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ABSTRACT

In a multi-robot system, locating a team robot is an important issue. If robots

can refer to the location of team robots based on information through passive action

recognition without explicit communication, various advantages (e.g. improving se-

curity for military purposes) can be obtained. Specifically, when team robots follow

the same motion rule based on information about adjacent robots, associations can

be found between robot actions. If the association can be analyzed, this can be a clue

to the remote robot. Using these clues, it is possible to infer remote robots which are

outside of the sensor range.

In this paper, a multi-robot system is constructed using a combination of Thymio

II robotic platforms and Raspberry pi controllers. Robots moving in chain-formation

take action using motion rules based on information obtained through passive action

recognition. To find associations between robots, a regression model is created using

Deep Neural Network (DNN) and Long-Short-Term Memory (LSTM), one of state-

of-art technologies.

The input data of the regression model is divided into historical data, which are

consecutive positions of the robot, and observed data, which is information about

the observed robot. Historical data is sequence data that is analyzed through the

LSTM layer. The accuracy of the regression model designed using DNN can vary

depending on the quantity and quality of the input. In this thesis, three different

input situations are assumed for comparison. First, the amount of observed data

is different, second, the type of observed data is different, and third, the history

length is different. Comparative models are constructed for each case, and prediction

accuracy is compared to analyze the effect of input data on the regression model.

This exploration validates that these methods from deep learning can reduce the

communication demands in coordinated motion of multi-robot systems.
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Chapter 1

INTRODUCTION

1.1 Overview

Collaboration makes it efficient and effective to achieve tasks or goals that are

difficult to accomplish alone. Likewise, in robot systems, it is often better for more

robots to perform tasks together than for a robot to do tasks alone. For these reasons,

various works about Multi-Robot System (MRS) (Khaldi and Cherif, 2015; Jevtić and

Andina de la Fuente, 2007; Tan and Zheng, 2013) have been researched to collabo-

rating the robots. Khaldi and Cherif (2015) emphasized that in order for robots to

cooperate with each other, the one of the important factors is knowing the location

of other robots. Also, according to Martinelli et al. (2005), knowing their position

and orientation are essential in order to successfully doing their tasks. There are

many ways for robots to get the information such as Peer-to-Peer communication,

observation by sensors, and global communication.

However, there are many limitations and disadvantages to these explicit commu-

nications. For example, when they get their position from global communication,

tremendous network communications are needed. Sometimes, a central commander

is needed. This is also one of the factors that makes it difficult for the robot system

to be decentralized. Also, sensors have trouble detecting the location of robots that

are far away. To overcome these difficulties, methods using passive action recognition

have been studied. Das et al. (2016) describes passive action recognition as “robots

use sensors to directly observe the actions of their teammates”. Choi et al. (2017)

uses the passive action recognition. They have been conducted to refer non-local in-
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formation from local information. They proposed that a robot could infer the remote

robots’ position by using nearby robots’ position and they proved the feasibility of

the idea through simulation.

Based on these possibilities, I expand an experiment to apply it to the real-world

robotic system. In this experiment, the physical robots called as Thymio are used to

set team robots. Moreover, the prediction model for the remote robot is implemented

using Artificial Neural Network (ANN) technology. Deep Neural Network (DNN)

and Long Short-Term Memory (LSTM), which Hochreiter and Schmidhuber (1997)

suggested, are applied to infer the position of remote robots.

Finally, the accuracy of the model may vary depending on the information used

to predict the remote robot. To compare this, several models with different inputs

for inference are implemented. The comparative models are divided into three cases.

First, when the number of observed robots is different, second, when only a part of

the information of the observed robot is used, and third, when the history length is

different. In each case, the difference in accuracy between the control model and the

comparison model is compared and analyzed.

1.2 Motivations

One of the most recent noticeable technologies in multi-robot system is Swarm

Robotics (SR). Researchers have come up with ideas from nature for robots to col-

laborate efficiently. There are many swarms in nature. In a swarm, individuals follow

only simple rules, but these actions come together to achieve a specific goal. For ex-

ample, in the case of foraging by some species of ants, the ants follow two simple rules.

First, the ants find the prey and lay pheromones on their way home. Second, the ant

travels in a path where the pheromone concentrations are stronger. As a result, the

pheromone is scattered heavily in the path where the ants travel frequently, which
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is the shortest path because ants can best reinforce the trail before it evaporates.

Swarm Intelligence (SI) is made up of applicable algorithms by analyzing behaviors

in nature, and SR is a robot system using SI. SR generally does not use global infor-

mation. This is because there is no central commander to collect and deliver global

information and robots configured by SR take action by simple rules based on local

information.

However, if robots in SR can deduce global information (non-local information)

using limited information (local information), they may be able to achieve their goals

more efficiently. For example, suppose some smart robots are in a swarm. These

smart robots are able to catch global information and use it to steer the entire group

to the desired direction. An example is the caging scenario in Choi et al. (2017).

They suggested that if the robot at the rear of team-robots going in a row can predict

the location of the lead robot, the rear robot (Tail) can move to speed up the pace

of the team surrounding the target.

To infer global information using local information in SR, the following process is

required. Each robot observes behavior or movement changes of adjacent robots and

reflects it in its own actions in SR. Thus, changes in adjacent robots affect its behavior

and there is an association between them. Biologists and behavioral ecologists call

clues to analyze these associations as ‘signal’ or ‘cue’. For example, in Das et al.

(2016), they have mentioned that there are patterns in the waggle dance of bees, and

other bees can identify the patterns by analyzing the cues of the waggle dance. They

also implemented a multi-robot system using these cues and studied how to transmit

information through passive communication.

In this experiment, the behavior of robots affects the behaviors of adjacent robots.

Therefore, there will be an association in the behavior between two adjacent robots,

which can be used as a cue to analyze the association. Thus, if we can analyze this
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association using the cues, we can predict the movement of unobserved individuals

further away. If these predictions are repeated recursively, the robot will be able to

predict the movement of the whole robots by observing only the movement of the

nearest robot.

To prove this, this study implements the robots in chain formation by simple rules

using the principle of SR. In fact, the experiment is not a complete SR implemen-

tation. SR is based on homogeneous robots, but in this experiment, the robots are

heterogeneous because the head and tail robot move with a slightly different motion

rule than other robots (follower robots). However, since followers and tail robots

operate using only local information, it can be said that decentralization and local

sensing, which are important characteristics of SR, have been applied.

In addition, the technique used to make predictions in the experiment is Deep

Neural Network (DNN) technique, one of the state-of-art techniques. From the past

to the present, many models have been proposed to improve the accuracy of DNN.

One of them is the Long Short-Term Memory (LSTM) model proposed by Hochreiter

and Schmidhuber (1997). LSTM is one of the Recurrent Neural Network models

and is very effective for analyzing time series data. The LSTM layers are added to

the DNN prediction model to improve accuracy in order to analyze the continuous

movement of adjacent robots. Because models implemented in the experiment use

robots’ continuous movement, it exists as sequence data. Therefore, an LSTM layer

that is easy to analyze sequence data is used.

1.3 Challenges

There are two challenges in the experiment. First, implementing a team-robot

on a real-world robot platform. This experiment is based on the team-robot of Choi

et al. (2017). However, The experiment of Choi et al. (2017) was simulated using
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a multi-robot simulator only and not conducted using a real robot. Therefore, the

experiment should build a real robot platform and implement it so that robots move

in accordance with the rules on the platform. In particular, simulation results and

experimental results in the real world may have large gaps.

In Ligot and Birattari (2019), a real robot swarm was studied to reduce the gap

between simulation-only experiment and reality. Similarly, in the experiment, it is

important to construct a robot platform to reduce the gap between the simulation

results in Choi et al. (2017) and the reality experiment. The role of robots in the

platform is played by Thymio and Raspberry pi. Thymio is a robot made for educa-

tional purpose and can be operated using various OS when used with Raspberry pi.

One drawback to Thymio is that the sensor range is too short, so it is not suitable

for experimenting. In order to solve this problem, the central computer and camera

function as high performance sensors as are commonly used in robot experiments.

Specifically, the central computer is designed to convert the position and direction

of the robots captured from the camera to the relative coordinate and deliver only

the corresponding local information for each robot. ′open-cv′, a vision package for

python library, is used to calculate the robots’ position and orientation in images

captured in the video.

Next, in our inferences design, we must increase the accuracy of predictions about

remote robots. When a robot makes pose based on local information, the number of

possible poses of remote robots is several, not one. Therefore, due to the large number

of predictable cases, the accuracy of the prediction is inevitably low if the DNN model

is simply configured. To address this, the predictive model should be given more clues

to make more accurate predictions. The experiment assumes that the robots know

global information before r time steps. Sequential position for robots before r time

steps is provided as a clue for the predictive model to make more accurate predictions.
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The predictive model uses the LSTM layers to use the sequential data for training

and predicting.

1.4 Contributions

If robots can infer global information using only local information, they have

various advantages. For instance, if information can be obtained through passive

communication without using explicit communication, the amount of communication

can be reduced. Considering the use of multi-robots for military purposes, reducing

the amount of communication can be a significant merit. This can reduce the risk of

being detected by the enemy or exposing information to the enemy due to commu-

nication. This is a significant merit in terms of security. Also, central commander is

generally needed to use global communication. However, in the case of global com-

munication with the central commander, it will be difficult for the multi-robot system

to be decentralized. Therefore, this experiment will help to implement decentralized

robot system.

1.5 Outlines

Chapter 2 discusses the previous work and related work to help understand the

experiment. Chapter 3 explains the method used for comparison. The control model

used as a control model is described, and the comparison models according to each

comparison method are described. Chapters 4 and 5 describe the method for experi-

mentation. The method used to implement the physical robot platform is described,

and the collected data through robots operating on the platform is described. Chap-

ter 6 analyzes the prediction results by comparison model and mentions the difference

in accuracy by model. Chapter 7 discusses conclusions and future work.
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Chapter 2

BACKGROUND AND RELATED WORKS

Swarm Robotics (SR) is a subdivision of collective robotics, one of the types of Multi-

Robot Systems (MRS), in which robots act according to simple rules and cooperate

with robots. In the experiment, robots move in chain formation using the principle of

SR. Also, in the experiment, the robots determine their own behavior using only local

information without a central commander. These characteristic is similar to that of

SR. Therefore, it is advantageous to have knowledge of SR to help understand the

experiment. Also, in the experiment, Artificial Neural Network (ANN) is introduced,

one of the latest technologies, to infer global information. Thus, understanding the

SR and basic knowledge of ANN is necessary to understand this thesis. This chapter

gives literature reviews of MRS, SR and ANN technologies. Moreover, the previous

researches (Choi et al., 2017, 2020) which have been conducted before the experiment

are introduced to help understand the experiment.

2.1 Multi-Robot System (MRS) and Swarm Robotics (SR)

Some tasks can be too complex and difficult to perform with a single robot. Also,

when several robots work together, a task can be done faster and more effectively

than a single robot by itself. Multi-Robot System (MRS) is a system designed to

allow multiple robots to work together and perform tasks harmoniously. Khaldi and

Cherif (2015) introduced MRS as a method designed to overcome the difficulties

of a single robot and mentioned that MRS has many advantages over performing

missions with only a single robot. Khaldi and Cherif (2015), Jevtić and Andina de la

Fuente (2007), and Tan and Zheng (2013) used MRS to perform various works such
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as collective robotics and distributed robotics.

However, there are some disadvantages to MRS. Khaldi and Cherif (2015) men-

tioned that MRS faces a decentralized problem. In general, MRS has a centralized

control system and robots in MRS act based on information from the central com-

mander. Thus, the central commander controls whole robots. Accordingly, MRS is

difficult to build a decentralized system. Swarm Robotics (SR) is the method that

emerged to build decentralized system in multi-robot system. Dorigo et al. (2004)

first mentioned SR in the “swarm-bot” project. SR works on the principle of Swarm

Intelligence (SI), which is an algorithm inspired by swarms in nature. In nature, there

are many cases such as ants, bacterial colonies, or fish schools that live in harmony

in swarms. In the swarms, each member does not determine its next action based

on information about whole (global) but rather the next action based on information

available from adjacent members’ behavior. Many algorithms, such as an Ant Colony

Optimization (ACO), Particle Swarm Optimization Algorithm (PSO), Artificial Fish

Swarm Algorithm (AFSA), have been created that analyze the behavior in nature

and apply it similarly to solve problems. These algorithms are called SI. The char-

acteristics of SR compared to MRS can be seen in the Table 2.1. According to Tan

and Zheng (2013), SR has the following characteristics.

Swarm Robotics Multi-Robot System

Population size Variation Small

Control Decentralized / Autonomous Centralized / Remote

Homogeneity Homogenous Heterogeneous

Flexibility High Low

Scalability High Low

Table 2.1: Characteristic Comparison of SR and MRS From Khaldi and Cherif
(2015)
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1. Local sensing and communication : In SR, robots are assumed to have

limited sensor range and limited communication capabilities. This is because, even

in swarm in nature, each entity knows only the information of its neighbor. Thus,

there is no central commander in SR and the range of sensor is limited, so global

information cannot be obtained. Swarm robots therefore operate using only limited

information.

2. Autonomous and Decentralized : Central command does not exist in SR

and global information is not used. When using global information, flexibility and

scalability may be limited. However, swarm robots use only simple rule based on

local information. As a result, the robots are decentralized and autonomous.

3. Large number and Flexibility : The number of roles of robots in swarms

should be as small as possible. Swarm robots are usually designed to do the same

thing. Thus, swarm robots have homogeneous characteristics. Also, since robots are

not controlled by a central commander, it is not difficult to increase or decrease the

number of robots. Therefore, SR can effectively operate a large number of robots,

and the system has high flexibility.

The experiment uses the characteristics of SR. In the experiment, the robots

are decentralized and moved without the command of the central commander. In

addition, all robots except head robot are operated by the same rule and they obtain

information through observation only within the limited sensor range and use the

information. The same rule is proposed by the Choi et al. (2017), and the robots

move in chain formation using the rule.

Nouyan et al. (2008) and Maxim et al. (2009) have also studied how swarm robots

move in chain formation. The difference from this paper, however, is that this experi-

ment is about obtaining global information using only local information, when robots

move in chain formation by the motion rule. Existing studies have aimed at forming
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formations, while this experiment focuses on inferring the position of remote robots.

2.2 Artificial Neural Network (ANN) and Long-Short-Term Memory (LSTM)

The basic concept of Artificial Neural Network (ANN) is based on how the human

brain solves problems. A perceptron, a component of ANN, is built on the principles

of neurons in the human brain. A Multilayer Perceptron (MLP) is a model in which

several perceptron form one layer and several layers exist. MLP consists of input

layer, hidden layer, and output layer. The input layer is the first layer in MLP and

is a layer into which data for model training or prediction is input. The output layer

is the layer that outputs the results. Layers between the input and output layers are

called hidden layers.

Network models that have more than one hidden layer are called Deep Neural

Network (DNN). DNN can solve problems that a single perceptron or other machine

learning models, such as Support Vector Machine (SVM) or Logistic Regression,

cannot solve. For instance, a DNN provides solutions to nonlinear problems such as

the XOR problem. Given enough data to use for training, DNN can be an effective

model. Therefore, in this experiment, the prediction model is conducted using DNN.

However, the basic DNN model is not effective for training with sequential data. Data

with sequences are not independent of each other because they have a specific order.

However, the general model assumes that all input data are independent and

identically distributed. Recurrent Neural Network (RNN) has been proposed for

effective training using sequential data Raschka and Mirjalili (2019). In a general

feed-forward network model, data propagates in one direction from the input layer

to the output layer. RNN, however, output from the hidden layer is delivered to the

hidden layer of the next time step. Training in the next time step proceeds considering

the training result in the previous time step. Therefore, RNN is effective for training
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using sequential data. However, when the length of the sequences becomes longer,

Gradient Exploding or Gradient Vanishing problem occurs.

The model that solved this problem is Long Short-Term Memory (LSTM). LSTM

was first proposed in Hochreiter and Schmidhuber (1997). The LSTM is advanta-

geous when learning using data with long sequences. In RNN, Gradient Vanishing or

Exploding problems occur when the weight (w) is greater than or less than 1. Since

the weights are continuously multiplied as the learning progresses, if the weight is not

maintained at 1, the value disappears or increases rapidly. In the LSTM, a cell state

is added from the RNN. The cell state classifies data into long-term memory and

short-term memory. The memory cell keeps the weight (w) to 1 by using long-term

and short-term memory appropriately. By doing this, it can solve these problems. In

this experiment, the positions of the robots have a sequence. To utilize the sequence

data, the LSTM layer is used to predict the next position.

2.3 Previous Work : Remote Team Robot Localization

Research has been conducted to find the location of robots in a multi-robot system.

In particular, in case of swarm robots, the robots use only local information to make

a decision, and so it is important to accurately determine the location of the robot.

Jiang et al. (2007) and Kelly and Martinoli (2004) have been researching methods

for teammate localization using light or infrared sensors. Research on teammate

localization have been conducted a lot, but research on inferring the location of global

teammates using local information has rarely been conducted.

Choi et al. (2017) first proposed a method of inferring global information using

local information in team-robot. They suggested a method of inferring remote robot’s

position and orientation based on local information when robots except head robot

move in chain-formation using the same motion rule. They made a regression model
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by using DNN for prediction and tested the model using a team-robot simulation

program called ‘Robotarium’.

In addition, Choi et al. (2020) carried out experiments to the actual robot frame.

Choi et al. (2020) adds LSTM layers to the model, for more accurate results. The

experiments presented in this thesis are extensions of Choi et al. (2017) and Choi

et al. (2020) experiments, and the chain formation is formed with real robots using

the motion rule proposed by Choi et al. (2017).

In this thesis, the principle of how team-robots work, and the physical frame

are described in more detail. Moreover, the number of robots in team-robots is

increased to seven, and the difference in prediction results are compared according to

the difference in the amount of input data in the prediction model.
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Chapter 3

METHOD

3.1 Problem Definition

One of the characteristics of swarm robot is a local sensing and local communica-

tion. The robots in the swarm do their behavior or judgement using the information

detected within the limited sensor range and limited communication. Therefore, the

behavior of a robot affects the behaviors of adjacent robots. Particularly, when the

robots move in line, robots may be directly affected by the movement of the robots

ahead and behind them. If the association between the behaviors of adjacent robots

can be analyzed, the movement of the robot outside the sensor range may be pre-

dictable. The way to communicate through the association between actions is called

behavioral communication. In Novitzky et al. (2012) and Das et al. (2016), the ”Bee

waggle dance” (Dutta et al., 2012) was applied to the robot to implement behavioral

communication. In this experiment, the behavior of neighboring robots is analyzed

to find the association and the potential clues of the behavior are used to predict the

remote robot.

In this thesis, behavioral association is learned using Deep Learning technology

which is one of the state-of-the art technologies. The accuracy of the model will

vary depending on the input used for analysis. Therefore, in this experiment, three

methods are used to compare the results depending on the input.

In the first case, I study how the number of sensed robots affects prediction per-

formance. The amount of local information to be obtained can vary depending on

the range of sensor radius. The sensor performance of the robot is assumed to be the
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number of robots that can be observed in chain formation. In this experiment, the

accuracy of the prediction may be changed according to the number of cues. Assum-

ing that the sensor range of the robot is different, three cases in which the number

of cues is different are considered. Through this, I compare the result of three cases

and analyze the accuracy difference according to the number of cues.

In the second case, I study how the kind of cue information affects prediction. Even

when the three robots are observable, the results of using some of the information of

the three robots or using the entire information may be different. All three robots’

data may be helpful for prediction, but on the contrary, some may hinder accurate

prediction. Two models with different cues used as input data are proposed, and the

difference of the prediction results according to the types of cues is analyzed using

them.

In the third case, I study the effect of history length on prediction. This ex-

periment uses the model proposed by Choi et al. (2020) as the control model. The

control model uses global information as history data. History data is concatenated

with observed data through the LSTM layer. Depending on the history length, the

LSTM layer may use more significant values for prediction, or vice versa. As a result,

the result of the prediction may vary. Therefore, I propose models that have different

history lengths and analyze the effects of history length on the results. In addition,

this experiment uses scalable prediction approach, which uses the predicted results

for the prediction of other robots for further prediction. This allows predictions for

robots that are farther away, as well as predictions for the nearest robot that is outside

the sensor range.
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3.2 Theorem for Notation of Robot and Terminology

3.2.1 Notation of Robots in Chain-formation

In this experiment, the robots are not distributed and are lined up in a row.

Therefore, there is an order from the front to the rear. When there is a total of n

robots (# of robots=n) and they are numbered in order from the front robot, the

front robot (i = 1) is called the head robot (H). The rearmost robot (i = n) is called

Tail (T ). Robots between H and T (i ∈ {2, · · ·, n− 1}) are called Follower. Followers

are numbered in ascending order from H closest such as F1, F2, · · ·, Fn−2 When robots

are lined up as shown in the Fig. 3.1, the names of each robot are as shown in the

Fig. 3.1.

3.2.2 Notation of Robots According to the Sensor Range

The experiment is carried out with a different sensor range of the robot, so the

robot is given a name according to the sensor range. The range of the sensor is

indicated by R. The meaning of R = k is that the sensor can observe k nearest

robots. In the experiment, the standard robot, which observes other robots and

predicts remote robot’s position and orientation, is T because all predictions are

made by T . For example, if R = 1, T can only observe F5 in the Fig. 3.1. Observable

robots are represented by Ox according to the range of observations. The robot is

marked O1,O2,O3 in the order close to T . In addition, the robots which are out of the

observation range, that is, the robot to be predicted, is denoted by Px. Similarly, Px

is named as P1,P2,· · ·,Pk in the order close to T . The names of the robots according

to R are shown in the Fig. 3.1.
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Figure 3.1: Examples of Robot Notation According to the Absolute Position & The
Notation According to the Sensor Range(R)

3.2.3 Position and Orientation Terminology

The information of the robot used in the experiment is divided into position

and orientation. Position is represented by the (x, y) coordinate value on the two-

dimensional plane, and orientation is represented by the degree value. Therefore,

position is represented as
−→
P t

R = (xtR, y
t
R). The superscript t represents the time step

and the subscript R represents the corresponding robot. Therefore,
−→
P t

H means the

position of the H robot at time step t. Similarly, θtH refers to the orientation of the

H robot at time step t.

3.3 Control Model (Model 1)

In the experiment, the predictive model for use as a comparison is from Choi et al.

(2020). In that work, a model for predicting a robot that is not observed using the

information of one adjacent robot (1 cue) is used. This model is called ‘Model 1

(M1)’. Deep Learning Technology is used to predict. The structure of the Model 1

is the Fig. 3.2.

The model uses both fully connected layers and LSTM layers. The input data is
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Figure 3.2: A Structure of the Control Model From Choi et al. (2020)

divided into historical data and observed data depending on the type. The model

assumes that robots know global information (whole robot’s position and orientation)

from t−r to t−1 time steps. historical data consists of global information. Therefore,

historical data(Hist) is composed of the position and orientation data of the robots

up to t− r to t− 1 time steps.

Histt−r→t−1
M1 = (X t−r

M1 , X
t−r+1
M1 , · · ·, X t−1

M1 ) , X t
M1 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

)

Since Choi et al. (2020) assumes that information up to 10 time steps is known, it

consists of global information from t−10 to t− 1 time step data(HistM1
t−10→t−1). Since

historical data is data related to the continuous movement of the robot, it uses LSTM

layers which is effective for time series analysis. The data passes through the LSTM

layers and then combined with one fully connected layer. Observed data(Obs) is

information on adjacent robots observed by the robot in t and t+1 time steps. Unlike

historical data, observed data only configures the information of robots observed.

Among the information of the robots, the relative position can be calculated, but it
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is believed that there is a limitation to accurately measure the orientations of the

robots. Thus, observed data uses only the position of the robots.

ObstM1 = (
−→
P t

F1
,
−→
P t+1

F1
)

The data passes through hidden layers and configured one fully connected layer.

The two fully connected layers are concatenated together and reconstructed to one

layer. This layer is separated into layers that predict positions and orientations. The

model predicts
−̃→
P t

H , θ̃
t
H ,

˜θtF1
, and ˜θt+1

F1
. The labels of this neural network model are

divided into position (
−̃→
P t

H) and orientations (θ̃tH ,
˜θtF1
, and ˜θt+1

F1
) and each label applies

to different loss function. The values indicating the position (
−̃→
P t

H) is (xtH , y
t
H) in 2-

dimensional space. The Loss function for position uses Euclidean distance. Euclidean

distance is used to minimize the distance between the predicted coordinate (x̃tH , ỹ
t
H)

and the real coordinate (xtH , y
t
H).

Loss1 =
1

n

n∑
i=1

√
(x̃i

t
H − xitH)2 + (ỹi

t
H − yitH)2

In case of orientation, the Mean Squared Error(MSE) is used as a loss function.

Loss2 =
1

n

n∑
i=1

√
(θ̃i − θi)2, θ ∈

{
θtH , θ

t
F1
, θt+1

F1

}
The MSE proceeds to training the model to reduce the difference between the pre-

dicted value ỹ and the label y. Also the Gradient Vanishing problem is solved using

a ReLU activation. The ReLU activation works between all layers except the last

layer. The model can infer the remote robot’s position and orientation using one

adjacent robot’s information (1 cue) Also, it is used to predict farther robots based

on the information of the predicted robot. This model is used for comparison with

the models to be presented in the next section.
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3.4 Comparison 1 : Different Number of Cues

The type and amount of local information that can be obtained according to the

range of the robot’s sensor may be different. In the Fig. 3.1 , Ellipses represent the

sensor ranges. If R = 1, T can only observe F5, the nearest robot. Therefore, there is

only one cue available. However, when R = 2 or R = 3, since T can observe F4 and

F5 or F3,F4, and F5, the number of available cues increases. In practice, if the robots

are overlapping within the range of the sensor, it can be difficult to obtain accurate

data by observation only. However, it has been able to overcome with other methods

and many experiments have been conducted to solve this problem. Therefore, in this

experiment, overlapping problems are excluded.

Depending on the amount of information to be used in prediction, the accuracy of

the prediction will vary. Two models with different number of cues used for prediction

are proposed. The structure of these models is similar to the control model, but the

number of cues entered are different. The models are used to analyze the differences

in the results according to the input information.

3.4.1 Model2(M2) : Use 2 Cues

A model assumes that the robot is observable up to two adjacent robots. (R = 2)

Therefore, this model uses two cues to predict the position and orientation of the

third remote robot. Information used as input data is divided into Hist and Obs, as

is the control model. The difference from the control model is that the Hist data of

the model consists of information about four robots. Since the Obs data consists of

the observed information, positions of two robots are included. The Hist data and

Obs data of this model are as follow.

Histt−r→t−1
M2 = (X t−r

M2 , X
t−r+1
M2 , · · ·, X t−1

M2 ) , X t
M2 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

,
−→
P t

F2
, θtF2

)
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ObstM2 = (
−→
P t

F1
,
−→
P t+1

F1
,
−→
P t+1

F2
,
−→
P t+2

F2
)

Input data configured like this pass LSTM layers and FC layers respectively and then

predict
−̃→
P t

H , θ̃
t
H ,

˜θtF1
, ˜θtF2

, and ˜θt+1
F2

. Moreover, Model2 is designed with the assumption

that the clue which helps to predict target robot propagates over time steps. If the

clue for prediction is moved through adjacent robots and relay propagated, it will

propagate to the next robot over time. For example, in the figure, when R = 2, the

robots that can be observed are F4(O1) and F5(O2).
−→
P t

F3
(P1) affect

−→
P t

F4
(O1) and

−→
P t+1

F4
. They affect

−→
P t+1

F5
(O2) and

−→
P t+2

F5
. Becasue

−→
P F5(O2) is not directly affected by

the behavior of F3(P1), but by the behavior of F4(O1),
−→
P t

F4
(O1) and

−→
P t+1

F4
affects

−→
P t+1

F5
(O2) and

−→
P t+2

F5
. That is,

−→
P t

P1
affects

−→
P t+i

O(R−i)
and
−→
P t+i+1

O(R−i)
. Thus, in the M2,

the Obs is given as input with data of different time steps.

3.4.2 Model3(M3) : Use 3 Cues

This model assumes that the robot has a wider range sensor than that of Model

1 and Model 2. (R = 3) The model uses information from three adjacent robots

to predict information about the fourth-most remote robot. Similar to the Model 2,

Histt−r→t−1
Mx = (X t−r

Mx , X
t−r+1
Mx , · · ·, X t−1

Mx ) ObstMx Labels

M1 X t
M1 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

)
−→
P t

F1
,
−→
P t+1

F1

−̃→
P t

H , θ̃
t
H ,

˜θtF1
, ˜θt+1

F1
.

M2 X t
M2 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

,
−→
P t

F2
, θtF2

)

−→
P t

F1
,
−→
P t+1

F1
,

−→
P t+1

F2
,
−→
P t+2

F2

−̃→
P t

H , θ̃
t
H ,

˜θtF1
, ˜θtF2

, ˜θt+1
F2

.

M3 X t
M3 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

,
−→
P t

F2
, θtF2

,
−→
P t

F3
, θtF3

)

−→
P t

F1
,
−→
P t+1

F1
,

−→
P t+1

F2
,
−→
P t+2

F2
,

−→
P t+2

F3
,
−→
P t+3

F3

−̃→
P t

H , θ̃
t
H ,

˜θtF1
, ˜θtF2

,

˜θtF3
, ˜θt+1

F3
.

Table 3.1: Hist,Obs,Labels According to the Model(M1,M2,M3)
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Model 3 assumes that clues propagate over time steps. Thus, the observed data of

model 3 consists of data with different time steps. The difference between the model

1, 2, and 3 is the difference in the amount of input data. I compare the three models

to verify that differences in input data lead to differences in accuracy. Table. 3.1 lists

the Hist, Obs, and Labels values for each model.

3.5 Comparison 2 : Different Type of Cues

When R = 3, three cues can be used. However, some of the cues may not be

conducive to the prediction but may be a disturbing factor. Therefore, the type

of cue used for prediction is important. In this comparison, I suggest two models

using different type of cues in order to compare the accuracy. These two models are

compared to M3, which is the control model for R = 3 presented in comparison 1.

3.5.1 Model3-2(M3-2) : Use 1 Cue Which Nearest Cue from the Target

This model has the characteristics of both M1 and M3. The amount of input is

1 cue, similar to Model 1. However, the robot’s sensor range is the same as that of

Model 3 (R = 3). The model uses input data only about the one observable robot

that is closest to the robot which should be predicted. For example, in the Fig. 3.1,

if R = 3, only F3(O3) is used to predict the position of F2(P1). The model supposes

that the robot most affected by the robot’s behavior is the one closest to the robot.

The model supposes that the robot most affected by the robot’s behavior is the one

closest to the robot. According to the assumption, the robot that is most affected

by the movement of F2 is F3 in the figure. The robot that is nearest to the robot

that to be inferred have the most clues about it. The rest of the robots (F4, F5)

may have fewer clues about the robot that should be inferred. Also, the clues would

be delivered in relays, not directly. Therefore, predicting may be possible with only
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the information of the robot that is closest to the robot that has to be inferred. To

confirm this assumption, I compare the accuracy of Model 3 with the accuracy of this

model.

3.5.2 Model3-3(M3-3) : Use 3 Cues in Same Time Steps

Model3-3, unlike Model3, uses data at the same time step as input. There are two

reasons for using the same time step as input. First, information of different time

steps is relatively inaccurate than data of the same time step. To predict
−→
P t

P1
, Model3

uses
−→
P t

O3
,
−→
P t+1

O3
,
−→
P t+1

O2
,
−→
P t+2

O2
,
−→
P t+2

O1
, and

−→
P t+3

O1
as Obs. However, these values are all

relative coordinates of T . Therefore,
−→
P t+3

O1
is changed to the relative coordinate based

on
−→
P t+3

T . However, since T is also continuously moving,
−→
P t

T and
−→
P t+3

T are different.

−→
P t

P1
which has to be predicted is a relative coordinate based on

−→
P t

T , then
−→
P t+3

O1
based

on
−→
P t

T is required to obtain
−→
P t

P1
.

Therefore, if the data at the different time step is made by the absolute coordinate

information, it may be helpful for the prediction, but the data at the different time

step may not be helpful for the prediction because it is a relative coordinate based

on T at different time. Second, it could more focus on identifying the relationship

between the observed robots (O1, O2, O3) using the data of the same time step. If

this relationship can be analyzed, O1, O2 and O3 can be seen as a big robot (Ō1)

Figure 3.3: Examples of R=1 and R=3
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For example, in the Fig. 3.3, when R = 1, only information of O1 is used to

predict P1. When R = 3, O1, O2, and O3 are regarded as one big robot (Ō1) to

predict P1 as in R = 1. If three robots can be considered as one robot, it may

produce more improved performance. Therefore, the same time step data is input to

analyze the relation ship. Table. 3.2 lists the Hist, Obs, and Labels values for each

model(M3,M3− 2,M3− 3).

Histt−r→t−1
Mx = (X t−r

Mx , X
t−r+1
Mx , · · ·, X t−1

Mx ) ObstMx Labels

M3 X t
M3 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

,
−→
P t

F2
, θtF2

,
−→
P t

F3
, θtF3

)

−→
P t

F1
,
−→
P t+1

F1
,

−→
P t+1

F2
,
−→
P t+2

F2
,

−→
P t+2

F3
,
−→
P t+3

F3

M3-2 X t
M3−2 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

)
−→
P t

F1
,
−→
P t+1

F1
,

M3-3 X t
M3−3 = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

,
−→
P t

F2
, θtF2

,
−→
P t

F3
, θtF3

)

−→
P t

F1
,
−→
P t+1

F1
,

−→
P t

F2
,
−→
P t+1

F2
,

−→
P t

F3
,
−→
P t+1

F3

−̃→
P t

H , θ̃
t
H ,

˜θtF1
, ˜θtF2

,

˜θtF3
, ˜θt+1

F3
.

Table 3.2: Hist,Obs,Labels According to the Model(M3,M3-2,M3-3)

3.6 Comparison 3 : Different History Length

The control model(M1) uses global information as historical data. Hist is the

sequential data that have the position and orientation of the robot from time t − r

to t − 1. These data pass through the LSTM layer and consist of one layer. The

effect of the sequences may be different according to the history length and it may

affect the prediction result. To compare the results according to the history length,

three models with different history lengths were designed based on the structure of

Model 1. The control model has a history length of 10, that is, data of 10 time steps

is entered as history. In addition, two models with history lengths of 6, and 4 are
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created. I compare the results of these three models to analyze the effect of history

length on the results. The historical data and Obs data of the model Hx are as

follows. x is history length.

Histt−x→t−1
Hx = (X t−x

Mx , X
t−x+1
Mx , · · ·, X t−1

Mx ) , X t
hist = (

−→
P t

H , θ
t
H ,
−→
P t

F1
, θtF1

)

ObstHx = (
−→
P t

F1
,
−→
P t+1

F1
)

3.7 Recursive Prediction Approach

Follower robots move using the same motion rules. Thus, the above models, which

analyze this rule and make predictions, can apply it to all robots. In this experiment,

an approach is used to infer information about the entire robot using the prediction

model recursively. For example, in Fig. 3.1, suppose that R = 1 and the M1 is used,

then T infers
˜−→
P F4 using the

−→
P F5 . The predicted

˜−→
P F4 and

−→
P F−5 can be used to predict

˜−→
P F3 . In addition,

˜−→
P F2 can be predicted by using

˜−→
P F3 and

˜−→
P F4 . The prediction result

can be reused to predict repeatedly up to
−̃→
P H .The use of the predicted result for the

next prediction is called relay prediction. In the above example, relay prediction is

done twice to obtain
˜−→
P F3 , so relay is 2 (Relay = 2).

In summary, it is possible to infer global information about the entire robot by

re-prediction based on the predicted results. Both the above comparison models and

the control model are applied to the relay prediction approach to predict the position

up to H.
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Chapter 4

EXPERIMENT DESIGN1 : REAL ROBOTIC PLATFORM

In order to implement the swarm robots that make chain formation using real

robots, three equipment should be dynamically operated. A commercial robot called

Thymio is responsible for the role of a real robot in the experiment. Thymio is

moving by adjusting the speed of two wheels to reach the desired target. In the swarm

robotics, global communication and central computer does not exist. However, the

sensor of the robot has a low performance to acquire local information. Therefore,

adding two equipment to the experiment to get exact local information and deliver

it to the robot. A central computer uses a camera to capture the position and the

orientation of the robot and changes the information to the relative coordinates and

sends it to the robot. Raspberry pi plays the role of sending information from the

central computer to the robot.

4.1 Platform Component 1 : Physical Robot (Thymio & Raspberry Pi)

4.1.1 Role of Thymio

Thymio acts as a real robot. Thymio is a two-wheel robot which determines its

direction and speed using the speed of the left and the right wheel. These wheels can

rotate independent of each other, so if they will rotate in different speed the robot

can go either straight or turn. Fig. 4.1 shows about the notation of each part of the

robot and how to express the position and the orientation on the coordinate plane.

(x, y, θ) indicates the current position and orientation. (ẋ, ẏ, θ̇) is the desired value

that the robot wants to move. The robot needs to find vr and vl to move to (ẋ, ẏ, θ̇).

the velocity(v) and the angular velocity(w) can be found using (x, y, θ) and (ẋ, ẏ, θ̇).
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Figure 4.1: Notation of Each Part of the Robot and How to Express the Position
and the Orientation on the Coordinate Plane.

Therefore, when v and w are given, it should be able to find vr and vl. To obtain

this, a Kinematic equation for differential drive robot (2) is used. The Kinematic

equation for differential drive robot can be derived from Unicycle kinematic (1).
ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(1) ⇒


ẋ = R

2
(vr + vl) cos θ

ẏ = R
2

(vr + vl) sin θ

θ̇ = R
L

(vr − vl)

(2)

Using the equation (1) and (2), v and w can be expressed using vl and vr as shown

in the equation (3). Using this, the equation (4) can be obtained. The parameters

R and L are known constant values. Therefore, using equation (4), vr and vl can be

calculated when v and w are given. Thymio uses the equation (4) to calculate vr and

vl. 
v = R

2
(vr + vl)→ 2v

R
= vr + vl

w = R
L

(vr − vl)→ wL
R

= vr − vl
(3) ⇒


vr = 2v+wL

2R

vl = 2v−wL
2R

(4)
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4.1.2 Role of Raspberry Pi

As mentioned above, there are some difficulties in experimenting because Thymio

is a robot made for educational purposes. First, in order to operate the robot, only

the programming language provided by thymio called Aseba must be used. Second,

to use multiple thymio wirelessly, a computer is required as many times as the number

of thymio. To solve these two problems, Raspberry pi is used in the experiment. Fig.

4.2 is a physical connection between the Raspberry pi and thymio.

Figure 4.2: Physical Connection Between Raspberry Pi and Thymio

Raspberry pi has two roles. First, Raspberry pi acts as a bridge between Thymio

and central computer. Thymio and Raspberry pi are wired and Raspberry pi and

a central computer are wirelessly connected. Once Thymio and Raspberry pi are

physically connected, the Raspberry pi can control Thymio using the kernel. In

addition, Raspberry pi and the central computer can exchange information between

the two via socket communication using the socket python library. Fig. 4.3 describes

the procedure of socket communication. If the Raspberry pi and the center computer
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are in the same network, socket communication can be used. The server waits until

the client requests access, then sends and receives data after they are connected.

In the experiment, the central computer acts as a server, the Raspberry pi acts

as a client, and the local information provided by the central computer is provided

through socket communication. This information is passed to Thymio after further

calculation.

Figure 4.3: Socket Communication Between the Server(Central Computer) and the
Clients(Raspberry Pi & Thymio)

Second, the Raspberry pi acts as the brain of the robot. The Raspberry pi

calculates the next target position and orientation to be reached using information

from the central computer and the motion rule for getting robots to move. Using the

calculated next target position and the current position, the Raspberry pi obtains

the v and w to reach the target and passes these values to the Thymio.

28



4.1.3 Motion Rule

Based on local information, the robot sets the next target point according to the

motion rule and moves to it. Three different motion rules are used. The motion rule

(1) is used by the head robot(H) at the front of the line, the motion rule (3) is used

by the tail robot(T ) at the back of the line, and the motion rule (2) is used by the

follower robots(F ) located in the middle of the line. All motion rules are suggested

in Choi et al. (2017).

~̇PH = ~PTarget − ~PH (1)

~PR is (x, y) indicating the position of the robot(R) on the coordinate plane. ~PTarget

is the (x, y) of the target that the head(H) should move. In accordance with the rule

(1), the H always sets the following position ( ~̇PH) so that it is close to the target.

~̇PFi
= kf ((||~PFi

− ~PFi−1
|| − d)(~PFi−1

− ~PFi
) + (||~PFi

− ~PFi+1
|| − d)(~PFi+1

− ~PFi
) (2)

The followers(Fx) use the rule (2) to calculate the position to be moved next. kf is

a scalar value that determines the weight to be reflected in the next action among

the front and rear robot. d indicates the distance that robots should maintain. Since

||~PFi
− ~PFi−1

|| is the current distance between i and i − 1 robots, and d is the ideal

distance that the robots should maintain, the closer the distance between the two

robots is to d, the closer to ||~PFi
− ~PFi−1

||−d is 0. (~PFi−1
− ~PFi

) is a vector that induces

the i robot to calculate the next position closer to the i−1 robot. Therefore, the closer

the distance between robots is to the ideal distance (d), the smaller (||~PFi
− ~PFi−1

|| −

d)(~PFi−1
− ~PFi

) value, and conversely, the farther away from the ideal distance(d), the

larger (||~PFi
− ~PFi−1

||−d)(~PFi−1
− ~PFi

) value. Likewise, (||~PFi
− ~PFi+1

||−d)(~PFi+1
− ~PFi

)

allows the i robot and i+ 1 robots to maintain an ideal distance(d). Therefore, the i

robot moves to maintain the ideal distance from the front and rear robots (i− 1 and
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i+ 1 robots).

˙~
TP = kf ((||~PT − ~PF1|| − d)(~PF1 − ~PT )) (3)

Since the tail robot(T ) have no robots behind, tail robot(T ) only needs to consider

the robot in front. Thus, the tail(T ) follows the rule (3), which removes the part

about the rear robot from the rule in (2).

4.2 Platform Component 2 : Central Computer and Camera

Generally, there is no global coordinating system in the swarm robot. Swarm

robots use only local information such as position information of adjacent robots

detected within sensor range. Therefore, it is important to accurately capture local

information in swarm robots. The sensors in the Thymio are not performing well.

The sensor radius is very small less than 5cm, and it is also difficult to estimate a

precise position even if detected by the sensor.

To compensate for these shortcomings, the central computer and camera are used

in the experiment. However, the central computer does not deliver global information

to the robots and also it does not operate them. The central computer calculates the

current position and orientation of the robots using images captured by the camera.

Information of the robots within the sensor range of each robot is changed to a relative

coordinate and transmitted to the robot. For example, if there are robots as shown

in the Fig.4.4 and the robot’s sensor range is equal to the orange circle, F2 robot

Figure 4.4: An Example of Observable Robots According to Sensor Range
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receives information about robot F1 and T . The position coordinates of F1 and T are

changed to relative coordinates relative to the F2 robot, and the orientations are the

absolute coordinate values relative to the x − axis. The central computer delivers

these position and orientation only to F2

4.2.1 Role of the Central Computer

The central computer replaces the sensors in the Thymio to find the position

and direction of adjacent robots. The central computer converts the images received

from the camera into an (x, y) coordinate system and finds the coordinate values

corresponding to each robot. Also, the orientation that each robot is looking at is

determined by using the x − axis of how many degrees it is tilted. The coordinates

and orientation values of adjacent robots, which are assumed to be observable by the

sensors, are changed to the relative coordinates based on each robot. The reason

for changing to a relative coordinate is because it is assumed that the global coor-

dinate does not exist in the swarm robot. Therefore, to implement a more realistic

swarm root, relative coordinate values, not absolute coordinates, are required (Tan

and Zheng, 2013). Then, through socket communication with the Raspberry pi, the

corresponding relative position is delivered to the Raspberry pi so that the Raspberry

pi and the Thymio can calculate the target value that should be reached.

4.2.2 Methodology for Identifying Robots in Video

The central computer takes a series of images refinement process in real time. It

distinguishes the robot and finds the location and direction of the robots. This process

requires the technologies of computer vision. Vision technology is implemented using

open-cv, one of the Python libraries. As shown in the Fig. 4.5, the robot’s position

and direction are obtained in the image after four step processes.
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Figure 4.5: The Process of Detecting a Robot in a Video Frame

Step 1. Perspective transformation : Perspective transformation is one of

the image warping technologies, which changes the pixel located in (x, y) to (x́, ý)

through geometric deformation. Unless the Camera is perpendicular to the Arena,

the Arena is filmed tilted. As shown in the left figure in Fig. 4.6, the arena is tilted

in the shape of a polygon, not a rectangle. Therefore, it is necessary to restore this

Figure 4.6: An Example of Perspective Transformation

tilted image as if it is taken vertically. Four points corresponding to the edges of the

arena are selected as A,B,C, and D in the Fig. 4.6 and Á, B́, Ć, and D́ are set to

fit the size of the arena to perform warping. By doing so, the tilted image is changed

to the similar image as the one taken from the vertical. Therefore, it has become

possible to determine the position of the robot using the pixel.

Step 2. Robot detection : Finding the robots in images that have undergone
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perspective transformation is another challenge. Among the many ways to find ob-

jects in the images, this experiment selects a color-based classification method. The

robots are covered with the case. The left image in the Fig. 4.7 is for comparison

between a covered robot and a uncovered robot. When the camera takes the covered

robot, it is like the right image in the Fig. 4.7. If all other colors are removed from

Figure 4.7: The Appearance of the Robot Depending on Whether It Is Covered &
A Picture of Covered Robots

the image except the black part so that only the black part is detected in this image,

only the black triangle part is left as shown in the Fig. 4.8. If the area of each triangle

exceeds a certain size, it is set to be recognized as a robot. Therefore, a total 4 robots

are detected in the Fig. 4.8.

Figure 4.8: The Process of Detecting a Robot by Adjusting the Color Range

Step 3. Robot identification : In the experiment, identification of the robots

is determined by the color and the number of circles in the triangle. The blue circle

represents one point and the red circle represents four points. For example, the ID

of F1 robot with two blue circles inside the triangle is 2. Total seven robots are used

33



in the experiment, and each robot’s ID can be identified as shown in the Fig. 4.9.

Using this method, the ID can be effectively expressed even as the number of robots

increases.

Figure 4.9: An Example of Robot Identification

Step 4. Calculate (x, y, θ) : Once the detection and identification of the robot

has been completed, the robot’s position (x, y) and the orientation (θ) should be

calculated. In the case of the position, the number of horizontal and vertical pixels of

the image is set proportionally to the size of Arena in Step 1. The number of pixels

is set in units of 1 cm per 3 pixels. Therefore, the pixel value at which the robot is

located can be considered as the position of the robot.

The exact position of the robot is determined by the center of gravity of the

triangle. The hard cover of the robot is made so that the center of the robot is aligned

with the center of gravity of the triangle. Therefore, in the process of detecting the

triangle in Step 2, the center of gravity is obtained, and the (x, y) value of the center

of gravity will be the current position coordinate of the robot. The vertex and center

of gravity of the triangle are used to find the orientation. Draw a line connecting the

vertex at the front of the robot to the center of gravity at the front of the robot. The

angle of intersection between the line and the x-axis is the orientation the robot is

pointing. Through this method, (x, y, θ) of the robot can be obtained.

Fig. 4.10 is the flow chart of the platform. Thymio, Raspberry pi, and the central

computer operate according to this flow.
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Chapter 5

EXPERIMENT DESIGN2 : DATA COLLECTION

The data, which used to predict the position and orientation of the remote robot,

is the position and orientation of the adjacent robot (Hist and Obs). To collect the

data, the robots move in a row on the arena, and the cameras records them. Based

on the video filmed, the position of each robot and the orientation are analyzed.

Therefore, at the arena, a head robot (H) needs to move randomly, without bumping

into other robots. In consideration of this, an algorithm(ψ) to set the target point

is applied. The algorithm(ψ) is designed to set random target points by considering

the robot’s progress direction and location of adjacent robots. In addition, the data

is collected in case of using three, four, five and seven robots each. The data about

three, four, and five robot cases is used for training and validation, while the data

about seven robot case is used for testing.

5.1 Physical Platform

Arena, an area where robots operate, is a flat floor with a specification of 2.8m×

2.2m. The camera captures the whole arena, and the central computer only cuts the

arena region from the filmed image and changes the image size 840× 660 pixels(1cm

per 3pixels). Therefore, the location of robots can be obtained with (x, y) coordinate

using pixels. The camera shoots at 12 frames per second (12 fps). The robot receives

the position of the adjacent robot once every 0.25 seconds and changes the speed of

wheels(vr and vl) to move to a new target position derived by the motion rule. Since

predictions are to be made at 0.5 second intervals, the robots’ position and orientation

are collected and stored at the same intervals.
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5.1.1 Problems When Setting Target Coordinates Arbitrarily

The head robot(H) is located at the head of the team and serves to move the team

members to a designated destination. The head robot(H) applies a different motion

rule than the followers(Fx), which moves the robot to the target point. To collect

data continuously, when the head(H) reaches the target point, a new target point is

set so that the head robot and other robots could continue to roam around the area.

The data used in experiments should be objective and should not be manipulated or

changed due to external intervention. In the process of collecting data, if a person’s

subjective or behavior pattern is included in the data collected, the data becomes

changing and cannot create accurate results.

Thus, when the central computer set the target point which the head robot aims,

the target point must be set in an environment where there is no external intervention

as possible. The way to set the target point without external intervention is to always

set the target point randomly. However, this method creates two problems. First,

collisions with other robots often occur while moving to a set random target. The

motion rule used by H does not consider the position of adjacent robots, but only

considering getting close to the target. As a result, the robots have often been placed

on the path of moving to the target point. The picture on the left in Fig. 5.1 is an

example. In the figure, the yellow star is the next target point. H moves along the

Figure 5.1: Examples in Which the Target Is Set Incorrectly and Make Crashes.
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shortest path (dotted line) to the target point. However, other robots are placed on

the path along which H moves and they will be collided. Second, a next target point

is set to a point that is difficult to physically move from the current location. When

the head(H) is in the corner or boundary of the arena, a collision between robots or

moving out of the arena occurs while moving to the next target point. In the right

picture of Fig. 5.1, robots are located in the corner. If H moves along the blue solid

line, collision between robots can be avoided. However, the target point (the yellow

star) is selected differently from the solid line direction, and as a result, H moves

to the dot line and the robots collide with each other. The reason why the collision

occurs frequently is that the position of the other robots is not considered. To solve

the problems and choose targets randomly, the following algorithm is applied.

5.1.2 Target Point Setting Algorithm

This algorithm is the same algorithm used by Choi et al. (2020). This algorithm

is conducted by the following steps.

Step 1. Divide the arena into small areas of n by m. Arena consists of m × n

small cells c = {cij|1 ≤ i ≤ m, 1 ≤ j ≤ n}. In the experiment, m = 6 and n = 4, the

size of one cell is 43× 49cm

Step 2. Considering the movement of the robot, select candidate cells to set the

next target point. The movement of the robot is determined by using the H’s move

from the previous location cell(M [0]) to the current location cell(M [1]). M [1] repre-

sents the cell number where H is currently located (M [1] = {cij|i = xnow, j = ynow},

M [0] = {cij|i = xprev, j = yprev}). For example, if H is currently located at C12, then

M [1] = C12. Candidate cells are selected by considering M [0] and M [1]. First, find

the cell (M[1]) where the H is currently located. The value in M [1] is shifted to M [0].
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Figure 5.2: An Example of Expressing Arena as Cells

Cells adjacent to M [1] that are not adjacent to M [0] are considered as candidates.

Ccandidates = {Cij|Near(M [1], Cij)∩ !Near(M [0], Cij)}

Near(Cij, Cmn) =


True if |i−m| ≤ 1 and |j − n| ≤ 1

False else

Considering M [0] and M [1], there are two possible cases. The first is moving straight

(The left figure in Fig. 5.3) and the second is moving diagonally (The right figure

in Fig. 5.3). However, if the robot moves to the outer boundary area, the candidate

cells may be set as an area that the robots cannot move. For example, as in the

Fig. 5.4, H moves to the vertex of arena or to the edge. In this case, the candidate

cell does not exist when determining the candidate cell as described above. In this

exceptional case, movable cells are selected as candidate cells among cells adjacent to

M [1] without considering M [0]. The candidate cells are selected as shown in the Fig.

5.4. The reason for selecting candidates in this way is as follow. H is more is more

likely to hit an adjacent robot when it rotates sharply more than 90◦ from its current

direction. Since the robots are located behind H, when the robot spins sharply

by more than 90◦, the robot will return to the path it came from, increasing the
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Figure 5.3: Cases that can be set as candidates cells considering the movement

probability of collision. Therefore, the above rule is used to set the target considering

the current movement direction.

Figure 5.4: Cases When Special Candidate Cells Have to Be Designated Due to
Unmovable Areas

Step 3. If another robot is within a candidate area, the area is excluded from

the candidate list. In the left image of the Fig. 5.5, the three hatched cells represent

the candidate cells obtained in Step 2. When the next target is selected in the cell

where the other robot is located, the collision probability increases, so the cell (the

red surrounded cell in the left figure in the Fig. 5.5) is excluded from the candidate

list. Thus, the two hatched cells become the candidate in the right figure in the Fig.

5.5.
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Figure 5.5: An Example of a Candidate Cell Being Excluded from a Candidate Due
to Other Robots

Step 4. Choose one of the candidate cells selected through the process up to Step

3. The probability of choosing are all the same. (Pcij = 1
n
, n = # of candidate cells,

cij ∈ ccandidates). Finally, the coordinates (x, y) are randomly selected in the chosen

cell.

Step 5. When H arrives at the target, repeat the Steps 2, 3, and 4.

5.2 Collected Data for Training, Validation, and Testing

The total amount of data collected is shown in the Table. 5.1. The data is

recombined into Sample and Instance units for purposes. The data about 3-robot

group, 4-robot group, and 5-robot group are used to train and validate neural network

models. The data about 7-robot group is used to test the models.

5.2.1 Sample, Instance

Sample is the unit used in the training and it is the minimum input unit for the

neural network models. Sample is classified for predicting one time. In other words,

each sample make one output(label). For example, Data at t− 10 to t+ 1 time steps
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Duration(minutes) # of samples # of instances

3 robots 131.0 15,178 -

4 robots 133.7 15,504 -

5 robots 139.6 15,784 -

7 robots 84.9 - 247

Table 5.1: Description of Data Collected from 3,4,5,and 7 Robot Teams

are required to predict the position of P1 at time t using M1. Sample is composed

by grouping the data needed for one prediction. Sample is composed as the Fig. 5.6.

In the figure, the yellow hatched box is the data used for Hist, the blue hatched

box is the data used for Obs, and the red hatched box is the labels. In each

table, columns represent time steps, and index represents the robot’s position or

orientation.Sample means the total value corresponding to the table.

Sample i :
{−→
P t−l→t+i

R , θt−l→t+i
R |R ∈ {P1, Ok|1 ≤ k ≤ i} , l = history length

}
Since the information used for prediction differs according to models, the sample

is configured differently. Samples used by M1, M2, and M3 use data of data1,

data2, and data3, respectively. M3 − 2 and M3 − 3 use the information contained

in the sample of M3, then they use the same sample used by M3 to training. When

comparing models with different history lengths(H10,H6,H2) use the same sample

used in M1. They use the adjusted data by the length of history in the same sample

and use it for training. For example, H10, H6, H2 use the same samples, but H10

uses 0− 9 time steps data as Hist to predict
−→
P 10

P1, H6 uses 4− 9 time steps data to

make a prediction.

Instance is the unit used in the test. Instance is used to make 15 consecutive

predictions. The models used in the experiment use a history of 10 steps and predict

the position and orientation for the next 15 steps. Therefore, 26 time steps of data
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are configured into one instance. In addition, an interval of 7 seconds (14 time

steps) between the instances is placed to ensure the independence of the instance by

eliminating the continuity between them.

Figure 5.6: Sample Composition According to the Prediction Model

5.2.2 Training, Validation, Test

For training and test the models, the data is divided into train, validation, and

test. The data used for training and validation differs depending on the model. M1,

M2, and M3 proposed for Comparison 1 (Comparison according to the difference

number of cues) use each of Sample1, Sample2, and Sample3. M3, M3 − 2, and

M3−3, which are proposed for Comparison 2 (Comparison according to the difference

type of cues), use Sample3. The proposed models H10, H6, and H2 for Comparison

3 (Comparison according to history length) use Sample1. 80% of sample is used for

training and 20% is used for validation. Validation is only used for testing during

training to prevent overfit of the model. The models save the weights when the

validation error is the lowest. To make comparisons under equivalent conditions, the

same data is used for the test. The test uses instances created with data made using

7 robots. The total number of instances used for the test is 247.
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Chapter 6

RESULTS

The first goal of the experiment is to implement team-robot using real robots

based on the simulation results of Choi et al. (2017). Using the above methods and

equipment, team-robot is successfully implemented. Thymio and Raspberry pi act

as robots and the central camera and central computer act as sensors for the robots.

Although a central computer is used, the central computer’s role is only to transmit

information about adjacent robots. Thus, the robots have the characteristics of SR,

then they are decentralized and relatively free to increase or decrease the number of

robots in team. At first, three robots are used to move in chain formation, and then

expand to seven, forming a longer chain.

The second goal of the experiment is to compare the accuracy of predictions

based on differences in the information used when making predictions about remote

robots using information from adjacent robots. The comparison is conducted in three

ways. The first is the comparison of the results when the number of cues used is

different. The second is comparing to the differences in results depending on the type

of cues used. The third is to compare the difference the results when the model’s

history length is different. The deep neural network models are used to predict the

position and direction of the remote robot using the data of the robots moving in the

arena. Each model is separately trained 7 times and the performance of the model

is considered as the average value of 5 cases excluding the two cases with the best

performance and the worst performance.
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6.1 Comparison 1

The amount of information available may vary according to the observation range

(R) of the robot. The information of observable robots is called as cue, and the ac-

curacy of prediction is compared when the number of cues is 1, 2, and 3 each, that

is, when the robot can observe 1, 2, or 3 adjacent robots each. Model1 (M1), Model2

(M2) and Model3 (M3) use 1, 2 and 3 cues respectively. There are two ways to

compare the results. First, the prediction of the robot closest to T among the robots

outside the observation range (R). This is a prediction without recursive (relay)

prediction (prediction of a robot farther away using the predicted result). In other

words, the prediction result is the first prediction that is not input again as informa-

tion for prediction. Thus, this comparison can compare the baseline performance of

the model.

Second, it is a comparison of accuracy according to the robot. Without considering

the relay, the target classifies the robot according to the distance from T (H, F1,

F2, etc.), and compares the results for each model according to the target. This

comparison is effective to compare the accuracy of the predictions for the entire

robot.

6.1.1 Comparison According to the Number of Relays

In order to apply the recursive prediction approach mentioned in the Method

chapter, relay prediction which uses a prediction result for the next prediction is

used. In order to predict P2, P1 must be predicted first and the predicted value of

P1(
−̃→
P P1 ,

˜θP1) must be used for P2 prediction. The use of this predicted result in the

next prediction is referred to as relay. (relay = 1 to predict P2)

The comparison of the results according to the number of relays for each prediction
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Figure 6.1: Average Prediction Error for Each Model According to the Number of
Relays and p− values Between Models

model is as follows. P1 means robot with relay = 0. The robots corresponding to P1

are different for each model. As shown in Fig. 3.1, P1 is F4 in M1, P1 is F3 in M2,

and P1 is F2 in M3. Fig. 6.1 is a graph of prediction error for each model according

to the robot and a table that summarizes the p− values between models. The graph

shows the mean of the prediction error for the robots by models.

In the cases of P1 and P2, the average distance error is M1 the smallest and M3

the largest. (M1 < M2 < M3) M1 performed 10% to 21% better than M3. In all

cases, the p − value between M1 and M3 is lower than 0.05/3. It can be said that

the performance of M1 is better than that of M3 with a reliability of 95% or more.

Figure 6.2: Detailed Comparison of Prediction Results for P1 and P2 According to
Time Step
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The graphs in the Fig. 6.2 compare the predicted error values for P1 and P2 each

in detail with time-step. In the graphs, the x − axis is time step and the y − axis

is distance average error (cm). The error bar in the graph represents the standard

deviation. The time step is 0.5 seconds per step. According to the time step, the

average distance error of M3 is higher than M1 and M2 in all steps in P1. Although

M3 has a large number of cues, the prediction accuracy is less than that of the M1

and M2. This means that even if the number of cues is large, it does not produce

better prediction results.

There are two reasons why M1 has better performance than M3. First, M3 is

more likely to be overfitted with training data than M1 and M2. Overfitting means

a state in which training is too focused on training data, making it difficult to apply

the model in general. The overfitted model shows excellent performance for training

data but may not perform well when test data is used. In order to prevent this, in

the experiment, training data and validation data are separately used during training.

During training, the weights are updated only when the validation error is lower than

the value of the previous epoch to prevent overfit as much as possible. Nevertheless,

it can be considered that M3 is more likely to be overfitting because it uses more

input data to predict the target than M1 and M2. This is because, in general, among

DNN models having a similar structure, the more data used for predicting, the higher

the probability of being overfit to training data. In this case, the structure of M1,

M2 and M3 is almost similar. However, the amount of input is the largest in M3

and the lowest in M1. Therefore, M3 is more likely to be overfit than M1 and M2,

and this may result in poor test performance.

The second reason is that the physical distance between T and the target robot to

be predicted by model is different. This seems to be because the target robot of M3

has a greater distance from T than the target robot of M1. In the case of M1, there
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is one robot (O1) between P1 and T , but in the case of M3, there are three robots

(O1, O2, O3) between P1 and T .

Also, in this experiment, it is assumed that T knows only for the positions of the

observed robots and does not know the orientation, so it cannot be said that T knows

perfectly about the observed robots. Therefore, even if the information of O1, O2,

and O3 can be known, it can be considered that the accuracy of prediction is poor

because it is relatively far from T .

6.1.2 Comparison According to the Position of the Robot

Overall Performance

The prediction results for all the robots in the team-robot are shown in the graph

below. The Fig. 6.3 is a graph comparing the mean error of the prediction results

for H, F1, and F2 by models. The predictions of M3 for H, F1, and F2 are more

accurate than those of M1 and M2. In addition, the results of M3 show better

performance even if M3 predicts one robot farther away than that of M1. That is,

when M3 predicts H and M1 predicts F1, M3 shows better performance. Similarly,

even when M3 predicts F1 and M1 predicts F2, M3 has a lower average error. Also,

Figure 6.3: Average Prediction Error for Each Model(M1,M2,M3) According to
the Robots and P-values Between Models
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considering that the size of the robot Thymio(11cm), the distance difference between

the predicted value of M2 and M3 for F1 and the actual value is about the diameter

of the robot.

The p − values between the models are shown in the table of Fig. 6.3. All

p− values except M2 via M3 in H in the table are less than 0.05/3. Therefore, the

assumption that the order of good performance is M3, M2, and M1 (M3 has the

best performance and M1 has the worst performance) is reliable with a reliability of

95% or more.

When comparing according to the number of relays, M1 performs better than M3.

However, comparing the results by robot, the results of M3 show better performance

than that of M1. The reason for this seems to be that the number of relay predictions

is different when predicting a robot for each model. In the case of F2, for example,

in M3, F2 corresponds to P1, so relay = 0. On the other hand, in M1, F2 is P3 with

relay = 2. Thus, M1 undergoes relay prediction twice that M3 does not undergo

to predict F2. When relay prediction is performed, the predicted value is used for

prediction again, so that an error value increases as the number of relays increases.

In addition, the error value that is increased due to the relay is larger than the

difference in the same relay for each model. When relay prediction is performed (e.g.

P1 → P2), the error increases by about 2.76cm on average. (Fig. 6.1) On the other

hand, the largest difference in model prediction results for robots with the same relay

is about 1.43cm (compare M1 and M3 in P1 Fig. 6.1).

Therefore, when comparing based on the robot formation rather than the number

of relays, it can be said that M3 shows better performance than M1 because there

are few relays when predicting the same robot. One more thing that can be analyzed

is that the greater the distance between the target and T , the smaller the difference

between models. In more detail, the difference between the error of M1 and that
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Figure 6.4: Analyzing the Change Amount of Error According to the Relay to
Estimate the Robot Farther Away

of M3 is about 3.84cm in case of F2, but in case of H, it tends to decrease to

2.42cm. Fig.6.4 is a table and graph that summarizes the average distance error

value(E:the value of y − axis in the Fig.6.3) for each model and the amount of error

change(4E = ∂Error
∂Relay

) E increases when the target is a robot far from T . 4E means

the increase in error according to the relay. The average of 4E is 1.93 for M1, 2.15

for M2, and 2.65 for M3. Therefore, as relay progresses, the E of M3 increases more

than M1 and M2. Thus, the farther away the target is from the T , the performance

of M1 will catch up with the performance of the M3. Assuming that there is a

robot farther away from H, we can estimate the predicted value using E and 4E.

For example, when predicting a robot that is ninth from T , the results of the three

models are expected to be similar. The table in the red box to the right of Fig. 6.4

represents the estimated Ẽ values. The Ẽ of M1 is 20.79cm, that of M2 is 20.5cm,
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and that of M3 is 20.05cm, and the differences between Ẽ of the three models are

within 1cm.

Therefore, it can be said that all three models have similar performance. In

summary, the number of cues used by the predictive model means that the effec-

tive performance difference may be shown when the length of the chain-formation is

short(shorter than 8), but the performance may not be significantly affected when

the length of the chain-formation is long(longer than 8). That is, when predicting a

robot that is 5 robots away from T , the information of 3 robots may be significant,

but when predicting a robot that is more than 5 robots away, the information of 3

robots may not be significantly different compared to the information of 1 robot.

Detailed Comparison by Time Step

Fig. 6.5 is a graph comparing the prediction error of the target robot for each model

according to the time step. When comparing the results according to the time step,

the average distance error is M1 > M2 ≥M3 even with any target in all time steps.

In addition, as time passes, the difference between the values of each model tends to

be larger. In particular, even considering the standard deviation, the performance

difference between M1 and M3 seems significant. For H, F1 and F2, the performance

is M3 > M2 > M1. As time passes, the error difference between models becomes

larger. However, as the target robot is farther from T , the error difference between

models decreases. Red arrows in Fig. 6.5 indicates the error difference between M1

and M3. The error difference between M1 and M3 in time step 10 is 8.4cm in F2,

7.6cm in F1, and 4.9cm in H. Through this, it can be said that the target farther

from T is predicted, the narrower the differences between models are. This can be

said to have a similar pattern to that mentioned in overall performance.

To analyze it in more detail, the slope of the graph can be said to be the error
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Figure 6.5: Detailed Comparison of Prediction Results for F2,F1 and H According
to Time Step by the Models(M1,M2,M3)

increase rate for the model according to the time step. The Fig. 6.6 shows the average

of the slope of the graph(S) in the Fig. 6.5. In F2, F1, and H, the S is in the order of

M1 > M2 > M3. However, 4S is in the order of M3 > M2 > M1 (4S is amount of

change in average of the slope depending on the relay ∂Slope
∂Relay

). Therefore, the farther

robot from T is set a target, the smaller the difference between the S of models. For

example, when experimenting with 7 robots, there are 5 robots between H and T .

If you make a longer chain using more robots (e.g. using 10 robots), there will be 8

robots between H and T . If the prediction results for H in this case are estimated
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for each model, the results will have slopes as shown in the Fig. 6.6. Since the initial

value (at time step = 0) is similar to all three models, the similar slope means that

the performance of each model is similar. Therefore, all three models will produce

similar errors. This means that as the predicted target is farther from T , the effect

of the number of cues on the result is reduced, and as a result, all three models will

have a similar error rate.

Figure 6.6: Analyzing the Change Amount of Slope According to the Relay to
Estimate the Robot Farther Away

6.1.3 Qualitative Results (M1,M2,M3)

The Fig. 6.7 is the result of M1, M2, and M3 predicting the remote robots. Red

circles are the results predicted by M1, yellow circles are the results predicted by M2,

and green circles are the results predicted by M3. The arrow in the circle means the

predicted orientation for each robot.

In all three cases (A), (B), and (C), the prediction results at the first predic-

tion(time step t) are almost the same. Not all predicted points deviate significantly

from the robot’s actual position. Over time, the prediction results for each model

vary slightly.

In the case of (A) and (C), M3 made the most accurate and M1 made the most
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Figure 6.7: The Result of M1, M2, and M3 Predicting the Remote Robots in Frames.

inaccurate prediction. In particular, in the case of (C), the shape of the prediction

result of M1 is similar to that of the chain, but the distance difference from the actual

position is the largest among the three models. In the case of (B), the accuracy is

slightly different for each model, but the prediction results of all three models are

almost similar to the actual positions.

6.2 Comparison 2

6.2.1 Overall Performance

In order to compare the accuracy of prediction according to the type and compo-

sition of cues, M3, M3 − 2 and M3 − 3 models are created in which different types

of cues are input. M3 − 2 is a model that makes inferences using only information

about one observed robot (O1) closest to the target robot, and M3 − 3 is a model

that uses the same time step Observed robots’ information to predict target robot.

54



Figure 6.8: Average Prediction Error for Each Model(M3,M3−2,M3−3) According
to the Robots and P-values Between Models

Fig. 6.8 shows the average error distance of the models for the robots and p− values

between the results of the models according to the predicted robot. In the case of F2,

M3− 2 has better performance than M3 and M3− 3. On the other hand, in case of

F1 and H, M3 and M3− 3 perform better than M3− 2. Considering the p− value,

the p − value is less than 0.05/3 for both M3 − 2 via M3 and M3 − 2 via M3 − 3,

so the assumptions that the performance of M3 − 2 is better than that of M3 and

M3 − 3 in case of F2 and the performance of M3 − 2 is worse than that of M3 and

M3− 3 in case of H have more than 95% reliability.

If M3 and M3 − 3 are compared based on the models’ average error distance,

M3−3 is better perform than M3 in whole cases. However, considering p−value, in

all cases of M3− 3 vs M3, since p− value is greater than 0.1, it may not be accurate

to analyze the correlation using only the average value. Nevertheless, the farther the

target is from T , the smaller the p-value tends to be. (0.4435 → 0.2072 → 0.1164)

Therefore, if there are 8 or more robots, M3 − 3 may perform significantly better

than M3.

It can be considered that the information at the same time step of the observed

robots has more clues to predict the target than the information at different time

steps. To be specific, the degree of error increase per relay (4E = ∂Error
∂Relay

) according to
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4E F2 ⇒ F1 F1 ⇒ H Average

M3 2.38 2.91 2.65

M3-2 3.60 3.42 3.51

M3-3 2.08 2.74 2.41

Table 6.1: Error Change Amount According to Relay by Model(M3, M3-2, M3-3)

the model is shown in the Table. 6.1. The average of 4E is 4E3−2 > 4E3 > 4E3−3

with 4E3 being 2.65cm, 4E3−2 being 3.51, and 4E3−3being 2.41 respectively. Based

on H robot, the average error distance is the largest in M3 − 2 and the smallest in

M3− 3. Moreover, since the average of 4E is also large in the order of M3− 2, M3,

M3 − 3, as the relay progresses, the difference in prediction results for each model

increases and the performance will be good in the order of M3− 3, M3, M3− 2.

6.2.2 Detailed Comparison by Time Step

The Fig. 6.9 is a graph that analyzes the prediction results of each model for

the target robot according to the time step. In the case of M3− 2 in F2, the initial

prediction (prediction at time step 0) has the best performance, but at time step 12,

the performance is lower than that of M3 − 3. This is because M3 − 2 has a larger

error increase than other models as the time step passes. This tendency increases as

the target robot is a robot farther from T . In other words, the farther the predicted

target robot is from T , the greater the difference in performance for each model. The

cases in F1 and H are significantly different from those in F2. The performance of

the model is shown in order of M3 − 3, M3, and M3 − 2. As the time step passes,

the differences in performances occur more. For example, in the case of predicting

H, in step 0, the difference between M3− 2 and M3− 3 and M3− 3 is 0.28cm and

0.16 cm, respectively, but in step 10, the difference is increased to 2.86cm and 4.26
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Figure 6.9: Detailed Comparison of Prediction Results for F2,F1 and H According
to Time Step by the Models(M3,M3− 2,M3− 3)

cm, respectively. To sum up, M3− 2 has a larger error increase rate than the rest of

the models as it predicts for a robot far from T . Moreover, it has largest amount of

error increases as time step passes. Comparing M3 and M3 − 3, the information of

adjacent robots of the same time-step is better than that of using different time step.

To be specific, the difference between the errors increases as time passes. For H, the

difference of errors is 0.12cm when time step is 0, but the difference is 1.4cm when

time step is 10.
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Figure 6.10: Slope Change Amount According to Relay by Model(M3,M3−2,M3−
3)

The slope(S) of the graph can be considered as the error rising rate according to

the time step. Fig. 6.10 summarizes this. In F2, F1, and H, slope(S) is M3 − 2 >

M3 > M3−3. M3−2 has a steeper slope than that of M3 and M3−3. In addition,

the initial value (value at time step = 0) has a large value in the order of M3 − 2,

M3, M3 − 3 in case of F1 and H. Therefore, at all steps in F1 and H, the average

distance error of M3−2 is the largest and that of M3−3 is the smallest. In addition,

as time passes, the difference in error between models increases. In addition, since

the 4S of M3 − 2 is the largest and that of M3 − 3 is the smallest, the farther the

target is from T , the greater the difference in performances of the models. Using S

and 4S, the prediction result when the length of chain-formation is longer than 7

can be estimated. The red border table on the right in Fig. 6.10 is an example. In

the table, S̃ is an estimate of the slope based on the 4S, assuming that 10 robots

are forming chain-formation. S̃ of M3 − 2 is the largest and S̃ of M3 − 3 is the

smallest. Therefore, the estimation result also shows good performance in the order

of M3− 3 > M3 > M3− 2.
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6.2.3 Qualitative Results (M3,M3-2,M3-3)

The Fig. 6.11 is the result of M3, M3 − 2, and M3 − 3 predicting the remote

robots. Red circles are the results predicted by M3− 2, yellow circles are the results

predicted by M3, and green circles are the results predicted by M3 − 3. The arrow

in the circle means the predicted orientation for each robot.

In all cases, the prediction results at time step t are almost identical to the actual

values. The difference in prediction results for each model appears from time step

t + 5. In particular, the results at time step t + 10 show a large difference between

M3, M3− 3 and M3− 2.

Figure 6.11: The Result of M3, M3-2, and M3-3 Predicting the Remote Robots in
Frames.

In (A) and (B), at time step t+10, M3−2 did not accurately predict the position.

In addition, while M3 and M3 − 3 predicted the shape of the chain similar to the

actual one, M3 − 2 predicted the orientation of the H as opposed to the actual one

and predicted the chain shape differently. That is, the farther the target is from T ,

M3− 2 tends not to make accurate predictions compared to M3− 3 or M3.
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6.3 Comparison 3

6.3.1 Overall Performance

In order to compare the performance difference when the history length inputted

into the model is different, three models with history lengths of 10, 6 and 2 are

designed and trained. Models are called H10, H6, and H2, respectively, depending

on their history length (e.g. history length of H10 is 10). H10 is same model as M1.

Fig. 6.12 is analyzing the average performance by models. In the case of F4, The

shorter the history length, the better the performance of the models. As the number

of relays increases, the error value for each model increases. In particular, the shorter

the length of Hist, the greater the error increasing rate as the relay progresses. In

the case of F4, the performance is good in the order of H10 < H6 < H2, whereas in

the case of H, the performance is good in the order of H10 > H6 > H2.

For models with short history length, the performance is good when the target is

close to the T (when the number of relays is small). Considering the case of F4, If the

models are compared based on the p− value which is 0.01 or less, H2 and H6 can be

compared, and H2 and H10 can be compared. In both cases, H2 has a lower average

distance error. Therefore, it can be said that the model with a shorter history length

is more accurate.

Figure 6.12: Average Prediction Error for Each Model(H10, H6, H2) According to
the Robots and P-values Between Models
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On the other hand, for models with a long history length, the performance seems

to be good when the target is far from T (when the number of relays is large).

Considering the p − value among the results for H, comparing H2 and H10 and

comparing H6 and H10 can be said to be a more reliable comparison. In both cases,

H10 with a long history length produces more accurate prediction results. Thus, it

can be said that the larger the number of relays, the more accurate the model with a

long history length.

The reason for this seems to be that the shorter the length of the history, the

greater the error increase rate by the relay (4E = ∂Error
∂Relay

) .Table. 6.2 shows the error

increase rate by relay (4E) for each model. The average of 4E is smaller as the

history length is longer. That is, whenever relay prediction is performed, a model

with a short history length increases more errors than a model with a long history

length. Therefore, the longer the history length, the less the result is affected by the

relay. On the other hand, the model with a short history length is greatly affected by

the relay. As a result, the performance at the initial value (F4, relay=0) is better as

the history length is shorter (H2), but the larger the relay (H, relay = 4), the better

the model with a long history length (H10).

4E F4 ⇒ F2 F2 ⇒ H Average

H2 5.88 4.93 5.41

H6 4.93 4.33 4.63

H10 4.79 3.57 4.18

Table 6.2: Error Change Amount by Model (H2, H6, H10) According to the Relay
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6.3.2 Qualitative Results (H10,H6,H2)

The Fig. 6.13 is the result of H10, H6, and H2 predicting the remote robots.

Red circles are the results predicted by H2, yellow circles are the results predicted

by H6, and green circles are the results predicted by H10. The arrow in the circle

means the predicted orientation for each robot.

The results at time step t are similar for all three models. The predicted values do

not deviate significantly from the actual positions of the robots, and the predictions

are made almost accurately.

On the other hand, as time goes by, the difference between actual values and

predicted values tends to increase. The prediction result for H at time step t + 10

seems to be H10 is the most accurate and H2 is the most inaccurate. On the other

hand, the results of predicting F4 or F3 are similar to all three models, but H2 seems

to be the most accurate.

Figure 6.13: The Result of H10, H6, and H2 Predicting the Remote Robots in
Frames.
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Chapter 7

CONCLUSION AND FUTURE WORK

In a Multi-Robot System, there are advantages such as being able to operate de-

centralized when not using a global communication system. In particular, Swarm

Robotics often decides the next action using only local sensing without global com-

munication. In this situation, if robots can infer global information, they will get

many advantages such as suggested in Choi et al. (2017). This thesis has studied how

to implement physical robot team using local sensing that can infer global informa-

tion using local information. Also, it is an experiment that compares the accuracy

of prediction when there is a difference between the quantity and quality of local

information and the query. There are two detailed goals for this.

The first target is to implement a team-robot using a real robot. To test whether

global information can be inferred using local information, a physical robot platform

was constructed using Thymio, Raspberry pi, and a central computer. The robots

moved in one line based on the motion rule in the arena. The composition of team-

robot started from 3 units and expanded to 7 units.

The second detailed goal is to infer global information using local information and

compare result differences according to differences in local information. The results

are as follows. First, if the number of cues is different, the model with less cues has

better basic performance. On the other hand, when the comparison is made based on

the absolute position of the robot without considering the relay, a model with a large

number of cues shows better performance. The difference in performance according

to the number of cues tends to decrease as the target is determined to be a robot far

from T . Therefore, it can be said that as the size of robot team increases, the effect
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of the number of cues used for prediction decreases.

Second, when the types of cues are different, the performance is better when all

possible cues are used than when the cues closest to the target are used. Also, using

the same time step information shows better performance than using different time

step information. As the time passed, the difference between the result values tends

to increase.

Finally, it is a comparison according to the history length. A model with a short

history length performs better when predicting targets close to T. However, as the

relay progresses, the amount of error that increases is larger in a model with a short

history length. Therefore, the farther the target is from the T, the longer the history

length model tends to show better performance.

As a result, the error range of the prediction model can be estimated by considering

the size of the team-robot and the sensor performance of the robot using the results

derived through comparison, and it is helpful in determining ideal input data.

Based on this experiment, the future work is as follows. Through the comparisons,

it is possible to grasp the tendency to vary depending on the input data. Using this

tendency, in Fig. 6.6 and Fig. 6.10, the predicted value for the case farther from

T was estimated.However, in order to prove the estimate, it is necessary to confirm

by increasing the number of robots that make up the team-robot. Therefore, I will

construct a chain-formation using more robots and conduct an experiment comparing

the estimated value with the actual predicted value.

In addition, using the inferred global information, it is necessary to experiment

with a smart object (e.g. Tail) leading a group to a desired direction. Therefore, I will

research how to create a reinforcement learning model that leads a group by using

predicted results using deep learning technology by linking reinforcement learning

and deep learning technology.
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