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ABSTRACT

Aortic aneurysms and dissections are life threatening conditions addressed by replac-

ing damaged sections of the aorta. Blood circulation must be halted to facilitate

repairs. Ischemia places the body, especially the brain, at risk of damage. Deep

hypothermia circulatory arrest (DHCA) is employed to protect patients and provide

time for surgeons to complete repairs on the basis that reducing body temperature

suppresses the metabolic rate. Supplementary surgical techniques can be employed

to reinforce the brain’s protection and increase the duration circulation can be sus-

pended. Even then, protection is not completely guaranteed though. A medical

condition that can arise early in recovery is postoperative delirium, which is cor-

related with poor long term outcome. This study develops a methodology to in-

traoperatively monitor neurophysiology through electroencephalography (EEG) and

anticipate postoperative delirium. The earliest opportunity to detect occurrences of

complications through EEG is immediately following DHCA during warming. The

first observable electrophysiological activity after being completely suppressed is a

phenomenon known as burst suppression, which is related to the brain’s metabolic

state and recovery of nominal neurological function. A metric termed burst suppres-

sion duty cycle (BSDC) is developed to characterize the changing electrophysiological

dynamics. Predictions of postoperative delirium incidences are made by identifying

deviations in the way these dynamics evolve. Sixteen cases are examined in this

study. Accurate predictions can be made, where on average 89.74% of cases are cor-

rectly classified when burst suppression concludes and 78.10% when burst suppression

begins. The best case receiver operating characteristic curve has an area under its

convex hull of 0.8988, whereas the worst case area under the hull is 0.7889. These

results demonstrate the feasibility of monitoring BSDC to anticipate postoperative

delirium during burst suppression. They also motivate a further analysis on identify-
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ing footprints of causal mechanisms of neural injury within BSDC. Being able to raise

warning signs of postoperative delirium early provides an opportunity to intervene

and potentially avert neurological complications. Doing so would improve the success

rate and quality of life after surgery.
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Chapter 1

INTRODUCTION

More recently, analysis techniques typically associated with electrical engineering and

computer science have been increasingly used to inform biomedical analysis. Merging

these disciplines has been particularly useful when the data is complex and difficult

to process through traditional techniques. In particular, machine learning has been

applied more frequently to solve open questions. These techniques are capable of

classifying data, predicting events, and estimating parameters that would be far more

difficult through other means. Machine learning is often applied inappropriately

though. When abused, the machinery learned to accomplish classification, prediction,

or estimation lack interpretability and robustness, which can be dangerous in the

context of medicine. Consequently, these tools must be used more judiciously.

In situations where machine learning cannot be leveraged for raw, complex data,

a comprehensive understanding of the intersecting discipline must be applied with al-

ternative analysis techniques to accomplish the same goal. The research documented

in this work is an example of such a scenario. A biomarker predictive of a neu-

rological diagnosis must be obtained from hours of multidimensional physiological

recordings. The number of cases involved in this study is small enough such that

the data set is ill suited for most machine learning techniques though. Consequently,

a working knowledge of the pertinent neurophysiology must inform statistical signal

processing methods to extract information important for making these predictions.

Presented here is a retrospective study attempting to predict incidences of postoper-

ative delirium, a condition that can arise after a particular type of cardiac surgery, by

intraoperatively monitoring patient neurophysiology. Ultimately, the goal is to antic-
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ipate scenarios of heightened risk intraoperatively, facilitating the future development

of interventions for minimizing and averting neurological injury.

Aortic aneurysms and dissections are life threatening conditions requiring imme-

diate medical attention. A compromised aorta is especially concerning because it is

the main artery that supplies oxygenated blood from the heart to the entire body.

Aneurysms arise from stressing the aorta’s walls or disease. If left untreated, the

aorta can rupture. In 2018, 9923 deaths in the United States (3 per 100000 people)

were the result of an aortic aneurysm of some variety [1]. Conditions contributing

to the development of aneurysms include age, being male, tobacco use, high blood

pressure, atherosclerosis, Marfan syndrome, bicuspid aortic valve, and family history

[2]. When the aorta ruptures, there is a high risk of mortality, so aneurysms must

be treated promptly. In some cases, a dissection can be repaired in time. The aorta

is repaired by replacing the damaged sections with a prostheses. These surgeries are

complex and risky though. Circulation must be halted to repair the aorta, which

places the brain in danger. Neuroprotective techniques, the primary of which is deep

hypothermia circulatory arrest (DHCA), are required to facilitate the surgery.

DHCA is effective in preventing neural injury for a majority of these surgeries.

Cooling patients down to deep hypothermic temperatures (∼ 18◦C) staves off neu-

ronal death, buying the surgeon time to complete repairs. Gega et al. studied the

outcomes of cardiac surgeries solely using DHCA, reporting that it is typically effec-

tive with a low rate of mortality (6.3%) and stroke (4.8%) based on a 394 patient

sample population [3]. Risk of neural injury is not completely eliminated though.

DHCA certainly cannot protect patients indefinitely. Optimality of parameters and

methods for providing neuroprotection is often debated between surgeons and insti-

tutes. Furthermore, patients can respond differently to one set of such parameters.

Insufficient protection can lead to compromised neurological function.
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Temporary neurological dysfunction (TND) is not uncommon following cardiac

surgeries using DHCA [4]. Patients may experience postoperative delirium, a correlate

of poor prognosis, as they recover in the intensive care unit [5]. Additionally, patients

are at risk of developing deficiencies with motor control and memory in the long

term following the operation, which would certainly affect their quality of life. Long

DHCA duration, older age, severity of disease, and extent of repairs contribute to

motor memory recovery difficulties [6]. The required durations for circulatory arrest

vary according to surgery complexity. Several studies have correlated the duration

of DHCA and postoperative prognosis to establish how long DHCA can protect the

patient. Ziganshin et al. propose a 40 minute time limit DHCA [7]. Other studies

argue that the limit is 10 to 15 minutes shorter, which restricts the scale of repairs

that can be completed [8]. Supplementary surgical techniques have been developed

in an attempt to bolster the protection.

Two techniques, antegrade cerebral perfusion (ACP) and retrograde cerebral per-

fusion (RCP), have been utilized to compensate for any shortcomings of DHCA. Both

provide blood flow specifically throughout the brain. As a result, supplementary per-

fusion techniques are able to extend the duration for which circulatory arrest is safe

[7]. This feature is especially important for complex and extensive procedures. Still,

the risk of neurological injury is not completely eliminated. The primary issue in em-

ploying these techniques is the additional procedure complexity when implementing

the appropriate perfusion circuit. Moreover, the parameters of these techniques must

be carefully managed to be effective. Varying degrees of efficacy for both techniques

have been reported in [9, 10, 11, 12, 13]. Some of these studies attempt to argue that

either of these supplemental techniques is better than the other. Each combination of

the mentioned techniques has benefits and drawbacks [7]. Certain cases may require

both techniques though.

3



Optimally coordinating all possible surgical parameters is fickle and a general so-

lution likely does not exist. One approach that has been researched more recently

to improve the surgical outcome is the development of physiological monitoring tech-

niques. Monitoring provides a way to tailor neuroprotection and extracorporeal sup-

port based on specific needs of each case. Ideally, we would be able to anticipate

injury and identify situations of heightened risk. Anticipating such scenarios creates

opportunities to intervene in hopes of averting future complications. Initial work us-

ing cues obtained from physiological monitoring to adjust patient support has been

explored with some success [14]. Fortunately, different courses of action can be taken

to address specific concerns depending on the signs [15, 14]. The future of being able

to correct course is not simply a dream; though, these methods must be studied more

specifically in context of cases utilizing DHCA. This study strictly focuses solely on

providing a method for anticipating complications.

Taking advantage of physiological monitoring and metrics may provide better in-

sight on postoperative neurological health and patient outlook. This study discusses

how to anticipate postoperative delirium from intraoperative electroencephalography

(EEG) data. We develop an EEG based metric that characterizes a particular neu-

rophysiological response. Predictions about incidences of postoperative delirium are

made by tracking the status of this metric. The developed algorithm, in principle, can

function in real time. Congenital heart development complications may also necessi-

tate surgeries involving DHCA. Neonatal cases present a unique set of complications

though. This work focuses only on adult cases regarding repairs of the aorta, but

perhaps ideas presented here may prove useful for these other delicate cases as well.

Ultimately, the objective of this study is to provide a larger window of opportunity

to take action and hopefully provide a pathway to improve the expected quality of

life after surgery.
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1.1 Background

1.1.1 Neuroprotective Techniques for Cardiac Surgeries

Circulatory arrest is necessary to repair a patient’s aorta because the heart sup-

plies oxygenated blood to the rest of the body through it. Of course, stopping blood

flow deprives all organs of necessary metabolic resources to continue proper function.

The brain is especially at risk because it has a much higher metabolism than other

organs. Restricting oxygen reduces the production of adenosine triphosphate (ATP)

and prevents cells from functioning [7]. Anaerobic glycolysis is the only mechanism

that produces ATP otherwise, but intracellular waste would accumulate as a byprod-

uct. Hypoxia also causes a sustained imbalance in calcium ion concentration levels

by causing neurotransmitters to open channels through which calcium ions can easily

enter, triggering intracellular dysfunction [7]. The combination of these conditions

causes neuronal decay. DHCA circumvents ischemic and hypoxic injury by reducing

the brain’s metabolic demand.

Inducing hypothermic or deep hypothermic body temperatures (below 20◦ C [17])

reduces metabolic demand [8] and staves off neuronal death, buying the surgeon time

to make the required repairs while circulation has ceased. Cooling is accomplished

while the patient is placed on cardiopulmonary bypass (CPB). CPB is implemented

by diverting deoxygenated blood away from the right atrium, pumping it out of the

body, oxygenating it extracorporeally, and delivering it back through the aorta or

a different artery. The patient’s blood is cooled extracorporeally through a heat ex-

changer. Body temperature drops as a result of perfusing this cooled blood. Generally

lower temperatures are more beneficial for successful recovery, but a point of dimin-

ishing returns exists past deep hypothermia levels [8]. James et al. determined that

cooling patients until they exhibit electrocerebral silence (ECS), a condition in which
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neural electrophysiological activity is no longer observable, minimizes metabolic de-

mand [18]. A global standard for executing this technique does not exist, but there

are institutional standards that may not all agree with each other. Patients also re-

spond differently to cooling, so confirming that DHCA is working as intended can be

complicated.

In the event that DHCA is insufficient, cerebral perfusion techniques are employed

in conjunction to provide metabolic resources in case they are needed. Selective an-

tegrade cerebral perfusion (SACP) and RCP both use the pump to circulate blood

specifically through the brain. The circuit used for cooling must be altered to ac-

complish this while bypassing the damaged section of the aorta though. RCP is

accomplished by rearranging the connections between the superior and inferior vena

cava to the pump. Instead of pumping deoxygenated blood from the superior vena

cava out of the body, oxygenated blood is delivered into it from the pump [19, 20].

This flow supplies blood to the brain in a retrograde fashion. Blood from the in-

ferior vena cava is still diverted into the pump. Blood flow back toward the aorta

is redirected toward the oxygenator as well so that repairs can be made. Several

variations on implementing SACP exist to accommodate specific repairs [21, 22, 23].

The primary idea is to perfuse blood through the arteries stemming from the aortic

arch. There are unilateral and bilateral variants of SACP. The former perfuses blood

strictly through the brachiocephalic artery, and the former does so through both the

brachiocephalic and left carotid arteries. Surgeons tap the right carotid artery directly

while clamping the brachiocephalic artery instead if the branching point also needs to

be repaired. Both sets of arteries are the antegrade pathways supplying blood to the

brain. Deoxygenated blood from right atrium is funneled into a reservoir, which feeds

to the oxygenator. The oxygenator then feeds blood through the branching arteries

of the aorta. Modifying the circuit in this way bypasses flow through the aorta while
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still supplying blood toward the brain.

Both techniques permit a significant extension in the duration of halted circula-

tion, which is crucial for more involved repairs. Making such modifications compli-

cates the procedure and incurs risk though. Furthermore, more parameters must now

be delicately managed to ensure the correct pressure and oxygen saturation levels.

Still, the most concerning sources of injury during the surgery are either metabolic

or embolic. All of these neuroprotective techniques would benefit from physiological

monitoring to assess patients’ needs and address them by adjusting parameters of

extracorporeal support. To anticipate complications stemming from these surgeries,

indicators of ischemic, hypoxic, or microembolic events need to be constructed and

detected.

1.1.2 Hemodynamical Monitoring

One approach to anticipating embolic and ischemic events is to monitor hemo-

dynamics of the brain, which measures the delivery and oxygenation of blood. Ad-

ditionally, these techniques are useful for executing other phases of the surgery in-

cluding cannulation, cooling, rewarming, and resuming autonomous circulation [24].

Several techniques exist including regional cerebral oximetry, diffuse correlation spec-

troscopy, and transcranial doppler. Regional cerebral oximetry is measured through

near infrared spectroscopy. An infrared source illuminates the patient’s head, and a

detector records the scattered response. Oxygen saturation can be estimated based

on the response. Two concerns identified by Busch et al. with this technique are the

changes in scattering characteristics of tissues during hypothermia and inter-device

variation [24]. Diffuse correlation spectroscopy uses infrared light intensity fluctua-

tions to monitor microvascular blood flow [24]. Direct monitoring of red blood cell

flow is possible, whereas oximetry needs to extrapolate this information. Transcranial
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doppler is a method that measures the speed of blood flow through sonography. Op-

posite of diffuse correlation spectroscopy, transcranial doppler better measures flow

through large vessels. These monitoring techniques have recently been consulted to

identify cues of heightened risk and intervention opportunities.

Fischer et al. measured cerebral tissue oxygen saturation through near infrared

spectroscopy during DHCA surgeries with and without SACP [25]. They retrospec-

tively examined the relationship between the duration and amount of desaturation

associated with incidences of postoperative complications. The types of problems

observed include delirium, sepsis, failure of different organs, stroke, and even death.

They analyze the effects of different degrees of cerebral tissue oxygen desaturation on

these postoperative outcomes. An association was found between the duration and

amount of desaturation with incidences of complications. No interventions were em-

ployed in this study, so the efficacy of intervening based on these cues remains to be

determined. Other studies have demonstrated some potential success for intervening

based on related indicators though.

Zanatta et al. monitored patient physiology through several modalities simultane-

ously and attempted to compensate for concerns whenever observed. The monitoring

modalities include electrophysiological measurements as well as transcranial doppler

and brain oximetry [14]. Using the hemodynamical monitoring techniques, they are

able to detect and react to microembolic events and changes in blood flow velocity.

A number of specific actions can be taken to address different types of events. The

control group had a 4.06% postoperative delirium incidence rate, but there were no

cases of postoperative neurological dysfunction in the intervention group. Only a

small fraction of the study population underwent DHCA though. The number of

corrected cases that underwent DHCA needs clarification. Still, understanding that

interventions can help in related procedures further motivates proceeding with this
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research.

1.1.3 Electrophysiological Monitoring

Electrophysiological monitoring has also been utilized to better understand the

neurophysiology during aorta surgeries. The brain coordinates activity through com-

plex electrical activations of neurons. This activity induces a mix of fields propagating

in various directions through layers of tissue and bone. Placing electrodes onto the

scalp allows us to observe this collective activity. By measuring this activity, we hope

to be able to directly understand how the brain responds to the surgery. Electrophys-

iological measurement methods include EEGs and somatosensory evoked potentials

(SEPs). The difference between EEG and SEPs is that the former passively observes

the activity, whereas the latter observes responses evoked near the somatosensory

cortex after applying an electrical stimulus elsewhere on the body. Examining the

electrophysiology during the surgery may allow us to observe developing complica-

tions.

Early work in analyzing patient electrophysiology during procedures involving

DHCA focused on characterization. In 1959, Pearcy et al. observed that decreas-

ing body temperature for hypothermia circulatory arrest reduces intraoperative EEG

“waveform complexity” and signal amplitude [26]. Additionally, they noticed wave-

forms did not resemble those prior to arrest occasionally, and hypothesized that this

characteristic signifies a poor prognosis. In 1984, Levy investigated the relationship

between temperature changes during DHCA and spectrograms [27]. A correlation

between temperature, power, and high frequency band peak power frequency was

observed. Later in 2003, Levy and colleagues examined the relationship between the

approximate entropy of intraoperative EEG signals and body temperature over the

course of DHCA [28]. This metric, based on Kolmogorov-Sinai entropy [29], is in-
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tended to measure the predictability of the following sample given a subsequence.

They found that temperature was related with approximate entropy through a sig-

moid function.

Stecker et al. characterized changes in SEPs and EEG activity throughout DHCA.

In the first of a pair of studies, they analyzed changes in both measurements as

function of cooling [30]. They identified nasopharyngeal temperature ranges at which

certain common phenomena arise, including ECS, burst suppression, and periodic

complexes. Only 60% of patients exhibited ECS at 18◦ C, which is concerning if

cooling to ECS in fact ensures a better outcome by optimally suppressing metabolism.

Supposing the promises of ECS, this finding suggests blindly cooling to a target

temperature may not be advisable. Consequently a need for electrophysiological

monitoring to guide the cooling process is prompted. Additionally, a relationship

between body temperature and the disappearance of evoked responses was found. As

temperature drops, the N20-P22 complex first stops, followed by the N13 wave which

occurs when approaching average deep hypothermic temperatures [30].

One important electrophysiological phenomenon observed during cooling and warm-

ing phases of DHCA is burst suppression. This behavior is characterized by alter-

nating periods of nominal amplitude activity and suppressed activity [31]. In the

context of DHCA for cardiac surgeries, burst suppression is triggered when patient

body temperatures are low enough. The temporal characteristics of this activity is

atypical. These quasi-periodic cycles are observed on a temporal scale ranging from

tens of seconds to milliseconds depending on temperature. Lowering the temperature

sufficiently will continually suppresses EEG activity, or in other words ECS will be

induced. Westover et al. developed a thorough characterization of burst suppression

and temperature through frequency and time domain features [32]. They demon-

strate that the probability the brain is in a suppression state and correspondingly the
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duration of suppression phases are modulated by body temperature. Decreasing the

temperature increases the likelihood of EEG activity being suppressed. Burst suppres-

sion is commonly characterized using burst suppression ratio (BSR), which measures

the fraction of an epoch spent in a suppression phase as defined in [33]. Naturally, a

negative correlation exists between temperature and BSR [32, 34]. Lastly, they ob-

served that the spectral shape of bursts, after normalizing by its energy, is maintained

despite changing the temperature.

Westover et al. did not specifically examine how pathologies affect their observa-

tions, but this work in characterizing burst suppression is important for recognizing

typical behavior under such strange circumstances. Understanding what is typical

aids us in identifying abnormal cases, which presumably lead to postoperative delir-

ium. Previous studies have hypothesized that cues of neural injury may be expressed

in characteristics of burst suppression activity [32]. This hypothesis is motivated

by a proposed link with brain metabolism [35] informed by a mathematical model

for the electrodynamical behavior of a network of neurons. The model construction

accounts for possible avenues through which the surgery affects metabolism. The elec-

trodynamics are reproduced by adjusting parameters of the model that the surgery

may cause. The occurrence of burst suppression may not immediately indicate poor

prognosis, but perhaps certain abnormalities in that activity would.

More recent works in this subject are directed toward anticipating compromised

neurological integrity through electrophysiological monitoring. Bispectral index (BIS)

has been utilized as a method for tracking the recovery of electrocerebral activity dur-

ing surgeries requiring circulatory arrest. The EEG signals from which this metric

is derived are recorded typically on the frontal lobe. Typically BIS is monitored to

track depth of anesthesia, but a correspondence between temperature and BIS has

been determined [34]. BIS is a weighted sum of disparate measurements derived
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from bispectra and power spectra of EEG recordings [33]. One of the features com-

prising the BIS is SynchFastSlow, defined as the ratio between the volumes of two

regions within the bispectrum of an EEG signal x(t). The bispectrum is evaluated

as X(f1)X(f2)X
∗(f1 + f2), where X(f) is the fourier transform of the recording.

Another measurement comprising BIS is the beta ratio, defined as the log ratio of

the two beta band energies. BSR and QUAZI suppression (similar to the former,

but considers time spent nearly suppressed) are also incorporated into the BIS. San-

tarpino et al. observed that a reduction in BIS greater than 20% from baseline for at

least 15 minutes was correlated with postoperative neurological complications [36].

Determining the occurrence of these situations only comes after attempting to main-

tain patient BIS above some threshold. Intervention was either pharmacological or

through cooling. If a decrease was identified despite their attempts intervene within

a window of time, then they predict the occurrence of postoperative neurological

complications. The authors only mention that these episodes came “approximately

40-60 minutes during maintenance”. One discrepancy between the current study and

the one by Santarpino and colleagues is that their study used strictly hypothermia

circulatory arrest, which is distinct from deep hypothermia and elicits a different set

of circumstances.

In the second of their pair of studies, Stecker et al. examined electrophysiologi-

cal responses to the warming phase [37]. Additionally, they determined the effect of

incidences of intraoperative strokes or postoperative confusion on these responses. Pa-

tients experiencing intraoperative strokes or postoperative confusion tended to take

longer to recover continuous EEG activity once full body perfusion resumed. The

queried events were annotated by the electroencephalographer. The distinction be-

tween the pathological group and non-pathological group is less clear based on changes

in SEP responses throughout warming. Similarly, Soehle et al. were able to corre-
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late average intraoperative BSR and burst suppression duration measurements with

postoperative delirium diagnoses [38]. They found that the median BSR was statis-

tically significantly higher for the delirium positive group than the delirium negative

group. Surgeries studied in this study, however, were restricted to cardiac surgeries

that involved CPB, but did not use DHCA.

Ma et al. were able to accurately infer postoperative delirium diagnoses based on

spatiotemporal covariance structure of EEG signals during the warming phase follow-

ing circulatory arrest [39]. The constructed detector requires post-DHCA eigenvalue

distribution structure to sufficiently resemble baseline activity (i.e. characteristics

prior to cooling). This study assumes that no complications occurred prior to stop-

ping circulation. Although predictions are made from intraoperative data, there is no

analysis on how much foresight can be achieved with this. The prediction procedure

currently does not provide much opportunity to be proactive.

Again, some work has explored the possibility of using electrophysiological cues to

intervene and avert risky situations. In addition to the hemodynamical monitoring,

Zanatta and colleagues relied on both EEG and SEPs to intervene [14]. The EEG

signals measured were the following differential pairs F3-C3 and F4-C4. A frequency

domain feature, they term spectral edge frequency, was extracted from the EEG

recordings and monitored over time. Spectral edge frequency is the frequency below

which 95% of the total energy is contained. When this frequency drops below 50%

of baseline, then brain oxygen delivery is increased. The measured SEPs include

N20-P25, N30, P14-N18, N13, and N9. Brain oxygen delivery was also increased

when the amplitudes of the evoked potentials drop below 50% of baseline. The

presumed cause of the drops in edge frequency and evoked potential amplitudes were

either microembolic events or low blood pressure. Zanatta et al. note that 3% of the

monitored group had reversible SEP abnormalities. Again, which of the intervention
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group were patients that underwent DHCA was not clarified. Only a small fraction

of these surgeries utilized DHCA. Further study on intervention methods in DHCA

surgeries is needed.

Fortunately, these previous studies demonstrate the worth of using additional

physiological monitoring to guide these surgeries, anticipate injuries, and address

specific concerns in extracorporeal support. The goal of this work is to improve our

ability to anticipate the development of neurological complications in the context

of surgeries requiring DHCA. Specifically, this study pursues the hypothesis that

anomalous burst suppression characteristics may be correlated with postoperative

delirium.

1.2 Contributions

So far in Chapter 1 we introduced and motivated the problem this dissertation

addresses. We reviewed the basis of neural injury in these surgeries and previous re-

search regarding the extraction of intraoperative biomarkers predicting postoperative

neurological complications. Here, we outline the contributions we made toward this

field of research, the challenges of this specific study, and the methods involved to

overcome them. This dissertation expounds on a journal article, titled “Anticipating

Postoperative Delirium During Burst Suppression Using Electroencephalography”,

we recently published in IEEE Transactions on Biomedical Engineering [40]. We im-

prove the methods outlined in [40], achieving a slight improvement in the results while

revising the procedure such that it is more robust. This work also contextualizes the

current results in terms of our initial analysis documented in [39] .

This retroactive study researches how to predict postoperative delirium from EEG

data recorded during cardiac surgeries involving DHCA and supplementary perfusion

techniques. More specifically, this research aims to make predictions early enough so
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that an earlier opportunity for intervention is provided to avert neural injury. To-

ward that end, this study examines the burst suppression phenomenon during patient

warming because it is the first observable electrophysiological activity following cir-

culatory arrest. We hypothesize that abnormalities in the burst suppression sequence

are correlated with delirium positive cases. Burst suppression duty cycle (BSDC)

is formulated to specifically monitor changes in this phenomenon over time. BSDC

is based on signal energy, so an artifact detection algorithm and a spatiotemporal

averaging preprocessing step are also developed to properly extract meaningful infor-

mation. The algorithm is designed such that all necessary processing and detection

parameters are learned prior to when BSDC needs to be monitored. This methodol-

ogy can function in real time granted a priori knowledge of characteristics describing

typical delirium negative and delirium positive burst suppression sequences. Details of

these first steps are discussed in Chapter 2. In Chapter 3, the predictive power of this

methodology is assessed by a Monte Carlo supervised learning simulation. We demon-

strate through the results of the constructed prediction methodology that delirium

diagnoses are correlated with how BSDC, a burst suppression characteristic, evolves

over time. Supporting analyses to validate these results are presented in Chapter 4.

These additional forms of analyses include additional classification problems regard-

ing other parameters of the surgeries and evaluating descriptive statistics to identify

any confounding factors. The results are reconciled with the surgical outcomes in

Chapter 5. Additionally, the significance of this study’s findings are contextualized

within the previous works we reviewed. Lastly, we summarize in Chapter 6 what this

study achieves and the implications it has for future research. Much work remains,

so specific paths forward are proposed as well.
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Chapter 2

DATA COLLECTION AND FIRST STEPS

2.1 Surgery and Physiological Measurements

This study is a collaboration between Arizona State University (ASU) and the

Mayo Clinic. All documented analysis is retrospective. Operations were performed

at a Mayo Clinic facility. Intraoperative physiological recordings, postoperative neu-

rological evaluations, and general data regarding the types of cases each patient under-

went were transferred to ASU after information possibly leading to the identification

of each patient was removed. Sixteen patients underwent aorta repair surgery with

DHCA supplemented by cerebral perfusion techniques. ASU possesses data for pa-

tients numbered 1 through 19, except 16. Two patients, labeled 7 and 15, did not

undergo DHCA, and therefore are exempt from analysis. Identification numbers were

not adjusted.

These surgeries progress generally as follows. After intubation, the patient is first

anesthetized. Afterward, surgeons expose the heart and place the patient on car-

diopulmonary bypass (CPB). Deep hypothermia is induced by cooling the blood as

it passes through the pump. The heart’s beating is suspended by infusing a cardio-

plegic solution into the patient’s blood [16]. There are two methods, cold blood and

cold crystalloid cardioplegia, which differ in the composition of the solution. Proce-

dures in this study underwent cold blood cardioplegia. Patients have been sufficiently

cooled when they exhibit ECS. Circulatory arrest is induced once ECS is observed.

RCP is applied during circulatory arrest. CPB resumes after surgeons complete the

required maintenance. In cases that needed SACP, patients were switched between
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the perfusion strategies as needed to make the necessary repairs. Body temperature

is raised by warming the patient’s blood as it passes through the pump. Autonomous

circulation resumes when the patient is able to maintain a stable heart rate. Cardiac

pacing or defibrillation may be necessary to force this.

EEG data was recorded at a sampling frequency of 500 Hz from intubation un-

til shortly after autonomous circulation is resumed. Twenty-three electrodes were

placed at locations specified by the 10-20 system [41]. The timeline was annotated by

the electroencephalographer to indicate when major surgical events occurred. These

include but are not limited to anesthesia, CPB, cooling, DHCA, warming, resum-

ing autonomous circulation, cardiac pacing, and defibrillation. Body temperature

was measured using an esophageal probe and recorded intermittently throughout the

surgery .

Postoperative delirium was diagnosed by nurses in the intensive care unit us-

ing a two-step procedure comprising of first the Richmond Agitation-Sedation Scale

(RASS) and followed by the Confusion Assessment Method for the Intensive Care

Unit (CAM-ICU) [42]. A RASS score, which spans a range of −5 to 4 in integer

increments, describes patient responsiveness to external stimuli. The lowest value

indicates the patient is so sedated that they are not yet responsive to touch or voice.

Zero represents a normal state of being. The highest score indicates that the patient

is easily roused and combative. The CAM-ICU can be administered once a RASS

score of −3 has been met, meaning the patient is at least reacting to the nurse’s

voice. Patients then undergo a short cognitive battery. If patients do not successfully

answer the questions, then they are diagnosed with postoperative delirium.

The prescribed repairs and delirium diagnosis for each patient studied are docu-

mented in Table 2.1. Most major sections of the aorta are represented in this dataset.

Aortic root repairs included a hemiarch replacement and an open distal anastomosis,
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necessitating DHCA. Delirium positive is designated by a P, and delirium negative is

represented by an N. Ultimately, the goal of this study is to extract information from

the EEG recordings to predict the CAM-ICU result.

Table 2.1: Patient Procedures and CAM-ICU Results

Patient Procedure Perfusion Delirium

1 Aortic root replacement RCP N

2 Mitral valve/aortic root replacement RCP P

3 Aortic arch replacement RCP N

4 Aortic aneurysm/dissection repair SA/RCP P

5 Aortic root aneurysm repair RCP P

6 Aortic arch replacement SA/RCP N

8 Aortic root aneurysm/dissection repair SA/RCP N

9 Aortic root/ascending aortic arch replacement RCP N

10 Aortic valve resuspension, aortic/ascending

arch replacement

SA/RCP P

11 Aortic root/ascending aortic arch replacement RCP N

12 Aortic root/modified total arch replacement SA/RCP N

13 Thoracoabdominal aortic aneurysm

repair/reconstruction

RCP P

14 Thoracoabdominal aortic aneurysm

repair/reconstruction

RCP N

17 Distal arch/proximal descending aorta

replacement

RCP N

18 Aortic root/arch replacement RCP N

19 Aortic root/arch replacement RCP N
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2.2 Preprocessing

EEG data must be preprocessed before information relevant to the problem can be

extracted. All recordings are first band-pass filtered from 1 to 40 Hz, which removes

DC drift and filters out power mains. Afterward, the data is down sampled to 100

Hz. In doing so, we assume that information above 40 Hz is negligible. High-pass

filtering at 1 Hz removes some structure from the bursts during burst suppression,

but maintaining that content elsewhere is perhaps more trouble than it is worth.

An example voltage time series is shown in Figure 2.1. This data is recorded from

location Cz during patient 9’s procedure.

Examining spectrograms allows us to better understand the significance of the

time domain signal. The spectrogram associated with Figure 2.1 is shown in Figure

2.2. A 1000 sample long hamming window with 90% overlap and 2048 frequency bins

were used to create this figure. Several features in this spectrogram common between
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Figure 2.1: Time series voltage, recorded at EEG location Cz from patient 9. The
labels annotating the timeline include: A-Anesthetization, B-CPB on, C-cooling, CA-
circulatory arrest, R-resume CPB, W-warming, S-cardiac shock, and O-CPB off.
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all channels and patients are identified. As anesthesia takes effect, a time-frequency

ridge appears. The precise frequency of this ridge fluctuates over time and typically

resides within or near alpha wave frequencies. This frequency falls during cooling.

Burst suppression begins shortly afterward. Eventually, cooling the patient enough

causes ECS. All of these events happen in reverse order once rewarming begins. The

anesthesia time-frequency ridge reconstitutes itself, signifying that seemingly typical

anesthesia activity has resumed. Sometimes this ridge progresses along a slightly

different course in frequency than where it was located prior to cooling. When com-

paring against pre-cooling power spectra, we notice the general shape post-warming

is similar, but the power distribution can be different.

Additional context within the overall surgery is provided through the electrocar-

diogram’s spectrogram shown in Figure 2.3. Heart activity can be recognized through

the definitive harmonic structure. Despite bypassing the heart, it continues to beat

Figure 2.2: Spectrogram of patient 9’s Cz recording. Interpreting the time series
in Figure 2.1 is easier when examining its spectrogram. The labels annotating the
timeline include: A-Anesthetization, B-CPB on, C-cooling, CA-circulatory arrest,
R-resume CPB, W-warming, S-cardiac shock, and O-CPB off.
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Figure 2.3: Spectrogram of patient 9’s ECG recording. Heart activity can be rec-
ognized through the strong harmonic structure. The labels annotating the timeline
include: A-Anesthetization, B-CPB on, C-cooling, CA-circulatory arrest, R-resume
CPB, W-warming, S-cardiac shock, and O-CPB off.

while the pump drives circulation. The heart reacts quickly to cooling and slows

down. After infusing the cardioplegic solution into the patient’s blood, the heart

stops beating and the harmonic structure vanishes. Some time passes before halting

circulation because ECS has not been observed yet. After circulatory arrest, the heart

does not start beating during the warming phase in this particular case. Not until

a shock is applied does the harmonic structure return. After the patient is taken off

bypass, the heart resumes its role and a heartbeat is maintained.

Various artifact signals are present throughout the recordings. EEGs are suscep-

tible to recording artifacts. Filtering does not address these issues. Artifacts will cor-

rupt derived measurements and mislead if left untreated. Identifying these responses

is important for extracting meaningful information from the data. These artifacts are

typically non-biological periodic signals, such as rectangle waves, with energy notice-

ably much larger than that of nominal neurological activity. Operating room environ-
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ments contain many electromagnetic interferers originating from surgical instruments

and monitors. Slight shifts in the electrodes while repositioning the patient, pumps,

and ventilator can also produce artifacts that are impulse-like or consist of unnatural

oscillations. Many of these artifacts occur prior to warming. Unfortunately, the cool-

ing phase contains many artifacts that obscure neurological activity—in particular

burst suppression. The data is, however, relatively uncorrupted once CPB resumes

for the studied surgeries. Designing filters for these artifacts or attempting to recover

the neural signals is difficult because these procedures may heavily distort the time-

frequency structure of the remaining recording. Discrepancies in observations across

channels complicate our ability to attempt signal recovery. Additionally, the extent

and characteristics of the contamination vary between not only cases, but also over

the course of the entire surgery. A severe example of artifact contamination is shown

for patient 3 in figure 2.4, the spectrogram of their Cz recording. Instead, we identify

when artifacts occur and treat them while postprocessing derived features.

Artifacts are detected by thresholding the windowed energy of each EEG channel.

The log scale windowed energy is given by

ε[n] = log10

(
N−1∑
k=0

(w[k + n]x[k])2
)
, (2.1)

where x[n] is the filtered time series data, w[n] is a 10 s rectangle window, and N is

the number of samples. Channel specific thresholds are set based on the histogram of

energy observed from anesthetization until the cooling phase. Thresholding must be

performed on a per channel and per case basis due to the diversity in observations.

All histograms of the energy included a long tail, attributed to high energy outliers.

Developing a detector based on a fixed order statistic threshold is not robust due to

the variance in contamination severity. For example, 99th percentile energy values may

be true positives in some cases, but may be false positives in others. Consequently,
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Figure 2.4: Spectrogram of patient 3’s Cz recording encompassing a portion of patient
9’s cooling, circulatory arrest, and warming phases. Shown here is an extremely
contaminated case. Many of the artifacts are periodic in nature with strong harmonic
structure. Other artifacts are impulsive and easily observed as broadband streaks
within a short duration.

energy thresholds are chosen from histograms heuristically as

2µε − σε , (2.2)

where µε is the mean determined by the histogram’s maximum, and σε denotes a

“standard deviation” found by measuring the width of the portion where most ob-

servations lie. Selecting the threshold in this way generalizes this energy detector

well enough to the entire data set. This method errs on the side of false negatives as

opposed to false positives. An example of one such histogram and threshold selection

is presented in Figure 2.5.

The ensuing detections have been labeled in the example voltage and correspond-

ing energy time series shown in Figure 2.1 and Figure 2.6. Notice the remaining

unlabeled artifacts that have energy close to nominal levels. Only the largest am-

plitude artifacts are treated through this method, but identifying them simplifies
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Figure 2.5: Histogram of energy computed from data recorded prior to the cooling
phase. This recording, a part of patient 9’s data set, was measured at EEG location
Cz. The energy threshold used for declaring the occurrence of artifacts is indicated
by the black dot.
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Figure 2.6: Windowed energy associated with the time series voltage shown in Figure
2.1. The labels annotating the timeline include: A-Anesthetization, B-CPB on, C-
cooling, CA-circulatory arrest, R-resume CPB, W-warming, S-cardiac shock, and
O-CPB off.
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subsequent analysis. In the case shown in Figure 2.4, the neural signal has lower, if

not comparable energy to the more subtle artifacts. We address more subtle artifacts

by processing the data.

We perform a weighted averaging of the data through a spatiotemporal version

of principal components analysis (PCA) to improve the neural signal quality and ag-

gregate information recorded from multiple spatial locations. This analysis technique

was used in a previous study of ours, but its purpose is different here [39]. The com-

bination of information across channels helps address the issue that different channels

have different observation qualities. Furthermore, our goal is to analyze burst sup-

pression as a spatially global event. We attempt to improve our observation of this

phenomenon by combining several diverse recordings.

A spatiotemporal combination, instead of a strictly spatial version, is used as a

safety net to account for potential differences in arrival time across channels from any

common sources. For each patient, a space-delay data matrix is constructed using

the preprocessed data from channels Cz, FPz, Fz, Oz, and Pz. Any differences in

activity across hemispheres are not considered in this study, but could be leveraged

in future studies. The benefit of choosing these five channels was empirically verified

when recognizing that the quality of the neural signals improved. We designate the

non-delayed data matrix as

X =



xCz

xFPz

xFz

xOz

xPz


, (2.3)

where each row contains time series data from one of the five channels examined. Five

delay taps are used to construct the space-delay matrix, where the taps are spaced
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by 10 ms. Space-delay matrix Z is given by

Z =



X0

X1

X2

X3

X4

X5


, (2.4)

where the subscripts indicate the tap index. Correlation matrices, R, are estimated

from data recorded prior to cooling, a subset of columns in Z denoted as Z′. Con-

sequently, the information recorded afterward is analyzed in reference to a baseline

spatiotemporal covariance structure. Artifact segments are also temporarily excised

from this subset prior to estimating the matrices. Leaving the artifacts in Z′ would

include unnatural correlations. Their large energy would also dominate the computa-

tion of the second order statistics. Artifact labeling was performed for each channel

independently, and now several channels have been combined. Labels are reconciled

across channels through a logical OR operation. The spatiotemporal correlation ma-

trix is given by

R =
1

NZ′
Ẑ′Ẑ′

T
, (2.5)

where NZ′ is the remaining number of samples and Ẑ′ is a row centered and normalized

version of Z′. PCA first decomposes the correlation matrix into

R = VΛV−1 , (2.6)

where V contains eigenvectors in each column and are organized according to its

associated eigenvalues stored in the diagonal of Λ. The eigenvalues are sorted from

largest to smallest, where the largest eigenvalue is denoted by λ1. The entire space-
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delay data matrix Z is then row centered and normalized. The spatiotemporally

weighted average is expressed by

s1 = vT
1 Ẑ , (2.7)

where v1 is the principal basis vector and Ẑ is Z centered and normalized by the same

means and standard deviations yielded by Z′.

We demonstrate the effect this averaging has on the severely contaminated data

recorded during patient 3’s procedure through a spectrogram of s1(t) shown in Figure

2.7, where s1 is simply the vectorization of the time series data. Many artifacts

have receeded to the background, but others have become clearer. The neural signal

compared to signal noise is much stronger now though. The eventual goal is to

distinguish bursts from signal noise. In Figure 2.4, the bursts were difficult to observe,

but are more distinct now in Figure 2.7. Perhaps there exists a more optimal subset

of channels to exploit here, which would improve the outcome of this procedure. For

Figure 2.7: Spectrogram of patient 3’s spatiotemporally averaged time series data.
This segment contains a portion of patient 3’s cooling, circulatory arrest, and warming
phases. The neural signal has become significantly clearer. Some of the artifacts have
been pushed to the background, while others have become more pronounced.
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now, we proceed with the rest of the analysis using the principal component s1(t).

2.3 Burst Suppression Duty Cycle

We choose to examine burst suppression through windowed energy, one of its more

distinguishing features. One of the goals moving forward is to be able to distinguish

burst activity from suppression phases. Computing the windowed energy allows us

to label the time series based on burst envelopes. The windowed energy computed

for the subsequent analysis uses parameters different from those used for artifact

detection. We evaluate

e[n] = log10

(
N−1∑
k=0

(w[k + n]s1[k])2
)
, (2.8)

where w[n] is a hamming window this time. Additionally, the window has been short-

ened to 2.5 s to preserve shorter term characteristics. An excerpt of the patient 9’s

synthesized time series and corresponding windowed energy, highlighting burst sup-

pression, is depicted in Figure 2.8. Burst suppression can be recognized through the

quasi-periodic bursts in energy. Burst suppression occurs at an atypical time scale

compared to usual neural events. Aside from ECS, the next burst could occur tens

of seconds after the previous cycle. As warming progresses, the time to retrigger

shortens. One weakness of analyzing the windowed energy is that suppression phases

eventually shorten below 2.5 s, making distinguishing some bursts from another dif-

ficult. The window length is a parameter that should be tuned in future iterations of

this analysis. Bursts seemingly retrigger even during the previous burst toward the

end of burst suppression. We assume burst suppression is a global event, but it is

possible that bursts could be arriving at the EEG electrodes from different locations

and overlapping with each other. Regardless, “continuous” EEG activity is eventually

observed.
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Figure 2.8: Burst suppression represented in spatiotemporally averaged time series
data for patient 9 and its associated energy time series. Suppression phase duration
decreases over time. Eventually, the endings and beginnings of sequential bursts
becomes difficult to discern, indicating the end of burst suppression. A temporal
structure of each burst can be observed roughly.

All energy time series starting when CPB resumes until the patients resume au-

tonomous circulation are shown in Figure 2.9 and Figure 2.10. Times when burst

suppression begins, when it ends, and when warming begins are marked in these

figures. Note that the end of circulatory arrest was not documented for patient 14,

so the timestamp indicating when rewarming begins is used instead. Quite a bit of

variance in signal energy and burst suppression characteristics across patients can be

observed. Some characteristics to note include the time elapsed until burst suppres-

sion begins, how long burst suppression lasts, and how long before warming began.

The aforementioned features play a role in making predictions.

Changes in dynamics are tracked through a metric called burst suppression duty

cycle (BSDC). BSDC quantifies the proportion of time within a window the brain

spends in a burst phase. The quantity 1 − BSR is semantically the same as BSDC.
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Figure 2.9: Energy time series for patients 1, 2, 3, 4, 5, 6, 8, and 9 starting when CPB
resumes until it ends. Also highlighted are the beginnings (squares) and ends (circles)
of burst suppression. These markers are found through analyzing BSDC. Warming
starts at the time where the diamonds are located. Patients 2, 4, and 5 belong to the
delirium positive group.

Computing BSDC is, however, explicitly different from evaluating 1 − BSR, where

BSR is attached to a standard. This difference stems from Rampil defining a sup-

pression phase as a period where the voltage does not vary beyond ±0.5 mV for
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Figure 2.10: Energy time series for patients 10, 11, 12, 13, 14, 17, 18, and 19 starting
when CPB resumes until it ends. Also highlighted are the beginnings (squares) and
ends (circles) of burst suppression. These markers are found through analyzing BSDC.
Warming starts at the time where the diamonds are located. Patients 10 and 13
belong to the delirium positive group. The end of patient 14’s circulatory arrest was
not annotated, so we default to using the rewarming time stamp.

longer than 0.5 s [33]. BSR is defined as the fraction of time the brain spends in a

suppressed state over a 60 s window. Besides the window, we also define the rules

of classification differently and consult the windowed energy instead at the risk of
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losing more subtle characteristics. Consequently, a different name is coined to avoid

confusion. Although several sources of modulation could exist, we notice that tem-

perature primarily modulates the suppression duration. Therefore, BSDC will vary

over time as conditions of the surgery change. Formulating BSDC provides a simple

metric through which progress in transitioning out of ECS can be tracked.

BSDC is defined as the fraction of time within a window the brain spends in a

high energy state, akin to a pulse width modulation duty cycle. The window length

used to compute the proportion is 100 s long. The choice of this length is somewhat

arbitrary but is long enough to be representative of the energy time series. In other

words, a full BSDC should indicate that there is a high probability that suppression

phases no longer occur. Tuning this window length should also be explored in future

analysis iterations. Each energy sample e[n] is labeled as a high or low energy state

by thresholding. Observations during cooling are used as a model for classifying ob-

servations during warming. Artifacts aside, we assume the burst suppression activity

during cooling is ”ideal”, granted no complications developed beforehand. A his-

togram is first constructed based on the signal energy observed specifically from the

start of CPB until circulatory arrest begins. Two peaks, representing either nominal

burst or suppression energy, are found. The midpoint between the two energy levels

is chosen to be the threshold. An example of this procedure generated from patient

9’s data is shown in Figure 2.11. The importance of identifying artifacts beforehand

and combing information across channels is highlighted here. Obtaining less cor-

rupted histograms improves our ability to determine a proper threshold and achieve

more accurate classification. Lastly, the BSDC time series undergo postprocessing.

Whenever an artifact has been identified, we linearly interpolate across them. Those

windows are assumed to be short enough such that a linear model suffices. Also as-

sumed is that patients do not drastically deviate from the trending evolution of burst
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Figure 2.11: Histogram of cooling phase energy for patient 9. Each peak represents
average energy for suppression or nominal activity. The midpoint is chosen as the
threshold used for labeling each sample a high or low energy state.

suppression dynamics.

The time evolutions of BSDC for all patients since they resume CPB are shown

in Figure 2.12 and Figure 2.13. Figure 2.9 and Figure 2.10 should be correspond-

ingly referenced when interpreting the BSDC because this quantity is one layer of

abstraction removed from the signal energy, which is already an abstraction of the

original signal. When BSDC reads 0%, the patient exhibits ECS. Oppositely, no sup-

pression activity is detected within the 100 s window when the metric hits 100%. We

interpret this event as a biomarker indicating that “nominal” function has returned.

Burst suppression has begun when the BSDC starts to steadily increase from 0%.

Anticipating postoperative delirium involves tracking this transition between 0% and

100% BSDC.

An interesting variety in BSDC progressions are observed. Lengths of the traces

denote how much time elapsed until the heart resumes driving circulation. The time

between reaching full BSDC and the end of bypass varies, perhaps due to specific needs
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Figure 2.12: BSDC time courses of patients 1, 2, 3, 4, 5, 6, 8, and 9 since resuming
CPB. Rewarming is marked by the diamonds. Circles denote T0, the start of burst
suppression. Squares represent T1, which is interpreted as the end of burst suppression
or when a patient’s BSDC hits 100% with stability. Patients 2, 4, and 5 belong to
the delirium positive group.

of each procedure. There does not appear to be an association with this amount of

time and the procedures up to the level of specificity documented in Table 2.1. Time

elapsed until warming begins also varies significantly. Some of these delays may be
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Figure 2.13: BSDC time courses of patients 10, 11, 12, 13, 14, 17, 18, and 18 since
resuming CPB. Rewarming is marked by the diamonds. Circles denote T0, the start
of burst suppression. Squares represent T1, which is interpreted as the end of burst
suppression or when a patient’s BSDC hits 100% with stability. Patients 10 and 13
belong to the delirium positive group. The end of patient 14’s circulatory arrest was
not annotated, so we default to using the rewarming time stamp.

attributed to the perfusion strategy. Patients 4, 6, 8, 10, and 12 all underwent both

RCP and SACP. We observe that warming tends to begin later than other cases. In

cases utilizing both strategies, the switch between RCP and SACP is not explicitly
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annotated. Surgeons may have switched patients over to SACP to continue repairs

after resuming CPB, which would account for the extended period of time before

warming. The last source of variation that can be observed is the progression of BSDC

over the course of warming, which is noted by the activity between the diamond and

circle markers within Figure 2.12 and Figure 2.13. Many variables likely affect this

phase, but body temperature seems to be the primary modulation source.

Several outliers can be identified within Figure 2.12 and Figure 2.13 in terms of

these attributes. Patient 2 quickly reaches a high BSDC, just bumping up against

100%. They never manage to achieve full BSDC with stability until almost minute

200. In Figure 2.9 we observe suppression phases up until that same point. Patient 10

does not complete the transition out of burst suppression. In fact, bypass ends before

full BSDC is achieved. Patient 13 is considered an outlier case due to the extreme

delay before warming. Warming did not start until after some other patients have

already completed transitioning from ECS. Consequently, they were late to reach full

BSDC. Patient 4 experiences a similar progression, but much of the delay can be

attributed to a late start in warming. These patients are all delirium positive, so

there appears to be some correlation between the nature of transitioning from ECS

to “nominal” activity and the postoperative delirium diagnoses.
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Chapter 3

ANTICIPATING POSTOPERATIVE DELIRIUM

3.1 Prediction Procedure

Postoperative delirium forecasts are derived strictly from data recorded starting

when CPB resumes. In doing so, we assume that the procedure prior to circulatory

arrest did not cause injury. We suspect that prolonging the brain’s recovery of nom-

inal function may be detrimental. Specifically, we hypothesize that the transition

from ECS (starting when CPB has resumed) to full BSDC takes significantly longer

to complete for delirium positive patients when compared to delirium negative pa-

tients. By tracking the progress through BSDC, we can determine if the transition is

projected to finish on time.

From Figure 2.12 and Figure 2.13 we recognize that the timing of the BSDC pro-

gression may provide warning signs. In particular, the time when full BSDC has

been achieved is a strong indicator of postoperative delirium. Classifying the data

once patients meet full BSDC is technically a prediction, but an earlier indicator is

desired because the transition is effectively complete at that point. Whether inter-

vening after achieving full BSDC would be effective remains to be determined, so we

aim to accurately infer the outcome before this crucial transition period ends just in

case. Consequently, classifying patients based on how fast they meet intermediate

milestones is also explored. The prediction accuracy achievable at these earlier points

in time determines how much foresight is available.

The general goal is to check if patients have met certain BSDC milestones within

an acceptable margin of time. We monitor the time taken to reach the following BSDC
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levels since resuming CPB: 1%, 5% to 95% in 5% increments, and 99%. We define

T0 as the time elapsed for BSDC to surpass 1%. This measurement is treated as the

point when burst suppression begins. Similarly, T1 designates the time when BSDC

crosses 99% with stability, signaling that suppression activity has ceased. Stability

is defined here as having crossed and stayed above the threshold for at least 600 s.

This parameter is arbitrary, and there are likely more efficient and robust methods

to determine measurement stability. If ever used clinically, visually examining BSDC

and making a cautious judgement call may be sufficient if timing is crucial. Out

of convenience, the other time stamps are designated correspondingly as T0.05, T0.1,

T0.15, etc. Let us define the BSDC milestones examined as γ ∈ {0, 0.05, . . . , 0.95, 1}.

These measurements for every patient are documented in Figure 3.1. We analyze the

relationship between the delirium diagnoses and these milestone timestamps.

A prediction for each patient is made at each BSDC milestone based on Tγ. In

other words, the inference about each patients’ postoperative delirium diagnosis is

updated as their transition progresses. Likelihoods that a measurement Tγ belongs

to either diagnosis group inform these inferences. These quantities are given by

L(Tγ;µd,γ, σd,γ) = (2πσ2
d,γ)
− 1

2 exp

(
−(Tγ − µd,γ)2

2σ2
d,γ

)
, (3.1)

where µd,γ and σd,γ respectively denote the mean and standard deviation of Tγ for

diagnosis group d ∈ {P,N}. Gaussian distributions are assumed to characterize the

variation in observations of Tγ. This model is likely erroneous, but without sufficient

samples, suggesting a more accurate one cannot be done. Therefore, using this sim-

ple, well-studied model capturing general notions of the distribution will suffice. If

more data were to be obtained, then more suitable likelihoods could be formulated.

By using such a Gaussian model though, we presume that a typical delirium negative

progression, described through µN,γ, is different from an average delirium positive pro-
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Figure 3.1: Time to reach each BSDC milestone for each patient. Observe at full
BSDC that a line can be drawn between a group of four delirium positive patients and
the rest. Patients are also classified based on intermediate measurements. Naturally,
the prognosis becomes less clear when observing earlier phases of the transition. Each
trace is labeled by the corresponding patient ID.

gression, represented by µP,γ. Furthermore, the amount each group varies within can

be different, which is characterized by σN,γ and σP,γ. It is important, however, to not

place too much significance on the notion of a typical delirium positive because there

are many sources of complications that may affect this transition phase. Parameters

µP,γ and σP,γ characterize the group of delirium positive cases specific to this study.

While monitoring the BSDC, we must determine if the progress transitioning from

ECS resembles either a delirium positive procedure or a delirium negative procedure.

The generalized likelihood ratio test is employed to classify the data [43]. This

39



test is formulated as

L(Tγ;µN,γ, σN,γ)

L(Tγ;µP,γ, σP,γ)
≷ξ , (3.2)

where ξ is a decision threshold. When the ratio is less than ξ, the null hypothe-

sis, delirium negative, is rejected. Prior knowledge is required to construct the test.

Characteristics describing typical delirium negative and delirium positive burst sup-

pression sequences are required. In principle, the prediction procedure can function

in real time if the necessary prior knowledge is available. This study is retrospective

though. Consequently, we must utilize the data available to us currently. Typically in

supervised learning studies, datasets must be partitioned into mutually exclusive sets.

One of these partitions is used for estimating parameters needed to construct a clas-

sifier, and the other is used strictly to test it. The study population is small though,

which makes obtaining non-degenerate parameter estimates difficult after partitioning

the dataset. Furthermore, one desired property of these testing and training sets is

that they must be balanced in the number of observations of either diagnosis. These

issues must be addressed to properly evaluate the methodology.

Bootstrap sampling is employed to artificially increase the size of the training and

testing data sets, so that useful estimates of the likelihood parameters and classifier

performance can be obtained [44]. This method samples observations with replace-

ment from a sampling pool to create a synthetic dataset. To estimate a parameter

using bootstrap sampling, that parameter of interest is estimated from this synthetic

dataset. A set of estimates is obtained for multiple realizations of these synthetic

datasets. By the law of large numbers, averaging enough of these intermediate esti-

mates produces a refined result that converges toward the true population parameter.

Here, the performance of the classifiers is bootstrap estimated.

For each γ, the following sequence occurs for one iteration of the bootstrap super-

vised learning procedure. First, a synthetic training dataset is generated by bootstrap
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sampling from a training set pool containing observations of Tγ. Sampling is controlled

such that the number of delirium positive and delirium negative cases are equal. The

learning step consists of estimating µd,γ and σd,γ. The means are estimated using the

maximum likelihood estimator for a gaussian random variable, given by

µ̂d,γ =
1

|Sd|
∑
s∈Sd

Tγ(s) (3.3)

where s refers to a member of Sd, the set of patients identified with the diagnosis

d. The variances are also estimated through the maximum likelihood estimator for a

gaussian random variable, formulated as

σ̂2
d,γ =

1

|Sd|
∑
s∈Sd

(Tγ(s)− µd,γ)2 . (3.4)

After obtaining parameter estimates, the detector described in Equations 3.1 and 3.2

is constructed. A separate synthetic testing set is generated by bootstrap sampling

from a test set pool, such that the diagnosis groups are balanced. Fifty samples com-

prise each of the synthetic datasets. Patient 14, who tested negative for postoperative

delirium, is only ever considered to be drawn for the testing group because the time

when they resume CPB is not documented. Performance metrics of the detector are

obtained by comparing the predictions with the true labels. This entire procedure is

repeated 1000 times to obtain a set of intermediate estimates on the detector param-

eters and various performance metrics. Repeating this supervised learning procedure

numerous times is important so that the reported metrics are not consequent of a

particular realization of the synthetic training and testing sets.

The parameters are averaged over all the trials and reported. The bootstrap esti-

mated means of µP,γ and µP,γ are plotted in Figure 3.2. Delirium positive progressions

tend to lag behind that of delirium negative, especially toward the end of burst sup-

pression. Regions within one standard deviation of these means have been marked
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Figure 3.2: Average time required to meet each examined BSDC milestone for each
diagnosis group. The mean times were estimated using a bootstrap estimation strat-
egy. Delirium negative patients tend to transition to full BSDC faster than delirium
positive patients. Furthermore, the transition tends to start earlier for the delirium
negative group.

as well. This plot provides some sense of how the likelihood ratio test might classify

each case when examining Figure 3.1. Delirium positive features vary drastically, but

delirium negative features tend to vary less. The distinction between the two groups

becomes clearer as the BSDC advances, especially toward the end where the inter-

section has minimized. Classifying the features correctly is easier when these regions

are spread further apart.

We note that this procedure is different from what is described in [40]. In this

earlier work, a Monte Carlo supervised learning simulation was implemented. A

bootstrap method was not utilized. Instead, the dataset was repeatedly repartitioned

into mutually exclusive training and testing sets, obeying the same caveat on patient

14. Only delirium negative patients are used in training though, which means prior

knowledge of a delirium positive procedure is not considered. Similarly, a series of

learning and testing is performed, producing a set of observed performance metrics. A
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major benefit of this methodology is that some information is entirely withheld from

the test set, so the robustness of the detector toward missing information is tested.

A robust and accurate detector was constructed, but the detector has no frame of

reference for how deviant cases can be. The lack of prior knowledge about delirium

positive progressions results in a classification bias, even when bootstrap sampling is

utilized to balance the test set. Thus, we employ the likelihood ratio test instead to

assess the efficacy of the methodology after the bias in classification is removed.

During each trial, prediction accuracy, true positive rate (TPR), and false positive

rate (FPR) are recorded for every BSDC milestone while varying ξ. The TPR is given

by

TPR =
TP

|SP|
, (3.5)

where TP is the number of correct delirium positive predictions given threshold ξ.

Whereas , the FPR is given by

FPR =
FP

|SN|
, (3.6)

where FP is the number of incorrect delirium positive predictions given threshold

ξ. At the conclusion of the bootstrap supervised learning procedure, the observed

accuracy measurements over all trials are averaged to obtain the reported estimated

accuracy. The maximum mean accuracy observed over all choices of ξ at each BSDC

γ is reported. All observed TPRs and FPRs are also averaged over all trials. The

collection of FPRs and TPRs parameterized by the detection threshold ξ comprises

a receiver operating characteristics (ROC) curve. This curve is a classical detection

theoretical tool describing the performance of a detector as the decision threshold

changes. A more comprehensive assessment of the detector is provided through the

ROC curve than the accuracy, which is consequent of a singular detection threshold.

The ROC curve provides a tool for the selection of ξ in the event that the detector
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must be designed to satisfy certain requirements on the FPR. This design concept may

be applicable in the case of these surgeries depending on the safety of the intervention.

A ROC curve is produced for each γ examined.

The area under the curve (AUC) is a singular quantity that summarizes the ROC

curve’s shape. Computing the AUC, as the names suggests, involves integrating the

ROC curve. The AUC is at maximum 1, which means the detector is never wrong

for some choice of ξ when a detection is made. The worst AUC is 0.5 meaning the

detector functions as a random chance detector. AUCs can be lower than 0.5, but

this scenario simply means the test statistic can be reversed, though this may be

nonsensical. One goal in constructing any detector is to aim for an AUC of 1, but

this is practically unlikely. We observe how the AUC changes as a function of γ.

In addition to each ROC curve, its convex hull is also constructed. The convex

hull of the ROC curve is a valid ROC curve, achievable in the statistical sense [45]. To

produce this performance, decision thresholds corresponding to points on the ROC

curve comprising its convex hull must be identified. Altering the proportion of time

spent operating at the hull point thresholds sweeps out the hull line. Thresholds

producing parts of the ROC curve inside the hull are suboptimal. The area under the

hull (AUH) is equal to or greater than the AUC. The AUC and AUH are expected to

improve as predictions are made later in the BSDC progression (i.e. as γ increases).

3.2 Performance Assessment

First, we observe the prediction performance achieved when the training and test-

ing set pools, from which synthetic datasets are generated, both contain all available

observations for the particular γ under examination. We pretend that the two syn-

thetic datasets are two different study populations. They may share many of the

same unique observations, but the composition is likely different. In this scenario,
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the diversity in observations within each synthetic data sets is maximized.

Mean prediction accuracy as a function of the BSDC milestones is plotted in

Figure 3.3. The first standard deviation above and below the mean is provided as well

because the evaluation procedure is stochastic. As burst suppression begins, 78.10%

can immediately be predicted correctly. Generally, in Figure 3.3 the accuracy remains

approximately flat, creeping towards 80% accuracy for most of the transition. Not

until passing 85% BSDC does the accuracy start to increase significantly. A maximum

mean accuracy of 89.74% is observed when burst suppression has ceased. Accurate

prediction has been achieved when monitoring the progression of BSDC once CPB

has resumed. We notice that with the adjustments in the testing methodology, a

curve similar to that which is presented in our previous work [40] was produced.

The difference here is an improvement in accuracy at earlier stages in the BSDC

progression.
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Figure 3.3: Maximum mean accuracy observed at each BSDC milestone over all
choices of threshold ξ. The accuracy one standard deviation above and below are
also provided. Generally, accuracy improves as predictions are made later along
the transition to full BSDC. Accurate predictions are achievable by tracking BSDC
progress.
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Referring to Figure 3.1, we can easily understand the trend observed in Figure 3.3.

Patient 5 is as a false negative across all choices of BSDC. In some sense, they may

be considered a deviant of the delirium positive group in terms of post-DHCA BSDC

measurements. Patients 4, 10, and 13 are easily distinguished from the rest of the

patients. Their features are outliers from the first burst until burst suppression has

concluded. Patient 2’s progression does not begin to clearly deviate until 90% BSDC.

Their progress begins to significantly slow down starting at 75% BSDC though. All

other patients do not veer off track in the way that patient 2 or even patient 10 did.

The 80% accuracy refers to situations where patients 2 and 5 are misclassified in these

balanced test sets. Prediction accuracy improves to 90% because the status of patient

2 has officially deviated significantly. The gradual increase is attributed in part due

to the bootstrap sampling.
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Figure 3.4: ROC curve produced when making predictions based on each BSDC
milestone. The shade of each curve denotes how advanced the transition is. The
darkest line and incidentally the ROC curve with the largest AUC represents the
performance achieved when predicting based on T1. Similarly, the lightest shade
represents the performance curve achieved when the prediction is made at the earliest
juncture.
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ROC curves produced from the bootstrap supervised learning simulation are pre-

sented in Figure 3.4. The gradient in line color represents how advanced into the

progression patients are. The darkest shade represents performance once patients are

at full BSDC. Oppositely, the lightest shade denotes the classifier based on timing of

the first burst. We note that as the BSDC advances, the ROC curve area increases,

which is sensible because the status of the patient should become clearer as time

passes. Additionally, the TPR increases from 0.6 to 0.8 with γ in a 0 FPR region,

where the darkest three lines correspond with the last three points in Figure 3.3.

A more optimistic estimate of the detector performance characteristics are rep-

resented in Figure 3.5 through the convex hulls of the ROC curves. We observe a

significant increase in the area covered across each BSDC milestone monitored. If the

situation arises at all where a worse FPR could be traded for a better TPR, then we

observe the benefits in performance that could be theoretically achieved. This means

the viability for using earlier milestones increases.

To concretely convey the improvement in prediction performance as time passes,

the AUC and AUH as a function of BSDC milestones is plotted in Figure 3.6. A

maximum AUC of 0.8557 was achieved at full BSDC and the minimum 0.7196 was

achieved at the first burst. The corresponding AUHs observed were 0.8988 and 0.7889.

The AUCs and AUHs are closer in agreement when predicting from 75% BSDC and

higher than otherwise. After accounting for sources of bias in the classifier construc-

tion and testing procedure, slight improvements over the performance documented in

[40] are observed.

The observed performance demonstrates that not only can accurate predictions

be made, but they can also be produced before burst suppression even ends. Mak-

ing predictions earlier incurs a penalty in accuracy, naturally. Moderately accurate

predictions can be made as soon as burst suppression begins until 80% BSDC, be-
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Figure 3.5: Convex hull of the ROC curves, statistically achievable by time sharing
amongst various thresholds. The shade of each curve denotes how advanced the
transition is. The darkest line and incidentally the ROC curve with the largest AUC
represents the performance achieved when predicting based on T1. Similarly, the
lightest shade represents the performance curve achieved when the prediction is made
at the earliest juncture.
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Figure 3.6: AUC and AUH as a function of the BSDC milestone. The robustness of
the detector improves when the BSDC progression is queried later. The convex hull
of the ROC curves demonstrate an improved viability in making predictions earlier
in the burst suppression.
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yond which the accuracy and robustness of the classifiers improve considerably. The

accuracy achieved demonstrates a correlation between the speed at which burst sup-

pression dynamics evolve as measured with respect to when CPB resumes.

Results obtained when using the two dimensional feature vector described in [40]

with the revised learning and testing method does not yield accuracy as strong as Tγ

alone. Hence, why this work only documents results produced using a single feature,

which encodes approximately the same information conveyed by the two dimensional

feature vector used previously. The benefits of using additional measurements would

need to be assessed with a revised set of features.

3.2.1 Sampling Pool Disjointedness

In typical supervised learning settings, training and testing sets must contain

mutually exclusive observations. Of course, this is not strictly satisfied in the sampling

variation first presented. Fortunately, the learning stage only requires estimating

means and standard deviations, which depends in part on the composition of the

generated training dataset. Contrast this with constructing a classifier that is sensitive

to the precise observations, such as a nearest-neighbor classifier. We must address

how changing the overlap in sampling pools affects prediction performance.

Consider first the scenario in which the testing and training sampling pools are

completely disjoint. The synthetic datasets will contain mutually exclusive unique

observations after the bootstrap sampling procedure. To accomplish this while en-

forcing the balanced groups property, three observations from each diagnosis group

are placed into the training sampling pool, and two observations from each diagnosis

group are placed into the testing sampling pool. The dataset generation, training,

and testing procedure commences afterward. For each iteration of the simulation, the

sampling pools are redrawn. The average performance for this variation is evaluated.
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Figure 3.7: Analysis variations for testing the effects of sampling pool overlap on
prediction performance. The variable x denotes the number of samples the sampling
pools share in common. From these sampling pools, the synthetic datasets used for
training and testing are drawn through bootstrap sampling.

AUCs and AUHs are used as a point of comparison. Keeping the same number of

observations within each sampling pool, the average performance is evaluated while

adjusting the number of samples common between pools. The sampling pool overlap

variations are summarized in Figure 3.7, where x denotes the number of samples in

common between either pool.

First, the AUC and AUH as a function of the BSDC milestone achieved for the

completely disjoint case is plotted in Figure 3.8. Both area measurements still in-

crease as the transition advances. The increase is inconsistent though. Additionally,

far poorer performance is observed. The AUCs are not much better than a random

chance predictor until later in the transition. The convex hull provides an imme-

diate significant increase in the area, but the AUHs still show modest performance.

Achieving promising results with only three unique observations per diagnosis in the

training set and two unique observations per diagnosis in the testing set is perhaps

overly demanding though. Second, the metrics achieved when the sampling pools

have one case in common is plotted in Figure 3.9. Again, the general trend in im-

proving accuracy as the transition advances is observed. Furthermore, a substantial

improvement is seen in the AUCs, especially in the earlier stages of the transition.

The AUH does not provide much more optimism in this case. Lastly, the AUC and

AUH as a function of the BSDC milestone achieved where the sampling pools had two
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Figure 3.8: Areas under the ROC curves and their convex hulls when sampling pools
are completely disjointed. The same improvement trend is observed, but performance
is significantly worse.

cases in common is plotted in Figure 3.10. Another substantial improvement from

Figure 3.9 in the areas is observed here. The performance observed in this scenario

is quite close that which was observed in Figure 3.6. The AUCs and AUHs tend to

agree with each other better in this testing variation though. The AUHs are lower

in the early stages of the transition here than in Figure 3.6, but improve to approx-

imately the same by the end phase. Comparing Figure 3.10 and Figure 3.8, we see

quite a large discrepancy in performance—almost a 0.1 unit area gap. Extrapolating

to Figure 3.6 and the rest of the performance metrics reported, the performance is

overestimated when both sampling pools were comprised of the entire dataset. Pre-

sumably, however, performance observed in Figure 3.6 should be achievable while

enforcing disjoint sampling pools if more data were obtained. Achieving even better

performance after obtaining more data is plausible too.
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Figure 3.9: Areas under the ROC curves and their convex hulls when sampling pools
contain one common case. A significant improvement over the completely disjoint
variation is achieved.
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Figure 3.10: Areas under the ROC curves and their convex hulls when samplings
pools completely overlap. Another significant improvement over the single overlap
variation is achieved. Overlapping the sampling pools causes the performance to be
overestimated.
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3.3 False Classifiers

As is the case with any statistical learning problem, there is a concern that the

performance achieved is a fluke. Another worry is that the methodology would func-

tion just as well no matter how the data was labeled, meaning the data is not actually

informative. The small size of our dataset only compounds on these concerns. The

bootstrap method for assessing our methodology only partially addresses the sensitiv-

ity to the data size. Consequently, we consider false models to clarify these questions.

We construct false models by randomizing the training set labels before the learning

phase. Thus, µd,γ and σd,γ are all mischaracterized. After generating this erroneous

model, the detector is evaluated by testing properly labeled data. Observing accurate

predictions even with these false models would be alarming and indicate the presence

of possibly several problems.

One reason accurate classification could be achieved using a false classifier is the

existence of a bias, which was the problem in the strategy described in [40]. This

bias can be found in either the dataset or the classifier construction. Bootstrap

sampling was incorporated to correct for an inherent bias that can result from the

distribution of diagnoses. The performance metrics will incur an inherent inflation

or deflation in imblanced datasets. For instance, if a diagnosis group that tends to

be correctly classified was overrepresented, then the classification accuracy would be

overestimated. The creation of balanced datasets, facilitated by bootstrap sampling,

helps correct for this problem. Using the likelihood ratio test attempts to correct

for a bias in the classifier because knowledge from both diagnosis groups informs its

construction. Additionally, the repetition and redrawing of datasets involved in the

bootstrap method removes the sensitivity to particular drawings that cause flukes.

Lastly, one other way predictions can still be accurate using these false detectors is an
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excessive amount of degrees of freedom. If the dimensionality of the data were large

enough, then constructing some manifold that still classifies the data appropriately

may be possible. This scenario is not an issue here because the feature on which

learning and testing is based is one dimensional. Ideally, these false models would

perform as if decisions were sampled as a Bernoulli random variable and an AUC of

0.5 would be observed.

We must verify the observed performance was not a fluke by confirming the perfor-

mance using false classifiers is poor. The maximum—over all choices of thresholds—

mean accuracy achieved at each BSDC milestone is plotted in Figure 3.11. We observe

consistent accuracy over all milestones. Making a prediction at any one milestone is

no better than predicting at any other milestone. Furthermore, that accuracy is

poor, where just shy of 60% of the cases were correctly classified. The maximum

mean accuracy observed is 57.62%, occurring at the first burst. These false classifiers

perform just slightly better than randomly assigning labels to the test dataset. Al-

though not closer to 50%, the accuracy achieved using false models helps validate the

methodology.

For brevity, only the convex hulls of the ROC curves are presented. The curves in

Figure 3.12 hug closely to the 0.5 AUC boundary. Ideally, the curves would rest on top

of the random labeling detector curve represented by the dashed line. The raw ROC

curves actually fluctuate above the line before 0.5 FPR, and fluctuate under beyond

it. Using the convex hulls of the ROC curves makes validating the methodology more

difficult because AUHs are at least as large as AUCs. Constructing the convex hulls

does not provide the false classifiers much benefit in this case though.

Both the AUCs and AUHs observed at each BSDC milestone are documented in

Figure 3.13. The AUC is consistently averaging approximately 0.5, which is ideal.

The highest achieved was 0.5082, whereas the lowest was 0.477. Due to the structure
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Figure 3.11: Accuracy of the classifiers when labeling of the training datasets have
been randomized. Querying one milestone performs no better than any other. Most
importantly, the accuracy is approximately 60%. The detectors do not function pre-
cisely as if random labels were assigned to the test set. Accuracy of these detectors
is still poor though, which helps validate the methodology.
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Figure 3.12: Convex hulls of the ROC curves produced when classifier construction
is informed by mislabeled training data. These curve do not provide much more of
an optimistic evaluation of the classifiers, which is desired in this case. The hull line
still hugs close to the 50% AUC line.
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of these ROC curves, the convex hull yields a slight gain in the area. The largest AUH

achieved is 0.5974, and the lowest is 0.5484. Although the AUHs achieved are not

closer to 0.5, the observed performance helps validate our methodology. Additionally,

the performance of the properly trained classifiers is far better than that which is

observed here.
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Figure 3.13: AUC and AUH as a function of BSDC milestones. The AUC for the
false construction is approximately 50% over all milestones. The convex hull provides
just a small improvement, where the AUH is approximately 60% across the entire
progression. Predicting at any one BSDC milestone is no better than predicting at
any other.

Revising the learning and testing methodology has minimized classification bias.

The learning and testing methodology is now sound, and we have obtained an honest

assessment of the prediction procedure. When this label scrambling analysis was

performed with the procedure described in [40], the classifiers still performed well—

perhaps as well as when properly trained classifiers were used. The poor classification

accuracy achieved here using false learning demonstrates that the data is in fact

informative. Further, the classifier structure learned based on properly labeled data

effectively captures information required to make accurate predictions.
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Chapter 4

SUPPLEMENTARY ANALYSIS

4.1 The Influence of Perfusion Techniques

The relationship between other attributes of the cases and the postoperative delir-

ium diagnoses must be determined. Understanding these other relationships will clar-

ify the significance of making predictions by monitoring the BSDC. We are particu-

larly curious about the relationship between the perfusion strategy and postoperative

delirium. Observing a correlation would suggest that the diagnoses may be consequent

of the surgical techniques rather than complications in the neurophysiology—though,

we recognize from previous studies that different levels of efficacy are associated with

the various neuroprotection strategies. Many sources of complications (i.e. confound-

ing variables) exist. Performing this analysis would determine if the perfusion strategy

is one of them.

We first determine whether or not the rate at which the BSDC evolves is indicative

of the perfusion technique. The correlation strength between milestone timestamps

and perfusion strategies is determined by setting up a classification problem. The

same bootstrap learning and testing strategy used when predicting the delirium di-

agnoses based on Tγ is employed, but the datasets are labeled based on the perfusion

strategy instead. We expect there to be a nontrivial correlation between these two

variables because maintenance incorporating both RCP and SACP naturally delays

warming.

The mean accuracy achieved at each BSDC milestone, maximized over all thresh-

old choices, is plotted in Figure 4.1. The proportion of cases correctly classified begins
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Figure 4.1: Mean accuracy of using Tγ to predict the perfusion strategy employed.
The accuracy plus or minus one standard deviation is also plotted. The predictions
are even more accurate than attempting to predict incidences of postoperative delir-
ium. A strong correlation between the perfusion strategy used and BSDC progress is
confirmed.

at 93.27%, which is already accurate. This accuracy is even higher than when BSDC

progress is used to predict postoperative delirium. Interestingly, the accuracy begins

to decrease at 75% BSDC. At full BSDC, the accuracy is 90.33$. Accuracy decreases

because not all cases taking longer to reach full BSDC underwent both forms of

cerebral perfusion. These cases are patients 2 and 13.

Convex hulls of the ROC curves yielded when testing these classifiers are presented

in Figure 4.2. The achieved AUCs of the raw ROC curves and AUHs associated with

their hulls are presented in Figure 4.3. Again, we observe that the classifiers are

accurate and robust across all BSDC milestone polled. The AUC and corresponding

AUH once burst suppression begins are 0.9227 and 0.9444. Once burst suppression

ends the AUC and AUH are 0.8582 and 0.9055, respectively. In conjunction with

Figure 4.1, these results indicate that the time to reach each BSDC milestone is

associated with the perfusion technique, but outliers can occur.
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Figure 4.2: Convex hulls of the ROC curves produced when classifying cases according
to the perfusion strategies used based on time elapsed to meet BSDC milestones
since resuming CPB. The hulls deviate far from the 0.5 AUC line. In fact, these
curves demonstrate a stronger classification accuracy than what was achieved when
predicting postoperative delirium.
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Figure 4.3: AUC and AUH as a function of the BSDC milestone polled associated
with the ROC curves produced when predicting perfusion strategy. The classifiers
become more accurate as BSDC increases.
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Assessing the correlation strength between perfusion strategy and postoperative

delirium involves formulating a classification problem. Balanced test sets are gener-

ated through bootstrap sampling. If RCP and SACP are used in a case, then that

patient is predicted to be diagnosed with postoperative delirium. Otherwise, that

patient is predicted to be delirium negative. The rationale behind this decision strat-

egy is that cases utilizing both RCP and SACP tend to prolong patients meeting

full BSDC. This trend makes performing this analysis especially important because

the postoperative delirium prediction decision depends on observing if the transition

out of ECS is progressing quickly enough. No learning is involved in this test, and a

ROC curve cannot be generated because there is no decision threshold that can be

adjusted. Therefore, the accuracy will determine the correlation. A low correlation

would be indicated by poor classification accuracy.

The mean accuracy, within one standard deviation, achieved when classifying cases

based on perfusion strategy is 0.5651± 0.0667%. This accuracy performs similarly to

a random labeling detector. Therefore, the perfusion strategy is a poor predictor of

neurological outcome. According to Table 2.1, only two of the five cases employing

both perfusion techniques were delirium positive. Based on the earlier reported find-

ings in this study, different perfusion techniques could present situations that drive

the features to indicate increased risk because restoring nominal function becomes

prolonged. It is important to remember though that such situations may simply be

required due to the extent of the necessary repairs.

The perfusion strategy classification based on BSDC progress reveals a strong

correlations between the two variables—perhaps even stronger than the correlation

between BSDC progress and postoperative delirium. Despite this, we observe that the

perfusion strategy is minimally predictive of the diagnosis. Therefore, the perfusion

strategy is not a confounding variable in this study, provided the caveat that these
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results are made based on a small study population. The perfusion technique is not

necessarily a confounding factor because progress can lag due to reasons besides the

perfusion technique. For now though, we are comfortably able to further validate the

monitoring of a patient’s BSDC to predict postoperative delirium.

4.2 Descriptive Statistics

We compute descriptive statistics about the timing of other surgical events to

determine if any of them are correlated with postoperative delirium. These mea-

surements are documented in terms of standard deviations away from the delirium

negative group’s mean. Note that patient 14 was excluded from all benchmark com-

putations requiring the time when CPB resumes. Examining these quantities in re-

lation to diagnosis groups elucidates other potential confounding variables that may

contribute to incidences of postoperative delirium.

Durations of several different phases of DHCA, including cooling, circulatory ar-

rest, transitioning to full BSDC (T1), and burst suppression (T1−T0), are reported in

Table 4.1. Means and standard deviations of each of these durations are listed in the

table footnotes. The patients have been grouped by diagnosis so that the quantities

can be interpreted better in the context of postoperative delirium.

The cooling phase is defined here as the time from when body temperature starts

being actively affected until circulatory arrest begins. These estimates were derived

from the annotations provided. The mean and standard deviation for cooling are

53.1 min and 5.8 min, respectively. Aside from the two outlier cases, patients 4 and

5, a distinction between diagnosis groups in terms of this measurement cannot be

drawn. Examining this phase is important because it resembles a dual to T1, which

is well-correlated with postoperative delirium.

Some studies have suggested a correlation between the duration of circulatory
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Table 4.1: Duration of DHCA Phases

Patient Cooling (σa) Arrest (σb†) T1 (σc†) T1 − T0 (σd)

2* 0.508 -0.466 3.847 10.188

4* 6.541 -1.358 3.156 1.361

5* 2.867 -0.191 -1.070 0.053

10* 1.898 2.173 3.666 5.077

13* -1.736 1.165 2.790 0.328

1 -0.045 -0.787 -0.298 1.053

3 -0.337 -1.324 0.124 -0.466

6 0.144 1.995 1.427 0.784

8 1.170 1.274 1.593 1.803

9 1.844 -0.265 -1.478 -1.207

11 -1.306 -0.531 -1.020 0.220

12 0.124 0.467 0.804 0.559

14 -1.174 2.194 -1.608 -1.132

17 -1.097 0.108 -0.451 -1.275

18 0.869 -0.474 -0.378 -0.054

19 -0.194 -0.463 -0.324 -0.287

* Delirium positive
† Computed without patient 14
a µ = 53.1 min, σ = 5.8 min
b µ = 17.7 min, σ = 15.3 min
c µ = 73.6 min, σ = 31.4 min
d µ = 25.5 min, σ = 13.7 min

arrest and poor prognosis [7, 8]. The mean circulatory arrest duration is 17.7 min for

the delirium negative group, and the standard deviation is 15.3 min. The duration

for which circulatory arrest was induced in patient 14 is over estimated because the
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moment when CPB resumed was not documented. The time stamp used instead was

when warming started, which of course begins after resuming CPB. As a result, they

actually deviate less from the mean. Despite this discrepancy, a distinction between

the two diagnosis groups based on the normalized measurements is not clear. This

conclusion is supported by a moderate variation in most delirium positive patients

from the delirium negative mean. In fact, some members of the delirium negative

group varied more than patients in the other group.

The designation T1 represents the time elapsed until burst suppression stops since

resuming CPB. This quantity is treated as the dual to the cooling phase duration

because the measurement starts when CPB resumes and lasts until full BSDC, when

we believe sufficient warming has been achieved. Note, this quantity is not formally

treated as the warming phase because measurements do not begin at the warming

time stamp. The mean value of T1 duration is 73.6 min and the standard deviation is

31.4 min. All diagnoses but one (patient 5) can be correctly predicted by considering

T1 alone. Patient 5 is a false negative in this case. The correlation between T1 and the

postoperative delirium was already established in the bootstrap supervised learning

analysis.

Burst suppression duration was observed to be predictive of postoperative delir-

ium for cardiac surgeries that did not employ DHCA [38]. A longer than normal

burst suppression duration was hypothesized to be moderately correlated with post-

operative delirium, where the AUC achieved in the ROC curve was 0.73 [38]. In

this study, the mean duration of burst suppression for delirium negative cases is 25.5

min, and the standard deviation is 13.7 min. oOnly two clear outliers with respect

to typical delirium negative measurements are found. These cases are patients 2 and

10 according to Table 4.1. On the other hand, some delirium negative cases devi-

ated from the mean more than the remaining delirium positive cases. Patient 8’s
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burst suppression duration might be considered long for a delirium negative case, but

perhaps not significantly. Burst suppression duration is just one element of a more

correlated measure.

Durations of various extracorporeal support phases are documented in Table 4.2.

These periods include total extracorporeal support, overall time spent on CPB, CPB

prior to circulatory arrest, and CPB following circulatory arrest. Total extracorporeal

support includes overall CPB and circulatory arrest as metabolic support was still

provided during that time. Again, delirium negative means and standard deviations

of the measurements are listed in the table footnotes. Several potential confounding

variables are identified in this table.

Krähenbühl et al. document a correlation between CPB duration and temporary

neurological dysfunction incidences [10]. We document the same metrics here to ob-

serve if the same correlation is observed for this particular set of surgeries. Average

duration of total extracorporeal support duration is 218.7 min with a standard de-

viation of 47.5 min. A strong correlation between diagnosis groups and the total

duration of extracorporeal support can be observed. The average time delirium nega-

tive patients spent on CPB was 194.4 min, varying with a standard deviation of 38.5

min. A slightly weaker distinction can be made here.

We also examine both stints of CPB separately. Mean delirium negative duration

of the CPB phase prior to circulatory arrest is 87.12 min. Measurements varied

according to a standard deviation of 21.15 min. We observe that only patient 4

strongly deviates. Patient 5 may also be considered to deviate significantly. Despite

these observations, the duration of the first CPB stint does not seem to be strongly

correlated with postoperative delirium. The second stint of CPB seems to be much

more correlated with postoperative delirium though. Second stint CPB duration of

the delirium negative group is on average 135.01 min and varies with a standard
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Table 4.2: Duration of Extracorporeal Support and Cardiopulmonary Bypass

Patient Total Support (σa) CPB (σb) CPB Stint 1 (σc) CPB Stint 2 (σd†)

2* 2.188 2.847 0.586 3.234

4* 3.205 4.458 4.815 4.069

5* 0.380 0.505 1.988 0.132

10* 2.066 1.645 1.317 1.639

13* 2.666 2.788 0.082 3.291

1 -0.995 -0.956 -0.108 -1.060

3 -0.886 -0.608 -0.411 -0.575

6 1.690 1.253 1.073 1.239

8 1.464 1.259 1.587 1.021

9 -0.248 -0.241 1.003 -0.498

11 -0.922 -0.968 -1.176 -0.807

12 0.660 0.589 0.212 0.674

14 -0.330 -1.323 -1.054 -1.254

17 -1.116 -1.461 -1.400 -1.331

18 -0.040 0.098 0.688 -0.021

19 0.722 1.036 -0.415 1.357

* Delirium positive
† Computed without patient 14
a µ = 218.68 min, σ = 47.50 min
b µ = 194.41 min, σ = 38.46 min
c µ = 87.12 min, σ = 21.15 min
d µ = 135.01 min, σ = 32.74 min

deviation of 32.74 min. We notice in Table 4.2 that patient 2, 4, 10, and 13 would be

correctly classified as delirium positive if this metric were thresholded.

The duration of total extracorporeal support, overall CPB, and the second CPB
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stint are correlated with postoperative delirium. The duration of the second stint of

CPB seems to drive the correlation that overall CPB duration has with neurological

integrity following the surgery. Considering the findings of previous studies, these

variables are deemed potentially confounding. We note that the time needed to

recover nominal EEG activity may affect the duration of the second CPB stint to

some extent. The amount of time elapsed after burst suppression ends, however,

could depend on numerous independent factors. Despite the presence of potential

confounding factors, monitoring the BSDC at the very least provides a significantly

earlier correlate upon which accurate predictions can be made about incidences of

postoperative delirium—in fact, the same accuracy obtained by tracking the duration

of CPB according to this study.
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Chapter 5

DISCUSSION

We demonstrate in this work a capability to predict postoperative delirium based

on the neurological activity observed through EEG recordings during cardiac surg-

eries involving DHCA and supplementary metabolic support techniques. This is ac-

complished by examining a specific neurophysiological phenomenon, known as burst

suppression, within which the brain’s metabolic state is embedded. Analyzing this

phenomenon in further detail is important because the neuroprotective basis of DHCA

is to control the brain’s metabolic rate. Assuming no complications developed prior

to circulatory arrest or when aorta repairs begin, the earliest opportunity to detect

warnings of complications through electrophysiological measurements is immediately

following circulatory arrest when CPB resumes. A diverse collection of electrophysio-

logical behavior, especially in terms of burst suppression, was observed in this study.

BSDC is suitable as a basis for comparing this neurological activity across several

patients. Finding such metrics for intrapatient analysis is usually quite difficult. Fur-

thermore, the metric is physiologically interpretable. Strategies were formulated to

robustly process the data in a way that makes this neurophysiological characterization

descriptive.

Accurate predictions are made by tracking through BSDC how fast patients re-

cover nominal neurological function, signified by the conclusion of burst suppression

activity. Prolonging the patient’s recovery of nominal neurological function is cor-

related with postoperative delirium. More foresight has been achieved through this

analysis. Predictions are most accurate once burst suppression has ceased. Naturally,

prediction accuracy suffers slightly when observing earlier points in the transition.
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Some delirium positive patients were observed to be deviant cases as soon as burst

suppression began. These cases are patients 4, 10, and 13. Patient 10 is far less

deviant at the beginning but eventually develops into a significant outlier. Patient

2 appears as delirium negative at the beginning of their burst suppression sequence,

but also develops into a significant outlier over time. Consequently, BSDC must be

closely monitored during the transition to observe if cases become outliers. This pre-

diction capability potentially provides a better opportunity to act and attempt to

avert complications during the surgery.

This work revises the methodology described in [40]. The feature vector used

in [40] is not as robust as using Tγ alone with the updated learning and testing

scheme. Motivation for using the two dimensional feature vector is detailed later in

this chapter. Ultimately, slightly improved prediction performance was achieved—

particularly when inferring from activity in the early stages of burst suppression. We

produced a methodology that ensures results are sound by reducing the influence

of classification bias. This is verified by the false classifier analysis. The affirmed

results are further supported by appending related analyses. A lack of correlation

between the perfusion technique used and the diagnosis signifies that the former is

not a confounding factor in this study.

Discussed in Chapter 1 are three other studies particularly relevant to the findings

of this work. First, a correlation between burst suppression duration and postoper-

ative delirium for cases that do not employ DHCA was reported in [38]. A clear

correlation was not determined in this study, but the measurements here do not dis-

prove that one exists. Two cases, which resulted in postoperative delirium, were

significant outliers in burst suppression duration though. Significance of burst sup-

pression duration in a non-DHCA setting carries a different interpretation. Recall

that burst suppression is observable not only in hypothermic conditions, but also in
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normothermic conditions. This phenomenon can be observed while patients are anes-

thetized. BIS, which was formulated to track the depth of anesthesia, incorporates

measurements characterizing burst suppression. In DHCA settings, we found burst

suppression duration to be a piece of a more significant correlate. An even stronger

correlation is observed when incorporating the time elapsed until burst suppression

begins since resuming CPB.

Second, we identified in this study a similar, if not the same, finding reported in

[37]. Stecker et al. identified a correlation between the time to recover continuous

EEG activity since resuming full body perfusion after circulatory arrest. Observing

when full BSDC has been met since resuming CPB is a similarly defined biomarker.

In this study, however, we provide a framework for accurately predicting cases even

before nominal EEG activity is observed once again. Additionally, the methods devel-

oped in this work assess the progress in transitioning from ECS to nominal activity

quantitatively, as opposed to qualitatively. Qualitative evaluation of the BSDC in

real time should not be ruled out though.

Lastly, this study improves on the first analysis we performed on this dataset

documented in [39]. The detector constructed in [39] produced a different set of

classification errors than those observed in the current work. Originally, patients 1

and 17 were classified as false positives, whereas all other patients were correctly

classified. Instead, patient 5 and patient 2 (for part of the observation window) are

classified as false negatives in this study. Patient 5 is consistently classified as a false

negative based on monitoring BSDC, but correctly classified when observing EEG

spatiotemporal covariance structure. Even though a patient may not be an outlier

in terms of the BSDC progression, there may be other outlying characteristics of the

electrophysiology. This may not be so surprising due to the various sources of possi-

ble complications. The significance of different forms of outlying electrophysiological
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characteristics would need to be evaluated through further research incorporating var-

ious EEG based features. The results of both studies indicate that a richer description

of the intraoperative neurophysiology can still be derived through EEG recordings and

leveraged in prediction.

5.1 Limitations

A strong correlation was identified between postoperative delirium and the rate

at which nominal neurophysiological function is recovered, but this study does not

conclude a causal relationship between them. BSDC could possibly only contain

a footprint for a causal mechanism of postoperative delirium. The current study

design is not equipped to determine any causal relationships. Even then, this study

is limited in concluding the correlation found. The first and foremost limitation is

the small study population. We must determine if the documented methodology still

works with a separate set of data. Additionally, many different features can still be

extracted from this data. There is potentially an even more informative biomarker

that can be found once a larger study is performed. Still, the results of this study

motivate a further analysis determining if BSDC can capture the presence of an event

or condition causing postoperative delirium. Naturally, an analysis of prolonging the

recovery of full BSDC as a causal factor is prompted.

Many other intraoperative and preoperative factors can contribute to the patient’s

neurological state after the surgery. The operating notes report that several of the

examined cases were already in delicate condition. Some of these procedures were

prescribed to redo a previous repair. Whether the same sources of postoperative

delirium arose in different cases of this specific dataset is uncertain. As a result, the

second major limitation of this study is its retrospective nature. Many observations

within the data prompt clarification as to what happened in the operating room, but
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knowledge of those specific details is limited. The goal of the operating reports is not

to provide every bit of detail regarding each decision made. There are several possible

confounding factors, many of which are unknown to us for these cases. Fortunately,

we were able to determine that the perfusion technique did not have a significant

impact on the findings. Limited observations and knowledge of every surgical event

prevents us from disentangling all other possible factors contributing to postoperative

delirium for each case. A larger, more controlled, and more detailed study is required

to identify these factors.

CPB duration is one potentially confounding factor identified with the currently

available information. Previous studies identified that a longer CPB duration is cor-

related with incidences of postoperative neurological dysfunction. Therefore, the va-

lidity of the correlation between BSDC progress and postoperative delirium is called

into question. In other words, there is a concern Tγ happens to be correlated with

the diagnoses in this study but bears no actual significance. One potential strategy

to remove this confounding variable in future studies is to ensure the CPB duration

is kept within a duration known to be correlated with safer outcomes. Such control

over the duration of CPB may not be feasible though. Analyzing cases with similar

CPB durations would be equally helpful in clarifying the influence of CPB duration

and milestone timestamps on postoperative delirium. This confusion is precisely why

more data is need. Diversity in observations is needed to further validate the use of

BSDC in predicting postoperative delirium.

Several pieces of information would have been useful for answering current ques-

tions in the context of this study. First is a more regularly and frequently sampling

of body temperature. Having a denser, consistent sampling of body temperature

would allow us to determine more precisely the effect warming has on BSDC. From

this knowledge we might be able to develop a model that predicts BSDC given the
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current temperature. Creating such a model may allow us to identify when BSDC

progress does not follow the expected course and whether or not that indicates the

occurrence of a complication. Second is the knowledge of when patients were switched

between perfusion techniques, which would clarify the delays in warming. Perhaps the

data and features from these patients must be treated in a different manner. Lastly,

we are limited by a lack of knowledge about the long term outcome of these surgeries.

Although postoperative delirium is correlated with poor long term prognosis [5], this

study would benefit from a more direct measurement of patient recovery. More im-

portant than postoperative delirium, we must determine if long term outcome can be

predicted. We expand on other desired pieces of information in Chapter 6.

5.2 Warming as a Driving Force

Change in body temperature in large part drives burst suppression dynamics [32].

From the EEG recordings and features, we observe that the delirium positive group

varies almost uniquely between cases. Consequently, we want to better understand

what relationship body temperature has with BSDC characteristics observed in the

delirium positive cases. This discussion strictly relates the observed neurophysiology

characteristics with warming. Many other factors can play a role in the electrophys-

iology. Whether or not signals of complications manifest in the BSDC in addition to

the influence of warming remains to be determined. In other words, it is important

to not derive a causal relationship between warming and postoperative delirium as a

result of this discussion.

Two different ways of examining this relationship are presented. The first of which

focuses on the change in esophageal temperature starting when the temperature is

actively being affected. This is plotted in Figure 5.1. Delirium negative patient

warming curves are plotted in gray. Delirium positive patient warming curves are
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Figure 5.1: Esophageal temperature time series starting when rewarming begins.
Temperature drives changes in burst suppression dynamics. Consequently, interpret-
ing Figure 2.9, Figure 2.10, Figure 2.12, and 2.13 is clearer while referencing body
temperature. The noticeable outliers in warming are patients 2 and 10.

overlaid and color coded to highlight any deviations from the other procedures. The

second way is by observing the change in body temperature with respect to when

CPB resumes. We compare these curves in terms of the diagnosis groups. Figure 5.2

contains all delirium negative patients. A somewhat more consistent progression can

be observed in this group than the delirium positive patients shown in Figure 5.3.

We relate these curves with Figure 2.12 and Figure 2.13.

Patient 2 deviated most from the delirium negative group in terms of burst sup-

pression duration—the longest observed of all patients studied. Warming began

shortly after CPB resumed as noted in Figure 5.3. Burst suppression began not

long after according to Figure 2.12. Despite the timing of these events, T1 had de-

viated significantly. In Figure 2.12, patient 2’s BSDC advances regularly until the

warming curve starts to level out prematurely. The BSDC quickly approaches and

barely touches the ceiling but never settles into full BSDC. We believe this behavior is
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Figure 5.2: Change in esophageal temperature since resuming CPB for delirium neg-
ative patients. Patients 6, 8, and 12 underwent both SACP and RCP.
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Figure 5.3: Change in esophageal temperature since resuming CPB for delirium pos-
itive patients. Patients 2, 4, 10, and 13 appear to be outliers when observing temper-
ature change with respect to when CPB resumes. Each of these patients are outliers
in different ways though. Patients 13 and 4 begin warming much later than the other
patients.
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dictated primarily by the deviant warming procedure observed in Figure 5.1. The rate

of warming is much slower for this patient than other cases. At 83.6 min after resum-

ing CPB, when esophageal temperature reads 29.7 C, the warming rate slows down

even further. At this point the BSDC is 87.3%. Full BSDC was reached at minute

194.3. Recall that patient 2 was officially classified as delirium positive when much

later BSDC milestones were met. This is due to warming slowing down in the later

stages of BSDC progression. Why warming proceeded in the manner documented in

Figure 5.1 is not documented. This deviant warming procedure is particularly curious

because their cooling phase was normal with respect to the delirium negative group.

Complications may have dictated such an adjustment in warming.

Patient 4’s warming rate observed in Figure 5.1 does not appear irregular in terms

of the delirium negative trend. According to Figure 5.3, warming began extremely late

though. This patient underwent both RCP and SACP. This delay could be attributed

to the additional use of SACP, if in such cases repairs to the aorta continued when

resuming CPB. Still, warming began late even in terms of other cases needing both

techniques. Once burst suppression activity has started, the rate at which BSDC

approaches the ceiling is within a normal amount of time when examining Figure

2.12. Despite this, full BSDC is reached 172.6 min after resuming CPB, which is

significantly longer than the delirium negative mean. This case may already have

been in a delicate state though, noted by annotations regarding a pacemaker, which

may have influenced the sequence and timing of events.

Patient 5 appears to be an outlier of the delirium positive group in terms of

BSDC characteristics following DHCA. In fact 100% BSDC was reached well before

normothermic temperatures. This behavior is reflected by the documented warming

procedure. We observe that the rate at which warming progresses does not appear

irregular in Figure 5.1. The time at which warming began is also normal. Conse-
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quently, we suspect other complications may have occurred that are not observable in

the BSDC. This case highlights complexity in determining effective ways of identifying

compromised neurophysiology in EEG signals.

Patient 10’s warming is slightly irregular, slowing down considerably toward the

beginning of the transition, but resuming a more normal rate shortly after. This

patient underwent both RCP and SACP, a potential reason for the delay in start of

warming. This delay, however, does not appear to be uncharacteristic of delirium

negative cases involving both forms of cerebral perfusion. Aside from this delay, we

observe the most irregular BSDC progression of the entire dataset in this case. Patient

10 never reached full BSDC before CPB ends. We are unable to precisely determine

what influence the warming has over this characteristic, aside from noting the general

upward trend that results from increasing body temperature. We suspect a factor

other than warming is significantly affecting the BSDC, which implies the metabolic

state of the brain may be affected. We hypothesize that factor has some relation to

a causal mechanism of postoperative delirium.

Patient 13’s warming rate is presumed to be regular considering the available

timestamps, but the precise shape of the curve is unknown because the temperature

was measured sparsely. As can be observed in Figure 2.13, their burst suppression

duration was shorter than most patients studied. Warming began considerably late

though. The reason for this abnormal delay is not documented. The delay cannot be

attributed to the possible use of SACP because only RCP was employed. Repairs may

still have been occurring during this delay, but this cannot be corroborated at this

time. The length of the delay was certainly the primary contributor to the outlying

correlate, Tγ, but remember that it is possible some other factor contributed to this

incidence of postoperative delirium instead.

The correlation BSDC has with postoperative delirium prompts a more focused
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study on the relationship between warming and BSDC. Obtaining a better under-

standing of how patients respond to warming could help us identify abnormalities in

the BSDC cued by other factors. We are curious if expediting warming to shorten T1

would be beneficial. Even if a longer T1 is not a direct causal mechanism, but instead

increases the chances of ischemic and embolic events, we would like to determine if

the probability of such events could be reduced by speeding up this transition. At

the very least, BSDC could be used to monitor the warming procedure in a similar

way to how EEGs are used to guide the cooling process. This might be particularly

useful because each patient can respond differently to warming, especially considering

the possible side effects of the repairs. If need be, the warming procedure could be

tailored to the patient’s needs by monitoring BSDC.

5.3 Real Time Functionality

The formulated procedure can function without modification in real time, granted

the prior knowledge necessary to generate the likelihood ratio tests. All the required

parameters to estimate BSDC are computed before DHCA. Monitoring the progress

simply involves recording the time elapsed as each BSDC milestone is met, as in

Figure 3.1. At each milestone, likelihoods the current observation indicates either

diagnosis are generated. Based on those likelihoods, the prognosis of the patient is

predicted, and the projected outcome is updated over time. This assessment should

be corroborated through other forms of physiological monitoring if available. Then

an intervention, if one were applicable, could take place.

Consider patient 2 for example. Despite not becoming clearly classified as delirium

positive until they cross the 90% BSDC milestone, we observe in Figure 3.1 that their

progress takes a noticeable turn. They begin to drastically deviate starting at 75%

BSDC. In fact, this observation is what [40] leverages when attempting to obtain
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further foresight. This is accomplished by separating Tγ into T0 and the progress in

relationship to when warming begins Tγ − TW, where TW is the warming timestamp

offset by when CPB restatrts. The set of these two features better captured this form

of deviation, but as stated earlier is not robust. In a real time situation, a warning

may be raised at some point by observing Tγ over time before the likelihood ratio

actually classifies the case as delirium positive.

Otherwise, the dual question could be asked. In this study, we determine if the

patient is arriving at certain milestones on time. The dual approach involves checking

if patients have met a minimum BSDC at certain times. A new set of statistics on

the average BSDC level and variance would be generated at each monitoring interval.

Then, new likelihood tests can be generated. In other words, the BSDC level is

thresholded instead of the time elapsed.

Other studies have shown promise in intervening based on cues provided by EEGs.

This study has not identified specific cues for intervention in the BSDC. Considering

BSDC as a peripheral measure of the brain’s metabolic demand, however, we make a

conjecture about avenues of possible intervention. A natural choice for intervention

is to adjust metabolic support through either oxygen or blood delivery. This may

mean adjusting perfusion parameters, which could be strongly restricted. We are

curious if adjusting warming to control the brain’s metabolic rate in a more suitable

manner is possible, but there are also constraints on warming to which a surgical

team must adhere [15]. Additional research is required to better understand what

the BSDC conveys and how warming affects it before any actual detailed directions

are suggested. At the very least, the results by [14] instill optimism by demonstrating

the existence of effective interventions for correcting course. The optimism motivates

continued research in improving our ability to detect warning signs that postoperative

delirium may result.
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Chapter 6

CONCLUSION

This study aims to predict postoperative delirium through intraoperative EEG during

cardiac surgeries involving DHCA. We specifically monitor burst suppression activ-

ity, which is the earliest opportunity to search for warning signs of neural injury

through EEG after DHCA. Postoperative delirium can be accurately predicted not

only by the time burst suppression has ended, but also while the brain transitions

through this behavior back to nominal activity. Consequently, the devised methodol-

ogy provides further foresight when anticipating postoperative delirium, allowing for a

better opportunity to intervene so that neural injury can be minimized. A correlation

is observed between the evolution of burst suppression dynamics and postoperative

delirium. Some delirium positive cases begin and continue as outliers in terms of

this evolution, whereas others can develop into them. This result motivates further

research in determining how causal factors and signs of neurological complications

can be observed through BSDC. We are also motivated to determine if the timing of

the burst suppression progression is a causal mechanism in future studies. Hopefully

this research is informative for future efforts made toward reducing the risk of such

surgeries.

6.1 Further Analysis of Currently Available Data

Just one of many possible characteristics of the neurophysiology observed through

EEGs is analyzed in this study. Between the results of the current work and our pre-

vious studies, we recognize the potential for achieving even better accuracy when

anticipating DHCA. Analysis on classification strategies based on multidimensional

79



features must continued to be performed. This was attempted in [40], but a more

robust feature set needs to be extracted. Perhaps a similar decomposition of Tγ would

reveal an ability to raise warnings sooner. Some other candidates to include in a re-

formulated feature vector consist of multiple BSDC timing measurements, spatiotem-

poral covariance, and energy. Several possible avenues of further characterization

methods can still be pursued with the available dataset though.

One direction to pursue is analyzing the timing of burst and suppression phases.

We seek a better understanding about how durations of either phase depend on

attributes of the patient, body temperature, and incidences of neural injury. A deeper

analysis on the the temporal structure of the bursts, such as the speed of the rising

transient and the decay rate, should be conducted. In other words, we need to

determine if signs of neural injury are also encoded in each individual burst. The

current study identifies if signs are encoded in ensembles of bursts instead.

Further analysis regarding the spatial variation in EEG activity, especially burst

suppression, should be performed. On a “macroscopic” level, burst suppression ap-

pears global and temporally closely synchronized. Perhaps, there are micro-shifts of

which we are not cognizant. If there are such micro-shifts, then we must determine

if they express the presence of a complication. Aside from the apparent temporal

synchronicity observed, the coherence of bursts across channels should be analyzed.

Naturally, whether or not abnormalities related to neural injury can be identified

within this characteristic should be determined.

The current study only considers EEG channels measured along the zenith axis

of the head. Only five of the 23 channels are used here, so plenty of information has

been ignored. Every channel is used in [39], but the individual contributions from

each of them is not well understood. All that is understood is that the deviation

from baseline in covariance structure during warming is different between diagnosis
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groups. In addition to incorporating more channels, we can also analyze differences in

activity across hemispheres, which may provide cues of postoperative delirium. Soehle

et al. examine asymmetries in activity across hemispheres [38]. Asymmetries should

be characterized in terms of not only burst suppression, but also other features, such

as energy.

6.2 Future Prospective Studies

The ultimate goal of this study is to improve the expected long term prognosis of

cardiac surgeries involving DHCA by ensuring the brain is properly protected. We

believe that intraoperatively monitoring brain electrophysiology and identifying situ-

ations of heightened risk will provide a pathway to reduce incidences of neurological

injury. Although great strides were made, the current study is limited in understand-

ing how to accomplish this goal. At this stage, a new study is necessary to answer

further questions. We identify some pieces of information that would be useful to

accomplishing that goal.

Many confounding factors prohibit a proper understanding of how monitoring

brain electrophysiology can anticipate injury. Two of these variables are surgery

complexity and preoperative health of patients. Obtaining a larger sample size would

help minimize the effects of confounding variables. A larger data set increases the

diversity of observations and the chances of observing procedures containing similar

types of deviations. With this increased knowledge base, we can better interpret the

electrophysiology. Additionally, more meticulous documentation of the procedure,

including reasons for certain decisions, would create a better understanding of the

observable electrophysiological phenomenon. In particular, documenting when and

if patients are switched between RCP and SACP would be useful. One confounding

variable analyzed in this study is the duration of extracorporeal support and CPB.
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We had mentioned in Chapter 5 potential methods for reducing the influence of this

factor. Obtaining data on more cases would allow us to effectively parameterize

the analysis to account for the influences of various sources of complications. Care

must be taken when designing a future study to minimize the number of confounding

variables ahead of time if at all feasible.

Due to the correlation found between BSDC and postoperative delirium, we sug-

gest conducting a more focused study on how warming affects BSDC. Body temper-

ature should be sampled at a higher and more regular rate than what was observed

in this study. Sampling at 500 Hz is not necessary, but a rate of 1 Hz would likely

be sufficient. Furthermore, an additional temperature measurement site, such as the

nasopharynx, would be useful. Having this data would allow us to determine precisely

what contribution warming has on the BSDC and how much of the current reading

could be explain by other sources. The utility of guiding the warming procedure

based on BSDC—in a similar way that EEGs are already used to guide the cooling

process—should also be assessed. This also prompts determining how parameters

controling warming and cooling affect risk.

Intraoperative measurements aside from EEG would be useful in tracking patient

status especially because EEGs are blind to any complications that may happen dur-

ing circulatory arrest or ECS. This lack of knowledge is one of the major limitations

of this current study. There is no opportunity for intervention if monitoring is not

possible. Consequently, hemodynamics should be monitored throughout the surgery.

This mode of measurement may be the most descriptive of the neurophysiology during

circulatory arrest. The amount of metabolic support can be monitored this way. Fur-

thermore, microembolic events can be detected. Hemodynamics should be monitored

concurrently with EEG signals. Efficacy in anticipating complications using multi-

modal monitoring and intervening based on those cues was demonstrated by [14].
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Determining a relationship between the observations of either modes of monitoring

would also be useful.

Lastly, long term outcomes, such as patient mortality and extent of any neuro-

logical dysfunction, should be documented. Long term neurological health can be

determined in part by a cognitive battery. The type of neurological dysfunction such

as, memory or motor control issues, should be stated. Other forms of complications,

including organ failure and sepsis, should be reported as well. We also propose that

the patient’s recovery progress should be recorded at several intervals past surgery.

An example set of observation intervals may consist of the end of the first month,

first six months, and first year. Future studies should seek to identify a connection

between intraoperative data and long term outcome.
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“Multimodal brain monitoring reduces major neurologic complications in car-
diac surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 25, no. 6,
pp. 1076–1085, 2011.

[15] S. C. Conolly, J. E. Arrowsmith, and A. A. Klein, “Deep hypothermic circulatory
arrest,” Continuing Education in Anaesthesia, Critical Care & Pain, vol. 10,
no. 5, pp. 14–21, 2010.

[16] B. Braathen and T. Tønnessen, “Cold blood cardioplegia reduces the increase
in cardiac enzyme levels compared with cold crystalloid cardioplegia in patients
undergoing aortic valve replacement for isolated aortic stenosis,” The Journal of
Thoracic and Cardiovascular Surgery, vol. 139, no. 4, pp. 874–880, 2010.

[17] T. D. Yan, P. G. Bannon, J. Bavaria, J. S. Coselli, J. A. Elefteriades, R. B.
Griepp, G. C. Hughes, S. A. LeMaire, T. Kazui, N. T. Kouchoukos, M. Misfeld,
F. W. Mohr, A. Oo, L. G. Svensson, and D. H. Tian, “Consensus on hypothermia
in aortic arch surgery,” Annals of Cardiothoracic Surgery, vol. 2, no. 2, 2013.

[18] M. L. James, N. D. Andersen, M. Swaminathan, B. Phillips-Bute, J. M. Hanna,
G. R. Smigla, M. E. Barfield, S. D. Bhattacharya, J. B. Williams, J. G. Gaca,
A. M. Husain, and G. C. Hughes, “Predictors of electrocerebral inactivity
with deep hypothermia,” The Journal of Thoracic and Cardiovascular Surgery,
vol. 147, no. 3, pp. 1002 – 1007, 2014.

[19] D. L. Reich, S. Uysal, M. A. Ergin, and R. B. Griepp, “Retrograde cerebral
perfusion as a method of neuroprotection during thoracic aortic surgery,” The
Annals of Thoracic Surgery, vol. 72, no. 5, pp. 1774–1782, 2001.

[20] Y. Ueda, “A reappraisal of retrograde cerebral perfusion,” Annals of Cardiotho-
racic Surgery, vol. 2, no. 3, 2013.

85



[21] J. Bachet, D. Guilmet, B. Goudot, G. D. Dreyfus, P. Delentdecker, D. Brodaty,
and C. Dubois, “Antegrade cerebral perfusion with cold blood: a 13-year expe-
rience,” The Annals of Thoracic Surgery, vol. 67, no. 6, pp. 1874–1878, 1999.

[22] D. Harrington, A. Walker, H. Kaukuntla, R. Bracewell, T. Clutton-Brock,
M. Faroqui, D. Pagano, and R. Bonser, “Selective antegrade cerebral perfusion
attenuates brain metabolic deficit in aortic arch surgery,” Circulation, vol. 110,
no. 11 suppl 1, pp. II–231–II–236, 2004.

[23] D. Spielvogel and G. H. L. Tang, “Selective cerebral perfusion for cerebral pro-
tection: what we do know,” Annals of Cardiothoracic Surgery, vol. 2, no. 3,
2013.

[24] D. R. Busch, C. G. Rusin, W. Miller-Hance, K. Kibler, W. B. Baker, J. S.
Heinle, C. D. Fraser, A. G. Yodh, D. J. Licht, and K. M. Brady, “Continu-
ous cerebral hemodynamic measurement during deep hypothermic circulatory
arrest,” Biomedical Optics Express, vol. 7, no. 9, pp. 3461–3470, 2016.

[25] G. W. Fischer, H.-M. Lin, M. Krol, M. F. Galati, G. D. Luozzo, R. B. Griepp, and
D. L. Reich, “Noninvasive cerebral oxygenation may predict outcome in patients
undergoing aortic arch surgery,” The Journal of Thoracic and Cardiovascular
Surgery, vol. 141, no. 3, pp. 815–821, 2011.

[26] W. C. Pearcy and R. W. Virtue, “The electroencephalogram in hypothermia
with circulatory arrest,” Anesthesiology, vol. 20, no. 3, pp. 341–347, 1959.

[27] W. J. Levy, “Quantitative analysis of eeg changes during hypothermia,” Anes-
thesiology, vol. 60, no. 4, pp. 291–297, 1984.

[28] W. J. Levy, E. Pantin, S. Mehta, and M. McGarvey, “Hypothermia and the
approximate entropy of the electroencephalogram,” Anesthesiology, vol. 98, no. 1,
pp. 53–57, 2003.
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APPENDIX A

PREDICTION ON GRADED OUTCOMES
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Included in our data set is the time elapsed following the operation before the

patient was extubated. This metric is an alternative measure on a patient’s short term

postoperative recovery—earlier than postoperative delirium. There is an opportunity

for a graded evaluation of the result here, where there is now a spectrum for a patient’s

prognosis. That is, we would like to determine how the intraoperative observations

map to a variation of outcomes. In a new prospective study, determining how this

measurement on postoperative recovery relates to the long term outcome would be

useful, where complications can vary widely in severity.

Table A.1 documents the time required until the patients were able to be extu-

bated. Patients 4, 5, and 13, who tested positive for postoperative delirium, were

extubated two days after their procedures. Patients 2 and 10, the other members of

the delirium positive group were intubated for one day beyond surgery. Several delir-

ium negative patients, however, were intubated for an additional day. All patients

extubated day of the surgery were delirium negative. Consequently, there appears to

be a slight correlation. To properly determine a relationship between BSDC and time

to extubation, we believe the resolution of the latter variable would at least need to be

on the order of hours. A finer resolution would permit the use of regression analysis.

This is just one alternative postoperative variable amongst many to measure. The

correlation observed here prompts us to be understand how the intraoperative electro-

physiological characteristics relate to these other measures of postoperative recovery.
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Table A.1: Time to Extubation

Patient Post Operative Day

1 0

2* 1

3 1

4* 2

5* 2

6 1

8 1

9 0

10* 1

11 0

12 0

13* 2

14 1

17 0

18 1

19 0

* Delirium positive
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