
Phenomenology of Topological Solitons

by

Ayush Saurabh

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2020 by the
Graduate Supervisory Committee:

Tanmay Vachaspati, Chair
Richard F Lebed
Cynthia Keeler

Matthew Baumgart

ARIZONA STATE UNIVERSITY

May 2020



ABSTRACT

In this dissertation, I present the results from my recent investigations into the

interactions involving topological defects, such as magnetic monopoles and strings,

that may have been produced in the early universe. I performed numerical studies

on the interactions of twisted monopole-antimonopole pairs in the ’t Hooft-Polyakov

model for a range of values of the scalar to vector mass ratio. Sphaleron solution

predicted by Taubes was recovered, and I mapped out its energy and size as functions

of parameters. I also looked into the production, and decay modes of U(1) gauge

and global strings. I demonstrated that strings can be produced upon evolution of

gauge wavepackets defined within a certain region of parameter space. The numerical

exploration of the decay modes of cosmic string loops led to the conclusions that string

loops emit particle radiation primarily due to kink collisions, and that their decay

time due to these losses is proportional to Lp, where L is the loop length and p ≈ 2.

In contrast, the decay time due to gravitational radiation scales in proportion to

L, and I concluded that particle emission is the primary energy loss mechanism for

loops smaller than a critical length scale, while gravitational losses dominate for larger

loops. In addition, I analyzed the decay of cosmic global string loops due to radiation

of Goldstone bosons and massive scalar (χ) particles. The length of loops I studied

ranges from 200-1000 times the width of the string core. I found that the lifetime

of a loop is approximately 1.4L. The energy spectrum of Goldstone boson radiation

has a k−1 fall off, where k is the wavenumber, and a sharp peak at k ≈ mχ/2, where

mχ is the mass of χ. The latter is a new feature and implies a peak at high energies

(MeV-GeV) in the cosmological distribution of QCD axions.
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Chapter 1

INTRODUCTION

Our universe is widely believed to have gone through multiple phase transition events

right at its onset. As the universe expanded from the initial singularity, temperature

went down through multiple critical values corresponding to each phase transition.

From the point of view of symmetries governing the physics, this whole process can

be schematically shown as

G→ H → ...→ SU(3)× SU(2)× U(1)→ SU(3)× U(1) ,

where the symmetry of a grand unified theoryG is broken to smaller symmetry groups,

eventually settling into the Standard Model of the particle physics that governs most

of the interactions that we detect today. The production of topological defects in the

universe is intimately linked to these symmetry breaking phenomena. Whenever the

temperature falls below the critical value very quickly, equilibrium is only achieved

in a small volume initially and therefore it is reasonable to expect that the symmetry

will break along different directions in each of these volumes before the whole system

equilibrates. This can lead to a network of defects like vortices (strings), magnetic

monopoles, domain walls, and textures being formed.

A breakthrough step was the realization by Kibble (1976) that all of these defects

can be understood as the result of vacuum manifolds having non-trivial topologies,

and that their production in a cosmological context is inevitable. In his paper, he

considered a gauge theory with an N -component real scalar field φ transforming under

the symmetry group O(N) represented by the Lagrangian

L =
1

2
(Dµφ)a(Dµφ)a − 1

4
W aµνW a

µν −
λ

4
(φaφa − η2)2 , (1.1)

1



where a = 1, . . . , N , the covariant derivative is defined as

(Dµφ)a = ∂µφ
a + eεabcW b

µφ
c , (1.2)

and the gauge field strength is given as

W a
µν = ∂µW

a
ν − ∂νW a

µ + eεabcW b
µW

c
ν . (1.3)

As the temperature falls to zero, symmetry O(N) breaks down to O(N − 1) and the

scalar field settles into one of the states in the vacuum manifold SN−1, that is,

〈φ〉2 = η2 . (1.4)

At finite temperatures, the expectation value of the scalar field in thermal equilibrium

would depend on the available vacuum states of the temperature dependent poten-

tial. Perturbative computations show that this potential would have the following

temperature dependence,

V (φ, T ) =
λ

4
(φaφa − η2)2 +

1

48

[
2λ(N + 2) + 6e2(N − 1)

]
T 2φ . (1.5)

This potential is minimized at the symmetry breaking critical temperature

Tc = η

(
N + 2

12
+
N − 1

4

e2

λ

)
, (1.6)

above which 〈φ〉 = 0. The vacuum expectation value for the scalar field at this critical

temperature is given as

〈φ〉2 = η2

[
1−

(
T

Tc

)2
]
, (1.7)

which plays the role of order parameter in the study of phase transitions.

Kibble considered the scenario in which the universe expands and cools down

below the critical temperature Tc. Fluctuations in the scalar field lose energy and

the field settles into one of the randomly chosen vacuum states in different regions
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of space. There will obviously be chaotic fluctuations in 〈φ〉 but only low frequency

modes survive as they are energetically preferred and therefore determine the size of

domains with the same expectation value throughout.

To find the size of these domains, he noted that below the critical temperature

the free energy increases by

∆f =
λ

4
〈φ〉4 , (1.8)

reaching its peak value of (λ/4)η4 at zero temperature. Since the scalar and vector

excitations acquire mass upon symmetry breaking, these masses will set the scale of

fluctuations. The fields are correlated up to these scales. Correlation length for the

scalar field is given as

ξS =
1

mS

=
1√

2λ 〈φ〉
, (1.9)

and for the vector field as

ξV =
1

mV

=
1

e 〈φ〉 . (1.10)

Since the expectation value of the scalar field is zero at the critical temperature Tc,

these correlation lengths diverge.

Going below the critical temperature, if the fluctuations corresponding to the scale

ξ have higher free energy than the temperature T , the field will have high probability

of reverting back to the unbroken symmetry phase. The free energy for the length

scale ξ can be calculated from Eqs. (1.8) & (1.9) giving us

∆f ≈ |〈φ〉|
8ξ3
√

2λ
. (1.11)

This free energy becomes less than the temperature when

1

T 2
=

1

T 2
c

+
2λ

η2
. (1.12)

The correlation length at this point is ξ = (2λT )−1. As the temperature goes down

further, the scalar field loses any ability to interact with itself beyond this special
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length scale. This sets the maximum distance over which the scalar field can have

non-zero correlations defining the size of the domain. Also, the gradient term in the

Lagrangian smoothens out any remaining fluctuations within the domain resulting

in a uniform 〈φ〉 over the domain. Kibble further discussed the topology of these

domains in various theories providing estimates for defects like strings and domain

walls. These seminal results are a direct consequence of limits set by causality.

Kibble’s computation of domain size, however, turned out to be slightly incorrect

as he only considered equilibrium configurations. Zurek (1985, 1996) extended the

computations above to include non-equilibrium effects. He used results for vortices in

superfluids to obtain insights into the formation of strings in cosmological models. In

superfluids (Helium-4), the wavefunction ψ of the Bose-Einstein condensate is used

as the order parameter to describe the phase transitions. Vortices may form if the

phase of the wavefunction takes random values in different regions of sizes determined

by the some correlation scale d.

The superfluid phase is achieved through a process of rapid pressure quench.

Close to the critical temperature Tc, the potential takes the Landau-Ginzburg form

at leading order in (T − Tc) and is as follows,

V (ψ) = α|ψ|2 +
1

2
β|ψ|4 , (1.13)

where α = α′(T − Tc), and α′ and β are constants.

The wavefunction for the Bose-Einstein condensate ψ satisfies the Gross-Pitaevskii

(non-linear Schrödinger) equation, which gives us the equilibrium correlation length,

ξ =
~√

2mα
, (1.14)

where m is the mass of Helium-4 atom. Equilibrium correlation times can also be

estimated from the same equation as

τ =
~
α
, (1.15)
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If the quench is performed instantaneously, the wavefunction does not get any time

to increase the correlation length and therefore the domain size is given by the equi-

librium correlation length before the phase transition occurred, that is, d = ξi. When

the quench is performed very slowly, the correlation length increases to infinity near

the critical temperature Tc. For quenching done at a finite speed, Zurek showed that

the maximum correlation distance is reached at the freeze-out time τF =
√
τ0τQ and

it is equal to

d(τF ) = ξ0

(
τQ
τ0

) ν
2

, (1.16)

where ξ0 is the equilibrium correlation length at zero temperature, τ0 is a characteristic

time scale at zero temperature, τQ is the quench time which tells us the rate at

which temperature is lowered, and ν = 1/2 in Landau-Ginzburg theory while in

renormalization group models ν = 2/3. Basically, as the phase transition proceeds,

correlation length of the order parameter tries to approach its equilibrium value of

infinity at the critical temperature but falls short because of the limited time provided

by the quenching process.

The Kibble-Zurek mechanism as described above works well for understanding

production of topological defects in models where a global symmetry is broken. How-

ever, when a local symmetry is broken, the order parameter is not gauge invariant and

so Zurek’s arguments do not describe the complete picture. Indeed, Hindmarsh and

Rajantie (2000a) showed that, in the Abelian Higgs model, symmetry breaking leads

to thermal fluctuations of the magnetic flux getting frozen as the field configuration

does not get enough time to adjust itself to minimize the magnetic flux. This process

leads to formation of vortices in addition to the vortices formed by the Kibble-Zurek

mechanism.

The importance of the topological defects lies in various tests that they provide

for testing models of grand unification. These models predict many different types of
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topological defects produced over a large range of energy scales. Observations of such

defects would therefore help us constrain or rule out a lot of these models. Since the

discovery of the first defect solutions in the simplest renormalizable gauges theories,

that is vortices by Nielsen and Olesen (1973), and magnetic monopoles by ’t Hooft

(1974) and Polyakov (1974), enormous progress has been made in the understanding

of the interactions involving such objects.

Strings exist in various field theories that describe particles as well as condensed

matter systems like superfluids and superconductors (Tinkham (2004)). Cosmic

strings play an important role in building theories of the early universe (Vilenkin and

Shellard (2000)) and provide a rare observational probe of String Theory (Copeland

et al. (2011)). Cosmic strings were actually being considered as the origin of struc-

tures in the universe (Vilenkin and Everett (1982); Zeldovich (1980)). However, recent

studies based on cosmic microwave background data have shown that topological de-

fects did not seed the formation of structures in the universe (Bevis et al. (2007)).

Cosmic strings could still produce other observable signatures in the form of particle

and gravitational radiation.

For strings produced at grand unification energy scales of around 1016 GeV, the

linear mass density would be extremely high (∼ 1022 g cm−1), which shows their sig-

nificant power to influence phenomena at cosmological scales. It is expected that the

decay of these cosmic strings would create observable signals in the form of cosmic

microwave background (CMB) fluctuations, gravitational waves, cosmic and gamma

rays. Current CMB data limits the cosmic string contribution to 1% of the temper-

ature power spectrum. Many theoretical studies have been performed by now that

compute the contribution of cosmic strings to CMB in the simplest Abelian gauge

theory (Hindmarsh et al. (2019); Lopez-Eiguren et al. (2017); Lizarraga et al. (2016);

Hindmarsh et al. (2009a)).

6



The search for observable signatures of cosmic strings has mostly focused on their

gravitational effects, and they are among the main science goals of LIGO (Abbott

et al. (2018)). In a cosmic string network, gravitational radiation would be emit-

ted by cusps and also in the form of stochastic background emanating from the

string network. The tightest bound on the string tension µ, coming from millisec-

ond pulsar timing measurements (Lasky et al. (2016)), is based on the gravitational

wave (GW) background produced by decaying cosmic string loops. This bound,

Gµ . 10−10 (Blanco-Pillado et al. (2018a); Abbott et al. (2018)), where G is New-

ton’s gravitational constant, assumes that string loops decay primarily into GW with

the quantitative predictions obtained from simulations using the Nambu-Goto (NG)

approximation that ignores the field composition of the strings (Albrecht and Turok

(1985); Bennett and Bouchet (1990); Allen and Shellard (1990a); Blanco-Pillado et al.

(2011); Lorenz et al. (2010)). While it is widely accepted that the Nambu-Goto de-

scription works well for loops much larger than the string width, the exact loop size

above which the particle composition of the string cores can be ignored is not firmly

established. The few existing field theory simulations of string networks suggest that

loops primarily decay into particle radiation (Hindmarsh et al. (2017)), with cosmo-

logical size loops not surviving beyond one oscillation, potentially leading to a new

paradigm for cosmic string evolution in which the GW bounds do not apply. Thus it

is critical to examine particle emission by cosmic string loops and to determine their

primary decay mode.

If high energy particle physics contains a global U(1) symmetry that spontaneously

breaks at lower energies, the universe would be left with a network of global strings

(Davis (1985, 1986); Vilenkin and Shellard (2000)). Loops of such cosmic global

strings would oscillate and decay by the emission of massless and massive radiation

that could form part of the dark matter density today (Vilenkin and Vachaspati

7



(1987)). This scenario is relevant to models in which axions are proposed as a means

to solve the strong CP problem and is frequently studied in this context (Vilenkin

and Vachaspati (1987); Davis (1986); Harari and Sikivie (1987); Davis and Shellard

(1989); Hagmann and Sikivie (1991); Battye and Shellard (1994b,a); Yamaguchi et al.

(1999); Hagmann et al. (2001); Hiramatsu et al. (2011); Klaer and Moore (2017,

2019); Gorghetto et al. (2018)). Axions are basically pseudoscalar Goldstone bosons

resulting from spontaneously broken global chiral symmetries and are parameterized

by two constants, mass ma and decay constant fa. In case of QCD, the Lagrangian

has a total derivative (topological) term as follows,

LQCD = . . .+
θQCD
32π2

tr(GµνG̃
µν) . (1.17)

A non-zero value of θQCD violates the CP symmetry. To resolve this issue, Peccei-

Quinn introduced a global U(1) field φ such that θQCD = Cφ/fa, where C is the

fine structure constant. The field φ helps dynamically set θQCD = 0 through non-

perturbative instanton effects.

Other than understanding the principal decay modes of the cosmic strings, it is

also of interest to study the processes that could produce strings in a laboratory set-

ting. While the topological defects like strings are classical solutions, particles in the

Standard Model are quantum mechanical phenomena. In quantum theory, topological

defects can be viewed as a bound state of a large number of quanta. The interpre-

tation of solitons as particles is most explicitly known in the sine-Gordon model. In

that case, the operators that create and destroy solitons (which are fermions), can

be written in terms of particle quanta that are bosons. The question of interest is if

it is possible to assemble particles to make strings? And if so, can we say something

about the initial conditions necessary to produce strings?

Now, magnetic monopoles are novel solutions in a large class of non-Abelian gauge
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theories (’t Hooft (1974); Polyakov (1974)). Although the predicted monopole den-

sity for magnetic monopoles in the universe turned out to be too high to be realistic

(Preskill (1979)), they have been studied for their unconventional classical and quan-

tum properties (Manton and Sutcliffe (2004)). Experiments are currently underway

to find cosmological monopoles (Abbasi et al. (2013); Adrián-Mart́ınez et al. (2012))

as well as monopoles in particle accelerators (Acharya et al. (2016)).

In spite of the long history of monopoles, there are certain questions that have not

been fully resolved. Key among these is to discover particle physics processes that

can create magnetic monopoles (Vachaspati (2016a)). Dynamics that involve both

monopoles and antimonopoles have not received much attention (Vachaspati (2016c)).

On the other hand, monopole-monopole dynamics has been beautifully resolved in the

moduli approximation (Manton (1982a); Manton and Sutcliffe (2004)).

An important feature in the monopole-antimonopole system is that the monopole

and antimonopole can have a relative twist (see Sec. 3.2). This additional degree

of freedom has profound consequences for the interaction energy of a monopole and

antimonopole. In particular it enables the existence of an unstable static bound

state solution, now known as a “sphaleron”, as first argued by Taubes (1982a). The

sphaleron was rigorously shown to exist in the special case of vanishing scalar mass

by Taubes (1982a,b) and for non-vanishing scalar mass by Groisser (1983). The

Morse theory analysis used by Taubes in an SU(2) model was used by Manton for

the physically relevant electroweak theory (Manton (1983)). This resulted in the

discovery of the “electroweak sphaleron” that interpolates between vacua of different

Chern-Simons number and is critical to understanding the violation of baryon number

in electroweak theory. Anomalous baryon and lepton currents are associated with

tunneling between different vacua, leading to baryon and lepton number violating

reactions.
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The transition from particles to solitons is difficult to treat because particles are

described by quantum field theory whereas solitons are described by classical field

theory. However, from a practical standpoint, we often produce high occupation

number states of quantum particles that behave quasi-classically. For example, by

sending currents into a light bulb we produce light that can be described as classical

radiation using Maxwell’s equations. Thus it is relevant to consider the production

of solitons in the scattering of classical waves or wavepackets.

Some of these questions were addressed in by Vachaspati (2016a) for an SO(3) field

theory, where incoming wavepackets led to the production of magnetic monopoles.

While the possible production of magnetic monopoles is exciting, it is in the realm

of speculative physics because we don’t know if Grand Unified Theories are correct.

On the other hand, strings are closer to reality since we do have superconductors in

which (gauge) strings exist (Tinkham (2004)).

In the following chapters, we go into details of how we have tried to answer these

questions. In the following chapter, we review some of the well known defect solutions

that are relevant to our analyses. In chapter 3, we take a detailed look at how we

computed the interaction potential for an SU(2) monopole-antimonopole pair and

other interesting properties like the behavior of magnetic field. In chapter 4, we

describe the production of strings upon scattering of gauge wavepackets, which is

followed by our investigation of the decay modes of a cosmic string loops in the last

two chapters.
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Chapter 2

TOPOLOGICAL DEFECTS

2.1 A Simple Example: Z2 Kink

As mentioned in the previous chapter, topology of the vacuum manifold in a

theory decides what type of defect will appear (or not) upon symmetry breaking.

To demonstrate this, we look at the simplest example of a defect, that is, a kink

in 1 + 1 spacetime dimensions. It is a stable static solution in a scalar field theory

with Z2 symmetry, that is, invariance under φ → −φ transformation. The following

Lagrangian is used in this theory,

L =
1

2
(∂tφ)2 − 1

2
(∂xφ)2 − V (φ) , (2.1)

where (see Fig. 2.1)

V (φ) =
λ

4
(φ2 − η2)2 . (2.2)

The symmetry is broken when the field settles into one of the two vacua, that is,

-2 -1 1 2
ϕ

0.5

1.0

1.5

2.0

V(ϕ)

Figure 2.1: V (φ) with λ = 1 and η = 1.
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φ = ±η. A Lagrangian for excitations about these vacuum states can be computed

by setting φ = η + χ into the Eq. (2.1). This results in a new Lagrangian as below,

Lχ =
1

2
(∂tχ)2 − 1

2
(∂xχ)2 − λ

4
(χ2 + 2χη)2 , (2.3)

which is clearly not invariant under the symmetry transformation, χ→ −χ. It should

be noted that the excitation field χ has also acquired mass, mχ =
√

2λη.

To get a finite energy static kink solution, appropriate boundary conditions must

be chosen to minimize the associated energy functional

E =

∫
dx

[
1

2
(∂xφ)2 +

λ

4
(φ2 − η2)2

]
. (2.4)

This integral would only be finite if φ→ ±η and ∂xφ→ 0 as x→ ±∞. The equations

of motion can be solved analytically in this case with the solution (localized at x0)

φ(x) = η tanh

(√
λ

2
η(x− x0)

)
=

mχ√
2λ

tanh
(mχ

2
(x− x0)

)
.

The total energy for this solution can be computed using the Eq. (2.4) and it is as

follows,

E =
2mχη

2

3
= MKink , (2.5)

Note here that the size of the kink, the region containing most of the energy density,

is of the order of Compton wavelength of the excitation χ, that is, m−1
χ . Also, size of

the kink is bigger than the Compton wavelength of a particle of mass MKink, which

means that the kink behaves essentially like a classical particle.

The stability of this solution can be understood from the observation that, since

the space is infinite, an infinite amount of energy will be needed to continuously

deform it to a trivial solution like φ(x) = η or φ(x) = −η. This would not be possible

if the vacuum manifold didn’t have disconnected components, where no energy will

be required to lift the solution to a trivial one. We can quantify this stability by
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defining a conserved topological charge

n =
1

η

∫ ∞
−∞

∂φ

∂x
dx =

1

η
[φ(∞)− φ(−∞)] . (2.6)

For a kink, as described above, n = 1. An anti-kink can also be constructed in this

theory with φ→ ∓∞ as x→ ±∞. This anti-kink has a topological charge, n = −1.

To summarize, topologically stable solutions can be constructed in field theories

if field at spatial boundaries (infinity) is mapped to points in the degenerate vacuum

manifold that is not simply connected. In the case of a kink, moving from x = −∞

to x = ∞ leads to the scalar field changing values from φ = −η to φ = η, with

finite total energy. A string (or vortex) solution exists in theories where the vacuum

manifold is a circle S1
vac and the field on a circle at spatial infinity is mapped to

this vacuum circle. Monopoles, on the other hand, require vacuum manifolds that

have surfaces that cannot be shrunk to a point like a sphere S2
vac. Hybrid defects

can also be produced if there are multiple symmetry breaking events involved like in

the electroweak theory where monopoles are connected antimonopoles by strings. As

we observed before, various conserved topological quantities can be defined for such

defects.

In the next few sections, we will discuss strings and monopoles in the simplest

gauge theories. All the computations that we present in this report involve these

topological defects.

2.2 U(1) Strings

We consider the Abelian Higgs model given by the following Lagrangian with a

Mexican hat potential and circular vacuum manifold (not simply connected),

L = −1

4
FµνF

µν +
1

2
|Dµφ|2 −

λ

4

(
|φ|2 − η2

)2
, (2.7)
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where φ = φ1 + iφ2 is a complex scalar field, Dµ = ∂µ + ieAµ, Aµ is the gauge field

with field strength tensor Fµν = ∂µAν − ∂νAµ, and λ and e are coupling constants.

The equations of motion for this model are

DµD
µφ = −λ(|φ|2 − η2)φ , (2.8)

∂µF
µν = jν = e Im [φ∗(∂ν + ieAν)φ] . (2.9)

For a static solution, the energy in the fields is

E =

∫
d3x

[
1

2
|Diφ|2 +

1

2
(E2 + B2) +

λ

4

(
|φ|2 − η2

)2
]
, (2.10)

where Ei = F0i is the electric field and Bi = −εijkFjk/2 is the magnetic field. For

a finite energy solution, the individual terms in the integral must vanish at spatial

infinity, that is,

|φ| → η, |Diφ| → 0,E→ 0,B→ 0 . (2.11)

Vanishing covariant derivative leads to the following form for the gauge field in planes

orthogonal to the string,

Aθ =
1

er

dα

dθ
+ . . . , (2.12)

where α is the phase of the field φ. Topological string solutions satisfying these

asymptotic conditions are well known in the Abelian Higgs model. The solution for

a straight string along the z−axis is

φ = ηf(r)eiθ, Ai = v(r)εij
xj

r2
(i, j = 1, 2) , (2.13)

where we work in cylindrical coordinates r =
√
x2 + y2, θ = tan−1(y/x), and f(r)

and v(r) are profile functions that vanish at the origin and go to 1 asymptotically.

The energy per unit length (also the tension) of the string takes the form

µ = πη2F (β) , (2.14)
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where β ≡ 2λ/e2 = m2
S/m

2
V . The function F (β) is known numerically and is a

smooth, slowly varying function. We also have F (1) = 1 in the so-called Bogomolny-

Prasad-Sommerfield (BPS) limit when the scalar mass in the model, mS =
√

2λη

equals the vector mass, mV = eη. For β not too large, the thickness of the string

is determined by the symmetry breaking scale which is ∼ m−1
S for scalar fields and

∼ m−1
V for the vector fields. Physically, this can be interpreted as excitations of

wavelengths greater than that of Compton wavelengths for the scalar and vector

particles staying bound to the string core. This can be seen more rigorously by

studying the behavior of the fields far away from the string. Let’s define two functions

g(r) = 1−f(r) and w(r) = 1−v(r), such that g(r)→ 0 and w(r)→ 0 as r →∞. By

plugging these functions into the equations of motion, we get two ordinary differential

equations

1

r

d

dr

(
r
dg

dr

)
−m2

Sg = 0 , (2.15)

and

r
d

dr

(
1

r

dw

dr

)
−m2

Vw = 0 . (2.16)

The solutions to these equations take the following form,

g(r) ∝ e−mSr√
r

,

w(r) ∝ √re−mV r . (2.17)

The exponential decay of the fields here demonstrates that the thickness of the string

is controlled by the two mass scales, mS and mV .

The string is characterized by a topological winding number that is defined as

follows,

n =
−i

2πη2

∮
dxiφ∗∂iφ =

1

2π

∮
dα

dl
dl . (2.18)
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Far away from the string, we can use the asymptotic form of the gauge field to get

n =
e

2π

∮
A.dl =

e

2π

∮
B.dS =

eΦB

2π
, (2.19)

where α is the phase of the scalar field at a given point on the contour and l denotes

the parameter along the integration curve. As can be seen in the Fig. 2.2, the phase

of the complex field rotates by 2π as we go around a contour enclosing a surface,

requiring that a string must pass through it.

Figure 2.2: A string in the Abelian Higgs theory. Winding on a contour enclosing
the string must be nonzero. The arrows on the contour represent the phase of the
complex scalar field. As we go along the contour, the complex scalar field rotates by
2π, an essential requirement for the string to exist.

This winding number n can only take integer values and must be conserved overall,

which means magnetic flux is quantized as ΦB = 2πn/e.

At the critical value of the coupling β = 1, as demonstrated by Bogomolny (1976),

the second order field equations simplify to a first order system of differential equa-

tions. To see this, we consider vortex solutions in a plane. Using integration by parts,

the static energy can be shown to be

E =

∫
d2x

{
1

2
|[(∂x + ieAx)± i(∂y + ieAy)]|2 +

1

2
[Bz ± (φφ∗ − η2)]2

}
±
∫
d2xBz ,

(2.20)
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where Bz = F12 = ∂xAy − ∂yAx, and the upper signs are taken for vortices and lower

signs for antivortices. The first integrand in the braces is positive definite and so

using the definition of quantized magnetic flux, a lower bound on the energy can be

given as

E ≥ 2πη

e
|n| . (2.21)

For the lowest energy configuration, the first integrand must vanish, which gives us

our first order equations

[(∂x + ieAx)± i(∂y + ieAy)]φ = 0 , and (2.22)

Bz = ∓(φφ∗ − η2) . (2.23)

The solutions to these equations represent static non-interacting multi-vortex config-

urations. Interactions of vortices have been studied in great detail at critical coupling

due to these simplifications.

If we set e = 0, the gauge field decouples and the scalar field now only transforms

under the global U(1) symmetry. Since there is no Higgs screening, the massless

Goldstone excitations carry a long range force and the energy per unit length of the

string diverges. The equations of motion simplifies to

∂µ∂
µφ = −λ(φφ∗ − η2)φ . (2.24)

Using the cylindrically symmetric ansatz for scalar field as before, we find that the

profile function satisfies the following condition as r →∞,

f(r) ≈ 1−O(
1

r2
) . (2.25)

2.2.1 String Interactions

In the Abelian Higgs model, the interactions between N vortices that are well sep-

arated can be effectively described by simply superposing the solutions for individual
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strings (Abrikosov (1957); Vilenkin and Shellard (2000)) , that is,

Φ(x) =
N∏
k=1

φs(x− xk) , and

A(x) =
N∑
k=1

As(x− xk) . (2.26)

To validate this choice of ansatz, we consider the exact solution to be ansatz plus

some residual fields as follows,

Φ = Φ′ + ϕ, A = A′ + a . (2.27)

We expect that these residual fields would only add negligible amount of energy εϕ,a

to the energy for the multi-vortex ansatz above. The energy for the true solution

would then be

E(Φ,A) = E(Φ′,A′) + εϕ,a . (2.28)

By plugging in the ansatz 2.26 for two vortices into the equations of motion and

assuming the asymptotic profiles 2.17 for the fields, it can be shown that the residual

fields ϕ and a, in the case where β > 1, behave approximately as O(exp(−mV d)),

where d is the separation between the two vortices. We can therefore expect that

the leading order behavior for the residual energy (squaring the fields) would be as

follows,

εϕ,a ≈ O(exp(−2mV d)) , (2.29)

which can be ignored safely when vortices are well separated. We have used the

ansatz above extensively in our numerical simulations for setting up initial field con-

figurations.

For the case of two vortices, we can again use the asymptotic behavior of the fields

to compute the interaction energy. Writing it as the sum of individual energies of the

two vortices and interaction potential, that is,

E(Φ′,A′) ≈ E(φ1,A1) + E(φ2,A2) + Eint , (2.30)
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it can be shown that the leading order contribution to interaction energy behaves like

Eint ≈ O(exp(−mV d)) . (2.31)

This result for the β > 1 case shows that the vector field dominates in this regime

and vortices repel each other with an exponentially decaying force. For β < 1,

however, the Higgs scalar dominates the interaction energy leading to an attractive

force between the vortices. For a vortex-antivortex pair, both scalar and vector

contributions to the interaction energy are negative, which means the force is always

attractive between the pair. At critical value of the coupling, β = 1, scalar attraction

exactly balances vector repulsion, leading to no net interaction between the vortices.

For global U(1) strings, using the same approach as above, the interaction energy

for well separated vortices is

E±int ≈ ±4πη2 ln

(
R

d

)
, (2.32)

where the upper sign is a vortex-vortex pair and the lower sign is for a vortex-

antivortex pair, and R is a cutoff distance. Taking a derivative of this expression

with respect to d gives us the force between a pair of vortices as follows,

F ≈ ±4πη2

d
. (2.33)

This long range force is due to the massless Goldstone field.

Once the vortices are free to move, the dynamics turns out to be non-trivial even

in the case of critical coupling. Multiple studies (Moriarty et al. (1988); Shellard and

Ruback (1988); Matzner (1988)) have shown that vortex-vortex head-on scattering

always occurs at 90◦ regardless of the initial conditions. β = 1 case is amenable to

analytical studies for slowly moving vortices using moduli space methods as shown

by (Ruback (1988)). The slow motion of N vortices in the configuration space can be
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expected to be nearly identical to the static N-vortex solution/moduli space, MN . At

the critical coupling, energy of the N-vortex solutions has a global minimum at 2πN .

Near this minimum, potential energy gradients are very small, and therefore kinetic

energy will dominate the motion. This also implies that vortices will move along

geodesics in the moduli space MN following metric induced by the kinetic terms

in the Lagrangian. The induced metric is usually curved and leads to non-trivial

scattering.

For a two vortex scattering process in 2D, M2 is basically a combination of two

coordinates describing the overall motion of the vortices in the plane and another set

of two coordinates describing the relative motion of the Higgs zeros (center of the

vortices), that is, M2
∼= R2×M0

2 . The induced metric on M0
2 describes the scattering

of the two vortices. The symmetries of the theory, rotation and parity invariance, act

as isometries on this space and lead to the following form (Ruback (1988); Vilenkin

and Shellard (2000)) for the metric when the vortices are very close to each other,

ds2 ≈ dρ2 + 4ρ2dψ2 , (2.34)

where ρ is half the separation distance and ψ is the orientation angle of the separation

vector relative to some reference direction. The configuration of vortices remains the

same if their positions are exchanged resulting in the identification ψ ∼ ψ + π. The

metric above has a smooth conical tip at ρ = 0. As a geodesic goes through through

this tip, the two vortices have a head-on collision and the angle ψ changes by π/2,

which explains the scattering at right angles.

Head-on collision of a vortex-antivortex pair leads to their annihilation and then

formation of a new vortex-antivortex pair moving along the original axis of collision.

Since the forces are short-ranged, the scattering angle for vortices goes to zero ex-

ponentially as the impact parameter is increased as demonstrated by Myers et al.
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(1992).

Another important feature of string interactions is intercommutation or recon-

nection. When two strings intersect, it has been shown through multiple analytical

and numerical analyses (Moriarty et al. (1988); Matzner (1988)) that they almost

always exchange partners independent of the angle of incidence and may form inter-

action loops in the process. The only scenario in which this may not occur is when

the strings are approaching each other at velocities very close to the speed of light.

Very long strings can intercommute with themselves as well, producing loops as a

result. Qualitatively, the process of intercommutation can be thought of as an exten-

sion of the right-angled scattering process for vortices in 2D. As shown in Fig. 2.3,

projections of a pair of strings moving towards each other onto two different planes

can demonstrate these ideas. The projected vortex-antivortex pair in plane B would

annihilate while the vortex-vortex pair in plane A would scatter off at right angles.

This combination of right-angled scattering and annihilation leads to reconnection.

Without this property of intercommutation, existence of cosmic strings in the early

universe has been ruled out and they would not contribute to the process of galaxy

formation.

Note that two kinks (sharp corners) are formed on each string after reconnec-

tion. This is because sections of the strings on the opposite sides of the intersection

point point in opposite directions and have different velocities, resulting in very sharp

variation of derivatives (of smooth functions) along the string.

Intercommutation is the main mechanism through which a string loses energy. If

we are to observe strings formed in the early universe, the network of such strings must

be in the scaling regime, that is, the energy density of strings in the universe should

remain constant with time. If the energy density grew with time, which would happen

when the strings only get elongated with the expansion of the universe, strings would
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Figure 2.3: Strings (a) before and (b) after intercommutation. Initially, the two
strings approach each other along the line of intersection (dashed) of the two or-
thogonal planes A and B. The projected vortices onto these planes are shown on
the right. The vortex-vortex pair in the plane A scatter off at right angle while the
vortex-antivortex pair in the plane B annihilate. The two strings end up exchanging
partners with the resulting motion in directions orthogonal to the original direction
of approach. Note that two kinks form on each string after intercommutation.
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dominate the universe now, inconsistent with the current observations. On the other

hand, if the network got diluted, the probability of detection would be negligible.

Intercommutation constitutes the main mechanism for taking energy out of a dense

network and achieving a scaling regime.

Every time a string intercommutes with itself, closed loops are formed. These

loops will oscillate with a time period of half the loop length l. Large loops would

most probably collide with other strings and intercommute, or they may break into

smaller loops which would eventually radiate away through gravitional and particle

radiation due to their relativistic motion. The scaling regime solution has been verified

by many analytical and numerical analyses (Allen and Shellard (1990b); Copeland

and Kibble (2010); Bennett and Bouchet (1988); Copeland et al. (1992)). In this

regime, the characteristic length scale of the network becomes constant with respect

to the horizon size resulting in a constant ratio of energy density in strings to the

energy density of the universe, that is,

ρs
ρ
∼ Gµ , (2.35)

where G is Newton’s constant. The dimensionless quantity Gµ gives the strength of

gravitational effects due to a string of mass per unit length µ.

Gravitational interactions offer the best chance for observing a cosmic string.

Therefore, it is important to understand the gravitational effects of these defects. The

gravitational field around a straight string turns out to be locally flat because tension

counteracts the gravitation influence of the energy content in the string. Therefore, a

test mass would not accelerate towards such a string. Globally, the metric is curved

and is given as

ds2 = dt2 − dz2 − dρ2 − (1− 4Gµ)2ρ2dϕ2 , (2.36)
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which can be rewritten in terms of a new azimuthal angle ϕ = (1− 4Gµ)ϕ as

ds2 = dt2 − dz2 − dρ2 − ρ2dϕ2 . (2.37)

This metric is essentially flat except that the angle ϕ varies from 0 to 2π − δ, where

the deficit angle

δ = 8πGµ = 5.2

(
Gµ

10−6

)
arcsec , (2.38)

is for strings formed at GUT scales.

This conical geometry leads to interesting gravitational lensing phenomena. Light

from a source behind the string would get split into two at an angle of order δ, but

since the spacetime is locally flat around the string, the sizes and brightness of the

two images will remain the same as the original source.

Another consequence of this geometry is that the cosmic microwave background

(CMB) gets affected by a string moving transversely at speed v. Radiation passing

ahead of the string gets red-shifted while the radiation behind the string gets blue-

shifted. This results in a discontinuity in the temperature of the CMB of the order

δT/T ∼ Gµv. For fast moving strings, this discontinuity may be detectable.

As mentioned earlier, cosmic string loops themselves emit gravitational radiation

and would have contributed significantly to the gravitational wave background that we

detect now. Formation of cusps on the strings is a major source of this gravitational

radiation. A cusp is a point at which a string moves at the speed of light for an instant

emitting intense gravitational radiation in the direction of string’s velocity. Given this

intensity of emission from cusps, we may be able to detect gravitation radiation from

even low tension strings with Gµ ∼ 10−10. Millisecond pulsars, with stability of their

rotations comparable to that of atomic clocks, are easily disturbed by gravitational

waves and therefore serve as excellent detectors for gravitational waves emitted by

cosmic strings. The regularity of pulsar timing observed over a period of multiple
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decades has constrained the energy density in gravitational wave background, which

gives us the current upper bound on cosmic string tension (Blanco-Pillado et al.

(2018b)):

Gµ < 1.5× 10−11 (2.39)

In the case of a global U(1) theory, the Goldstone field survives beyond the core and

the energy per unit length diverges, that is,

µ(r) ≈ 2πη2 ln

(
r

rcore

)
, (2.40)

where rcore is the thickness of the core. The deficit angle δ therefore increases with

the distance from the core as

δ(r) = 8πGµ(r) , (2.41)

which is in contrast with the case of gauge strings. Additionally, global strings would

repel a test mass away from the core. The metric around a global string has also been

argued to contain a singularity some distance away from the string core (Cohen and

Kaplan (1988)), however, cosmic censorship hypothesis forbids naked singularities of

this type.

2.2.2 Effective Actions for String Dynamics

If a string is of negligible thickness compared to its length, and curvature is small

at any point compared to its thickness, we can simplify our models describing string

dynamics. Massive transverse degrees of freedom can be integrated out leaving us

with Higgs zeros as the only relevant degrees of freedom. Higgs zeros denoting the

location xµ(σa) of the string core would then sweep a worldsheet, where σa = (σ, τ)

are the two worldsheet coordinates. The action for such a zero thickness string is the

well known Nambu-Goto action (Vilenkin and Shellard (2000))

S = −µ
∫
d2σ
√
−det(gµνx

µ
,axν,b) , (2.42)
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where µ is the string tension, gµν is the spacetime metric and xµ,a = ∂xµ/∂σa. The

parameter τ can be conveniently chosen to be the time t itself, while σ can be chosen

to represent the length along the string by satisfying the following gauge conditions,

ẋ.x′ = 0 , ẋ2 + x′
2

= 1 , (2.43)

where x(σ, t) is the three-vector describing string motion, and ẋ = ∂x/∂t, and x′ =

∂x/∂σ are the velocity perpendicular to the string and the derivative along the string,

respectively. Varying the action then gives the equation of motion,

ẍ− x′′ = 0 . (2.44)

This wave equation on the string has the following general solution,

x(σ, t) =
1

2
[a(σ − t) + b(σ + t)] , (2.45)

where a and b are the right and left moving modes, respectively. From the stress

energy tensor, the total energy of such a string comes out to be simply E = µ
∫
dσ.

For loops of total length L, the functions a and b are periodic in σ, that is,

a(σ + L) = a(σ) , b(σ + L) = b(σ) . (2.46)

The gauge choice used above forces the magnitude of a and b to be 1. From the

periodicity of these functions, wave equation tells us that that a loop will undergo

periodic motion with time period T = L/2 (relativistic), since

x(σ + L/2, t+ L/2) = x(σ, t) . (2.47)

Now, specific points on a loop may move with the speed of light. These points are

the previously mentioned cusps and kinks. On a cusp x′ = 0, which results in instan-

taneous luminal motion, ẋ = 1. Cusps contribute significantly to the gravitational

radiation and have very unique observational signatures. Kinks, on the other hand,
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are sharp corners on a loop with discontinuous a and b. They are usually created

upon intercommutation when ẋ(σ, τint) and x′(σ, τint) vary sharply as functions of the

length parameter σ.

In the case of global strings, however, we have long range forces and the energy

diverges logarithmically. The dynamics for such strings is much clearer when the

massless Goldstone degree of freedom is described using an anti-symmetric tensor

Bµν through the following relation,

η∂µα =
1

2
εµνλρ∂

νBλρ . (2.48)

The action with the above reformulation was first derived by Kalb and Ramond

(1974); Vilenkin and Vachaspati (1987) and is given as

S = −µ
∫
d2σ
√
−det(gµνx

µ
,axν,b) +

1

6

∫
d4xHµνλH

µνλ + 2πη

∫
d2σεabxµ,ax

ν
,bB

µν ,

(2.49)

whereHµνλ = ∂µBνλ+∂λBµν+∂νBλµ is the field strength tensor for the antisymmetric

field. The last term in the action represents the coupling of the string to the Goldstone

field through the antisymmetric tensor Bµν .

The two actions described above have been used effectively to study phenomena at

cosmological scales and in superconductors. For our investigations, however, we rely

on full field theory simulations and do not significantly utilize these approximations.

2.3 SU(2) Monopoles

Here we look at ’t Hooft-Polyakov monopoles (’t Hooft (1974); Polyakov (1974))

in the SU(2) model,

L =
1

2
(Dµφ)a(Dµφ)a − 1

4
W aµνW a

µν −
λ

4
(φaφa − η2)2 , (2.50)

where a = 1, 2, 3, the covariant derivative is defined as

(Dµφ)a = ∂µφ
a + eεabcW b

µφ
c , (2.51)
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and the gauge field strength is given as

W a
µν = ∂µW

a
ν − ∂νW a

µ + eεabcW b
µW

c
ν . (2.52)

The equations of motion obtained by varying the action are

(Dµ(Dµφ))a = −λ(φbφb − η2)φa , and (2.53)

(DµW
µν)a = eεabc(Dνφ)bφc . (2.54)

We will use temporal gauge (W a
0 = 0). By rescaling the fields and spatial coordinates

appropriately, and setting the vacuum expectation value and coupling constants to

one, that is, η = e = 1, it is easily seen that λ is the only parameter in the theory

that controls the mass and size of the monopoles.

Varying the action with respect to the metric gives us the following expression for

energy of a static configuration,

E =

∫
d3x[

1

2
(Diφ)a(Diφ)a +

1

4
W a
ijW

a
ij +

λ

4
(φaφa − 12)2] . (2.55)

To solve for static configurations, we have to minimize the above energy functional.

Also, an essential condition for the existence of finite energy solutions is that the

terms in the integrand vanish individually at spatial infinity. This requires

φaφa → 1, (Diφ)a → 0, W a
ij → 0 (2.56)

at spatial infinity.

The simplest ansatz for the field configuration with a non-trivial topology would

have spherical symmetry. We choose the Higgs isovectors such that it always points

along the radial position vector, that is, φ̂a = r̂a, where r̂a = ra/|~r| and φ̂a = φa/|~φ|.

This means that we can write our Higgs fields as

φa = h(r)r̂a . (2.57)

28



The direction for gauge fields can be shown, by satisfying the condition that the

covariant derivative of the Higgs fields vanishes at spatial infinity, to take the form

below

W a
i =

(1− k(r))

r
εaij r̂j . (2.58)

To solve for the profile functions h(r) and k(r), we plug these last expressions into

the general equations of motions. This gives us two coupled ordinary differential

equations as follows,

h′′(r) +
2

r
h′(r) =

2

r2
k(r)2h(r)− λ

(
h(r)2 − 1

)
h(r) , (2.59)

k′′(r) =
1

r2
(k(r)2 − 1)k(r) + h(r)2k(r) . (2.60)

These differential equations in one dimension are solved numerically with the

Gauss-Newton method for different values of λ and with boundary conditions, h(r)→

1 and k(r) → 0 as r → ∞, and h(r) → 0 and k(r) → 1 as r → 0. Fig. 2.4 shows

a plot of these profile functions for λ = 1. The mass of the monopole is shown in

Table 2.1 for sample values of λ. We will use these solutions in our initial guess for

the monopole-antimonopole field configuration.

h(r)

k(r)

2 4 6 8 10
r

0.2

0.4

0.6

0.8

1.0

Figure 2.4: Numerically generated profile functions, h(r) and k(r), for λ = 1.
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Table 2.1: Mass of the monopole as a function of λ.

λ Mass in units of 4π

0.0 1.000

0.25 1.185

0.50 1.232

0.75 1.264

1.0 1.287

As we saw for the other defects, we can again define a conserved topological charge

as follows,

n =
1

8π

∫
S

dn̂iεijkεabcφ̂
a∂jφ̂

b∂kφ̂
c , (2.61)

where n̂ is the outward unit normal to a closed surface S and φ̂a = φa/|~φ|. The value

of n is always an integer and tells us how many times the unit sphere in the internal

space of the Higgs fields wraps around a sphere at infinity in real space.

In the spherically symmetrical solution above, it should be noted that the Higgs

fields take values in the vacuum manifold at spatial infinities. A non-zero vacuum

expectation value of φa spontaneously breaks the SU(2) symmetry to a U(1) subgroup

and two of the three gauge fields acquire a mass, mV = eη, while the third is the

“photon”. The scalar excitations also become massive with mass, mS =
√

2λη (note

that η and e are free variables again). Like in the case of kinks and vortices, the

Compton wavelengths associated with these mass scales define the size of a magnetic

monopole.

In order to compute the magnetic charge for these solitons, we need to first find

an expression for magnetic flux that is coming out/in. In SU(2) gauge theory, there

is no clear notion of an electromagnetic field strength tensor. However, near vacuum,

an unbroken U(1) group lets us define one. For the spherically symmetric solution, if
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the Higgs isovector is pointing in the φ̂a direction, vanishing covariant derivative far

away from the soliton, Dµφ̂ = 0, helps us define the form of the gauge field in that

region. The electromagnetic field strength then points in the unbroken direction in

the su(2) algebra, that is, along the radial direction φ̂a. The general solution for the

gauge field is (akin to Helmholtz decomposition),

Wµ = φ̂aAµ +
1

e
εabc∂µφ̂

bφ̂c , (2.62)

where Aµ is an arbitrary function. The gauge invariant electromagnetic field tensor

for this field can then be computed from

Fµν = W a
µνφ̂

a = (∂µAν − ∂νAµ) +
1

e
εabcφ̂a(Dµφ̂)b(Dνφ̂)c (2.63)

= ∂µAν − ∂νAµ +
1

e
εabcφ̂a∂µφ̂

b∂νφ̂
c, if |φ| = 1 .

These expressions are identical to those proposed by ’t Hooft (1974) in the region

outside the monopole. The magnetic field follows from the usual expression,

Bi = −1

2
εijkFjk = −1

2
εijk

(
∂jAk − ∂kAj +

1

e
εabcφ̂a∂jφ̂

b∂kφ̂
c

)
. (2.64)

Far away from the magnetic monopole, Aµ = 0, and there is no electric field. The

magnetic field in that case becomes,

Bi = − 1

2g
εijkε

abcφ̂a∂jφ̂
b∂kφ̂

c = − 1

er2
r̂i . (2.65)

Integrating this magnetic flux over a spherical surface at infinity gives the magnetic

charge for a magnetic monopole as follows,

g = lim
r→∞

∮
B.dS = −4π

e
, (2.66)

where we used the expression for topological charge n in the last equality and set it to

one. In general, for a configuration of higher topological number, the magnetic charge
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is quantized and is given as g = −4πn/e. Such monopole solutions are very difficult

to find but can be constructed using the Nahm transforms and other sophisticated

methods in the BPS limit.

In the BPS limit, scalar self-coupling constant λ → 0. Like in the case of U(1)

gauge strings, the second order equations of motion simplify to a first order system.

To see this, the energy functional in this limit becomes

Eλ=0 =

∫
d3x

[
1

2
(Diφ)a(Diφ)a +

1

2
Ha
i H

a
i

]
, (2.67)

where Ha
i = −1

2
εijkW

a
jk. For a magnetic monopole type solution, the energy func-

tional must be minimized. Using the techniques developed by Bogomolny (1976),

and Prasad and Sommerfield (1975), we can write down the following inequality,∫
d3x

[
1

2
(Ha

i −Diφ
a)(Ha

i −Diφ
a)

]
≥ 0 , (2.68)

since the integrand is positive definite. The equality holds when the Bogomolny

equation Diφ
a = Ha

i is satisfied. The inequality above can be rewritten as

Eλ=0 ≥
∫
d3xHa

i Diφ
a . (2.69)

The right hand side of this inequality turns out to be proportional to the magnetic

charge, resulting in a lower bound on the energy of a BPS monopole given as

Eλ=0 ≥
4πη

e
. (2.70)

The equations of motion can be solved analytically for the minimum energy BPS

solution with topological charge |n| = 1, which turns out to be

h(r) = coth(mV r)−
1

mV r
(2.71)

k(r) =
mV r

sinh(mV r)
. (2.72)
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To construct solutions with higher topological numbers, Nahm (1978) found a way to

transform the BPS monopole configurations into a completely different mathematical

structure. The main idea is to map solutions of the Bogomolny equation in R3 to

solutions of the Nahm equation,

dTi(s)

ds
=

1

2
εijk [Tj(s), Tk(s)] , (2.73)

where T1(s), T2(s), and T3(s) are n×n matrices with s ∈ [−1, 1], and n is the topolog-

ical charge of the monopole configuration. The Nahm equation is, in general, not easy

to solve, however, some non-trivial solutions are known. Once the Nahm equation

has been solved, the inverse transform can be done analytically or numerically to get

an n-monopole configuration.

Another technique that can be used to look for monopole solutions was demon-

strated by Taubes (1982a,b). He used Morse theory to uncover saddle point solutions

in SU(2) gauge theory. Morse theory basically relates the topology of a smooth man-

ifold to the stationary points of a smooth function on the same manifold. The classic

example that demonstrates these ideas is that of a torus standing above a plane as

shown in the Fig. 2.5.

Here we can define a simple function that assigns each point on the torus a height

above the reference plane. This function has its maximum and minimum at P3 and

P0, respectively. Topology of the torus, however, also gives this function two saddle

points, P2 and P1. On compact manifolds, the study of non-contractible loops is

a standard method for finding stationary points if the function has one minimum.

In the case of torus, the height function has a minimum at P0. If we consider the

maximum height on each non-contractible through P0, the infimum would be at P1 and

supremum at P2, which are the saddle points. For non-compact manifolds, however,

this approach may fail.
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P3

P2
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Figure 2.5: A torus with stationary points of a height function on it. Non-
contractible loops through a global minimum P0 help find the saddle points P1 and
P2 on this torus.

We can apply these ideas to a field theories as well, where we study non-contractible

loops on the configuration space of all finite energy static solutions, and look for the

stationary points of the energy functional. It is assumed that there are unique mini-

mum energy configuration with energy E0 in these theories. As in the case of torus,

it has been shown in multiple cases that there are non-contractible loops that go

through the infimum of the maximum energy, E1, and are saddle point solutions of

the field equations.

Taubes (1982a,b) applied this method to prove the existence of a saddle point

with topological charge of zero. This solution could be described as an unstable

monopole-antimonopole bound state where Coulomb repulsion is balanced by the

scalar attraction and any rotation of the monopole relative to the antimonopole leads

to annihilation of the pair. Manton (1983) also used the same technique to uncover

the saddle point solution in the electroweak theory.
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2.3.1 Monopole Interactions and Dynamics

There is only one massless carrier for interactions between magnetic monopoles.

The resulting magnetic Coulombic force has a long range and will therefore dominate

interactions between well separated magnetic monopoles. Like electric charges, two

magnetic monopoles will repel each other while a monopole attracts an antimonopole.

Other forces due to the massive scalar and vectors decay exponentially with separa-

tion. In the BPS limit (λ→ 0), however, scalar field becomes massless and contributes

a long range force to the interactions. This scalar attraction balances the Coulombic

repulsion between the monopoles, resulting in zero net force between BPS monopoles.

An interesting thing to note here is that unlike electromagnetism which is linear, the

particles (monopoles) and the interactions between them are completely predicted by

the SU(2) gauge theory itself.

Many analytical and numerical investigations have provided insight into the multi-

monopole dynamics. Like in the case of vortices, moduli space methods have been

very fruitful in developing understanding of slow moving magnetic monopoles in the

BPS limit. The moduli space MN for static N -monopole solutions is a submanifold

of the configuration space CN and is endowed with a metric induced by the kinetic

terms. Slow moving configurations would remain very close to MN and therefore can

be described well by geodesic motion along the induced metric. The MN turns out

to be a hyperKähler manifold of dimension 4N . As we did for vortices, we can split

MN into a part that describes the overall motion of the monopoles and another part

that describes relative motion of the Higgs zeros. This decomposition is expressed as

follows,

MN ' R3 × S1 ×M0
N

ZN
, (2.74)

where the part describing Higgs zeros, M0
N , can be isolated from the flat R3×S1 part
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(Manton (1982b)).

On a two monopole effective moduli space, M0
2 , the SO(3) isometries (representing

the symmetries of the physical theory) result in the following form for the metric

(Atiyah and Hitchin (1985))

ds2 = f 2(ρ) dρ2 + a2(ρ) dψ2
1 + b2(ρ) dψ2

2 + c2(ρ) dψ2
3 , (2.75)

where the angles ψ1, ψ2, ψ3 are given in terms of Euler angles and physically describe

the relative orientation of the monopole pair, ρ is related to the separation between

monopoles, functions a(ρ), b(ρ), c(ρ) are determined analytically by solving three

coupled differential equations resulting from the hyperKähler character of the metric,

and f(ρ) has been defined in multiple ways in the literature (Manton and Sutcliffe

(2004)) in terms of a(ρ), b(ρ), c(ρ).

Without delving into technical details of the calculations, we learn that the two

monopoles at large ρ maintain their spherical shapes with separation distance given

by ρ. However, when ρ takes its minimal value of π/2, the two monopoles combine to

form a toroidal shape. Angular momentum about an axis joining the centers of the

two well separated monopoles changes the relative phase and they acquire opposite

electric charges (dyons). For the toroidal configuration, rotation about its central axis

has no affect on the fields modulo gauge transformations. When the two monopoles

are constrained to move in a plane and approach each other to collide head on, the

resulting metric is the same as that for two vortices (Eq. (2.34)), that is,

ds2 = dρ2 + 4ρ2dψ2 . (2.76)

As in the case of vortices, monopoles scatter off at right angles to their incoming

direction. Another interesting geodesic was discovered by Bates and Montgomery

(1988) and it describes bounded motion. This happens when ρ assumes a special
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value such that |a| = |c|. This leads to a configuration that precesses in space about

a fixed line.
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Chapter 3

MONOPOLE-ANTIMONOPOLE INTERACTIONS

In this chapter, we discuss results from our papers on monopole interactions.

(Saurabh and Vachaspati (2017, 2019a)). As discussed in the first chapter, dynamics

involving both monopoles and antimonopoles has not received a lot of attention and

therefore, to enhance our understanding of the particle physics processes involving

magnetic monopoles, we took the first steps towards full field theory simulations

involving these topological objects. Based on a qualitative understanding of the

scalar and vector forces between a monopole and an antimonopole at separation d,

Taubes sketched the interaction potential as

V (d, γ) = 4π

(
−1

d
− 2e−d

d
cos γ − e−

√
λd

d
(1− e−d)

)
, (3.1)

where the first term on the right hand side is the usual attractive Coulomb interac-

tion, the second term is a correction term which represents short range interactions

mediated by the two massive vector bosons W±, γ is the relative twist angle, and

the last term is due to scalar interactions. (Note: in Taubes’ notation, the twist is

called θ where θ = π − γ.) This vector interaction is attractive for cos γ > 0 and

repulsive for cos γ < 0, in which case the attractive Coulomb and repulsive forces can

balance at some separation, leading to a saddle point solution. Any perturbation to

this solution that untwists the pair will destabilize the solution, and the monopole

and antimonopole will eventually radiate, as shown by Vachaspati (2016c).

We will see that the expression for V (d, γ) in Eq. (3.1) provides a good qualitative

picture but does not provide a good fit to the numerical data. This can be expected

because the terms in Eq. (3.1) assume point-like monopoles. In reality, monopoles are
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extended objects and a monopole-antimonopole can partially annihilate as they are

brought closer together, i.e. when the cores of the monopole-antimonopole overlap

there is a reduction in the volume occupied by the cores. Further, the reduction of

energy depends on the extent of partial annihilation that, in turn, can depend on the

amount of twist. Thus the actual potential can be more complicated than that given

by Eq. (3.1).

A goal of our work was to rigorously determine V (d, γ). Our numerical approach

can be applied to any values of model parameters, and we were able to reconstruct

all the fields for the monopole-antimonopole system. In particular, we calculated

their interaction energy, the size, and energy, of the monopole-antimonopole bound

state, for a range of couplings. For a special twist and separation we can recover

the sphaleron that was also investigated numerically by Kleihaus and Kunz (2000)

by solving the static equations of motion by first taking an axially symmetric ansatz

for the fields. In contrast, we employed constrained relaxation over an entire three

dimensional grid without assuming any symmetries, and we also studied monopole-

antimonopole pairs away from the sphaleron.

3.1 Equations of Motion

We fully expand the equations of motion that we introduced in the last chapter

and modify them a little for numerical stability as follows,

∂2
t φ

a = ∇2φa − gεabc∂iφbW c
i − gεabc(Diφ)bW c

i − λ(φbφb − η2)φa − gεabcφbΓc , (3.2)

∂tW
a
0i = ∇2W a

i + gεabcW b
j ∂jW

c
i − gεabcW b

jW
c
ij −DiΓ

a − gεabcφb(Diφ)c , (3.3)

∂tΓ
a = ∂iW

a
0i − g2

p[∂i(W
a
0i) + gεabcW b

iW
c
0i + gεabcφb(Dtφ)c] , (3.4)

where we are using temporal gauge (W a
0 = 0), Γa = ∂iW

a
i are introduced as new

variables, and g2
p is a numerical parameter that we can choose to ensure numerical

stability. By rescaling the fields and spatial coordinates appropriately, and setting
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the vacuum expectation value and coupling constants to one, that is, η = g = 1, it is

easily seen that λ is the only parameter in the theory that controls the mass and size

of the monopoles.

3.2 Monopole-Antimonopole Configuration

We solved the equations of motion presented in the previous section in the static

form numerically using a fixed point iteration scheme. This scheme relaxes an initial

guess field configuration at each iteration step. As with all relaxation schemes, a good

initial guess was important for our method to converge.

First, before constructing a gauge for a monopole-antimonopole pair, we needed

to determine how anti-monopoles look like. To get an antimonopole, we can simply

invert the φ̂a for the monopole (see Fig. 3.1b). This gives

φa = −h(r)r̂a =
h(r)

r
(−x,−y,−z) . (3.5)

However, this is not the only possibility. Any further local rotation of the directions of

φa will also have the topology of an antimonopole. These local rotations are irrelevant

if we consider an antimonopole in isolation and all such gauge rotated antimonopoles

have the same energy. However, when we patch a monopole and an antimonopole

together, there is an alignment issue, and the monopole-antimonopole pair may have

different energies depending on their “relative twist”. For example, in Fig. 3.2, we

show Higgs vectors for the monopole described above and the antimonopole configu-

ration of Eq. (3.5). This monopole-antimonopole configuration has twist equal to π.

In Fig. 3.2, we also show the zero twist case, in which the antimonopole has only the

third component of the Higgs inverted (see Fig. 3.1c), that is,

φa =
h(r)

r
(+x,+y,−z) . (3.6)
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(a) ~φ = h(r)(x̂+ ŷ + ẑ) (b) ~φ = −h(r)(x̂+ ŷ + ẑ) (c) ~φ = h(r)(x̂+ ŷ − ẑ)

Figure 3.1: Higgs isovectors about (a) monopole, (b) an antimonopole with all
vectors inverted, and (c) an antimonopole with all vectors inverted in z direction
only.
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Figure 3.2: Higgs vectors in the xz−plane for twist = π (left) and twist = 0 (right).
The Higgs zeros are located at (0, 2) and (0,−2), shown as filled and unfilled circles.

Intermediate between the two cases of Eqs. (3.5) and (3.6), there is a continuous

set of configurations that can be obtained by rotations of the scalar field directions

along the z-axis. The general configuration of the twisted monopole-antimonopole
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Higgs field can be written as

φ̂1 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) cos(ϕ− γ/2)− sin θ sin γ sin(ϕ− γ/2) , (3.7)

φ̂2 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) cos(ϕ− γ/2)− sin θ sin γ cos(ϕ− γ/2) , (3.8)

φ̂3 = cos θ cos θ̄ + sin θ sin θ̄ cos γ , (3.9)

where, as shown in Fig. 3.3, θ and θ̄ are the angles measured from the the z-axis

to the position vectors centered at the monopole and antimonopole, and ϕ is the

azimuthal angle; γ is the relative twist angle and takes values from 0 to 2π. In

Cartesian coordinates we can write these position vectors as

rm = |x− xm|, rm̄ = |x− xm̄| , (3.10)

where xm = (0, 0, z0) and xm̄ = (0, 0,−z0). Therefore, Eqns. (3.7)-(3.9) are expressed

in Cartesian system as follows,

rmrm̄φ̂1 = (cx+ sy) [(z + z0) cos γ − (z − z0)]− (cy − sx)rm̄ sin γ , (3.11)

rmrm̄φ̂2 = (cy − sx) [(z + z0) cos γ − (z − z0)] + (cx+ sy)rm̄ sin γ , (3.12)

rmrm̄φ̂3 = (z − z0)(z + z0) + (x2 + y2) cos γ , (3.13)

where c ≡ cos γ and s ≡ sin γ. With this ansatz, we can write our initial guess for

the Higgs field configuration as

φa = h(rm)h(rm̄)φ̂a . (3.14)

Our ansatz for the gauge fields follows from the requirement that the covariant deriva-

tives of the Higgs isovector vanish, Dµφ̂ = 0, at spatial infinity. This gives

W a
µ = −εabcφ̂b∂µφ̂c . (3.15)

We include profile functions to obtain our initial guess for the gauge fields

W a
µ = −(1− k(rm))(1− k(rm̄))εabcφ̂b∂µφ̂

c . (3.16)
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Figure 3.3: The physical configuration of the monopole-antimonopole pair.

This initial guess automatically satisfies the asymptotic conditions in Eq. (2.56) for

finite energy configurations.

We can see that the twist has a gauge invariant meaning in two ways. First,

the energy is gauge invariant and by explicit calculation we see that the energy of

the configuration depends on the twist. Second, the twist can be expliclty defined

in terms of the Chern-Simons number as demonstrated by Klinkhamer and Manton

(1984). The bound state solution with twist of π is the sphaleron with Chern-Simons

number of 1/2.

3.3 Twisted Dipole Gauge

We would like to minimize the energy in Eq. (2.55) but with the constraints that

the monopole and antimonopole locations and their relative twist are held fixed. We

have found a simple scheme to impose such constraints, in part by making use of the

topology of the monopole and antimonopole. The key realization was that local gauge

transformations can be made to freely choose the direction φ̂a at any spatial point.

For example, the simplest choice would be to adopt the “unitary gauge” in which the
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Higgs is spatially uniform. However, then the gauge fields are singular and this makes

the unitary gauge unsuitable for numerical work. Instead we adopt the “twisted

dipole” gauge which is that φ̂a is fixed by Eqs. (3.7), (3.8), and (3.9) throughout

the numerical relaxation. This gauge choice automatically fixes the locations of the

monopole and antimonopole due to the topology, and it also fixes the twist. The

locations of the monopoles were chosen to lie within a cell of the lattice, not on a

vertex. This avoids evaluation of the fields at the centers of the monopoles and the

possibility of any fluctuations during field relaxation that can move the location of

the monopoles.

Since we fixed the direction of Higgs field isovectors at each spatial point, only

the magnitude of the Higgs field can vary and it is unnecessary to relax each of the

components separately. Instead, we write φa = |φ|φ̂a and relax |φ| according to the

equation

∇2|φ| = |φ|∂iφ̂a∂iφ̂a+g2|φ|W a
i W

a
i −g2|φ|W a

i W
b
i φ̂

aφ̂b−2g|φ|εabcW a
i ∂iφ̂

bφ̂c+λ(|φ|2−1)|φ| .

(3.17)

Thus, we have 1 equation for |φ|, 9 equations for W a
i , and 3 equations for Γa. However,

in the static case, and since we were working in temporal gauge, the equations for Γa

are trivial. This leaves us with 10 non-trivial equations to solve.

3.4 Numerical Solution

To see how our numerical scheme works, we first set all the time derivatives to zero

in the equations for |φ| and W a
i and discretize the spatial derivatives. Our discretized

equations at a given lattice point can be written in the following generic form,

E[{fβ}] = 0 , (3.18)
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where {fβ} denotes the set of fields, and E is the array of discretized equations

obtained from Eqs. (3.2)-(3.4). Now, if we use second order spatial derivatives, the

Laplacian term in these equations can be written as

∇2f(i, j, k)→ − 6

δ2
f(i, j, k) +

1

δ2
[f(i+ 1, j, k)

+ f(i− 1, j, k) + f(i, j + 1, k) + f(i, j − 1, k)

+ f(i, j, k + 1) + f(i, j, k − 1)] ,

where f denotes any one of the fields and δ is the lattice spacing. Then we re-write

Eq. (3.18) for the field fα as

fα(i, j, k) =
δ2

6
Eα[{fβ}] + fα(i, j, k) . (3.19)

So far this is exactly equivalent to Eq. (3.18), but now we take the left-hand side at

the current (nth) iteration step and the right-hand side at the previous iteration step

f (n)
α (i, j, k) =

δ2

6
Eα[{f (n−1)

β }] + f (n−1)
α (i, j, k) . (3.20)

In fact, once a field is updated at some point (i, j, k), that value is immediately used

on the right-hand side for the next computation. In our numerical runs, we employed

this approach but used sixth order derivatives for better accuracy. Then the numerical

coefficient of the Eα term is 6/49 instead of 1/6.

For most of our simulations, we chose a cubic lattice with 1283 lattice points

and lattice spacing δ = 0.2 and Dirichlet boundary conditions. Since we had set

g = 1 = η, the mass of the heavy gauge fields is mv = gη = 1 and the scalar mass

is ms =
√

2λη =
√

2λ. The monopole width is primarily set by the mass of the

vector field and so the core of the monopole is resolved by ∼ 53 lattice points in our

simulations.

The monopole and antimonopole locations were fixed at z = ±(z0 + δ/2) respec-

tively. With the offset by half a lattice spacing, we ensure that the zeros of the Higgs
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Figure 3.4: A 3D vector plot of the magnetic field of a single monopole. The log-log
plot of the magnetic field strength of the monopole vs distance r for λ = 4. The dots
represent the numerical solution and the solid line shows a 1/r2 fit.

field do not lie at a lattice point and there are no artificial numerical singularities due

to 1/r factors when specifying initial conditions as in Eqs. (3.14) and (3.16).

We performed runs with different values of the coupling constant λ, twist γ, and

monopole-antimonopole separation d = 2z0. We ran our code for each set of param-

eters for 1000 iterations and then found the asymptotic value of energy by extrapo-

lating the energy vs. iteration number power law dependence to infinite number of

iterations.

We validated our numerical scheme through various means. First, we solve the

equations for a single monopole with coupling parameter, λ = 4, and in the hedgehog

gauge on a 643 lattice. The magnetic field from this solution was found to precisely

fall as ∝ r−2 away from the location of Higgs zero as shown in the Fig. 3.4. Second, for

each set of parameters λ and γ, the energy for the monopole-antimonopole asymptotes

to twice the monopole mass at large separation. Third, we found that the energy has

a saddle point at twist=π for all values of λ that we had considered. This is consistent

with the general arguments by Taubes (1982a) and his analysis for the λ = 0 case.

46



-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

Figure 3.5: Magnetic field lines for λ = 4, d = 3.4 (z0 = 1.7) in the xz-plane in the
untwisted case (left) and the maximally twisted case (right).

3.5 Results and Conclusions

We start with results for the magnetic field lines for a monopole-antimonopole

pair with and without twist. The results are shown in Fig. 3.5. For the untwisted

case and for small separations, when the boundary effects are not significant, we have

checked that the magnetic field strength falls off as r−3 within our lattice, just as we

would expect for a magnetic dipole.

In Fig. 3.6 we show the relaxed energy of the monopole-antimonopole vs. sepa-

ration for λ = 1 and for several different twist values. At large separation, the total

energy goes to twice the monopole mass, as we expect since the Coulombic interac-

tion dies off. At small separations, the interaction is attractive for small values of

twist and repulsive for very large values of twist. The curve for γ = π (maximum

twist) has a minimum at d ≈ 3.4. This is seen more clearly in Fig. 3.7 where we plot

the relaxed energy vs. separation for γ = π and for several different values of λ. A

three-dimensional plot of energy vs. separation and twist would have a saddle point

in which the minimum is along the direction of separation and a maximum along the
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twist direction. This saddle-point solution which corresponds to a bound state of a

monopole and antimonopole is called a “sphaleron” (Klinkhamer and Manton (1984))

and plays an important role in baryon number violating processes in particle physics.

The curves in Fig. 3.6 have qualitative features of V (d, γ) in Eq. (3.1) but quan-

titative differences are apparent when we overlay the analytic expressions and the

data as shown in Fig. 3.8. As discussed in the introduction, the differences arise

since monopoles are not point particles and monopole-antimonopole can partially an-

nihilate as the separation between them becomes smaller. This annihilation leads to

vanishing total energy as the separation goes to zero in the untwisted case unlike the

divergent energy predicted by Taubes’ potential.

To quantify the energy reduction due to annihilation we write

Edata(d, γ) = A(d, γ)ETaubes(d, γ)

= A(d, γ) [2m+ V (d, γ)] , (3.21)

where Edata is the energy of the monopole-antimonopole with separation d and twist

γ as computed numerically, m is the mass of a single monopole, 2m + V (d, γ) is

the energy as determined using the Taubes formula in Eq. (3.1) valid for point-like

monopoles, and A(d, γ) is an energy-reduction factor arising due to the finite core size

of the monopoles. At large separations A(d, γ) goes to one because then the point-like

approximation is valid.

We use Eq. (3.21) to determine A as

A(d, γ) =
Edata(d, γ)

ETaubes(d, γ)
, (3.22)

and we plot A(d, γ) for several values of γ in Fig. 3.9. These plots quantify the partial

annihilation of monopole and antimonopole due to their finite core sizes. As expected,

A→ 1 at large separation because the point-like approximation gets better. At small
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Figure 3.6: Total energy as a function of the monopole-antimonopole separation d
for λ = 1 and twist varying from 0 to π.

separation, the computed energy is smaller than the energy predicted from the Taubes

formula due to partial annihilation. From the curves for different γ values, we see that

the annihilation is less effective as the twist increases. This too is expected because

annihilation can only occur if the fields are aligned in suitable ways while the twist

forces them to be misaligned (see Fig. 3.2). In our plot we see that the maximally

twisted case has A that is ∼ 10% greater than 1 at short distances. We think this

is due to small numerical errors or small corrections to ETaubes that have not been

taken into account.

The qualitative behavior of A(d, γ) can be written as

A(d, γ) ∼ tanh

(
d

1 + cos γ

)
. (3.23)

In Fig. 3.10 we show energy contours of the untwisted monopole-antimonopole pair

and also the sphaleron solution. The total energy of the sphaleron, Es, depends on the

coupling constant λ as shown in Fig. 3.11. The monopole-antimonopole separation

within the sphaleron solution, ds, depends weakly on λ for large values of λ as can

be seen in Fig. 3.12. Since some fields fall off very slowly as λ → 0, our predicted

total energy at such small values of coupling constant could be underestimates by at

49



λ = 1.0

λ = 0.75

λ = 0.5

λ = 0.25

2 4 6 8 10
d

28

29

30

31

32

Energy

Figure 3.7: Total energy as a function of the monopole-antimonopole separation d
for twist γ = π and λ varying from 0.25 to 1.0. The sphaleron solution is at the
minimum in every curve.
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Figure 3.8: Comparison of the data for λ = 1 and the expression in Eq. (3.1) plus
twice the monopole mass (solid curves), demonstrating that the expression is not a
good fit to the data.
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Figure 3.9: The “annihilation” function A(d, γ) defined in Eq. (3.22) vs. d for some
values of γ.
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Figure 3.10: Energy density contours for λ = 4, d = 3.4 in the xz-plane in the
untwisted case (left) and the maximally twisted case (right).
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Figure 3.11: Sphaleron energy as a function of λ (dots). The solid curve shows
twice the monopole mass vs. λ.
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Figure 3.12: Monopole-antimonopole separation in the sphaleron, ds, vs. λ.

most 20% (we predict this error by comparing the numerically obtained mass of BPS

monopole with the theoretical value of 4π).

To conclude, we numerically constructed twisted monopole-antimonopole pairs

and mapped out their interaction energy for a range of coupling constants, and ex-

plicitly confirmed the arguments made by Taubes (1982a) on the existence of a bound

state solution of monopole and antimonopole, also called a sphaleron. In addition,

we studied the dependence of the sphaleron energy and size on coupling constant.

Our results are significant also because they provide a method that can be used
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to accurately set up initial configurations for dynamical studies such as monopole-

antimonopole scattering. Currently, we are involved in another project with the aim

to first setup initial conditions for a pair of monopole and antimononopole with angu-

lar momentum and then evolve the system to study the backreaction on the orbit due

to radiation. The most challenging part in the initial setup of this problem is comput-

ing a gauge with periodic boundaries which we have not been able to do successfully

yet. Given that monopole-antimonopole pairs have a twist degree of freedom, an in-

teresting question that arises is what are the consequences of this twist on the electric

side of the electromagnetic duality, that is, if there is an analogue of twist for bound

states of electrically charged particles. Also, we can ask if there are observable sig-

natures associated with annihilation of GUT monopole-antimonopole pairs like high

energy cosmic rays (Bhattacharjee and Sigl (1995)). In the electroweak context, our

method can be used to set up electroweak dumbbell configurations (Nambu (1977)).

3.6 Inspiralling Monopole-Antimonopole Pair

We are currently also numerically investigating the spectra of massive and massless

radiation that emanates upon annihilation of a monopole-antimonopole pair. As

the pair separation decreases, they would emit photons, Z bosons, W bosons, and

eventually the GUT scale bosons (Bhattacharjee and Sigl (1995)). The main technical

challenge in studying an inspiralling pair is that of adding angular momentum to the

initial configuration while satisfying periodic boundary conditions. The first step in

this process is that we boost the fields by a velocity v along the z axis, that is,

φa(x, y, z)→ φ̃a(t, x, y, z) = φa(γt− γvz, x, y, γz − γvt) , (3.24)
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and using W a
0 = 0,

{W a
1 ,W

a
2 ,W

a
3 }(x, y, z)→ {W̃ a

0 , W̃
a
1 , W̃

a
2 , W̃

a
3 }(t, x, y, z) (3.25)

= {−γvW a
3 ,W

a
1 ,W

a
2 , γW

a
3 }(γt− γvz, x, y, γz − γvt) .

Since the fields are not in temporal gauge any more, a gauge transformation must be

done in order to go back to temporal gauge which is much more suitable for numerical

simulations. That is, we must solve for the gauge transformation matrix U as follows,

W̃0 → W 0 = UW̃0U
−1 + U∂0U

−1 , (3.26)

where by setting W 0 = 0 we get

∂0U
−1 = −W̃0U

−1 . (3.27)

Using the identity ∂0(UU−1) = 0, we can rewrite the last equation as

∂0U = UW̃0 . (3.28)

Plugging in the expression for W̃0 in eqn. 3.25 gives

⇒ ∂tU(t, x, y, z) = −γv U(t, x, y, z)Wz(x, y, γz − γvt) . (3.29)

We only require the matrix transformation U at the time t = 0, which means the

integration of the last equation is trivial (integration interval is from t = 0 to t = 0),

and gives the solution U(0, x, y, z) = 1. This immensely simplifies setting up the

initial conditions in temporal gauge after boosting the fields.

Next step in the process is to find another transformation that would make the

fields satisfy periodic boundary conditions on our simulation lattice. This step has

been a big challenge and we have not fully achieved this goal yet. However, we plan

to apply the same approach that we used in our recent study on global string loops

(see Chapter 6).
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Chapter 4

PRODUCTION OF STRINGS

Our second paper followed from a previous analysis on the creation of magnetic

monopoles done by Vachaspati (2016a). We focussed primarily on the production of

U(1) gauge strings, where the class of initial conditions we use are motivated by the

initial conditions that he proposed.

There are several aspects of the string creation problem that differ from the

monopole creation problem. In the latter, once monopole-antimonopole pairs are

created with enough energy, they fly apart and survive indefinitely. On the other

hand, only closed loops of string can be created. These oscillate, radiate, collapse,

and survive only for a finite amount of time. If some of the loops are produced with

large angular momentum, they live for longer but eventually decay. A second differ-

ence is that the properties of the string network that is produced change with time

because the strings interact with each other and intercommute to form smaller loops.

We had introduced the field theory and string solution in the second chapter. In

the following sections, we describe our choice of initial conditions and the computa-

tional methods used in our analysis.

We will choose initial conditions for our simulations that have trivial winding and

no strings. Then even after the particles have scattered and strings are produced, the

topological winding around the whole simulation box must vanish. Thus only closed
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loops can be produced in a scattering event.

4.1 Initial Conditions

We based the initial conditions for our simulations on those used for monopole-

antimonopole production (Vachaspati (2016a)). We adopted the temporal gauge

for all our simulations, that is A0 = 0, and construct circularly polarized gauge

wavepacket configurations (not solutions) that propagate along the ±z−axis. Con-

sider the ansatz below for a wavepacket propagating in the −z direction,

Ax = ∂yf1(ωf2 − ∂zf2) cos(ω(t+ z − z0)) (4.1)

Ay = ∂xf1(ωf2 + ∂zf2) sin(ω(t+ z − z0)) (4.2)

Az = ∂x∂yf1f2[cos(ω(t+ z − z0))− sin(ω(t+ z − z0))] (4.3)

where f1 = f1(x, y), f2 = f2(t+ z− z0) will be specified below, and z0 determines the

initial (t = 0) location of the wavepacket along the z−axis. Now the initial conditions

for the gauge fields and their time derivatives are,

Ai(t = 0,x) = Ai(t = 0,x), (4.4)

∂tAi(t = 0,x) = [∂tAi(t,x)]t=0 (4.5)

This form for the gauge fields satisfies ∇ ·A = 0 which will be useful later when we

discuss Gauss constraints.

We also constructed a wavepacket traveling in the +z direction in a similar man-

ner. To do this, we write the formulae in terms of f3(t− (z + z0)):

A′x = ∂yf1(−ω′f3 − ∂zf3) cos(ω′(t− z − z0) (4.6)

A′y = −∂xf1(ω′f3 − ∂zf3) sin(ω′(t− z − z0)) (4.7)

A′z = ∂x∂yf1f3(cos(ω′(t− z − z0))− sin(ω′(t− z − z0)) (4.8)
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And these can be used to construct initial conditions for a wavepacket that propagates

in the +z direction as above.

We chose profile functions in a manner that localizes the gauge wavepacket in all

directions;

f1(x, y) = a exp

[
−x

2 + y2

2w2

]
, (4.9)

f2(t+ z − z0) = exp

[
−(t+ z − z0)2

2w2

]
, (4.10)

f3(t− z − z0)) = exp

[
−(t− z − z0)2

2w2

]
, (4.11)

where a is the amplitude and w is the width of the wavepacket.

The initial conditions for the scalar field are “trivial”,

φ(t = 0,x) = η, [∂tφ(t,x)]t=0 = 0 . (4.12)

The free parameters in the initial conditions are z0, a, w, ω and ω′. For our

simulations, we rescaled these parameters as follows:

z0 =
z̄0

η
, a =

ā

η
, w =

w̄

η
, ω = ω̄η, ω′ = ω̄′η . (4.13)

The dimensionless parameters z̄0, ā, w̄, ω̄, and ω̄′ above are varied in our code. In

addition, the Abelian Higgs model has the parameters e, λ and η. However, by field

and coordinate rescalings, there is only one model parameter given by the ratio of

scalar and vector masses, β = m2
S/m

2
V = 2λ/e2.

4.2 Computational Techniques

Following the numerical relativity based approach that Vachaspati (2016a) devel-

oped, we introduced a new dynamical variable Γ = ∂iAi. Then the field variables are:
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φ, Ai and Γ, altogether 6 functions. The equations of motion for these variables are,

∂2
t φa = ∇2φa − e2AiAiφa − 2eεab∂iφbAi − eεabφbΓ ,

− λ(φbφb − η2)φa (4.14)

∂tF0i = ∇2Ai − ∂iΓ + e(εabφa∂iφb + eAiφaφa) , (4.15)

∂tΓ = ∂iF0i − g2
p[∂iF0i + eεabφa∂tφb] , (4.16)

where a = 1, 2, εab is the Levi-Civita tensor with ε12 = 1, F0i = ∂tAi in the temporal

gauge, and g2
p is a new parameter introduced for numerical stability. The idea is

that the square bracket in Eq. (4.16) vanishes in the continuum because of the Gauss

constraints ∇ · E = ρ where ρ is the charge density. However, the square bracket

may not vanish upon discretization. By writing the equations in the above form with

the auxiliary function Γ, we obtained improved numerical stability as is also seen in

Numerical Relativity (Baumgarte and Shapiro (2010)). The value of the parameter

g2
p is chosen by numerical experimentation; we have set g2

p = 0.75 in our simulations.

The initial conditions for the auxiliary function Γ follow from the choice of initial

conditions for the gauge field,

Γ(t = 0,x) = 0 . (4.17)

For our analysis, we discretized these equations on a 2563 lattice with lattice

spacing ∆x = 0.05 and time step size ∆t = ∆x/4. The difference equations were

solved using the explicit Crank-Nicholson method with two iterations. To reduce

computation times, we parallelized our numerical code. As a check of our evolution

code, we found that the total energy inside the box is conserved to within 1% during

the entire evolution period.

In addition to the evolution of equations, we developed a tracking code which

detects strings and calculates the number of loops that are present in the simulation
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domain at any given time. The program calculates the phase winding as defined

in Eq. (2.19) on every plaquette of the lattice. A non-zero winding on a plaquette

implies that a string passes through the plaquette and enters/exits the corresponding

cells. The program then connects the strings and records the properties of the loops.

The string tracking algorithm is the same as used in earlier work (Vachaspati

and Vilenkin (1984); Pogosian and Vachaspati (1998)) but with one subtlety. In

calculating the winding as in Eq. (2.19), we have to find the discretized value of dθ

along the links of the lattice. Generally one uses the “geodesic rule” and the phase

difference between lattice sites i and i+ 1 is

dθ → ∆θ ≡ θi+1 − θi + 2πk , (4.18)

where k = 0,±1 is chosen to minimize |∆θ|. However, this rule ignores the case when

|∆θ| = π. The justification in earlier works has been that this possibility is of zero

measure. In our case, however, this situation arises quite frequently. The reason can

be seen from the equations of motion and the initial conditions. We start out with

φ1 = η and φ2 = 0 i.e. θ = 0 throughout the lattice. The equations of motion are

such that they tend to preserve φ2 = 0, and all the non-trivial dynamics is in the φ1

variable, at least at early times. Now φ1 can become negative. When φ1 differs in

sign at neighboring lattice sites, this gives a phase difference of exactly ±π and the

geodesic rule is ambiguous. In evaluating the winding number, we chose +π or −π

with equal probability.

4.3 Results

As we have discussed above, the problem contains 1 model parameter, namely β,

and 5 initial condition parameters. We will fix some of these parameters and scan
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over a range of a few parameters. We set

z̄0 = 1.8, w̄ = 0.6, ω̄′ = ω̄ . (4.19)

We have explored,

β ∈ [0.08, 8.0], ā ∈ [0.6, 7.0], ω̄ ∈ [0.2, 8.0] . (4.20)

We did not see any qualitative changes as we varied β (see below) and so for most of

our runs we set β = 1, equivalently e = 0.5, λ = 0.125. We also chose η = 1 and this

sets the length scale in the simulation.

From our initial runs, we found that energy is condensed into strings even from

a single wavepacket, i.e. without scattering two gauge wavepackets. We will call

this “prompt string production” and it is reminiscent of the discovery made by Hind-

marsh and Rajantie (2000b) that strings may be formed due to purely gauge field

fluctuations during a phase transition. In the next subsection, we will explore prompt

string production and find that there are regions of parameter space where prompt

production does not occur. We will then move on to explore this region of parameter

space and find a sub-region where strings are produced when wavepackets collide.

4.3.1 Prompt String Production

For the single pulse case, after fixing the parameters of the theory, we man-

aged to analytically find expression for total energy in the simulation domain for

the wavepacket profiles shown in the previous section. It is as follows,

ESingle =
ā2π

3
2η (9 + 10w̄2ω̄2 + 4w̄4ω̄4 + 2e2(w̄2 + w̄4ω̄2))

8w̄3
. (4.21)

With this expression, we can trade one of the parameters for the total energy.

In Fig. 4.1 we show the prompt production of strings at various times during

the evolution. In the first frame, there is energy density of the wavepacket but no
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Figure 4.1: Total energy density (boxes on the left) and winding (boxes on the right)
at different time steps for the case of one pulse for ā = 6.215, ω̄ = 2.0, λ = 0.125, and
ESingle = 4000. The 1163 boxes shown here are smaller than the full lattice (2563).

strings. Some time steps later, the scalar field has adjusted to the gauge wavepacket

and strings, as detected by topological winding, are produced. As the system evolves

further, the dense network of strings chops itself up and decays.

We examined prompt production for several different values of the model param-

eter λ (equivalently β since we fix e = 0.5). Fig. 4.2 shows how the length in strings

– evaluated by counting the plaquettes that contain non-trivial topological winding
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Figure 4.2: Total length of strings (in units of number of lattice points) as a
function of time(-steps) for λ = 0.01 (blue), λ = 0.125 (orange), λ = 0.50 (green),
and λ = 1.0 (red). All the other kinematic parameters are kept fixed with ā = 6.215
and ω̄ = 2.0.
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Figure 4.3: Total length of strings (in units of number of lattice points) as a function
of time(-steps) for ω̄ = 0.1 (blue), ω̄ = 2.0 (orange), ω̄ = 4.0 (green), ω̄ = 6.0 (red),
ω̄ = 8.0 (no strings), and λ = 0.125. Total energy for all the runs is kept fixed at,
ESingle = 4000, by adjusting ā suitably according to Eq. (4.21).

– changes with time. The figure shows that the outcome is not very sensitive to the

value of λ and hence we set λ = 0.125 (β = 1) in the runs described below.

In contrast, as seen in Fig. 4.3, the prompt production of strings depends sensi-

tively on the parameter ω̄. The general trend is that less length is produced for larger

ω̄ but the strings that are produced survive for a longer time. This can happen if

larger ω̄ leads to larger loops or to loops with higher angular momentum.
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Figure 4.4: Energy in strings in xy−planes as a function of z at time steps t = 0 (no
strings), t = 50 (orange, right-most curve), t = 100 (green), t = 150 (red), t = 200
(blue), and t = 250 (brown, left-most curve), during the simulation for ā = 6.215,
ω̄ = 2.0, λ = 0.125, and ESingle = 4000. Following prompt string production, the
string network moves to the left and decays.
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Figure 4.5: Energy in strings as a fraction of total energy versus time(-steps) for
ā = 6.215, ω̄ = 2.0, λ = 0.125, and ESingle = 4000.

In Fig. 4.4 we plot the energy density integrated over x̄ and ȳ coordinates, as

a function of z̄. Prompt string production occurs at the initial location of the

wavepacket (z̄0 = 1.8 or 36 lattice spacings away from the center of the lattice).

Then the string cluster moves towards the left and also decays.

We calculated the length of strings at any given time by counting the number

of plaquettes with non-trivial winding. We also estimated the energy in the string

network by adding up the field energies in all the cells within m−1
S or m−1

V (whichever
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Figure 4.6: Critical amplitude ā as we change total input energy, ESingle, for the
single pulse case with λ = 0.125. Strings are only produced above the curve.

is larger) of the string network. However, the plot in Fig. 4.5 of the energy vs.

time shows reasonable correspondence with the length versus time plot in Fig. 4.3

for ω̄ = 2.0, indicating that the strings do not have significant kinetic energy at

formation.

As expected, greater initial energy produces more strings. However, our analysis

indicates some subtleties in the process of string production. From Eq. (4.21), it can

be seen that, for fixed energy, amplitude becomes smaller as we increase the frequency

and vice-versa. (The wavepacket width w̄ is fixed in all our runs.) After experimenting

with different values of amplitude and frequency at fixed energy, we noticed that there

is a minimum/critical amplitude below which we do not produce any strings, as seen

in Fig. 4.6). The parameter space under the critical curve, for which strings are not

produced, gets smaller as the energy increases. In the opposite limit of small ω̄ (large

amplitude), we see that the total length of strings is far greater (also seen in Fig. 4.3).

The physical origin of this behavior is not clear. One expectation is that more strings

are produced if there is higher energy density (for the same total energy). However,

upon plotting the maximum energy density in our simulation box over the duration

of the run with respect to frequency (for fixed total energy equal to 4000), we find

noisy behavior with an overall increasing trend (see Fig. 4.7). This is counterintuitive,
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Figure 4.7: Maximum energy density as a function of frequency ω̄ in the initial
wavepackets for λ = 0.125 and total energy of 4000 in the box. The critical frequency
above which no strings are produced here is 7.5 (corresponding to ā = 0.817).

since no strings are produced above the critical value of ω̄ = 7.5 (corresponding to the

critical amplitude ā = 0.817 as seen in Fig. 4.6). This indicates that energy density

alone may not determine string production and is reminiscent of the chaotic behavior

seen in kink production in 1+1 dimensions (Dutta et al. (2008); Romanczukiewicz

and Shnir (2010)).

4.3.2 Wavepacket Collisions

We now consider the case when two wavepackets collide. The parameters are cho-

sen so that there is no prompt string production. However, strings are produced when

the wavepackets collide. So now we have two wavepackets in the initial conditions

that are headed towards a collision. The initial energy is

EDouble = 2ESingle +
π3/2ā2η

4w̄7
e−z̄

2
0/w̄

2

[
−18w̄2z̄2

0 + 4z̄4
0

+2w̄8ω̄2(e2 + 2ω̄2) + 2w̄6(e2 + 5ω̄2)

+w̄4(9− 2e2z̄2
0 − 8z̄2

0ω̄
2) cos(2z̄0ω̄)

−8w̄2z̄0ω(2w̄2 − z̄2
0 + w̄4ω̄2) sin(2z̄0ω̄)

]
. (4.22)

We again used Eq. (4.21) for fixing kinematic parameters. For the simulation, we
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chose ā = 0.578 and ω̄ = 9.0 for the individual wavepackets. With this choice prompt

production of strings does not occur, that is, the parameters lie below the critical

curve for the single pulse case shown in Fig. 4.6.

Figure 4.8: Total energy density (boxes on the left) and winding (boxes on the right)
at different time steps for the case of two collinear pulses for ā = 0.578, ω̄ = 9.0,
λ = 0.125, and EDouble ≈ 8000. The strings are first produced at time step 133 in our
simulation, and therefore we have not shown plots for intermediate time steps. The
1163 boxes shown here are smaller than the full lattice (2563).

Fig. 4.8 shows the evolution of the wavepackets and string formation after collision.

Very few short-lived strings are produced even though the total input energy is much
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Figure 4.9: Energy in strings as a fraction of total energy versus time for ā = 0.578,
ω̄ = 9.0, λ = 0.125, and EDouble ≈ 8000.
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Figure 4.10: Critical amplitude ā as we change total input energy, EDouble, for the
case of colliding wavepackets for λ = 0.125. Strings are only produced above the
curve.

higher (≈ 8000) compared to the single pulse run presented in the previous subsection.

The fractional energy in strings as a function of time is shown in Fig. 4.9. By scanning

over different amplitudes, ā, for the same total energy, we found the critical curve for

string formation when wavepackets collide. The critical curve is plotted in Fig. 4.10.
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4.4 Conclusions

We explored the formation of U(1) gauge strings due to wavepackets of of gauge

fields in two settings: (i) the prompt formation of strings from gauge fields, and (ii) the

formation of strings when gauge wavepackets collide. We restricted our attention to a

class of wavepackets with certain parameters, and found critical curves in parameter

space that demarcate string formation regions. These critical curves show that it

is easier to produce strings with higher energy wavepackets (see Fig. 4.6 and 4.10).

However, we did not found a general pattern beyond this simple conclusion. The

reason may lie in the chaotic behavior observed in previous studies of kink production

in 1 + 1 dimensions (Dutta et al. (2008); Romanczukiewicz and Shnir (2010)).

It is also interesting to contrast string production with magnetic monopole pro-

duction. Unlike the case of magnetic monopoles, the string loops that are formed are

short-lived as they collapse and produce radiation. The loops may live longer if we

could find initial conditions that provide them with greater angular momentum but

these too will not live indefinitely. On the other hand, once a magnetic monopole

and antimonopole pair are produced with sufficient velocity, they will move apart

and survive indefinitely. Furthermore, magnetic monopoles are localized objects and

so the colliding wavpackets need not be very extended. For strings, the wavepackets

have to extend over a region that is the size of the string loop that is to be produced,

and only relatively small loops can be produced. In these respects it appears that

magnetic monopoles are easier to produce than strings.

The flip side is that we know systems that contain gauge strings while the exis-

tence of magnetic monopoles is still speculative. Gauge strings are known to exist in

superconductors and, in that setting, our gauge field wavepackets correspond to pho-

ton wavepackets. This suggests that by shining light on superconductors we could
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produce strings within the superconductor. However, a realistic superconductor is

described by a different set of equations that take into account the dependence of

the model parameters on the temperature (Kennes and Millis (2017)). It will be

interesting to adapt our analysis to study string production in superconductors.
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Chapter 5

DECAY OF COSMIC STRING LOOPS

In one of our recent projects (Matsunami et al. (2019)), for the first time, we di-

rectly examined the decay of a cosmic string loop to particle radiation in the Abelian-

Higgs model by simulating loop formation followed by evolution in full field theory.

Previous studies of the particle radiation from cosmic strings included analytical es-

timates (Vachaspati et al. (1984)), some based on effective couplings of Nambu-Goto

strings to other fields (Srednicki and Theisen (1987); Brandenberger (1987)), field

theory simulations of standing waves, kinks, and cusps on long strings (Olum and

Blanco-Pillado (1999, 2000)) and simulations of strings with small oscillations (Mar-

tins et al. (2004); Hindmarsh et al. (2017)). The focus on a single loop is to be

contrasted with the very large field theory simulations of an entire network of strings

in an expanding spacetime (Hindmarsh et al. (2009b, 2017)).

We found that string loops emit particle radiation mainly due to features on the

strings known as kinks and cusps (Vilenkin and Shellard (2000)). Kinks are non-

differentiable sharp corners on strings that move with the speed of light and cusps

are points at which a string momentarily moves with the speed of light. Basically,

curves along a string can be described using one parameter ζ, and tangents to these

curves change discontinuously on kinks and cusps represent singular points on these

curves. The half-life of a loop due to particle radiation is proportional to Lp, where

L is the length of the loop and p ≈ 2 for the loops we have considered. On the other

hand, the loop half-life due to gravitational radiation is known to be proportional to

L. Thus, there is a crossover from particle-decay to gravitational-decay roughly given

by L∗ ∼ w/Gµ where w ∼ µ−1/2 is the width of the string. For L < L∗, loops decay
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by particle emission, while for L > L∗ gravitational emission dominates. We discuss

caveats and the implications of this result in more detail below, along with the values

of p that might arise for loops other than those we have directly simulated.

5.1 Model

We again considered the Abelian-Higgs field theory with a complex scalar field,

φ = φ1 + iφ2, and a U(1) gauge field, Aµ. We work in the temporal gauge, A0 = 0,

and the field equations of motion are

∂2
t φa = ∇2φa − e2AiAiφa − 2eεab∂iφbAi − eεabφbΓ− λ(φbφb − η2)φa , (5.1)

∂tF0i = ∇2Ai − ∂iΓ + e(εabφa∂iφb + eAiφaφa) , (5.2)

∂tΓ = ∂iF0i − g2
p[∂iF0i + eεabφa∂tφb] , (5.3)

where a = 1, 2, εab is the Levi-Civita tensor with ε12 = 1, F0i = ∂tAi in the temporal

gauge, λ and e are coupling constants, Γ ≡ ∂iAi, and g2
p is a parameter introduced

for numerical stability (Vachaspati (2016b)). The solution for a topologically stable

straight string along the z−axis is (Nielsen and Olesen (1973))

φ = ηf(r)eiθ, Ai = v(r)εij
xj

r2
(i, j = 1, 2) , (5.4)

where r =
√
x2 + y2, θ = tan−1(y/x), and f(r) and v(r) are profile functions that van-

ish at the origin and asymptote to 1, respectively. The string energy per unit length

(also its tension) is given by µ = πη2F (β) where β ≡ 2λ/e2 and F is a numerically

determined function such that F (1) = 1. We only considered β = 1 corresponding

to the Bogomol’nyi-Prasad-Sommerfield (BPS) limit (Bogomolny (1976); Prasad and

Sommerfield (1975)) where µ = πη2 and the scalar mass, mS =
√

2λη, equals the

vector mass, mV = eη.
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Figure 5.1: Schematic representation of the initial configuration. Four straight
strings are set up with velocities as shown. The strings intersect and reconnect
to produce a central loop and also a second “outer” loop because of the periodic
boundary conditions. These loops then oscillate and shrink without interacting with
each other. By choosing the spacing of the initial strings, we can produce loops of
different sizes.

5.2 Initial Conditions and Numerical Method

Our aim was to produce a loop as might be produced in a cosmological set-

ting and then to evolve it. For this purpose, we set up initial conditions with four

straight strings that are moving with velocities ±v1 and ±v2 as shown schematically

in Fig. 5.1. The four strings then collide to form a loop with a stationary center of

mass and a non-zero angular momentum. The latter is essential to prevent the loop

from simply collapsing to a double line. Preparing this initial configuration starts

with taking the string solution of Eq. (5.4) oriented along a given direction, boosting

it to a suitable velocity, and gauge transforming the boosted solution back in to the

temporal gauge. Then the four string solutions have to be patched together in a

simulation box with periodic boundaries. We describe all these steps in more detail

next.
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First, we numerically find a solution for a static, infinite, straight string by substi-

tuting the Nielsen-Olesen ansatz (Eq. (5.4)) into the equations of motion and solving

for the profile functions f(r) and v(r) using the relaxation method. We then use cubic

spline interpolation to obtain smooth functions f(r) and v(r) and their derivatives.

To build a cosmic string loop we consider a string-antistring pair along the z-

direction and another along the x-direction in a simulation box with periodic bound-

ary conditions (PBC). We then Lorentz boost the strings and antistrings so that they

are moving towards each other as shown in the Fig. 5.1. Since the evolution equations

(Eq. (5.3)) are in the temporal gauge, we must gauge transform the boosted string

solutions to set the temporal component of the gauge field to zero. Namely, we find

a gauge transform U = eieξ such that

A0 = Ā0 +
i

e
U∂tU

∗ = Ā0 + ∂tξ = 0 , (5.5)

Ai = Āi +
i

e
U∂iU

∗ = Āi + ∂iξ , (5.6)

where Aµ is in the temporal gauge and Āµ is the field after the Lorentz boost.

From Eq. (5.5), we have ∂tξ = −Ā0 and ξ can be evaluated as

ξ =

∫ t

0

dτĀ0 . (5.7)

At initial time t = 0, this gives ξ = 0. Similarly ∂iξ|t=0 = 0. Hence, at the initial

time, we have

A0 = 0 , (5.8)

Ai = Āi + ∂iξ|t=0 = Āi , (5.9)

where all functions are evaluated at t = 0. Note that the initial value of the scalar

field is unaffected by the gauge transformation since exp(ieξ) = 1 when ξ = 0.
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To solve the equations of motion we also need ∂tAµ and ∂tφ at the initial time.

We have

∂tAµ|t=0 = ∂tĀµ + ∂t∂µξ = ∂tĀµ − ∂µĀ0 , (5.10)

∂tφ|t=0 = ∂tφ̄− ieĀ0φ̄ , (5.11)

where all functions are evaluated at t = 0.

To combine the string and antistring solutions, we take the ansatz given by Vilenkin

and Shellard (2000),

φss̄ =
φsφs̄
η

=
|φs||φs̄|
η

ei(θs−θs̄) , (5.12)

Ass̄ = As − As̄ . (5.13)

To be consistent with the PBC, the phase of φss̄ must approach zero at the boundaries

of the box. While in Eq. (5.13) the phase approaches zero asymptotically at infinity,

it does not do so in a finite simulation box. Thus, we modified the ansatz to make

the phase approach zero faster:

φss̄,mod =
|φs||φs̄|
η

ei(θs−θs̄)[1−tanh (ω(ρ−L/2))]/2 ,

where ω, taken to be 0.5, is a parameter that determines how quickly the phase

approaches to 0 at the boundaries, and L is the size of the box. Finally, the scalar

and gauge fields of the two sets of a parallel string-antistring pair are given as

φ =
φss̄,1φss̄,2

η
, (5.14)

A = Ass̄,1 + Ass̄,2 , (5.15)

where φss̄,1, Ass̄,1 and φss̄,2, Ass̄,2 are the scalar and gauge fields of the first and second

string-antistring pairs, respectively.

Cosmological strings are expected to be mildly relativistic and so we chose |v1| =

0.6 and |v2| = 0.33. The directions were taken to be (v̂1)x = 0.4, (v̂1)y =
√

1− 0.42 ≈
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0.92 for the two strings oriented along the z-axis and (v̂2)z = 0.4, (v̂2)y ≈ 0.92 for

those along the x-axis. The string velocities are approximately aligned along the

y-axis, but not exactly, to avoid overly symmetrical loops that tend to pass through

a double line configuration and collapse prematurely. We experimented with a wide

range of initial velocities and our main conclusions are independent of the particular

choices of these parameters.

Given the initial conditions for fields φ, Aµ, we evolved them using the discretized

version of Eqs. (5.1)-(5.3) with e = 1, λ = 1/2, η = 1 and g2
p = 0.75. We used the

explicit Crank-Nicholson algorithm with two iterations for the evolution (Teukolsky

(2000)) and periodic boundary conditions. We tried different lattice spacings to

study the effects of numerical resolution. The initial string spacing was set to a fixed

fraction of the simulation box size so that smaller loops ran in a smaller box, with

less computational cost.

Because of periodic boundary conditions, the reconnection of four strings produces

two loops – the central loop in the middle of the box shown in Fig. 5.1, and an “outer”

loop formed from the “fragments” in the corners of the box. The two loops then

oscillate and decay without intersecting each other. We tracked the loop energy by

summing the energy density in the “core” of the string. The energy density is given

by

E =
1

2
|D0φ|2 +

1

2
|Diφ|2 +

1

2
(E2 + B2) +

λ

4
(|φ|2 − η2)2 , (5.16)

where E and B are the electric and magnetic field vectors, with their components

defined as Ei = F0i and Bi = −1
2
εijkFjk. We define the string core to be the cells

where the magnitude of the scalar field, |φ|, is less than 0.9η.
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Figure 5.2: Energy of a loop with the initial size of 390 lattice spacings plotted vs
time. Overlaid on the plot are snapshots of the loop as it goes through phases of
rapid radiation discharge due to smoothening of kinks. The animation showing the
evolution of this loop can be found at (Gauge String Movie (2019)).

5.3 Results and Conclusions

In Fig. 5.2 we plotted the loop energy vs time for a simulation on a 6003 lattice with

∆x = 0.25, where the initial size of the loop is 390 lattice spacings. (The animation of

the loop evolution can be found at (Gauge String Movie (2019)).) The plot suggests

episodic radiation, with the overlaid snapshots showing the representative “events”

leading to drops in the loop energy. Straight strings do not radiate as they correspond

to a boosted string solution. The kinks on the loop, formed at the intercommutation

of the straight strings, also propagate with minimal energy loss. We found that

noticeable radiation is produced when kinks collide. Also, as the kinks smooth out,

there are episodes of large radiation which may be due to the formation of weak cusps.
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Lattice size Inner loop Outer loop

4003 140 260

6003 210 390

8003 280 520

12003 420 780

Table 5.1: Loop sizes in lattice units for each of the runs.

Particle radiation from cusps was studied by Olum and Blanco-Pillado (1999) where

they found that the energy emission from a cusp leads to the formation of kinks and

to weak cusps in subsequent loop oscillations. This pattern of episodic radiation from

kink collisions and weak cusps, with relatively minor energy loss in between these

events, is common to all loop simulations we have performed.
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Figure 5.3: Loop energy vs. time for 8 different loops in 4 separate runs at ∆x = 0.25
resolution.

To obtain a quantitative measure of the scaling of the loop half-life with its size,

we ran simulations for 4 different box sizes yielding 8 loops given in Table 5.1. (Two

loops from different runs are almost the same length and provide a check on our
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Figure 5.4: Loop angular momentum vs. time for 8 different loops in 4 separate
runs at ∆x = 0.25 resolution.

simulation.) Fig. 5.3 shows the loop energy versus time for the 8 loops. As the loops

evolve, they also shed their angular momentum, defined as

Li ≡ εijk

∫
string core

d3x xj[−
1

2
((D0φ)(Dkφ)∗ + (D0φ)∗(Dkφ)) + εklmElBm] . (5.17)

In Fig. 5.4 we plot |L| vs time and also see episodic decay.

We ran our simulations for a few different values of the lattice spacing, ∆x, and

found that the results are sensitive to the resolution. For example, as shown in

Fig. 5.5, the total energy in the simulation box over the entire run is conserved only

at ∼ 33% level when ∆x = 0.50. For η = 1, e = 1, λ = 1/2, the string width is ∼ 1.

Therefore, with ∆x = 0.5 we only have a few lattice points within the width of the

string. Using ∆x = 0.25 improves the conservation to ∼ 5% level and agrees well

with the much more computationally expensive run with ∆x = 0.125. The choice

of ∆x makes an important difference in the lifetime of the loop, as is clear from the

right panel of Fig. 5.5. Loops live longer in simulations with better resolution. From

the animations, we saw that the shorter loops live for about one oscillation period
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while the larger loops survive for several oscillation periods. (There is ambiguity in

defining an oscillation period since the length of the loop and hence its oscillation

period is changing relatively rapidly during the simulation.)

The longest loop we were able to simulate had energy ∼ 3×103, which corresponds

to length L ∼ 103w where w is the width of the string. In cosmology we are interested

in loops of length comparable to the cosmic horizon, which is orders of magnitude

larger than the thickness of the string, perhaps by a factor ∼ 1060. So we needed to

extrapolate our results to larger lengths. For this purpose we calculate the half-life,

τ , i.e. the time it takes the loop to lose half its initial energy. In Fig. 5.6, we plot

τ/τ0, where τ0 = 41.5/η is the half-life of the smallest loop in our simulations, versus

the initial energy normalized by that of the smallest loop (denoted E0 = 506η). We

find a power law fit,

τ = τ0

(
E

E0

)p
=

1.6× 10−3

η
(ηL)p, p ≈ 2 (5.18)

where we have reinserted dimensional factors of η.

The L2 scaling in Eq. (5.18) can be understood as following from radiation being

due to episodes involving a fixed number of features (kinks and weak cusps) on the

loop, with the power emitted in a given episode (a kink collision or a weak cusp)

being independent of L. (Note that the size of the steps seen in Fig. 5.3 is similar

for different loops). If ν denotes the number of episodes per period and each episode

radiates energy ε on average, the energy lost per unit time is

Ė ∼ −νε
L
∼ −µνε

E
. (5.19)

Integration of this equation gives a lifetime

τ ∼ E2

µνε
∼ µL2

νε
(5.20)

in agreement with the L2 scaling in Eq. (5.18).
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The particle radiation rate in Eq. (5.19) is to be contrasted with Ė ∼ νGµ2

expected due to gravitational wave radiation from ν radiation episodes involving

kinks and cusps (Vachaspati and Vilenkin (1985); Garfinkle and Vachaspati (1987);

Binetruy et al. (2009)). Note that the rate of energy loss to gravitational radiation is

not suppressed by a factor of L as is the case for particle radiation in Eq. (5.19). This

is because, for example, a cusp on a loop that is twice as large is also twice as large,

and the gravitational energy emitted by a single cusp is proportional to L. Then the

lifetime of the loop due to gravitational radiation is

τg ∼
L

νGµ
. (5.21)

Comparing this to Eq. (5.20) allowed us to derive a criterion for when the gravitational

radiation is more important than particle radiation, namely, when

τg < τ ⇒ L &
ε

Gµ2
∼ w

Gµ
, (5.22)

where w is the string thickness and we estimate ε ∼ √µ, i.e. the particle energy

emitted in an episode is comparable to the energy scale of the string, and lP ∼

10−33 cm is the Planck length. Note that ν has canceled out in Eq. (5.22). Therefore,

even if there are more episodes on larger loops, gravitational radiation still dominates

over particle radiation if Eq. (5.22) is satisfied.

With L ∼ 1027 cm we find that gravitational radiation is less important than

particle radiation if Gµ . 10−40, corresponding to η ∼ 100 MeV or the QCD scale.

Hence particle radiation could be the main decay mechanism for strings formed below

the QCD scale but the dynamics of strings formed at such low energies is expected to

be dominated by friction with the ambient medium (Vilenkin and Shellard (2000)).

Alternately, for strings close to the current bound on the string tension, Gµ ≈

10−11, Eq. (5.22) implies that particle radiation will only be important for loops that
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are very small, L < 10−17 cm. Most of the radiation from such a network of strings

will be in gravitational waves.

We would like to point out some caveats to the above discussion. The first caveat is

that the long strings in our initial conditions are straight and smooth. If these strings

started out with structure (perhaps as shallow kinks) on them, as has been suggested

by Hindmarsh et al. (2009b), the number of radiative episodes would be larger, and

both the particle and gravitational radiation would be larger. This would not change

the relative importance of particle and gravitational radiation but it would mean that

the loop decays faster. A second caveat is that our loops only contain kinks and no

cusps. It is known from the computations Olum and Blanco-Pillado (1999) did that

the radiation loss from a cusp is proportional to
√
L and this does not agree with our

model where each episode emits radiation that is independent of L. However, once the

cusp radiates, it forms two kinks that then propagate, radiate and smooth out to some

extent. In the next oscillation, the cusp is weaker and the energy radiated will not be

proportional to
√
L, instead it will be proportional to some power of L smaller than

1/2. Thus with cusps we expect that the effective value of p will satisfy 1 < p < 3/2,

and Eq. (5.22) will get modified. Even then there will be a critical loop length such

that gravitational emission dominates over particle radiation for larger loops. A third

caveat is that since our initial strings were straight, there was no radiation while the

kinks propagate on the straight segments. If, however, the segments are curved, there

will be some radiation even from a propagating kink. This radiation would not be

episodic but it would be suppressed by the curvature of the segment, expected to be

suppressed by the loop size divided by the cosmic horizon scale.

To summarize, we studied the formation and evolution of cosmic string loops in

field theory and estimated their lifetimes. We found that the lifetime of the loops is

very sensitive to the resolution used in their numerical evolution. With insufficient
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resolution, the loops collapse within one oscillation period. At higher resolution,

the loops survive for a few oscillation periods and we observe that their lifetime

grows as L2. We can explain this growth in terms of episodic particle radiation.

When compared to gravitational energy losses, we find that gravitational radiation

dominates for loops that are larger than a critical length (see Eq. (5.22)).

To make further progress in the understanding of the decay of cosmic string loops,

we plan to study the scaling of decay modes for loops of different shapes and larger

number of kinks. This would further confirm the results we have obtained above.

In the next chapter, we will explore the dynamics of global cosmic string loops.

Global string loops do not face Higgs screening by the gauge fields and therefore have

significantly different interactions compared to local strings. Global strings interact

through long range forces, and since gauge field doesn’t compensate for variations in

the scalar field, the energy density is logarithmically divergent. Another reason to

study global strings is that various axion models contain a broken U(1) symmetry

and therefore contain vortex solutions (Battye and Shellard (1999); Fleury and Moore

(2016); Gorghetto et al. (2018)). This means during Peccei-Quinn phase transitions,

a network of axion strings could have formed. Therefore, it is important to study the

radiation spectrum of axion strings.
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Figure 5.5: Comparison of runs with different lattice resolution ∆x =
0.125, 0.25, 0.5 on lattices of sizes 800, 400, and 200, respectively, corresponding
to a fixed physical lattice length of 100. The left panel shows the total energy in our
simulation box and the right panel shows the evolution of the energy in the two loops
in the box. The plots show convergence at higher resolution and that ∆x = 0.25
offers a good compromise between accuracy and speed.
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Figure 5.6: Plot of the loop half-life versus initial energy (proportional to the initial
length) in the loop. They are normalized by the initial half-life of the smallest loop,
τ0, and its energy, E0. The straight line fit shows that τ ∝ L2 where L is the initial
length of the loop.
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Chapter 6

DECAY OF COSMIC GLOBAL STRING LOOPS

The emission of Goldstone radiation from global string loops has been investigated

in the Nambu-Goto limit in which the string core has negligible thickness (Vilenkin

and Vachaspati (1987)). The calculation is enabled by replacing the scalar field for

the Goldstone degree of freedom by a two form gauge field, leading to the Kalb-

Ramond description of the string (Kalb and Ramond (1974)). The radiation has also

been studied by numerically evolving the field theory configuration of a string loop

(Hagmann and Sikivie (1991); Hagmann et al. (2001)). Both methods have their

limitations. The Kalb-Ramond approach assumes that there is only Goldstone boson

radiation and no massive scalar radiation. Also, the backreaction of Goldstone boson

radiation on the string dynamics has not yet been taken into account. The numerical

field theory method involves a full description of the problem but is limited in dynamic

range. Hence the results must be extrapolated to long loops such as would arise in

cosmology.

Here we adapt our numerical field theory study of local cosmic string loops (Mat-

sunami et al. (2019)) to the case of global strings (Saurabh et al. (2020)). The key

features of our work that distinguish it from the earlier field theory loop simulations

(Hagmann and Sikivie (1991); Hagmann et al. (2001)) are that (i) we consider loops

that are formed from the collision of long straight strings, much as they might form

in cosmology, and (ii) we consider relatively long loops, several hundred times the

width of the string core. The first feature helps to set up the initial conditions, as the

straight string solution is known and we only need to patch together the solutions.

The second feature helps with the extrapolation to cosmological scales.
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Our results are summarized as follows. Global string loops emit both massless

Goldstone radiation and massive particles (denoted by χ) and decay in a time pro-

portional to the size of the loop L. Initially our loops have length 4L and invariant

length (energy divided by string tension) of 5L due to a Lorentz boost factor of

1.25. We find that the energy distribution of massive particles is peaked at very

low wavenumbers and they are non-relativistic at production. Eventually the mas-

sive particles will decay into Goldstone bosons but their decay leaves a sharp feature

in the spectrum of Goldstone bosons. The energy spectrum of radiated Goldstone

bosons takes the form,

dEk
dk

= η2L
a

k
, (2L)−1 ≤ k . mχ , (6.1)

where, η is the vacuum expectation value of the scalar field, k is the magnitude of

the wavevector, and a ≈ 4.8 is a coefficient that we determine numerically. Although

the spectrum is peaked at the smallest wavevector, the integrated energy at larger

momenta is greater for large loops because this contribution grows as ln(mχL).

In Sec. 6.1 we describe the field theory, some basic features of cosmic strings, and

our scheme for producing a global string loop. We then turn to our numerical imple-

mentation on a lattice with periodic boundary conditions (PBC) in Sec. 6.2, where

we also describe the results of our simulations, contrasting global string evolution

with that of gauge strings. In Sec. 6.3 we turn to the radiation produced by the loops

and evaluate the fraction of energy in massless to massive radiation. The spectrum

of radiation is discussed in Sec. 6.4. Here we analyze the spectral features of both

massive and massless radiation from global strings, and find a good fit to the form

of the spectrum in Eq. (6.1) for the Goldstone radiation. We conclude in Sec. 6.5,

where we also place our results in the context of earlier work. The implementation

of periodic boundary conditions requires care as the Goldstone boson cloud around
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the string loop decays relatively slowly and reaches the boundaries of the lattice. We

describe our implementation in Appendix A.

6.1 Model

We consider the global U(1) field theory with a complex scalar field, φ = φ1 + iφ2,

for which the field equations of motion are

∂2
t φa = ∇2φa − λ(φbφb − η2)φa , (6.2)

where a = 1, 2, λ is a coupling constants. By suitable rescalings of the fields and the

coordinates, we can set λ = 1/2 and η = 1 and then the (classical) model has no free

parameters.

The solution for a straight global string along the z−axis is

φ = ηf(r)eiϕ , (6.3)

where r =
√
x2 + y2, ϕ = tan−1(y/x), and f(r) is a string profile functions that

vanishes at the origin and asymptotes to 1 as

f(r)→ 1−O
(

1

r2

)
. (6.4)

The energy density in the scalar field is given by

E =
1

2
|∂tφ|2 +

1

2
|∇φ|2 +

λ

4
(|φ|2 − η2)2 , (6.5)

which, if we write φ ≡ ρ exp(iα), can also be expressed as

E ≡ Eρ + Eα , (6.6)

where the energy density in massive modes (ρ) is defined as

Eρ =
1

2
(∂tρ)2 +

1

2
(∇ρ)2 +

λ

4
(ρ2 − η2)2 , (6.7)
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and that in Goldstone modes (α) as

Eα =
ρ2

2

[
(∂tα)2 + (∇α)2

]
. (6.8)

The string energy per unit length (also its tension) is found by integrating the

energy density of the solution in Eq. (6.3) in the z = 0 plane. The integration of Eρ
is finite but the integral of Eα diverges logarithmically with distance. With a long

range cutoff at r = Λ the energy per unit length is

µ ≈ πη2 ln(Λη) . (6.9)

We now create a loop for our simulations following the scheme developed in the

previous chapter Matsunami et al. (2019). Our initial conditions consist of four

straight strings boosted with velocities ±v1 and ±v2 as shown schematically in

Fig. 5.1. The four string solutions are patched together using the “product ansatz”.

If Φa (a = 1, . . . , 4) denotes the solution for the individual strings, the field is taken

to be

φ(t = 0,x) =
1

η3

4∏
a=1

Φa , (6.10)

and the time derivatives at the initial time are

φ̇(t = 0,x) = φ(t = 0,x)
4∑
b=1

Φ̇b

Φb

, (6.11)

with Φ̇b obtained from the boosted solution for a single string.

While this scheme can be used to construct a loop in an infinite spatial volume, our

simulations are on a finite lattice and employ periodic boundary conditions. These

numerical limitations necessitate some modifications of the initial conditions that are

described in Appendix A.
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6.2 Simulation and Results

Once the four strings collide, they reconnect to form two loops – two because

of periodic boundary conditions. If the string velocities are small and not oriented

suitably, the resulting loops will have insufficient angular momentum and will collapse

quickly. We choose velocity magnitudes that are mildly relativistic, |v1| = 0.6 = |v2|,

as expected in a cosmological setting. The directions are taken to be (v̂1)x = 0.4,

(v̂1)y =
√

1− 0.42 ≈ 0.92 for the two strings oriented along the z-axis and (v̂2)z = 0.4,

(v̂2)y ≈ 0.92 for the strings along the x-axis.

Next we use the explicit Crank-Nicholson algorithm with two iterations for the

numerical evolution (Teukolsky (2000)) with periodic boundary conditions, keeping

track of the energy densities in the core of the string and the Goldstone mode (see

Eqs. (6.7) and (6.8)) and the total energy and angular momentum. The core of the

string is defined as the region where |φ|/η < 0.9. We take the initial string separation

in Fig. 5.1 to be half the size of our lattice for all our runs. The simulation then

produces two loops due to the periodic boundary conditions but both loops are the

same size.

We have run our simulations for a few different values of the lattice spacing, ∆x,

and found that the results are sensitive to the resolution. For example, the total

energy in the simulation box over the entire run is conserved only at ∼ 20% level

when ∆x = 0.50 for longer runs (required for large lattices). We have set η = 1,

e = 1, λ = 1/2 and so the string width is ∼ 1. Therefore with ∆x = 0.5 we only have

a few lattice points within the width of the string. The run with ∆x = 0.25 gives

better conservation, to ∼ 5% level over the entire run and agrees quite well with the

much more computationally expensive run with ∆x = 0.125.

In Fig. 6.1, we plot the loop energy vs time for several loop sizes with ∆x = 0.25.
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Figure 6.1: The loop energy as a function of time for the outer loop for different
values of loop sizes L = 50, 100, 150, 200, 250 (lowest to the highest curve). A similar
plot is obtained for the inner loops.
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Figure 6.2: The loop angular momentum as a function of time for the outer loop for
different values of loop sizes L = 50, 100, 150, 200, 250 (lowest to the highest curve).
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We take the string core to be the lattice cells where |φ| < 0.9η, with the sum of

energies in all such cells giving the energy of the loop. Unlike in the case of gauge

strings (Matsunami et al. (2019)), the decay of global string loops is not episodic and

the energy gradually dissipates.

As the loops evolve, they also shed their angular momentum, defined as

Li ≡ −
1

2
εijk

∫
string core

d3x xj (∂tφ∂kφ
∗ + ∂tφ

∗∂kφ) , (6.12)

where xj is measured from the center of energy of the loop. In Fig. 6.2 we plot |L|

versus time and also see gradual decay.

6.3 Massive Versus Massless Radiation

The global string loop emits massive and massless Goldstone radiation. The

massive radiation corresponds to excitations of the field ρ and its energy density is

given in Eq. (6.7); the massless radiation corresponds to excitations of α with energy

density given in Eq. (6.8). Note that ρ and α interact, which is evident in Eq. (6.8).

However, at late times, we can write ρ = η + χ, θ = α, where χ is a small excitation

above the true vacuum and expand the energy density functions to lowest order in χ,

Eρ =
1

2

[
(∂tχ)2 + (∇χ)2 +m2

χχ
2
]

+ . . . ≡ Eχ + . . . , (6.13)

Eα =
η2

2

[
(∂tα)2 + (∇α)2

]
+ . . . ≡ Eθ + . . . , (6.14)

where mχ =
√

2λη. By integrating these expressions we obtain the total energy in

the two components,

Ea =

∫
d3xEa , (6.15)

where a = ρ, α. At early times, Eρ and Eα will differ from Eχ and Eθ, respectively,

but they will coincide at late times, when ρ ≈ η.
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Figure 6.3: Energy in massive and massless components and total energy (TE) for
L = 200. Lower curves are for massive radiation calculated as ρ (green) and χ (red).
Middle curve is for Goldstone radiation calculated for θ (blue) and α (orange). Top
curve (black) is the total energy.
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Figure 6.4: Plot for the ratio of energy in the Goldstone mode to energy in the
massive mode at the decay time as a function of loop size.
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Figure 6.5: Log-linear plot for the ratio of initial energy in the Goldstone mode to
initial energy in the massive mode as a function of loop size.

In Fig. 6.3 we plot the total energy in each of the components ρ, χ, α, and θ

versus time in the run with lattice size 16003. We see that the Goldstone mode has

significantly more initial energy compared to the massive mode and the ratio of the

energies in ρ and θ remains approximately constant throughout the evolution. The

energies in χ and θ agree with those in ρ and α once the loop has decayed as is

expected. This pattern is repeated in all our simulations with different loop sizes,

however, the ratio Eθ/Eχ increases with loop size. as seen in Fig. 6.4. This shows

that massive radiation become less important for larger loops. To obtain the length

dependence of the ratio, we need to find a fit to the plot in Fig. 6.4. Unfortunately

we could not find an unambiguous fit to the data – a linear dependence, power

law dependence and logarithmic dependence, all seem to fit the data equally well.

Yet, based on Fig. 6.3 there is an alternate way to estimate the length dependence

of the ratio. This method uses the observation that the energies in χ and θ are
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Figure 6.6: The loop decay time as a function of the loop size. The best fit line is
τ = 1.39L+ 4.75.

approximately conserved during the collapse time. (Eventually χ particles will decay

into Goldstone bosons.) So to obtain the ratio we simply need to estimate these

energies at the initial time, which we can do using the initial conditions described in

Sec. 6.1. Since no evolution is necessary to get the initial energies, we can go to much

larger lattices. The initial ratios versus L are shown in Fig. 6.5 on a log-linear plot,

showing that the ratio grows as ln(mχL). The logarithm can also be understood by

noting that the energy of the Goldstone cloud around a single global string diverges

logarithmically with distance from the string (see Eq. (6.9)). For a loop, the loop size

provides a cutoff on the divergence but it means that the Goldstone cloud has energy

proportional to ln(mχL). In our simulations, we have modified the string ansatz

slightly to account for the periodic boundary conditions as described in Appendix A,

so we have calculated the energy numerically as shown in Fig. 6.5.

We use Fig. 6.3 to define the loop lifetime τ : the θ and α curves coincide once the
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strings have decayed and ρ ≈ η is a good approximation. The loop lifetime τ versus

loop length is shown in Fig. 6.6 and is well-described by a linear relation τ ≈ 1.4L.

In Fig. 6.7 we show a snapshot of the potential energy density at an intermediate

time in the evolution. Unlike the gauge string, the global string is “fluffy”, which may

be understood as due to the soft power law profile function in Eq. (6.4) as opposed

to the hard exponential profile functions in the gauge case. Deformations of the core

correspond to excitations of the massive degree of freedom. In the animations we see

that the kinks get rounded out but they also produce bulges in the string core as

seen in Fig. 6.7. The transfer of energy from kink collisions to core oscillations is an

intermediate step in the process of the eventual decay of the entire loop energy into

Goldstone modes that is not accounted for by the Kalb-Ramond approximation. It

remains to be determined if the core oscillations play a significant role for cosmological

size loops.

The bulges in Fig. 6.7 suggest the existence of a bound state on a global string

and we can confirm this explicitly. Consider a perturbation of a straight global string

oriented along the z axis,

φ(t, r, θ, z) = (f(r) + e−iωtg(r))eiθ , (6.16)

where we have set η = 1 for convenience. (To obtain bound states that propagate

along the string, we would replace ωt by ωt−kz.) The string profile function satisfies

− f ′′ − f ′

r
+

[
1

r2
+

1

2
(f 2 − 1)

]
f = 0 , (6.17)

with f(0) = 0 and f(∞) = 1. Upon linearization, the perturbation g(r) satisfies the

Schrodinger-type equation

− g′′ − g′

r
+

[
1

r2
+

3

2
(f 2 − 1)

]
g = Ωg , (6.18)
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Figure 6.7: A snapshot of the potential energy density for a loop with L = 50 at
an intermediate time showing a “fluffy” deformable core and massive radiation. The
full animation can be seen at the webpage (Global String Movie (2020)).

where Ω ≡ ω2−1 and g(0) = 0 = g(∞). A non-trivial bound state solution, i.e. with

Ω < 0, of this equation corresponds to a bound state deformation of the global string

profile. That a bound state should exist can be seen by comparing Eqs. 6.17 and 6.18.

The potential term in square brackets in the Schrodinger equation Eq. (6.18) is deeper

than the corresponding term appearing in Eq. (6.17) by the extra term 2(f 2−1)/2 < 0.

We know that f(∞) = 1, so the extra term in the potential in Eq. (6.18) will have

the effect of decreasing g as compared to f and can make it vanish asymptotically for

the correct eigenvalue Ω. We have confirmed this by solving Eqs. (6.17) & (6.18) and

determine the lowest energy eigenvalue to be Ω ≈ −0.19, thus explicitly showing the

existence of massive bound states on the global string.
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6.4 Energy Spectrum

We begin by decomposing the fields χ and θ = α into Fourier modes,

χ =

∫
d3k

(2π)3

[
χk(t)e−ik·x + χ∗k(t)e+ik·x] , (6.19)

θ =

∫
d3k

(2π)3

[
θk(t)e−ik·x + θ∗k(t)e+ik·x] . (6.20)

The energy densities in a Fourier mode labeled by k are given by

Eχk =
1

2

[
|∂tχk|2 + (k2 +m2

χ)|χk|2
]
, (6.21)

Eθk =
η2

2
[(∂tθk)2 + k2|θk|2] . (6.22)

In general, the spectra will depend on all three components of the wavevector k.

However, if we sum over a large number of loops, with different shapes, sizes and

orientations, we can expect an isotropic spectrum. To extract an isotropic spectrum

from our simulation we bin the spectral components according to their k = |k| value

and sum over all modes with |k| in the interval R(k) = (k − ∆k, k), where ∆k =

2π/(2L) (2L is the lattice size in our simulations):

Eχk =
(∆k)3

(2π)3

∑
|k|∈R(k)

Eχk , Eθk =
(∆k)3

(2π)3

∑
|k|∈R(k)

Eθk . (6.23)

Note that the sum is over vectors k with the same magnitude. Hence, it includes the

4πk2 factor that arises from the phase space volume factor and to obtain the total

energy one only needs to sum over all the modes,

Eχ =
∑
k

Eχk , Eθ =
∑
k

Eθk . (6.24)

We plot Eχk versus k on a log-log scale in Fig. 6.8. The energy in the higher k

modes does not depend on the size of the loop but the energy in the lowest few modes

grows with the size of the loop. It is worth noting that the spectrum gets cut off at
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Figure 6.8: A log-log plot of the energy spectrum of massive radiation after the loops
in the simulation have collapsed for the runs with initial loop size 50 (blue circles),
100 (red crosses), 150 (green triangles), 200 (orange squares), and 250 (black pluses).
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Figure 6.9: A log-log plot of the energy spectrum of Goldstone radiation when
the initial loop size is 50 (blue circles), 100 (red crosses), 150 (green triangles), 200
(orange squares), and 250 (black pluses). The overlaid black dashed line is given by
15/k and is a good fit out to k ≈ 0.08× 2π ≈ 0.5. The peak at k ≈ 0.5 corresponds
to energy ≈ mχ/2.
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k ≈ 0.1× 2π ≈ 0.6 which corresponds to a momentum less than mχ = 1. Hence the

massive particles emitted by the string are non-relativistic especially for long loops.

The spectrum for Goldstone radiation is shown in the log-log plot of Fig. 6.9. We

see that the spectrum decays as 15/k until a cutoff wavenumber kc ≈ 0.5, after which

there is essentially negligible energy contribution. To obtain the continuum version

of the energy spectrum as given in Eq. (6.1), we divide both sides of Eq. (6.23) by

∆k = π/L. Then,

dEθk
dk

=
L

π

15η2

k
≈ 4.8

η2L

k
, (2L)−1 ≤ k . mχ . (6.25)

One additional feature we see in the spectrum of Goldstone radiation is the peak

at k ≈ 0.08 × 2π in Fig. 6.9 for all the loops we have simulated. The location of

the peak, at k ≈ 0.5 = mχ/2, reveals the origin of this feature. It is caused by the

massive particles that decay into Goldstone bosons due to the interaction χ(∂µθ)
2.

Since a radiated χ is non-relativistic, it would decay into two Goldstone bosons, each

with energy of about mχ/2.

6.5 Conclusions

In this paper we have focused on cosmic global string loops, their dynamics and

decay. We numerically evolved loops of global string with length up to 1000 times the

width of the string core. By extrapolating our results, we can meaningfully discuss

cosmologically relevant loops whose size can be comparable to the cosmic horizon and

many orders of magnitude larger than the core thickness.

Our results show that global string loops decay very quickly with lifetime ∼ L

by radiating Goldstone bosons (θ) and massive particles (χ). Most of the energy

is radiated in Goldstone bosons and the emission of χ is suppressed by 1/ ln(mχL),

which in a cosmological setting would be ∼ 0.01 − 0.1. The emitted χ particles are
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non-relativistic and they eventually decay into Goldstone bosons, producing a sharp

peak in the Goldstone boson energy spectrum at mχ/2. In cosmology, the decay takes

place continually during the evolution of the global string network and the sharp peak

at mχ/2 gets smeared out due to cosmological redshifting of the energy. Even if the

global string network were to decay at a specific epoch, as in the axion scenario, a

sharp feature in the light particle (axion) spectrum that is produced due to heavy

particle decay is not expected to survive. Such particles would be relativistic and

their energy density would dilute like radiation instead of matter. The energy density

of ultrarelativistic axions would be suppressed by the factor zQCD ∼ 1012 as compared

to non-relativistic axions.

We have also extracted the energy spectrum for the Goldstone boson radiation

from global string loops in our simulations. We obtain a 1/k spectrum, confirming

that the results obtained by Hagmann and Sikivie (1991); Hagmann et al. (2001) hold

even for loops formed by processes expected in a cosmological setting. The peak in

our simulations, at k ≈ mχ/2, is a new feature, though one that should have been

expected in hindsight. The suppressed strength of the peak (1-10%) is due to the

logarithmic divergence associated with the Goldstone component of global strings.

To summarize, we have obtained a remarkably simple picture for the decay of cos-

mic global string loops. Initially the loop consists of a massive field and a Goldstone

field. The loop quickly collapses, releasing radiation of massive field and Goldstone

bosons, with the Goldstone radiation retaining its original 1/k spectrum. The ra-

diated total energies correspond to the initial energies in these components, except

that the massive particles decay into Goldstone bosons. As the massive particles are

non-relativistic they produce a line signature in the spectrum of Goldstone bosons at

k ≈ mχ/2 on top of the 1/k continuum. We have tested the sensitivity of our results

to the initial velocity and the field profile and find that the results are qualitatively
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unchanged as seen in Appendix A.2.

In contrast, studies of loop decay (Vilenkin and Vachaspati (1987); Battye and

Shellard (1994b)) using the Kalb-Ramond description assume that there is negligible

massive radiation and that radiation backreaction can be ignored. Then it is found

that all the massless radiation is in the first few radiation harmonics. This is at odds

with our results obtained by evolving the full field theory for loops that have length

about 1000 times the width of the string. It is clear that radiation backreaction is

very important for us, and we see a conversion of the kink collision energy into core

oscillations that enhances massive radiation. Even if backreaction is included in the

Kalb-Ramond approach, it does not allow for core oscillations and cannot account for

the massive radiation. The caveat in the simple picture we have suggested is if our

loops are large enough that the results can be extrapolated to vastly larger loops of

cosmological interest.
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Chapter 7

FINAL REMARKS

In previous chapters, I presented results from our publications (Saurabh and Vachas-

pati (2017, 2019a,b); Matsunami et al. (2019); Saurabh et al. (2020)). In these ar-

ticles, we explored interactions of topological defects like magnetic monopoles and

vortices/strings, which may have been produced in the early universe during phase

transitions. Understanding these interactions is essential for predicting the observa-

tional signatures produced by these objects. For our investigations, we developed

serial and parallel implementations of codes that solve relaxation and time evolution

problems in U(1) and SU(2) gauge theories. These fortran programs used a paral-

lelized implicit Crank-Nicolson method for evolution problems and our unique version

of the fully parallelized Gauss-Seidel method for solving static equations of motion

(relaxation). Also, for counting the number of loops produced in our simulations

presented in Chapter 4, we developed an elegant program to track the strings using

the winding number on each square plaquette of the lattice. We heavily used the high

performance computing resources provided by Arizona State University (Agave) and

The University of Texas at Austin (Stampede 2) to run these programs.

Using the relaxation code for finding monopole-antimonopole pair solutions, we

looked for evidence verifying the existence of a sphaleron (unstable bound state) in

the SU(2) gauge theory. We computed the energy of a pair as a function of separation

d and twist degree of freedom γ, which is related to the relative orientation of the

monopole with respect to the antimonopole. For different values of the self-coupling

for the scalar field, we found minima in the energy versus separation curves. These

minima correspond to the bound state solution that we were looking for. A similar
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analysis can be used to verify the existence of a sphaleron in the electroweak theory.

Monopoles also play an important role in baryon number violating processes, which

become highly likely at high temperatures, and their annihilation may contribute

to the spectrum of high energy cosmic rays, making our investigations pertinent for

understanding these phenomena.

All of our other studies involved time evolution of specific initial conditions in field

theories with U(1) gauge and global symmetries, devised for analyzing string loops in

cosmological and condensed matter physics. In the early universe, networks of gauge

and global strings may have been produced. Gauge strings have very high energy

density in their cores and therefore couple strongly to gravitation. They naturally

emit particle radiation as well. Our investigation of cosmic string loops showed that

gravitational radiation is the dominant mode of energy loss for cosmological strings

with the current upper bound on tension at Gµ ≈ 10−11 fixed by pulsar timing data.

Experiments like LIGO are looking for gravitational wave signatures produced by

such strings.

The mystery of cosmic dark matter has motivated a new particle, called the “ax-

ion”, and axion models also contain a different variety of strings that are called “global

cosmic strings”. The dynamics of global cosmic strings is important for calculating

the abundance of axion dark matter in today’s universe. We again studied evolution

of string loops and computed the spectra of radiation emitted. The massive particles

radiated by the loops are mostly non-relativistic and eventually decay into Goldstone

bosons (axions). Therefore, Goldstone bosons carry most of the energy lost by global

strings and may contribute to the axion energy density in the universe after the QCD

phase transition at which the axion acquires mass. Above the length scales associ-

ated with the mass of the scalar particles, we found a 1/k spectrum for the Goldstone

radiation, which is different from what was predicted earlier using the zero-width
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approximation for the strings.

All the loop decay studies we have done until now involved rectangular loops

with four kinks/anti-kinks (the corners). The string networks in our universe are

more complicated and may consist of string loops with more kinks/anti-kinks (that is,

polygons of more than four sides). Therefore, we are also interested in the construction

of initial conditions that would produce such loops, and then studying their evolution

to solidify the results we presented in this dissertation.

In superconductors, which can be described using the Abelian Higgs model under

certain conditions with bosonic Cooper pairs playing the role of the massive scalar

particle, vortices are readily produced. We demonstrated that if we can produce

wavepackets of these massive bosons inside the superconductor by some method of

excitation like shining light onto it, vortex loops are produced. We used our string

tracking code to verify this and count the number of loops produced. However, this

loop production process appears to be excluded in certain regions of parameter space

and hints at chaos like phenomena.
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A.1 Implementing Periodic Boundary Conditions

The ansatz in Equations (6.10) and (6.11) does not satisfy periodic boundary
conditions and requires further adjustments. This is done in several steps that we
now outline. The basic idea is to first ensure that a parallel string-antistring pair
satisfies periodic boundary conditions and then to patch together the vertical and
horizontal pairs by using the product ansatz.

We set the phase of the field and time derivatives of the field to zero at the
boundaries of the planes orthogonal to each string-antistring pair. For example, for
the pair along z direction, we have the field

φss̄,z =
φs,zφs̄,z
η

=
|φs,z||φs̄,z|

η
ei(θs,z−θs̄,z) (A.1)

= φss̄,z1 + iφss̄,z2 .

We now multiply the imaginary part of the field above with the function

fz = (1− x2

L2
)(1− y2

L2
) , (A.2)

where 2L is the size of the numerical domain. This forces the phase of the field to
vanish at the boundaries but also alters the magnitude of the field. We then normalize
the field so that the magnitude is reset to its original value on the boundaries,

φ
(1)
ss̄,z1 =

√
φ2
ss̄,z1 + φ2

ss̄,z2

φ2
ss̄,z1 + φ2

ss̄,z2 f
2
z

φss̄,z1 , (A.3)

φ
(1)
ss̄,z2 =

√
φ2
ss̄,z1 + φ2

ss̄,z2

φ2
ss̄,z1 + φ2

ss̄,z2 f
2
z

φss̄,z2 fz . (A.4)

(A.5)

Note that the locations of the strings do not change by the above manipulations
because the zeros of the field are unaffected.

The time derivatives can now be set to zero at the boundaries by simply multi-
plying the derivatives with the function fz, that is,

φ̇
(1)
ss̄,z = ∂tφ

(1)
ss̄,zfz . (A.6)

At this stage the field denoted by φ
(1)
ss̄,z has zero phase on the boundaries but

its magnitude still varies and does not satisfy periodic boundary conditions. In a
cosmological setting the field magnitude will be η (=1) far from the strings. Hence
we force the magnitude to be η on the boundaries of the lattice. To achieve this,

we successively divide the field φ
(1)
ss̄,z by functions that interpolate between boundary

values along orthogonal directions. The first interpolating functions is defined as

Izx =
|φ(1)
ss̄,z|x=L − |φ(1)

ss̄,z|x=−L

2L
(x+ L) + |φ(1)

ss̄,z|x=−L , (A.7)
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which gives us a new field periodic in the x direction,

φ
(2)
ss̄,z =

φ
(1)
ss̄,z

Izx
. (A.8)

Then we divide by a corresponding interpolation function in the y direction,

Izy =
|φ(2)
ss̄,z|y=L − |φ(2)

ss̄,z|y=−L

2L
(y + L) + |φ(2)

ss̄,z|y=−L , (A.9)

to get a field that satisfies periodic boundary conditions in both x and y directions,

φPss̄,z =
φ

(2)
ss̄,z

Izy
. (A.10)

The steps above ensure that the complex scalar field and its time derivatives are
periodic along each direction for both string-antistring pairs. As a final step, we
construct the field and its time derivative using the product ansatz as follows,

φ =
φPss̄,zφ

P
ss̄,x

η
, (A.11)

φ̇ =
φ̇Pss̄,zφ

P
ss̄,x + φPss̄,zφ̇

P
ss̄,x

η
. (A.12)

Now φ and φ̇ satisfy periodic boundary conditions and can be used as initial conditions
in our simulations.

A.2 Universality Tests

Here we describe the results when we change the way we prepare the initial con-
ditions.
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Figure A.1: Plots comparing core energy and spectra for loops of size 100 with
initial strings moving at velocities v = 0.6 (red) and v = 0.8 (blue).

First we change the initial velocity of the straight strings from 0.6 to 0.8. The
results for the energy decay and the spectrum with initial velocity are shown in
Figs. A.1. Some of the numerical values change as expected, but the qualitative
features are unchanged.

To test the sensitivity of our results to how we prepare the initial conditions, we
have run the simulation with the function fz in Eq. (A.2) replaced by f 2

z , since f 2
z

also has the property that it vanishes on the boundaries and is 1 at the origin. The
results for the energy decay and the spectrum are shown in Figs. A.2. As before, the
qualitative features are same in both cases with slight differences in the numerical
values.
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Figure A.2: Plots comparing core energy and spectra for loops of size 100 with
functions fz (red) and f 2

z (blue) used to fix periodic boundary conditions.
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In this appendix, I present the conventions used throughout this dissertation.

1. I set the reduced Planck’s constant ~ = 1, the speed of light c = 1, and Boltzmann’s
constant kB = 1 in all our calculations. This results in all physical quantities being
expressed in mass dimensions:

[Mass] = [Energy] = [Momentum] = [Temperature] = [Frequency] ,

[Time] = [Length] = [Mass−1] .

2. Greek letter indices µ, ν, . . . run over spacetime labels from 0 to d-1, where d is
the dimensionality of the spacetime,

xµ = {t, x, y, z} , (B.1)

∂µ = {∂t, ∂x, ∂y, ∂z} . (B.2)

3. I use the mostly minuses metric signature, that is, (+,−,−,−).

4. Einstein summation convention is used, that is,

x2 = xµx
µ = gµνx

µxν = t2 − x2 − y2 − z2 . (B.3)
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