constitutive 

response. Parametric simulations using various values of the creep-damage parameter 

showed that only about 10% of the creep strain contributes towards damage for the cases 

considered in this study. This is similar to values reported for short term compression creep 
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tests (C Mazzotti and Savoia 2001) and hence can be chosen with a considerable degree of 

confidence in predictive simulations.  However, the proposed formulation has not been 

evaluated for even slower loading rates due to the lack of experimental data; it would be 

important to ascertain if the creep effects on the softening behavior are properly accounted 

for in such extremely slow loading rates as such effects can be encountered in practice.  
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CHAPTER 5 

VALIDATION OF NUMERICAL MODEL - RESTRAINED RING TEST  

In this validation exercise, experimental results from published literature are used to 

validate the developed constitutive model by considering the moisture diffusion and its 

effect on the shrinkage properties. These tests are different than the three-point loading 

being considered in the previous section in which only mechanical loading was applied. 

5.1  Restrained Ring Shrinkage Experiments 

A series of restrained ring shrinkage tests on Ordinary Portland Cement (OPC) pastes with 

and without 10% or 20% by volume of inclusions (either soft or stiff) and varying humidity 

levels were carried out in (Wei, Falzone, Das, et al. 2017b). These tests are used in this 

work to develop and validate the numerical model and to ascertain the effect of inclusions 

and relative humidity on the cracking propensity of cementitious materials. Along with 

restrained ring shrinkage tests (in general, conforming to ASTM C 1581), this modeling 

effort requires results from free shrinkage (ASTM C157), elastic modulus (ASTM C469) 

and splitting tensile (ASTM C496) tests, which are also reported in (Wei, Falzone, Das, et 

al. 2017b). Phase change materials (PCMs) (Aguayo et al. 2016; Fernandes et al. 2014; 

Thiele et al. 2016; Wei, Falzone, Wang, et al. 2017) were used as soft inclusions and quartz 

sand as stiff inclusions, in an attempt to understand the cracking sensitivity of cementitious 

mixtures in the presence of compliant or stiff particles. The microencapsulated PCM 

particles had a median size of 20 µm while the quartz particles were 10 times larger. The 

volume fractions of the PCM used were 10% or 20%, while that of quartz was 10%. All 

the paste mixtures were proportioned at a fixed water-to-cement ratio (w/c; by mass) of 

0.45. Material properties and mixture proportions of the pastes can be found in (Wei, 
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Falzone, Das, et al. 2017b). The dual ring geometry used for the tests is shown in Figure 

5-1. The pastes were cast between two Invar rings (coefficient of thermal expansion of 2.5 

µ/oC) and maintained in sealed bags in a programmable environmental chamber at 

25±0.1oC and 87±0.1% relative humidity (RH) to limit moisture loss for the first 7 days. 

The top surface was covered with PVC sheets to minimize the potential for drying. After 

7 days of partially sealed curing, the rings were kept on an elevated wire mesh platform 

with their top and bottom surfaces exposed and dried at 50 ± 0.1% RH until cracking 

occurred. Four strain gauges each on the inner outer rings installed at 90o from each other 

at the mid height of the ring, were used to detect cracking.   

                      
 

 

Radius (mm) a b c d 

Ring test (dual ring) on cement 

pastes (with and without inclusions) 

44.5 50.8 76.2 82.6 

Figure 5-1. Illustration of the Restrained Ring Test and the Geometry Used in 

Experiments (Wei, Falzone, Das, et al. 2017b).  

 

5.2 Material Models 

The isotropic damage approach is used to model the fracture of cementitious materials in 

the ring test. To account for the fact that material strengths of individual finite elements are 

STRAIN GAUGE

CEMENTITIOUS MIX

RESTRAINING RING

a
b

c

d
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statistically distributed, a framework to account for aleatory uncertainty and associated size 

effects is introduced in the simulations as described in (Strack, Leavy, and Brannon 2015). 

The viscoelastic response of aging cementitious materials is modeled using a rate-type 

creep law based on the generalized Maxwell model while damage is characterized by 

isotropic damage code as developed in Chapter 4. 

5.2.1 Aleatory Uncertainty and Size Effects 

Simulation of failure in heterogeneous cement-based materials needs consideration of 

statistical variability and associated microstructural size effects. Aleatory uncertainty 

indicates the uncertainty due to random variations – from a strength perspective, it indicates 

the natural variation in the spatial distribution of the microstructural features (flaws or 

microcracks, for example), that results in localized regions being stronger or weaker than 

the surrounding material (Strack, Leavy, and Brannon 2015). For cementitious materials 

which exhibit quasi-brittle behavior with a finite fracture process zone compared to the 

structural size, the cumulative probabilistic distribution of strength is highly complex (Le, 

Bažant, and Bažant 2011; Bernard, Kamali-Bernard, and Prince 2008; Li and Maalej 1996). 

In such cases, it is not physically realistic to predict the failure stress using a deterministic 

strength-based approach, where a uniform strength is assumed at every point in the material 

(or for all the finite elements, thereby violating Weibull scale effects where large elements 

are weaker, on average, than small elements). Thus, numerical perturbations in the spatial 

strength distribution are required for realistic modeling of failure. The variability in 

strength provides perturbations in the stress field necessary to simulate the local defects 

and crack localization inherent in the material. Without these perturbations, in structures 

with relatively uniform tensile stress fields over large areas such as the axisymmetric ring 
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specimens considered here, many finite elements would reach the failure stress 

simultaneously, causing convergence issues and undesirable responses in the FE modeling. 

Including a realistic numerical perturbation in the computational model gives rise to 

localized strains and stresses and is particularly useful for problems involving bifurcation 

in a localized state (Zdeněk P. Bažant and Xi 1991). Apart from the numerical 

perturbations, the strength of the brittle materials is highly dependent on the size of the 

structure. The probability of occurrence of a critical crack is higher in a larger structure 

than in a smaller structure (Z P Bažant 1999). Combining the size effect with the Weibull 

distribution of strength enhances numerical convergence by localizing the failure and 

makes the cracking model more robust.  

 

In this work, we employ a methodology proposed in (Strack, Leavy, and Brannon 2015), 

to introduce spatial randomness in the FE model of the ring test. Microscale heterogeneities 

are accounted for by randomizing the material strengths in each finite element, while 

preserving the median strength of a finite volume of material. Each finite element is 

considered as an independent specimen, the strength of which needs to be statistically 

assigned based on laboratory data. Thus, the failure stress 𝜎𝑒 of a finite element of volume 

𝑉𝑒 is considered to be Weibull distributed with a median stress of  𝜎 ̅ determined for a 

collection of finite elements of total volume 𝑉̅ (such that 𝑉𝑒 ≠ 𝑉̅). In general, 𝑉̅ can be 

considered to be the volume of the experimental sample. 𝜎 ̅ is taken as the tensile strength 

(e.g., from the splitting tensile strength experiments). The failure stress is predicted using 

Weibull theory as (Strack, Leavy, and Brannon 2015):  
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𝜎𝑒 = 𝜎 ̅ (
𝑉̅ ln 𝑅

𝑉𝑒 ln(
1

2
)
)

1
𝑚⁄

     (5.1) 

where 𝑅 is a uniformly distributed random number such that 0  𝑅 < 1, and 𝑚 is the Weibull 

modulus. The Weibull modulus controls the shape of the distribution. A higher value of 𝑚 

indicates a lower variability in the distribution. In this work, 10 or more random 

realizations of the tensile strength distribution were generated, each using a unique value 

of the seed in the random generator, which results in a different structural strength for each 

run. The spread of the predictions is shown in the section on simulation results. 

5.2.2 Generalized Maxwell Model for Viscoelasticity 

The constitutive relations to describe the time-dependent deformation of early-age 

cementitious materials can be approximated using generalized Maxwell or Kelvin-Voigt 

models (Zdeněk P. Bažant and Wu 1974; Zdenek P. Bažant and Wu 1973) constituted of 

time-variable viscosities and spring moduli. Both the Maxwell model and Kelvin-Voigt 

model can be applied to analyze the aging viscoelastic behavior of hydrating cement paste. 

In this study, we select the Maxwell model since the material parameters are easier to 

identify in the context of stress relaxation (Zdeněk P. Bažant and Wu 1974). The 

constitutive relationship between stress 𝜎(𝑡) and strain 𝜀(𝑡) for a linear viscoelastic 

material under uniaxial loading is given as (Zdeněk P. Bažant and Wu 1974):  

𝜎(𝑡) = ∫  𝐸𝑅(𝑡, 𝑡
′)[𝑑𝜀(𝑡′) − 𝑑𝜀0(𝑡′)]

𝑡

0

(5.2) 

where, the integrals are the generalized form of Reimann integral, called as Stieltjes 

integrals. 𝜀0(𝑡) is the stress-independent inelastic strain, and the relaxation 
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function,  𝐸𝑅(𝑡, 𝑡
′) indicates the stress in the material at time 𝑡 due to a unit constant strain 

acting since time 𝑡′ (𝑡 > 𝑡′). The relaxation curves can be expanded into a Dirichlet series 

and approximated using the generalized Maxwell model which contains a standalone 

spring, and a combination of springs and dashpots in series (Maxwell units), both arranged 

in parallel (Figure 2-1). The relaxation function can then be expressed as (Zdeněk P. Bažant 

and Wu 1974):  

 𝐸𝑅(𝑡, 𝑡
′) = ∑𝐸𝜇(𝑡

′)𝑒
−
𝑡−𝑡′

𝜏𝜇 + 𝐸∞(𝑡
′)

𝑝

𝜇=1

(5.3) 

where 𝑝 is the total number of Maxwell units of the generalized model, and 𝐸𝜇(𝑡
′) and 

𝐸∞(𝑡
′) are the moduli associated with springs in the individual Maxwell unit and the 

standalone spring respectively. 𝜏𝜇 is the relaxation time, which is represented as the ratio 

of the viscosity of the dashpot (𝜂𝜇) to the modulus of the spring (𝐸𝜇) as shown in Equation 

5.4. The implementation of generalized Maxwell model in MOOSE is described in greater 

detail in Chapter 3.  

𝜏𝜇 =
𝜂𝜇

𝐸𝜇
(5.4) 

5.3 Finite Element Model and Inputs 

A two and three-dimensional FE model is used to characterize and compute the restrained 

volume change response of the cementitious mixtures. Using symmetry boundary 

conditions, one quarter model for 2D and one-eighth of the model for 3D (quarter model 

in plan, with half the actual thickness) as shown in Figure 5-2 are simulated, in order to 

lower computational time. Since the symmetric boundary condition alone suppresses the 

rigid body modes, external constraints are not needed. It should be noted, however, that 
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this is only an approximation of real behavior as this assumes that similar cracks are formed 

in the non-modeled sections also. The outer ring has not been modeled (even though it was 

a dual ring experiment as explained earlier), as the paste shrinks and loses contact with the 

outer ring and the volume change is restrained by the inner ring alone. Although the cement 

paste initially expands and then starts to shrink, the initial expansion, usually caused by the 

heat generated by early age cement hydration (Bentz 2008), is ignored in the model. The 

ring and cement paste are modeled as separate parts with a frictionless contact acting 

between the two parts to mimic the actual experiment where a form release agent was 

applied on the surface of the rings in contact with the cement paste. In order to generate 

and use an efficient but acceptably accurate FE model, a convergence analysis was carried 

by varying the number of nodes and elements. The model containing the finite element 

mesh shown in Figure 5-2, with 2325 four-noded quadrilateral and 30225 eight-noded 

hexahedral elements for 2D and 3D simulations respectively, yielded the best results. The 

mesh orientation has been chosen so that the crack runs in an outward radial direction, after 

initiation, to avoid mesh bias. All finite element simulations were carried out using Arizona 

State University computing cluster (Agave) - CentOS 7.4 with each node configured with 

Intel Broadwell CPU containing 28 cores and 128 GB RAM. Only one node with 28 cores 

was used that took approximately 10 minutes and 50 minutes of wall clock time for each 

2D and 3D simulations respectively.  
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(a) (b) 

 

        

 

(c) (d) 

Figure 5-2. (a) Quarter Symmetry 2D FE Model With the Boundary Conditions Used 

in the Analysis, (b) a Typical 2D FE Mesh Used in the Analysis, and (c) One-Eighth 

Symmetry 2D FE Model (Quarter Model in the Plan, With Half the Thickness) With 

the Boundary Conditions Used in the Analysis, (d) a Typical 3D FE Mesh Used in 

the Analysis. 

5.3.1 Input Parameters 

The input parameters for the material models described in Section 3.1 are the Young’s 

modulus, 𝐸(𝑡), the tensile strength 𝜎𝑡𝑢, the relaxation function,  𝐸𝑅(𝑡, 𝑡
′), and the post-

peak stress-strain curve. As previously stated, the time-dependent evolution of elastic 

modulus and tensile strength were experimentally determined. The methodology to obtain 

the viscoelastic parameters (spring modulus and dashpot viscosities/relaxation times) is 

explained in the following section. Aleatory uncertainty described earlier was used to 

distribute the tensile strengths of the finite elements in accordance with Equation 5.1.  The 

distribution of tensile strengths in the simulated ring for the paste with 20% PCM 

X

Y
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inclusions at 7 days are shown in Figure 5-3 to demonstrate the random distribution of 

strengths, which accounts for uncertainties in failure initiation and propagation. As 

mentioned earlier, 10 or more such random realizations were used in each of the 

simulations. As the tensile strengths were found not to be influenced significantly by the 

presence of PCM particles (in the range of volume fractions considered in the study), the 

reasons for which have been adequately described in (Wei, Falzone, Das, et al. 2017b; 

Aguayo et al. 2016), and owing to their small size, they have not been meshed explicitly. 

The Weibull modulus (𝑚) was taken as 24, which is commonly adopted for cement-based 

materials (Z P Bažant 1999). The elastic modulus and Poisson’s ratio of the Invar ring were 

taken as 141 GPa and 0.28 respectively. The different parameters that are used in the 

framework and the corresponding values used are listed in Table 5-1.  

                
Figure 5-3. Representative Realizations of Aleatory Uncertainty-Based Distribution of 

Tensile Strengths in the Finite Element Model for Cement Paste for 2D and 3D 

Specimens. 

 

Table 5-1. Constitutive Parameters Used in the Simulation of Ring Test 

Material Property Value Ref 

Elastic Modulus of Invar, 141 GPa (Wei, Falzone, Das, et al. 2017b) 

Poisson’s ratio of invar, 𝝂𝑰 0.28 

Poisson’s ratio of paste, 𝝂𝒑 0.20 

Relaxation function See Figure 5-5 
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𝑬𝑹(𝒕, 𝒕
′)  

Relaxation time of the first 

Maxwell unit 

𝝉𝟏 

0.001 day (Zi and Bažant 2002) 

Relaxation time spacing 

𝒂 

4   

Median tensile strength, 

𝝈̅ 

2.5 MPa (Wei, Falzone, Das, et al. 2017b) 

Volume, 

𝑽̅ 

257407 mm3  

Weibull Modulus 24  (Z P Bažant 1999) 

Weights,  

𝒘𝟏 and 𝒘𝟐 

0.1 (Zdeněk P. Bažant and Wu 1974) 

Diffusion Coefficient, 𝐃𝟏 60 mm2/day (Comite Euro-International Du 

Beton 1993) 

Surface factor, 𝐟𝒃𝒐𝒖𝒏𝒅𝒂𝒓  0.3 mm/day (Oliveira, Azenha, and Lourenço 

2015) 

Diffusion equation parameters,  

𝜶, 𝒉𝒄 and 𝒏 

0.05, 0.8 and 

15 

(Z. P. Bažant and Najjar 1971) 

Creep equation parameters, 

 𝟏 and  𝟐 

2.1, 0.5 (Tamtsia, Beaudoin, and 

Marchand 2004) 

Ultimate Shrinkage coefficient,  

𝜺𝑺𝑯−∞ 

2000 μm/m  

4000 μm/m 

(Hansen 1987) 

 

5.3.2 Algorithm for Determination of Viscoelastic Parameters 

There exist several ways to obtain the relaxation function for early age cementitious 

materials if it is not available from experiments. The ring test itself could be used to obtain 

the aging relaxation function as described in (Grasley and D’Ambrosia 2011). It could also 

be obtained from creep compliance functions which are usually available in form of 

empirical relations for concrete. For early age cement paste, the creep compliance, 𝐽, can 

be expressed as a function of the degree of hydration 𝛼𝑑, the degree of hydration at loading 

𝛼𝑑0, and the relative humidity in the paste as (Tamtsia, Beaudoin, and Marchand 2004):  
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𝐽(𝑡, 𝑡′) = 𝐽0(1 + ∅(𝛼𝑑, 𝛼𝑑0, 𝑅𝐻))    (5.5)  

where, 𝐽0 is the compliance at the age of loading (𝑡0), which is equal to the inverse of the 

elastic modulus. ∅ is the creep coefficient given as: 

∅ = 𝑘1𝑓𝛼𝑑
𝑘2      (5.6) 

where, 𝑘1 and 𝑘2 are the experimentally fitted coefficients and are taken as 𝑘1=2.1, 𝑘2 =0.5 

(Tamtsia, Beaudoin, and Marchand 2004) for all ages of loading. Ideally, 𝑘1and 𝑘2 should 

vary for different ages but in the absence of data for later ages of loading, they are taken as 

constant for all ages of loading. 𝑓𝛼𝑑  is the fractional increase in degree of hydration and is 

given as:  

𝑓𝛼𝑑 =
𝛼𝑑−𝛼𝑑0

𝛼𝑑0
     (5.7) 

The relaxation function is obtained from the creep compliance function by using the 

approximate relationship (Zdeněk P. Bažant, 1988): 

𝐸𝑅(𝑡, 𝑡
′) =

0.992

𝐽(𝑡,𝑡′)
−

0.115

𝐽0
[
𝐽(𝑡−

𝑡−𝑡′

2
,𝑡′)

𝐽(𝑡,𝑡′+
𝑡−𝑡′

2
)
− 1]   (5.8) 

The expression for the relaxation function as a function of the Maxwell model parameters 

given in Equation 5.3 can be used to determine these parameters through a least square fit. 

However,  𝐸𝜇(𝑡
′) are unstable functions of  𝐸𝑅(𝑡, 𝑡

′) unless the relaxation times, 𝜏𝜇’s, are 

selected beforehand and certain smoothing conditions implemented (shown later in 

Equation 5.10) (Zdeněk P. Bažant and Wu 1974). The relaxation times are usually taken 

as being equally spaced in logarithmic time scale:  

𝜏𝜇 = 𝑎𝜇−1𝜏1 (𝜇 = 1,2, … . ,𝑚)   (5.9) 
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where: (i) 𝜏1, the relaxation time associated with the first Maxwell unit, was taken as the 

time during which the relaxation spectra begin to descend in the log time scale, and (ii) the 

spacing of the relaxation times in the time scale is given as 𝑎. In this work, the value of 𝜏1 

is taken as 0.001 day (Zi and Bažant 2002), and the value of 𝑎 is taken as 4 (instead of 10 

as reported in (Zdeněk P. Bažant and Wu 1974)), as we are not concerned with long-term 

creep behavior. Numerical experiments were conducted using 7 Maxwell units to validate 

these choices and the assumed values provided a better distribution of 𝜏𝜇’s over the time 

range of interest in this work (a few days). The spring moduli, 𝐸𝜇(𝑡
′), are obtained by 

minimizing the function 𝛷 with respect to 𝐸𝜇 and 𝐸∞ as:  

𝛷 = ∑ (𝐸𝑅(𝑡𝛽 , 𝑡
′) − 𝐸̃𝑅(𝑡𝛽 , 𝑡

′))
2
+𝑤1∑ (𝐸𝜇+1 − 𝐸𝜇)

2𝑚−1
𝜇=1𝛽 +𝑤2∑ (𝐸𝜇+2 − 2𝐸𝜇+1 + 𝐸𝜇)

2𝑚−2
𝜇=1    

(5.10) 

where, 𝐸̃𝑅(𝑡, 𝑡
′) denotes the actual values for the relaxation function, 𝛽 denotes a series of 

(𝑡 − 𝑡′) values, and 𝑤1 and 𝑤2 denotes the weights associated with the sum of the squares 

of the first and second difference of 𝐸𝜇 as functions of 𝜇. These weights have been taken 

as 0.1 here, in line with other reported studies (Zdeněk P. Bažant and Wu 1974). A custom 

MATLAB code was developed to compute the relaxation spectrum from the degree of 

hydration data. The code also computes the Maxwell model parameters from the relaxation 

spectrum which forms the input to the aging material model in MOOSE. 

5.3.3 Relaxation Spectra for Cement Pastes 

It has been shown that the soft/stiff inclusions do not significantly influence the degree of 

hydration of the cement paste in the range of volume fractions considered (Fernandes et al. 
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2014). The experimental degree of hydration data (Fernandes et al. 2014) was fitted using 

a logarithmic equation as shown below. 

𝛼𝑑 = 0.12𝑙𝑛(𝑡) + 0.42   (5.11) 

Here, 𝑡 is in days. The degree of hydration is then used to compute the creep compliance 

using Equation 5.5. The calculated creep compliance and experimental results for OPC 

pastes of two different w/c (Tamtsia, Beaudoin, and Marchand 2004) loaded after 1 day 

are shown in Figure 5-4(a).  

  
Figure 5-4. (a) Comparison of Numerically Obtained Compliance Function for OPC 

Paste With the Experimental Results. The Numerical Function is Obtained by Fitting 

the Maxwell Parameters while the Experimental Results are from (Tamtsia, 

Beaudoin, and Marchand 2004), and (b) Aging Function Obtained by Fitting 

Experimental Elastic Modulus Data and the Numerical Aging Function Given by 

Solidification Theory (Zdeněk P. Bažant and Prasannan 1989). 

 

Once the creep compliance is known, it is converted to relaxation function using Equation 

5.8. The relaxation spectra determined for the plain paste and the pastes with inclusions are 

shown in Figure 5-5. The relaxation function at later ages is computed by multiplying the 

viscoelastic modulus obtained at 1 day by the aging function. The relaxation function is 
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then used to compute the Maxwell model parameters by minimizing Equation 5.10. The 

aging function, 𝜈(𝑡), can be expressed as (Grasley and D’Ambrosia 2011): 

𝜈(𝑡) = 𝜅(1 − exp(−𝜆(𝑡 + 𝑡𝑑)))   (5.12) 

where 𝑡𝑑 = 1 day is the time when drying is initiated. 𝜅 and 𝜆 are fit parameters which can 

be obtained by substituting a normalized elastic modulus as shown in Equation 5.13, for 

the aging function in Equation 5.12. 

𝜈(𝑡) = 𝐸(𝑡)
𝐸(𝑡 = 1)
⁄      (5.13)  

 As per the solidification theory, the aging function is given as (Zdeněk P. Bažant and 

Prasannan 1989):  

𝜈(𝑡) =
1

(
1

𝑡
)
𝑚𝑎

+𝛼𝑎
    (5.14) 

where, 𝑚𝑎 and 𝛼𝑎 are fitting parameters taken as 0.33 and 0.05 for cement pastes (Zdeněk 

P. Bažant and Prasannan 1989). Figure 5-4(b) shows that, for the time period of interest in 

a restrained ring test (< 10 days), the aging function determined from elastic modulus and 

that predicted by solidification theory are in agreement.  

  
(a) (b) 
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(c) (d) 

Figure 5-5. (a) Time-Dependent Viscoelastic Moduli for: (a) Plain Paste (b) Paste 

With 10% PCM Inclusions (c) Paste With 20% PCM Inclusions, and (d) Paste With 

10% Quartz Inclusions. The Dashed Lines Correspond to Different Ages t’ = 

1,2….10 Days 

 

5.3.4 Imposed Loading to Simulate Shrinkage 

The restrained ring test is usually accompanied by the free shrinkage test. The free 

shrinkage strain measured in the experiments at any given time is applied to the 2D finite 

element model as an imposed eigenstrain, assuming that the relative humidity is constant 

along the depth of the specimen. However, moisture gradients within the specimen give 

rise to differential shrinkage strain (Neithalath, Pease, and Attiogbe 2005; Z. P. Bažant and 

Najjar 1971). The movement of moisture inside the specimen is governed by diffusion and 

can be expressed as (Z. P. Bažant and Najjar 1971): 

𝜕𝑤

𝜕𝑡
= −div𝐉𝒎      (5.15) 

where,  𝑤 is the specific moisture content and 𝐉𝒎 is the moisture flux through the specimen. 

This equation is highly nonlinear in the sense that 𝐉𝒎 depends upon the gradient of the 

moisture content. In addition, it also depends on the specimen temperature which varies 

significantly during hydration (Zdeněk P. Bažant, 1988). At temperatures of interest, pore 

(relative) humidity is frequently used instead of specific moisture content as it eliminates 
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the effects of hydration (Neithalath, Pease, and Attiogbe 2005; Zdeněk P. Bažant, 1988). 

The corresponding equation is then stated as:  

𝜕𝐻

𝜕𝑡
= −div(Dgrad H) +

𝜕𝐻𝑎𝑢𝑡𝑜

𝜕𝑡
   (5.16) 

where, D is the diffusion coefficient, H is the pore relative humidity, and 𝐻𝑎𝑢𝑡𝑜 is the self-

desiccation humidity. For specimens made with water-to-cement ratio greater than about 

0.40, self-desiccation can be ignored. The diffusion coefficient is expressed as (Z. P. 

Bažant and Najjar 1971): 

D = D1 (𝛼 +
1−𝛼

1+(
1−𝐻

1−ℎ𝑐
)
𝑛)    (5.17) 

where, 𝛼, ℎ𝑐 and 𝑛 are constants taken as 0.05, 0.8 and 15 (Z. P. Bažant and Najjar 1971). 

D1 is taken as 60 mm2/day as per CEB-FIP (1990) (Comite Euro-International Du Beton 

1993) for early age cement pastes (~7 x 10-10 m2/s). Neumann’s boundary condition 

(Oliveira, Azenha, and Lourenço 2015) is used, which is given as: 

D(
𝜕𝐻

𝜕𝑥
) = 𝑓𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐻𝑒𝑛𝑣 − 𝐻𝑠𝑢𝑟𝑓)    (5.18) 

where, 𝑓𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is the surface factor, taken as 0.3 mm/day (Oliveira, Azenha, and 

Lourenço 2015). 𝐻𝑒𝑛𝑣 is the environmental humidity and 𝐻𝑠𝑢𝑟𝑓is the exposed surface 

humidity. The solution to the above problem is obtained by discretizing it using the finite 

difference technique and the resultant non-linear equations solved using Newton-Raphson 

method with a maximum tolerance of 0.0001. Further details can be found in (Oliveira, 

Azenha, and Lourenço 2015). The humidity profiles are shown in Figure 5-6(a), from 

which the imposed shrinkage strains are then calculated for 3D simulation as:  

𝛥𝜀𝑠ℎ = 𝜀𝑆𝐻−∞𝛥𝐻    (5.19) 
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where, 𝜀𝑆𝐻−∞ is the ultimate shrinkage strain. The ultimate shrinkage strain depends upon 

the applied RH and thus different values are used for pastes drying under different RH. For 

pastes drying at 87.5% RH, this value was obtained as 2000 μm/m by fitting the free strain 

data reported in (Wei, Falzone, Das, et al. 2017b). For the paste drying at 50% RH this 

value was taken as 4000 μm/m (Hansen 1987). The shrinkage profiles are shown in Figure 

5-6(b). The calculated shrinkage was imposed as a volumetric eigenstrain over the entire 

specimen for 3D simulations. 

  

(a) (b) 

Figure 5-6. Variation of: (a) Humidity, and (b) Shrinkage as a Function of the 

Specimen Depth at t=1,3,4,..9 Days for 3D Simulations. 

5.4 Simulation of Restrained Shrinkage Cracking 

In this section, the FE modeling scheme described above and as implemented in 

MOOSE, is used to simulate the restrained shrinkage response of OPC pastes containing 

soft or stiff inclusions with variable humidity. Figures 5-7 (a)-(c) shows the simulated 

residual stress development for the cement pastes containing PCM or quartz, and their 

comparison with the experimental data from (Wei, Falzone, Das, et al. 2017a). The 

simulated residual stress is the average of the hoop stresses in all the elements along the 
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inner surface of the ring, while the experimental data correspond to the residual stress 

calculated from the measured strain from the four gages. The calculated residual stresses 

by the simulations during the first 7 days of drying under partially sealed conditions match 

the trends reported in the experiments, i.e., higher stress for the system with stiffer 

inclusions, and the residual stress scaling with the elastic modulus. The imposed changes 

in viscoelastic parameters as a function of the change in drying rate (see Figure 5-6) enables 

accurate prediction of the sudden increase in stress development after 7 days as can be 

noticed in Figures 5-7 (a)-(c). The effect of aleatory uncertainty-based strength distribution 

on the stress response is also shown, with the post-crack band (shaded) showing the stress 

values simulated using multiple seed values of the random number. The simulated time of 

cracking is found to match quite well with the experimental results for all the modeled 

cement pastes. The simulation captures the fact that the addition of complaint PCM 

inclusions delays the cracking time as compared to stiffer quartz inclusions.  

  
(a)  (b) 
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(c) (d) 

  
(e) (f) 

Figure 5-7. Simulated Residual Stress Development in the Cement Pastes and Their 

Comparison With Experimental Results from (Wei, Falzone, Das, et al. 2017b) With: 

(a) 10% PCM  Inclusions, (c) 20% PCM Inclusions, and (e) 10% Quartz Inclusions, 

and Their Zoomed in Plots at the Instant of Cracking in (b), (d) and (f) Respectively. 

The Shaded Regions Show the Uncertainty in Time-to-Cracking and Residual 

Stresses Based on the Aleatory Uncertainty-Based Strength Distribution.    

Figure 5-8 shows the simulated hoop strain development for the cement pastes with or 

without inclusions for 3D simulations respectively, and their comparison with the 

experimental data from (Wei, Falzone, Das, et al. 2017b). The simulated hoop strain is the 

average of the hoop strains in all the elements along the inner surface of the ring, while the 

experimental data correspond to the measured strain from the four gages. The time to 

cracking obtained from the experiments and simulations are provided in Table 5-2. The 
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simulated time of cracking is found to match quite well with the experimental results for 

all the modeled cement paste. The results for 2D simulations are better as compared to 3D 

simulations as the effect of change in humidity is more gradual and occur only at the top 

in 3D simulations. The 2D simulations ignore this and thus give better results. The time to 

cracking in the paste with PCM (soft) inclusions is slightly delayed as compared to the 

plain paste and the paste with quartz (stiff) inclusions. The delay in the cracking for paste 

with soft inclusions can be best understood by plotting the development of hoop stress at 

the top of the specimen as shown in Figure 5-9 (a). Due to the lower rate of stress growth 

(based on the viscoelastic properties), the time to reach the peak stress is delayed in the 

pastes with soft inclusions. The effect of aleatory uncertainty-based strength distribution 

on the stress response is also shown in Figure 5-9 (b), with the post-crack band (shaded) 

showing the influence on cracking stress when simulated using multiple seed values of the 

random number. The 3D simulations will be further examined in a little more detail. 

  
(a) (b) 
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(c) (d) 

Figure 5-8. Simulated Hoop Strain Development in the Inside of Invar Ring With 

Drying (a) Cement Paste, (b) Paste With 10% PCM Inclusions, (c) Paste With 20% 

PCM Inclusions, and (d) Paste With 10% Quartz Inclusion and Their Comparison 

With Experimental Results from (Wei, Falzone, Das, et al. 2017b) . The Simulated 

Results are the Mean Values of 10 Realizations. 

 

  
Figure 5-9. (a) Comparison of Development of Hoop Stress on the Top Layer for 

Different Pastes. The Lines Represent the Mean of 10 Realizations, and (b) Hoop 

Stress in the 10% PCM Paste With the Shaded Regions Show the Uncertainty in Time-

to-Cracking. 

 

Table 5-2. Estimated Time to Cracking Based on Experiments and Simulation for OPC 

Pastes With Inclusions 

Mixture  Time to Cracking (days) 

Experimental Simulation (2D) Simulation (3D) 

OPC 7.09 7.07-7.10 7.34-7.39 

10%PCM 7.51 7.47-7.57 7.61-7.68 

20%PCM 7.53 7.63-7.73 7.81-7.92 

10%Quartz 7.11 7.13-7.17 7.30-7.33 
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Figures 5-10 (a) and (b) show the hoop stresses at the instant of cracking for OPC paste 

and the paste with 10% PCM using the same seed value of the random generator of tensile 

strength. The distribution of hoop stress is very similar in both the specimens at the instant 

of cracking. In the OPC paste, the cracking initiated at 7.32 days, while in the paste with 

10% PCM, it occurred at 7.52 days. The stress at the end of 8 days is also shown in Figures 

5-10 (c) and (d). The isotropic damage index is shown in Figures 5-10 (e) and (f) for the 

OPC paste and the paste with 10% PCM respectively. Increased damage can be clearly 

observed in the plain OPC paste since the hoop stress increases faster in the OPC paste. 

This creates a situation where elements farther from the crack continue to carry the load 

and does not unload quickly. It can also be observed from Table 5-2, that the predicted 

time to cracking is higher for the paste with lower stiffness. However, the predicted time 

for same paste is slightly higher in the simulations. This is because, during the damage 

computations using Equation 4.1 in the finite element framework, the stress depends upon 

the previous state of damage. This makes the solution dependent on the time step between 

two iterations of the solver. In all the previous solutions, the chosen time step was 0.01 

days. An extremely small time-step increases the computational effort by a significant 

margin. Figure 5-11 shows the isotropic damage index computed using three different time 

steps (0.1, 0.01 and 0.001 day) for the plain OPC paste. The solver took 10 minutes, 55 

minutes and 24 hours to complete the simulations with the system configuration described 

earlier in this document. It can be noticed that damage is better localized as the time step 

is reduced. It is instructive to note that, in restrained ring tests of cementitious materials, a 

single crack is generally observed. Two-dimensional, plane stress simulations (not 
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considering moisture gradients) are able to accurately characterize the single cracking 

within manageable time steps. For computationally intensive 3D simulations, time step 

reduction is needed to capture the occurrence of a single crack. Moreover, cracking occurs 

in the top layer in the simulations, as is the case in the experiments, due to the high stresses 

caused by shrinkage of the top layers. Once cracking occurs, the drop in stiffness releases 

the tensile stress in the specimen. This reduces the compression which is acting on the ring 

and is indicated by the sudden drop in the hoop strain recorded by the strain gage. In the 

simulations, as explained above, the specimen continues to carry some load even after 

cracking occurs and thus the drop is not as sudden as observed in the experiments. Due to 

the residual stiffness in the specimen, the hoop strain also does not drop completely as in 

the experiments. A similar outcome has been reported in (Šmilauer et al. 2019) with the 

hoop strain in the ring not dropping instantaneously and damage localized to only the top 

layers. Figure 5-12 shows the development of hoop stress with time for different time steps 

chosen, using the same seed value of the random distribution of tensile strength. The peak 

stress and the time to cracking are found to reduce as the time step is reduced.  

 

 

 

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 5-10. Hoop Stress at the Instant of Cracking in: (a) Plain OPC Paste, and (b) 

Paste With 10% PCM; Hoop Stress and After 8 days in: (c) Plain OPC Paste and (d) 

Paste With 10% PCM. Damage at the End of 8 Days for: (e) Plain OPC Paste, and (f) 

Paste With 10% PCM. 

  

 
 

(a) (b) 

 
(c) 

Figure 5-11. Isotropic Damage in the Specimen at the End of 8 Days When Time steps 

of: (a) 0.1 Day, (b) 0.01 Day and (c) 0.001 Day are Used. 
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Figure 5-12. Hoop Stress in the OPC Paste When Simulations are Carried Out at 

Different Time Steps (the Hoop Stress Significantly Increases from Day 7 Since That is 

When the Experimental RH was Dropped from 87.5% to 50%).  

 

5.5 Summary and Conclusions 

This chapter describes a comprehensive finite element framework to model the restrained 

ring shrinkage test used to assess the cracking propensity of cementitious mixtures at early 

ages. A model based on the MOOSE framework was used to describe the early-age 

response of several cement pastes, including those containing soft or stiff inclusions. This 

model incorporates specific attributes required to simulate the early-age response of an 

aging, random, heterogeneous material undergoing drying shrinkage. 

 

An eigenstrain was imposed on the FE model which considered moisture diffusion through 

the specimen. The relaxation function of cementitious pastes was determined based on the 

degree of hydration, which is independent of the presence of inclusions. Relaxation curves 

corresponding to different ages of loading thus obtained were used to determine the time-

dependent Maxwell spring moduli for the selected systems. The aleatory uncertainty-based 



  81 

approach adopted for the distribution of tensile strengths of the finite elements, helped to 

account for microscale heterogeneities that are influential in cracking, yet preserve the 

median strength of a finite volume of material.  

The numerical model was validated for a series of cement pastes containing soft (phase 

change materials, PCM) or stiff (quartz) inclusions. The model adequately captured the 

delay in cracking time with the incorporation of soft inclusions. The influence of changing 

relative humidity is also considered in the simulation of pastes containing soft/stiff 

inclusions. The effect of time steps on the accuracy of the numerical results are also 

explained in this study. It is anticipated that the effect of using other compliant inclusions 

(e.g., expanded polystyrene for lightweight and energy absorbing composites, 

superabsorbent polymers for internal curing) on the cracking resistance of cementitious 

systems will be similar to those reported here – i.e., delaying the time to cracking and 

reducing the overall damage. The methodology demonstrated in this document to simulate 

restrained can be successfully adopted in such cases also. This eliminates the need for 

difficult experimental methods to determine viscoelastic parameters and provides a 

methodology wherein the designer can choose and optimize compliant or stiff inclusions 

with considerations of volume change and cracking also, in addition to the commonly 

considered mechanical properties. The model can be further used to examine the rate of 

stress development and cracking time for cement-based materials as a function of the 

restraining characteristics (ring material, thickness, and stiffness), material characteristics 

(elastic modulus, viscoelastic properties), exposure conditions (varying RH), and specimen 

size.  
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CHAPTER 6 

VALIDATION OF NUMERICAL MODEL - IRRADIATED CONCRETE 

EXPERIMENTS 

In this validation exercise, experimental results from published literature are used to 

validate the developed constitutive model by considering the coupled hygrothermal 

simulation and its effect on the creep, shrinkage kinetics. In this validation, aggregate and 

mortar will be modelled separately unlike previous examples where the material was 

considered homogenous.  

6.1 Experimental Investigations 

In this section, the studies carried out by Maruyama et al. (Maruyama et al. 2017) used for 

numerical simulations will be examined. Maruyama et al. (Maruyama et al. 2017) carried 

out a series of experiments to evaluate the reference values for fast neutron fluence and 

gamma ray dosage beyond which concrete is no longer considered sound. Presently, these 

values are taken as 1x1020n/cm2 and 2x105 kGy based on the irradiated concrete 

experimental studies collected by Hilsdorf et al. (Hilsdorf, Kropp, and Koch 1978). In a 

neutron radiation environment, secondary gamma rays are always present causing gamma 

heating. Thus, comprehensive tests were carried out to ascertain the effect of neutrons, 

which were supplemented with gamma ray tests and heating and drying effects on concrete. 

Two tests called Interaction test (IT) and Physical property test (PPT) were done in this 

study. The former deals with radiolysis of water in the cement paste while the latter deals 

with changes in the properties such as young’s modulus, strength etc. PPT test also 

included heating and drying to include the effects of factors other than radiation, on the 

concrete. The fast neutron fluence was measured using monitoring wires placed inside the 
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capsules while the distribution of radiation in the vertical direction was obtained using 

MCNP5 FE code. The reactor JEEP II reactor at Norway’s Institute for Energy Technology 

(IFE) was selected for neutron irradiation due to the low gamma heating values. The 

cylindrical specimen of size Φ40x60 mm with 13 mm dia (maximum) aggregate was 

selected to be tested in the irradiation rig. The specimen diameter was selected to reduce 

the difference in the internal and surface temperature, caused by gamma heating, thereby 

restricting the cracking of the specimen at the surface. The height was selected to fit 

maximum specimens inside the irradiation capsule. The clearance between specimen and 

internal surface of capsule was kept as 1% of sample diameter. The capsule was made of 

aluminum due to its high thermal conductivity to dissipate heat quickly and due to 

aluminum soft nature to avoid any damage to the specimen in case of any excessive 

expansion.  High early strength cement with a w/c ratio of 0.5 was used to stabilize 

hydration at the end of 1 year to avoid radiation induced strength development. All the 

concrete and pastes specimens were kept in a sealed condition for 1 year at 20oC. The 

cement paste specimens were then dried at 75oC in thermostatic chamber for 1 week. To 

evaluate the expansion level of aggregate with α quartz content, irradiation tests were 

performed, with five kinds of siliceous rocks (namely GA, GB, GC, GD and GE with 

decreasing quartz content) and a representative limestone rock (GF), on specimen of size 

Φ10x10 mm. 

Four concrete specimens (called CON-A) with GA aggregate and four specimens (called 

CON-B) with GB aggregate were irradiated simultaneously at four levels of neutron 

fluence i.e. 0.75, 1.5, 3 and 6 (1019n/cm2) at a dose of approximately 3.6x1012 n/cm2/s. 

Along with concrete specimens, six cement pastes specimens (Φ10x10 mm) and six 
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aggregate specimens (Φ10x10 mm) of each type were also irradiated by placing them in 

Al sample holders. The fluence were achieved in ~30, 50, 155 and 320 days respectively 

and are referred as PPT-B, PPT-C, PPT-D and PPT-E. The number of days required to 

achieve the same fluence level varied slightly over the experiments due to outage. The 

results of PPT-E are not reliable as the specimen expanded a little more than expected, 

causing the fracture of the capsule holding the specimens and flooding by cooling water, 

hence the experimental result up to PPT-D will only be considered with 3x1019 n/cm2 being 

the maximum fluence for the simulations. The results of experiments on concrete, hardened 

paste and aggregate are summarized in Table 6-1. 

Table 6-1. Experimental Results by Maruyama et al. 

Neutron Irradiation Test 

PPT- Concrete 

Mass 

Change 

The mass change was similar (~3.5%) in both concrete specimens 

(CON-A and CON-B). 

Length 

change 

It was greater for Con-A (1% at highest fluence) than Con-B (0.5% 

at highest fluence) due to the higher amount of quartz in CON-A 

Strength 45% and 35% and reduction in strength for CON-A and CON-B. 

Elastic 

modulus 

70% and 60% reduction in elastic modulus for CON-A and CON-B. 

Cold Test- Concrete 

Compressive 

Strength 

It was observed to be constant at 70 MPa for both concrete types at 

the end of 0, 50, 155 and 1000 days after sealed curing condition for 

one year and the days to testing at 20oC. The 28- day compressive 

strength was 50 MPa 

Young’s 

Modulus 

It was 37.5 GPa after 0, 50 and 155 days for both concrete types after 

one year and the days to testing at sealed curing condition. 

Heating Test- Concrete 

Shrinkage Exhibited slight shrinkage (~ 500 microns) 

Strength 15% reduction in strength 

Modulus 20% reduction in modulus 

PPT-HCP 
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Mass change Mass increase was observed at low level of radiation (PPT-B), which 

was due to absorption of moisture during condensation of moisture 

inside the capsule and insufficient drying at 76oC. PPT-C and PPT-

D showed a decrease in mass due to elimination of condensation and 

mass increase was observed in PPT-E due to capsule flooding due to 

capsule fracture. 

Length 

change 

In early stages, the specimen absorbed moisture and exhibited 

swelling however starts shrinking at higher fluence. The data seems 

unreliable though.  

Vickers 

Hardness 

It increased with fluence indicating cement paste has high resistance 

against radiation. 

PPT-Aggregates 

Length 

change 

In early stages, the specimen absorbed moisture and exhibited 

swelling however starts shrinking at higher fluence. The data seems 

unreliable though.  

XRD data It showed that the diffraction peaks grew smaller and shifted to the 

small angle region with increasing fluence indicating structural 

collapse and widened atomic spacing. 

 

6.2 Simulation Approach 

The entire simulation is done in two stages as shown in Figure 6-1. Stage 1 consists of 

using a coupled thermo-hygral model (Zdeněk P. Bažant, Chern, and Thonguthai 1982; 

Bazant and Thonguthai 1978; Zdeněk P. Bažant and Thonguthai 1979) to compute 

temperature and relative humidity fields and together with the radiation field form an input 

for stage 2 which consists of a mechanical model and computes the strain based on the 

applied fields. The applied temperature and moisture content/pore relative humidity 

profiles were calculated based on the deposited energy from the irradiation. These fields 

are then applied to estimate the creep, shrinkage and thermal strains on the mortar and 

radiation induced volumetric strain on the aggregate in the mechanical model which are 

then converted to stress fields using appropriate constitutive law. There is a dearth of 

information in the open literature when it comes to concrete under irradiated conditions as 
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only a few tests have been carried out. The limited tests, whenever available, also 

corresponds to different type of radiation dosages, concrete mix, aggregate types, curing 

age and environmental condition during the irradiation scenario (Field, Remec, and Pape 

2015; Le Pape, Field, and Remec 2015). In the current work, the proposed framework is 

validated with the experimental results of Maruyama et al. (Maruyama et al. 2017), which 

to date feature the most comprehensive set of tests on irradiated concrete. However 

significant gaps remain and as a result, a lot of approximations were either made or models 

pertaining to concrete under non irradiated scenarios are used.  

 
Figure 6-1. Meso-Scale Microstructure-Based FE Framework to Detect Damage in 

Concrete With Expansive Aggregate. 

 

6.3 Microstructure and Mesh Generation 

The microstructure has been generated based on the particle size distribution of the coarse 

aggregates provided by Maruyama et al. (Maruyama et al. 2017) using the microstructure 

generation algorithm as found in (Lubachevsky and Stillinger 1990). Meshing has been 
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done using 378589 four noded tetrahedral elements using the geometry adaptive meshing 

scheme. The volume fraction was further verified by calculating the volume of elements 

that correspond to aggregate and mortar. The volume fraction of 0.34 was achieved against 

the 0.38 used in the experiments. The finite element mesh, boundary conditions and the 

loading conditions for both stages are shown in Figure 6-1. 

6.4  Material Model for Aggregate 

Aggregates are treated as linear elastic material undergoing radiation induced volumetric 

expansion and damage due to neutron impingement as shown by XRD data. 

6.4.1  Elasticity 

The modulus of aggregate reduces under neutron irradiation. However, no measurements 

of decrease of elastic modulus were carried out due to neutron irradiation. Elleuch et al. 

(Elleuch, Dubois, and Rappeneau 1972) carried out the experiments on serpentine 

aggregates and found that the pulse velocity, 𝑣𝑚 reduces from 7200 m/sec to 4720 m/sec 

(see Figure 6-2) as neutron fluence, 𝜑 changes from 0 to 10 (1019 n/cm2). Most of the 

reduction occurs in the initial phase up to 1 (1019 n/cm2). The following equation has been 

formulated to capture this effect 

𝑣𝑚 =

{
 

 −1360𝑛 + 7200 𝜑 <
1019n

cm2

5840𝜑−0.1 𝜑 >
1019n

cm2

(6.1) 

In the absence of experimental data, the same reduction of elastic modulus is assumed to 

occur in the aggregates GA and GB as these aggregates have typically high amount of 

quartz content (>40%). The elastic modulus is proportional to the square of the pulse 

velocity. The variation of elastic modulus with neutron fluence is then given by: 
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𝐸𝑎𝑔𝑔(𝜑) = 𝐸𝑠𝑡𝑎𝑡 (
𝑣𝑚(𝜑)

(𝑣𝑚(𝜑 = 0)
)

2

(6.2) 

 
Figure 6-2. Pulse Velocity Against Neutron Fluence for Serpentine Aggregates as per 

Elleuch et al. (Elleuch, Dubois, and Rappeneau 1972) 

 

6.4.2 Radiation Induced Volumetric Expansion 

It has been observed that aggregates with covalent bonds (siliceous aggregates) are more 

susceptible to radiation induced expansion than aggregates with ionic bonds. Quartz, which 

is present in aggregates is more susceptible to radiation induced swelling, however, other 

minerals, texture, grain boundaries also influence the rate of expansion (Maruyama et al. 

2017). As these effects are difficult to be considered at this stage, we will consider uniform 

volumetric expansion of aggregates. It is to be noted that temperature also affects the 

degree of quartz metamictization (Bykov et al. (Bykov et al. 1981)). Bykov et al. (Bykov 

et al. 1981) found out that the expansion decreases with increasing temperature indicating 

that thermal heating heals the damage in the aggregate. They considered the thermal 
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healing at high temperature and expressed RIVE using the nucleation and growth model 

(shown in Figure 6-2) as, 

𝜀Φ = 𝜀𝑚𝑎𝑥 (1 − 𝑒𝑥𝑝 (−(
𝜑

𝐾(𝑇)
)
𝑑

)) (6.3) 

where, 𝜀𝑚𝑎𝑥 is the maximum expansion volume as observed in experiments (0.18, 0.15 for 

GA and GB aggregates (Maruyama et al. 2017)), 𝜑 is the fast neutron fluence (n/cm2), 

𝐾(𝑇) is the fast neutron fluence when expansion reaches half the maximum expansion 

volume (n/cm2), 𝑇 is the temperature (in Kelvin), 𝑑 is the dimension coefficient taken as 

2.38 based on Field et al. (Field, Remec, and Pape 2015). 𝐾(𝑇) is given by, 

𝐾(𝑇) = 0.45 × 1020 ×
exp(2000/298)

exp(2000/T)
(6.4) 

The thermal deformation which is negligible in comparison to RIVE is ignored in the 

simulations where radiation is applied, however it is considered in the cases where only 

thermal heating occurs. Moreover, elevated temperature causes healing and thus controls 

RIVE which is considered in this study. Thermal healing is also enhanced under low 

neutron flux conditions. This effect is not considered in the current work due to high 

constant flux in the test reactors, however to simulate real-world reactor setting (with low 

and varying flux condition) the three-phase model proposed by Nakano et al. 2006 

(Nakano, Muto, and Tanabe 2006) could be used, in which expansion also depends upon 

the neutron flux.  

6.4.3  Thermal Expansion 

The thermal deformation is negligible in comparison to RIVE. However, it needs to be 

considered for specimens which are only under heating. It is well known that thermal 
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deformation is linear with the temperature with the coefficient of thermal expansion, 𝛼𝑎 

relating the thermal expansion with the applied temperature.  

𝜀𝑡 = 𝛼𝑎(𝑇 − 𝑇0) (6.5) 

where, 𝜀𝑡 is the thermal strains, 𝑇, 𝑇0 are the applied temperature and the reference 

temperature (in oC).  

6.5 Material Models for Mortar 

Mortar has been modeled as an elastic material undergoing stiffness degradation, drying 

shrinkage, thermal expansion and long-term creep owing to the elevated temperature.  

6.5.1 Drying Shrinkage 

The drying shrinkage of cementitious materials can be directly related to the pore water 

content or the internal pore relative humidity of the specimen (Neithalath, Pease, and 

Attiogbe 2005; Zdeněk P. Bažant, 1988). 

𝜀𝑙𝑑(𝑡) = 𝜀𝑆𝐻,∞(0.97 − 1.898(𝐻(𝑥, 𝑡) − 0.2)3) (6.6) 

where, 𝜀𝑆𝐻,∞ is the free shrinkage coefficient which is equal to maximum shrinkage 

obtained at infinite time. 

6.5.2  Creep 

Based on the experiments, McDowall (McDowall 1972) concluded that the creep reduces 

under gamma irradiation while shrinkage increases. There is not much data in open 

literature about the effect of irradiation on the creep mechanism in concrete, hence its effect 

will be ignored in the present simulations. However the effect of humidity and temperature 

will be considered here as in (A. Giorla et al. 2015). A single Kelvin Voigt chain with an 

additional dashpot is used to model recoverable and non-recoverable creep as was done in 

a previous study (A. Giorla et al. 2015). The effect of elevated temperature on creep is 
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considered using Arrhenius law, such that the Kelvin-Voigt characteristic time is given by 

(Zdeněk P. Bažant 1983; Zdeněk P. Bažant and Baweja 1995): 

𝜏𝑝(𝑇) = exp [𝑇𝑎𝑐𝑡 (
1

𝑇
−
1

𝑇0
)] 𝜏𝑝(𝑇 = 𝑇0) (6.7) 

where, 𝑇𝑎𝑐𝑡 is the activation temperature for creep (5000K (Zdeněk P. Bažant and Baweja 

1995)). ‘𝜏𝑝’ is the characteristic time of the specimen and is taken as 2 days (Hummel 

1959). The viscosity tensor for the Kelvin Voigt model is calculated by considering the 

viscosity in terms of relative humidity ′ℎ′ as, 

𝜂𝑝(ℎ)= [(
1 − ℎ

ℎ𝐶
+ 𝑒𝑥𝑝 (

1 − ℎ

ℎ𝐶
))] 𝜂𝑝(ℎ = 1) (6.8) 

where, ℎ𝐶  is a material property equal to 0.2 (A. Giorla et al. 2015). 𝜂𝑝 is taken as 40 GPad 

(A. Giorla et al. 2015). 

6.5.3  Thermal Expansion 

The thermal expansion of mortar is given by, 

𝜀𝑡 = 𝛼𝑚(𝑇 − 𝑇0) (6.9) 

where, 𝜀𝑡 is the thermal strains, 𝑇 is the applied temperature and 𝑇0 is the reference 

temperature. 𝛼𝑚 is the thermal expansion coefficient of mortar which is usually greater 

than the coefficient of thermal expansion of aggregate. It depends on the amount of 

moisture present in the pore system or equilibrium relative humidity (Grasley and Lange 

2007; Maruyama and Igarashi 2015). However, this effect is not considered due to lack of 

experimental data.  

6.5.4  Post Peak Response 
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Mortar is a brittle material. It fails instantaneously when cracked, indicating very low 

amount of fracture energy. However, the mechanism of failure and the fracture energy are 

highly sensitive to the rate of application of load, temperature and relative humidity 

(Weerheijm and Van Doormaal 2007). At lower rates, creep occurs in the fracture process 

zone releasing the buildup of energy. This has also been shown experimentally on concrete 

by Bazant and Gettu (Zdenek P. Bažant and Gettu 1992). The peak strength for a faster 

applied load is also higher than the slowly applied load. In faster load rates, crack passes 

through the aggregate and not around it. As the strength of aggregate is higher, it causes 

more resistance for the crack to go through the aggregate than around it. There have been 

extensive studies on the rate dependence behavior of concrete, but extensive data is not 

available for cement mortar particularly at lower rate of loading. In the radiation 

environment, the growth of crack will be slow due to the slow expansion of aggregates 

with the radiation. The isotropic model is used in this approach because of the flexibility 

with which the damage behavior can be simulated by specifying the softening function. 

However, it has been well been noted that only specifying the fracture strain cause 

convergence issues and makes it mesh sensitive. Introducing fracture mechanics approach 

using the concept of fracture energy removes this issue. This has been discussed in detail 

in Chapter 4. 

6.6  Finite Element Implementation 

The FE model with boundary condition is shown in Figure 6-1. The boundary condition 

has been chosen to avoid any rigid body modes. The Agave cluster of the HPC at Arizona 

State University was employed to carry out the simulations using a single node of 28 cores 

and 128 GB RAM which took approximately 1 and 24 hours for stage 1 and stage 2 analysis 



  93 

to complete. A combined creep damage algorithm taking into consideration the above 

formulations was incorporated in MOOSE framework, an open source object oriented 

finite element analysis toolkit developed by Idaho National Lab (Permann et al. 2019). The 

formulation considers one step finite difference scheme to estimate the viscoelastic effect 

and consider linear isotropic damage based on fracture energy to simulate the effect of 

cracking as detailed in Chapter 4. The implementation of coupled temperature and 

humidity model could be found in Chapter 3.   

6.7 Input Parameters  

6.7.1 Aggregates 

The dynamic modulus GA and GB are given as 65 GPa and 81 GPa with a Poisson ratio 

of 0.28 and 0.25 (GA and GB _Chapter 4 notation G3 and G5, aggregate A and C notation 

Table 35) [2]. The static modulus is observed to be lower than the dynamic modulus by 

about 10% [5]. Thus, we reduce the value by 10% to estimate the static modulus as 58.5 

GPa and 72.9 GPa. The variation of modulus with neutron fluence is calculated as per 

Equation 6.2. The Poisson’s ratio is best estimated from the dynamic measurements [4] 

hence the value of 0.28 and 0.25 is taken for GA and GB. The radiation induced volumetric 

expansion is computed using Equation 6.3, 6.4 and shown in Figure 6-3.  The coefficient 

of thermal expansion is related to the amount of quartz in the material (Maruyama et al. 

2017) (GA and GB has 92% and 47% quartz respectively) using the following equation 

(Maruyama et al. 2017) 

𝛼𝑎 = 0.058𝑥 + 4.2 (6.10) 
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where, 𝑥 is the amount of quartz (in %) in aggregate. 𝛼𝑎 is the thermal expansion 

coefficient (in μ/ oC). This gives 9.5 μ/ oC and 6.9 μ/ oC as the thermal expansion coefficient 

for GA and GB. 

 

6.7.2 Mortar 

The cement mortar is modeled as an elastic material (𝐸𝑚=30.25 GPa) undergoing drying 

shrinkage, thermal deformation and creep owing to the high temperature (T~70oC). As no 

information on Poisson’s ratio was available, we have taken typical value of cement mortar 

which is 0.2. The Young’s modulus is affected with temperature and humidity. Maruyama 

found that the modulus of high early strength cement paste mix (𝐸𝑚 = 12MPa) is fairly 

constant at high temperature upto 90oC (Maruyama et al. 2014). The thermal expansion 

coefficient of mortar is calculated by upscaling the thermal expansion coefficient of cement 

paste using the simple rule of mixture (Maruyama and Igarashi 2015) as: 

𝛼𝑚 =
1

1 − 𝑉𝑠
𝛼𝑝

+
𝑉𝑠
𝛼𝑠

(6.11)
 

  
Figure 6-3. Young’s Modulus and RIVE Against Neutron Fluence for GA. 
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where, 𝑉𝑠 is the volumetric ratio of sand in mortar (0.5 in this case). 𝛼𝑠, 𝛼𝑝 are the thermal 

expansion coefficients of paste (30 μ/ oC) and sand (6.95 μ/ oC, using Equation 6.10 and 

x=47.35 as per (Maruyama et al. 2017)). This gives the coefficient of thermal expansion as 

11 μ/ oC. The bending strength of the paste attains fluctuates between 10 and 15 MPa for 

temperature between 40 and 90oC. At 70oC the bending strength, was 16 MPa for the paste 

mix used and is considered in the present study. At 100% RH and 20oC this value was 

approximately 6 MPa. The fracture energy also changes at high temperature. However, no 

measurement of fracture energy of mortar or cement paste is carried out. As a result, the 

fracture energy is calibrated from the thermal treatment tests and is taken as 250 N-m/m2. 

The input parameters are also tabulated in Table 6-2. 

Table 6-2. Constitutive Parameters Used in the Simulation of Irradiated Concrete 

Variable Value Unit Variable Value Unit 

Aggregates 𝜀𝑠ℎ,∞ -4000 μm/m 

𝛼𝑎 9.5 μm/m 𝑓𝑡 16 MPa 

𝑇0 20 oC 𝐸𝑀 30.25 GPa 

𝐸𝑎 58.5 GPa 𝜂𝑝 40 40 GPa-

days 

𝜈𝑎 0.28  𝜏𝑝 2 days 

𝜀𝑚𝑎𝑥 0.18,0.15  𝜈𝑝 0.2  

𝑑 2.38  ℎ𝐶  0.2  

𝜌𝑎  2600 kg/m3 𝑇𝑎𝑐𝑡 5000 K 

𝐶𝑎  1100 J/kg/oC 𝜌𝑚 2231 kg/m3 

k𝑎  3 W/m/oC 𝐶 1100 J/kg/oC 

ℎ𝑠𝑢𝑟𝑓  200 W/m2oC k 3 W/m/oC 

Concrete 𝐷1 3x10-10 m2/s 

𝑇0 20 oC    

𝑄 211111 J/kg/s    

Mortar   𝑝𝑣𝑠 2500 Pa 

𝛼𝑚  11 μm/m 𝑇𝑒𝑛𝑣 50 oC 

𝐺𝐹  250 N-m/m2 𝛽′ 0.1  
   𝑇0 20 oC 
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6.8  Numerical Simulations & Results 

The microstructure and mesh used in the simulations along with the boundary conditions 

are shown in Figure 6-1.  

6.8.1  Stage 1 Analysis 

A coupled hygro-thermal analysis is carried out in this stage to compute the variation of 

temperature and pore humidity inside the specimen. In actual condition, 9 concrete 

specimens (1 concrete specimen was a dummy specimen to measure temperature) were 

irradiated together inside a double aluminum capsule with coolant water flowing between 

the inner and our edge of capsule. This helped in reducing the temperature inside the 

specimen which is measured at the center of the top specimen. Moreover, water was 

released from the specimen once the pressure exceeded 1.25 bar. It was difficult to 

characterize the boundary condition as it would require modelling of the all the specimens 

with the capsule including the flowing coolant water. Instead of carrying out such a 

complex analysis, some simplifying assumptions were made. The thermal conductivity of 

the surface was calibrated so that the simulations can match the temperature at the center 

of the specimen which reached 72oC quickly in the experiments. This was reached in 16 

hours as per the simulations and remained constant thereafter. Figure 6-4 shows the 

temperature profile in the specimen at the start and at 16 hours. The aggregates show 

slightly higher temperature than mortar at the same location due to their higher thermal 

conductivity. 
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Figure 6-4. Evolution of Temperature in the Specimen at 0 and 16 Hours. It 

Achieves a Steady State Condition at the End of 16 Hours. 

As the reaction proceeded the moisture released by the specimen kept on reducing. This 

would mean that the environmental humidity was changing rapidly in the space between 

the specimen and capsule. This was also flushed out once the pressure in the region reached 

1.25 bar. The pressure was released more frequently in the beginning due to higher 

available moisture in the specimen and consequently higher gas release. In the simulations 

a simplification was made, the environmental humidity was calibrated to drop at a rate such 

that the total water released by the specimen matched with those in the experiments. Figure 

6-5(a) shows the assumed environmental humidity profile while Figure 6-5(b) shows the 

experimental and simulated water released. The experimental water released consists of 

the water which forms the gas released and water absorbed on condenser for PPT-D 

specimen. The gas is assumed to consists of 2/3 hydrogen. It is converted to molar mass of 

water assuming STP condition (1 molar mass of hydrogen= 22.4 liter =1 molar mass of 

water = 18-gram water). Figure 6-6 shows the moisture inside the specimen at different 

times. Currently, there is no way to validate the pore humidity condition as no 

measurements of humidity or water content are made during irradiation of concrete. 
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Figure 6-5. (a) Assumed Environmental Humidity and (b) Experimental and Simulated 

Amount of Water Released. 

 

 

Figure 6-6. Evolution of Pore Relative Humidity in the Specimen at 0, 10, 50 and 100 

Days. The Aggregates were Removed as Their Relative Humidity is not Considered in 

the Simulations. 

6.8.2  Stage 2 Analysis 

Once the temperature and humidity profile are known mechanical analysis could be carried 

out. The radiation dose is considered constant along the depth of the specimen as it doesn’t 

change appreciably over one specimen. The mesh and boundary condition are shown in 

Figure 6-1. The boundary condition has been chosen to avoid any rigid body modes. The 

simulated results are compared with the experimental results in the form of length change 

and damage in the specimen. The computed length change from the experiment compared 

with simulations is shown in Figure 6-7(a) while the damage is compared in Figure 6-7(b). 

The simulated length change corresponds to the average of the nodes on the top surface. 
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The damage is volume average of the cement paste and aggregate individually. The damage 

at the end of 300 days is shown in Figure 6-8.  

 
 

Figure 6-7. Experimental and Simulated (a) Displacement and (b) Isotropic Damage 

Index. 

 

 
Figure 6-8. Progression of Damage in the Specimen at the End of 0, 48, 64, 80 and 150 

Days. 

6.9  Summary and Conclusions 

This chapter presents a comprehensive finite element framework to model the concrete 

under neutron irradiation. The framework computes damage under irradiation induced 

expansion of concrete in two stages. In the first stage, the temperature and humidity profile 

in the specimen are computed using a coupled hygro-thermal model. This moisture 

transport characteristics are accounted using water mass balance equations, empirical 
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sorption isotherms for concrete. The effect of thermal gradient on the moisture diffusion is 

also considered. The thermal transport considers the heat balance and consider the effect 

of all the constituents of concrete including free water. The temperature, humidity profile 

computed from the first step along with the radiation dose forms an input to the second 

stage of analysis. In the second stage, the effect of three input parameters on the mechanical 

properties are considered. Radiation causes aggregate to expand which is characterized 

using nucleation and growth model. It also causes aggregates modulus to reduce. The effect 

of temperature and humidity on drying shrinkage and creep kinetics are also considered. 
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CHAPTER 7 

CONCLUSIONS 

The key contributions and conclusions from this study are outlined below 

1. A coupled creep damage model was incorporated in MOOSE to simulate failure in 

concrete specimens. The developed model considers linear viscoelasticity using 

generalized Maxwell model or generalized Kelvin Voigt model while damage is 

considered using an isotropic approach. To avoid convergence issues with 

vanishing energy dissipation, the characteristic length of each element is used such 

that the energy release rate for each element remains constant. The proposed 

formulation captures the interaction between creep and damage, and with a 

modification in the elastic damage model, can capture the behavior of concrete 

under slowly applied loading rates. 

2. The model was then validated against the test results of notched specimens under 

uniaxial loading for the damage-only case. The model adequately captures the peak 

and post-peak behavior of the specimen, thus validating the damage model. The 

creep-damage model was also used to simulate the results of experimental tests 

whose duration varied from minutes to a few days. The results showed that a strong 

coupling between creep and damage overestimates the damage and underpredicts 

the constitutive response. Parametric simulations using various values of the creep-

damage parameter showed that only about 10% of the creep strain contributes 

towards damage for the cases considered in this study. 

3. The numerical model was validated for early age shrinkage of a series of cement 

pastes containing soft (phase change materials, PCM) or stiff (quartz) inclusions in 
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a restrained shrinkage test. The model adequately captured the delay in cracking 

time with the incorporation of soft inclusions. The influence of changing relative 

humidity is also considered in the simulation of pastes containing soft/stiff 

inclusions. 

4. The numerical model was validated for irradiated concrete in a test reactor. A meso 

scale approach was adopted and aggregates and mortar were modeled separately. 

A coupled hygro-thermal model was used to estimate the humidity and temperature 

distribution inside the specimen. Radiation dose was assumed constant across the 

depth of the specimen. The simulated damage and expansion matched quite well 

with the experimental results. This showed that the entire framework seems 

promising and present the first step towards having a matured tool for predicting 

irradiation induce damage in concrete.   
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#ifndef ISOTROPICDAMAGE_H 

#define ISOTROPICDAMAGE_H 

 

#include "ColumnMajorMatrix.h" 

#include "ScalarDamageBase.h" 

#include "SmearedCrackSofteningBase.h" 

#include "Function.h" 

#include "GuaranteeConsumer.h" 

 

class IsotropicDamage; 

 

template <> 

InputParameters validParams<IsotropicDamage>(); 

 

/** 

 * IsotropicDamage computes the stress for a finite strain 

 * material with smeared cracking 

 */ 

class IsotropicDamage : public ScalarDamageBase, public GuaranteeConsumer 

{ 

public: 

  IsotropicDamage(const InputParameters & parameters); 

 

  virtual void initialSetup() override; 

  virtual void initQpStatefulProperties() override; 

 

protected: 

 

  virtual void updateQpDamageIndex() override; 

  void computeDamageEvolution(Real max_principal_strain, Real cracking_strain, Real cracking_stress, 

Real youngs_modulus); 

 

 

  /// Enum defining the crack release model 

  const enum class CrackingRelease { exponential, linear, brittle } _cracking_release; 

 

  /// Enum defining the failure criterion 

  const enum class FailureCriterion { stressbased, strainbased } _failure_criterion; 

 

  /// Threshold at which cracking initiates if tensile stress exceeds it 

  const VariableValue & _tensile_strength; 

 

  /// Ratio of the residual stress after being fully cracked to the tensile 

  /// cracking threshold stress 

  const Real _residual_frac; 

 

  /// Fracture energy 

  const Real _Gf; 

   

  // Fraction of creep strain causing damage 

  const Real _creep_damage_param; 

 

  //@{ Strain upon crack initiation 

  MaterialProperty<Real> & _crack_initiation_strain; 

  const MaterialProperty<Real> & _crack_initiation_strain_old; 
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  ///@} 

 

  //@{ Flag variable to indicate if cracking has occured or not 

  MaterialProperty<Real> & _crack_flag; 

  const MaterialProperty<Real> & _crack_flag_old; 

  ///@} 

 

  //@{ Cracking surface 

  MaterialProperty<Real> & _cracking_yield_surface; 

  const MaterialProperty<Real> & _cracking_yield_surface_old; 

  ///@} 

 

  //@{ Actual cracking stress during initiation 

  MaterialProperty<Real> & _actual_cracking_stress; 

  const MaterialProperty<Real> & _actual_cracking_stress_old; 

  ///@} 

 

  //@{ Equivalent Strain 

  MaterialProperty<Real> & _equivalent_strain; 

  const MaterialProperty<Real> & _equivalent_strain_old; 

  ///@} 

 

  /// Enum defining the equivalent strain definition 

  const enum class EquivalentStrainDefinition { mazar, modifiedvonmises, modifiedmazar } 

_equivalent_strain_definition; 

 

  /// Name of elasticity tensor 

  const std::string _elasticity_tensor_name; 

 

  /// Current undamaged elasticity tensor 

  const MaterialProperty<RankFourTensor> & _elasticity_tensor; 

 

  /// Current stress 

  const MaterialProperty<RankTwoTensor> & _stress; 

 

  /// Current elastic strain 

  const MaterialProperty<RankTwoTensor> & _elastic_strain; 

 

  /// Current creep strain 

  const MaterialProperty<RankTwoTensor> & _mechanical_strain; 

 

}; 

 

#endif // ISOTROPICDAMAGE_H 
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#include "IsotropicDamage.h" 

#include "MooseMesh.h" 

#include "ElasticityTensorTools.h" 

#include "StressUpdateBase.h" 

#include "Conversion.h" 

#include "RankTwoTensor.h" 

#include "RankFourTensor.h" 

#include "MooseUtils.h" 

 

#include "libmesh/utility.h" 

 

registerMooseObject("TensorMechanicsApp", IsotropicDamage); 

 

template <> 

InputParameters 

validParams<IsotropicDamage>() 

{ 

  InputParameters params = validParams<ScalarDamageBase>(); 

  params.addClassDescription("Compute stress using an isotropic damage model"); 

  MooseEnum cracking_release("exponential linear brittle", "linear"); 

  params.addParam<MooseEnum>("cracking_release", 

         cracking_release, 

              "The cracking release type.  'linear' (default) gives an linear stress release " 

                             "'exponential' uses an exponential softening model "); 

  MooseEnum failure_criterion("stressbased strainbased", "stressbased"); 

  params.addParam<MooseEnum>("failure_criterion", 

         failure_criterion, 

              "failure criterion.  'stressbased' (default) gives a stress based failure " 

                             "'strainbased' uses a strain based failure "); 

  params.addRequiredCoupledVar("tensile_strength", 

                "The stress threshold beyond which cracking occurs. Negative values 

prevent cracking."); 

  params.addParam<Real>("residual_fraction", 

          0.0, 

        "The fraction of the cracking stress allowed to be maintained following a 

crack."); 

  params.addParam<Real>("fracture_energy", 

   "The fracture energy of the material"); 

  params.addParam<Real>("creep_damage_parameter", 

                        0.0, 

   "Fraction of creep strain causing damage"); 

  MooseEnum equivalent_strain_definition("mazar modifiedvonmises modifiedmazar", 

"modifiedvonmises"); 

  params.addParam<MooseEnum>("equivalent_strain_definition", 

         equivalent_strain_definition, 

              "How damage evolves with strain.  'modifiedvonmises' (default) calculate 

strain as modified version of Vonmises" 

                             "'mazar' calculates strain as per Mazar model, "); 

  return params; 

} 

 

IsotropicDamage::IsotropicDamage(const InputParameters & parameters) 

  : ScalarDamageBase(parameters), 

    GuaranteeConsumer(this), 

    _cracking_release(getParam<MooseEnum>("cracking_release").getEnum<CrackingRelease>()), 
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    _failure_criterion(getParam<MooseEnum>("failure_criterion").getEnum<FailureCriterion>()), 

    _tensile_strength(coupledValue("tensile_strength")), 

    _residual_frac(getParam<Real>("residual_fraction")), 

    _Gf(getParam<Real>("fracture_energy")), 

    _creep_damage_param(getParam<Real>("creep_damage_parameter")), 

    _crack_initiation_strain(declareProperty<Real>(_base_name + "crack_initiation_strain")), 

    _crack_initiation_strain_old(getMaterialPropertyOld<Real>(_base_name + "crack_initiation_strain")), 

    _crack_flag(declareProperty<Real>(_base_name+"crack_flag")), 

    _crack_flag_old(getMaterialPropertyOld<Real>(_base_name+"crack_flag")), 

    _cracking_yield_surface(declareProperty<Real>(_base_name + "crack_yield_surface")), 

    _cracking_yield_surface_old(getMaterialPropertyOld<Real>(_base_name + "crack_yield_surface")), 

    _actual_cracking_stress(declareProperty<Real>("actual_cracking_stress")), 

    _actual_cracking_stress_old(getMaterialPropertyOld<Real>(_base_name + "actual_cracking_stress")), 

    _equivalent_strain(declareProperty<Real>(_base_name +"equivalent_strain")), 

    _equivalent_strain_old(getMaterialPropertyOld<Real>(_base_name + "equivalent_strain")), 

    

_equivalent_strain_definition(getParam<MooseEnum>("equivalent_strain_definition").getEnum<Equivale

ntStrainDefinition>()), 

    _elasticity_tensor_name(_base_name + "elasticity_tensor"), 

    _elasticity_tensor(getMaterialPropertyByName<RankFourTensor>(_elasticity_tensor_name)), 

    _stress(getMaterialProperty<RankTwoTensor>(_base_name + "stress")), 

    _elastic_strain(getMaterialProperty<RankTwoTensor>(_base_name + "elastic_strain")), 

    _mechanical_strain(getMaterialProperty<RankTwoTensor>(_base_name + "mechanical_strain")) 

{ 

} 

 

void 

IsotropicDamage::initQpStatefulProperties() 

{ 

  ScalarDamageBase::initQpStatefulProperties(); 

  _crack_initiation_strain[_qp]=0.0; 

  _crack_flag[_qp]=0.0; 

  _cracking_yield_surface[_qp] =_tensile_strength[_qp]; 

  _actual_cracking_stress[_qp]=_tensile_strength[_qp]; 

  _equivalent_strain[_qp]=0.0; 

} 

 

void 

IsotropicDamage::initialSetup() 

{ 

  if (!hasGuaranteedMaterialProperty(_elasticity_tensor_name, Guarantee::ISOTROPIC)) 

    mooseError("IsotropicDamage requires that the elasticity tensor be " 

               "guaranteed isotropic"); 

} 

 

void 

IsotropicDamage::updateQpDamageIndex() 

{ 

  const Real youngs_modulus = 

ElasticityTensorTools::getIsotropicYoungsModulus(_elasticity_tensor[_qp]); 

  const Real poissons_ratio = ElasticityTensorTools::getIsotropicPoissonsRatio(_elasticity_tensor[_qp]); 

      std::vector<Real> eigval(3, 0.0); 

 _crack_flag[_qp]=_crack_flag_old[_qp]; 

 _crack_initiation_strain[_qp]=_crack_initiation_strain_old[_qp]; 

 _actual_cracking_stress[_qp]=_actual_cracking_stress_old[_qp]; 
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    _stress[_qp].symmetricEigenvalues(eigval); 

    Real max_principal_stress=std::max(std::max(eigval[0],eigval[1]),eigval[2]); 

    _mechanical_strain[_qp].symmetricEigenvalues(eigval); 

    Real max_principal_strain=std::max(std::max(eigval[0],eigval[1]),eigval[2]); 

    // Find equivalent strain  

    RankTwoTensor _effective_strain = _elastic_strain[_qp] + _creep_damage_param * 

(_mechanical_strain[_qp]-_elastic_strain[_qp]);  

    _effective_strain.symmetricEigenvalues(eigval); 

    max_principal_strain=std::max(std::max(eigval[0],eigval[1]),eigval[2]); 

 

  switch (_equivalent_strain_definition) 

  { 

     case EquivalentStrainDefinition::modifiedvonmises: 

 { 

     Real k=10; 

    Real eps_xx=_effective_strain(0,0); 

    Real eps_yy=_effective_strain(1,1); 

     Real eps_zz=_effective_strain(2,2); 

     Real eps_xy=_effective_strain(0,1); 

     Real eps_xz=_effective_strain(0,2); 

     Real eps_yz=_effective_strain(1,2); 

     Real I1=eps_xx+eps_yy+eps_zz; 

     Real J2=(eps_xx*eps_xx+eps_yy*eps_yy+eps_zz*eps_zz-eps_xx*eps_yy-eps_xx*eps_zz-

eps_yy*eps_zz+3*(eps_xy*eps_xy+eps_xz*eps_xz+eps_yz*eps_yz))/3; 

        _equivalent_strain[_qp] = (k-1)/(2*k*(1-2*poissons_ratio))*I1+1/(2*k)*std::sqrt(std::pow(((k-

1)*I1/(1-2*poissons_ratio)),2)+12*k*J2/(std::pow((1+poissons_ratio),2)));  

        break; 

 } 

 case EquivalentStrainDefinition::modifiedmazar: 

 { 

    Real eps_x1=eigval[0]; 

        Real eps_x2=eigval[1]; 

        Real eps_x3=eigval[2]; 

     Real I1=eps_x1+eps_x2+eps_x3; 

     Real J2=0.5*(std::pow((eps_x1-eps_x2),2)+std::pow((eps_x2-eps_x3),2)+std::pow((eps_x3-

eps_x1),2)); 

        _equivalent_strain[_qp] = I1/2/(1-2*poissons_ratio)+std::sqrt(J2)/2/(1+poissons_ratio);  

        break; 

 } 

 case EquivalentStrainDefinition::mazar: 

 { 

    Real eps_x1=std::max(eigval[0],0.0)*std::max(eigval[0],0.0); 

        Real eps_x2=std::max(eigval[1],0.0)*std::max(eigval[1],0.0); 

        Real eps_x3=std::max(eigval[2],0.0)*std::max(eigval[2],0.0); 

      _equivalent_strain[_qp] = std::sqrt(eps_x1+eps_x2+eps_x3); 

        break; 

 } 

  } 

       Real initial_crack=0; 

   

        //Checking if material is cracked or not 

        if ( _crack_flag_old[_qp] == 0.0) 

        {     

    switch (_failure_criterion) 
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   { 

       case FailureCriterion::stressbased: 

   { 

          if (max_principal_stress >= _cracking_yield_surface_old[_qp]) 

   initial_crack=1; 

   break; 

   } 

   case FailureCriterion::strainbased: 

   { 

          if (_equivalent_strain[_qp] >= _cracking_yield_surface_old[_qp]/youngs_modulus) 

   initial_crack=1; 

   break; 

   } 

    } 

 

        // When the material cracks the first time 

            if (initial_crack==1) 

            { 

         _crack_initiation_strain[_qp] =_equivalent_strain[_qp]; 

         _stress[_qp].symmetricEigenvalues(eigval);  

         _actual_cracking_stress[_qp] =std::max(std::max(eigval[0],eigval[1]),eigval[2]); 

 

 computeDamageEvolution(_equivalent_strain[_qp],_crack_initiation_strain[_qp],_actual_cracking

_stress[_qp],youngs_modulus);       

  _crack_flag[_qp]=1.0; 

            } 

            else 

            { 

                _crack_flag[_qp]==0.0; 

            } 

        } 

        else 

        { 

            // If the crack is propagating  

            if (_crack_flag_old[_qp]==1.0 && _equivalent_strain[_qp]>_equivalent_strain_old[_qp]) 

            { 

    

 computeDamageEvolution(_equivalent_strain[_qp],_crack_initiation_strain[_qp],_actual_cracking

_stress[_qp],youngs_modulus);  

                if (_damage_index[_qp]>0.1) 

                Real a =_t; 

            }       

            // If the crack exist but is not propagating 

            else 

            { 

  _damage_index[_qp]=_damage_index_old[_qp]; 

  _cracking_yield_surface[_qp]=_cracking_yield_surface_old[_qp]; 

                _crack_flag[_qp]=1.0; 

            } 

        } 

} 

 

 

void IsotropicDamage::computeDamageEvolution 

               (Real equivalent_strain, Real cracking_strain, Real cracking_stress, Real youngs_modulus) 
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{ 

  Real residual_stress = _residual_frac*cracking_stress; 

  // Get characteristic length for element 

  Real hce=_current_elem->volume(); 

  if (_mesh.dimension()==2) 

  { 

  if (_current_elem->type() == 3 || _current_elem->type() == 4) 

  hce=std::sqrt(2*_current_elem->volume()); 

  if (_current_elem->type() == 5 || _current_elem->type() == 6 || _current_elem->type() == 7) 

  hce=std::sqrt(_current_elem->volume()); 

  } 

  if (_mesh.dimension()==3) 

  { 

  if (_current_elem->type() == 8 || _current_elem->type() == 9) 

  hce=std::cbrt(5*_current_elem->volume()); 

  if (_current_elem->type() == 10 || _current_elem->type() == 11 || _current_elem->type() == 12 ) 

  hce=std::cbrt(_current_elem->volume()); 

  } 

 

  switch (_cracking_release) 

  { 

     case CrackingRelease::linear: 

 { 

   // Compute fracture strain 

   const Real fracture_strain=2*_Gf/(cracking_stress*hce); 

        const Real maximum_strain=cracking_strain-(cracking_stress-residual_stress)*(cracking_strain-

fracture_strain)/cracking_stress; 

        if (equivalent_strain<maximum_strain) 

    _damage_index[_qp]=std::min(std::max(1-cracking_stress*(equivalent_strain-

fracture_strain)/(cracking_strain-

fracture_strain)/youngs_modulus/equivalent_strain,_damage_index_old[_qp]),1.0); 

        else 

        { 

        _damage_index[_qp]=std::min(std::max(1-

residual_stress/youngs_modulus/equivalent_strain,_damage_index_old[_qp]),1.0); 

        } 

        _cracking_yield_surface[_qp]=std::max(std::min(cracking_stress*(equivalent_strain-

fracture_strain)/(cracking_strain-fracture_strain),cracking_stress),residual_stress); 

 

        break; 

 } 

 case CrackingRelease::exponential: 

 { 

 const Real beta=youngs_modulus*cracking_strain*hce/_Gf;     

 if (residual_stress>0) 

        { 

  Real maximum_strain = cracking_strain-1/beta*std::log(residual_stress/cracking_stress); 

         if (equivalent_strain<maximum_strain) 

         _damage_index[_qp]=std::min(std::max(1-cracking_strain/equivalent_strain*std::exp(-

beta*(equivalent_strain-cracking_strain)),_damage_index_old[_qp]),1.0); 

         else 

         _damage_index[_qp]=std::min(std::max(1-

residual_stress/youngs_modulus/equivalent_strain,_damage_index_old[_qp]),1.0); 

 } 

 else 
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        { 

         _damage_index[_qp]=std::min(std::max(1-cracking_strain/equivalent_strain*std::exp(-

beta*(equivalent_strain-cracking_strain)),_damage_index_old[_qp]),1.0);     

 } 

         

 _cracking_yield_surface[_qp]=std::max(std::min(cracking_stress*cracking_strain/equivalent_strai

n*std::exp(-beta*(equivalent_strain-cracking_strain)),cracking_stress),residual_stress); 

 break; 

 } 

 case CrackingRelease::brittle: 

 { 

  std::vector<Real> eigval(3, 0.0); 

  _stress[_qp].symmetricEigenvalues(eigval); 

      Real max_principal_stress=std::max(std::max(eigval[0],eigval[1]),eigval[2]); 

         _damage_index[_qp]=1-residual_stress/max_principal_stress; 

          _cracking_yield_surface[_qp]=residual_stress; 

 break; 

 } 

  } 

} 
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clear all;  
shrink_ult1=2000E-6; 
shrink_ult2=6000E-6; 
%%parameter 
fb=3e-1; 
DI=60.0; 
alp=0.05; 
hc=0.8; 
hen=0.875; 
hen2=0.5; 
n=15; 
T=10; 
nt=11; 
L=12.5; 
dx=0.25; 
nx=0:dx:L; 
dt=T/(nt-1); 
tol=10^-9;maxiter=500; 
ni=length(nx); 
  
%%stiffness and force 
K= zeros(ni); 
FF=zeros(ni,1); 
h=ones(ni,nt); 
  

  
for mm=3:nt 
res=10; kk=1; 
if (mm>8) 
    hen=hen2; 
end 
while (res)>tol  
kk=kk+1; 
if (kk >= maxiter) 
    fprintf('Newton iteration failed to converge'); 
    break; %breaks from for or while loop 
end 
Dh(1)=DI*(alp+(1-alp)/(1+(1-h(1,mm))/(1-hc)^n)); 
rr(1)=dt*Dh(1)/dx/dx; 
bt(1)=1+fb*dx/Dh(1); 
gm(1)=fb*dx*hen/Dh(1); 
K(1,1)=1+2*rr(1)*bt(1); 
K(1,2)=-2*rr(1); 
FF(1,1)=h(1,mm-1)+2*rr(1)*gm(1); 
  
Dh(ni)=DI*(alp+(1-alp)/(1+(1-h(ni,mm))/(1-hc)^n)); 
rr(ni)=dt*Dh(ni)/dx/dx; 
bt(ni)=1+fb*dx/Dh(ni); 
gm(ni)=fb*dx*hen/Dh(ni); 
K(ni,ni)=1+2*rr(ni);K(ni,ni-1)=-2*rr(ni); 
FF(ni,1)=h(ni,mm-1); 
  
for mk=2:ni-1 
Dh(mk)=DI*(alp+(1-alp)/(1+(1-h(mk,mm))/(1-hc)^n)); 
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rr(mk)=dt*Dh(mk)/dx/dx; 
bt(mk)=1+fb*dx/Dh(mk); 
gm(mk)=fb*dx*hen/Dh(mk); 
K(mk,mk)=1+2*rr(mk);K(mk,mk-1)=-rr(mk);K(mk,mk+1)=-rr(mk); 
FF(mk,1)=h(mk,mm-1);   
end 
hh=K\FF; 
res=norm(hh-h(:,mm)); 
h(:,mm)=hh; 
end 
end 
Shrinakge_strain(:,1:8)=-shrink_ult1*(1-h(:,1:8)); 
Shrinakge_strain(:,9:nt)=-shrink_ult2*(1-h(:,9:end)); 
  
close all 
for kkk=1:1:nt 
plot(nx,h(:,kkk),'k') 
hold on 
end 
xlabel('Distance from drying face (mm)'); 
ylabel('Humidity, H'); 
plot([12.5;12.5],[0.825;1], 'k--'); 
annotation('textarrow',[.75,.823],[0.5,.5],'String',{'Mid Depth';' of Specimen'}) 
figure() 
for kkk=1:1:nt 
plot(nx,Shrinakge_strain(:,kkk)*10^6,'k') 
hold on 
end 
plot([12.5;12.5],[0;-600], 'k--'); 
annotation('textarrow',[.75,.823],[0.7,.7],'String',{'Mid Depth';' of Specimen'}) 
xlabel('Distance from drying face (mm)'); 
ylabel('Shrinkage Strain \mum/m'); 
  

  
Shrinakge_strain=Shrinakge_strain'; 
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%%OPC           PCM10            PCM20 
%%pa=1          pa=2             pa=3 
  
clear all 
% clf('reset')  
pa=2; 
if (pa==1) 
% % OPC 
    kappa=1.7423; 
    lambda=0.3402; 
    k1=1.7; 
    k2=0.477; 
    t=0:1:41;                               %%t is the total time/tdash 
    tdash=t; 
    tdash=tdash'; 
    tminustdash=0:1:20; 
    EM=9580*kappa*(1-exp(-lambda*(t+1))); 
%     EM=2134.2*log(t)+10465; 
    EM(1,1)=0; 
    for i=2:1:21                            %% i repersnts location of tdash, i=tdash+1 
     
    alpha0=(11.854*log(i-1)+42.286)/100; 
        for j=i:1:i+20                      %% j represnts total_t+1 
        alpha=(11.854*log(j-1)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        Er(i,j-i+1)=EM(i)/(1+phi); 
        end 
    end 
     
    for i=2:1:42  
    alpha0=(11.854*log(i-1)+42.286)/100; 
        for j=i:1:i+21 
        alpha=(11.854*log(j-1)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        Jr(i,j)=(1+phi)/EM(i); 
        end 
    end 
     
     for i=2:1:21    
         for j=i:1:i+20 
            del=(j-i)/2; 
              t1=floor(del); 
              t2=ceil(del); 
              tot_t=j-1; 
              tdash_t=i-1; 
              Jrtminusdeltdash=interp1([tot_t+1-t2;tot_t+1-t2+1],[Jr(tdash_t+1,tot_t+1-t2);Jr(tdash_t+1,tot_t+1-

t2+1)],tot_t+1-del); 
              

Jrtdashtplusdel=interp1([tdash_t+1+t1;tdash_t+1+t1+1],[Jr(tdash_t+1+t1,tot_t+1);Jr(tdash_t+1+t1+1,tot_t+

1)],tdash_t+1+del); 
%                 clc 
                [tdash_t,tot_t,del] 
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                [tot_t-t2,tot_t-t2+1,tot_t-del] 
                [Jr(tdash_t,tot_t-t1),Jr(tdash_t,tot_t-t1+1)] 
%                 [tdash_t+1+t1,tdash_t+1+t1+1,tdash_t+1+del] 
%                 [Jr(tdash_t+1+t1,tot_t+1);Jr(tdash_t+1+t1+1,tot_t+1)] 
            Er1(i,j-i+1)=0.992/Jr(i,j)-0.115*EM(i)*(Jrtminusdeltdash/Jrtdashtplusdel-1); 
         end 
     end 
    t1=0:1:20; 
    tdash=t1; 
    tdash=tdash';      
    for count=2:1:length(tdash) 
%         plot((tdash(count,1)+tminustdash),Er(count,1:length(tminustdash)),'k--'); 
        plot((tdash(count,1)+tminustdash),Er1(count,1:length(tminustdash)),'r--'); 
        hold on 
    end 
     
    for i=2:1:42  
    alpha0=(11.854*log(i)+42.286)/100; 
        for j=i:1:i+21 
        alpha=(11.854*log(j)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        JrbyJo(i,j)=(1+phi); 
        end 
    end 
    plot(t,EM,'k') 
    hold on 
    xlabel('Time (Days)'); 
    ylabel('Modulus (MPa)'); 
    title('Viscoelastic Modulus for OPC') 
    ylim([0 20000]); 
    Er=Er1; 
    EM=EM'; 
    Er=Er'; 
end 
  
if (pa==2) 
    %%PCM-10% 
    kappa=1.3; 
    lambda=0.3742; 
    k1=2; 
    k2=0.5; 
    t=0:1:41; 
    tdash=t; 
    tdash=tdash'; 
    tminustdash=0:1:20; 
    EM=8300*kappa*(1-exp(-lambda*(t+1))); 
    EM(1,1)=0; 
    for i=2:1:21 
  
    alpha0=(11.854*log(i)+42.286)/100; 
        for j=i:1:i+20 
            alpha=(11.854*log(j)+42.286)/100; 
            fd=(alpha-alpha0)/alpha0; 
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            phi=k1*fd^k2; 
            Er(i,j-i+1)=EM(i)/(1+phi); 
        end 
    end 
     
    for i=2:1:42  
    alpha0=(11.854*log(i)+42.286)/100; 
        for j=i:1:i+21 
        alpha=(11.854*log(j)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        Jr(i,j)=(1+phi)/EM(i); 
        end 
    end 
     
     for i=2:1:21    
         for j=i:1:i+20 
            del=(j-i)/2; 
              t1=floor(del); 
              t2=ceil(del); 
              tot_t=j; 
              tdash_t=i; 
              Jrtminusdeltdash=interp1([tot_t-t2;tot_t-t2+1],[Jr(tdash_t,tot_t-t2);Jr(tdash_t,tot_t-t2+1)],tot_t-

del); 
              

Jrtdashtplusdel=interp1([tdash_t+t1;tdash_t+t1+1],[Jr(tdash_t+t1,tot_t);Jr(tdash_t+t1+1,tot_t)],tdash_t+del)

; 
%                 clc 
%                 [tdash_t,tot_t,del] 
%                 [tot_t-t2,tot_t-t2+1,tot_t-del] 
%                 [Jr(tdash_t,tot_t-t1),Jr(tdash_t,tot_t-t1+1)] 
%                 [tdash_t+t1,tdash_t+t1+1,tdash_t+del] 
%                 [Jr(tdash_t+t1,tot_t);Jr(tdash_t+t1+1,tot_t)] 
            Er1(i,j-i+1)=0.992/Jr(i,j)-0.115*EM(i)*(Jrtminusdeltdash/Jrtdashtplusdel-1); 
         end 
     end 
    t1=0:1:20; 
    tdash=t1; 
    tdash=tdash';      
    for count=2:1:length(tdash) 
%         plot((tdash(count,1)+tminustdash),Er(count,1:length(tminustdash)),'k--'); 
        plot((tdash(count,1)+tminustdash),Er1(count,1:length(tminustdash)),'r--'); 
        hold on 
    end 
     

  

     

     
    plot(t,EM,'k') 
    plot(t,EM,'k') 
    hold on 
    xlabel('Time (Days)'); 
    ylabel('Modulus (MPa)'); 



  135 

    title('Viscoelastic Modulus for 10%PCM') 
    ylim([0 20000]); 
    hold on 
    Er=Er1; 
    EM=EM'; 
    Er=Er'; 
end 
  
if (pa==3) 
    %%PCM-20% 
    kappa=1.3705; 
    lambda=0.377; 
    k1=2; 
    k2=0.5; 
    t=0:1:41; 
    tdash=t; 
    tdash=tdash'; 
    tminustdash=0:1:20; 
    EM=6000*kappa*(1-exp(-lambda*(t+1))); 
    EM(1,1)=0; 
    for i=2:1:21 
  
        alpha0=(11.854*log(i)+42.286)/100; 
        for j=i:1:i+20 
            alpha=(11.854*log(j)+42.286)/100; 
            fd=(alpha-alpha0)/alpha0; 
            phi=k1*fd^k2; 
            Er(i,j-i+1)=EM(i)/(1+phi); 
        end 
    end 
  
    for i=2:1:42  
    alpha0=(11.854*log(i)+42.286)/100; 
        for j=i:1:i+21 
        alpha=(11.854*log(j)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        Jr(i,j)=(1+phi)/EM(i); 
        end 
    end 
     
     for i=2:1:21    
         for j=i:1:i+20 
            del=(j-i)/2; 
              t1=floor(del); 
              t2=ceil(del); 
              tot_t=j; 
              tdash_t=i; 
              Jrtminusdeltdash=interp1([tot_t-t2;tot_t-t2+1],[Jr(tdash_t,tot_t-t2);Jr(tdash_t,tot_t-t2+1)],tot_t-

del); 
              

Jrtdashtplusdel=interp1([tdash_t+t1;tdash_t+t1+1],[Jr(tdash_t+t1,tot_t);Jr(tdash_t+t1+1,tot_t)],tdash_t+del)

; 
%                 clc 
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%                 [tdash_t,tot_t,del] 
%                 [tot_t-t2,tot_t-t2+1,tot_t-del] 
%                 [Jr(tdash_t,tot_t-t1),Jr(tdash_t,tot_t-t1+1)] 
%                 [tdash_t+t1,tdash_t+t1+1,tdash_t+del] 
%                 [Jr(tdash_t+t1,tot_t);Jr(tdash_t+t1+1,tot_t)] 
            Er1(i,j-i+1)=0.992/Jr(i,j)-0.115*EM(i)*(Jrtminusdeltdash/Jrtdashtplusdel-1); 
         end 
     end 
    t1=0:1:20; 
    tdash=t1; 
    tdash=tdash';      
    for count=2:1:length(tdash) 
%         plot((tdash(count,1)+tminustdash),Er(count,1:length(tminustdash)),'k--'); 
        plot((tdash(count,1)+tminustdash),Er1(count,1:length(tminustdash)),'r--'); 
        hold on 
    end 
     
    plot(t,EM,'k') 
    hold on 
    xlabel('Time (Days)'); 
    ylabel('Modulus (MPa)'); 
    title('Viscoelastic Modulus for 20%PCM'); 
    ylim([0 20000]); 
    hold on 
    Er=Er1; 
    EM=EM'; 
    Er=Er'; 
end 
  
if (pa==4) 
    %%PCM-20% 
    kappa=1.5756; 
    lambda=0.3306; 
    k1=2; 
    k2=0.5; 
    t=0:1:41; 
    tdash=t; 
    tdash=tdash'; 
    tminustdash=0:1:20; 
    EM=12240*kappa*(1-exp(-lambda*(t+1))); 
    EM(1,1)=0; 
    for i=2:1:21                            %% i repersnts location of tdash, i=tdash+1 
     
    alpha0=(11.854*log(i-1)+42.286)/100; 
        for j=i:1:i+20                      %% j represnts total_t+1 
        alpha=(11.854*log(j-1)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        Er(i,j-i+1)=EM(i)/(1+phi); 
        end 
    end 
     
    for i=2:1:42  
    alpha0=(11.854*log(i-1)+42.286)/100; 
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        for j=i:1:i+21 
        alpha=(11.854*log(j-1)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        Jr(i,j)=(1+phi)/EM(i); 
        end 
    end 
     
     for i=2:1:21    
         for j=i:1:i+20 
            del=(j-i)/2; 
              t1=floor(del); 
              t2=ceil(del); 
              tot_t=j-1; 
              tdash_t=i-1; 
              Jrtminusdeltdash=interp1([tot_t+1-t2;tot_t+1-t2+1],[Jr(tdash_t+1,tot_t+1-t2);Jr(tdash_t+1,tot_t+1-

t2+1)],tot_t+1-del); 
              

Jrtdashtplusdel=interp1([tdash_t+1+t1;tdash_t+1+t1+1],[Jr(tdash_t+1+t1,tot_t+1);Jr(tdash_t+1+t1+1,tot_t+

1)],tdash_t+1+del); 
%                 clc 
                [tdash_t,tot_t,del] 
                [tot_t-t2,tot_t-t2+1,tot_t-del] 
                [Jr(tdash_t,tot_t-t1),Jr(tdash_t,tot_t-t1+1)] 
%                 [tdash_t+1+t1,tdash_t+1+t1+1,tdash_t+1+del] 
%                 [Jr(tdash_t+1+t1,tot_t+1);Jr(tdash_t+1+t1+1,tot_t+1)] 
            Er1(i,j-i+1)=0.992/Jr(i,j)-0.115*EM(i)*(Jrtminusdeltdash/Jrtdashtplusdel-1); 
         end 
     end 
    t1=0:1:20; 
    tdash=t1; 
    tdash=tdash';      
    for count=2:1:length(tdash) 
%         plot((tdash(count,1)+tminustdash),Er(count,1:length(tminustdash)),'k--'); 
        plot((tdash(count,1)+tminustdash),Er1(count,1:length(tminustdash)),'r--'); 
        hold on 
    end 
     
    for i=2:1:42  
    alpha0=(11.854*log(i)+42.286)/100; 
        for j=i:1:i+21 
        alpha=(11.854*log(j)+42.286)/100; 
        fd=(alpha-alpha0)/alpha0; 
        phi=k1*fd^k2; 
        JrbyJo(i,j)=(1+phi); 
        end 
    end 
    plot(t,EM,'k') 
    hold on 
    xlabel('Time (Days)'); 
    ylabel('Modulus (MPa)'); 
    title('Viscoelastic Modulus for OPC') 
    ylim([0 20000]); 
    Er=Er1; 
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    EM=EM'; 
    Er=Er'; 
end 
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APPENDIX E 

CODE FOR COMPUTING MAXWELL CHAIN PARAMETERS 
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clearvars -except Er tdash tminustdash EM pa; 
close all 
t=1; 
%% Number of Maxwell Chain 
tau_mu=[0.001;0.004;0.016;0.064;0.256;1.024;4.096;inf]; 
n=length(tau_mu); 
w1=0.1; 
w2=0.1; 
Aeq=ones(1,n); 
lb=zeros(1,n+1); 
ub=Inf*ones(1,n+1); 
W1=zeros(n,n); 
W2=zeros(n,n); 
W1(1,1:2)=w1*[1,-1]; 
W1(n-1,n-2:n-1)=w1*[-1,1]; 
for i=2:1:n-2 
W1(i,i-1:i+1)=w1*[-1,2,-1]; 
end 
W2(1,1:3)=w2*[1,-2,1]; 
W2(n-1,n-3:n-1)=w2*[1,-2,1]; 
W2(2,1:4)=w2*[-2,5,-4,1]; 
W2(n-2,n-4:n-1)=w2*[1,-4,5,-2]; 
for i=3:1:n-3 
W2(i,i-2:i+2)=w2*[1,-4,6,-4,1]; 
end 
%%% Running loop over tdash 
for i=1:1:length(tdash) 
    beq=Er(i,1); 
    clear X Y; 
    X=zeros(n,n); 
    Y=zeros(n,1); 
    % Running loop over equations 
    for ll=1:1:n 
    % Running loop over t-t' 
    for k=1:1:length(tminustdash)        
        Y(ll,1)=Y(ll,1)+Er(i,k)*exp(-(tminustdash(1,k))/tau_mu(ll,1)); 
         % running loop over maxwell chains 
         for j=1:1:n 
         X(ll,j)=X(ll,j)+exp(-(tminustdash(1,k))/tau_mu(j,1))*exp(-(tminustdash(1,k))/tau_mu(ll,1)); 
         end 
    end 
    end 
    %% Adding penalty terms 
      X=X+W1+W2;     
       Coeff(i,2:n+1)=regress(Y,X); 
    Coeff(i,1)=tdash(i,1); 
%       Coeff(i,2:n+1)=lsqlin(X,Y,[],[],Aeq,beq,lb,ub); 
end 
tau_mu(end,1)=78.125; 
surf(tau_mu(:,1),Coeff(:,1),Coeff(1:length(tdash),2:n+1)) 
set(gca, 'XScale', 'log') 
% set(gca, 'ZScale', 'log') 
xlabel('\tau_\mu (Days)'); 
ylabel('Age, t^, (Days)'); 
zlabel('E_\mu '); 
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if (pa==1) 
title('Relaxation Spectrum OPC') 
elseif (pa==2) 
title('Relaxation Spectrum 10%PCM') 
elseif (pa==3) 
title('Relaxation Spectrum 20%PCM') 
elseif (pa==4) 
title('Relaxation Spectrum 10%Quartz') 
end 
figure(); 
tau_mu(end,1)=inf; 
Erfitted=zeros(length(tdash),length(tminustdash)); 
for i=1:1:length(tdash) 
    for k=1:1:length(tminustdash)  
        for j=1:1:n 
        Erfitted(i,k)=Erfitted(i,k)+Coeff(i,j+1)*exp(-(tminustdash(1,k))/tau_mu(j,1)); 
        end 
    end 
end 
for i=1:1:length(tdash) 
plot((tdash(i,1)+tminustdash),Er(i,1:length(tminustdash)),'o'); 
hold on 
plot((tdash(i,1)+tminustdash),Erfitted(i,1:length(tminustdash)),'k--'); 
end 
  
figure(); 
for i=2:1:20 
plot(Coeff(i,2:end),'o--') 
hold on 
end 
Coeff1=round(Coeff,2);  

 


