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ABSTRACT

Humans have an excellent ability to analyze and process information from multiple

domains. They also possess the ability to apply the same decision-making process

when the situation is familiar with their previous experience.

Inspired by human’s ability to remember past experiences and apply the same

when a similar situation occurs, the research community has attempted to augment

memory with Neural Network to store the previously learned information. Together

with this, the community has also developed mechanisms to perform domain-specific

weight switching to handle multiple domains using a single model. Notably, the two

research fields work independently, and the goal of this dissertation is to combine

their capabilities.

This dissertation introduces a Neural Network module augmented with two exter-

nal memories, one allowing the network to read and write the information and another

to perform domain-specific weight switching. Two learning tasks are proposed in this

work to investigate the model performance - solving mathematics operations sequence

and action based on color sequence identification. A wide range of experiments with

these two tasks verify the model’s learning capabilities.
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Chapter 1

INTRODUCTION

Consider a scenario where a human being is shown two pictures one by one - a painting

and an incomplete solution of a mathematical problem. In the second step, he is asked

to complete the mathematical solution and an incomplete version of the same paint-

ing. Although the human saw two images, both of them were from different domains

and the information in them were completely different. One image depicted shapes,

colours and various art forms, while other involved text, numbers and mathematical

symbols. Thus, to complete given tasks, that person must remember two different

types of information and recall appropriately when solving either task. This also in-

volves processing each type of information differently and may require utilization of

different brain functionalities.

There have been some recent advances where researchers have designed Machine

Learning (ML) models and algorithms capable of real-time switching of weights using

a single model to tackle multiple domain input data. (Rebuffi et al. (2017)) has

designed a model that can predict the domain of the input data and accordingly

combine appropriate domain-specific weights with domain agnostic weights in a pre-

trained network in real-time. Additionally, the field of neural memory has witnessed

some breakthrough inventions such as Long Short Term Memory (LSTM) networks

(Hochreiter and Schmidhuber (1997)), Neural Turing Machines (NTM) (Graves et al.

(2014)), etc. which enables an ML model to store information into memory and

utilize it to make future decisions. Using these models researchers have significantly

improved results on sequential tasks such as speech recognition (Graves et al. (2013)).
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1.1 Goals and Motivations

A memory augmented Neural Network combined with a weight switching mech-

anism may be a good start to achieve human-level cognition described previously.

This would allow the network to remember information from multiple domains and

process them using domain-specific weights whenever required. However, as per my

knowledge, no such attempt has been made to develop Neural Network models with

such capabilities and this motivates me to pursue it. The dissertation discusses my

attempt to build a Neural Network architecture with external memory and domain-

aware weight switching mechanism.

1.2 Contributions

The contribution of this dissertation is the Neural Network model capable of

switching weights based on the input data domain along with the ability to store cur-

rent state information for future decision making. I am hopeful that this dissertation

will be a reliable reference for further research in this domain.

1.3 Dissertation Outline

This dissertation is structured in the following manner.

Chapter 2 will briefly discuss research progress in the fields related to this disser-

tation. More specifically, a brief introduction to Recurrent Neural Networks (RNN)

such as Long Short Term Memory (LSTM) network and Gated Recurrent Unit (GRU)

will be provided. Moreover, Neural Turing Machine and its working will be summa-

rized. Additionally, recent trends in domain aware weight switching mechanism will

be briefly discussed in later sections.

2



In Chapter 3, my model will be introduced and described in detail. Mathematical

expressions are provided to concretely explain the module mechanisms.

Experiments with model and their results are presented in Chapter 4. The model

applied to solve two tasks. First is solving mathematical operations sequence and

second is to generate actions based on the color tile sequence. Implementation details

and dataset description for both the tasks are provided in detail. Furthermore, plots

after varying several parameters are also presented. Along with this, detailed memory

interaction for both the tasks is illustrated in this chapter.

Finally, Chapter 5 concludes this dissertation with some future research directions

in this domain.

3



Chapter 2

BACKGROUND

This chapter will briefly discuss some existing memory models and weight switching

mechanisms from which the current work is inspired.

2.1 Recurrent Neural Networks

Recurrent Neural Network (RNN) is the Neural Networks with a feedback loop

of the hidden state. Therefore, the nodes can form connections along the tempo-

ral dimension, unlike feed-forward Neural Network which are restricted to spatial

dimension only. Due to the recurrence of hidden state, RNN could operate on the

variable-length input data and therefore they are applied in many sequential tasks

such as speech recognition (Graves et al. (2013)).

However, (Bengio et al. (1994)) observes that RNN are difficult to train to cap-

ture long-term dependencies because the gradients may either vanish or explode.

Therefore, to address this concern, (Hochreiter and Schmidhuber (1997)) invented

Long Short Term Memory (LSTM) network. Unlike RNN, LSTM maintains memory

to store past information and also regulate storage and output using specific gates.

Later, (Cho et al. (2014)) invented Gated Recurrent Unit (GRU) which is again a

gated RNN but does not have a separate memory cell-like LSTM. Conceptual archi-

tecture of LSTM and GRU is illustrated in figure 2.1 from (Chung et al. (2014)).

4
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(a) Long Short-Term Memory (b) Gated Recurrent Unit
Figure 2.1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o
are the input, forget and output gates, respectively. c and c̃ denote the memory cell
and the new memory cell content. (b) r and z are the reset and update gates, and h

and h̃ are the activation and the candidate activation (Chung et al. (2014)).

2.2 Neural Turing Machines

The advent of Neural Turing Machines (NTM) (Graves et al. (2014)) was a signif-

icant breakthrough in the field of Memory Augmented Neural Networks (MANNs).

Although Recurrent Neural Networks (RNN) are Turing complete (Siegelmann and

Sontag (1992)), which means they can implement several functions, the NTM au-

thors doubted its practical possibility which prompted them to build NTM. As seen

in figure 2.2, the Neural Controller controls memory read and write operations with

Read and Write heads respectively. The output is computed using the input to the

network and the information read from the memory.

For reading and writing to the memory, NTM employs content-based addressing

and location-based addressing to calculate address weights. Both types of addressing

schemes are explained in the following subsections.

2.2.1 Content-based Addressing

Content-based addressing compares each memory cell to find memory contents

similar to the key vectors emitted by the read and write heads. Cosine Similarity

5



Figure 2.2: Neural Turing Machine Architecture (Graves et al. (2014))

is used as a similarity measure between a key vector and memory contents. After

computing similarity vector, Softmax operation is applied to it to normalize the

vector contents between 0 and 1 and ensure that they sum to 1. It is tantamount to

calculating probability values of how similar the key vector is with the contents.

As mentioned in (Graves et al. (2014)), content-based addressing simplifies infor-

mation retrieval, merely requiring the controller to produce an approximation to a

part of the stored data, which is then compared to memory to yield the stored value.

2.2.2 Location-based Addressing

NTM is capable of building a representation of the functions it is assigned to learn.

For example, consider a function f(x, y). Since this function operates on variables x

and y which are locations storing some values and not the values itself, content-based

addressing does not come handy in these situations. Therefore NTM is also capable

to perform location-based addressing along with the content-based. To facilitate

6



location-based addressing, NTM can shift its head pointers to the desired memory

location. The movement of the heads is carried out by convolution operation of gated

weights Wt
g with shift weighting St emitted by the head itself. The mathematical

representation of location-based addressing is provided below:

w̃t(i)←−
N−1∑
j=0

wt
g(j) st(i− j). (2.1)

here, gated weights Wt
g are calculated as follows:

Wt
g ←− gtW

t
c + (1− gt). (2.2)

The above equation is basically interpolation between content based weights Wt
c and

previous weights Wt−1 carried out by gated parameter gt emitted by the head.

2.2.3 Extensions and Applications of NTM

After the introduction of NTM, many researchers applied it to several problems

in various domains. One of the earliest applications of NTM was in the meta-learning

domain. (Santoro et al. (2016)) used NTM for one-shot classification of Omniglot

dataset images (Lake et al. (2015)). Since NTM was used to store unseen information

after a single presentation to the model, location-based addressing was absent in the

author’s version because according to them, content-based addressing was sufficient.

Moreover, the Least Recently Used Access mechanism was used to generate write

weights to avoid loss of important information.

Further, the Differentiable Neural Computer (DNC) (Graves et al. (2016)), yet

another MANN was introduced two years after NTM. Architecturally, it is heavily

influenced by NTM and some of its functionalities such as content-based addressing

are also derived from NTM. However, many significant features that lacked in NTM

such as freeing up of unused memory, preserving of sequential information even after

write head move on to another location, etc. are implemented in DNC.

7



2.3 Domain-aware Weight Switching Mechanism

Apart from the externally augmented memory, another crucial part of my model

is domain aware weight switching mechanism. This mechanism allows loading and

unloading of task-specific weights to and from Neural Network during run-time. The

input given to my architecture at every step could be of different domains and weight

parameters stored in the weight memory module have to be pre-trained on their

respective domain inputs to achieve good results. Therefore, at the input step, the

domain of the input must be detected and appropriate weights should be selected to

load into Neural Network.

(Rebuffi et al. (2017)) attempted to solve a similar problem in which they trained

a single model to classify images from different domains. In the experiments, they

showed that learning ResNet (He et al. (2016)) or similar networks directly on multi-

ple domain data may not perform well although they may be good feature classifiers.

Therefore, the authors trained separate domain-specific weight modules and aug-

mented them with domain agnostic weights during classification. Moreover, during

testing, a domain of the data may not be given, however, this information is crucial

to select the appropriate weights to augment. Therefore, the authors recommended

training a separate classifier to detect the data domain which could then be used to

select the appropriate weights.

8



Chapter 3

PROPOSED MODEL ARCHITECTURE

The External Neural Memory and Weights Architecture (ENMWA) developed by

me is a hybrid Neural Network architecture that stores the current state results and

utilizes it to calculate the new results whenever a similar state is encountered in the

future. The results are calculated by a feed-forward Neural Network using state-

specific weight parameters. In other words, the Neural Network itself decides the

best weight parameters to load by determining the current state details (here, the

data domain) to calculate the results. This chapter describes ENMWA in detail.

The chapter is organized as follows. The overall model architecture and algorithm

will be described in section 3.1. Section 3.2 describes the Neural Controller architec-

ture and its functions. The detailed working of the External Memory Module includ-

ing memory read and write operations and their weight computations are explained in

section 3.3. The external weights memory module, which stores the domain-specific

pre-trained weights is discussed in detail in section 3.4. Finally, section 3.5 provides

a brief description of the feed-forward Neural Network module.

3.1 Model Architecture

The ENMWA architecture is illustrated in figure 3.1. The Neural Controller mod-

ule co-ordinates all other modules in the architecture and thus is a crucial part of

it. Given an input, the Neural Controller outputs Access Key, Weight Probabilities

and Network Input for the feed-forward Neural Network. The Weight Probabilities

are the probability distribution on the pre-trained domain-specific weights stored in

the Weight Memory. These probability values are calculated based on the domain of

9
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Figure 3.1: External Neural Memory and Weights Architecture (ENMWA) diagram.

the input data. Thus intuitively, the best weights corresponding to the input data

domain (or the highest probability) are loaded into the Neural Network. On the other

hand, the Access Key is nothing but the input data features calculated by the Neural

Controller. These features serve the purpose of the current state information and are

used as the key to store and retrieve the results computed by the Neural Network

to and from the Memory Module. Additionally, note that the Network Input from

10



Algorithm 1 External Neural Memory and Weights Architecture

Input: Current Input Sample X.

Output: Computed result R from the feed-forward Neural Network.

1: Compute Weight Probabilities, Network Input and Access Key(s) from the con-

troller as Pw, IN , K = Neural Controller(X).

2: Retrieve stored information Imem by doing Read Memory(K) operation.

3: Load weights Wp from weight memory to feed-forward Neural Network using Pw.

4: Now compute R = Neural Network(Wp, Imem, IN).

5: Store R back to the memory by performing Write Memory(K) operation.

the Neural Controller may not be explicitly required for tasks where Memory Output

from the Memory Module is sufficient for the feed-forward network to compute a new

result (implicitly using the input).

The feed-forward Neural Network using the loaded weight parameters and inputs

from the Memory Module and Neural Controller computes the new result and this

is then stored back into the memory against the Access Key. Finally, algorithm 1

depicts the general functioning of ENMWA.

3.2 Neural Controller

Neural Controller coordinates other modules of the architecture by sending various

control signals. It takes the input X and outputs Weight Probabilities Pw, Network

Input IN and Access Key(s) K. By design, the Neural Controller is implemented

using either a simple feed-forward Neural Network or a Convolutional Neural Network

depending on the nature of the input data.

The Access Key(s) K are features of the input data which serves as the key in the

memory against which the Neural Network outputs or initial values will be stored. As

11



per the requirements, at every current state the model should retrieve the computed

values corresponding to the similar states encountered in the past from the memory.

This requires a unique key for each state, which when queried from the memory,

don’t interfere with other state keys. Based on the fact that a good feature classifier

generates unique features for dissimilar input pairs, the input features generated by

the Neural Controller are thus used as the state keys to query from the memory.

The weight memory module stores set of weight parameters each trained to execute

inputs specific to a domain or state type. Therefore before loading weight parameters

to the feed-forward Neural Network, it has to be decided which one to load. Thus,

the Neural Controller after identifying domain of input data generates probability

distribution Pw over the set of weight parameters and accordingly those are selected.

From the experiments it is observed that, training Neural Controller to classify states

for weight parameters selection will also train it to generate unique input features for

each state which then could be used as the Access Key K to the memory module.

The Network Input IN is used by Neural Network to generate output at current

state. The input to ENMWA in some scenarios contain separate input for Neural

Network and state information to be fed to Neural Controller. Thus IN can bypass

Neural Controller in this case. The other scenario may require Neural Controller

to explicitly generate IN . While in some scenarios, the Neural Network may use

output from the External Memory Module only. In these cases, input to the ENMWA

indirectly influence final output via the External Memory Module.

3.3 External Memory Module

The External Memory Module stores the values computed at the input states

against key vectors which are nothing but input data features computed by Neural

Controller. The memory is effectively an N ×M matrix, where N is the Number of

12
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cells and M is the size of each cell. As apparent from figure 3.2, each M sized cell is

divided into two parts of size MA and MC respectively. The first section stores the

Key and the second section stores the corresponding content. It is on the key section,

over which attention is performed during the reading phase to retrieve the content.

Unlike NTM and DNC (Graves et al. (2014, 2016)), reading and writing operations

are disjoint. Thus, a separate command must be given to the module for reading and

writing to it. The reading operation is content-based, in other words, attention over

the key cells in the memory is performed using the current state key to find the

specific address and eventually retrieve the content stored at that position. The

13



writing operation involves attention to find and erase the older content and Least

Recently Used Access (LRUA) (Santoro et al. (2016)) based write weight calculation

to write newer content into the memory.

3.3.1 Reading

Let, Mt ∈ RN×M be memory state and Wt
R ∈ RN be read weights at time t.

Since, the Wt
R will be normalized, each of its ith value wt

R(i) will satisfy following

constraint:
N∑
i=1

wt
R(i) = 1, 0 ≤ wt

R(i) ≤ 1, ∀i. (3.1)

Considering this, the intermediate read vector rt ∈ RM is calculated as weighted

combination of row vectors of Mt w.r.t Wt
R as follows:

rt ←−
N∑
i=1

wt
R(i)Mt(i). (3.2)

However, rt would be a combination of key vector and content vector as it is directly

fetched from the memory. Thus, content vector must be extracted from it first and

then be returned as final read output as shown below:

rFinal
t = rt[MA : MA +MC ]. (3.3)

3.3.2 Writing

Writing into the memory is done in two stages. In the first stage, existing content

against the given key is erased and in the second stage, the new content is written

against that key. Leveraging erase operation depends on the tasks the model is

applied to. Some tasks may require multiple information to be stored for the same

state and use all of them in future decisions. Thus, it is advised to use erase operation

appropriately after determining task needs. However, to exhaustively describe each
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component of the model, erase operation is described in this sub-section. Let, Wt
E ∈

RN be erase weights and Wt
W ∈ RN be write weights at time t. Like Wt

R, Wt
E and

Wt
W are also normalized, thus both satisfy following constraints:

N∑
i=1

wt
E(i) = 1, 0 ≤ wt

E(i) ≤ 1, ∀i, (3.4)

and,
N∑
i=1

wt
W (i) = 1, 0 ≤ wt

W (i) ≤ 1, ∀i. (3.5)

where wt
E(i) and wt

W (i) are the ith values of Wt
E and Wt

W respectively. Now let,

Kt ∈ RMA and Ct ∈ RMC be key vector and content vector to be written in the

memory at time t. Both the stages of writing operation is mathematically depicted

in equations 3.6 and 3.7 respectively.

M̃t(i)←−Mt−1(i)[1− wt
E(i)et]. (3.6)

M̂t ←− M̃t(i)[1− wt
W (i)et], (3.7a)

Mt ←− M̂t(i) + wt
W (i)[Kt;Ct]. (3.7b)

3.3.3 Addressing Mechanism

The read and write weights Wt
R, Wt

E, Wt
W are basically the cell addresses which

are affected during read and write operations in memory. However, computing these

addresses requires different approaches. The mathematical representation of these

approaches will be provided in the following sub-sections.

3.3.3.1 Calculating Read Address

Read Address calculation employs Focusing by Content strategy given in (Graves

et al. (2014, 2016)). In this strategy given a key vector Kt, attention is performed

on the memory cells w.r.t Kt to identify the cells having similar keys and eventually

15



retrieve content from them. However, this model performs attention over MA sized

Key Cell of the memory rather than performing attention over whole M sized memory

strip as done in (Graves et al. (2014, 2016)). Each read weight value wt
R(i) is computed

as shown in the following equation:

wt
R(i)←−

exp

(
β · F

(
Kt,Mt(i)[0 : MA]

))
∑

j exp

(
β · F

(
Kt,Mt(j)[0 : MA]

)) . (3.8)

Notice that the above operation applies Softmax(·) function to the output of F (·)

to calculate Wt
R. Here depending on the application, F (·) could either be calculated

using Euclidean Distance between input vectors as done in equation 3.9 or Cosine

Similarity as calculated in equation 3.10. Moreover, β is a scaling constant which

could be set to stabilize results.

F (X,Y) = 1− ‖X−Y‖. (3.9)

F (X,Y) =
X ·Y

‖X‖ · ‖Y‖
. (3.10)

3.3.3.2 Determining Erase Address

The erase address or erase weights Wt
E are also calculated using content focusing

as depicted in equation 3.8. Therefore these weights are equivalent to reading weights

Wt
R, but the key Kt may be different than that used during reading. Thus, they may

differ from Wt
R due to this.

3.3.3.3 LRUA Mechanism for Computing Write Address

The write weights must ensure that the content it is going to write does not affect

the recently written contents into the memory and thus use the least recently used

location to write new content. Inspiring from (Santoro et al. (2016); Gulcehre et al.
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(2018)) this work utilizes a modified LRUA mechanism to compute the write weights

or write address Wt
W . In every pass at time t, usage weights Wt

U are calculated

according to the following relation:

Wt
U ←− γWt−1

U + Wt
R + Wt

W (3.11)

here γ is the decay factor. The usage weights records the location used in the current

pass. Consider the notation m(V, n), which indicates nth smallest element in vector

V. Now, the least used weights Wt
LU could be calculated as follows:

wt
LU(i) =

 0 if wt
U(i) > m(Wt

U , n)

1 if wt
U(i) ≤ m(Wt

U , n)
. (3.12)

here n is set to be the number of reads from the memory. Finally the write weights

Wt
W are set to be Wt−1

LU .

3.4 External Weights Memory Module

The External Weights Memory Module is an interesting part of the ENMWA

because it allows real-time loading and unloading weight parameters to and from

the feed-forward Neural Network. As observed from Figure 3.3 the module stacks

linearized pre-trained weight parameters for each task in itself. Let, WP (i) represent

ith weight parameter having dimension 1 × DWP . Also, assume that there are R

such weight parameters stacked on top of each other. Thus, overall weight parameter

volume would be of dimension R×DWP . Now, weight parameters selection for loading

into the Neural Network is done as follows:

W final =
R∑
i=1

Pw(i) ·WP (i) (3.13)

where Pw(i) is ith element of R dimensional probability vector Pw generated by Neural

Controller. However, W final is still 1 ×DWP dimensional vector, but it will be split

and reshaped into appropriate dimensions before loading into the Neural Network.
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Figure 3.3: External Weights Memory Module.

3.4.1 Updation of Switchable Weight Parameters

Since, the memory module performs content-based focusing during reading, the

read weights WR may be noisy due to the presence of other contents in the memory

and thus resulting output from the memory may also possess noise. Now, it could

be possible that the pre-trained weight parameters in the External Weights Memory

Module are trained on the noise-free data and thus may generate poor results when

noisy memory outputs are fed to them. However, during experiments, it was observed

that the pre-trained weights could be updated when backpropagation of the gradients

is turned on in them. This phenomenon is an unintended side-effect of the model,

with a benefit. It allows certain weights to adapt without affecting other weights.
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3.5 Feed-forward Neural Network

The feed-forward Neural Network module performs the computation in the archi-

tecture. It operates on the memory output and input from the Neural Controller by

using the pre-trained weights from the External Weight Memory Module. The out-

put of the Neural Network is then stored back in the memory against the generated

Key vector. Layers of the network and size of each hidden layer vary according to

the complexity of the task. This size must be predetermined because it becomes the

reference size for the pre-trained weight parameters in weight memory.
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Chapter 4

EXPERIMENTS AND ANALYSIS

This chapter presents the experiments performed on the ENMWA and their results.

Two tasks were selected for the experiments. The first task requires the model to

generate action vectors based on the input color sequences. The second task requires

the model to solve a sequence of the mathematical operations (addition, subtraction,

division, and multiplication) on real numbers. Each section of this chapter describes

an experiment including dataset description, task description, implementation details,

results, and observations.

4.1 Actions Based on Color Sequence

4.1.1 Input Data Description

The input data for this task would be randomly generated sequences of colored

tiles arranged in random order; an example of which is shown in figure 4.1. The

tiles could be red, green or white with a majority of them being white. Moreover,

randomly selected pixels in each tile could be replaced with truncated Gaussian noise

samples. Since the dataset is functionally generated, the parameters that controls

its generation are sequence length, number of red and green tiles in a sequence, and

amount of noisy pixels in each tile.

4.1.2 Task Description

Three pre-trained weights are stored in the weight memory of ENMWA, each

associated with a specific tile color. When a colored tile is passed to the model,
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Figure 4.1: A sample input sequence of noisy color tiles (Green, Red and White).

Table 4.1: Sample input-output pair combination of weight parameters.

Weights corresponding to colored tiles Input Output

Red
[1, 0, 0] [0, 0, 1]

[0, 0, 1] [1, 0, 0]

Green
[1, 0, 0] [0, 1, 0]

[0, 1, 0] [1, 0, 0]

White [1, 0, 0] [1, 0, 0]

the model is expected to load corresponding weight from the weight memory module

and information stored during the last encounter of the similar colored tile; from the

external memory module. Using this information and weight parameters, the Neural

Network will calculate the new output and store it back to the memory.

The input and output to the feed-forward Neural Network are one-hot vectors.

Each pre-trained weight parameter is trained to output specific configurations of one

hot vector for a given input. Moreover, no two weight parameters would have the same

input-output pair combination. This constraint ensures that the model must choose

appropriate weight parameters based on the given tile color to generate the correct

output. For example, for the current task, let weight parameters corresponding to

each colored tile has input-output relation as shown in table 4.1, then input [0, 0, 1]

which is meant for red tile will yield incorrect output when evaluated using green

weights. Further, to measure model performance, the F1 score of the model output

has been used.
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Figure 4.2: Controller Network Architecture.

4.1.3 Implementation Details

Input features and a probability distribution over pre-trained task-specific weights,

which are crucial for the operation of the external memory module and weight mem-

ory module respectively, are both generated by the neural controller module. For

the current task, the controller network was implemented using Convolution Neural

Network (CNN) with two convolutional layers. Figure 4.2 illustrates the architecture

of controller network. FC2 layer outputs the probability distribution over weight

parameters (after taking Softmax) and the same output is used as memory keys

because it also represents the unique features of the input.
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Figure 4.3: Feed-forward Neural Network architecture (complying with pre-trained
weight parameters stored in weight memory module).

The whole controller network was trained end-to-end using cross-entropy loss and

ADAM optimizer (Kingma and Ba (2014)). The input data was divided into 1000

batches with a batch size of 100 samples. In each batch, there was roughly an equal

number of tiles of each color (White, Green, and Red). In every 10x10 shaped tile,

25 random pixels were selected and replaced with truncated Gaussian noise. The

network yielded around 94% classification accuracy.

Pre-trained weight parameters in the weight memory module were independently

trained on corresponding input-output pair combinations given in table 4.1. The

training involved optimizing cross-entropy loss using the ADAM optimizer (Kingma

and Ba (2014)). The network architecture of each of the pre-trained weights is the

same and is illustrated in figure 4.3. To be compatible with the pre-trained weight

parameter size, the feed-forward Neural Network does also has the same architecture.

The memory matrix in the external memory module is a simple PyTorch (Paszke

et al. (2019)) array having each memory strip of size 35 (also denoted by M) with

32 allocated to address field and 3 allocated to content field. The address field in

memory is initialized with an array of zeros and the content field with [1, 0, 0]. The

weight decay factor γ is set to 0.8. Moreover, for Cosine Similarity based attention

in memory, the β was set to 10.0.
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Figure 4.4: F1 score vs. number of red and green blocks in a sequence. Noise
level=12.5%, Memory size=25, Input samples=1000.

4.1.4 Results

To perform attention during memory read and write, the model can either use

Cosine Similarity or compute similarity using Euclidean distance between keys. How-

ever, for this task, Cosine Similarity is used for attention as it performs better than

that using Euclidean distance when comparing vectors. Plots for F1 score vs model

parameters are depicted in figure (4.4, 4.5, 4.6). Mainly, plots were created by varying

parameters such as number of Green and Red blocks in a sequence, memory size N,

number of noisy pixels in a tile.

As the number of colored blocks in the sequence increases, so does the requirements

to store them in memory. Due to frequent read and write operations, interference may

result in memory contents and this may affect the performance of the model which

is evident from figure 4.4. Moreover, as observed from figure 4.5 as the memory size

increases so does the performance of the model. Small memory creates limited space
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Figure 4.5: F1 score vs. memory size. Noise level=12.5%, Sequence length=20,
Number of blocks each of red and green=8, Input samples=1000.

for storage, this may result in overwriting of old information as the new information

is stored. Moreover, in small memory, information written two or three steps ago may

be classified as least recent by LRUA mechanism and thus become vulnerable to be

overwritten, hence negatively affecting the model performance. Figure 4.6 shows that

as the noise in the tiles is increased, the model performance is severely affected. The

input noise hampers the classification capability of the Neural Controller. Therefore

the memory keys and weight probability distribution vector which are directly asso-

ciated with Neural Controller gets severely affected. Eventually, this results in poor

performance of the model.

4.1.5 Observations

Figure 4.7 illustrates the read and write activity in the memory for a given input

sequence. Initially, when the memory is empty, none of the colored block features will
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Figure 4.6: F1 score vs. noise level in tiles. Memory size=25, Sequence length=20,
Number of blocks each of red and green=8, Input samples=1000.

be present in the memory. Therefore, the read weights will be blank (here depicted

as fully black in color) and the default values [1, 0, 0] will be given to the feed-forward

Neural Network from the external memory module. Based on the given input, the

Neural Network will compute certain output which will then be stored into the mem-

ory according to write weights. When the same colored blocks are again encountered

by the model, the read weights will have hits (visualized using white color pixels)

at locations where their corresponding model outputs were stored in the past. The

values stored at the appropriate locations (previous network output) will be retrieved

and given out by the memory module. Again the Neural Network will compute new

outputs and store them at locations pointed by the write weights.
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Figure 4.7: The figure shows the steps carried out in the memory when a sequence
of colored tiles are given to the model.
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4.2 Sequence of Mathematical Operations

4.2.1 Input Data Description

The dataset for the mathematical operations task consists of sequences of math-

ematical operations on real numbers. A sequence of mathematical operation is func-

tionally generated by combining all four mathematical operations (addition, subtrac-

tions, multiplication and division) with randomly generated real numbers in random

order. However, during data generation, all the mathematical rules are followed, for

example avoiding 0 in denominator during division. Number of max operations and

max digit range are the parameters that control data generation. A sample math

operation sequence from the dataset is shown below.

(((19 ∗ 5)/(15/8))/((11/19) ∗ (16− 3)))

4.2.2 Task Description

As shown in figure 4.12 (a), input expression is first converted to the expression

tree before inputting to the model. Every node of an expression tree has a unique

address (randomly assigned), operation and operands. The operands could either

be numbers (leaf nodes) or address of child nodes. Therefore before evaluating a

parent node, its child nodes must be evaluated first. At each step, node selection

from the tree is done using post-order traversal and that node is presented to the

model for evaluation. Based on the given operation, the controller network selects

the appropriate pre-trained math operation weights and load it in the feed-forward

Neural Network. The feed-forward Neural Network will either directly receive operand

inputs (when they are numbers) or from external memory (when operands are to be

retrieved from memory at given address). After computing final output, it is stored

into a memory against the key which is also the address of the input node.
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Since the expression tree is made up of nodes in hierarchical order, the output of

lower nodes must first be computed and stored somewhere before moving to higher

nodes. The external memory provides this storage requirement to the model. The

node outputs could be store against their address in the memory and later retrieved

when evaluating parent nodes. Moreover, the weight memory provides efficient switch-

ing of pre-trained math operation weights to and from the Neural Network.

4.2.3 Implementation Details

The weights for addition and subtractions operations were independently pre-

trained on real numbers between -100000 to 100000. Mean squared error loss and

Adam optimizer (Kingma and Ba (2014)) were utilized to train the weights. The

network architecture used to train the weights is illustrated in figure 4.8. Since the

pre-trained weights will be loaded to the feed-forward Neural Network in the model,

to make it compatible with their shape, its network architecture is also kept the same.

The weight memory stores weights for only two operations as it is difficult to

implement multiplication and division operations for generalized input range using a

feed-forward neural network. However, these operations are realized by performing log

and exponential operations on the input and output of the addition and subtraction

operations respectively. The neural controller decides to perform log and exponential

operations on inputs and outputs based on the given mathematical operation.

The controller network generates the probability distribution over weights (using

Softmax) and decision to perform log and exponential operation (again a probability,

but using Sigmoid), given an operation encoded into a one-hot vector. The controller

network, after training, is augmented with external memory and the Neural Network.

As seen in figure 4.9, the Neural Controller is built using two separate feed-forward

Neural Network, one controlling weight switching and other controlling log and ex-
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Figure 4.8: Feed-forward Neural Network architecture (complying with pre-trained
weight parameters stored in weight memory module).
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Figure 4.9: Neural Controller architecture for math operation sequence task.

ponential operations. The controller was trained using mean squared error loss and

ADAM optimizer (Kingma and Ba (2014)) on number operations. During training,

it was clubbed with pre-trained operation weights and learned to select appropriate

weights and operations according to the input. The inputs during training were two

numbers and a math operation encoded into a one-hot vector and it was expected to

output the correct answer.

The address of tree nodes serve as their key during memory read and write oper-

ations because they uniquely represent each tree node. To perform attention during

reading, the Euclidean distance based similarity metric is utilized, as Cosine Similar-

ity would not yield correct comparisons for scalars. Moreover, each memory slot is

two columns wide, one storing address and other the value.
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Figure 4.10: Mean squared error vs. max input number range in a sequence plot.
N=32, Number of operations=12, Input samples=500.

4.2.4 Results

To asses the scalability of the model, two parameters number of operations in

sequence and input number range were varied for and performance of the model in

terms of mean squared error was noted on 500 input samples. The size of the memory

was kept to 32 slots. Figure 4.10 and 4.11 shows plots of both the experiments.

It could be observed from both the plots that the model can maintain consistency

in its performance despite the increase in input number range or number of operations

in a sequence. Evidently, at some points in both the plots, there is an abrupt spike in

the error. The reason for this could be precision error in large numbers. For example,

for sequences expecting large output such as 37340067.32, the model may output

3700323.12. Thus although the higher significant digits are correct in this output, the

incorrect trailing digits results in large error.
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Figure 4.11: Mean squared error vs. number of operations in a sequence plot.
N=32, Max. number range=20, Input samples=500.

4.2.5 Observations

Figure 4.12 shows the memory activity for read and write when a sample sequence

is passed to the model. Specifically, figure 4.12 (a) shows the expression tree of the

given expression. Figure 4.12 (b) shows the corresponding memory interaction (white

pixels indicate hits). The W and R written above each memory strip indicates that

they are write and read weights respectively. For some transactions, absence of read

weights indicate inputs to Neural Network were numbers instead of addresses and thus

it was needless to search into memory. Some read weights are two strip in width, this

indicates that both the inputs to the network were extracted from memory.

Node C in the tree, depends on the output of nodes A and B to operate. Therefore,

it is evident from the its read strip that it retrieved the numbers form the same posi-

tions where the output of nodes A and B were written. All the memory interactions

follow the similar pattern.
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Figure 4.12: (a). A mathematical expression is converted to expression tree before
passing it to the model. (b). The memory interaction based on a sample input is
shown.
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Chapter 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

In this dissertation, I tried to identify and bridge the gap between external memo-

ries and domain-aware weight switching mechanism. Hence, I introduced the External

Neural Memory and Weights Architecture (EMNWA) model which leverages its ex-

ternal memory and weight switching module to tackle problems involving inputs from

multiple domains and requiring storage of information for future decisions. My model

is capable of identifying the input data domain and loading corresponding weights in

Neural Network in real-time. Besides this, the external memory module stores the

output information for using it in future decision making. Separating address and

content field in the memory makes it straightforward to store and load information in

it. I tested the capabilities of my model by performing two experiments - one, trying

to solve mathematical operations sequences involving multiple operations and other

performing actions based on input sequences of noisy colored tiles in random order.

5.2 Future Directions

The external weights memory module is currently capable of switching weights

of the same shape. However, certain types of inputs may require variable lengths of

weights. Therefore, one approach for this could be replacing weight memory with an

ensemble of pre-trained neural networks. The Neural controller then should generate

a probability distribution for output selection of these networks.
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During some states, the Neural Network may not require reading from memory,

instead, the direct input may also be sufficient. Therefore, the Neural Controller

could be augmented with the gate to toggle between memory output or external

information to pass to the Neural Network. A similar gate could be used to decide

between Neural Network output or external input when writing to the memory.
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APPENDIX A

SOURCE CODE INFORMATION
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The source code of my model and other related research activities will be or have al-
ready been uploaded on my GitHub repository at https://www.github.com/deepcpatel.
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