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ABSTRACT

Modern digital applications have significantly increased the leakage of private and

sensitive personal data. While worst-case measures of leakage such as Differential

Privacy (DP) provide the strongest guarantees, when utility matters, average-case

information-theoretic measures can be more relevant. However, most such information-

theoretic measures do not have clear operational meanings. This dissertation ad-

dresses this challenge.

This work introduces a tunable leakage measure called maximal α-leakage which

quantifies the maximal gain of an adversary in inferring any function of a data set.

The inferential capability of the adversary is modeled by a class of loss functions,

namely, α-loss. The choice of α determines specific adversarial actions ranging from

refining a belief for α = 1 to guessing the best posterior for α = ∞, and for the

two specific values maximal α-leakage simplifies to mutual information and maximal

leakage, respectively. Maximal α-leakage is proved to have a composition property

and be robust to side information.

There is a fundamental disjoint between theoretical measures of information leak-

ages and their applications in practice. This issue is addressed in the second part of

this dissertation by proposing a data-driven framework for learning Censored and Fair

Universal Representations (CFUR) of data. This framework is formulated as a con-

strained minimax optimization of the expected α-loss where the constraint ensures

a measure of the usefulness of the representation. The performance of the CFUR

framework with α = 1 is evaluated on publicly accessible data sets; it is shown that

multiple sensitive features can be effectively censored to achieve group fairness via

demographic parity while ensuring accuracy for several a priori unknown downstream

tasks.

Finally, focusing on worst-case measures, novel information-theoretic tools are
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used to refine the existing relationship between two such measures, (ε, δ)-DP and

Rényi-DP. Applying these tools to the moments accountant framework, one can track

the privacy guarantee achieved by adding Gaussian noise to Stochastic Gradient De-

scent (SGD) algorithms. Relative to state-of-the-art, for the same privacy budget,

this method allows about 100 more SGD rounds for training deep learning models.
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Chapter 1

INTRODUCTION

1.1 Background and Contributions

The use of deep learning algorithms for data analytics has recently seen unprece-

dented success for a variety of problems such as image classification, natural language

processing, and prediction of consumer behavior, electricity use, political preferences,

to name a few. The success of these algorithms hinges on the availability of large data

sets that may include patterns of societal bias and discrimination as well as sensitive

personal information. It has been shown that models learned from such data sets can

potentially inherit such biases [1, 2] as well as glean sensitive features even when such

features are not explicitly used during training [3]. As a result, concerns about the

fairness, censoring, and privacy of learning algorithms has led to a growing body of

research focused on both defining meaningful measures and designing learning models

with a desired fairness/censoring/privacy guarantee.

The measure and control of private/sensitive information leakage is a recognized

objective in communications, information theory, and computer science. Modern

cryptography [4, 5, 6], for example, aims at designing and analyzing security sys-

tems that are believed to be impervious to computationally bounded adversaries.

Alternatively, information-theoretic security studies settings where an asymmetry of

information between an adversary and the legitimate parties (e.g., the wiretap channel

[7, 8, 9]) can be exploited to guarantee that no private information is leaked regard-

less of computational assumptions. An adversary that only observes the output of a

(computationally) secure cipher or cannot overcome the information asymmetry in a

1



wiretap-like setting does not, for all practical purposes, pose a privacy risk.

However, modern applications such as online data sharing, social networks, cloud-

based services, and mobile computing have significantly increased the number of in-

terfaces through which sensitive/private information can leak. Services that require a

user to disclose data in order to receive utility inevitably incur a privacy risk through

unwanted inferences. For example, political preference can be reliably estimated from

movie ratings [10], an online store can infer a medical condition by observing your

shopping history [11], or social network users can be deanonymized by tracking their

interaction with peers [12, 13]. Moreover, practical implementations of cryptographic

schemes are susceptible to so-called “side-channel attacks,” where sensitive informa-

tion leaks through unexpected channels. For example, a malicious application may

get timing characteristics [14, 15]. In these examples, an adversary that observes in-

formation leaking through a side channel can more reliably infer sensitive data, such

as a key or a plaintext.

Despite the array of (often overlapping) privacy/censoring, various measures are

proposed over the past decade. The most well-known measure is differential privacy

(DP) [16, 17], which captures privacy in the context of querying databases. Recently,

targeting a guessing adversary, Asoodeh et al. use the probability of correctly guessing

to measure censoring [18]; and Issa et al. introduce maximal leakage (MaxL), which is

essentially the maximal logarithmic gain in the probability of correctly guessing any

arbitrary function of original data from released data [19]. Many other measures of

information leakages are derived from information theory, such as mutual information

(MI). Rassouli et al. use a total variation distance between the prior and posterior

distributions as the leakage measure [20], and Mironov introduce Rényi differential

privacy based on Rényi divergence [21].

In this report, we provide two new metrics called α-leakage and maximal α-leakage

2



that quantify information leakages through the lens of adversarial inference capabil-

ities. Specifically, α-leakage captures an adversary’s ability in inferring a specific

sensitive attribute in the data set, and in contrast, maximal α-leakage is for any ar-

bitrary attribute of the data set. These metrics can be applied to the aforementioned

privacy/censoring and side-channel settings, and directly capture an adversary’s abil-

ity to infer (ranging from the most likely realization to the posterior distribution)

for any information of original data from the released version or the one leaked via

side-channels. We show that α-leakage is Arimoto mutual information (A-MI) and

maximal α-leakage is MI for α = 1 and Arimoto channel capacity for α > 1. There-

fore, the proposed maximal α-leakage captures MI and MaxL at extrema.

In privacy protection, one essential problem is that an adversary’s side informa-

tion could increase the amount of private information leaked to this adversary from

released data. One of the advantages of DP is that it is robust to arbitrary exter-

nal knowledge (side information). This robustness is formalized in [22], wherein the

authors model side information by a prior probability distribution on the support of

the original data set. Differently, in this work we model side information as a random

variable possessed by an adversary that is interested to learn an arbitrary function

of the original data from the released data. An adversarial inference involving side

information is, therefore, modeled as a conditional Markov chain, which is also used

by Issa et al. to study the effect of side information on maximal leakage [23, Def. 6].

We justify the reasonability of the conditional Markov chain in exploring impacts of

side information on privacy problems. Making use of the conditional Markov chain,

we introduce conditional maximal α-leakage, which is an extended version of maximal

α-leakage involving side information, and show that maximal α-leakage upper bounds

maximal conditional α-leakage if the side information is conditionally independent of

the released data given the original data. That is, maximal α-leakage is robust to
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arbitrary side information that is not used in generating the released data from the

original data.

In this work, we also evaluate the proposed measures of information leakage by

using them as privacy metrics in privacy-guaranteed data publishing settings. In

most non-trivial settings of data publishing, there is a fundamental tradeoff between

privacy and utility, called privacy-utility tradeoff (PUT): on the one hand, releasing

data “as is” can lead to unwanted inferences of private information (an arbitrary or

a specific function of original data). On the other hand, perturbing or limiting the

released data reduces its quality. We concern general statistical inference applications

and guarantee a general utility via preserving the fidelity of the released data to the

original data. The fidelity is measured by an arbitrarily chosen distortion function.

In contrast to statistical utilities in most information-theoretic PUTs, which capture

utility as a statistical average of desired measures [24, 25, 26, 18, 20], we introduce a

new hard distortion metric to measure utility, which constrains the privacy mechanism

so that the distortion between original and released data is bounded with probability

1. The concept of deterministic/hard utility has been considered in the form of ρ-

recoverable functions in [27]. Differently, we bound the distortion of data itself instead

of data functions, which naturally guarantees some recoverability of any arbitrary

data functions. In addition, compared to average-case distortion constraints [28], the

hard distortion metric is quite stringent but allows the data curator to make specific,

deterministic guarantees on the fidelity of the released data set to the original one.

The deterministic guarantee can lead to more accurate statistical estimators, e.g.,

the empirical distribution estimation. Using the aforementioned tunable measures of

information leakage and hard distortion as privacy and utility measures, respectively,

we precisely quantify the PUT for data sets that are entirely sensitive or contain both

non-sensitive and sensitive private data, respectively.
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While the fundamental question of how to formally define algorithmic fairness con-

tinues to be open, most algorithmic fairness measures have been motivated by legal

systems that evaluate the fairness of a decision-making process using two distinct no-

tions [29]: disparate treatment and disparate impact. The process of making decisions

suffers from disparate treatment if the decisions are (partly) based on the subject’s

sensitive information/attribute, and it has disparate impact if its outcomes dispro-

portionately hurt (or benefit) people with certain sensitive attribute values. These

two legal definitions have led to many distinct interpretations of algorithmic fairness,

and therefore, to many quantitative measures. Furthermore, whether fairness should

be enforced at a group or individual level has also led to different quantitative defi-

nitions (see [30, 31, 32] and the references therein) and two broad approaches: group

fairness and individual fairness. Group fairness ensures statistical/demographic par-

ity by seeking similar outcomes for all groups [33]. In contrast, individual fairness

requires treating similar individuals, perceived as such in some measurable space,

similarly [34, 35].

For specific learning tasks, fairness guarantees can be achieved either via pre-

processing, or in-processing, or post-processing the data. In-processing approaches

are most commonly used in the supervised setting where the learning objective (e.g.,

target labels for classification) are known, and have been explored in the context of

classification [34, 36, 37, 38, 39], regression [40, 41] and ranking [42, 43, 44, 45, 46, 47].

In this setting, knowledge of the learning objective/task is required in the training

phrase and the resulting trained model gives fair results only for the specified learning

objective. Therefore, in-processing approaches are not applicable for data sets with

limited or no labels. Pre-processing approaches generally produce fair representations

of data at hand and post-processing approaches provide fairness by properly altering

decision outputs [48, 49, 50, 51]. Both these two approaches do not require the
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knowledge of learning objectives in the training phase.

In a variety of data collection settings, the learning tasks may not be known a

priori or the data may be collected for learning multiple tasks. In this context, the pre-

processing approach of learning fair representations of data sets is effective. Learning

fair representations using information-theoretic objective functions and constrained

optimization have been proposed in [48, 52, 53]. However, these approaches, focusing

on information-theoretic formulations, require knowledge of the statistics of the data

sets. To circumvent the lack of statistical knowledge for real data sets, data-driven

approach have been considered wherein fair representations are learned directly from

the data via adversarial models. Adversarial learning models have been developed

[54, 55, 56] and applied to semi-supervised learning [57, 58], domain adaptation [59]

and segmentation [60]. Recently, such methods have also been applied to context-

aware censoring and fairness [61, 62, 63, 64, 65, 66, 67, 37].

In this work, we apply the α-loss to the generative adversary model proposed in

[64] and develop a framework that outputs a censored and fair universal representation

(CFUR) of the data at hand. The resulting representation can then be used to learn a

variety of task-appropriate models that are information-theoretically guaranteed to be

fair. These representations are universally fair in that the representations can be used

for a variety of downstream learning tasks and the fairness guarantees are independent

of such tasks. Since fairness assurances for CFURs are achieved via pre-processing

the data, a reasonably appropriate measure of fairness is the group fairness measure

of demographic parity (DemP) which ensures the same proportion of outcomes to all

groups. As an immediate consequence of such pre-processing, the CFUR problem

becomes a tradeoff between ensuring sufficient fidelity of the representation to ensure

high accuracy on downstream learning tasks while guaranteeing a desired measure of

demographic parity.
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The key idea of our CFUR approach is that of actively decorrelating the sensitive

data from the other features, thereby ensuring that the downstream tasks are learned

independent of such sensitive features. As a result, the CFUR model itself serves

broader purpose: it can be used to create decorrelated representations for new data

(from the same distribution or via transfer learning for other data sets) prior to

learning any task on it. One can view this effort as a censoring approach, i.e., all

sensitive features are not just stripped from the data but its correlation with other

features are actively damped to censor/restrict its inference from the representation

while ensuring some measure of usefulness of the data.

More generally, when learning data representations, censoring and fairness are

very similar in that both can be ensured by perturbing the data set to decorrelate

the sensitive variables from the rest of the data set. Depending on the context and

problem requirement, decorrelating operations can be designed as privacy preserving

mechanisms to hide the sensitive variables from inference or as a fairness enforcing

algorithm that prevents a machine learning model from discriminating based on the

sensitive variables. We now detail our specific contributions to designing fair universal

representations via a censoring approach.

To showcase the power of our approach, we conduct 2 sets of extensive experiments

on publicly accessible data sets: UCI Adult [68] and UTKFace [69]. For relevant data

sets, our visual results show that our data driven training methods succeed at creating

high quality representations that increasingly erase the sensitive attributes with de-

creasing fidelity requirements. Both our theoretical framework and our experiments

consider non-binary sensitive attributes and data sets with multiple attributes. Our

experimental results show that one can still learn high quality classifiers even when

the downstream ML task is not known a priori. In particular, we consider the UCI

data set that is often used in fair ML analyses to showcase the advantage of our
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approach relative to related approaches (for example, by Edwards and Storkey [61]

and Madras et al. [67] ). Moreover, our results straddle a wide range of values for the

chosen fairness measure (DemP) including perfect fairness, in contrast to the above

cited works.

Several methods have recently been proposed to ensure differentially private train-

ing of ML models [70, 71, 72, 73, 74, 75]. Here, the parameters of the model deter-

mined by a learning algorithm (e.g., weights of a neural network) are sought to be

differentially private with respect to the data used for fitting the model (i.e. the train-

ing data). When the model parameters are computed by applying stochastic gradient

descent (SGD) algorithm to minimize a given loss function, DP can be ensured by

directly adding noise to the gradient. The empirical and theoretical flexibility of this

noise-adding procedure for ensuring DP was demonstrated, for example, in [71, 70].

This method is currently being used for privacy-preserving training of large-scale ML

models in industry, see e.g., the implementation of [76] in the Google’s open-source

TensorFlow Privacy framework [77].

Not surprisingly, for a fixed training data set, privacy deteriorates with each SGD

iteration. In practice, the DP constraints are set a priori, and then mapped to a

permissible number of SGD iterations for fitting the model parameters. Thus, a

key question is: given a DP constraint, how many iterations are allowed before the

SGD algorithm is no longer private? The main challenge in determining the DP

guarantees provided by noise-added SGD is keeping track of the evolution of the

privacy loss random variable during subsequent gradient descent iterations. This can

be done, for example, by invoking advanced composition theorems for DP, such as

[78, 79]. Such composition results, while theoretically significant, may be difficult to

apply to the SGD setting due to their generality (e.g., they do not take into account

the noise distribution used by the privacy mechanism).
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Recently, Abadi et al. [70] circumvented the use of DP composition results by

developing a method called moments accountant (MA). Instead of dealing with DP

directly, the MA approach provides privacy guarantees in terms of Rényi differen-

tial privacy (RDP) [80] for which composition has a simple linear form. Once the

privacy guarantees of the SGD execution are determined in terms of RDP, they are

mapped back to DP guarantees via a conversion result between (ε, δ)-DP and RDP

[70, Theorem 2]. This approach renders tighter DP guarantees than those obtained

from advanced composition theorems (see [70, Figure 2]). We provide a framework

which settles the optimal conversion from RDP to (ε, δ)-DP, and thus further en-

hances the privacy guarantee obtained by the MA approach. Our technique relies

on the information-theoretic study of joint range of f -divergences [81, 82]. It is

known that both (ε, δ)-DP and RDP can be expressed via two certain types of the

f -divergences [83, 84], namely hockey-stick [85] divergence and χα-divergence (also

called Hellinger divergence[86]), respectively. Based on this result, we apply [87, The-

orem 8] to characterize the joint range of these two f -divergences which, in turn, leads

to the “optimal” conversion from RDP to DP . Specifically, this optimal conversion

allows us to derive bounds on the number of SGD iterations for a given DP constraint

in the context of Gaussian perturbation of the gradient. Our result improves upon

the state-of-the-art [70] by allowing more training iterations (often hundreds more)

for the same privacy budget, and thus providing higher utility for free.

1.2 Outline of the Report

The outline of this paper is as follows. In Chapter 2, two operational measures

of information leakage: α-leakage and maximal α-leakage, are introduced based on

a novel tunable loss function, namely α-loss (α > 0). The properties of the loss

function and two leakage measures are also presented in Chapter 2. Chapter 3 shows

9



the robustness of maximal α-leakage to arbitrary side information. Chapter 4 gives

the optimal privacy mechanisms that achieves the optimal PUTs using either maximal

α-leakage or α-leakage as the privacy measure subject to a hard distortion constraint.

In Chapter 5, the α-loss is applied to a generative adversary model and the resulting

framework is proved to be able to produce censored and fair representations of data

for multiple downstream tasks not known a priori. The performance of the framework

is evaluated on publicly accessible data sets: UCI Adult and UTK Face. In Chapter

6, an information-theoretical study of the joint region of two f -divergences is used to

derived the optimal conversion from RDP to (ε, δ)-DP, which can be used to improve

the tracking of privacy protection provided by a noisy gradient descent algorithm in

machine learning and deep learning. The conclusion and future work are in Chapter

7.
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Chapter 2

TUNABLE INFORMATION LEAKAGE MEASURES AND PROPERTIES

In this chapter, we introduce a tunable loss function, namely α-loss for α ∈ (0,∞],

which simplifies to the logarithmic loss (log-loss) and soft 0-1 loss at the two extrema.

Viewing information leakage through the lens of adversarial inference capabilities,

we quantify the leakage via α-loss, which the adversary intends to minimize, and

define two tunable measures of information leakage, called α-leakage and maximal

α-leakage, respectively. Note that for the sake of concise expressions, we first present

the definitions and properties of α-loss and (maximal) α-leakage for α ∈ [1,∞] and

summarize the extension to 0 < α < 1 in Section 2.5.

2.1 Preliminaries

We use capital letters to represent discrete random variables, and the correspond-

ing capital calligraphic and lower-case letters represent their finite supports and the

elements of the supports, respectively. For example, for a random variable X, its sup-

port is X with any possible realization x ∈ X . In addition, we use log to represent

the natural logarithm, and [a, b] to indicate the set of integers from a to b. We use

| · | to indicate the cardinality of a set, e.g., |X |, and ‖ · ‖p to represent the p-norm of

a vector, e.g., for α ≥ 1, ‖PX‖α , (
∑

x∈X PX(x)α)
1
α .

We begin by reviewing Rényi entropy and divergence [88, 89].

Definition 2.1.1. Given a distribution PX , the Rényi entropy of order α ∈ (0, 1) ∪

11



(1,∞) is defined as

Hα(PX) =
1

1− α
log
∑
x∈X

PX(x)α,

=
α

1− α
log ‖PX‖α, (α ≥ 1).

(2.1)

(2.2)

Let QX be a distribution over the support of PX . The Rényi divergence (between PX

and QX) of order α ∈ (0, 1) ∪ (1,∞) is defined as

Dα(PX‖QX) =
1

α− 1
log

(∑
x∈X

PX(x)α

QX(x)α−1

)
. (2.3)

Both of the two quantities are defined by their continuous extensions for α = 1 and

∞. Specifically, for α =∞, the two quantities are given by

H∞(PX) = min
x

log
1

PX(x)
, (2.4)

which is called min-entropy, and

D∞(PX‖QX) = log max
x

PX(x)

QX(x)
. (2.5)

For α = 1, the Rényi entropy and divergence reduce to Shannon entropy and Kullback-

Leibler divergence, respectively [90].

The α-leakage and maximal α-leakage metrics can be expressed in terms of Sibson

MI [91] and Arimoto MI [92]. These quantities generalize the usual notion of MI. We

review these definitions next.

Definition 2.1.2. Let discrete random variables (X, Y ) ∼ PX,Y with PX and PY |X

as the marginal and conditional distributions, respectively, and QY be an arbitrary

distribution over the finite support Y. The Sibson mutual information of order α ∈
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(0, 1) ∪ (1,∞) is defined as

ISα(X;Y ) , inf
QY

Dα(PX,Y ‖PX ×QY ) =
α

α− 1
log
∑
y

(∑
x

PX(x)PY |X(y|x)α

) 1
α

.

(2.6)

The Arimoto mutual information of order α ∈ (0, 1) ∪ (1,∞) is defined as

IAα (X;Y ) , Hα(X)−HA
α (X|Y ) =

α

α− 1
log

∑
y

(∑
x

PX,Y (x, y)α
) 1

α

(∑
x

PX(x)α
) 1

α

,

=
α

α− 1
log

∑
y

‖PX,Y (·, y)‖α

‖PX‖α
, (α ≥ 1)

(2.7)

(2.8)

where HA
α (X|Y ) is Arimoto conditional entropy of X given Y defined as

HA
α (X|Y ) =

α

1− α
log
∑
y

(∑
x

PX,Y (x, y)α

) 1
α

. (2.9)

All of these quantities are defined by their continuous extension for α = 1 or ∞.

Note that for α = 1, both Sibson and Arimoto MIs reduce to Shannon’s MI;

however, for α =∞, the Sibson MI is

IS∞(X;Y ) = log
∑
y

max
x

PY |X(y|x), (2.10)

and the Arimoto MI is given by

IA∞(X;Y ) = log

∑
y

max
x

PX,Y (x, y)

max
x

PX(x)
. (2.11)

The two metrics of information generalize Shannon’s MI and have a number of inter-

esting and useful properties in various problems [91, 92, 90, 93].
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Figure 2.1: Plot of α-Loss as a Function of p

2.2 α-Loss Function

For a Markov chain X − Y − X̂, let X̂ be an estimator of X and PX̂|Y be a

strategy for estimating X from Y . We denote the probability of correctly estimating

X = x given Y = y as PX̂|Y (x|y). The estimation strategy PX̂|Y is selected in order

to minimize an expected loss metric. Denoting the loss function by `(x, y, PX̂|Y ), the

expected loss is given by E
[
`
(
X, Y, PX̂|Y

)]
.

One formulation of the loss function is the probability of incorrectly guessing, also

called soft 0-1 loss, given by

`0−1(x, y, PX̂|Y ) = 1− PX̂|Y (x|y), (2.12)

such that the expected loss E
[
`0−1

(
X, Y, PX̂|Y

)]
is the expected probability of error.

Here, the optimal strategy P ?
X̂|Y is the standard maximal posterior (MAP) estimator
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given by

P ?
X̂|Y (x|y) =


1, x = arg max

x∈X
PX|Y (x|y)

0, otherwise

, (2.13)

which makes the loss `0−1(x, y, P
?
X̂|Y ) be either 0 or 1, and therefore, called 0-1 loss

in the literature [94, 95]. The corresponding expected loss E
[
`0−1

(
X, Y, P ?

X̂|Y

)]
is the

minimal expected probability of error.

To measure the uncertainty for the strategy PX̂|Y , the log-loss (used, for example,

in [94, 96, 97, 98]) is given by

`log(x, y, PX̂|Y ) = log
1

PX̂|Y (x|y)
. (2.14)

The expected loss in this case is the conditional cross-entropy, given by

E
[̀

log(X, Y, PX̂|Y )
]

=
∑
x,y

PX,Y (x, y) log
1

PX̂|Y (x|y)
,

= H(X|Y ) +
∑
y

PY (y)D(PX|Y=y‖PX̂|Y=y).

(2.15)

(2.16)

Therefore, the optimal strategy is the true posterior distribution of X given Y , i.e.,

P ?
X̂|Y = PX|Y , which makes the expected loss in (2.16) become the conditional entropy

H(X|Y ). That is, the minimal expected log-loss is the true conditional entropy.

Note that both the soft 0-1 loss and log-loss functions are decreasing in the prob-

ability of correctly estimation PX̂|Y (x|y). Specifically, for PX̂|Y (x|y) = 1, both the

values of soft 0-1 loss and α-loss are 0, and for PX̂|Y (x|y) = 0, the values of soft 0-1

loss and log-loss become 1 and ∞, respectively. To allow a continuous quantification

of the loss for PX̂|Y (x|y) = 0 from 1 to ∞, we formally define a tunable loss function,

namely α-loss, as follows.

Definition 2.2.1 (α-loss). Let random variables X, Y and X̂ form a Markov chain

X − Y − X̂, where X̂ is an estimator of X. The α-loss of the strategy PX̂|Y for
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Figure 2.2: The Optimal Strategy in (2.21) for Different α

estimating X̂ = x from Y = y is

`α(x, y, PX̂|Y ) =
α

α− 1

(
1− PX̂|Y (x|y)

α−1
α

)
, (2.17)

where α ∈ (1,∞). It is defined by its continuous extension for α = 1 and α = ∞,

respectively, and is given by

`1(x, y, PX̂|Y ) = lim
α→1

`α(x, y, PX̂|Y )= log
1

PX̂|Y (x|y)
,

`∞(x, y, PX̂|Y )= lim
α→∞

`α(x, y, PX̂|Y )=1−PX̂|Y (x|y).

(2.18)

(2.19)

Note that for α = 1, the expression in (2.18) follows directly from the L’Hôpital’s

rule and α-loss becomes the log-loss in (2.14); and for α = ∞, the loss in (2.19) is

exactly the soft 0-1 loss in (2.12). Fig. 2.1 plots the α-loss function in (5.20) for

different values of α, where the p ∈ [0.001, 1] represents the probability of correctly

guessing, i.e., p = PX̂|Y (x|y) with an observation Y = y and p = PX̂(x) without any
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observation. From Fig. 2.1, we observe that α-loss function is decreasing and convex

in the probability of correctly guessing.

Lemma 1. For 1 ≤ α ≤ ∞, the minimal expected α-loss is given by

min
P
X̂|Y

E
[
`α(X, Y, PX̂|Y )

]
=


α
α−1

(
1− exp

(
1−α
α
HA
α (X|Y )

))
, α > 1

H(X|Y ), α = 1

, (2.20)

with the optimal estimation strategy given by

P ?
X̂|Y (x|y) =

PX̂|Y (x|y)α∑
x∈X

PX̂|Y (x|y)α
. (2.21)

A detailed proof is in Subsection 2.6.1. Note that in (2.20), HA
α (X|Y ) is Arimoto

conditional entropy of X given Y in (2.9). For α =∞, the expression of HA
∞(X|Y ) is

HA
∞(X|Y ) = log

∑
y

PY (y) max
x

PX|Y (x|y), (2.22)

such that exp
(
HA
∞(X|Y )

)
is the maximal expected probability of correctly guessing X

from Y . Therefore, for α =∞, the minimal expected α-loss is the minimal expected

probability of error. In addition, the optimal estimation strategy in (2.21) becomes

the true posterior distribution of X for α = 1 and the MAP estimator for α =∞ 1 ,

respectively.

Example 1. Let the conditional probability distribution of X given Y = y be a bino-

mial distribution with parameters (n, p) = (20, 0.5), i.e., PX|Y (x|y) =
(
20
x

)
0.5x0.520−x

for x ∈ [0, 20]. Fig. 2.2 shows the optimal strategies in (2.21) for different values of

α. Note that in Fig. 2.2, the magenta circles represent the true conditional probabil-

ity PX|Y=y, which is a binomial distribution with parameters (n, p) = (20, 0.5). We

1Note that if there are more than one realization sharing the same maximal posterior belief, for
α =∞ the optimal strategy in (2.21) will output these most likely values with the same probability.
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observe from Fig. 2.2 that as α grows from 1 to ∞, the optimal strategy gradually

eliminates the less likely values of X (given y) and transforms from the true posterior

distribution to the MAP estimator.

2.3 Tunable Leakage Measures: α-Leakage and Maximal α-Leakage

Let X and Y represent the original data and released data, respectively, and let

U represent an arbitrary (potentially random) function of X that the observer (a

curious or malicious user of the released data Y ) is interested in learning. In [23],

Issa et al. introduced MaxL to quantify the maximal gain in an adversary’s ability

of guessing U after observing Y . We review the definition below.

Definition 2.3.1 ([23, Def. 1]). Given a joint distribution PX,Y on finite alphabets,

the maximal leakage from X to Y is

LMaxL(X → Y ) , sup
U−X−Y

log

max
P
Û|Y

E
[
PÛ |Y (U |Y )

]
max
u

PU(u)
, (2.23)

where Û represents an estimator taking values from the same arbitrary finite support

as U .

Note that the numerator of the logarithmic term in (2.23) is the maximal expected

probability of correctly guessing U with Y given by

max
P
Û|Y

E
[
PÛ |Y (U |Y )

]
= max

u

∑
y

PY (y)PU |Y (u|y), (2.24)

which is exactly the complement of the minimal expected (soft) 0-1 loss in guessing U

with Y . Similarly, the denominator is the complement of the minimal expected (soft)

0-1 loss in guessing U without Y . Therefore, MaxL is a leakage measure related to

(soft) 0-1 loss in (2.12).
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In addition, in Def. 2.3.1, U represents any (possibly random) function of X.

The numerator represents the maximal probability of correctly guessing U based on

Y , while the denominator represents the maximal probability of correctly guessing U

without knowing Y . Thus, MaxL quantifies the maximal logarithmic gain in guessing

any possible function of X when an adversary has access to Y .

Analogously to the derivation of MaxL from (soft) 0-1 loss, we introduce α-leakage

and maximal α-leakage based on α-loss (under the assumptions of discrete random

variables and finite supports). The formal definitions are as follows.

Definition 2.3.2 (α-Leakage). Given a joint distribution PX,Y and an estimator X̂

with the same support as X, the α-leakage from X to Y is defined as

Lα(X → Y ) ,
α

α− 1
log

max
P
X̂|Y

E
[
PX̂|Y (X|Y )

α−1
α

]
max
P
X̂

E
[
PX̂(X)

α−1
α

] , (2.25)

for α ∈ (1,∞) and by the continuous extension of (2.25) for α = 1 and ∞.

Whereas α-leakage captures how much an adversary can learn about X from Y ,

we also wish to quantify the information leaked about any function of X through Y .

To this end, we define maximal α-leakage below.

Definition 2.3.3 (Maximal α-Leakage). Given a joint distribution PX,Y on finite

alphabets X × Y, the maximal α-leakage from X to Y is defined as

Lmax
α (X → Y ) , sup

U−X−Y
Lα(U ;Y ),

= sup
U−X−Y

lim
α′→α

α′

α′ − 1
log

max
P
Û|Y

E
[
PÛ |Y (U |Y )

α′−1
α′

]
max
P
Û

E
[
PÛ(U)

α′−1
α′

] ,

(2.26)

(2.27)

where 1 ≤ α ≤ ∞, and U represents any function of X and takes values from an

arbitrary finite alphabet.
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Note that for α ≥ 1,

max
P
Û|Y

E
[
PÛ |Y (U |Y )

α−1
α

]
= 1− α− 1

α
min
P
Û|Y

E
[
`α(U, Y, PÛ |Y )

]
. (2.28)

Thus, there is a similar connection between maximal α-leakage and α-loss (in Def.

2.2.1) as that observed in (2.24) between MaxL and (soft) 0-1 loss, and maximal

α-leakage quantifies an adversary’s capability to infer any function of data X from

the released Y .

Making use of the result in Lemma 1, the following theorem simplifies the expres-

sion of α-leakage in (2.25).

Theorem 1. For 1 ≤ α ≤ ∞, α-leakage defined in (2.25) simplifies to

Lα(X → Y ) = IAα (X;Y ). (2.29)

From (2.28) and Lemma 1, we simplify the scaled logarithm of the ratio in (2.25)

to Arimoto MI. A detailed proof is in Subsection 2.6.2, where we show that Arimoto

conditional entropy and Rényi entropy capture the inference uncertainties of an ad-

versary for knowing Y or not, respectively, and α-leakage measures the decrease in

the inference uncertainty by knowing Y .

Making use of the conclusion in Thm. 1, the following theorem gives equivalent

expressions for maximal α-leakage.

Theorem 2. For 1 ≤ α ≤ ∞, the maximal α-leakage defined in (2.26) simplifies to

Lmax
α (X → Y ) =


sup
PX̃

ISα(X̃;Y ) = sup
PX̃

IAα (X̃;Y ), 1 < α ≤ ∞

I(X;Y ), α = 1

(2.30a)

(2.30b)

where PX̃ is a probability distribution over the support of PX .
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Note that maximal α-leakage is essentially the Arimoto channel capacity (with a

support-set constrained input distribution) for α > 1 [92], which is used to character-

ize probabilities of decoding error for scenarios in which transmission rates are higher

than channel capacity. The limit of maximal α-leakage for α = 1 gives the Shannon

channel capacity. Recall that the limit of α-loss in (5.20) leads to the log-loss (for

α = 1) and soft 0-1 loss (for α =∞) functions, respectively. Consequently, for α = 1

and ∞, maximal α-leakage simplifies to MI and MaxL, respectively.

A detailed proof for Thm. 2 is in Subsection 2.6.3. We summarize key steps in

the proof as follows: by applying Thm. 1, we write maximal α-leakage as

Lmax
α (X → Y ) = sup

U−X−Y
IAα (U ;Y ) α ∈ [1,∞]. (2.31)

For α = 1, Arimoto MI is simply the Shannon’s MI, and combining with the data

processing inequalities, (2.31) simplifies to I(X;Y ). Note that for α > 1, Arimoto

MI does not satisfy data processing inequalities. By using the facts that Arimoto MI

and Sibson MI have the same supremum [90, Thm. 5] and that Sibson MI satisfies

data processing inequalities [90, Thm. 3], we upper bound the supremum of (2.31) by

supPX̃ I
S
α(X̃;Y ), and then, show that the upper bound can be achieved by a specific

U with H(X|U) = 0.

Example 2. Given a binary channel

PY |X =

1− ρ1 ρ1

ρ2 1− ρ2

 , (2.32)

where ρ1, ρ2 ∈ [0, 1] are the crossover probabilities, maximal α-leakage in (2.30) is
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given by

Lmax
α (X → Y ) =

α

α− 1
log

(∣∣∣(1− ρ1)α(1− ρ2)α − ρα1ρα2
∣∣∣ 1α

·
(∣∣∣(1− ρ2)α − ρα1 ∣∣∣ 1

1−α
+
∣∣∣(1− ρ1)α − ρα2 ∣∣∣ 1

1−α
)α−1

α

)
. (2.33)

If ρ1 = ρ2, (2.33) simplifies to

Lmax
α (X → Y ) =

1

α− 1
log ((1− ρ1)α + ρα1 ) + log 2, (2.34)

which is exactly the α-leakage for the binary symmetric channel with the uniform input

distribution. Fig. 2.3 plots the values of maximal α-leakage for example channels

where ρ1 = ρ2 and ρ1 6= ρ2, and shows that the ordering of leakages for the two

channels varies with α.

2.4 Properties of Tunable Leakage Measures

For the potential use of the two tunable information leakage measures α-leakage

and maximal α-leakage introduced, for example, used as the privacy metric in privacy-

utility tradeoff problems, we explore the properties of these measures. All properties

are proved based on the simplified expressions of of α-leakage and maximal α-leakage

in Thm. 1 and Thm. 2, respectively.

2.4.1 Properties of α-leakage

Thm. 1 shows that α-leakage is exactly Arimoto MI, and therefore, several basic

properties of α-leakage have been shown including

(i) non-negativity [90, Section II-A],

(ii) quasi-convexity, which is proved based on the facts that for α ≥ 1 and PX , the

Arimoto MI IAα (X;Y ) is the logarithm of a linear combination of the p-norm
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Figure 2.3: Values of Maximal α-Leakage for Binary Channels Determined by a
Pair of Crossover Probabilities (ρ1, ρ2).

(p = α) ‖PY |X(·|x)‖α. From [99, Chapter 3.5], we know a log-convex function

is quasi-convex such that IAα (X;Y ) is quasi-convex in PY |X given PX .

(iii) post-processing inequality, i.e., for a Markov chain X − Y − Z, IAα (X;Z) ≤

IAα (X;Y ), which is directly derived from the monotonicity of conditional Ari-

moto entropy [100, Corollary 1].

2.4.2 Properties of Maximal α-leakage

We explore proprieties of maximal α-leakage and show that its properties include:

(i) quasi-convexity in the conditional distribution PY |X ; (ii) data processing inequal-

ities; (iii) sub-additivity (composition property [23]) and additivity for memoryless

mechanisms.
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The following theorem results from the expression of maximal α-leakage in Thm.

2 as well as some known properties of Sibson MI [91, 93, 90].

Theorem 3. For 1 ≤ α ≤ ∞, maximal α-leakage

1. is quasi-convex in PY |X ;

2. is monotonically non-decreasing in α;

3. satisfies data processing inequalities: let random variables X, Y, Z form a Markov

chain, i.e., X − Y − Z, then

Lmax
α (X → Z) ≤ Lmax

α (X → Y )

Lmax
α (X → Z) ≤ Lmax

α (Y → Z).

(2.35a)

(2.35b)

4. satisfies

Lmax
α (X → Y ) ≥ 0 (2.36)

with equality if and only if X is independent of Y , and

Lmax
α (X → Y ) ≤


log |X | α > 1

H(PX) α = 1

(2.37)

with equality if and only if X is a deterministic function of Y .

A detailed proof is in Appendix 2.6.4.

Remark 1. Note that:

• Since both MI and MaxL are convex in PY |X , Lmax
1 (X → Y ) and Lmax

∞ (X → Y )

are convex in PY |X .

24



• From the monotonicity in Part 2, we can upper bound maximal α-leakage as 2

Lmax
α (X → Y ) ≤ LMaxL(X → Y ) = IS∞(X;Y ). (2.38)

• The data processing inequalities in (2.35a) and (2.35b) are called post-processing

inequality and linkage inequality, respectively [101, 102]. It is worth noting

that not all information leakage metrics satisfy the linkage inequality [102, 20].

Examples include α-leakage, maximal information leakage [26], probability of

correctly guessing, and DP.

From Thm. 2, we know that for α > 1, maximal α-leakage is the supremum of

Arimoto/Sibson MI over all possible distributions on the support of original data,

and therefore, is a function of a conditional probability distribution. The following

theorem lower bounds the supremum by a closed-form expression of the conditional

probability distribution.

Theorem 4 (Lower Bound). For 1 < α ≤ ∞, maximal α-leakage is lower bounded

by

Lmax
α (X → Y ) ≥ α

α− 1
log

∑
y∈Y
‖PY |X(y|·)‖α

|X | 1α
, (2.39)

with equality if and only if for all x1, x2 ∈ X , there is

∑
y

PY |X(y|x1)α

‖PY |X(y|·)‖α−1α

=
∑
y

PY |X(y|x2)α

‖PY |X(y|·)‖α−1α

. (2.40)

A detailed proof is in Appendix 2.6.5.

When data may be revealed multiple times (e.g., entering a password multiple

times), it is essential to quantify how mechanisms are designed with maximal α leakage

compose in terms of total leakage. Consider two released versions Y1 and Y2 of X.

2For α = ∞, the IS∞(PX , PY |X) depends on the marginal distribution PX only through the
support of X.
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The following theorem upper bounds maximal α-leakage to an adversary who has

access to both Y1 and Y2 simultaneously.

Theorem 5 (Sub-additivity/Composition). Given a Markov chain Y1 −X − Y2, we

have (α ∈ [1,∞])

Lmax
α (X → Y1, Y2) ≤

∑
i∈{1,2}

Lmax
α (X → Yi). (2.41)

A detailed proof is in Appendix 2.6.6.

The following theorem shows the additivity of maximal α-leakage for memoryless

mechanisms.

Theorem 6 (Additivity for Memoryless Mechanisms). For α ∈ [1,∞] and a finite in-

teger n > 0, let Xn and Y n be n-length input and output, respectively, of a memoryless

mechanism with no feedback, i.e.,

PY n|Xn =
n∏
i=1

PYi|Xi , (2.42)

where Xi and Yi represent the ith element of Xn and Y n, respectively, such that

(1) for α > 1

Lmax
α (Xn → Y n) =

n∑
i=1

Lmax
α (Xi → Yi) (2.43)

(2) for α = 1

Lmax
1 (Xn → Y n) ≤

n∑
i=1

Lmax
1 (Xi → Yi) (2.44)

with equality if and only if entries of Xn are mutually independent.

A detailed proof is in Appendix 2.6.7.
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2.5 Extension to 0 < α < 1

In this section, we include the range of 0 < α < 1 into the definition of α-loss

(in Def. 2.2.1) such that the α-loss of the strategy PX̂|Y for estimating X̂ = x from

Y = y is

`α(x, y, PX̂|Y ) =



α
α−1

(
1− PX̂|Y (x|y)

α−1
α

)
, 0 < α <∞∩ α 6= 1

− logPX̂|Y (x|y), α = 1

1− PX̂|Y (x|y) α =∞.

(2.45)

As shown in Fig. 2.4a, the α-loss function is more convexity as α decreases. In addi-

tion, for 0 < α < 1, the minimal expected α-loss is given by α
α−1

(
1− exp

(
1−α
α
HA
α (X|Y )

))
,

which is the same expression as for α > 1 in (2.20), and the corresponding optimal

estimation strategy can also be expressed as (2.21), which approaches a uniform distri-

bution as α tends to 0 (as shown in Fig. 2.4b). Note that in Fig. 2.4b, the true condi-

tional probability PX|Y=y is a binomial distribution with parameters (n, p) = (20, 0.5).

This extension of α-loss is motivated by the advantage of α-loss with 0 < α < 1 in
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(a) Plot of α-Loss in (2.45)
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(b) The Optimal Strategy in (2.21).

Figure 2.4: Illustration of α-Loss and Corresponding Optimal Mechanisms for α > 0

providing a higher accuracy of classification on imbalanced data sets where the num-
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ber of samples from each category significantly differs [103]. To incorporate the case

of which an adversarial inference is determined via the α-loss with 0 < α < 1, we

modified the the definitions of α-leakage in Def. 2.3.2 as follows.

Definition 2.5.1. Given a joint distribution PX,Y and an estimator X̂ with the same

support as X, the α-leakage from X to Y is defined as

Lα(X → Y ) ,
α

α− 1
log

max
PX̂|Y

(α− 1)E
[
PX̂|Y (X|Y )

α−1
α

]
max
PX̂

(α− 1)E
[
PX̂(X)

α−1
α

] , (2.46)

for 0 < α < 1 or 1 < α < ∞ and by the continuous extension of (2.46) for α = 1

and ∞.

Note that for α > 1, the expression of α-leakage in (2.46) is exactly the same as

in (2.25). For 0 < α < 1, the minimization of the expected α-loss can be reduced to

minPX̂|Y E
[
PX̂|Y (X|Y )

α−1
α

]
, and therefore, the adversarial benefit in estimating X by

observing Y can be captured by

α

1− α
log

(
min
PX̂

E
[
PX̂(X)

α−1
α

])
− α

1− α
log

(
min
PX̂|Y

E
[
PX̂|Y (X|Y )

α−1
α

])

=
α

1− α
log

min
PX̂

E
[
PX̂(X)

α−1
α

]
min
PX̂|Y

E
[
PX̂|Y (X|Y )

α−1
α

] ,
(2.47)

(2.48)

which is equivalent to the expression in (2.46) for 0 < α < 1. Therefore, although

for 0 < α < 1 and α > 1, the expression PX̂|Y (X|Y )
α−1
α is positively and negatively

related to α-loss, respectively, the definition of α-leakage in (2.46) correctly captures

the advantage of an adversary in learning X from Y . In Def. 2.3.3, the maximal α-

leakage is defined as the maximization of α-leakage over all possible function of X, and

therefore, can be extended to 0 < α < 1 naturally from the extension of α-leakage. In

addition, it’s clear that for 0 < α < 1, the expression in (2.46) can also be simplified
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to Arimoto MI between X and Y as for α > 1 (shown in Theorem 1), and therefore,

α-leakage for 0 < α < 1 inherits the properties of Arimoto MI for 0 < α < 1, including

the non-negativity [90] and post-processing inequality [100]. Furthermore, by taking

the same methodology used in proving the properties of maximal α-leakage for α > 1,

one can verify that the simplified expression and properties of maximal α-leakage for

α > 1 can be applied to the extended region of 0 < α < 1 ∪ α > 1.

2.6 Proof Details

2.6.1 Proof of Lemma 1

For 1 < α <∞, the minimal expected value of the α-loss in Definition 2.2.1 can be

expressed as

min
P
X̂|Y

E
[
`α(X, Y, PX̂|Y )

]
= min

P
X̂|Y

α

α− 1

(
1−

∑
xy

PX,Y (x, y)PX̂|Y (x|y)
α−1
α

)

=
α

α− 1

(
1−max

P
X̂|Y

∑
xy

PX,Y (x, y)PX̂|Y (x|y)
α−1
α

)

=
α

α− 1

(
1−

∑
y

PY (y) max
P
X̂|Y=y

∑
x

PX|Y (x|y)PX̂|Y (x|y)
α−1
α

)
.

(2.49)

(2.50)

(2.51)

For each y with PY (y) > 0, the maximization in (2.51) can be explicitly written as

max
P
X̂|Y=y

∑
x∈X

PX|Y (x|y)PX̂|Y (x|y)
α−1
α

s.t.
∑
x∈X

PX̂|Y (x|y) = 1

PX̂|Y (x|y) ≥ 0 for all x ∈ X .

(2.52a)

(2.52b)

(2.52c)

For 1 ≤ α ≤ ∞, the exponent α−1
α
≥ 0 such that the problem in (2.52) is a con-

vex program. Therefore, by using Karush—Kuhn—Tucker (KKT) conditions [99,
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Chapter 5.5.3], we obtain the optimal value of (2.52) as

lmax
P
X̂|Y=y

∑
x

PX|Y (x|y)PX̂|Y (x|y)
α−1
α = ‖PX|Y (·|y)‖α (2.52d)

with the optimal solution P ?
X̂|Y as

P ?
X̂|Y (x|y) =

PX|Y (x|y)α∑
x∈X

PX|Y (x|y)α
for all x ∈ X . (2.52e)

For α = 1, the optimal solution is P ?
X̂|Y = PX|Y . For α =∞, we have

lim
α→∞

P ?
X̂|Y (x|y) = lim

α→∞

(
PX|Y (x|y)

maxx PX|Y (x|y)

)α
∑
x∈X

(
PX|Y (x|y)

maxx PX|Y (x|y)

)α

=


1

k(y)
, x = arg maxx PX|Y (x|y)

0, otherwise,

(2.53)

(2.54)

where the integer k(y) indicates the cardinality of the set
{
x : x = arg maxx PX|Y (x|y)

}
.

Applying the optimal solution P ?
X̂|Y to (2.51), we have

min
P
X̂|Y

E
[
`α(X, Y, PX̂|Y )

]
=


α
α−1

(
1−

∑
y

‖PX,Y (Xy)‖α
)
, α > 1

∑
x,y

PX,Y (x, y) log 1
PX|Y (x|y) , α = 1

,

=


α
α−1

(
1− exp

(
1−α
α
HA
α (X|Y )

))
, α > 1

H(X|Y ), α = 1

.

(2.55)

(2.56)

2.6.2 Proof of Theorem 1

The expression (2.25) can be explicitly written as

Lα(X → Y ) = lim
α′→α

α′

α′ − 1
log


max
P
X̂|Y

∑
xy

PX,Y (x, y)
(
PX̂|Y (x|y)

)α′−1
α′

max
P
X̂

∑
x

PX(x)PX̂(x)
α′−1
α′

 . (2.57)
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To simplify the expression in (2.57), we need to solve the two maximizations in the

logarithm. From (2.28), we know that to solve the maximization in the numerator

equals to find the minimal expected α-loss. Making use of the result in Lemma 1, we

have that for α′ ∈ (1,∞),

max
P
X̂|Y

∑
x,y

PX,Y (x,y)PX̂|Y (x|y)
α′−1
α′ =exp

(
1−α′

α′
HA
α′(X|Y )

)
. (2.58)

Similarly, by applying KKT conditions to the maximization in the denominator, we

have that for α′ ∈ (1,∞)

max
P
X̂

∑
x∈X

PX(x)PX̂(x)
α′−1
α′ = exp

(
1− α′

α′
Hα′(X)

)
. (2.59)

Therefore, we have for α′ ∈ (1,∞)

Lα(X → Y ) =
α′

α′ − 1
log exp

(
1− α′

α′

(
HA
α′(X|Y )−Hα′(X)

))
= IAα′(X;Y ) (2.60)

From the continuous extensions of Arimoto MI for α = 1 and ∞, respectively, we

have that for 1 ≤ α ≤ ∞, α-leakage equals to Arimoto MI.

2.6.3 Proof of Theorem 2

From Thm. 1, we have for 1 ≤ α ≤ ∞,

Lmax
α (X → Y ) = sup

U−X−Y
IAα (U ;Y ). (2.61)

If α = 1, we have

Lmax
1 (X → Y ) = sup

U−X−Y
I(U ;Y ) ≤ I(X;Y ) (2.62)
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where the inequality is from data processing inequalities of MI [104, Thm 2.8.1].

If α =∞, we have

Lmax
∞ (X → Y ) = sup

U−X−Y
log

∑
y

PY (y) max
u

PU |Y (u|y)

max
u

PU(u)
, (2.63)

which is exactly the expression of MaxL, and therefore, we have that for α =∞, the

maximal α-leakage equals to the Sibson MI of order ∞ [23, Thm. 1], i.e.,

Lmax
∞ (X → Y ) = log

∑
y

max
x

PY |X(y|x). (2.64)

For α ∈ (1,∞), we provide an upper bound for Lmax
α (X → Y ), and then, give an

achievable scheme as follows.

Upper Bound: We have an upper bound of Lmax
α (X → Y ) as

Lmax
α (X → Y ) = sup

U−X−Y
IAα (U ;Y )

≤ sup
PX̃|Ũ :PX̃|Ũ (·|u)�PX

sup
PŨ

IAα (Ũ ;Y )

= sup
PX̃|Ũ :PX̃|Ũ (·|u)�PX

sup
PŨ

ISα(Ũ ;Y )

= sup
PX̃�PX

ISα(X̃;Y )

= sup
PX̃�PX

IAα (X̃;Y )

(2.65a)

(2.65b)

(2.65c)

(2.65d)

(2.65e)

where PX̃ � PX means the alphabet of PX̃ is a subset of that of PX . The inequality

in (2.65b) holds because the supremum of Arimoto MI over all PŨ ,X̃ on U × X is no

less than that (in (2.65a)) over these PU,X constrained by the PX . The equations in

(2.65c) and (2.65e) result from that Arimoto MI and Sibson MI of order α > 0 have

the same supremum [90, Thm. 5]; and (2.65d) obeys the data processing inequalities

[90, Thm. 3].

Lower bound: We lower bound (2.61) by considering a random variable U such
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that U −X − Y is a Markov chain and H(X|U) = 0. Specifically, let the alphabet U

consist of Ux, a collection of U mapped to a x ∈ X , i.e., U = ∪x∈XUx with U = u ∈ Ux

if and only if X = x. Therefore, for the specific variable U , we have

PY |U(y|u) =


PY |X(y|x) for all u ∈ Ux

0 otherwise.

(2.66)

Construct a probability distribution PX̃ over X from PU as

PX̃(x) =

∑
u∈Ux PU(u)α∑

x∈X
∑

u∈Ux PU(u)α
for all x ∈ X . (2.67)

Thus,

IAα (U ;Y ) =
α

α− 1
log

∑
y∈Y

(∑
x∈X

∑
u∈Ux

PY |U(y|u)αPU(u)α
) 1

α

(∑
x∈X

∑
u∈Ux

PU(u)α
) 1

α

=
α

α− 1
log
∑
y∈Y

∑
x∈X

PY |X(y|x)α

∑
u∈Ux

PU(u)α∑
x∈X

∑
u∈Ux

PU(u)α


1
α

=
α

α− 1
log

∑
y∈Y

(∑
x∈X

PY |X(y|x)αPX̃(x)α

) 1
α


= ISα(X̃;Y )

(2.68)

(2.69)

(2.70)

(2.71)

Therefore,

Lmax
α (X → Y ) = sup

U−X−Y
IAα (U ;Y ) ≥ sup

U :U−X−Y,H(X|U)=0

IAα (U ;Y ) = sup
PX̃�PX

ISα(X̃;Y ),

(2.72)

where the last inequality is because for any PX̃ � PX , it can be obtained through

(2.67) by appropriately choosing PU . Therefore, combining (2.65) and (2.72), we

obtain (2.30a).
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2.6.4 Proof of Theorem 3

The proof of part 1: We know that for α ≥ 1, ISα(X;Y ) is quasi-convex PY |X

for given PX [104, Thm. 2.7.4], [93, Thm. 10]. In addition, the supremum of a set

of quasi-convex functions is also quasi-convex, i.e., if the function f(a, b) is quasi-

convex in b for any given a, the supremum supa f(a, b) is also quasi-convex in b [99].

Therefore, maximal α-leakage in (2.30) is quasi-convex PY |X for given PX .

The proof of part 2: Let β > α ≥ 1, and P ?
Xα = arg supPX I

S
α(PX , PY |X) for given

PY |X , such that

Lmax
α (X → Y ) = ISα(P ?

Xα, PY |X)

≤ ISβ (P ?
Xα, PY |X)

≤ sup
PX

ISβ (PX , PY |X)

= Lmax
β (X → Y )

(2.73)

(2.74)

(2.75)

(2.76)

where (2.74) results from that ISα is non-decreasing in α for α > 0 [93, Thm. 4], and

the equality in (2.75) holds if and only if P ?
Xα = arg supPX Iβ(PX , PY |X).

The proof of part 3: Let random variables X, Y and Z form the Markov chain

X − Y − Z. Making use of that Sibson MI of order α > 1 satisfies data processing

inequalities [90, Thm. 3], i.e.,

ISα(X;Z) ≤ ISα(X;Y )

ISα(X;Z) ≤ ISα(Y ;Z),

(2.77)

(2.78)

we prove that maximal α-leakage satisfies data processing inequalities as follows.

We first prove (2.35a). Let P ?
X = arg supPX I

S
α(PX , PZ|X). For the Markov chain
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X − Y − Z, we have

Lmax
α (X → Z) = ISα(P ?

X , PZ|X)

≤ ISα(P ?
X , PY |X)

≤ sup
PX

ISα(PX , PY |X)

= Lmax
α (X → Y )

(2.79)

(2.80)

(2.81)

(2.82)

where the inequality in (2.80) results from (2.77). Similarly, the inequality in (2.35b)

can be proved directly from (2.78).

The proof of part 4: For α = 1, we have

Lmax
1 (X → Y ) = I(X;Y ) ≥ 0, (2.83)

with equality if and only if X is independent of Y [104]. For 1 < α ≤ ∞, referring to

(2.6) and (2.30a) we have

Lmax
α (X → Y ) = sup

PX

α

α− 1
log
∑
y

(∑
x

PX(x)PY |X(y|x)α

) 1
α

≥ sup
PX

α

α− 1
log
∑
y

(∑
x

PX(x)PY |X(y|x)

)α
α

= sup
PX

α

α− 1
log 1 = 0,

(2.84)

(2.85)

(2.86)

where (2.85) results from applying Jensen’s inequality to the convex function f : t→

tα (t ≥ 0), such that the equality holds if and only if given any y ∈ Y , PY |X(y|x) are

the same for all x ∈ X , such that

PY |X(y|x) = PY (y) x ∈ X , y ∈ Y (2.87)
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which means X and Y are independent, i.e., PY |X is a rank-1 row stochastic matrix.

For α = 1, from (2.30b) we know Lmax
1 (X → Y ) = I(X;Y ). Therefore,

Lmax
1 (X → Y )−H(X) =

∑
X ,Y

P (x, y) log
P (y|x)

P (y)
−
∑
X

P (x) log
1

P (x)

=
∑
X ,Y

P (x, y) log
P (y|x)

P (y)
−
∑
X ,Y

P (x, y) log
1

P (x)

=
∑
X ,Y

P (x, y) logP (x|y) ≤ 0,

(2.88)

(2.89)

(2.90)

with equality if and only if for all x, y ∈ X ×Y , the conditional probability PX|Y (x|y)

is either 1 or 0. That is, Lmax
1 (X → Y ) ≤ H(X) with equality if and only if X is a

deterministic function of Y [105, Lem. 1]. For 1 < α ≤ ∞, from the monotonicity of

maximal α-leakage in α and (2.30a), we have

Lmax
α (X → Y ) ≤ Lmax

∞ (X → Y )

= log
∑
y∈Y

max
x

PY |X(y|x)

≤ log
∑
Y

∑
X

PY |X(y|x) = log |X |.

(2.91)

(2.92)

(2.93)

where the equality in (2.93) holds if and only if for every y ∈ Y ,
∑
X P (y|x) =

maxx P (y|x), i.e., X is a deterministic function of Y . To prove that for α ∈ (1,∞),

the upper bound in (2.93) is achievable, we construct a mapping PX⇐Y such that

X is a deterministic function of Y . That is, for every y ∈ Y , there exists a unique

xy ∈ X such that P (xy|y) = 1. Therefore, we have xy = argx PX⇐Y (y|x) > 0. For

α ∈ (1,∞), from (2.6) and (2.30b) we have

Lmax
α (PX⇐Y ) = sup

PX

α

α− 1
log
∑
y∈Y

(
P

1
α
X (xy)PX⇐Y (y|xy)

)
= sup

PX

α

α− 1
log
∑
x∈X

P
1
α
X (x);

(2.94)

(2.95)
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in addition, since the function maximized in (2.95) is symmetric and concave in PX ,

it is Schur-concave in PX , and therefore, the optimal distribution of X achieving the

supreme in (2.95) is uniform. Thus,

Lmax
α (PX⇐Y ) = log |X |, 1 < α ≤ ∞. (2.96)

Therefore, maximal α-leakage achieves its maximal value log |X | and H(PX) for α > 1

and α = 1, respectively, if and only if X is a deterministic function of Y .

2.6.5 Proof for Theorem 4

To prove Thm. 4, we define a divergence function kα for α > 1 and provide a

lower bound for its sum in the following definition and lemma, respectively.

Definition 2.6.1. Given two discrete distributions PY and QY over the support Y,

a divergence function kα for α > 1 is defined as

kα(PY ‖QY ) ,
∑
y

QY (y)

(
PY (y)

QY (y)

)α
. (2.97)

In addition, the function kα(PY ‖QY ) is jointly convex in (PY , QY ), such that kα(PY ‖QY ) ≥

1 with equality if and only if PY = QY .

Lemma 2. Let K be a positive integer with K <∞. Given a group of distributions

{Pk : k ∈ [1, K]} and an arbitrary distribution P on a discrete set Y, there is

K∑
k=1

kα(Pk‖P ) ≥
K∑
k=1

kα(Pk‖Pc) =

∑
y

(
K∑
k=1

Pk(y)α

) 1
α

α

, (2.98)

with equality if and only if P = Pc, where Pc is given by

Pc(y) =
1

Z

(
K∑
k=1

Pk(y)α

) 1
α

, α ∈ [1,∞] (2.99)
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where Z is the constant as

Z =
∑
y

(
K∑
k=1

Pk(y)α

) 1
α

, (2.100)

which guarantees that Pc is a distribution.

Proof. From the definition kα in (2.97), we have

K∑
k=1

kα(Pk‖P )−
K∑
k=1

kα(Pk‖Pc) =
K∑
k=1

∑
y

Pk(y)α
(
P (y)1−α − Pc(y)1−α

)
=
∑
y

(
K∑
k=1

Pk(y)α

)(
P (y)1−α − Pc(y)1−α

)
=
∑
y

ZαPc(y)α
(
P (y)1−α − Pc(y)1−α

)
= Zα

∑
y

(
Pc(y)αP (y)1−α − Pc(y)

)
= Zα(kα(Pc‖P )− 1) ≥ 0

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

with equality if and only if P = Pc. In addition, making use of the expression of Pc

and Z in (2.99) and (2.100), respectively, we have

K∑
k=1

kα(Pk‖Pc) =
K∑
k=1

∑
y

Pc(y)

(
Pk(y)

Pc(y)

)α

=
K∑
k=1

∑
y

Zα−1

(
K∑
k′=1

Pk′(y)α

) 1
α

Pk(y)α

K∑
k′=1

Pk′(y)α

= Zα−1
∑
y

(
K∑
k′=1

Pk′(y)α

) 1
α ∑K

k=1 Pk(y)α∑K
k′=1 Pk′(y)α

= Zα

=

∑
y

(
K∑
k=1

Pk(y)α

) 1
α

α

.

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)
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Making use of the results in Lemma 2, we prove Thm. 4 as follows.

Proof. From Thm. 2, we have that for α > 1

Lmax
α (X → Y ) = sup

PX̃

ISα(X̃, Y )

= sup
PX̃

inf
QY

Dα(PX̃PY |X‖PX̃QY )

= sup
PX̃

inf
QY

1

α− 1
log
∑
x

PX̃(x)kα(PY |X=x‖QY ).

(2.111)

(2.112)

(2.113)

For α > 1, the function f : t→ 1
α−1 log t is increasing in t ≥ 0. Therefore, we simplify

the optimization in (2.113) as

sup
PX̃

inf
QY

∑
x

PX̃(x)kα(PY |X=x‖QY ) (2.114)

and provide a lower bound of (2.114) as follows. Since the divergence function kα

is joint convex in the pair of distributions, the objective function in (2.114) is joint

convex in (PY |X , QY ) for fixed PX̃ , and linear in PX̃ for fixed (PY |X , QY ). Therefore,

the max-min equals to the min-max as followed:

sup
PX̃

inf
QY

∑
x

PX̃(x)kα(PY |X=x‖QY ) = inf
QY

sup
PX̃

∑
x

PX̃(x)kα(PY |X=x‖QY )

= inf
QY

max
x

kα(PY |X=x‖QY )

≥ inf
QY

∑
x kα(PY |X=x‖QY )

|X |

≥
∑

x kα(PY |X=x‖Pc)
|X |

=
1

|X |

(∑
y

‖PY |X(y|·)‖α

)α

,

(2.115)

(2.116)

(2.117)

(2.118)

(2.119)

where the inequality in (2.118) is directly from (2.98) in Lemma 2 with equality if

and only if

QY (y) = Pc(y) =
1

Z
‖PY |X(y|·)‖α, (2.120)
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with the constant Z =
∑

y ‖PY |X(y|·)‖α. Therefore, for any PY |X , we have

Lmax
α (X → Y ) ≥ α

α− 1
log

∑
y ‖PY |X(y|·)‖α
|X | 1α

, (2.121)

with equality if and only if the PY |X guarantees that the divergence function kα(PY |X=x‖Pc)

are the same for all x ∈ X , i.e., the PY |X satisfies (2.40).

2.6.6 Proof of Theorem 5

Let Y1 and Y2 be the alphabets of Y1 and Y2, respectively. For any (y1, y2) ∈ Y1×Y2,

due to the Markov chain Y1 − X − Y2, the corresponding entry of the conditional

probability matrix of (Y1, Y2) given X is

P (y1y2|x) = P (y1|x)P (y2|xy1) = P (y1|x)P (y2|x).

Therefore, for α ∈ (1,∞)

Lmax
α (X → Y1, Y2)

= sup
PX

α

α− 1
log
∑
y1,y2

(∑
x

PX(x)PY1,Y2|X(y1, y2|x)α

) 1
α

= sup
PX

α

α− 1
log
∑
y1,y2

(∑
x

PX(x)PY1|X(y1|x)αPY2|X(y2|x)α
) 1

α

.

(2.122)

(2.123)

Let K(y1) =
∑

x∈X PX(x)PY1|X(y1|x)α, for all y1 ∈ Y1, such that we can construct a

set of distributions over X as

PX̃(x|y1) =
PX(x)PY1|X(y1|x)α

K(y1)
. (2.124)
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Therefore, from (2.123), Lmax
α (X → Y1, Y2) can be rewritten as

Lmax
α (X → Y1, Y2)

= sup
PX

α

α− 1
log

∑
y1,y2∈Y1×Y2

(∑
x∈X

K(y1)PX̃(x|y1)PY2|X(y2|x)α
) 1

α

= sup
PX

α

α− 1
log
∑
y1,y2

((∑
x

PX(x)PY1|X(y1|x)α
) 1

α

·
(∑

x

PX̃(x|y1)PY2|X(y2|x)α
) 1

α

)

= sup
PX

α

α− 1
log
∑
y1

((∑
x

PX(x)PY1|X(y1|x)α
) 1

α

·
∑
y2

(∑
x

PX̃(x|y1)PY2|X(y2|x)α
) 1

α

)

(2.125)

(2.126)

(2.127)

≤ sup
PX

α

α− 1
log

(∑
y1

(∑
x

PX(x)PY1|X(y1|x)α

) 1
α

·max
y1

∑
y2

(∑
x

PX̃(x|y1)PY2|X(y2|x)α

) 1
α
)

= sup
PX

α

α− 1
log

(∑
y1

(∑
x

PX(x)PY1|X(y1|x)α

) 1
α

·
∑
y2

(∑
x

PX̃(x|y?1)PY2|X(y2|x)α

) 1
α
)

≤ sup
PX

α

α− 1
log
∑
y1

(∑
x

PX(x)PY1|X(y1|x)α

) 1
α

+ sup
PX̃

α

α− 1
log
∑
y2

(∑
x

PX̃(x)PY2|X(y2|x)α

) 1
α

=Lmax
α (X → Y1) + Lmax

α (X → Y2),

(2.128)

(2.129)

(2.130)

(2.131)
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where y?1 in (2.129) is the optimal y1 achieving the maximum in (2.128). Therefore,

the equality in (2.128) holds if and only if, for all y1 ∈ Y1,

∑
y2

(∑
x

PX̃(x|y1)PY2|X(y2|x)α

) 1
α

=
∑
y2

(∑
x

PX̃(x|y?1)PY2|X(y2|x)α

) 1
α

; (2.132)

and the equality in (2.130) holds if and only if the optimal solutions P ?
X and P ?

X̃
of

the two maximizations in (2.130) satisfy, for all x ∈ X ,

P ?
X̃

(x) =
P ?
X(x)Pα

Y1|X(y?1|x)∑
x∈X PX(x)Pα

Y1|X(y?1|x)
. (2.133)

Now we consider α = 1. For Y1 −X − Y2, we have

I(Y2;X|Y1) ≤ I(Y2;X). (2.134)

From Thm. 2, there is

Lmax
1 (X → Y1, Y2) = I(X;Y1) + I(X;Y2|Y1)

≤ I(X;Y1) + I(X;Y2)

= Lmax
1 (X → Y1) + Lmax

1 (X → Y2).

(2.135)

(2.136)

(2.137)

For α =∞, we also have

Lmax
∞ (X → Y1, Y2) = log

∑
y1,y2∈Y1×Y2

max
x∈X

P (y1|x)P (y2|x)

≤ log
∑

y1,y2∈Y1×Y2

(
max
x∈X

P (y1|x)

)(
max
x∈X

P (y2|x)

)
= log

∑
y1∈Y1

max
x∈X

P (y1|x) + log
∑
y2∈Y2

max
x∈X

P (y2|x)

= Lmax
∞ (X → Y1) + Lmax

∞ (X → Y2).

(2.138)

(2.139)

(2.140)

(2.141)

42



2.6.7 Proof of Theorem 6

For α > 1, a function f(t) = α
α−1 log t is monotonically increasing in t > 0. Therefore,

To solve maximal α-leakage from Xn to Y n, i.e.,

Lmax
α (Xn → Y n) = sup

PX̃n

α

α− 1
log
∑
yn

(∑
xn

P (xn)P (yn|xn)α

) 1
α

, (2.142)

it is sufficient to consider

sup
PX̃n

∑
yn

(∑
xn

P (xn)P (yn|xn)α

) 1
α

. (2.143)

For a memoryless PY n|Xn with no feedback, we simplify (2.143) as

sup
PX̃n

∑
yn

(∑
xn

P (xnyn)

P (yn|xn)1−α

) 1
α

= sup∏n
i=1 PX̃i|X̃i−1,··· ,X̃1

∑
y1,··· ,yn

( ∑
x1,··· ,xn

n∏
i=1

(
P (yi|xi, xi−1yi−1, · · · , x1y1)
P (yi|xnyi−1, · · · , y1)1−α

P (xi|xi−1yi−1, · · · , x1y1)
1

)) 1
α

= sup
PX̃i|X̃i−1,··· ,X̃1

i∈[1,n]

∑
y1,··· ,yn

( ∑
x1,··· ,xn

n∏
i=1

(
P (yi|xi, · · · , x1)P (xi|xi−1, · · · , x1)

P (yi|xn)1−α

)) 1
α

= sup
PX̃i|X̃i−1,··· ,X̃1

i∈[1,n]

∑
y1,··· ,yn

( ∑
x1,··· ,xn

n∏
i=1

P (yi|xi)α P (xi|xi−1, · · · , x1)

) 1
α

≤ sup
PX̃i
i∈[1,n]

∑
y1,··· ,yn

( ∑
x1,··· ,xn

n∏
i=1

P (yi|xi)α P (xi)

) 1
α

= sup
PX̃1

,··· ,PX̃n

∑
y1,··· ,yn

(
n∏
i=1

∑
xi

P (xi)P (yi|xi)α
) 1

α

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)
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= sup
PX̃i
i∈[1,n]

n∏
i=1

∑
yi

(∑
xi

P (xi)P (yi|xi)α
) 1

α


= sup

PX̃i
,i∈[1,n]

n∏
i=1

2
α−1
α
ISα(X̃i;Yi)

(2.149)

(2.150)

where

• (2.144) are from the chain rule of probability;

• (2.145) and (2.146) are directly from the mechanism has no feedback and is

memoryless, respectively;

• the equality in (2.147) holds if and only if the source is memoryless, i.e.,

PX̃i|X̃i−1,··· ,X̃1
= PX̃i for all i ∈ [1, n];

• both (2.148) and (2.149) are from the distributive property of multiplication.

Therefore, we have for α > 1,

sup
PX̃n

ISα(X̃n;Y n) =
n∑
i=1

sup
PX̃i

ISα(X̃i;Yi). (2.151)

That is,

Lmax
α (Xn → Y n) =

n∑
i=1

Lmax
α (Xi → Yi) . (2.152)

For α = 1, we have

I (Xn;Y n) =
n∑

i,j=1

I
(
Xi;Yj

∣∣Xi−1, · · · , X1, Yj−1, · · · , Y1
)

=
n∑

i,j=1

I
(
Xi;Yj

∣∣Xi−1, · · · , X1

)
=

n∑
i=1

I
(
Xi;Yi

∣∣Xi−1, · · · , X1

)
≤

n∑
i=1

I (Xi;Yi)

(2.153)

(2.154)

(2.155)

(2.156)

where
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• (2.153) is from the chain rule of MI;

• (2.154) and (2.155) are from the facts that the mechanism has no feedback and

is memoryless, respectively;

• from [104, (2.122)], we know that for a Markov chain X − Y − Z, conditioning

reduces mutual information, i.e., I(X;Y |Z) ≤ I(X;Y ) with equality if and

only if I(X;Z) = 0. Therefore, since for any i ∈ [1, n] (Xi−1, · · · , X1) − Xi −

Yi, the equality in (2.147) holds if and only if the source is memoryless, i.e.,

PX̃i|X̃i−1,··· ,X̃1
= PX̃i for all i ∈ [1, n].

2.7 Concluding Remarks

We have introduced two novel tunable measures for information leakage: α-leakage

and maximal α-leakage. Specifically, for 0 < α ≤ ∞, α-leakage is shown to be Ari-

moto mutual information; maximal α-leakage is shown to be mutual information

and the Arimoto channel capacity for α = 1 and α ∈ (0, 1) ∪ (1,∞], respectively.

Based on the equivalent expression of the two tunable leakage measures, we have

shown that α-leakage is (i) non-negative, (ii) quasi-convex in PY |X , and (iii) satisfy-

ing post-processing inequality; and maximal α-leakage satisfies several useful proper-

ties, including: (i) quasi-convexity, (ii) data-processing inequalities: post-processing

inequality and linkage inequality, (iii) sub-additivity, and (iv) additivity for memo-

ryless mappings. These measures can find direct applications in privacy and secrecy

problems. The choice of restricting either specific variables or all possible functions

of a dataset determines the choice of α-leakage and maximal α-leakage measures,

respectively. The choice of 1 ≤ α ≤ ∞ determines the specific adversarial action

ranging from refining a belief for α = 1 to guessing the best posterior for α =∞.
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Chapter 3

ROBUSTNESS OF MAXIMAL α-LEAKAGE

To explore the effect of side information on the leakage of information, which is

measured in term of maximal α-leakage, we first introduce an extended version of

maximal α-leakage, called conditional maximal α-leakage, to involve the notion of

side information. Maximal α-leakage measures the information leakage for scenarios

that an adversary intends to learn an arbitrary function of original data from a

released data. Following the scenario, the conditional maximal α-leakage is built

under a reasonable assumption in privacy protection that the function of interest is

conditionally independent of the released data given the original data and the side

information the adversary has. Note that in the setting the side information an

adversary poses can be arbitrarily related to the function of interest, the original

data or the released data.

With good properties as a privacy metric including the robustness to any arbitrary

side information, differential privacy (DP) [16] has emerged as the gold standard for

privacy. However, it has the fatal shortage of leading to poor utilities [106]. To

balance the advantage and disadvantage of DP, several relaxed versions of the pure

DP has been proposed including Rényi differential privacy (RDP) [80] which is defined

via the Rényi divergence of order α > 1. In this chapter, we also show that for

an arbitrary privacy mechanism, if it satisfies a certain level of privacy in terms of

maximal α-leakage, it satisfies a corresponding level of RDP, and vice versa. Due to

the robustness of RDP (inheriting from DP), the result also support the robustness
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of maximal α-leakage.

3.1 Conditional Tunable Information Leakage Measures

Given a pair of original and released data (X, Y ), let Z be the knowledge of some

particular adversary or third-party about (X, Y ). Before introducing the conditional

maximal α-leakage, we introduce the following simpler measure, the conditional α-

leakage. Here, the adversary is interested only in guessing X, rather than a function

of X.

Definition 3.1.1 (Conditional α-Leakage). Given a joint distribution PXY Z and an

estimator X̂ with the same support as X, the α-leakage from X to Y given Z is

defined as

Lα(X → Y |Z) ,
α

α− 1
log

max
PX̂|Y,Z

E
[
PX̂|Y,Z(X|Y, Z)

α−1
α

]
max
PX̂|Z

E
[
P ˆX|Z(X|Z)

α−1
α

] (3.1)

for 1 < α <∞ and by the continuous extension of (3.1) for α = 1 and ∞.

The conditional α-leakage quantifies the maximal logarithmic gain in inferring

various information about X when an adversary with arbitrary side information Z

has access to Y . To understand the effect of the side information Z on leakage about

any function U of X through Y , we define conditional maximal α-leakage as follows.

Definition 3.1.2 (Maximal Conditional α-Leakage). Given a joint distribution PXY Z,

for 1 ≤ α ≤ ∞, the conditional maximal α-leakage from X to Y given Z is defined

as

Lmax
α (X → Y |Z) , sup

U :U−X−Y |Z
Lα(U → Y |Z) (3.2)

where U represents any function of X and takes values from an arbitrary alphabet.

Moreover, the expression U −X − Y |Z represents the conditional Markov chain con-
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straint where

PUXY |Z(uxy|z) = P (x|z)P (u|xz)P (y|xz). (3.3)

Therefore, the conditional Markov chain U−X−Y |Z is equivalent to U−(X,Z)−Y .

Note that conditional maximal α-leakage takes side information Z into consid-

eration via the conditional Markov chain U − X − Y |Z, which is equivalent to

U − (X,Z) − Y . Therefore, conditional maximal α-leakage is designed under the

two assumptions: side information Z can be arbitrarily related to X and U , and the

released data Y will not provide more information about U than X and Z.

The Markov chain U − X − Y models inferences for a function U of X from Y .

To involve side information Z in the inferences, beyond the conditional Markov chain

in Def. 3.1.2, there are two other possibilities:

(i) If the side information Z that an adversary has is arbitrarily related to the

function of interest U , but conditionally independent of released data Y given

X, we have (U,Z)−X −Y . For example, if X is an individual’s public records

without voter registration indicated by Z and Y is a noisy release of X, then

when U is the political preference of this person, Z can provide extra information

about U and is conditionally independent of Y given X.

(ii) If the side information Z does not provide more information about the function

of interest U than original data X does, but can be arbitrarily related to the

released data Y , we have U −X − (Y, Z). For example, if X is an individual’s

public records with voter registration, Z is a noisy release of the voter registra-

tion in X, and Y is a update of Z, then when U is the political preference of

this person, Z cannot provide extra information about U than X does but it

can be helpful in inferring U from Y (i.e., the Markov chain Z − X − Y does

not hold).
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Note that in either Markov chain mentioned above, U and Y are conditionally in-

dependent given X and Z. In this sense, the proposed conditional Markov chain

generally models side information in privacy-protection problems.

3.2 The Robustness to Side Information

In this section, we explore the effect of side information on inferring any function

of original data from released data. First, we simplify the expression of conditional

maximal α-leakage, and then, compare leakages of a privacy mechanism measured by

conditional maximal α-leakage and maximal α-leakage.

The following theorem simplifies the expression of the conditional α- leakage in

(3.1) as a conditional Arimoto MI based on Arimoto conditional entropy.

Definition 3.2.1. Given a joint distribution PX,Y,Z, the conditional Arimoto mutual

information, for 1 ≤ α ≤ ∞, between X and Y given Z is defined as

IAα (X;Y |Z) , HA
α (X|Z)−HA

α (X|Y Z) (3.4)

where HA
α (·|·) indicates Arimoto conditional entropy.

Note that for α = 1, the conditional Arimoto MI in (3.4) is exactly the conditional

Shannon MI I(X;Y |Z).

Theorem 7. For α ∈ [1,∞], conditional α-leakage defined in (3.1) simplifies to

Lα(X → Y |Z) = IAα (X;Y |Z). (3.5)

The proof hinges on solving the two optimal problems in (3.1) by using Karush-

–Kuhn-–Tucker (KKT) conditions. As this proof is nearly identical to that of Theorem

1 in Chapter 2.
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Based on the result of Thm. 7, we obtain a simplified expression for conditional

maximal α-leakage. Specifically, the simplified expression for α > 1 is related to a

variant of the Sibson MI defined as follows.

Definition 3.2.2. Let PX,Y |Z=z indicate a conditional joint distribution of X, Y given

an event Z = z. The event-conditional Sibson MI between X and Y given Z = z is

defined

ISα(X;Y |Z = z) =
α

α− 1
log
∑
y

(∑
x

P (x|z)P (y|x, z)α
) 1

α

(3.6)

for 1 < α <∞ and by the continuous extension of (3.6) for α = 1 and ∞.

Theorem 8. For α ∈ [1,∞], the conditional maximal α-leakage defined in (3.2)

simplifies to

Lmax
α (X → Y |Z) =


sup

z∈supp(Z)
sup

PX̃|Z=z�PX|Z=z

ISα(X̃;Y |Z = z), α ∈ (1,∞]

I(X;Y |Z), α = 1.

(3.7)

where supp(Z) indicates the support of Z and ISα(X;Y |Z = z) is defined in (3.6).

A detailed proof is in Subsection 3.4.1. Note that given a channel PY |X , there is

supX I
S
α(X;Y ) = supX I

A
α (X;Y ) for 1 ≤ α ≤ ∞, and the quantity is called Arimoto

channel capacity [107, 90]. Thus, for α > 1, conditional maximal α-leakage is the

maximal conditional Arimoto channel capacity of channels (from X to Y ) where the

channel state is controlled by Z.

The following theorem shows a relationship between conditional maximal α-leakage

and maximal α-leakage.

Theorem 9. For conditional maximal α-leakage defined in (3.2), if Z−X−Y holds,

then

Lmax
α (X → Y |Z) ≤ Lmax

α (X → Y ). (3.8)
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A detailed proof is in Subsection 3.4.2. Thm. 9 shows that if side information

(Z) and released data (Y ) is conditionally independent on the original data (X), the

amount of information that Y can leak about X will not increase. That is, if side

information is not involved in generating the released data from the original data, in

terms of maximal α-leakage, it will not help an adversary get more information about

the original data from the released data. Therefore, the (unconditional) maximal α-

leakage represents a bound not only on the amount of information leaked in Y about

an arbitrary function of X, but it is also a bound on the amount of information

leaked in Y about X to an adversary with arbitrary side-information, provided Y is

generated from X using only private randomness. This gives significant new meaning

to the maximal α-leakage. The following example illustrates the result in Thm. 9.

Example 3. Let the original data X uniformly take values from the binary alphabet

{0, 1}, and the released data Y be generated by a binary symmetric channel with a

crossover probability 0 < p < 0.5. Here, the maximal α-leakage from X to Y is

Lmax
α (X → Y ) =


log 2 + 1

α−1 log (pα + (1− p)α) , α > 1

log 2−H(p), α = 1

(3.9)

where H(p) = −p log p − (1 − p) log(1 − p). Let the side information Z ∈ {0, 1} be

generated from X via a binary symmetric channel with a crossover probability 0 ≤

q ≤ 0.5, such that Z−X−Y holds. From Thm. 8, we know that Lmax
α (X → Y |Z) = 0

for q = 0, and if q 6= 0

Lmax
α (X → Y |Z) =


log 2 + 1

α−1 log (pα + (1− p)α) , α > 1

H(p+ q − 2pq)−H(p), α = 1.

(3.10)

Therefore, Lmax
α (X → Y |Z) ≤ Lmax

α (X → Y ) with equality if and only if α > 1 or

q = 0.5.
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As a contrast, for the same binary (X, Y ) in Example 3 we show a case in which

the Markov chain Z − X − Y does not hold, so that side information causes the

released data leak more information about the original data.

Example 4. Let side information Z ∼ Ber(p) and Z ⊥ X. Let Y = X for Z = 0

and Y = X ⊕ 1 for Z = 1, such that PX,Y is the same as that in Example 3. From

Thm. 8, we have Lmax
α (X → Y |Z) = log 2 > Lmax

α (X → Y ) from (3.9).

3.3 Maximal α-Leakage and Rényi Differential Privacy

From Chapter 2, it is known that maximal α-leakage for α ∈ [1,∞] incorpo-

rates MI (for α = 1), quantifying an average privacy protection over both the in-

put and output supports of a mechanism, and MaxL (for α = ∞), characterizing a

“semi-average” privacy protection over only the output support. The set of maximal

α-leakage for various α ∈ [1,∞] depends on statistical information of data, and there-

fore, is regarded as context-aware metrics. On the contrary, differential privacy (DP)

quantifies the worst case of information leakage and is known as a context-free metric

which is independent of the statistical information of data. Several variants of DP

are proposed for the sake of preserving utilities, and one of them is defined via Rényi

divergence and so called Rényi differential privacy (RDP) [80]. In this section, we

show the “equivalence” of maximal α-leakage and RDP in the sense of capturing the

same collection of mechanisms which provide a specified level of privacy protection.

This result implies that maximal α-leakage can reach out to context-free metric, and

therefore, extends the scope of information leakage measures that can be linked by

maximal α-leakage.

The definition of RDP is based on the notion of adjacent datasets who differ only

in one element [80]. To get rid of the limit of adjacent dataset, we extend RDP to the

local privacy context [24] and formally define local Rényi differential privacy (LRDP)
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in the following definition.

Definition 3.3.1. A mechanism PY |X : X → Y satisfies (α, γ)-LRDP for any non-

negative γ and α > 1, if

sup
x,x′∈X

Dα(PY |X=x‖PY |X=x′) ≤ γ. (3.11)

where PY |X=x and PY |X=x′ are the two conditional probabilities of Y over the support

Y given X = x and X = x′, respectively.

Similarly, the guaranteed privacy of a mechanism can be determined via maximal

α-leakage as shown below.

Definition 3.3.2. A mechanism PY |X : X → Y satisfies (α, ξ)-maximal α-leakage

for any non-negative ξ and α > 1, if

Lmax
α (PY |X) = sup

PX̃

inf
QY

Dα(PY |X‖QY |PX̃) ≤ ξ. (3.12)

where PX̃ and QY are two arbitrary probability distributions over X and Y, respec-

tively.

The following two inequalities between Rényi divergence and total variation dis-

tance will be used to derive the inequalities between maximal α-leakage and LRDP.

Lemma 3. ([108, (1),(6)]) Let P and Q be two arbitrary probability distributions of

the random variable X. For α > 1, there is

1

2
|P −Q|2TV log(e) ≤ Dα(P‖Q)

Dα(P‖Q) ≤ log

(
1 +

|P −Q|TV

2 minxQ(x)

)
.

(3.13)

(3.14)

We present the connection of privacy captured by maximal α-leakage and LRDP

in the following theorem.
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Theorem 10. For any mechanism PY |X satisfying (α, γ)-LRDP with α > 1, it sat-

isfies (α, γ)-maximal α-leakage, i.e.,

Lmax
α (X → Y ) ≤ γ. (3.15)

For any mechanism PY |X satisfies (α, ξ)-maximal α-leakage (α > 1) with the minimal

conditional probability no less than 0 < τ < 1, i.e., minx,y PY |X(y|x) ≥ τ , it satisfies

(α, γ(ξ, τ))-LRDP with γ(ξ, τ) defined as

γ(ξ, τ) , log

(
1 +

1

τ

√
2ξ

log(e)

)
(3.16)

Note that the results in Theorem 10 is tight for perfect privacy, i.e., γ = 0 or ξ = 0.

The proof details are in 3.4.3. From the result of Theorem 10, we conclude that

the LRDP and maximal α-leakage are equivalent in the sense of the collection of

mechanisms satisfying a finite level of LRDP is the same collection of mechanisms

satisfying a corresponding finite maximal α-leakage, and vice versa.

3.4 Proof Details

3.4.1 Proof of Theorem 8

From Thm. 7, we can simplify Lmax
α (X → Y |Z) in (3.2) as

Lmax
α (X → Y |Z) = sup

U−X−Y |Z
IAα (U ;Y |Z). (3.17)

For α = 1, we have

Lmax
1 (X → Y |Z) = sup

U :U−(X,Z)−Y
I(U ;Y |Z). (3.18)

Under the Markov chain U − X − Y |Z, by the data processing inequality, we have

I(U ;Y |Z) ≤ I(X;Y |Z) with equality if and only if I(X;Y |U,Z) = 0. Thus,

Lmax
1 (X → Y |Z) = I(X;Y |Z). (3.19)
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Now consider α > 1. We first upper bound Lmax
α (X → Y |Z). To show that this is

upper bounded by the expression in (3.7), we show that for any variable U satisfying

the Markov chain U −X − Y |Z, the conditional α-leakage is upper bounded by this

same expression. For any such U , we have

IAα (U ;Y |Z) =
α

α− 1
log

∑
y,z

(∑
u

PU,Y,Z(u, y, z)α
) 1

α

∑
z

(∑
u

PU,Z(u, z)α
) 1

α

≤ α

α− 1
log sup

z∈supp(Z)

∑
y

(∑
u

PU,Y,Z(u, y, z)α
) 1

α

(∑
u

PU,Z(u, z)α
) 1

α

= sup
z∈supp(Z)

IAα (U ;Y |Z = z)

≤ sup
z∈supp(Z)

sup
PX̃|Ũ :PX̃|Ũ�PX|Z=z

sup
PŨ

IAα (Ũ ;Y |Z = z)

= sup
z∈supp(Z)

sup
PX̃|Ũ :PX̃|Ũ�PX|Z=z

sup
PŨ

ISα(Ũ ;Y |Z = z)

≤ sup
z∈supp(Z)

sup
PX̃�PX|Z=z

ISα(X̃;Y |Z = z)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

where

• the inequality in (3.21) is from the fact that for any nonnegative ai, bi,∑
i ai∑
i bi
≤ max

i

ai
bi
, (3.26)

• (3.22) follows by the definition of Arimito MI,

• in (3.23), the variables are distributed according to PŨ(u)PX̃|Ũ(x|u)PY |X,Z(y|x, z),

• (3.24) follows because Arimoto and Sibson MIs have the same supremum over

the input distribution,
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• (3.25) follows from the facts that Sibson MI satisfies the data processing in-

equality, and Ũ − X̃ − Y |Z = z forms a Markov chain.

We now lower bound Lmax
α (X;Y |Z) by constructing a specific U satisfying U −X −

Y |Z. For a given PX,Y,Z , let

z∗= arg sup
z∈supp(Z)

sup
PX̃

�PX|Z=z

∑
y

(∑
x

PX̃(x)PY |X,Z(y|x, z)α
)1
α

. (3.27)

We will define a variable U with alphabet consisting of several disjoint subsets. We

use Xz∗ to indicate the conditional support of X given Z = z∗, i.e., Xz∗ , {x ∈ X :

PX,Z(x, z∗) > 0}. For each x ∈ Xz? , let Ux,z? be disjoint, finite sets. Also let U0 be

a finite set (disjoint from those above). The cardinality of each of these sets will be

determined later. Finally, let the alphabet of U be U = U0 ∪
⋃
x∈Xz? Ux,z? . We define

the conditional distribution PU |X,Z as follows. Let

PU |X,Z(u|x, z) =



1
|Ux,z? |

, z = z?, u ∈ Ux,z?

1
|U0| , z 6= z?, u ∈ U0

0, otherwise.

(3.28)

For the constructed U above, the conditional Arimoto MI is

IAα (U ;Y |Z) =
α

α− 1
log

∑
y,z

(∑
u

PU,Y,Z(u, y, z)α
) 1

α

∑
z

(∑
u

PU,Z(u, z)α
) 1

α

. (3.29)
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The numerator in (3.29) can be written as

∑
y,z

(∑
u

PU,Y,Z(u, y, z)α

) 1
α

=
∑
y,z

(∑
u

(∑
x

PU |X,Z(u|x, z)PX,Y,Z(x, y, z)

)α) 1
α

=
∑
y,z 6=z∗

(
|U0|

(∑
x

1

|U0|
PX,Y,Z(x, y, z)

)α) 1
α

+
∑
y

(∑
x

|Ux,z∗|
(

1

|Ux,z∗ |
PX,Y,Z(x, y, z∗)

)α) 1
α

=
1− PZ(z∗)

|U0|1−
1
α

+
∑
y

(∑
x

|Ux,z∗|1−αPX,Y,Z(x, y, z?)α

) 1
α

(3.30)

(3.31)

(3.32)

where the simplification in (3.32) is from (3.28). A similar derivation for the denom-

inator in (3.29) gives

∑
z

(∑
u

PU,Z(u, z)α

) 1
α

=
1− P (z∗)

|U0|1−
1
α

+

(∑
x

|Ux,z∗|1−αPX,Z(x, z?)α

) 1
α

. (3.33)

Note that for α > 1, as |U0| → ∞, (1− PZ(z∗)) 1

|U0|1−
1
α
→ 0. Therefore, for α > 1 we

have

Lmax
α (X → Y |Z) ≥ α

α− 1
log

∑
y

(∑
x

|Ux,z∗|1−αPX,Y,Z(x, y, z?)α
) 1

α

(∑
x

|Ux,z∗|1−αPX,Z(x, z?)α
) 1

α

=
α

α− 1
log
∑
y

∑
x∈Xz∗

PY |X,Z(y|x, z∗)α |Ux,z∗|1−α∑
x′∈Xz∗
|Ux′,z∗|1−α


1
α

.

(3.34)

(3.35)

Let X̃ ∈ Xz∗ be random variable with a distribution PX̃(x) =
|Ux,z∗ |1−α∑

x′∈Xz∗
|Ux′,z∗ |1−α

. By

properly choosing cardinalities |Ux,z∗|, for x ∈ Xz∗ , we can approach an arbitrary

distribution PX̃ on the support Xz∗ . In addition, the lower bound in (3.34) holds for
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any arbitrary choice of these cardinalities. Therefore, we have

Lmax
α (X → Y |Z)

≥ sup
PX̃

�PX|Z=z∗

α

α− 1
log
∑
y

(∑
x

PX̃(x)PY |X,Z(y|x, z∗)α
)1
α

= sup
z∈supp(Z)

sup
PX̃�

PX|Z=z∗

α

α−1
log
∑
y

(∑
x

PX̃(x)PY |X,Z(y|x,z)α

)1
α

(3.36)

(3.37)

where (3.37) is from the definition of z∗ in (3.27). From (3.25) and (3.37), we have

that for α > 1

Lmax
α (X→ Y |Z) = sup

z∈supp(Z)
sup

PX̃�PX|Z=z

ISα(X̃;Y |Z = z). (3.38)

3.4.2 Proof of Theorem 9

From Thm. 8, we have that for α > 1

Lmax
α (X → Y |Z) = sup

z
sup

PX̃�PX|Z=z

α

α− 1
log
∑
y

(∑
x

PX̃(x)PY |X(y|x)α

) 1
α

≤ sup
PX̃�PX

α

α− 1
log
∑
y

(∑
x

PX̃(x)PY |X(y|x)α

) 1
α

=Lmax
α (X → Y )

(3.39)

(3.40)

(3.41)

where (3.39) holds because the Markov chain Z −X − Y allows us to replace PY |X,Z

with PY |X ; and the inequality in (3.40) is from the fact that for any z conditioning

on Z can only reduce the support of X; and the equality in (3.41) is from Theorem.

2 in Chapter 2. For α = 1, from Thm. 8 we have

Lmax
1 (X → Y |Z) = I(X;Y |Z), (3.42)
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such that if Z −X − Y holds,

I(X;Y |Z) ≤ I(X;Y ) = Lmax
1 (X → Y ), (3.43)

where the inequality and equality are from [104, Sec. 2.8] and [? , Thm. 2], respec-

tively. Therefore, for Z −X − Y , Lmax
α (X → Y |Z) ≤ Lmax

α (X → Y ).

3.4.3 Proof of Theorem 10

For any mechanism PY |X satisfying (α, γ)-RDP, we calculate its maximal α-leakage

as following:

Lmax
α (PY |X) = sup

PX̃

inf
QY

Dα(PY |X‖QY |PX̃)

= sup
PX̃

inf
QY

1

α− 1
log

(∑
x

PX̃(x)
∑
y

P (y|x)αQY (y)1−α

)

= inf
QY

sup
PX̃

1

α− 1
log

(∑
x

PX̃(x)
∑
y

P (y|x)αQY (y)1−α

)

= inf
QY

max
x

1

α− 1
log

(∑
y

P (y|x)αQY (y)1−α

)

≤max
x

1

α− 1
log

(∑
y

P (y|x)αP (y|x′)1−α
)
, ∀x′ ∈ X

≤max
x′,x

1

α− 1
log

(∑
y

P (y|x)αP (y|x′)1−α
)

= max
x′,x

Dα(PY |X=x‖PY |X=x′) ≤ γ

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

where

• the equality in (3.46) is from thatDα(PY |X‖QY |PX̃) is convex inQY and concave

in PX̃ given PY |X and α > 1,

• the equality in (3.47) is from the facts that the function 1
α−1 log(t) is mono-

tonically increasing in t > 0 and a convex combination is no greater than the
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maximal value involved in the convex combination.

Given any mechanism PY |X , its maximal α-leakage is Lmax
α (PY |X) and it satisfies

(α, γ)-LRDP with the smallest value of γ given by

γ = max
x′,x

Dα(PY |X=x‖PY |X=x′)

≤max
x′,x

log

(
1 +
|PY |X=x − PY |X=x′ |TV

2 minx,y P (y|x)

)
≤max

x′,x
inf
QY

log

(
1 +
|PY |X=x −QY |TV + |QY − PY |X=x′ |TV

2 minx,y P (y|x)

)
≤max

x′,x
inf
QY

log

(
1 +

√
2Dα(PY |X=x‖QY ) +

√
2Dα(PY |X=x′‖QY )

2
√

log(e) minx,y P (y|x)

)

≤ log

1 +

max
x′,x

inf
QY

(√
2Dα(PY |X=x‖QY ) +

√
2Dα(PY |X=x′‖QY )

)
2
√

log(e) minx,y P (y|x)


≤ log

(
1 +

1

2
√

log(e) minx,y P (y|x)

·max
x,x′

inf
QY

2 max
{√

2Dα(PY |X=x‖QY ),
√

2Dα(PY |X=x′‖QY )
}

= log

(
1 +

2 maxx infQY
√

2Dα(PY |X=x‖QY )

2
√

log(e) minx,y P (y|x)

)

= log

(
1 +

√
2 maxx infQY Dα(PY |X=x‖QY )√

log(e) minx,y P (y|x)

)

= log

(
1 +

√
2Lmax

α (P (y|x))√
log(e) minx,y PY |X(y|x)

)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

where

• the inequality in (3.52) is from the inequality (3.14) by replacing P and Q with

PY |X=x and PY |X=x′ , respectively,

• the inequality in (3.53) is due to the fact

|P − P ′|TV ≤ |P −Q|TV + |Q− P ′|TV (3.60)
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where P, P ′, Q are three arbitrary probability distributions of an alphabet 1 .

• the inequality in (3.54) is from the inequality (3.13) and |P −Q|TV = |Q−P |TV

for any two probability distributions P,Q.

• the inequality in (3.56) is from that for any given x, x′

inf
QY

(√
2Dα(PY |X=x‖QY ) +

√
2Dα(PY |X=x′‖QY )

)
≤2 inf

QY
max

{√
2Dα(PY |X=x‖QY ),

√
2Dα(PY |X=x′‖QY )

}
(3.61)

Therefore, by plugging Lmax
α (PY |X) ≤ ξ and minx,y PY |X(y|x) ≥ τ into (3.59), we have

γ ≤ log

(
1 +

1

τ

√
2ξ

log(e)

)
= γ(ξ, τ). (3.62)

3.5 Concluding Remarks

We have shown that in a data publishing setting, when the released data is gener-

ated from original data via private randomness (i.e., side information is not involved

in the generation), maximal α-leakage is robust to arbitrary side information an ad-

versary may have. In addition, maximal α-leakage is equivalent to the local Rényi

variation of DP, i.e., LRDP, in the sense of the collection of mechanisms satisfying

a finite level of LRDP can be captured by a requirement of maximal α-leakage on

mechanism, and vice versa. While DP is well-known for being robust to arbitrary

side information, this result also supports the robustness of maximal α-leakage.

1Proof: |P − P ′|TV =
∑
i |P (i)− P ′(i)| =

∑
i |P (i)−Q(i) +Q(i)− P ′(i)| ≤

∑
i(|P (i)−Q(i)|+

|Q(i)− P ′(i)|) = |P −Q|TV + |Q− P ′|TV
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Chapter 4

PRIVACY-UTILITY TRADEOFFS WITH A HARD DISTORTION

CONSTRAINT

In a privacy-guaranteed data publishing setting, a data curator/provider uses a

mapping called privacy mechanism to generate distorted versions of original data for

releases. The privacy mechanism determines the fidelity of the released data. The

higher the fidelity is, the more utility of the data is maintained, and meanwhile, the

less privacy of the data is preserved. Therefore, a privacy-utility tradeoff (PUT)

problem arises in the design of the privacy mechanism.

We consider the two different data publishing scenarios shown in Figs. 4.1 and

4.2: the first where the entirety of the data set X is considered private, and the

second where the data set consists of two parts S and X, where only S is considered

private. For the first case (as shown in Fig. 4.1 where X and Y represent the original

and released data. An adversary intends to infer a function U of X from Y , and Û

is the adversary’s estimation of U . Generally, the function U is unknown to the data

curator/provider), we use maximal α-leakage as the privacy metric, thereby limiting

the inference of any private information about the data set represented by the function

?

Figure 4.1: The First Privacy-Guaranteed Data Publishing Scenario: the Privacy
Protection is for Entirely Sensitive Data Sets
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Figure 4.2: The Second Privacy-Guaranteed Data Publishing Scenario: the Privacy
Protection is for Data Sets Consisting of Non-Sensitive and Sensitive Data

U . For the second case (as shown in Fig. 4.2, where X and S represent the non-

sensitive and sensitive data in original data set, respectively, and Y is the released

version of X. The adversary intends to infer S from Y , and Ŝ is the adversary’s

estimation of S), we use α-leakage as the privacy metric, thereby limited the inference

only of the specific private information represented by S.

We measure utility in terms of a hard distortion metric, which constrains the pri-

vacy mechanism so that the distortion between each pair of original and released data

is bounded with probability 1. Specifically, for the original and released data X, Y

and a distortion function d(·, ·), the utility guarantee is modeled as the hard distor-

tion constraint d(X, Y ) ≤ D with probability 1, where D is the maximal permitted

distortion. In other words, if a privacy mechanism PY |X satisfies the hard distortion

constraint, for any possible input x, all output y of the privacy mechanism must lie

in a non-empty set BD(x) given by

BD(x) , {y : d(x, y) ≤ D}, (4.1)

i.e., for any x with PX(x) > 0, PY |X(y|x) = 0 if y /∈ BD(x). Thus, a mathematical

model of the PUT problem is given by

inf
PY |X∈PY |X

L(·)
(·)(X → Y )

s.t., d(X, Y ) ≤ D,

(4.2a)

(4.2b)
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where the set PY |X is the collection of stochastic matrices, and the superscript and

subscript of L depend on the privacy measure under consideration (see Sec. 3.1 for

notation).

Remark 2. Note that given any input x, the hard distortion constraint in (4.2b)

will force the conditional probabilities of the outputs that are not in BD(x) to be zero.

Thus, this utility guarantee is incompatible with some privacy notions, which require

each input to be mapped to all outputs with some positive probabilities; e.g., DP and

any maximal f -leakage with f(0) =∞.

4.1 Leakage Measures Based on f -Divergence

We introduce two classes of information leakages derived from f -divergence, called

f -leakage and maximal f -leakage. The f -leakage depends on the distribution of orig-

inal data, and in contrast, maximal f -divergence only depends on the support of

original data. We also show the relation between the f -divergence-based measures

and maximal α-leakage for α = 1 and α > 1, respectively.

Recall that for a convex function f : R+ → R such that f(1) = 0, an f -divergence

Df is a measure of the distance between two distributions given by

Df (PY ‖QY ) =
∑
y

Q(y) f

(
P (y)

Q(y)

)
. (4.3)

Definition 4.1.1. Given a joint distribution PX,Y = PY |XPX and a f -divergence Df ,

the f -leakage is defined as

Lf (X → Y ) = inf
QY

Df (PX,Y ‖PX ×QY ), (4.4)

and the maximal f -leakage is defined as

Lmax
f (X → Y ) = sup

PX̃

inf
QY

Df (PY |XPX̃‖PX̃ ×QY ), (4.5)

64



where PX̃ is a distribution over the support of PX .

Note that in Definition 4.1.1, maximal f -leakage (Lmax
f ) depends on the distribu-

tion of X only through its support. In contrast, f -leakage (Lf ) depends fully on the

distribution of X. Both measures depend on the chosen mechanism PY |X .

Recall that for α = 1, maximal α-leakage is MI. Therefore, it is a special case of

Lf (X → Y ) in (4.4) with f(t) = t log t. Furthermore, for α > 1, maximal α-leakage

has a one-to-one relationship with a special case of Lmax
f in (4.5) for f given by

fα(t) =
1

α− 1
(tα − 1), (4.6)

such that Df is the Hellinger divergence of order α [109]. The following lemma makes

this observation precise.

Lemma 4. For discrete random variables X and Y , the maximal α-leakage (α > 1)

from X to Y can be written as

Lmax
α (X → Y ) =

1

α− 1
log
(
1 + (α− 1)Lmax

fα (X → Y )
)
, (4.7)

where Lmax
fα

(X → Y ) is the Lmax
f (X → Y ) in (4.5) for fα given by (4.6) such that Df

is the Hellinger divergence of order α.

A detailed proof is in Section 4.5.1.

4.2 PUTs for Entirely Sensitive Data Sets

For the privacy-guaranteed publishing of an entirely sensitive data set shown in

Fig. 4.1, we use maximal α-leakage as the privacy metric. From Section 4.1, we

know that maximal α-leakage is a specific case of f -leakage and maximal f -leakage

(in Def. 4.1.1) for α = 1 and α > 1, respectively. Hereby, we solve the PUT

problems which minimize either f -leakage or maximal f -leakage, subject to a hard
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distortion constraint. By applying the relations between maximal α-leakage and

the f -divergence-based variants, we derive the optimal PUTs and optimal privacy

mechanisms for the PUT problem with maximal α-leakage as the privacy measure.

We denote an optimal PUT as PUT
HD,L(·)

(·)
, where HD and L(·)

(·) in the subscript indicate

the hard distortion and the involved privacy measure, respectively.

The following theorem characterizes the optimal tradeoff, denoted as PUTHD,Lf ,

in (4.2) for the case that f -leakage is used as the privacy measure.

Theorem 11. For any f -leakage Lf in (4.4) and a distortion function d(·, ·) with

BD(x) in (4.1), the optimal PUT in (4.2) is given by

PUTHD,Lf (D) = inf
PY |X :d(X,Y )≤D

Lf (X;Y ),

=f(0) + inf
QY

E
[
QY (BD(X))

(
f
( 1

QY (BD(X))

)
−f(0)

)]
.

(4.8)

(4.9)

Moreover, letting Q?
Y be the distribution achieving the infimum in (4.9), an optimal

mechanism P ?
Y |X is given by

P ?
Y |X(y|x) =

1
(
d(x, y) ≤ D

)
Q?
Y (y)

Q?
Y (BD(x))

. (4.10)

A detailed proof in Subsection 4.5.2. Note that as a result of the distribution

dependence of the leakage measure Lf in (4.4), the optimal tradeoff in (4.9) is an

expected function of X.

Making use of maximal f -divergence as the privacy constraint, the optimal PUT

in (4.2) is given by PUTHD,Lmax
f

in the following theorem.

Theorem 12. For any maximal f -leakage Lmax
f in (4.5), a distortion function d(·, ·)

and BD(x) in (4.1), the optimal PUT in (4.2) is given by

PUTHD,Lmax
f

(D) = inf
PY |X :d(X,Y )≤D

Lmax
f (X → Y ),

=q?f((q?)−1) + (1− q?)f(0),

(4.11)

(4.12)
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with q? defined as

q? , sup
QY

inf
x
QY (BD(x)). (4.13)

Moreover, letting Q?
Y be the distribution achieving the supremum in (4.13), an optimal

mechanism P ?
Y |X is given by (4.10).

A detailed proof is in Subsection 4.5.3.

Remark 3. The PUTs in (4.9) and (4.12) simplify to finding an output distribution

QY that can be viewed as a “target” distribution, i.e., the optimal mechanism aims

to produce this distribution as closely as possible, subject to the utility constraint. In

particular, the resulting optimal mechanism (in (4.10)), for any input, distributes the

outputs according to QY while conditioning the output to be within a ball of radius D

around the input. The optimization in (4.13) ensures that all inputs are uniformly

masked while (4.9) provides average guarantees.

The next corollary characterizes the optimal tradeoff PUTHD,Lmax
α

for maximal α-

leakage. Recall that for α = 1, Lmax
1 equals Lf with f(t) = t log t. For α > 1, from

the one-to-one relationship between Lmax
α and Lmax

fα
in (4.7), we know that finding

PUTHD,Lmax
α

is equivalent to finding the optimal tradeoff PUTHD,Lmax
f

in (4.11) for

Lmax
f = Lmax

fα
.

Corollary 1. For maximal α-leakage, the optimal PUT in (4.2) is given by

PUTHD,Lmax
α

(D) = inf
PY |X :d(X,Y )≤D

Lmax
α (X → Y ), (4.14)

=

 inf
QY

E
[
log

1

QY (BD(X))

]
, α = 1 (4.15a)

− log q?, α > 1, (4.15b)

where q? is defined in (4.13). Moreover, an optimal mechanism is given by (4.10),

where for α = 1, Q?
Y achieves the infimum in (4.15a); and for α > 1, Q?

Y achieves

the supremum in (4.13).
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Remark 4. Note that subject to a hard distortion constraint, the optimal privacy

mechanism is always given by (4.10). In particular, for maximal α-leakage, the opti-

mal mechanism as well as the optimal PUT are identical for all α > 1.

4.3 PUTs for Data Sets Containing Non-Sensitive Data

For data sets containing both sensitive and non-sensitive data, indicated by S and

X, respectively, as shown in Fig 4.2, the purpose of privacy protection is to limit

information leakage of sensitive data while releasing non-sensitive data. We use α-

leakage from S to Y as the privacy measure, where Y is the released version of X.

Therefore, with PY |S,X in the place of PY |X in (4.2), we obtain the optimal PUT as

PUTHD,Lα(D) = inf
PY |S,X :d(X,Y )≤D

Lα(S;Y ), (4.16)

and for any (s, x) with PS,X(s, x) > 0, the non-empty set BD in (4.1) is given by

BD(s, x) = {y : d(x, y) ≤ D} . (4.17)

The following theorem lower bounds PUTHD,Lα .

Theorem 13. The minimal leakage PUTHD,Lα (1 ≤ α ≤ ∞) in (4.16) is lower

bounded by

PUTHD,Lα(D) ≥



∑
s,x

P (s, x) log
(

max
y∈BD(s,x)

∑
s′∈SD(y)

P (s′)
)−1

, α = 1

log
∑
s,x

P (s)P (s,x)
max
s
PS(s)

(
max

y∈BD(s,x)

∑
s′∈SD(y)

P (s′)
)−1

, α =∞

α
α−1 log

∑
s,x

P (s)αP (x|s)
‖PS‖α

(
max

y∈BD(s,x)

∑
s′∈SD(y)

P (s′)α
) 1−α

α
, else,

where the nonempty set BD(s, x) of y is given by (4.17), and the set SD(y) of s for

each y is defined as

SD(y) , {s : ∃x, PS,X(s, x) > 0, d(x, y) ≤ D}. (4.18)
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The lower bound is tight if there exists an privacy mechanism PY |S,X ∈ PY |S,X(D)

such that

(i) given (s, x), for any y with P (y|s, x) > 0,

∑
s′∈SD(y)

P (s′) = max
y′∈BD(s,x)

∑
s′∈SD(y′)

P (s′); (4.19)

(ii) given any y with PY (y) > 0, for any s ∈ SD(y),

∑
x:d(x,y)≤D

P (y|s, x)P (x|s)=
PY (y)∑

s′∈SD(y)

P (s′)
, (4.20)

where PY is the marginal distribution of Y from the privacy mechanism PY |S,X

and PS,X .

The proof details are in Subsection 4.5.4.

Note that by using maximal α-leakage as the privacy measure, the setting for

publishing data sets consisting of sensitive and non-sensitive data can be generalized

to restrict leakages about all functions of the sensitive data. This will be addressed

in future work.

4.4 Applications: PUTs for Hard Distortion Constraint

In this section, we apply the results in Sec. 4 to data sets and present the optimal

PUTs for two examples: (i) using absolute distance between types (empirical distri-

butions) of binary data sets as the distortion function; (ii) discrete data sets with

Hamming distortion.

4.4.1 Example 1: Binary Data Sets with Hard Distortion on Types

When considering data set disclosure under privacy constraints, a reasonable goal

is to design privacy mechanisms that preserve the statistics of the original data set
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while preventing inference of each individual record (e.g., a sample or a row of the

data set). Since the type (empirical distribution) of a data set captures its statistics,

we quantify distortion as the distance between the type of the original and released

data sets. We use maximal α-leakage to capture the gain of an adversary (with access

to the released data set) in inferring any function of the original data set.

Let Xn be a random data set with n entries and Y n be the corresponding released

data set generated by a privacy mechanism PY n|Xn . Entries of both Xn and Y n are

from the same alphabet X . Let Pxn and Pyn indicate the types of input data set xn

and output data set yn, respectively. We define the distortion function as the distance

between types, given by

dT(xn, yn) = max
x∈X
|Pxn(x)− Pyn(x)|, (4.21)

and therefore, obtain PUTHD,Lmax
α

as in (4.14) but with data sets Xn, Y n in place

of single letters X, Y .Since types of n-length sequences take on only values that are

multiples of 1
n
, this distortion function dT takes on values of the form m

n
, where

m ∈ [0, n].

We concentrate on binary data sets, i.e., X = {0, 1}. Note that for binary data

sets, we can simply write dT(xn, yn) = |Pxn(1)− Pyn(1)|. For a n-length binary data

set, the number of types is n + 1. Therefore, all input and output data sets can be

categorized into n+ 1 type classes defined as

T (i) , {xn : nPxn(1) = i}. (4.22)

Theorem 14. For binary data sets and the distortion function in (4.21), given inte-
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0 0 1

0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0

1 0 0

1

1

Figure 4.3: An Optimal Mechanism PUTHD,Lmax
α

(
m
n

)
for α > 1 with (n,m) = (9, 2)

gers n,m where 0 ≤ m ≤ n, the optimal tradeoff for α > 1 is

PUTHD,Lmax
α

(m
n

)
= min

PY n|Xn :

dT(X
n,Y n)≤m

n

Lmax
α (Xn → Y n)

= log

⌈
n+ 1

2m+ 1

⌉
.

(4.23)

(4.24)

An optimal privacy mechanism maps all input data sets in a type class to a unique

output data set which is feasible and belongs to a type class in the set T ? given by

T ? ,
{
T (j) : j= l+(2m+1)k, k ∈

[
0,

⌈
n+ 1

2m+ 1

⌉
−1

]}
, (4.25)

where l = m if d n+1
2m+1
e− n+1

2m+1
≤ m

2m+1
, and otherwise, l = n−

(
d n+1
2m+1
e − 1

)
(2m+ 1).

A detailed proof is in Subsection 4.5.5. Let (n,m) = (9, 2) such that from Thm.

14, we have PUTHD,Lmax
α

(2
9
) = 1 bit and T ? = {T (2), T (7)}. Fig. 4.3 shows the

optimal mechanism, which maps all input data sets in {T (i) : i ∈ [0, 4]} (resp.

{T (i) : i ∈ [5, 9]}) to a unique output data set in T (2) (resp. T (7)) with probability

1. Note that in Fig. 4.3, rows and columns are types of Xn and Y n, respectively. The

hard distortion forces conditional probabilities of outputs outside the feasible ball of

given input to be zero. We highlight the conditional probabilities of feasible outputs

in green, and give their values in the optimal mechanism.
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4.4.2 Example 2: Hard Hamming Distortion on Data Sets

In the example, we consider hard Hamming distortion on data sets with entries

from general finite alphabets. Formally, for data sets xn, yn ∈ X n, we define the

Hamming distortion function on data sets as

dH(xn, yn) =
1

n

n∑
i=1

1(xi 6= yi). (4.26)

Therefore, we obtain PUTHD,Lmax
α

as in (4.14) but with data sets Xn, Y n in place of

single letters X, Y .

Theorem 15. For data sets from a finite alphabet X and Hamming distortion func-

tion, for any integers n,m where 0 ≤ m ≤ n, the optimal tradeoff for α > 1 is

PUTHD,Lmax
α

(m
n

)
= min

PY n|Xn :

dH(x
n,yn)≤m

n

Lmax
α (Xn → Y n)

= log
|X |n∑m

i=0

(
n
i

)
(|X | − 1)i

.

(4.27)

(4.28)

An optimal privacy mechanism maps each input xn ∈ X n uniformly to every feasible

output, i.e., for all xn, yn where dH(xn, yn) ≤ m
n

, PY n|Xn(yn|xn) = 1∑m
i=0 (ni)(|X |−1)

i .

The key observation to reach the conclusion in Thm. 15 is that every output data

set is in the same number of feasible balls, such that a uniform distribution over the

output space leads to equal probability for the feasible ball of each input data set.

The proof details are in Subsection 4.5.6. Fig. 4.4 illustrates the optimal mechanism

in Thm. 15 for X = {0, 1, 2} and (n,m) = (2, 1), where rows and columns are xn and

yn, respectively. Note that we color the conditional probabilities of feasible outputs

(respect to the hard Hamming distortion) and their values are the same as 0.2 in

the optimal mechanism. Note that permuting items of a data set does not change

the type but will lead to a non-zero Hamming distortion. The distortion on types in
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(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(0,0) 0.2 0.2 0.2 0.2 0.2

(0,1) 0.2 0.2 0.2 0.2 0.2

(0,2) 0.2 0.2 0.2 0.2 0.2

(1,0) 0.2 0.2 0.2 0.2 0.2

(1,1) 0.2 0.2 0.2 0.2 0.2

(1,2) 0.2 0.2 0.2 0.2 0.2

(2,0) 0.2 0.2 0.2 0.2 0.2

(2,1) 0.2 0.2 0.2 0.2 0.2

(2,2) 0.2 0.2 0.2 0.2 0.2

Figure 4.4: An Optimal Mechanism of (4.27) for α > 1 with (n,m) = (2, 1) and
X = {0, 1, 2}

(4.21) can be viewed as a relaxation of the Hamming distortion, in the sense that the

set of feasible privacy mechanisms in (4.27) belongs to that in (4.23), i.e.,

{
PY n|Xn : dH(xn, yn) ≤ m

n

}
⊂
{
PY n|Xn : dT(xn, yn) ≤ m

n

}
.

Therefore, for non-binary alphabets, the result in Thm. 15 upper bounds the minimal

leakage in (4.23).

4.5 Proof Details

4.5.1 Proof for Lemma 4

Define the convex function

fα(t) =
1

α− 1
(tα − 1), (4.29)

then for the two distributions P and Q over the support Y , we have a f -divergence

Hα(P‖Q), which is the Hellinger divergence of order α [109], given by

Hα(P‖Q) =
1

α− 1

(∑
Y

P (y)αQ(y)1−α − 1

)
. (4.30)
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Therefore, the Rényi divergence can be written in terms of the Hellinger divergence

as

Dα(P‖Q) =
1

α− 1
log(1 + (α− 1)Hα(P‖Q)). (4.31)

Thus, since z 7→ 1
α−1 log(1 + (α− 1)z) is monotonically increasing in z for α > 1, we

can write maximal α-leakage as

Lmax
α (X → Y ) = sup

PX

inf
QY

Dα(PX,Y ‖PX ×QY )

=
1

α− 1
log
(
1 + (α− 1) sup

PX

inf
QY
Hα(X → Y )

)
=

1

α− 1
log
(
1 + (α− 1)LHα(X → Y )

)
.

(4.32)

(4.33)

(4.34)

That is, for α > 1 maximal α-leakage is a monotonic function of the Hellinger

divergence-based measure.

4.5.2 Proof of Theorem 11

Given PX , the collection of stochastic matrices is denoted as PY |X . The feasible ball

BD(x) around x is defined in (4.1). For the distribution dependent PUT in (4.8), we

have

PUTHD,Lf (D)

= inf
PY |X∈PY |X
:d(X,Y )≤D

inf
QY

Df (PY |XPX‖PX ×QY )

= inf
QY

inf
PY |X∈PY |X
:d(X,Y )≤D

∑
x∈X

PX(x)Df (PY |X=x‖QY )

= inf
QY

∑
x∈X

PX(x) inf
PY |X=x

Y ∈BD(x)

∑
y∈Y

QY (y)f

(
PY |X(y|x)

QY (y)

)

= inf
QY

∑
x∈X

PX(x) inf
PY |X=x

Y ∈BD(x)

 ∑
y∈BD(x)c

QY (y)f

(
PY |X(y|x)

QY (y)

)

(4.35)

(4.36)

(4.37)
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+
QY (BD(x))

QY (BD(x))

∑
y∈BD(x)

QY (y)f

(
PY |X(y|x)

QY (y)

) (4.38)

= inf
QY

∑
x∈X

PX(x) inf
PY |X=x

Y ∈BD(x)

( ∑
y∈BD(x)c

QY (y)f (0) +QY (BD(x))

·
∑

y∈BD(x)

QY (y)

QY (BD(x))
f

(
PY |X(y|x)

QY (y)

))

≥ inf
QY

∑
x∈X

PX(x) inf
PY |X=x

Y ∈BD(x)

(
QY (BD(x)c) f(0) +QY (BD(x))f

(
1

QY (BD(x))

))

=f(0) + inf
QY

∑
x∈X

PX(x)

(
QY (BD(x))

(
f

(
1

QY (BD(x))

)
− f(0)

))

(4.39)

(4.40)

(4.41)

where

• (4.36) follows from the fact that Df (PY |XPX‖PX ×QY ) is convex in (PY |X , QY )

for fixed PX ,

• (4.39) is directly from the hard distortion constraint d(X;Y ) ≤ 0 such that for

any y /∈ BD(x) PY |X(y|x) = 0, and therefore,
∑

y∈BD(x) PY |X(y|x) = 1,

• (4.40) is from the Jensen’s inequality such that

∑
y∈BD(x)

QY (y)

QY (BD(x))
f

(
PY |X(y|x)

QY (y)

)

≥f

 ∑
y∈BD(x)

QY (y)

QY (BD(x))

PY |X(y|x)

QY (y)


=f


∑

y∈BD(x)

PY |X(y|x)

QY (BD(x))

 = f

(
1

QY (BD(x))

)
,

(4.42)

(4.43)

with equality if and only if there is a mechanism PY |X satisfying

PY |X(y|x)

QY (y)
=

1(y ∈ BD(x))

QY (BD(x))
. (4.44)
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Note that f : R+ → R is a convex function, such that the function tf(1
t
) is convex

in t ∈ R+. Therefore, the objective function in (4.41) is convex in QY . Furthermore,

in (4.41) the feasible region of QY is the probability distribution simplex over the

set {BD(x), x ∈ X}. For finite supports X and Y of X and Y , respectively, the set

{BD(x), x ∈ X} is a compact, and therefore, the infimum in (4.41) is achievable.

4.5.3 Proof of Theorem 12

Given PX , the collection of stochastic matrices is denoted as PY |X . The feasible ball

BD(x) around x is defined in (4.1). For the distribution independent PUT in (4.11),

we have

PUTHD,Lmax
f

(D)

= inf
PY |X∈PY |X
:d(X,Y )≤D

sup
PX̃

inf
QY

Df (PX̃PY |X‖PX̃ ×QY )

= inf
QY

sup
PX̃

inf
PY |X∈PY |X
:d(X,Y )≤D

Df (PX̃PY |X‖PX̃ ×QY )

= inf
QY

sup
PX̃

inf
PY |X∈PY |X
:d(X,Y )≤D

∑
x∈X

PX̃(x)Df (PY |X=x‖QY )

= inf
QY

sup
PX̃

∑
x∈X

PX̃(x) inf
PY |X=x

Y ∈BD(x)

∑
y∈Y

QY (y)f

(
PY |X(y|x)

QY (y)

)

= inf
QY

sup
PX̃

∑
x∈X

PX̃(x) inf
PY |X=x

Y ∈BD(x)

( ∑
y∈BD(x)

QY (y)f

(
PY |X(y|x)

QY (y)

)

+
∑

y∈BD(x)c

QY (y)f(0)

)

= inf
QY

sup
PX̃

∑
x∈X

PX̃(x) inf
PY |X=x

Y ∈BD(x)

(
QY (BD(x))

∑
y∈BD(x)

QY (y)

QY (BD(x))
f

(
PY |X(y|x)

QY (y)

)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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+QY (BD(x)c)f(0)

)

≥ inf
QY

sup
PX̃

∑
x∈X

PX̃(x) inf
PY |X=x

Y ∈BD(x)

(
QY (BD(x))f

(
1

QY (BD(x))

)

+QY (BD(x)c)f(0)

)
= inf

QY
sup
PX̃

∑
x∈X

PX̃(x)

(
QY (BD(x))f

(
1

QY (BD(x))

)
+
(
1−QY (BD(x))

)
f(0)

)
= inf

QY
sup
PX̃

∑
x∈X

PX̃(x) g
(
QY (BD(x))

)
= inf

QY
sup
x
g
(
QY (BD(x))

)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

where

• (4.46) and (4.48) follow from the fact that Df (PX̃PY |X‖PX̃ × QY ) is linear in

PX̃ for fixed (PY |X , QY ) and convex in (PY |X , QY ) for fixed PX̃ ,

• (4.51) follows from the convexity of f and Jensen’s inequality. The equality

holds if and only if there exists a mechanism PY |X satisfying (4.44).

• (4.53) results from q , QY (BD(x)) and

g(q) , qf(q−1) + (1− q)f(0). (4.55)

Due to the convexity of f , we have f(q−1) − f(0) ≤ f ′(q−1) (q−1 − 0), from which,

the derivative g′(q) = f(q−1) − q−1f ′(q−1) − f(0) ≤ 0. Therefore, the function g in

(4.55) is non-increasing, such that (4.54) is simplified as g(q?), where q? is given by

q? , sup
QY

inf
x
QY (BD(x)). (4.56)

Note that in (4.56), the feasible region of QY is the probability distribution simplex

over the set {BD(x), x ∈ X}. For finite supports X and Y of X and Y , respectively,
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the set {BD(x), x ∈ X} is a compact, and therefore, the supremum in (4.56) is

achievable.

4.5.4 Proof of Theorem 13

From Thm.1, we know that for α ≥ 1, α-leakage Lα(S;Y ) equals to Arimoto MI

IAα (S;Y ). Since IAα (S;Y ) = Hα(S) −HA
α (S|Y ) and Hα(S) is independent of PY |S,X ,

to minimize IAα (S;Y ) with respect to PY |S,X can be simplified to maximize HA
α (S|Y ).

In addition, for α > 1, the function g : t→ α
1−α log t is a monotonically non-increase

function in t > 0. Therefore, the problem in (4.16) can be simplified to

inf
PY |SX

:d(X,Y )≤D

∑
y∈Y

(∑
s∈S

P (s, y)α
) 1
α
. (4.57)

The hard distortion on X and Y in (4.16) determines a collection of feasible x and

therefore s for each y. We define the two collections for each y ∈ Y as

XD(y) , {x ∈ X : d(x, y) ≤ D},

SD(y) , {s ∈ S : ∃x ∈ XD(y), PSX(sx) > 0}.

(4.58)

(4.59)

Note that both sets defined above are independent of the privacy mechanism PY |S,X .

For α ∈ (1,∞), we have

inf
PY |SX

:d(X,Y )≤D

∑
y

(∑
s

P (s, y)α
) 1
α

= inf
PY |SX

:d(X,Y )≤D

∑
y∈Y

(∑
s∈S

(∑
x∈X

P (y|s, x)P (s, x)
)α) 1

α

= inf
PY |S,X

∑
y

( ∑
SD(y)

( ∑
XD(y)

P (s, x, y)

)α
+
∑

x/∈XD(y)
s/∈SD(y)

0

) 1
α

(4.60)

(4.61)

78



= inf
PY |S,X

∑
y

( ∑
s′∈SD(y)

P (s′)α
) 1
α

( ∑
SD(y)

P (s)α∑
s′∈SD(y)

P (s′)α

( ∑
XD(y)

P (x, y|s)
)α) 1

α

≥ inf
PY |S,X

∑
y

( ∑
s′∈SD(y)

P (s′)α
) 1
α

( ∑
SD(y)

P (s)α∑
s′∈SD(y)

P (s′)α

( ∑
XD(y)

P (x, y|s)
))

= inf
PY |S,X

∑
y,SD(y)
XD(y)

( ∑
s′∈SD(y)

P (s′)α
) 1
α
−1
P (s)αP (x, y|s)

= inf
PY |S,X

∑
s,x

BD(s,x)

( ∑
s′∈SD(y)

P (s′)α
) 1
α
−1
P (s)αP (x, y|s)

≥ inf
PY |S,X

∑
s,x

P (s)αP (x|s) min
y∈BD(s,x)

( ∑
s′∈SD(y)

P (s′)α
) 1
α
−1

=
∑
s,x

P (s)αP (x|s)
(

max
y∈BD(s,x)

∑
s′∈SD(y)

P (s′)α
) 1
α
−1
,

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

where

• (4.63) is directly from the concavity of the function g1 : t → t
1
α (α > 1)

and Jensen’s inequality. The equality holds if and only if the optimal P ?
Y |S,X

achieving the infimum satisfies that for all s ∈ SD(y),

P ?(y|s) =
∑

x∈XD(y)

P ?(y|sx)P (x|s) =
P ?
Y (y)∑

s′∈SD(y)

PS(s′)
. (4.68)

where P ?
Y is the probability distribution of Y derived from P ?

Y |S,X .

• in (4.65), BD(s, x) is the feasible ball defined in (4.17).

• the equality in (4.66) holds if and only if for any (s, x), all y with P ?(y|s, x) > 0

lead to the same
∑

s′∈SD(y) P (s′).

• the equality in (4.67) is from the fact that the function g : t → t
1
α
−1 is mono-

tonically non-increasing in t > 0 for α ≥ 1.
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Similarly, for α =∞, we have

inf
PY |SX

:d(X,Y )≤D

∑
y

PY (y) max
s
PS|Y (s|y)

= inf
PY |S,X

∑
y

PY (y) max
SD(y)

( ∑
XD(y)

PS,X|Y (s, x|y)

)

≥ inf
PY |S,X

∑
y

P (y)

(∑
SD(y)

P (s)∑
s′∈SD(y)

P (s′)

∑
XD(y)

P (s, x|y)

)

= inf
PY |S,X

∑
s,x

∑
BD(s,x)

P (s)∑
s′∈SD(y)

P (s′)
P (s, x, y)

≥ inf
PY |S,X

∑
s,x

∑
BD(s,x)

P (s, x, y) min
y∈BD(s,x)

P (s)∑
s′∈SD(y)

P (s′)

=
∑
s,x

P (s, x)P (s)

 max
y∈BD(s,x)

∑
s′∈SD(y)

P (s′)

−1 .

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

Note that the sufficient and necessary conditions for the equalities in (4.70) and (4.72)

hold are the same as that for (4.63) and (4.66), respectively.

For α = 1, Lα(S → Y ) = IA(S;Y ) = I(S;Y ), such that

PUTHD,Lα(D)

= inf
PY |SX

:d(X,Y )≤D

∑
s,y

P (s, y) log
P (s, y)

P (s)P (y)

= inf
PY |S,X

∑
y

∑
SD(y)

(( ∑
XD(y)

P (s, x, y)
)

log

∑
XD(y) P (s, x, y)

P (s)P (y)

)

≥ inf
PY |S,X

∑
y

(( ∑
SD(y)

∑
XD(y)

P (s, x, y)
)

log

∑
SD(y)

∑
XD(y) P (s, x, y)∑

SD(y) P (s)P (y)

)
= inf

PY |S,X

∑
y,SD(y)
XD(y)

P (s, x, y) log
1∑

s′∈SD(y)

P (s′)

≥
∑
s,x

P (s, x) min
y∈BD(s,x)

log
1∑

s′∈SD(y)

P (s′)
.

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)
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Note that the inequality in (4.77) is from log-sum inequality in [104, Thm. 2.7.1],

and the sufficient and necessary conditions for the equalities in (4.77) and (4.78) hold

are the same as that for (4.63) and (4.66), respectively.

4.5.5 Proof of Theorem 14

Define the distortion ball for the type-distance distortion in (4.21) as

Bm(xn) ,
{
yn : |Pxn(0)− Pyn(0)| ≤ m

n

}
. (4.79)

From Corollary 1, to find an optimal mechanism P ?
Y n|Xn , we need to find an output

distribution Q?
Y n which optimizes (4.13) with xn and yn in place of x, y.

Note that for the hard distortion |Pxn(0) − Pyn(0)| ≤ m
n

, all data sets in a type

class share the same group of feasible output data sets, and this feasible group can

be represented by output type classes. Therefore, for any xn ∈ T (i) (i ∈ [0, n]), we

rewrite Bm(xn) as

Bm(xn) = Bm(T (i)) ,
⋃

|i−j|≤m
j∈[0,n]

T (j). (4.80)

We define a distribution QT of type classes for outputs as

QT (T (j)) ,
∑

yn∈T (j)

QY n(yn), for j ∈ [0, n], (4.81)

such that

q? = sup
QT

inf
i∈[0,n]

QT (Bm(T (i))). (4.82)

The optimal distribution QT is determined by both upper and lower bounding q∗ in

(4.82). The upper bound is determined by restricting the optimization in (4.82) to

a judicious choice of a small set of input types. The lower bound is a constructive

scheme.
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We define an index set IT ⊂ [0, n] for types as

IT ,

{
l + (2m+ 1)k : k ∈

[
0,

⌈
n+ 1

2m+ 1

⌉
− 1

]}
(4.83)

where l = m if d n+1
2m+1
e ≤ m+n+1

2m+1
, and otherwise, l = n−

(
d n+1
2m+1
e − 1

)
(2m+ 1). From

the expression of IT in (4.83), we observe that: (i) the difference between adjacent

elements is 2m+ 1; (ii) for the first and last elements,

• if d n+1
2m+1
e ≤ m+n+1

2m+1
holds, the first element is m and the last element is

m+ (2m+ 1)

(⌈
n+ 1

2m+ 1

⌉
− 1

)
= (2m+ 1)

⌈
n+ 1

2m+ 1

⌉
−m− 1 ∈ [n−m,n],

(4.84)

due to the inequalities n+1
2m+1

≤ d n+1
2m+1
e ≤ m+n+1

2m+1
;

• if d n+1
2m+1
e > m+n+1

2m+1
holds, the last element is n and the first element is

n−
(⌈

n+ 1

2m+ 1

⌉
− 1

)
(2m+ 1) = n+ 2m+ 1−

⌈
n+ 1

2m+ 1

⌉
(2m+ 1) ∈ [0,m),

(4.85)

due to the inequalities n+1
2m+1

+ 1− 1
2m+1

≥ d n+1
2m+1
e > m+n+1

2m+1
for n ∈ Z++.

Therefore, it is not difficult to see that feasible balls of input type classes indexed by

IT are a partition of the set of all type classes, i.e.,

Bm(T (i1)) ∩Bm(T (i2)) = ∅ i1, i2 ∈ IT ,⋃
j∈[0,n]

T (j) =
⋃
i∈IT

Bm(T (i)).

(4.86a)

(4.86b)

Therefore, the problem in (4.82) is upper bounded by

q? ≤ sup
QT

inf
i∈IT

QT (Bm(T (i)))

≤ sup
QT

1

|IT |
∑
i∈IT

QT (Bm(T (i)))

(4.87)

(4.88)
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= sup
QT

(⌈
n+ 1

2m+ 1

⌉)−1 ∑
j∈[0,n]

QT (T (j))

=

(⌈
n+ 1

2m+ 1

⌉)−1
,

(4.89)

(4.90)

where

• the inequality in (4.88) is from that the average probability of Bm(T (i)) over

i ∈ IT is no less than the minimal probability of Bm(T (i)) for i ∈ IT ;

• the equality in (4.89) is from that the cardinality of I defined in (4.83) is d n+1
2m+1
e;

• the equality in (4.90) is from that for any distribution over types T (j) with

j ∈ [0, n], the sum of QT (T (j)) over j ∈ [0, n] is 1.

To lower bound q?, we construct a distribution Q′T as

Q′T (T (j)) =


(⌈

n+1
2m+1

⌉)−1
j ∈ IT

0 otherwise.

(4.91)

By (4.86) for each i ∈ [0, n], there is a unique j satisfying |i− j| ≤ m. Therefore, we

lower bound (4.82) by

q? ≥ inf
i
Q′T (Bm(T (i)))

= inf
i
Q′T

( ⋃
|i−j|≤m
j∈IT

T (j)
)

=

(⌈
n+ 1

2m+ 1

⌉)−1
,

(4.92)

(4.93)

(4.94)

where the equality in (4.94) holds because for any i ∈ [0, n], there is only one j ∈ IT

satisfying |i− j| ≤ m such that the union in (4.93) has exactly one element in it.

Therefore, q? =
(⌈

n+1
2m+1

⌉)−1
and the Q′T defined in (4.91) achieve the optimum

in (4.82). Thus, we can derive an optimal Q?
Y n , which assigns the same non-zero

probability to only one data set of each type classes indexed by IT , i.e., Q?
Y n(yn) = q?
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for one yn ∈ T (j) for each j ∈ IT . Therefore, from (4.10) we have the corresponding

optimal privacy mechanism, which maps all input data sets in one input type class

to one feasible output data set with probability 1.

4.5.6 Proof of Theorem 15

For the Hamming distortion function on data sets in (4.26), the feasible ball Bm(xn)

of any data set xn ∈ X n is given by

Bm(xn) =
{
yn ∈ X n : dH(xn, yn) ≤ m

n

}
. (4.95)

For each xn ∈ X n, the number of data sets having different values at exactly k > 0

different positions is
(
n
k

)
(|X | − 1)k, Therefore, the number of elements in its feasible

ball Bm(xn) is

|Bm(xn)| =
m∑
i=0

(
n

i

)
(|X | − 1)i , (4.96)

Note that the cardinality |Bm(xn)| in (4.96) of a feasible ball is independent of the

input data set. We denote the cardinality as Nball, i.e., Nball , |Bm(xn)|. Due to the

symmetric property of the Hamming distortion on data sets in (4.26), i.e., for any

two data sets xn1 , x
n
2 ∈ X n, xn1 ∈ BD(x2) if and only if x2 ∈ BD(x1), we know that

each output data set is in exactly Nball different feasible balls (the example in Fig.

4.4 may help to figure out the above relationships). Therefore,

q? = sup
QY n

inf
xn∈Xn

QY n (Bm(xn))

≤ sup
QY n

1

|X n|
∑
xn∈Xn

QY n (Bm(xn))

= sup
QY n

1

|X n|
∑
xn∈Xn

∑
yn∈Bm(xn)

QY n (yn)

= sup
QY n

1

|X |n
∑
xn∈Xn

yn∈Bm(xn)

QY n (yn)

(4.97)

(4.98)

(4.99)

(4.100)
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= sup
QY n

1

|X |n
∑
yn∈Xn

NballQY n (yn)

=
Nball

|X |n

(4.101)

(4.102)

where

• the equality in (4.98) holds if and only if for an arbitrary pair of data sets xn1 , x
n
2 ,

there is

QY n (BD(xn1 )) = QY n (BD(xn2 )) , (4.103)

which can be satisfied by a uniform distribution over X n, i.e., Q?
Y n = 1

|X |n .

• the equality in (4.101) holds because, for each yn, the number of sequences xn

where dH(xn, yn) ≤ m
n

is exactly Nball.

4.6 Concluding Remarks

We have explored PUTs in the context of hard distortion utility constraints. This

utility constraint has the advantage that it allows the data curator to make specific,

deterministic guarantees on the quality of the published data set. Focusing on maxi-

mal α-leakage and its f -divergence-based variants, under a hard distortion constraint,

we have shown that: (i) for all α > 1, we obtain the same optimal privacy mechanism

and optimal PUT, which are independent of the distribution of the original data (or

data sets); (ii) for α = 1, the optimal mechanism differs and depends on the distribu-

tion of the original data (or data sets). In other words, for this distortion measure, the

tunable privacy measure behaves as either MI or MaxL, which provides the insight

that the α-loss with α <∞ can be sufficient to capture the soft 0-1 in applications.

The conjecture, that in a specific PUT problem with maximal α-leakaga as the

privacy measure, it is sufficient to consider a limited range of α instead of to α =∞,
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Figure 4.5: Numerical Results of the Optimization Problem in (4.105) for p = 0.4
and D = 0.5p or D = 0.25p

is also supported by the following PUT problem with average distortion constraint

Consider the following PUT problem that minimizes maximal α-leakage subject to

the average Hamming distortion constraint:

min
PY |X

Lmax
α (X → Y )

s.t.,
∑
x,y∈X

PX,Y (x, y)1 (y 6= x) ≤ D

(4.104a)

(4.104b)

where 0 < D < minx PX(x) determines the upper bound of the permitted average

Hamming distortion. Let X, Y ∈ {0, 1} and X follow the Bernoulli distribution

Bern(p) (0 < p < 1), i.e., PX(1) = p. We represent the privacy mechanism PY |X via

the two crossover probabilities PY |X(1|0) = ρ1 and PY |X(0|1) = ρ2. By solving the

supremum in the expression of maximal α-leakage, for < 1α < ∞, the optimization
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in (4.104) can be simplified as

min
ρ1,ρ2

α

α− 1
log

((
(1− ρ1)α(1− ρ2)α − (ρ1ρ2)

α ) 1
α

((
(1− ρ1)α − ρα2

) 1
1−α +

(
(1− ρ2)α − ρα1

) 1
1−α
)α−1

α

)
s.t., (1− p)ρ1 + pρ2 ≤ D.

(4.105a)

(4.105b)

Fig. 4.5 shows the optimal values and mechanisms in (4.105) for p = 0.4 and D = 0.5p

or D = 0.25p, respectively, where the above subplot is the curve of minimal values

of maximal α-leakage versus the values of α (circles indicate α = 1 and stars are

for 1.02 ≤ α ≤ 4), and the left and right subplots below show the two crossover

probabilities ρ∗1 and ρ∗2 in the optimal privacy mechanisms, respectively. From the

plots, we can see that for α = 1.02, the optimal mechanism is a little different from

that of mutual information [104, Fig. 10.3] due to the fact that as α tends to 1,

the limit of Arimoto channel capacity is Shannon channel capacity instead of mutual

information. We also observe that as α grows, the crossover probability ρ1 gradually

reduce to 0 and for enough large values of α (i.e., α ≥ 2 for D = 0.25p and α ≥ 3 for

D = 0.5p), the optimal mechanism is the same as α = ∞. The example shows that

for the average binary Hamming distortion, maximal α-leakage no longer behaves

only as either of the two extrema, i.e., α = 1 and α =∞, but it is sufficient to study

a limited range of α instead of to α =∞.
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Chapter 5

APPLICATIONS OF α-LOSS IN MACHINE LEARNING: CENSORING AND

FAIRNESS

In this chapter, we apply α-loss to the constrained minimax formulation proposed

in [64] and develop a framework of generating censored and fair universal representa-

tions (CFUR) of data to provide fairness for multiple a priori unknown downstream

tasks and censor multiple sensitive features, simultaneously. We also evaluate the

performance of the CFUR framework on publicly available data sets including the

UCI Adult and the UTKFace. All proof details are in Section 5.4.

5.1 Preliminaries

We consider a data set D with n entries where each entry is denoted as (S,X, Y )

where S ∈ S indicates sensitive features, X ∈ X is a collection of non-sensitive

features, and Y ∈ Y indicates a priori unknown target (non-sensitive) features to be

learned. Let Ŷ ∈ Y be a prediction of Y . We note that S and Y can be a collection

of features or labels (e.g., S can be gender, race, or sexual orientation, while Y could

be age, facial expression, etc.); for ease of writing, we use the term variable to denote

both single and multiple features/labels. Instances of X, S, and Y are denoted by

x, s and y, respectively. We assume that each entry (X,S, Y ) is independent and

identically distributed (i.i.d.) according to P (X,S, Y ).

Recent results on fairness in learning applications guarantees that for a specific

target variable, the prediction of a machine learning model is accurate with respect

to (w.r.t.) the target variable but unbiased w.r.t. a sensitive variable. While more

than two dozen measures for fairness have been proposed, the three oft-used fair-

88



ness measures are demographic parity (DemP), equalized odds (EO), and equality

of opportunity (EoO). DemP ensures complete independence between the prediction

of the target variable and sensitive variable, and thus, this notion of fairness favors

utility the least, especially when the target and sensitive variables are correlated [35].

EO enforces this independence conditioned on the target variable thereby ensuring

equal rates for true and false positives (wherein the target variable is binary) for all

demographics. EoO ensures EO for the true positive case alone [35].

For the sake of completeness, we review these definitions briefly. We note that

these definitions are often aimed at sensitive (S) and target (Y ) features that are bi-

nary, and in reviewing these definitions below, we make this assumption too. However,

we note that these definitions can be generalized to the non-binary setting; indeed,

our own generalizations of these definitions as applied to representation setting do

not make such an assumption of binary features.

Definition 5.1.1 ([35]). A predictor f(S,X) = Ŷ satisfies

• demographic parity (DemP) w.r.t. the sensitive variable S, if Ŷ and S are

independent, i.e.,

Pr(Ŷ = 1|S = 1) = Pr(Ŷ = 1|S = 0) (5.1)

• equalized odds (EO) w.r.t. the sensitive variable S and target variable Y , if Ŷ

and S are independent conditional on Y , i.e.,

Pr(Ŷ = 1|S = 1, Y = y) = Pr(Ŷ = 1|S = 0, Y = y), y ∈ {0, 1} (5.2)

• equality of opportunity (EoO) w.r.t. the sensitive variable S and target variable

Y , if Ŷ and S are independent conditional on Y = 1, i.e.,

Pr(Ŷ = 1|S = 1, Y = 1) = Pr(Ŷ = 1|S = 0, Y = 1). (5.3)
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We begin by first defining the notions of censoring and fairness for representations.

In particular, in the censoring context, our goal is to introduce a definition ensuring

that the censored representation limits leakage of sensitive variables learned by any

adversary whose learning strategy is designed by minimizing a expected loss function.

It is crucial to note that censoring will in general not give the kind of strong privacy

guarantees provided by differential privacy but can be relevant for some applications

where releasing a representation is crucial.

Definition 5.1.2 (Censored Representations). A representation Xr of X is censored

w.r.t. the sensitive variable S against a learning adversary h(·), whose performance

is evaluated via a loss function `(h(Xr), S), if for an optimal adversarial strategy

h∗g = argminh E[`(h(g(X)), S)] corresponding to any (randomized) function g(X)

E[`(h∗g(g(X)), S)] ≤ E[`(h∗gr(Xr), S)], (5.4)

where Xr = gr(X) and the expectation is over h, g (or gr), X, and S.

To motivate the generation of fair representations, we now extend the definition

of DemP for representations. Indeed it is known that fair representations can be

used to ensure fair classification (see, for example, [35]). We formally define fair

representation and prove that such representations ensure fair classification.

Definition 5.1.3 (Demographically Fair Representations). Let Xr and S be the sup-

ports of Xr and S, respectively. A representation Xr of X satisfies DemP w.r.t. the

sensitive variable S if Xr and S are independent, i.e., for any xr ∈ Xr and s, s′ ∈ S,

Pr(Xr = xr|S = s) = Pr(Xr = xr|S = s′). (5.5)

Given this definition, we now prove that a fair representation in the sense of

DemP will guarantee that any downstream learning algorithm making use of the fair

representation is fair (in the sense of DemP) w.r.t. the sensitive label S.
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Theorem 16 (Fair Learning via Fair Representation). Given a data set consisting of

sensitive, non-sensitive, and target variables (S,X, Y ), respectively, if a fair represen-

tation Xr = g(X) satisfies DemP w.r.t. S, then any learning algorithm f : Xr → Y

satisfies DemP w.r.t. S.

The proof of Theorem 16 is basically depending on the data-processing inequality

of mutual information and the proof details are in Section 5.4.1.

Remark 5. Note that the definitions of EO and EoO in Def. 5.1.1 explicitly involve

a downstream learning application, and therefore, the design of a fair representation

needs to include a classifier explicitly. In contrast to the universal representation

setting considered here, such targeted representations and the ensuing fair classifiers

provide guarantees only for those targeted Y features. In this limited context, however,

one can still define a representation Xr as ensuring EO (w.r.t. to S) in classifying Y

if the predicted output learned from Xr, i.e., Ŷ (Xr), is independent of S conditioned

on Y .

One simple approach to obtain a fair/censored representation Xr is by choosing

Xr = N where N is a random variable independent of X and S. However, such an Xr

has no downstream utility (quantified, for example, via downstream task accuracy).

More generally, the design of Xr has to ensure utility, and thus, there is a tradeoff

between guaranteeing fairness/censoring and assuring a desired level of utility. The

CFUR framework enables quantifying these tradeoffs formally as described in the

next section.
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5.2 Censored and Fair Universal Representations via Generative Adversarial

Models

Formally, the CFUR model consists of two components, an generative decorrelator

and an adversary as shown in Fig. 5.1. The goal of the generative decorrelator

g : S × X → Xr is to actively decorrelate S from Xr while that of the adversary

h : Xr → S is to infer S. Thus, in general, g(X,S) is a randomized mapping

that outputs a representation Xr = g(X,S). Note that the design of g(·) depends

on both X and S; however, we note that S may not necessarily be an input to

the generative decorrelator though it will always affect the design of g(·) via the

adversarial training process. In contrast, the role of the adversary is captured via

h(Xr), the adversarial decision rule (classifier) in inferring the sensitive variable S as

Ŝ = h(g(X)) from the representation g(X). In general, the hypothesis h can be a

hard decision rule under which h(g(X)) is a direct estimate of S or a soft decision

rule under which h(g(X)) = Ph(·|g(X)) is a distribution over S. To quantify the

adversary’s performance, we use a loss function `(h(g(X = x)), S = s) defined for

every pair (x, s). Thus, the adversary’s expected loss w.r.t. X and S is

L(h, g) , E[`(h(g(X)), S)], (5.6)

where the expectation is taken over P (X,S) and the randomness in g and h.

Intuitively, the generative (since it randomizes to decorrelate) decorrelator would

like to minimize the adversary’s ability to learn S reliably from Xr. This can be

trivially achieved by releasing an Xr independent of X. However, such an approach

provides no utility for data analysts who want to learn non-sensitive variables Y

from Xr. To overcome this issue, we capture the loss incurred by perturbing the

original data via a distortion function d(xr, x), which measures how far the original

data X = x is from the processed data Xr = xr. Ensuring statistical utility in turn
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requires constraining the average distortion E[d(g(X), X)] where the expectation is

taken over P (X,S) and the randomness in g.

5.2.1 CFUR: Framework and Theoretical Results

To publish a censored and fair representation Xr, the data curator wishes to

learn a decorrelator g that guarantees both censoring/fairness (in the sense that it is

difficult for the adversary to learn S from Xr) as well as utility (in the sense that it

does not distort the original data too much). In contrast, for a fixed decorrelator g,

the adversary would like to find a (potentially randomized) function h that minimizes

its expected loss, which is equivalent to maximizing the negative of the expected loss.

This leads to a constrained minimax game between the decorrelator and the adversary

given by [64]

min
g(·)

max
h(·)

− E[`(h(g(X));S)] = −L(h, g),

s.t. E[d(g(X), X)] ≤ D.

(5.7a)

(5.7b)

where L(h, g) is the adversary’s expected loss defined in (5.6) and the constant D ≥ 0

determines the allowable distortion of the representation and the expectation is taken

over P (X,S) and the randomness in g and h. Note that if needed, the sensitive

variable S can be used by the generative decorrelator g to generate the representation.

Note that the inner maximization in (5.7) is free of the distortion constraint, and

therefore, for any given generative decorrelator g(·), the corresponding optimal adver-

sary’s strategy h∗ that minimizes the adversary’s expected loss L(h, g) can be obtained

by solving this unconstrained maximization. The minimax game in (5.7) places no

restrictions on the adversary. Indeed, different loss functions and decision rules lead

to different adversarial models (see Table 5.1) [110, 64]. In the following theorem, we

show that the minimax game in (5.7) can produce censored representations against
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Loss function

`(h(g(x)), s)

Optimal adversarial

strategy h∗
Adversary type

Squared loss (h(g(x))− s)2 E[S|g(x)] MMSE adversary

0-1 loss

 0, h(g(x)) = s

1, otherwise argmax
s′∈S

P (s′|g(x)) MAP adversary

soft 0-1 loss 1− Ph(s|g(x))

Log-loss − logPh(s|g(x)) P (s|g(x))
Belief refining

adversary

Table 5.1: Adversaries Captured by the CFUR Framework via Various Loss Func-
tions

chosen adversarial models.

Theorem 17. For sufficiently large distortion bound D, the constrained minimax

optimization in (5.7) generates a universal representation Xr that is censored w.r.t.

to the sensitive variable S.

The proof of Theorem 17 is based on the observation that the minimax game in

(5.7) produces the generative correlator g that maximizes the expected loss of the

best adversary of the adversarial model captured by the chosen loss function.

In the sequel, we use the α-loss (introduced in Chapter 2) as the adversary’s loss

function and show that under this setting, the minimax game in (5.7) is equivalent to

minimizing α-leakage, which is also a proxy of DemP, and therefore, the framework

provides censoring and fairness guarantees, simultaneously.

Given a decorrelator g and a adversarial strategy, for any pair of (s, x), the α-loss

(α ∈ [1,∞]) of inferring S = s given Xr = g(x) is given by

`α(h(g(x)), s) = lim
α′→α

α′

α′ − 1

(
1− Ph(s|g(x))

α′−1
α′
)
. (5.8)
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As shown in Chapter 2, by tuning the parameter α ∈ [1,∞], the α-loss captures a

variety of information-theoretic adversaries ranging from a belief-refining adversary

(for α = 1) via the log-loss function `(h(g(x)), s) = − logPh(s|g(x)) to a maximal a

posteriori (MAP) adversary (for α =∞) via the soft 0-1 loss function `(h(g(x)), s) =

1−Ph(s|g(x)). In the following proposition, we show the optimal adversarial strategy

for α-loss and the corresponding equivalent expression of the minimax optimization

in (5.7).

Proposition 1. Under α-loss, the optimal adversary strategy that minimizes the

expected loss is a ‘α-tilted’ conditional distribution expressed as

P ∗h (s|g(x)) =
P (s|g(x))α∑
s′∈S P (s′|g(x))α

(5.9)

for each pair (s, x). Specifically, for α = 1 and α = ∞, the optimal adversarial

strategies reduce to those for log-loss and soft 0-1 loss, i.e., the true conditional dis-

tribution and the MAP estimation (shown in Table 5.1), respectively. In addition, the

optimization in (5.7) reduces to

min
g(·)

−HA
α (S|g(X))

s.t. E[d(g(X), X)] ≤ D,

(5.10)

where HA
α (·|·) is the Arimoto conditional entropy. Therefore, for given PS,X , the

constrained minimax game in (5.7) is equivalent to minimizing the α-leakage from S

to g(X) subject to the same distortion constraint.

From the result in Proposition 1, we know that the objective of the constrained

minimax game in (5.7): (i) simplifies to ming(·) log maxs∈S P (s, g(X)), if the soft 0-1

loss is used as the adversary’s loss function, where the maximization inside the loga-

rithm is the probability of correctly guessing of S given g(X), denoted as Pc(S|g(X)),
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defined in [111]; (ii) equals to ming(·) I(g(X), S) for given PS,X , if the log-loss is used.

We observe that both Pc(S|g(X)) and I(g(X), S) can be used as a proxy of DemP

since their minimal values is obtained if and only if S and g(X) are independent.

This observation can be extended to the series of α-loss for α ∈ [1,∞] and leads to

the following theorem.

Theorem 18. Under α-loss (including log-loss and 0-1 loss), the CFUR framework

enforces fairness subject to the distortion constraint. As the distortion increases, the

ensuing fairness guarantee approaches ideal DemP.

Many notions of fairness rely on computing probabilities to ensure independence

of sensitive and target variables that are not easy to optimize in a data-driven fashion.

In Theorem 18, we propose α-loss (including log-loss modeled in practice via cross-

entropy) in the CFUR framework as a proxy for enforcing DemP fairness. In the

following, we show that the CFUR framework based on α-loss can also provide EO

and EoO fairness.

One can also design fair classifiers directly without intermediate representations;

furthermore, such classifiers can be designed with either DemP, EO or EoO guaran-

tees. Let Ŷ = g̃(S,X) be a predictor/classifier for the targeted variable Y . Note that

the g̃(·) generally depends on both X and S but the dependence on S can be implicit

for scenarios where the sensitive information S is not directly available. Let h be a

strategy used by the adversary to infer the sensitive variable S as Ŝ = h(g̃(S,X), Y )

from the soft information of the predictor g̃(S,X) = PŶ |X,S and the true targeted vari-

able Y . Analogous to (5.7), the design of a fair predictor/classifier can be formulated

as

min
g̃(·)

max
h(·)

− E
[
`
(
h(g̃(S,X), Y ), S

)]
,

s.t. E[`
(
g̃(S,X), Y

)
] ≤ L.

(5.11a)

(5.11b)
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Proposition 2. Under α-loss (incorporating both log-loss and 0-1 loss), the CFUR

formulation in (5.11) enforces fairness subject to the expected loss constraint. As

the loss increases, the ensuing fairness guarantee approaches ideal equalized odd of g̃

respect to the sensitive variable S and the targeted variable Y .

Note that the formulation in (5.11) can also be used to generate a fair predictor or

classifier in term of DemP or EoO. For DemP, the adversary will only have g̃(S,X) as

the input, and for EoO, the adversary requires access to g̃(S,X) and only the Y = 1

class.

5.2.2 Data-Driven CFUR

Thus far, we have focused on a setting where the data holder has access to P (X,S).

When P (X,S) is known, the data holder can simply solve the constrained minimax

optimization problem in (5.7) (game-theoretic version of the CFUR formulation) to

obtain a decorrelation scheme that would perform best against a chosen type of

adversary. In the absence of P (X,S), we propose a data-driven version of the CFUR

formulation that allows the data holder to learn decorrelation schemes directly from

a data set D = {(xi, si)}ni=1.

Universal

Figure 5.1: Generative Adversarial Model for Censoring and Fairness Guarantees

Under the data-driven version of the CFUR formulation, we represent the decor-

relation scheme via a generative model g(X; θg) parameterized by θg. This generative

model takes X as input and outputs Xr. In the training phase, the data holder learns
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the optimal parameters θg by competing against a computational adversary : a classi-

fier modeled by a neural network h(g(X; θg); θh) parameterized by θh. In theory, the

functions g and h can be arbitrary. However, in practice, we need to restrict them

to a rich hypothesis class. Fig. 5.1 shows an example of the CFUR model in which

the generative decorrelator and adversary are modeled as deep neural networks. For

a fixed g and h, if S is binary and the and the log-loss is used, we can quantify the

adversary’s empirical loss using cross entropy

Ln(θg, θh) = − 1

n

n∑
i=1

si log h(g(xi; θg); θh) + (1− si) log(1− h(g(xi; θg); θh)). (5.12)

Note that one can generalize cross entropy to the multi-class case by using the softmax

function. Therefore, the optimal model parameters are the solutions to

min
θg

max
θh

− Ln(θg, θh),

s.t.
1

n

n∑
i=1

d(g(xi; θg), xi) ≤ D,

(5.13a)

(5.13b)

where the expression 1
n

∑n
i=1 d(g(xi; θg), xi) is the empirical distortion.

The minimax optimization in (5.13) is a two-player non-cooperative game between

the generative decorrelator and the adversary with strategies θg and θh, respectively.

In practice, we can learn the equilibrium of the game using an iterative algorithm

(see Algorithm 1). We first minimize the adversary’s empirical loss via the gradient

descent algorithm in the inner loop to update θh for a fixed θg. Then, we minimize

the decorrelator’s empirical loss, which is modeled as a sum of the negative of the

adversary’s empirical loss and a penalty, to update θg for a fixed θh. The penalty

is designed to incorporate the distortion constraint in (5.13) by using the penalty

method [112], and specifically, is expressed as ρ(max{0, 1
n

∑n
i=1 d(g(xi; θg), xi)−D})2,

the product of a penalty parameter ρ > 0 and a measure of violation of the constraint.

Note that the measure of violation (i.e., the squared maximum) is non-zero when
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Algorithm 1 Iterative algorithm

Input: Training data set D = {(xi, si)}ni=1, distortion parameter D, iteration num-

bers T and K (for outer and inner loops, respectively), sample size m ≤ n, learning

rates λg and λh

procedure Iterative algorithm(D, D, T,K,m, λg, λh)

Initialize θ0g , θ
0
h and ρ0

for t = 0, · · · , T − 1 do . Outer loop

Randomly draw a sample {xi}mi=1 from D

Generate {xr,i}mi=1 via xr,i = g(xi; θ
t
g) . Generate representations

Calculate Dm(θtp) = 1
m

∑m
i=1 d(xr,i, xi) . Update the empirical distortion

θt
′

h = θth

for k = 1, · · · , K do . Inner loop: update θh

θt,kh = θt
′

h − λh∇θt
′
h

1
m

m∑
i=1

`(h(xr,i; θ
t′

h ), si)

θt
′

h = θt,kh

end for

θt+1
h = θt

′

h

Calculate Lm(θtp, θ
t+1
h ) = 1

m

m∑
i=1

`(h(xr,i; θ
t+1
h ), si) . Update the empirical loss

if Dm(θtp) ≤ D then . Update θg

Calculate θt+1
g = θtg + λg∇θtgLm(θtp, θ

t+1
h )

else

Adapt ρt based on (Dm(θtp)−D)2 and −Lm(θtp, θ
t+1
h )

Calculate θt+1
g = θtg − λg∇θtg

(
− Lm(θtp, θ

t+1
h ) + ρt

(
Dm(θtp)−D

)2)
end if

Exit if solution converged

end for

return θt+1
g

end procedure
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the constraint is violated and is zero if the constraint is satisfied. Therefore, for

any fixed θh, the constrained optimization problem of the generative decorrelator is

approximated by the following unconstrained optimization problem

min
θg

−Ln(θg, θh) + +ρ

(
max

{
0,

1

n

n∑
i=1

d(g(xi; θg), xi)−D
})2

, (5.14)

where the penalty parameter ρ is properly adapted to make any non-zero penalty

term competing with the negative of the adversary’s empirical loss, i.e., −Ln(θg, θh).

For convex optimization problems, the solution to a series of unconstrained problems

will eventually converge to the solution of the original constrained problem [112].

The performance of the learned decorrelation scheme is tested under well-trained

1 adversarial predictors for S as well as classifiers or regressors for Y . Note that

the knowledge of downstream applications are only required for evaluating utilities

preserved by Xr. We follow this procedure in the next section.

5.3 CFUR for Publicly Available Data Sets

We apply our CFUR framework to publicly accessible data sets including UCI

Adult and UTKFace. The UCI Adult data set 2 is for salary prediction and consists

of 10 categorical features and 4 continuous features. As shown in Table 5.2, we choose

gender or the tuple (gender, relationship) as sensitive variable S and other features

except salary as non-sensitive variable X. The UTKFace data set 3 consists of more

than 20 thousand 200×200 colorful face images labeled by age, ethnicity and gender.

Individuals in the data set have ages from 0 to 116 years old and are divided into 5

ethnicities: White, Black, Asian, Indian, and others including Hispanic, Latino and

Middle Eastern. We take gender as the sensitive variable S and the image pixels as

1In the testing phrase, all neural networks are trained on the generated representation Xr.

2https://archive.ics.uci.edu/ml/datasets/adult

3http://aicip.eecs.utk.edu/wiki/UTKFace
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the non-sensitive variable X.

Neural 
network

(a) (b)

Autoencoder

Figure 5.2: Different Architectures of the Decorrelator in the CFUR Framework

We apply two different architectures (as shown in Fig. 5.2) to the UCI Adult and

UTKFace data sets, respectively. For the UCI Adult data set, we use the feedforward

neural network decorrelator (FNND) (shown in Fig. 5.2 (a)), in which a feedforward

multi-layer neural network is used to generate the processed data/representation Xr

from the original data (i.e., X or (S,X)) and random noise. For the UTKFace data

set, we use the noisy auto-encoder decorrelator (NAED) (shown in Fig. 5.2 (b)), in

which the encoder of an auto-encoder generates a lower-dimensional feature vector of

the original data and adds independent random noise to each element of the feature

vector and the decoder of the auto-encoder reconverts the noisy feature vector to

generate the representation Xr.

We use the classification accuracy of a specified sensitive feature S to measure

the performance of censoring S. As a measure of fairness, DemP requires that the

conditional probabilities of an arbitrary prediction Ŷ = y for y ∈ Y given any s ∈ S

equal. Therefore, for fairness, we take the following maximal difference as the measure

of DemP, i.e.,

∆DemP(y) = max
s,s′∈S

|P (Ŷ = y|S = s)− P (Ŷ = y|S = s′)| (5.15)

and a smaller value of ∆DemP implies a closer approaching of the DemP. We illustrate
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Case I Feature Description Case II

Y salary 2-salary intervals: > 50K and ≤ 50K Y

S gender 2 classes: male and female
S

X

relationship 6 classes of family relationships

age 9-age intervals: 18− 25, 25− 30, · · · , 60− 65

X

workclass 8 types of employer

education 16 levels of the highest achieved education

marital-status 7 classes of marital status

occupation 14 types of occupation

race 5 classes

native-country 41 countries of origin

capital-gain Recorded capital gain; (continuous)

capital-loss Recorded capital loss; (continuous)

hours-per-week Worked hours per week; (continuous)

education-num Numerical version of education; (continuous)

Table 5.2: Features in UCI Adult Data Set

the results for each data set mentioned above in the following subsections. Details of

all experiments on these data sets are in Appendix 5.5.

5.3.1 Illustration of Results for UCI Adult Data Set

For the UCI Adult data set with both categorical and continuous features as

shown in Table 5.2, we consider two cases: (i) in Case I, we take ‘gender’ as the

sensitive variable S and S is either male or female in this data set, and (ii) in Case

II, we take both ‘gender’ and ‘relationship’ as the sensitive variable S. In this data

set, ‘relationship’ has 6 distinct values, and therefore, S has 12 possibilities. In both

cases, we take ‘salary’ as the target variable Y , which is either > 50K or ≤ 50K,
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and use the classification accuracy of salary as the utility measure. Note that for any

binary target variable, the two values of the fair measure ∆DemP(y) in (5.15) are the

same, and therefore, we use ∆DemP to denote the measure of DemP for experiments

on this data set.

Case I: Binary Sensitive Feature.

Fig. 5.3 illustrates the performances of the generated representation Xr for censoring

and fairness concerns. Specifically, for censoring, the performance is evaluated via

the tradeoff between the classification accuracy of salary and gender (as shown in

Fig. 5.3a where we use the classification accuracy for the original testing data set

(only using the non-sensitive feature X) as the baseline performance and the green

and red lines denote the baseline performances for the target variable (salary) and

the sensitive variable (gender), respectively); and for fairness, it is evaluated via the

tradeoff between the classification accuracy of salary and the DemP measure ∆DemP

(as shown in Fig. 5.3b and the value of ∆DemP for the original testing data is 0.2).

We consider two possible inputs of the generative decorrelator g(·) in (5.7), i.e., only

the non-sensitive features X or both X and S.

From Fig. 5.3a, we observe that: (i) while the classification accuracy of gender

(the sensitive variable) is about 66% and only decreases about 20% from the baseline

performance 4 , the classification accuracy of salary (the target variable) is above 82%

and only decreases 2.5% from its baseline performance. Note that 66% is probability of

male in the original testing data and indicates a random guess of gender. Therefore,

the generated representation Xr hides the information of gender pretty well while

maintaining the information of salary; (ii) only in the high utility region, where the

accuracy of salary is no less than 72.5%, to take both S and X in the generative

4Note that the baseline performances are the accuracy or DemP measure obtained from the
original testing data
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decorrelator g(·) has a small advantage over only using X. Specifically, given the

same classification accuracy of gender, the classification accuracy of salary is at most

0.3% higher.

From Fig. 5.3b, we make the following two observations: (i) the classification ac-

curacy of salary and the ∆DemP have an approximately affine relationship, and when

∆DemP is almost 0, the accuracy of salary is above 79%. Therefore, our framework

is effective in approaching perfect DemP; (ii) the representation Xr generated from

either X or (S,X) leads to a similar fairness performance. Comparing our results

in Fig. 5.3b and the results in [61, 67], for ∆DemP = 0.06, Edwards’ and Madras’s

approaches have 2% and 2.5% higher classification accuracy of salary than ours, re-

spectively. However, both their approaches are not shown to achieve the extreme

point, ∆DemP = 0, but our approach does with the classification accuracy above 79%.

(a) Salary vs. Gender Classification Accu-

racy

(b) Salary Classification Accuracy vs.

∆DemP

Figure 5.3: Performances for Case I of UCI Adult Data Set

We can also evaluate the fairness performance of the generated representation by

using EO defined in Definition 5.1.1. EO requires that for both possible outcomes, i.e.,

Y =‘> 50K’ and Y =‘≤ 50K’, the conditional probabilities of the correct prediction
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given the two possible gender (i.e., male or female) equal, i.e.,

P (Ŷ = Y |female, Y =′> 50K ′) = P (Ŷ = Y |male, Y =′> 50K ′)

P (Ŷ = Y |female, Y =′≤ 50K ′) = P (Ŷ = Y |male, Y =′≤ 50K ′).

Therefore, we use the differences of the above two pairs of conditional probabilities

to characterize the achieved EO fairness:

∆EO(> 50K) ,
∣∣∣P (Ŷ = Y |female, Y =′> 50K ′)− P (Ŷ = Y |male, Y =′> 50K ′)

∣∣∣
∆EO(≤ 50K) ,

∣∣∣P (Ŷ = Y |female, Y =′≤ 50K ′)− P (Ŷ = Y |male, Y =′≤ 50K ′)
∣∣∣

Fig. 5.4 shows the achieved EO fairness where ∆EO(> 50K) and ∆EO(≤ 50K) are

the two measures of EO for the two possible outcomes Y =‘> 50K’ and Y =‘≤ 50K’,

respectively, and the red curve is for the sum of ∆EO(> 50K) and ∆EO(≤ 50K), which

is exactly the ∆EO in Figure 2(b) of [67]. From the results in Fig. 5.4, we observe that

while the classification accuracy of salary is above 82.4%, the values of ∆EO(> 50K)

and ∆EO(≤ 50K) decrease 99.2% and 63% (from the baseline performances) to 0.0007

and 0.0254, respectively, which means the Xr generated under the rule of DemP by

our CFUR framework still provides good EO fairness. To further demonstrate the

efficiency of our CFUR framework, we compare our CFUR with the methods proposed

in [67]. Note that in [67], the EO fairness is quantified via the ∆EO in Figure 2(b)

of [67], which is exactly the EO sum ∆EO(> 50K) + ∆EO(≤ 50K). Comparing the

performances shown in Fig. 5.4 and Figure 2(b) of [67], we observe that our CFUR Xr

is competitive with the LAFTR-DP method in [67], which uses DemP as the fairness

metric for training fair classifiers. Specifically, while our classification accuracy of

salary is 1.3% smaller than LAFTR-DP given the EO sum ∆EO = 0.04, our minimal

achieved EO sum decreases 28% from LAFTR-DP and is the same as LAFTR-EO,

which uses EO as the fairness metric to train models. In addition, we observe that

the decrease of the EO sum is even larger than the DemP measure ∆DemP, which
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Figure 5.4: The EO Fairness Achieved in Case I of UCI Adult Data Set

shows that to generate representations under the rule of DemP can provide fairness

in terms of various metrics.

Case II: Non-binary Sensitive Feature. Figs. 5.5 and 5.6 illustrate the cen-

soring and fairness performance of the generated representation Xr in hiding ‘gender’

and ‘relationship’ jointly and separately while preserves information of ‘salary’.

Fig. 5.5 shows the tradeoffs of the classification accuracy of salary versus gender,

relationship, or (gender, relationship). Note that in Fig. 5.5, we use the classifica-

tion accuracy obtained from the original testing data set as the baseline performance,

which is denoted by the green and red lines for the target variable (salary) and the

sensitive variable (gender or/and relationship), respectively. From Fig. 5.5, we ob-

serve that while the classification accuracy of salary is above 79%, the classification

accuracy of gender and/or relationship are about 66% (as shown in Fig. 5.5a), 45%
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(as shown in Fig. 5.5b) and 41% (as shown in Fig. 5.5c), respectively. Note that the

probabilities of male, husband, and the combination (male, husband) is 66%, 40%

and 40%, respectively, in the original testing data. Therefore, while the classification

accuracy of salary is preserved as 79%, the inferences of gender, relationship, and

combination (gender, relationship) are randomly guessing with known prior. Thus,

the Xr is pretty well in hiding multiple sensitive information both separately and

jointly. On the other hand, to have the flexibility of hiding the other sensitive in-

formation – relationship, the cost is a reduce in utility. Specifically, to compare the

results in Figs. 5.3a and 5.5a, we can see that the drop of the classification accuracy

of salary is at most 3% for any given accuracy of gender 5 .

Fig. 5.6 shows the tradeoffs between the classification accuracy of salary versus

the DemP measure ∆DemP (defined in (5.15)) w.r.t. gender, relationship or their

combination 6 , respectively. Note that in Fig. 5.6b, the red and blue lines are the

DemP measure ∆DemP for relationship and (gender, relationship), respectively, and

for the original testing data, the value of ∆DemP for gender, relationship and (gender,

relationship) is 0.2, 0.438 and 0.443, respectively. In Fig. 5.6, we observe that while

the classification accuracy of salary is above 94% of the baseline performance the

value of ∆DemP is dropped to 25% for gender and to about 34% for both relationship

and the combination. Therefore, the Xr works well in decorrelating the information

of salary and the information of gender and relationship jointly and separately. From

5.6b, we observe that the value of ∆DemP for the combination is almost the same as

that for relationship. In addition, comparing the results in Figs. 5.3b and 5.6b, we

can see that for any given classification accuracy of salary, the ∆DemP for gender in

5Note that in Figs., 5.3a and 5.5a, the baseline performances are different and it is because in
Case II, the feature variable X does not contain ‘relationship’.

6Note that there are no samples for (Female, Husband) and only 2 samples for (Male, Wife).
Therefore, in the calculation of ∆DemP, we ignore the two groups.
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(a) Gender (b) Relationship

(c) (Gender, Relationship)

Figure 5.5: Tradeoffs between Classification Accuracy of Non-Sensitive Feature
(Salary) and Sensitive Features (Gender and/or Relationship) in Case II of UCI Adult
Data Set

Case II can be about 25% higher of than that in Case I, which is the cost of providing

fairness for relationship.

5.3.2 Illustration of Results for UTKFace Data Set

In the UTKFace data set, the face images are the non-sensitive variable X. We

take ‘gender’ as the sensitive variable S and either ‘ethnicity’ or ‘age’ as the target

variable Y for ethnicity classification and age regression, respectively. For the two
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(a) Gender (b) Relationship (or) (Relationship, Gender)

Figure 5.6: Tradeoffs between Salary Classification Accuracy and the ∆DemP of
Gender and/or Relationship in Case II of UCI Adult Data Set

downstream applications, the corresponding supports of Y are Y = {White, Black,

Asian, Indian} and Y = {i ∈ Z : 10 ≤ i ≤ 65} = [10, 65], respectively. We use the

maximum of the DemP measure (defined in (5.15)) over the support Y , i.e., the value

∆DemP = maxy∈Y ∆DemP(y), to indicate the achieved fairness.

Figure 5.7 illustrates the output representations Xr for 16 typical 7 faces in the

UTKFace data set for increasing per-pixel distortion. From Fig. 5.7, we can observe

(i) for a small per-pixel distortion (e.g., 0.003), the distinguished features of gender

like lip color are smoothed out; and (ii) as a higher per-pixel distortion is allowed (e.g.,

0.006), our framework generates a face with an opposite gender; (iii) however, when

the average per-pixel distortion is too large (e.g., 0.01), the representation generated

by the CFUR framework tends to be too blurred to show the face contour and clear five

sense organs. Note that the set of vertical faces highlighted in boxes make explicitly

how the sensitive feature (gender) is changed with increasing distortion.

Figs. 5.8a and 5.9 show the tradeoffs, achieved by the generated representation Xr,

7The 16 typical faces covers the 8 possible combination of 2 gender (male and female) and 4
ethnicity (White, Black, Asian and Indian) and includes young, adult and old faces.
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Figure 5.7: The Generated CFUR of Face Images for Different Values of the Average
Per-Pixel Distortions of UTKFace Data Set

of the classification accuracy of gender and the utility for the ethnicity classification

and age regression, respectively. Note that ‘dist’ indicate the per pixel distortion on

images. In Fig. 5.8a, while the classification accuracy of gender is about 62% and

decreases about 35% from the baseline performance, the classification accuracy of

ethnicity is above 74% and only decreases 14% from its baseline performance. Note

that in the original testing data, the highest marginal probability for gender and

ethnicity are 54.6% (the probability of male) and 43.2% (the probability of White),

respectively. Therefore, the 62% classification accuracy of gender is only better than a

random guess by 7.4% while the 74% classification accuracy of ethnicity is better than

a random guess by 30.8%. Therefore, the Xr hides the information about gender well

while maintaining the information about salary. For age regression, we use the mean

absolute error (MAE), i.e., the average absolute difference between the predicted
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(a) Ethnicity vs. Gender Classification Ac-

curacy

(b) Ethnicity Classification Accuracy vs.

∆DemP

Figure 5.8: The Achieved Tradeoffs between Classification Accuracy of Ethnicity
and Gender as well as and ∆DemP for UTKFace Data Set

age and the true age, as the utility measure. In Fig. 5.9a, we observe that while

the classification accuracy for gender is about 62%, which is a 35% decrease from

the baseline performance 94%, the increase in the MAE is 1.5 which is about a

20% increase from the baseline performance 7.2. Fig. 5.9a shows the cumulative

distribution function (CDF) of the difference between the true and predicted age for

various distortions, from which we can see that the drop of the cumulative probability

is at most 1%. Thus, it is shown that the CFUR framework also does a good job

in maintaining the information about age, and therefore, constraining the distortion

of generated representations is an efficient way for guaranteeing the utility of various

applications.

Figs. 5.8b and 5.10 show the tradeoff between the utility measure and DemP

measure ∆DemP of the generated representation Xr in ethnicity classification and age

regression, respectively. In Fig. 5.8b where the x-axis is the maximal value of DemP

measure in (5.15) over the four ethnicity, we observe that while achieving about 86%
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Distortion 0 0.003 0.0045 0.005 0.006 0.007 0.008 0.01

∆DemP(White) 0.061 0.055 0.04 0.03 0.03 0.02 0.02 0.01

∆DemP(Black) 0.109 0.021 0.02 0.05 0.03 0.05 0.03 0.03

∆DemP(Asian) 0.14 0.082 0.07 0.07 0.06 0.07 0.06 0.03

∆DemP(Indian) 0.031 0.006 0.01 0 0.01 0 0.01 0.01

Table 5.3: DemP Fairness (Indicated by ∆DemP(·)) of Ethnicity Classification on
UTKFace Data Set

(a) Mean Absolute Error of Age Predic-

tion vs. Gender Classification Accuracy

(b) The CDF of the Difference between

the True and Predicted Age

Figure 5.9: Performances of Age Regression on UTKFace Data Set

of the baseline classification accuracy, the ∆DemP is reduced to 0.03 which is only

20% of the ∆DemP = 0.14 in the original testing data. Therefore, the Xr is good at

approaching DemP fairness while maintaining the utility for ethnicity classification.

Table 5.3 shows the decrease of the DemP measure for each the four ethnicity as

the distortion increases. In Fig. 5.10a where the x-axis is the maximal value of the

DemP measure in (5.15) over the chosen age range (10-65), while preserving 86%

of the utility baseline performance, the ∆DemP, i.e., the maximal value of DemP

measure over the 56 age values, decreases to 0.015 which is less than 33% of the

∆DemP = 0.046 on the original testing data. Fig. 5.10b shows the demographic
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(a) Mean Absolute Error of Age Prediction

vs. ∆DemP

(b) Values of the DemP Measure for Various

Distortions

Figure 5.10: Achieved DemP Fairness for Age Regression on UTKFace Data Set

measure ∆DemP(y) , y ∈ [10, 65], for various distortions, from which we observe that

when the pixel distortion is 0.01, even though the ∆DemP = 0.015, for 17 different

age values, ∆DemP(y) = 0. That is, the predictions of these 17 different ages are

completely independent of gender (the sensitive information) and DemP is achieved

for those predictions.

5.4 Proof Details

5.4.1 Proof of Theorem 16

Given a pair of sensitive and non-sensitive variables (S,X), let Xr be the repre-

sentation of X generated by a random mapping g, i.e., Xr = g(X). In a learning

task of inferring an arbitrary target variable Y related to (S,X), an algorithm esti-

mates Y as Ŷ from Xr. Therefore, these random variables form the Markov chain

(S,X)−Xr− Ŷ . From Definition 5.1.3, if the representation Xr satisfies DemP w.r.t

S, Xr is independent of S and I(S;Xr) = 0. From the data processing inequality and
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non-negativity of MI, we have that,

0 ≤ I(S; Ŷ ) ≤ I(S;Xr) = 0. (5.16)

Therefore, S is independent of Ŷ , and Ŷ satisfies DemP w.r.t. S. Note that S can

be a collection of sensitive features. From I(S;Xr) = 0, there is I(Xr;St) = 0 for any

subset of features St ⊂ S and therefore, we have that Ŷ satisfies DemP w.r.t. any

subset of features in S.

5.4.2 Proof of Theorem 17

In (5.7), the output of the optimal generative decorrelator g∗(X) is the universal

representation of the original features X, i.e.,

Xr = g∗(X) = argmin
g(·)

max
h(·)
−E[`(h(g(X));S)].

Let h∗ be the corresponding optimal adversarial strategy, i.e.,

h∗g∗ = argmin
h

E[`(h(Xr), S)].

For sufficient large distortion bound D, Xr can be arbitrarily distorted from X and

g(·) can be any mapping from X to Xr. Therefore, we can get ride of the distortion

constraint in (5.7) and have

−E[`(h∗g∗(Xr);S)] =−max
g(·)

min
h(·)

E[`(h(g(X));S)]

=−max
g(·)

E[`(h∗g(g(X));S)],

≤− E[`(h∗g(g(X));S)],

(5.17)

(5.18)

(5.19)

where g(X) is any (randomized) mapping of X. That is, the generated representation

Xr satisfies the inequality in (5.4). Thus, for sufficiently large distortion bound D,

the generated representation Xr generated from the formulation in (5.7) is censored

w.r.t. the sensitive variable S against a learning adversary h(·) captured by a loss

function `(h(Xr), S).
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5.4.3 Proof of Proposition 1

Consider the α-loss function [110]

`(h(g(X)), s) =
α

α− 1

(
1− Ph(s|g(X))1−

1
α

)
, (5.20)

for any α > 1. Denote HA
α (S|g(X)) as the Arimoto conditional entropy of order α.

Due to that α-loss is convex in Ph(s|g(X)), by using Karush–Kuhn–Tucker (KKT)

conditions, we show that

max
h(·)
−E
[

α

α− 1

(
1− Ph(s|g(X))1−

1
α

)]
=

α

1− α

(
1− exp

(
1− α
α

HA
α (S|g(X))

))
which is achieved by a ‘α-tilted’ conditional distribution

P ∗h (s|g(X)) =
P (s|g(X))α∑

s∈S
P (s|g(X))α

.

Under this choice of a decision rule, the objective of the minimax optimization in

(5.7) reduces to

min
g(·)
−HA

α (S|g(X)), (5.21)

which is simplified as min
g(·)

log
∑

x∈X maxs′∈S P (g(x), s) for α =∞. Note that for given

PS,X , HA
α (S) is a constant, and therefore, (5.21) is equivalent to

min
g(·)
−HA

α (S|g(X)) +HA
α (S) = min

g(·)
IAα (g(X);S), (5.22)

where the Arimoto MI IAα (g(X);S) equals to the α-leakage form S to g(X).

5.4.4 Proof of Theorem 18

For any fixed classifier g, the optimal adversarial strategy in (5.7) is

h?(g(X)) = arg max
h(·)
−E
[
`
(
h(g(X)), S

)]
. (5.23)
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When α-loss is used, from Proposition. 1 we have that for α ≥ 1, the optimal

adversarial strategy is given by

h?(g(X), S) =
P (s|g(X))α∑

s′∈S
P (s′|g(X))α

, (5.24)

for any s ∈ S, and the corresponding expected α-loss is given by

E
[
`
(
h(g(X)), S

)]
=


α
α−1

(
1− exp

(
1−α
α
HA
α (S|g(X))

))
, α > 1

H(S|g(X)), α = 1.

(5.25)

Therefore, the optimization in (5.7) can be simplifies to

min
g(·)

−HA
α (S|g(X)),

s.t. E[d
(
g(X), X

)
] ≤ D

(5.26a)

(5.26b)

where HA
α (S|g(X)) is the Arimoto conditional entropy of order α. Note that as α

tends to 1, it simplifies to Shannon entropy [90]. From the non-negativity of Arimoto

mutual information, we know that

HA
α (S|g(X)) ≤ HA

α (S) (5.27)

with equality if and only if g(X) is independent of S, which is exactly the requirement

of DemP. Thus, as the distortion bound D in (5.26) increases, the CFUR formulation

in (5.26) will approach ideal DemP by enforcing HA
α (S|g(X)) = HA

α (S).

5.4.5 Proof of Proposition 2

For any fixed classifier g̃, the optimal adversarial strategy in (5.11) is

h?(g̃(S,X), Y ) = arg max
h(·)

−E
[
`
(
h(g̃(S,X), Y ), S

)]
. (5.28)
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When α-loss is used, from Proposition. 1 we have that for α ≥ 1, the optimal

adversarial strategy is given by

h?(g̃(S,X), Y ) =
P (s|g̃(S,X), Y )α∑

s′∈S
P (s′|g̃(S,X), Y )α

, (5.29)

for any s ∈ S, and the corresponding expected α-loss is given by

E
[
`
(
h(g̃(S,X), Y ), S

)]
=


α
α−1

(
1− exp

(
1−α
α
HA
α (S|g̃(S,X), Y )

))
, α > 1

H(S|g̃(S,X), Y ), α = 1.

(5.30)

Therefore, the optimization in (5.11) can be simplifies to

min
g̃(·)

−HA
α (S|g̃(S,X), Y ),

s.t. E[`
(
g̃(S,X), Y

)
] ≤ L

(5.31a)

(5.31b)

where HA
α (S|g̃(S,X), Y ) is the Arimoto conditional entropy of order α. Note that as

α tends to 1, it simplifies to Shannon entropy [90].

From the non-negativity of Arimoto mutual information, we know that

HA
α (S|g̃(S,X), Y ) ≤ HA

α (S|Y ) (5.32)

with equality if and only if g̃(S,X) is independent of S conditioning on Y , which is

exactly the requirement of EO. Thus, as the loss upper-bound L in (5.31) increases,

the CFUR formulation in (5.31) will approach ideal EO of g̃(S,X) respect to Y and

S by enforcing HA
α (S|g̃(S,X), Y ) = HA

α (S|Y ).

5.5 Details of Experiments

We train our models based on the data-driven version of the CFUR formulation

presented in Section 5.2 using TensorFlow [113].
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5.5.1 Experiments on the UCI Adult Data Set

Each sample in the UCI Adult data set has both continuous and categorical fea-

tures. Table 5.2 lists all the considered features. We perform a one hot encoding on

each categorical feature in (S,X) and store the mapping function from the onehot

encoding to the categorical data. For the continuous features in X, we restrict them

into the interval (0, 1) by normalization.

(a) The Architecture for Case I. (b) The Architecture for Case II.

Figure 5.11: The Architectures of the Generative Decorrelator and Adversary for
UCI Adult Data Set

ARCHITECTURE. For the UCI Adult data set, the two architectures used are

shown in Fig. 5.11, where the appended noise has the same size of the input features

and the output of the generative decorrelator has the same dimension as the feature

variable X. We concatenate the pre-processed data with a same size standard Gaus-

sian random vector, and feed the entire vector to the generative decorrelator. The

generative decorrelator consists of two full-connected (FC) hidden layers with the

number of neurons as 170 and 130, respectively. Since the output representation Xr

has the same dimension as the feature variable X, the output layer of the generative

decorrelator has 113 (as shown in Fig. 5.11a) and 107 (as shown in Fig. 5.11b) neu-

rons for Case I and Case II, respectively. We use a leaky Rectified linear unit (ReLU)

activation function in the generative decorrelator. Finally, recall that we consider two

cases for this data set. Case I with binary (gender) sensitive feature and Case II with
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non-binary (gender and relationship) sensitive features. Futhermore, for Case I, the

inputs can be either X only or both X and S. Therefore, in Fig. 5.11a, with only

X as input to the generative decorrelator, the length of the input vector is 226 and

when both X and S (binary) are inputs, the input length is 230. For both scenarios,

the length of the generative decorrelator’s output is 113. In Fig. 5.11b, since the

input is X and S, its input is 230; on the other hand, the length of the generative

decorrelator’s output is 107 since S is non-binary in this case.

For Case I, the adversarial classifier in Fig. 5.11a consists of three FC layers with

the number of neurons as 10, 5 as well as 2, respectively, and it takes Xr as the input

and outputs a belief distribution for the binary sensitive variable S (i.e., gender).

Here a ReLU is used as the activation function in the two hidden layers and the soft-

max is used in the output layer to generate a belief distribution for gender. The same

architecture is used for the downstream application of salary classification. For Case

II, the adversarial classifier in Fig. 5.11b consists of three FC layers with the number

of neurons as 50, 30 as well as 12, respectively. Here a Leaky ReLU is used as the

activation function in the two hidden layers and the soft-max is used in the output

layer. All of the above models use α-loss with α = 1, i.e., log-loss, as the adversary’s

loss function and are optimized by an Adam optimizer.

5.5.2 Experiments on the UTKFace Data Set

We reshape 200×200 aligned-colorful faces in the UTKFace data set consists into

64× 64 colorful images.

ARCHITECTURE. For the UTKFace data set, the used architectures are shown

in Figs. 5.12, 5.13 and 5.14. Fig. 5.12 gives the architecture of the CFUR model

which consists of an generative decorrelator and an adversarial classifier. The gener-

ative decorrelator is implemented by a noisy auto-encoder whose encoder transforms
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Figure 5.12: The Architecture of the Generative Decorrelator and Adversary for
UTKFace Data Set

Figure 5.13: The Architecture of the Ethnicity Classifier of UTKFace Data Set

Figure 5.14: The Architecture of the Neural Network for Age Regression of UTK-
Face Data Set
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the original 64×64 RGB-images to a 4096-dimensional feature vector. Different from

standard auto-encoder, which directly feeds the feature vector into its encoder. Here,

the feature vector is mixed with a 4096-dimensional standard normal random vector

8 , and then, fed into a decoder to reconstruct a 64× 64 colorful image, which is the

universal representation Xr. Specifically, the encoder of the auto-encoder consists

of 4 convolution layers with 128, 64, 64 and 64 output channels, respectively, and

3 2 × 2-max pooling layers following the first 3 convolution layers. The encoder is

followed by 2 FC layers with 4096 neurons which mixes the noise and the output fea-

ture vector. The following decoder part consists of 5 convolution layers with 64, 64,

64, 128 and 3 output channels, respectively, and 3 2× 2-up-sampling layers following

the first 3 convolution layers. The adversarial classifier takes into the representation

Xr and outputs the prediction of the sensitive information gender. It consists of 2

convolution layers with 20 and 40 output channels, respectively, 2 2 × 2-max pool-

ing layers following each of the convolution layers and 2 full-connected layers with

40 and 2 neurons, respectively. The size of kernels in convolution layers is 3 × 3.

All convolution and full-connected layers use ReLU as the activation function except

the last layers of the decoder and the adversarial which use sigmoid and softmax,

respectively. The generative decorrelator and adversarial classifier use the square-loss

and log-loss as the loss functions, respectively, and both of them are optimized by an

Adam Optimizer.

Fig. 5.13 gives the architecture of the downstream non-binary classification for eth-

nicity. The classifier is built by changing the top (last) 3 FC layers of the VGG 16

model 9 pre-trained on ImageNet. The first one layer has 256 neurons with ReLU

as the activation function and is followed by a Dropout layer with the rate 0.5, and

8A random vector is a standard normal random vector if all of its components are independent
and identically following the standard normal distribution.

9https://keras.io/applications/#vgg16
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the second one has 4 neurons with softmax as the activation function. The classifier

use log-loss and is optimized by a Stochastic Gradient Descent Optimizer. Fig. 5.14

shows the architecture for the the downstream application of age regression. The re-

gressor consists of three 3×3 convolution layers with 128, 64 and 32 output channels,

three 2× 2-max pooling layers following each of the convolution layers, and three FC

layers with 512, 128 and 1 neurons, respectively. All layers use ReLU as the activa-

tion function except the last layer which uses a linear activation. The model uses the

squared loss as the loss function and is optimized by a Adam Optimizer.

5.6 Concluding Remarks

In this chapter, we introduced an adversarial learning framework with verifiable

guarantees for learning ML models that can create censored and fair universal repre-

sentations for data sets with known sensitive features. The novelty of our approach

is in producing representations that hide several sensitive features jointly and sep-

arately, and simultaneously, provide fairness with respect to the sensitive features

for any downstream learning task not known a priori. The CFUR framework allows

the data holder to learn the censoring and fair scheme (a randomized mapping that

decorrelates the sensitive and non-sensitive features) directly from the data set with-

out requiring access to data set statistics. Under the CFUR framework, finding the

optimal generative decorrelator, subject to a fidelity constraint on the representation,

is formulated as a constrained two-player game, namely a game between the gener-

ative decorrelator and an adversary. With α-loss as the adversary’s loss, the CFUR

framework can provide guarantees against strong information-theoretic adversaries,

such as MAP (soft 0-1 loss) and MI (log-loss) adversaries. It also allows enforcing

fairness, quantified via demographic parity. Furthermore, for a priori known classifi-

cation task, we also proved that our CFUR framework can be modified to approximate

122



fairness via demographic parity, equalized odds or equality of opportunity.

Yet another highlight of our work is the performance validation of the CFUR

framework on publicly available real data sets including images and data sets involv-

ing a mix of categorical and continuous features. Our results allow us to visually

highlight two key results: (a) the tradeoff between the representation fidelity (via

utilities of downstream applications, e.g., the accuracy of classifications and mean

absolute error for a regression) and censoring guarantees (via the adversarial accu-

racy in learning sensitive features jointly or separately); (b) the tradeoff between the

representation fidelity and fairness guarantee (via the maximal difference among con-

ditional probabilities of a prediction/estimation on various sensitive features). Our

results also reveal to some extent the effect on performance of the choice of decorre-

lator and adversary architectures (chosen as deep neural networks) for different data

sets.
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Chapter 6

OPTIMAL CONVERSION FROM RÉNYI DIFFERENTIAL PRIVACY TO

(ε, δ)-DIFFERENTIAL PRIVACY: AN INFORMATION-THEORETICAL

APPROACH

In this chapter, we characterize the privacy performance, in terms of (ε, δ)-differential

privacy (DP), of a mechanism that satisfies a given level of Rényi differential privacy

(RDP). Based on the existing result in literature that (ε, δ)-differential privacy can

be expressed via Hockey-stick divergence [83, 84], we formulate the optimal conver-

sion from RDP to (ε, δ)-DP as an optimization problem with both objective and

constraint functions as f -divergences. We simplify the optimization problem to a

univariate-convex project by making use of the known property of the joint range

of two f -divergences [87], and obtain the optimal conversion from RDP to (ε, δ)-DP.

This result allows us to improve the adaptive composition theorem of Gaussian mech-

anisms, i.e., privacy mechanisms of adding Gaussian noise to functions of a dataset, as

well as the privacy parameter of the differentially private stochastic gradient descent

(DP-SGD) algorithm [70]. Note that the proof details for all theorems and lemmas

are in Section 6.4.

6.1 Preliminaries

To incorporation the notion of neighboring data sets, we use some new notations

in this chapter, which are clarified as follows. We use D to indicate the collection of

data sets with elements from a given support, and Y to be the range of an arbitrary

(possibly random) mapping of any data set in D. Let D and Y indicate two random

variables taking values from D and Y , respectively, and PY |D : D → Y be the map-
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ping/mechanism from D to Y . Two data sets d, d′ ∈ D are said to be neighboring

(denoted by d ∼ d′) if they differ in only one element. We use PY |D=d and PY |D=d′ to

indicate the the corresponding output distributions of the mechanism PY |D for taking

in the data sets d and d′. For an arbitrary subset A of Y , PY |D=d(A) and PY |D=d′(A)

are the corresponding probabilities for the mechanism PY |D mapping the datastes d

and d′ to A, respectively.

Definition 6.1.1. A mechanism PY |D : D → Y is said to be

• (ε, δ)-DP for any given non-negative ε and δ ∈ [0, 1], if

sup
A∈Y,d∼d′∈D

PY |D=d(A)− eεPY |D=d′(A) ≤ δ. (6.1)

• (α, γ)-RDP for any given α > 1 and non-negative γ , if

sup
d∼d′∈D

Dα(PY |D=d‖PY |D=d′) ≤ γ, (6.2)

where Dα(P‖Q) , 1
α−1 logEQ

[(
dP
dQ

)α]
denotes the Rényi divergence of order α

between two probability distributions P and Q.

The above two relaxed versions of DP can be respectively expressed via two specific

instances of f -divergence. The definition of f -divergence and the two instances: Eeε-

divergence and χα-divergence 1 are presented below.

Definition 6.1.2. ([81, 82]) Given two probability distributions P and Q and a real-

valued convex function f(·) satisfying f(1) = 0, the f -divergence between P and Q is

defined as

Df (P‖Q) ,
∫
f

(
dP

dQ

)
dQ. (6.3)

1The χα-divergence is also known as Hellinger divergence in [? ].
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In addition, for f(t) = (t − eε)+ = max{0, t − eε} with ε ≥ 0, the corresponding

f -divergence is called Eeε-divergence given by

Eeε(P‖Q) =

∫
(dP − eεdQ)+ =

∫
max

{
0, dP − eεdQ

}
, (6.4)

and for f(t) = 1
α−1(tα − 1) with α > 1, the corresponding f -divergence is called

χα-divergence given by

χα(P‖Q) =
1

α− 1

(∫ (
dP

dQ

)α
dQ− 1

)
. (6.5)

The connection between (ε, δ)-DP and Eeε-divergence as well as that between RDP

and χα-divergence are shown in the following proposition.

Proposition 3. A mechanism PY |D : D → Y satisfies

• (ε, δ)-DP if and only if [83, 84]

sup
d∼d′∈D

Eeε
(
PY |D=d‖PY |D=d′

)
≤ δ. (6.6)

• (α, γ)-RDP if and only if

sup
d∼d′∈D

χα
(
PY |D=d‖PY |D=d′

)
≤ χα(γ), (6.7)

where the function χα(γ) is defined as

χα(γ) ,
e(α−1)γ − 1

α− 1
, (6.8)

which indicates the one-to-one mapping from Rényi divergence to χα-divergence

for an arbitrary pair of probability distributions.

Note that d ∼ d′ are the neighboring data sets and PY |D=d and PY |D=d′ are the two

output distributions over Y of the mechanism PY |D while taking in d and d′, respec-

tively.
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The results in Proposition 3 will be used to derive the optimal conversion from

(α, γ)-RDP to (ε, δ)-DP, which is tighter than the existing one provided by the fol-

lowing theorem.

Theorem 19 ([70, 80]). If the mechanism PY |D is (α, γ)-RDP for any α > 1, γ ≥ 0,

then it satisfies (ε, δ)-DP for any δ ∈ (0, 1) and

ε = γ − ln δ

α− 1
. (6.9)

6.2 Optimal Conversion from RDP to (ε, δ)-DP

To characterize the optimal conversion from RDP to (ε, δ)-DP 2 , it is sufficient

to ask that for an arbitrary mechanism PY |D satisfying (α, γ)-RDP, what are the

smallest values of ε and δ such that PY |D satisfies (ε, δ)-DP? Let P(Y|D) indicate the

collection of stochastic mappings from D to Y . By using the results in Proposition

3, we can formulate this question as the following optimization problem:

δ(γ|α, ε) = sup
PY |D∈P(Y|D)

sup
d∼d′∈D

Eeε(PY |D=d‖PY |D=d′)

s.t. sup
d∼d′∈D

χα(PY |D=d‖PY |D=d′) ≤ χα(γ),

(6.10a)

(6.10b)

where χα(γ), defined in (6.8), is the corresponding value of χα-divergence when Rényi

divergence is γ. Therefore, for any mechanism satisfying (α, γ)-RDP, it satisfies (ε, δ′)-

DP for any δ′ ≥ δ(γ|α, ε) and may not satisfy (ε, δ′)-DP for any δ′ < δ(γ|α, ε). That is,

for any given values of α, γ and ε, this quantity δ(γ|α, ε) is the smallest value of δ such

that any (α, γ)-RDP mechanism satisfies (ε, δ)-DP, and the mapping γ → δ(γ|α, ε)

determines the optimal conversion from RDP to (ε, δ)-DP.

2Note that in the collection of mechanisms that satisfying (ε, δ)-DP with δ > 0, there exist mech-
anisms such that the maximal Rényi divergence between its output distributions can be arbitrary
large, i.e., the mechanism can only satisfy (α, γ)-RDP for γ →∞. Therefore, there is no (α, γ)-RDP
privacy for any bounded γ guaranteed by (ε, δ)-DP with δ > 0.
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In the sequel, we present an computational efficient method of obtaining the opti-

mal conversion by transforming and simplifying the optimization in (6.10a). For the

simplification of expressions, we use two arbitrary probability distributions P and Q

over the same support Y , i.e., P,Q ∈ P(Y), to indicate a pair of output distributions

PY |D=d, PY |D=d′ of an arbitrary mechanism PY |D ∈ P(Y|D) by taking in any pair of

neighboring types d ∼ d′ ∈ D 3 . The optimization problem in (6.10a) is rewritten as

δ(γ|α, ε) = sup
P,Q∈P(Y)

Eeε(P‖Q)

s.t. χα(P‖Q) ≤ χα(γ).

(6.11a)

(6.11b)

Fig. 6.1 shows the plot of δ(γ|α, ε) versus γ for given α and ε, and from which, it can

be observed that for given α and ε, the mapping γ → δ(γ|α, ε) constitutes the upper

boundary of the joint region of Eeε-divergence and χα-divergence given by

Rα ,
{(
χα(P‖Q),Eeε(P‖Q)

)∣∣P,Q ∈ P(Y)
}
. (6.12)

That is, the optimal conversion from RDP to (ε, δ)-DP is determined by the upper

boundary of the joint region Rα defined in (6.12), and therefore, is equivalently

characterized by the inverse mapping δ → γ(δ|α, ε) given by

γ(δ|α, ε) = inf
P,Q∈P(Y)

χ−1α

(
χα(P‖Q)

)
s.t. Eeε(P‖Q) ≥ δ

(6.13a)

(6.13b)

where χ−1α (t) = 1
α−1 log(1 + (α − 1)t) is the inverse of the function χα(·) defined in

(6.8) and gives the corresponding value of Rényi divergence when χα-divergence is t.

The above observation allows us to cast the problem of converting from (α, γ)-RDP

to (ε, δ)-DP as characterizing the joint range of Eeε and χα divergences. Therefore,

3Note that the divergences between PY |D=d, PY |D=d′ are not necessarily smaller than the diver-
gences between Pd and Pd′ . For example, for a querying answer Y ∈ {0, 1} indicating a specific item
belonging to a dataset or not, the output distributions PY |D=d, PY |D=d′ can have infinity divergence
if the specific item is the one that the two datasets d, d′ differ in.
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Figure 6.1: Joint Region of χα(P‖Q) and Eeε(P‖Q) for All P,Q ∈ P(Y)

we can simplify the optimization problem in (6.13) to a univariate convex program

by using a property of the joint region of any two f -divergences presented in the

proposition below.

Theorem 20. ([87, Theorem 8]) For any two f -divergences Df1 and Df2, there is

{(
Df1(P‖Q), Df2(P‖Q)

)∣∣∣P,Q ∈ P(Y)
}

= conv(B) (6.14)

where conv(·) denotes the convex hull operator and

B ,
{(
Df1(Pb‖Qb), Df2(Pb‖Qb)

)∣∣∣Pb, Qb ∈ P({0, 1})
}
. (6.15)

Making use of the result in Theorem 20, we simplify the optimization (6.13), which

can potentially be of significant complexity, to a univariate convex program, which is

a simple tractable problem.
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Theorem 21. For any α > 1, ε ≥ 0 and δ ∈ [0, 1),

γ(δ|α, ε) = ε+
1

α− 1
log min

p∈(δ,1)

(
pα(p− δ)1−α + (1− p)α(eε − p+ δ)1−α

)
. (6.16)

It can be shown the term inside the logarithm is convex in p and hence this

optimization problem can be numerically solved with an arbitrary accuracy. It seems,

however, not simple to analytically derive γ(δ|α, ε). Nevertheless, we obtain a tight

lower bound in the following theorem.

Theorem 22. For any ε ≥ 0 and α > 1, we have

γ(0|α, ε) = 0,

γ(δ|α, ε) = ε− log(1− δ), if αδ ≥ 1,

γ(δ|α, ε) ≥ max{g(α, ε, δ), f(α, ε, δ)}, if 0 < αδ < 1,

(6.17)

(6.18)

where

g(α, ε, δ) , ε− 1

α− 1
log

ζα
δ
,

with ζα , 1
α

(
1− 1

α

)α−1
and

f(α, ε, δ) , ε+
1

α− 1
log

(
(eε − αδ)

(
δ − 1

δ − eε

)α
+ αδ

)
.

In Fig. 6.2, we numerically solve (6.16) for three pairs of (α, ε) and compare them

with their corresponding bounds obtained from Theorem 22, highlighting the tight-

ness of the above lower bound. In practice, it is often appealing to design differentially

private mechanisms with a hard-coded value of δ. To address this practical need, we

convert the lower bound in Theorem 22 to an upper bound on ε(γ|α, δ).

Lemma 5. Given a mechanism satisfying (α, γ)-RDP for any non-negative γ and

α > 1, it satisfies (ε, δ)-DP for any δ ∈ (0, 1) and ε ≥ ε(γ|α, δ), where the quantity

ε(γ|α, δ) is give by
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Figure 6.2: True Values (Obtained via Numerically Solving the Convex Project in
(6.16)) Versus the Bounds (Obtained from Theorem 22) for Three Pairs of (α, ε)

• if αδ ≥ 1,

ε(γ|α, δ) = max
{

0, γ + log(1− δ)
}

(6.19)

• if 0 < αδ < 1,

ε(γ|α, δ) ≤ 1

α− 1
min

{
max

{
0, (α− 1)γ − log

δ

ζα

}
,

log
((α− 1)χα(γ)

αδ
+ 1
)}

, (6.20)

where χα(γ) is defined in (6.8). Moreover, ε(0|α, δ) = 0.

The the key idea in the proof of Lemma 5 is to get the inverse functions (in term

of ε) of the functions g(α, ε, δ) and f(α, ε, δ) in Theorem 22. Note that the function

g(α, ε, δ) is linear in ε and invertible. For the function f(α, ε, δ), we bound its inverse

function from above via an approximation of f(α, ε, δ).

Note that the conversion from (α, γ)-RDP to (ε, δ)-DP in Lemma 5 is much tighter

than the one obtained from Theorem 19, which is characterized by ε(γ|α, δ) ≤ γ −

131



1
α−1 log δ. Specifically, for αδ ≥ 1, the expression of ε(γ|α, δ) in (6.19) is less than γ,

and therefore, much smaller than the upper bound in Theorem 19; and for αδ < 1,

the upper bound in (6.20) is also smaller than that in Theorem 19 since the expression

ζα (defined in Theorem 22) is less than 1 for α > 1. It must be mentioned that Balle

et al. [114, Theorem 21] has recently proved the bound ε(γ|α, δ) ≤ γ− 1
α−1 log δ

ζα
, via

a fundamentally different approach which is weaker than Lemma 5.

Remark 6. As an important special case, this lemma demonstrates that an (α, γ)-

RDP mechanism provides (0, δ)-DP guarantee if (i) 1−e−γ < 1
α

and δ ∈
[
ζαe

(α−1)γ, 1
α

]
,

or (ii) δ > max{1−e−γ, 1/α}. Notice that this is significantly stronger than the upper

bound obtained from Theorem 19, i.e., ε(γ|α, δ) ≤ γ− 1
α−1 log δ, from which (0, δ)-DP

cannot be achieved.

6.3 Applications of the Optimal Conversion from RDP to (ε, δ)-DP

In this section, we improve the composition theorem of (ε, δ)-DP by fusing the

tighter conversion in Lemma 5 and the method of moments accountant (MA), which

was recently proposed by Abadi et al. [70]. The cornerstone of MA is the linear

composability of RDP, which is expressed in the following theorem.

Theorem 23. [70, Theorem 2] Suppose that a mechanism PY T |D consists of a se-

quence of adaptive mechanisms PY1|D, PY2|D,Y1 , · · · , PYT |D,Y1,··· ,YT−1
, where PYi|D,Y1,··· ,Yi−1

:∏i−1
j=1 : Yj ×D → Yi. Then, for any α > 1,

Dα(PY T |D=d‖PY T |D=d′) ≤
T∑
i=1

Dα(PYi|D=d,Y i−1(d)‖PYi|D=d′,Y i−1(d′)) (6.21)

where Y i−1(d) and Y i−1(d′) indicate the corresponding output sequences, generated

by mechanisms PY1|X , · · · , PYi−1|X,Y1,··· ,Yi−2
, from the neighboring data sets d and d′,

respectively, and Y T = (Y1, Y2, · · · , YT ) takes value from the support Y1 × · · · YT .
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Theorem 23 indicates the linear composability of RDP. In addition, making use

of the results in Theorem 23 and Lemma 5, one can tailor the composition theorem

of (ε, δ)-DP for any specific mechanism (e.g., Gaussian mechanisms adding Gaus-

sian noise to data functions) by calculating the sequence of Rényi divergences of

the composed mechanisms. Therefore, in practice this MA-based approach can be

more accurate than the well-known advanced composition theorems [78, 79], which

is applicable for general mechanisms and fails to capture the uniqueness of a specific

mechanism, e.g., the properties of Gaussian noise in Gaussian mechanisms. For the

rest of this section, we assume that PYi|X,Y1,··· ,Yi−1
, for i ∈ {1, 2, · · · , T}, are Gaussian

mechanisms, and apply the tighter conversion in Lemma 5 to improve the privacy

parameters of the adaptive composition PY T |D presented in [70], which is obtained

via the result in Theorem 19.

6.3.1 Bounds on Privacy Parameters of Gaussian Composition

Given a Gaussian mechanism, the maximal value of the Rényi divergence between

the corresponding output distributions of any pair of neighboring data sets is a linear

function of α as shown in the following lemma.

Lemma 6. Given a data function f with unit L2-sensitivity, i.e., supd∼d′∈D ‖f(d)−

f(d′)‖2 = 1, and a Gaussian mechanism PY |D with the noise variance σ2, i.e., Y =

f(D) + N and N ∼ N (0, σ2), the Rényi divergence between the output distributions

for any pair of neighboring data sets d and d′ is bounded from above by

sup
d∼d′∈D

Dα(PY |D=d‖PY |D=d′) =
α

2σ2
, (6.22)

where α > 1. That is, for a data function with unit L2-sensitivity, the Gaussian

mechanism with variance σ2 satisfies (α, ρα)-RDP with ρ , 1
2σ2 .
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The proof of Lemma 6 is mainly based on the probability distribution of Gaussian

noise. Without loss of generality, we assume that the L2-sensitivity of any function

of interest is unit. Note that if the L2-sensitivity of a function of interest is c, we can

scale the variance of a Gaussian mechanism as c2σ2 to get the same result as shown

in Lemma 6.

In light of the linear composability of RDP in Theorem 23 and the result in Lemma

6, we know that the T -fold adaptive composition 4 PY T |D of a Gaussian mechanism

PY |D with variance σ2 satisfies (α, ραT )-RDP. Therefore, from the result in Theorem

19, one can obtain that the composition PY T |D satisfies (ε, δ)-DP with δ ∈ (0, 1) and

ε = inf
α>1

ραT − log δ

α− 1
= ρT +

√
4ρT log

1

δ
. (6.23)

In (6.23), from the convexity of the objective function in α, the optimal solution

α∗ = 1 +
√
−ρT log δ is obtained by calculating the root of the first derivative of the

objective function in α.

We next use the result in Lemma 5 to improve the privacy parameter in (6.23) of

the T -folder composition PY T |D. To do so, define

ε(ρ, T |δ) , inf
α>1

ε(ραT |α, δ). (6.24)

Thus, PY T |D is (ε(ρ, T |δ), δ)-DP for any δ ∈ (0, 1). Invoking Lemma 5, we can obtain

a bound ε(ρ, T |δ) as shown in the following lemma.

Lemma 7. The T -fold adaptive homogeneous composition of a Gaussian mechanism

with variance σ2 is (ε(ρ, T |δ), δ)-DP with δ ∈ (0, 1) and

ε(ρ, T |δ) ≤ min
{
ε0(ρ, T ), ε1(ρ, T ),

(ρT
δ

+ log(1− δ)
)
+

}
, (6.25)

4The adaptive composition requires that the output of the previous mechanism is used as a part
of the input of the subsequent mechanism.
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Figure 6.3: Comparison of Our Bound in Lemma 7 on ε(ρ, T |δ) with (6.23) Obtained
by Abadi et al. for σ = 20 and δ = 10−5

where ρ = 1
2σ2 and

ε0(ρ, T ) , inf
α∈(1, 1

δ
]

(
ραT − 1

α− 1
log

δ

ζα

)
+

,

ε1(ρ, T ) , inf
α∈(1, 1

δ
]

1

α− 1
log
(

1 +
eρα(α−1)T − 1

αδ

)
,

(6.26)

(6.27)

and ζα is as defined in Theorem 22.

The bound given in Lemma 7 can shed light on the optimal variance of the

Gaussian mechanism PY |D required to ensure that PY T |D is (ε, δ)-DP. To put our

result about the variance in perspective, we first mention two previously-known

bounds on σ2. Advanced composition theorems (see, e.g., [78, Theorem III.3]) re-

quire σ2 = Ω(T log(1/δ) log(T/δ)
ε2

). Abadi et al. [70, Theorem 1] improved this result by

showing that σ2 suffices to be linear in T ; more precisely, σ2 = Ω(T log(1/δ)
ε2

). To have a

better comparison with our final result, we write this result more explicitly. It follows
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Figure 6.4: Privacy Parameter ε of DP-SGD with σ = 4, q = 0.001 and δ = 10−5

from (6.23) that

σ2 ≥ T

2
(
ε− 2 log δ − 2

√
−(ε− log δ) log δ

) , (6.28)

and hence assuming δ is sufficiently small, we obtain

σ2 ≥ 2T

ε2
log

1

δ
+
T

ε
+O

(
1

log δ−1

)
. (6.29)

We are now in order to state our result.

Theorem 24. The T -fold adaptive homogeneous composition of a Gaussian mecha-

nism with variance σ2 is (ε, δ)-DP, for ε > 2δ log 1
δ
, if

σ2 ≥ 2T

ε2
log

1

δ
+
T

ε
− 2T

ε2
(
log(2 log δ−1) + 1− log ε

)
+O

(
log2(log δ−1)

log δ−1

)
. (6.30)

The proof of this theorem is based on a relaxation of Theorem 22 obtained by

ignoring f(α, ε, δ). Considering both f and g will result in a stronger result at the
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expense of more involved analysis. Comparing with (6.29), Theorem 24 indicates that,

providing δ is sufficiently small, the variance of each constituent Gaussian mechanism

can be reduced by 2T
ε2

(log(2 log δ−1) + 1− log ε).

6.3.2 Illustrations

In this section, we empirically compare our bound on ε(ρ, T |δ) given in Lemma 7

with the privacy parameter (6.23) obtained by Abadi et al. via Theorem 19, which has

been extensively used in the state-of-the-art differentially private machine learning

algorithms, e.g., [115, 74, 116, 117, 118, 119, 120, 76]. We do so in two different set-

tings: (1) vanilla T -fold composition of the Gaussian mechanism with fixed variance,

and (2) DP-SGD algorithm.

Vanilla Gaussian Composition: Here, we wish to obtain bounds on the privacy

parameter ε of PY T |D where PY |D is a Gaussian mechanism with σ = 20. In Fig. 6.3, we

compare the value of ε from Lemma 7 with that from (6.23) for δ = 10−5. According

to this plot, our result enables us to achieve a smaller privacy parameter by up to

0.75, i.e., maxT∈[1000] εAbadi(ρ, T |δ)− ε(ρ, T |δ) = 0.75 where εAbadi(ρ, T |δ) is the ε given

in (6.23). This privacy amplification may have important impacts on recent private

deep leaning algorithms. Alternatively, one can observe that our result allows for

more iteration for the same ε, for instance 100 more iterations for any ε larger than

6.

DP-SGD: SGD is the standard algorithm for training many machine learning models.

In order to fit a model without compromising privacy, a standard practice is to add

Gaussian noise to the gradient of each mini-batch, see e.g., [70, 71, 118, 115, 72, 73].

The prime use of MA was to exploit the RDP’s simple composition property in

deriving the privacy parameters of the DP-SGD algorithm [70, Algorithm 1]. To

have a fair comparison, we implement this algorithm with the sub-sampling rate
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q = 0.001 and noise parameter σ = 4, and then, compute its privacy parameters via

(6.23) with ρ = q2/((1−q)σ2) (see [70, Lemma 3]) and δ = 10−5. We then compare it

in Fig. 6.4 with our privacy parameter calculated from Lemma 7 with the same ρ and

σ. As demonstrated in this figure, our result allows remarkably more epochs (often

over a hundred) within the same privacy budget and thus providing higher utility.

6.4 Proof Details

6.4.1 Proof of Theorem 21

First notice that, in light of Theorem 20, the convex set Rα defined in (6.12) is equal

to the convex hull of the set Bα,ε given by

Bα,ε = {(χα(Pb‖Qb),Eeε(Pb‖Qb))
∣∣Pb, Qb ∈ ({0, 1})} (6.31)

where Pb = Bernoulli(p) and Qb = Bernoulli(q) with parameters p, q ∈ (0, 1). For any

pair of such distributions, define γ̃ , χα(Pb‖Qb) and δ , Eeε(Pb‖Qb). We first show

that the convex hull of the set Bα,ε is the B̄α,ε given by

B̄α,ε = {(γ̃, δ)
∣∣δ ∈ [0, 1), γ̃ ≥ γ̃(δ)} (6.32)

with γ̃(δ) given by

γ̃(δ) = inf
0<p,q<1

χα(Pb‖Qb)

s.t. Eeε(Pb‖Qb) ≥ δ.

(6.33)

To this goal, we need to demonstrate that for any λ ∈ [0, 1] and pairs of points

(γ̃1, δ1), (γ̃2, δ2) ∈ Bα,ε, we have (λγ̃1 + λ̄γ̃2, λδ1 + λ̄δ2) ∈ B̄α,ε, where λ̄ = 1 − λ, or

equivalently, λδ1 + λ̄δ2 ∈ [0, 1) and λγ̃1 + λ̄γ̃2 ≥ γ̃(λδ1 + λ̄δ2). Hence, it suffices to

show that δ 7→ γ̃(δ) is convex.

Let pi, qi ∈ (0, 1) with pi ≥ qi be the optimal solution of (6.33) for δi, i = 1, 2,

and Pb,i, Qb,i be the corresponding Bernoulli distributions. For any λ ∈ [0, 1], we
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construct two Bernoulli distribution Pb,λ and Qb,λ with parameters pλ = λp1 + λ̄p2

and qλ = λq1 + λ̄q2, respectively. It can be verified that

Eeε(Pb,λ‖Qb,λ) =pλ − eεqλ

=λp1 + λ̄p2 − eε(λq1 + λ̄q2)

≥λδ1 + λ̄δ2,

(6.34)

(6.35)

(6.36)

i.e., (pλ, qλ) is feasible for λδ1 + λ̄δ2. In addition, from the convexity of χα, we have

that

λγ̃(δ1) + λ̄γ̃(δ2) =λχα(Pb,1‖Qb,1) + λ̄χα(Pb,2‖Qb,2)

≥χα(Pb,λ‖Qb,λ)

≥γ̃(λδ1 + λ̄δ2).

(6.37)

(6.38)

(6.39)

Therefore, the function γ̃(δ) is convex in δ and hence B̄α,ε is the convex hull of Bα,ε.

In light of Theorem 20, this in turn implies that Rα = B̄α,ε.

The above analysis shows that the mapping δ 7→ γ̃(δ) in fact constitutes the upper

boundary of Bα,ε and thus Rα. Since χα(·) is a bijection, this allows us to deduce

γ(δ|α, ε) = inf
0<p,q<1

χ−1α (χα(Pb‖Qb))

s.t. Eeε(Pb‖Qb) ≥ δ,

(6.40)

and hence the optimization problem (6.13) can be converted to the above optimization

problem with only two parameters.

Expanding both χα and Eeε , we can explicitly write (6.40) as

γ(δ|α, ε) = inf
0<q<p<1

1

α− 1
log
(
pαq1−α + (1− p)α(1− q)1−α

)
s.t. p− qeε ≥ δ,

(6.41)

where 0 ≤ δ < 1 and 0 ≤ γ < ∞. Let h(p, q;α) indicate the objective function of

the optimization problem in (6.41). For any given α > 1 and p ∈ (0, 1), the partial
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derivative of h(p, q;α) with respect to q is given by

∂ h(p, q;α)

∂q
=

pαq−α − (1− p)α(1− q)−α

pαq1−α + (1− p)α(1− q)1−α
, (6.42)

which is negative for all 0 < q < p < 1, and therefore, h(p, q;α) is decreasing in q. In

addition, for ε ≥ 0 and δ ∈ [0, 1), the two constraints 0 < q < p < 1 and p− qeε ≥ δ

in (6.41) can be equivalently rewritten as
δ < p < 1

0 < q < p−δ
eε
.

(6.43)

Thus, the infimum in (6.41) is attained at q = p−δ
eε

, and therefore, for α > 1, δ ∈ [0, 1)

and ε ≥ 0, the optimization problem in (6.41) is simplified as

e(α−1)(γ(δ|α,ε)−ε) = inf
p
pα(p− δ)1−α + (1− p)α(eε − p+ δ)1−α

s.t. δ < p < 1,

(6.44)

which is the desired result.

6.4.2 Proof of Theorem 22

Recall that the optimization problem in Theorem 21 is equivalent to (6.44). Let

h1(p;α, δ, ε) indicate the objective function in (6.44). One can verify that for α >

1, δ ∈ [0, 1) and ε > 0, the mapping p 7→ h1(p;α, δ, ε) is convex. Therefore, the

numerical result of γ(δ|α, ε) can be easily obtained for any given α, δ and ε. To get

closed-form expressions, we explore lower bounds of the objective value in (6.44) as

follows.

Lower bound 1: Ignoring the second term in h1(p;α, δ, ε), we obtain

e(α−1)(γ(δ|α,ε)−ε) ≥ inf
δ<p<1

pα(p− δ)1−α (6.45)
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We note that the objective function in (6.45) is convex in p. It can be observed via

∂2

∂p2
pα(p− δ)1−α = (α− 1)α

(
p
α
2 (p− δ)

−1−α
2 − p

α−2
2 (p− δ)

1−α
2

)2
≥ 0, (6.46)

and therefore, by setting the first derivative to be 0, we obtain the optimal solution

for the the corresponding unconstrained problem as p∗ = αδ. Since α > 1, it follows

that the optimal solution of (6.45) is given by p∗ = min{αδ, 1}, and therefore

e(α−1)(γ(δ|α,ε)−ε) ≥
(
δαα(α− 1)1−α

)
1{αδ < 1}+

(
(1− δ)1−α

)
1{αδ ≥ 1} (6.47)

with equality holds if and only if αδ ≥ 1, where 1{·} denotes the indicator function.

Thus, if αδ ≥ 1, we have

γ(δ|α, ε) = ε− log(1− δ),

and if αδ < 1, we have the lower bound

γ(δ|α, ε) ≥ ε− 1

α− 1
log

(
1

δα

(
1− 1

α

)α−1)
= ε− 1

α− 1
log

ζα
δ
. (6.48)

Lower bound 2: To obtain the second lower bound, we note that the function

h1(p;α, δ, ε) is convex in δ. This enables us to bound h1(p;α, δ, ε) from below by

using its linear approximation at δ = 0. Hence we can write

h1(p;α, δ, ε) ≥ h1(p;α, δ = 0, ε) +
∂h1(p;α, δ = 0, ε)

∂δ
δ

= p+ (α− 1)δ +

(
1− p
eε − p

)α
(eε − p− (α− 1)δ)

(6.49)

(6.50)

with equality if and only if δ = 0. Therefore, we have

e(α−1)(γ(δ|α,ε)−ε) ≥ inf
δ<p<1

p+

(
1− p
eε − p

)α
(eε − (α− 1)δ − p) + (α− 1)δ. (6.51)

Let h2(p;α, δ, ε) indicate the objective function of (6.51). In the following, we prove

the monotonicity of h2(p;α, δ, ε) in p for α > 1, 1 > δ ≥ 0 and ε ≥ 0. Taking the first
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derivative of h2(p;α, δ, ε) with respect to p, we have

∂ h2(p;α, δ, ε)

∂ p
= 1 +

(
1− p
eε − p

)α(
α(eε − 1)(p+ (α− 1)δ − eε)

(eε − p)(1− p)
− 1

)
=: h3(p;α, δ, ε)

≥ 1 +

(
1− p
eε − p

)α(
−α(eε − 1)

1− p
− 1

)
=: h4(p;α, ε)

> h4(p = δ;α, ε)

=
(eε − δ)α − (1− δ)α − α(eε − 1)(1− δ)α−1

(eε − δ)α

=:
h5(δ, α, ε)

(eε − δ)α

≥ h5(δ, α, ε = 0)

(eε − δ)α
= 0

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

where

• the inequality in (6.53) is from the fact that the function h3(p;α, δ, ε) is in-

creasing in δ, and therefore, for 1 > δ ≥ 0, h3(p;α, δ, ε) ≥ h3(p;α, δ = 0, ε) =

h4(p;α, ε)

• the inequality in (6.54) is due to the fact that the function h4(p;α, ε) is increasing

in p as shown below

∂ h4(p;α, ε)

∂p
= α(α− 1)(eε − 1)2(1− p)α−2(eε − p)−α−1 > 0, (6.57)

and therefore, for 1 > p > δ, h4(p;α, ε) > h4(p = δ;α, ε).

• the inequality in (6.56) is from the monotonicity of the function h5(δ, α, ε) in ε.

Specifically,

∂ h5(δ, α, ε)

∂ ε
= αeε

(
(eε − δ)α−1 − (1− δ)α−1

)
≥ 0, (6.58)

and therefore, for ε ≥ 0, h5(δ, α, ε) ≥ h5(δ, α, ε = 0) = 0.
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Therefore, the objective function h2(p;α, δ, ε) in (6.51) is increasing in p, and there-

fore, we have

e(α−1)(γ(δ|α,ε)−ε) ≥ h2(p = δ;α, δ, ε) = αδ +

(
1− δ
eε − δ

)α
(eε − αδ) , (6.59)

with equality if and only if δ = 0. Thus, we have

γ(δ|α, ε) ≥ ε+
1

α− 1
log

(
αδ +

(
1− δ
eε − δ

)α
(eε − αδ)

)
, (6.60)

where the equality holds if and only if δ = 0 which leads to γεα(δ = 0) = 0. The lower

bounds (6.48) and (6.60) give the desired result.

6.4.3 Proof of Lemma 5

From the function g(α, ε, δ) in Theorem 22, we have

ε(γ|α, δ)


≤ max

{
0, γ − 1

α−1 log δ
ζα

}
, if αδ ≤ 1

= max
{

0, γ + log(1− δ)
}
, otherwise.

(6.61)

Next, we obtain a closed-form upper bound on ε(γ|α, δ) from the function f(α, ε, δ)

in Theorem 22. To do so, let f1(α, ε, δ) be the expression inside the logarithm in

f(α, ε, δ), i.e., f1(α, ε, δ) , (eε − αδ)
(
δ−1
δ−eε

)α
+ αδ. The second partial derivative of

f1(δ, α, ε) with respect to δ is given by

∂2 f1(δ, α, ε)

∂ δ2
=(α− 1)α (eε − 1)

(
δ − 1

δ − eε

)α
(eε (−2δ + eε + 1)− αδ (eε − 1))

(δ − 1)2 (δ − eε)2
. (6.62)

Therefore, for α > 1, ε ≥ 0 and 1 ≥ δ ≥ 0, the convexity of f1(δ, α, ε) in δ is

guaranteed by

δ − eε(eε + 1)

2eε + α(eε − 1)
≤ 0. (6.63)
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Let f2(α, ε) ,
eε(eε+1)

2eε+α(eε−1) , and therefore, if δ − f2(α, ε) ≤ 0, we have

γ(δ|α, ε) ≥f(α, ε, δ) = ε+
1

α− 1
log (f1(α, ε, δ))

≥ε+
1

α− 1
log

(
f1(α, ε, δ = 0) +

∂ f1(δ = 0, α, ε)

∂ δ
δ

)
=ε+

1

α− 1
log
(
e−ε(α−1) + αδ − αδe−ε(α−1)

)
,

(6.64)

(6.65)

(6.66)

with equality if and only if δ = 0. In the following, we prove that δ ≤ 1
α

is a sufficient

condition for δ − f2(α, ε) ≤ 0 by showing that f2(α, ε) > 1/α for any α > 1. Taking

the first partial derivative of f2(α, ε) with respect to ε, we have

∂ f2(α, ε)

∂ ε
=
eε((2 + α)e2ε − 2αe2ε − α)

(2eε + α(eε − 1))2
≤ 0, 1 ≤ eε ≤ α+

√
2α(α+1)

2+α

> 0, otherwise,

(6.67)

(6.68)

and therefore,

f2(α, ε)−
1

α
≥f2

(
α, ε = log

α +
√

2α(α + 1)

2 + α

)
− 1

α

=
2(α2 + α(

√
2α(α + 1)− 1)− 2)

α(2 + α)2
,

f3(α)

α(2 + α)2

>
f3(α = 1)

α(2 + α)2
= 0

(6.69)

(6.70)

(6.71)

where the inequality in (6.71) follows from the fact that f3(α) is monotonically in-

creasing in α > 1 as shown below:

df3(α)

dα
=

√
2α(1 + 2α)√
α(1 + α)

+ 2
√

2α(1 + α) + 4α− 2 > 0. (6.72)

Therefore, from the inequality in (6.66), we have that for δ ≤ 1/α,

ε(γ|α, δ) ≤ 1

α− 1
log

(
e(α−1)γ − 1

αδ
+ 1

)
=

1

α− 1
log

(
(α− 1)χα(γ)

αδ
+ 1

)
and equality holds if and only if γ = 0, i.e., εδα(γ = 0) = 0.
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6.4.4 Derivation of Remark 6

Note that it can be verified that γ− 1
α−1 log δ

ζα
< 0 for δ > ζαe

(α−1)γ. Combined with

αδ ≤ 1, we therefore have εδα(γ) = 0 for δ ∈ [ζαe
(α−1)γ, 1

α
]. To have a valid non-empty

interval, we must have the condition ζαe
(α−1)γ < 1

α
that is simplified to 1− e−γ ≤ 1

α
.

A similar holds for the case αδ > 1: we have γ+ log(1− δ) < 0 if δ > 1− e−γ. Hence,

ε(γ|α, δ) = 0 if δ > max{1− e−γ, 1/α}.

6.4.5 Proof of Lemma 6

From the expression of the output Y = f(D) +N with N ∼ N (0, σ2), we have that

for any pair of neighboring data sets d and d′, the corresponding outputs Y (d) and

Y (d′) follow the Gaussian distributions N (f(d), σ2) and N (f(d′), σ2), respectively.

Therefore, the Rényi divergence between the two output distributions is

sup
d∼d′∈D

Dα(PY |D=d‖PY |D=d′)

= sup
d∼d′∈D

Dα(N (f(d), σ2)‖N (f(d′), σ2))

= sup
d∼d′∈D

1

α− 1
log

∫ ∞
−∞

1√
2πσ2

e−
(y−f(d′))2

2σ2 eα
(y−f(d′))2−(y−f(d))2

2σ2 dy

= sup
d∼d′∈D

1

α− 1
log

∫ ∞
−∞

1√
2πσ2

e
α(α−1)(f(d)−f(d′))2

2σ2 e−
(y−αf(d)+(α−1)f(d′))2

2σ2 dy

= sup
d∼d′∈D

1

α− 1
log

(
e
α(α−1)(f(d)−f(d′))2

2σ2

∫ ∞
−∞

1√
2πσ2

e−
(y−αf(d)+(α−1)f(d′))2

2σ2 dy

)
= sup

d∼d′∈D

1

α− 1
log

(
e
α(α−1)(f(d)−f(d′))2

2σ2 · 1
)

= sup
d∼d′∈D

α(f(d)− f(d′))2

2σ2
=

α

2σ2

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

(6.78)

where the last equation is due to the assumption that the L2-sensitivity of the function

f is 1.
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6.4.6 Proof of Lemma 7

Recall that for the T -fold composition of Gaussian mechanism with variance σ2,

we have γ = αρT where ρ = 1/σ2. From Lemma 5, we have that for αδ ≥ 1 and

0 < δ < 1,

ε(ραT |α, δ) = max{0, ραT + log(1− δ)} (6.79)

and therefore,

ε(ρ, T |δ) = inf
α>1

ε(ραT |α, δ)

≤ inf
α≥ 1

δ

max{0, ραT + log(1− δ)}

= max

{
0,
ρT

δ
+ log(1− δ)

}
;

(6.80)

(6.81)

(6.82)

In addition, from Lemma 5, we have that for 0 < αδ < 1,

ε(ραT |α, δ) ≤ min

{(
αρT − 1

α− 1
log

δ

ζα

)
+
,

1

α− 1
log
((α− 1)χα(αρT )

αδ
+ 1
)}

,

(6.83)

where χα(αρT ) = e(α−1)ραT−1
α−1 and (f(·))+ = max{0, f(·)}. Therefore,

ε(ρ, T |δ) = inf
α>1

ε(ραT |α, δ)

≤ inf
1<α< 1

δ

min
{(
αρT − 1

α− 1
log

δ

ζα

)
+
,

1

α− 1
log
(eρα(α−1)T

αδ
+ 1
)}
.

(6.84)

(6.85)

Combining the two inequalities in (6.82) and (6.85), we obtain the upper bound of

ε(ρ, T |δ) in Lemma 7.

6.4.7 Proof of Theorem 24

Lemma 7 illustrates that the T -fold adaptive homogeneous composition of the Gaus-

sian mechanism with variance σ2 is (ε, δ)-DP where

ε = inf
1<α≤ 1

δ

αT

2σ2
− 1

α− 1
log

δ

ζα
. (6.86)
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Rearrenging the above, we obtain

σ2 = inf
1<α≤ 1

δ

αT

2ε+ 2
α−1 log δ

ζα

(6.87)

Assuming that 2 log δ−1

ε
≤ 1

δ
, or equivalently ε ≥ 2δ log δ−1, then we can plug α =

2 log δ−1

ε
in (6.87) to obtain

αT

2ε+ 2
α−1 logαδ − 2 log

(
1− 1

α

)∣∣∣∣
α= 2 log δ−1

ε

=
(ε− 2 log 1

δ
)T log 1

δ

ε2
(
ε− log 1

δ
+
−ε+2 log 1

δ

ε
log
(
−ε+2 log 1

δ

2 log 1
δ

)
− log

(
2 log 1

δ

ε

))
=

2T log 1
δ

ε2
+
T

ε
−

2T
(
log
(
2 log 1

δ

)
+ 1− log ε

)
ε2

+
T

2ε2 log 1
δ

(
4 log2

(
log 1

δ2

ε

)

− 6ε log

(
log 1

δ2

ε

)
+ 8 log

(
log 1

δ2

ε

)
+ 2ε2 − 5ε+ 4

)
+O

(
1

log2 1
δ

)

=
2T

ε2
log

1

δ
+
T

ε
− 2T

ε2
(
log(2 log δ−1) + 1− log ε

)
+O

(
log2(log δ−1)

log δ−1

)
.

(6.88)

(6.89)

(6.90)

(6.91)

where

• the expression in (6.88) is from the expression of ζα = 1
α

(
1− 1

α

)α−1
(defined in

Theorem 22) and the condition ε > 2δ log δ−1,

• the expression in (6.90) is the Taylor expansion of (6.89) at δ = 0,

• in (6.90) as δ → 0, we have log δ−1 → ∞, therefore, for any fixed finite ε and

T , the fourth term is of order O
(

log2(log δ−1)
log δ−1

)
and dominates O

(
1

log2 δ−1

)
.

It is worth mentioning that the choice of α has already appeared in literature, see

e.g., [118, Discussion following Theorem 35].

6.5 Concluding Remarks

In this chapter, We propose a framework based on the information-theoretic study

of joint range of f -divergences to settle the optimal conversion from RDP to (ε, δ)-DP,
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and thus further enhances the privacy guarantee obtained by the moment accountant

approach, i.e., the linear composition theorem of RDP. An approximation of this

optimal conversion allows us to derive bounds on the number of DP-SGD iterations

for a given DP constraint. Our result improves upon the state-of-the-art [70] by

allowing more training iterations (often hundreds more) for the same privacy budget,

and thus providing higher utility for free.
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Chapter 7

CONCLUSION AND FUTURE WORK

We have introduced a novel family of loss functions, namely α-loss (α > 0),

to characterize adversarial actions. Making use of the α-loss, we have defined a

tunable measure of information leakage called maximal α-leakage, which incorporates

mutual information and maximal leakage for α = 1 and α = ∞, respectively, and is

proved to be Arimoto channel capacity for 1 < α < ∞. Therefore, we have given

an operational meaning to these well-known information-theoretical measures via the

lens of adversarial losses. By applying α-loss to a generative adversarial machine-

learning model, we have demonstrated that fairness and censoring guarantees can be

simultaneously provided via a universal representation of data. Thanks to the ability

of information-theoretical methods in capturing characteristics of privacy/random

mechanisms, we have improved the composition property of (ε, δ)-DP, a measure for

the worst case of information leakage, for specific privacy mechanisms (e.g., Gaussian

mechanism).

There are many problems yet to be addressed. For example, in practice, more

specifically, in data-driven machine learning, how could one design feasible privacy/random

mechanisms that satisfy constraints on maximal α-leakage? In addition, for the appli-

cation of α-loss in the centralized setting of machine learning, it is critical to develop

methods for efficiently obtaining good values of α to get fairness and censoring guar-

antees as well as utility guarantees beyond that of log-loss, i.e., setting α = 1. In

decentralized/federated computation settings, it is valuable to understand how much

α-loss can help to improve the learning performances. Finally, for the optimal conver-

sion from RDP to (ε, δ)-DP, can we use it to improve the privacy tracking of specific
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mechanisms in other scenarios, e.g., in federated learning? It is also interesting to

explore the connection between our privacy-tracking method, based on the optimal

conversion and the moment accountant, and the approach based on Gaussian-DP

recently provided in [121] by Dong at el.?
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