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ABSTRACT

Utilities infrastructure like the electric grid have been the target of more sophis-

ticated cyberattacks designed to disrupt their operation and create social unrest and

economical losses. Just in 2016, a cyberattack targeted the Ukrainian power grid and

successfully caused a blackout that affected 225,000 customers.

Industrial Control Systems (ICS) are a critical part of this infrastructure. Hon-

eypots are one of the tools that help us capture attack data to better understand

new and existing attack methods and strategies. Honeypots are computer systems

purposefully left exposed to be broken into. They do not have any inherent value,

instead, their value comes when attackers interact with them. However, state-of-the-

art honeypots lack sophisticated service simulations required to obtain valuable data.

Worst, they cannot adapt while ICS malware keeps evolving and attacks patterns are

increasingly more sophisticated.

This work presents HoneyPLC: A Next-Generation Honeypot for ICS. HoneyPLC

is, the very first medium-interaction ICS honeypot, and includes advanced service

simulation modeled after S7-300 and S7-1200 Siemens PLCs, which are widely used

in real-life ICS infrastructures. Additionally, HoneyPLC provides much needed exten-

sibility features to prepare for new attack tactics, e.g., exploiting a new vulnerability

found in a new PLC model.

HoneyPLC was deployed both in local and public environments, and tested against

well-known reconnaissance tools used by attackers such as Nmap and Shodan’s Hon-

eyscore. Results show that HoneyPLC is in fact able to fool both tools with a high

level of confidence. Also, HoneyPLC recorded high amounts of interesting ICS inter-

actions from all around the globe, proving not only that attackers are in fact targeting

ICS systems, but that HoneyPLC provides a higher level of interaction that effectively

deceives them.
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Chapter 1

INTRODUCTION

Industrial Control Systems (ICS) [1] are heavily used by many industries including

public utilities such as electricity, water, telecommunications and transportation, just

to name a few. These utilities are part of our daily life and we have become so

accustomed to them that we hardly event notice them. Any attack targeted against

an utility ICS network like the electric grid, for example, would potentially lead to

blackouts in a city or an entire geographical region. Regrettably, this proposition is

no longer a fiction. The number of attacks targeting ICS has steadily increased since

the infamous Stuxnet malware first showed the world that ICS networks are not safe

[2]. Indeed, in 2015 a cyberattack targeting the ICS network successfully took down

several distribution stations of the Ukrainian power grid. The ensuing outages left

approximately 225,000 people without access to electricity [3].

One of the most important components of ICS networks are Programmable Logic

Controllers better known as PLCs [1]. They control mission-critical electrical hard-

ware such as pumps or centrifuges. PLCs were the primary target of the Stuxnet

malware as they controlled critical physical processes in a nuclear facility.

In order to better understand cyberattacks against ICS, including PLCs, several

honeypots have been proposed [4][5][6][7]. Honeypots can be used by researchers in

order to obtain data about new hacker techniques and malware behavior [8]. However,

current honeypot implementations for ICS fail to provide the necessary features to

capture data on the latest and most sophisticated attack techniques. Another limita-

tion of the current literature is the lack of extensibility features for PLCs and network

services. Solving this limitation is important because ICS environments are very het-
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erogeneous in terms of types of devices and the network protocols they use. Yet

another limitation is that most of the current implementations are low-interaction.

This interaction level heavily restricts the value of the data that can be gathered from

attacker interactions.

Thesis Statement: We develop a new medium-interaction honeypot for PLCs by

leveraging a combination of existing technologies, e.g., s7comm, http, etc., that adapts

and solves the shortcomings of the existing honeypots in the literature, allowing for

emerging threats for ICS to be better understood and handled.

In order to provide support for this Thesis Statement, we present HoneyPLC: A

Next-Generation Honeypot for Industrial Control Systems. HoneyPLC is, as far as we

know, the very first Medium-Interaction ICS honeypot. HoneyPLC includes TCP/IP

Stack, s7comm, HTTP and SNMP advanced simulation and provides extensibility

features. Out of the box HoneyPLC supports three different PLCs: Siemens S7-300,

S7-1200 and S7-1500. We also implement a ladder logic capture feature that automat-

ically saves malicious ladder logic programs. These programs can later be analyzed

to reveal new attacker techniques. This feature too, is unique to our approach.

The principal contributions of this Thesis are:

• We provide a summary of the limitations and shortcomings of existing ICS

Honeypots and discuss how they address (or not) emerging malware threats,

new ICS technology, e.g., new PLC models and new ICS network protocols.

• We present HoneyPLC, the VERY FIRST medium-interaction honeypot for

ICS environments. HoneyPLC solves many of the limitations identified by the

summary listed above, it goes a step further by introducing extensibility features
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and customization flexibility.

• We introduce HoneyPLC’s ladder logic capture feature which allows HoneyPLC

to collect ladder logic malware specially crafted for ICS. As far as we know, this

feature is exclusive to HoneyPLC.

• Finally, we provide experimental evidence that demonstrates HoneyPLC is ef-

fective at engaging and deceiving attackers (and the tools they use) specifically

targeting ICS infrastructures.

This Thesis is organized as follows: Chapter 2 introduces detailed information

about ICS themselves, network protocols for ICS, PLCs, honeypots, ICS-specific mal-

ware and projects related to this work. In Chapter 3 presents a review of similar ap-

proaches found in the literature. Chapter 4 introduces our problem statement and we

highlight the problems this thesis strives to solve. Chapter 5 describes the architec-

ture of our approach and the design ideas that went into it. Chapter 6 illustrates how

we implemented our proposed architecture in detail and the technical specifications.

Chapter 7 exposes our evaluation description, evaluation environments and our re-

sults. Finally, in Chapter 8 we delve into a discussion about how our approach ranks

up against current literature and we outline what future research could be undertaken

as a result of this thesis. Finally, 9 presents our conclusions.
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Chapter 2

BACKGROUND

In this chapter we describe the necessary concepts for the reader to understand Hon-

eypots, ICS, PLCs and malware that is specifically crafted to target ICS systems.

2.1 Industrial Control Systems

All around the world, societies rely on basic utility services that are essential for

the continuing stability of their economic, social and political systems; e.g., energy,

communications, clean water. In the United States, the Presidential Policy Directive

21 defines sixteen critical infrastructure sectors including communications, manufac-

turing, emergency services, energy among others [9]. The infrastructure of these

sectors heavily depends on Industrial Control Systems (ICS), which is a general term

that encompasses several types of control systems, including Supervisory Control and

Data Acquisition (SCADA) systems [1], Distributed Control Systems (DCS) [1], and

other control system configurations such as Programmable Logic Controllers (PLC)

and Remote Terminal Units (RTUs) often found in the industrial sectors and criti-

cal infrastructures. Figure 2.1 depicts the place that ICS, SCADA, DCS and PLCs

occupy in the context of Cyber-Physical Systems (CPS) and Operational Technology

(OT). An ICS is composed of different control devices such as electrical, mechanical

or hydraulic and they all work together towards an industrial objective like producing

nuclear energy or providing clean water to a city. They may contain several control

loops, Human Machine Interfaces, diagnostic and maintenance tools and a plethora of

specialized network protocols [1]. Figure 2.2 gives us a detailed look at the different

components that make up an ICS and how they interact.
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SCADA
ICS

DCS
PLCOTCPS

Figure 2.1: The Place of ICS and PLCs in the Big Picture.

The key elements are:

• Human-Machine Interface (HMI): Software and hardware tool that allows hu-

man operators to monitor, modify and control the industrial process. They also

displays process status and historical reports.

• Actuator: Hydraulic, pneumatic or electrically powered device that positions a

valve between the open and closed positions.

• Sensor: Device that that generates a voltage that represents a physical property

of a process.

• Controller: Hardware of software that automatically regulates a controlled vari-

able. Programable Logic Controllers s fall in this category, we will expound on

them later in this Chapter.

• Remote Diagnostics and Maintenance: Utilities used to prevent, identify and

recover from irregular operations and failures.
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Set Points, Control Algorithms,
Constraints, Process data

Human Machine Interface (HMI) Remote Diagnostics and
Maintenance

Controller (e.g. PLCs)

Controlled
Variables

Sensors
Manipulated

Variable

Actuators

Controlled Process

Disturbances

Process OutputProcess Input

Figure 2.2: Basic Operation of an ICS. Redrawn from original [10].

2.2 Programmable Logic Controllers

A Programmable Logic Controller or PLC for short is a small industrial computer

designed to perform logic functions based on input provided by electrical hardware

such as pumps, relays, mechanical timers, switches, etc. PLCs have the capability of

controlling complex industrial processes and because of this, they are ubiquitous in

ICS and SCADA environments [10]. Occasionally PLCs are deployed as field devices

like RTUs (special purpose control units designed for remote stations). In these cases,

PLCs are referred as RTUs. Some popular PLC manufacturers include Siemens [11],

Allen Bradley [12] and ABB [13]. For the remaining of this document, we will focus on

Siemens manufactured PLCs, however, our approach can easily work with additional

manufacturers.

Internally, PLCs have programmable memory blocks that store instructions to

implement different functions, for example, input and output control, counting, logic
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gates, communication and arithmetic calculation. PLCs memory blocks are used

to save data and code. The code can be written in a variety of languages, e.g.,

STL (Structure List) or STL (Structured Text) [14]. The instruction code is then

compiled into MC7 assembly code which is the machine code run by Siemens S7

PLCs [15]. Essentially MC7 code fulfils the same role as Java bytecode. Finally the

code is uploaded to the PLC memory via a programming interface connected to a

workstation [1][16].

2.3 PLC Memory Blocks

PLCs manufactured by Siemens use specialized memory blocks to store different

types of data and make them available to applications like the Siemens Step7 software

[16]. In the following sections we describe each type of block in detail.

• Data Blocks (DB): DBs are used to store data that will later be used by a

program, different data types can be stored (e.g. Boolean, byte, integer) [17].

• System Data Blocks (SDB): SDBs contain PLC configuration information [16][17].

They may contain PLC model, firmware version, IP address and information

about the attached add-ons (e.g. communication processors, frequency convert-

ers). These blocks are automatically created and compiled by the PLC and

cannot be modified by the user.

• Organization Blocks (OB): OBs are the interfaces between the operating system

and the user program [18][19][20]. OBs execute when events occur (e.g. at CPU

startup, clocked executions, errors, hardware interrupts). There are several well-

known OBs that serve specific roles. For example OB1 in the S7-300 PLC is the

default block for cyclic execution of user programs, OB10 to OB17 are time-of-

day interrupts and OB35 works as a standard watchdog that runs every 100 ms.
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OB1

Call FB1, DB10

FB1

L DB11.DBW0

UC FC2

BE

DB10

Instance DB Local
data only

FB1

DB11

Global DB
For all
FBs
FCs
OBs

Figure 2.3: Data Block Structure in a LD Program. Redrawn from original [17].

OBs can easily be read and written by an S7 communication protocol enabled

application, without the need for authentication or any kind of security. In fact,

OB1 and OB35 were the primary targets of the Stuxnet malware payload [16].

• Function Blocks (FB): FBs hold standard code blocks. This code is written in

any of the IEC 61131 standard programming languages and is executed by the

PLC. Generally FBs are referenced and ran by an OB, for example, OB1 can

cyclically run code stored in an arbitrary FB [16][17].

Figure 2.3 depicts an example of the relationships that different types of memory

blocks can have.

• OB1: Performs cyclic execution of user program FB 1 using data from DB 10.

• FB 1: Holds user defined code that reads and writes data stored in DB 10 and

DB 11.

• DB 10: Stores instance data used by FB 1.

• DB 11: Stores Global data available to all FBs, FCs and OBs.
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Figure 2.4: Function Block Diagram Example. Redrawn from original [22].

2.4 PLC Programming Languages

PLC devices must be programmed with specialized instructions before being de-

ployed in a production industrial system [21]. The IEC 61131-3:2013 standard spec-

ifies the syntax and semantics of a unified suite of programming languages for pro-

grammable controllers (PCs). This suite consists of two textual languages, Instruction

List (IL) and Structured Text (ST), and two graphical languages, Ladder Diagram

(LD) and Function Block Diagram (FBD).

2.4.1 Function Block Diagram

It is described as a graphical programming language that represents signals and

data flows through blocks elements that can be later reused. A function block is

an instruction unit that takes one or more input values and produces one or more

outputs. They are illustrated as a rectangular block with inputs coming in from the

left and outputs leaving from the right. A block name is shown inside the block (e.g.,

the logic gate AND or a division operation DIV) as depicted in Figure 2.4. Function

blocks can contain standard functions like logic gates, counters and timers, or custom

functions defined by the user, such as custom mathematical equations.
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2.4.2 Ladder Logic Diagram

Ladder Diagrams serve as a programming language that uses software diagrams

to emulate hardware devices and were originally developed as a transition between

old relay control systems to the modern PLCs. They allow industrial technicians and

personnel already familiar with old circuit diagrams to easily make small adjustments

to modern PLCs and provide maintenance.

The method to create these diagrams involves drag and dropping individual ele-

ments into the emulated device as needed depending on the final control process [14]

[23]. Elements are patched up and connected to obtain the final design.

2.4.3 Structured Text

Structured text is a programming language that echos the Pascal language [14].

Programs are written in a series of statements separated by semicolons. Statements

use predefined functions to change variables that contain stored or I/O data. Like

other programming languages, Structured text has analogous operations (e.g. AND,

OR, NOT) and statements (e.g. assignment, conditional statements, loop state-

ments). Figure 2.5 shows an structured text piece of code, specifically the if-else

syntax and variable assignment.

2.5 ICS Network Protocols

ICS network protocols are used by SCADA systems and PLCs. They are charac-

terized by a lack of standardization and openness [24]. Some of them are proprietary

and their specifications are not of public domain.
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IF(Limit_switch AND Workpiece_Present) THEN

Gate1 := Open;

Gate1 := Close;

ELSE

Gate1 := Close;

Gate1 := Open;

END_IF

Figure 2.5: Structured Text Example. Based on original from [14].

2.5.1 Siemens S7 Communications Protocol

The S7 communications protocol, or s7comm for short [25], is a Siemens pro-

prietary protocol that enables communication between Siemens PLC devices and

Siemens Step7 software. It is mainly used for data exchange in PLCs and SCADA

systems and for PLC programming. The protocol is transported over TCP using port

102, making it independent of bus medium (e.g. PROFIBUS, Industrial Ethernet).

Figure 2.6 describes the s7comm protocol in the context of the network OSI layer

model. First, at layers, 5,6 and 7, the S7 application creates a s7comm packet. Sec-

ond, at layer 4, the s7comm protocol is encapsulated inside a COPT packet. Third,

still at layer 5, the COPT packet is encapsulated inside a TPKT packet. Finally, at

layer 3, the TPKT packet is encapsulated inside a good ‘ol TCP packet.

The S7 Communication Protocol enables PLC programming and diagnostics and

allows applications to read and write data into SFB and FB PLC memory blocks.

Because these blocks are used to store industrial environment data and industrial

processes instructions, applications should have restricted access to them. However,

the S7 communications protocol does not have any kind of security features and any-
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Figure 2.6: S7comm Protocol in the OSI Model. Redrawn from from the original
in [26].

body with access to the network can read and write memory block data [27]. Siemens

released an enhanced version of the protocol called S7 Plus. This new protocol in-

cludes much needed security features such as session ID and encryption. Nevertheless

several vulnerabilities have been documented. [28]. We shall refer to this protocol as

s7comm in all the remaining chapters of this Thesis.

2.6 Evolution of ICS Malware

For years, different malware with different attack vectors have targeted ICS. In

this section we discuss some of the most influential ones and that we discuss later in

this document.

2.6.1 Stuxnet

The first ever documented cyber-warfare weapon, Stuxnet, was a turning point in

the history of Cybersecurity. It set itself apart from previous malware by showing a

high level of sophistication, deep understanding of industrial processes and using not

one but four zero-day exploits [16].
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Stuxnet targeted PLC models 315 and 417 made by Siemens and modified its

ladder logic code while concealing itself from ICS administrators [29]. To accomplish

this, it first spread itself via USB sticks and the local network, looking for vulnerable

Windows workstations. After infecting the Windows workstation it would proceed

to infect the Step7 and WinCC Siemens proprietary software by hijacking a DLL

(Dynamic-link library) file used to communicate with the PLCs. After careful probing

and monitoring the malware would drop its payload only on 315 and 417 models with

specific manufacturer numbers and special memory blocks by continuously reading

the SDBs as explained in Section 2.3. Specifically, it infected blocks OB1 and OB35

also discussed in Section 2.3. It is believed that Stuxnet successfully sabotaged one

of Iran’s nuclear facilities [30].

2.6.2 Dragonfly

Also known as Havex malware [31], Dragonfly was a large scale cyberespionage

campaign that targeted ICS software in the energy sector in the United States and

Europe. In order to infect its targets, three different attack vectors were used. A spam

campaign that used spear phishing targeting senior employees in energy companies.

Watering Hole attacks [31] that compromised legitimate energy sector websites to

redirect the target to another compromised website that hosted the Lightsout exploit

which ultimately dropped the Oldrea or Karagany malwares [32] in the target’s host.

The final attack vector used was trojanized software (legitimate software that is turned

into malware), the attackers successfully compromised various legitimate ICS software

packages and inserted their own malicious code, these trojanized software packages

were freely available to download in the vendors official website.

Once a host was infected, the Havex malware leveraged legitimate functionality

available through the OPC protocol to draw a map of the industrial devices present in
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the ICS network. This kind of data would be highly valuable when designing future

attacks. Dragonfly was entirely focused on spying and gathering information on ICS

networks. However it did not damage any physical infrastructure or provoke any

service disruption like Stuxnet did, this is discussed in Section 2.6.1.

2.6.3 Crashoverride

Otherwise known as Industroyer [33], CRASHOVERRIDE is a sophisticated mal-

ware designed to disrupt ICS networks used in electrical substations. It shows in-

depth knowledge of ICS protocols used in electrical industry that would only be

possible with access to specialized industrial equipment. CRASHOVERRIDE dealt

physical damage by opening the circuit breakers on RTUs (see Chapter 2.2) and keep-

ing them open even if the grid operators tried to close them back to restore the system

[2]. It is believed to have been the cause of the power outage in Ukraine in December

of 2016.

2.7 Honeypots

Honeypots are computer systems that purposefully expose a set of vulnerabilities

and services that can be probed, analyzed and ultimately exploited by any attacker

[34]. Although honeypots do not posses any intrinsic value, when a malicious party

launches an attack on any of its services, all possible interaction data is monitored,

logged and stored for future analysis. This data is highly valuable as it can reveal

previously unknown attack methods used by attackers, capture new malware behavior

and payload and trigger alerts that a malicious entity is trying to exploit systems in

a government, enterprise or university network.
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2.8 Levels of Interaction

Depending on the level of interaction that they provide to an attacker, honey-

pots are commonly categorized as low-interaction and high-interaction, with a third

category where more much research is needed: medium-interaction honeypots [8].

2.8.1 Low-Interaction Honeypots

Low-interaction honeypots offer the least amount of functionality to an attacker

[8] [34]. The services exposed by this kind of honeypot are usually implemented using

simple scripts and finite state machines, or, at the very least, simulate the TCP/IP

stack. Low-interaction honeypots have several disadvantages. Because of their limited

interaction attackers may not be able to complete their attack steps or even worst, an

attacker might realize that she is targeting a fake system. It might seem that these

honeypots are not worth the time, however, they posses some advantages over the

other kinds. Low-interaction honeypots cannot be fully compromised as they are not

real systems, this greatly reduces maintenance costs and time invested in configuration

and deployment. Gaspot [35], further described in Chapter 3, is a perfect example

of a low-interaction honeypot because it is implemented using a Python script with

minimal configuration options.

2.8.2 Medium-Interaction Honeypots

Medium-interaction honeypots provide a middle ground between low and high

interaction levels. These honeypots are able to provide a more sophisticated deception

to attackers that would otherwise not be possible in a low-interaction honeypot [8]

[36]. They still have limitations compared to high-interaction honeypots. To strike a

balance, advanced simulations of services are implemented and exposed. Attackers are
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able to launch more complex attacks, thus increasing the value of the data collected.

Nevertheless, the probability of being compromised completely greatly decreases as

an operating system is not exposed. Kippo is medium-interaction SSH honeypot [37].

It is written in Python, however, it provides a more refined simulation like creating a

fake file system, ability for attackers to cat command files and save files downloaded

using wget. These features are superior to a low-interaction implementation but

not as sophisticated as an actual SSH server. There are many medium-interaction

honeypots out there, however, at the time of writing this Thesis, there are no ICS

medium-interaction honeypots.

2.8.3 High-Interaction Honeypots

High-interaction honeypots lie on the other side of the spectrum, they offer the

same level of interaction as a real system would, precisely because they are fully

fleshed systems with an installed operating system purposefully exposed [34] [8]. An

attacker is able to try any exploit that she might in a production system giving

more insight into her methods and intentions. Yet, this comes at a great risk, if the

honeypot is fully compromised, adversaries might be able to use it to break into other

systems in the same network [38]. Because high-interaction honeypots are actually

real systems, a real PLC completely exposed to the internet would make a perfectly

good example of a high-interaction honeypot.

2.9 Types of Honeypots

Based on what is their purpose, we classify them as Research and Production

honeypots, in this section we discuss each one in detail.
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2.9.1 Research Honeypots

The main purpose of research honeypots is learning. Specifically, they are used

to gather information about the black hat community [8][39]. This information can

be new attack methods, new malware behavior, who is attacking, where are they

attacking from and what kind of tools they use. Research honeypots don’t provide

direct value to a corporation and they are mainly found in universities and research

laboratories. Research honeypots are more sophisticated that their production coun-

terparts and they offer more customization. Their downside is a higher difficulty to

configure and maintain them.

2.9.2 Production Honeypots

A production honeypot is deployed inside an organization’s environment in order

to protect their resources and lower risk [8][39]. They differ from Research honeypots

mainly because they have far less functionality and are easier to deploy and config-

ure. Additionally production honeypots usually mimic the production network and

devices they inhabit. The value production honeypots give to organizations include

discovering vulnerabilities, triggering alerts and collecting data that can be later used

to better secure the corporate network, among others. Cowrie [40], for example, is

a medium-interaction SSH honeypot that can easily be deployed and configured in a

production network.
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2.10 Related Projects

In this section we examine projects that we leverage to build our approach and

that will be discussed at lenght in later chapters.

2.10.1 Honeyd

Honeyd is a low-interaction honeypot framework capable of deploying thousands

of hosts [34][41]. Honeyd simulates the TCP/IP Stack of computer systems as well as

TCP and UDP services. It provides interaction only at the network level and because

of its low-interaction nature, it is highly unlikely that attackers can break into the

system.

2.10.2 Nmap

Nmap or “Network Mapper” is an open source network scanning tool [42]. It is

used around the world by network administrators to manage and monitor network

connected devices. Nmap is able to detect what operating system and services a

particular device is running by sending raw IP packets over the network.

2.10.3 Shodan

Shodan is a computer search engine and crawler [43][44]. It looks for and indexes

exposed devices across the internet. These devices can be webcams, routers, ICS

devices among others. Shodan is web based and boasts a graphical user interface.

Additionally, Shodan supports the Shodan API, which can be used by advances users

to leverage Shodan’s more advanced features, like the Honeyscore. It was lunched in

2009 by John Matherly.
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2.10.4 Snap7

Snap7 is an open source project that provides Ethernet communication with

Siemens S7 PLCs [26]. Its main features are: native multi-architecture support (32

and 64 bit), Windows, Linux, BSD, Oracle Solaris and Mac OSX support, no config-

uration or installation needed.

Snap7 has sprung additional projects like #7Sharp, a native port of the original

Snap7 in C#, Moka 7, a pure Java port and Settimino an Arduino C port.
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Chapter 3

RELATED WORK

In this chapter we look at previous research work done in the area of ICS honeypots.

3.1 SCADA HoneyNet Project

The SCADA HoneyNet Project was the first ever honeypot implementation specif-

ically built for ICS released on 2004 [6][45]. The goal of the project was to find out

how feasible it was to develop a software framework capable of simulating ICS devices

like PLCs. It is classified as a low-interaction honeypot as the services are partially

implemented using Python scripts.

3.2 Conpot

Conpot is a low-interaction ICS honeypot implementation that simulates a par-

ticular PLC device [4]. Its default configuration emulates a Siemens S7-200 CPU

and it can be modified to include additional profiles by editing an XML file. Conpot

supports the s7comm, Modbus, HTTP and SNMP protocols. In addition Conpot in-

cludes an HMI that can be customized by the user by modifying the default template.

Conpot also provides templates in the form of XML files.
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3.3 CryPLH

CryPLH presents a new and different approach to building a PLC honeypot [5].

This approach includes HTTP, HTTPS, s7comm and SNMP services running on a

Linux host that has been modified to accept connections on specific ports. The

s7comm protocol is simulated by showing an incorrect password response and the

TCP/IP Stack is simulated via the Linux kernel.

3.4 Gaspot

Gaspot is a low interaction honeypot designed to simulate a gas tank gauge [35].

It was written as a Python script and it can be modified to change temperature, tank

name, and volume.

3.5 Digital Bond’s SCADA Honeynet

Released in 2006, this Honeynet implementation utilizes two separate Linux vir-

tual machines [45]. The first one includes a Honeywall that monitors traffic alongside

a proprietary IDS. The second and most interesting virtual machine hosts a simula-

tion of a Modicon Quantum PLC and several exposed services (Modbus, FTP, Telnet,

SNMP, HTTP).
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3.6 HoneyPhy

HoneyPhy provides the foundations of an extensible framework for physics-aware

honeypots [7]. The proposed framework would have three modules: internet inter-

faces, process models and device models. Additionally a proof-of-concept implemen-

tation backs up the framework design. The implementation includes a heating system,

a thermostat, DNP3 network communications and a control relay. Finally a math-

ematical model that simulates the temperature change is presented based on data

from empirical observations of an actual physical design.
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Chapter 4

PROBLEM STATEMENT

In this chapter we identify the research gaps and limitations that the current litera-

ture presents when it comes to ICS Honeypots. As we discussed in Chapter 1, ICS

are ubiquitous in the infrastructure of many utilities we use on a daily basis, from

electricity to transportation. Any disruption to these systems would result in massive

socioeconomic damage. This scenario is no longer a thing of the future, it is a real-

ity. The number of attacks targeted towards ICS has regularly increased since 2010

when Stuxnet became the first known digital weapon [2]. Later, in 2013, the Dragon-

fly malware campaign successfully spied on several utility companies as discussed in

Chapter 2. However, the worst was yet to happen, in 2015, the Ukraine Power Grid

was successfully brought down by a cyberattack. This event marked the first time a

country’s power grid was compromised by a cyberattack [2].

One of the most important components of ICS networks are Programmable Logic

Controllers also known as PLCs [1]. They control key hardware such as pumps or

centrifuges. Honeypots are an excellent tool that helps us understand cyberattacks

against ICS, including PLCs. Several honeypots implementations have been pro-

posed [4][5][6][7]. Researchers utilize ICS honeypots to obtain valuable data about

new attacker tactics and malware behavior [8]. However, current ICS honeypot im-

plementations fail to provide the necessary features to capture data on the latest

and most sophisticated attack techniques. Specifically, we identified the following

limitations:
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• Limited Interaction: Current approaches mostly provide low-interaction (rudi-

mentary and limited functionality) implementations as is discussed further in

Chapter 3. This is a serious limitation that stops current approaches from ex-

tracting value from adversarial interactions and malware. CRASHOVERRIDE,

discussed in Section 2.6.3, leveraged advanced ICS protocol features that would

be better simulated in a medium or high interaction honeypot and would not be

possible using a low interaction approach. This would result in the loss of highly

valuable interaction data. For example, CryPLH [5] implements the s7comm

protocol using a Python script that only simulates an incorrect password screen.

• Limited Covert Operation: The moment an attacker discovers the true

nature of a honeypot is game over, the attacker might stop interacting with it

altogether and stop revealing her attack methods. One of the most used tools for

network reconnaissance is Nmap. Therefore, honeypots should aim to fool tools

like Nmap to maintain their covert operation. Currently, the SCADA HoneyNet

Project is the only other approach in the literature that leverages Honeyd to

provide a convincing deception to attackers. All other implementations fail to

attempt and sometimes even mention this as it will be shown in Chapter 3.

• Limited Extensibility: Another limitation of the current literature is the nar-

row or nonexistent extensibility support for different PLC devices and network

services that are used in ICS in practice. According to Table 8.1, only Conpot

provides the ability to customise XML files to support additional PLC devices.

More to the point, the heterogeneous nature of ICS protocols requires extensibil-

ity to support new PLC devices and new network services. Stuxnet, discussed in

Section 2.6.1, targeted different kinds of PLCs. CRASHOVERRIDE, discussed

in Section 2.6.3, targeted different network services.
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• No Malware Collection: The highly specialized nature of ICS devices calls

forth highly specialized malware techniques to understand them better. Honey-

pots are a great tool to collect and analyze malware [41]. Actually, there exists

non-ICS medium-interaction honeypots that do just that [36]. However, the

current literature does not try to solve this problem at all. And the problem is

very real. Stuxnet, discussed in Section 2.6.1 injects malicious ladder logic code

to the target PLCs and Dragonfly, discussed in Section 2.6.2, injected malicious

code into legitimate manufacturer software.

In Chapter 3 we will expound on the specific limitations of the current literature,

however, the key takeaway is that none of the current implementations address all of

the above limitations. Taking into account the aforementioned problems, it is clear

that we a new medium-interaction ICS honeypot should bolster features that alleviate

these limitations.
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Chapter 5

ARCHITECTURAL DESIGN

In this chapter we illustrate the four core components (along with their subcompo-

nents) of HoneyPLC and how their design addresses important limitations identified

in Chapter 4. Overall, HoneyPLC is designed as a medium-interaction honeypot and

its components are depicted in Figure 5.1.

The HoneyPLC architecture consists of the following components:

• Honeyd Framework: The function of Honeyd is twofold. First, Honeyd’s

personality engine allows HoneyPLC to provide a highly sophisticated TCP/IP

Stack simulation that fools reconnaissance tools like Nmap. When Nmap tries

to fingerprint our HoneyPLC host, Honeyd will respond with the appropriate

fingerprint information. As we discussed in Chapter 4, keeping a covert op-

eration is important to keep attackers engaged. Second, Honeyd’s Subsystem

virtualization enables HoneyPLC to provide extensibility of network services

by redirecting network traffic to the correct service simulation, e.g., s7comm

server. The Subsystem Virtualization communicates with the Network Services

component to forward TCP and UDP requests. This component helps alleviate

the Limited Extensibility problem discussed in Chapter 4.

• Network Services: HoneyPLC provides three network services: s7comm server,

SNMP agent, and HTTP server.

Our s7comm server provides a sophisticated simulation of the Siemens propri-

etary protocol. When an attacker tries to read or write information to Honey-
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Figure 5.1: The Architecture of HoneyPLC.

PLC, the s7comm server replies to the requests. This server provides a level

of interaction not present in low-interaction ICS honeypots. Additionally, our

s7comm server includes the Ladder Logic capture feature that writes any ladder

logic program that an attacker uploads to HoneyPLC. This feature provides

malware collection not present in the literature up until now as disccused in

Chapter 3.

The next sub-component is the SNMP agent. Our SNMP agent uses an ad-

vanced simulation of the SNMP protocol along with believable MIB data to

reply to any SNMP server query. Real PLCs do implement real SNMP agents

and having this sub-component adds to the deception capabilities of HoneyPLC.

Finally, the HTTP server provides an advanced simulation of the HTTP server

of the Real PLCs and serves websites found in real PLCs.
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All three of our Network Services communicate with the Interaction Data com-

ponent of HoneyPLC to feed their specific log files.

This component is key to addressing the problem found in low-interaction ICS

honeypots by providing higher interaction features.

• Interaction Data: This component holds all of the interaction data gathered

by HoneyPLC. It maintains two kinds of data. First, it contains all logs pro-

duced by our s7comm servers, the SNMP agent and the HTTP server. Second,

it contains all the ladder logic programs that get injected via the s7comm server.

This component communicates directly with the Network Services component.

It is very important as it holds the much valued data gathered by HoneyPLC.

• PLC Profile: The PLC Profile component was designed with the purpose

of improving extensibility. It is a collection of PLC Profiles that hold all the

required data to simulate a given PLC. The PLC Profile communicates with the

Honeyd Framework and Network Services components to customize the PLC

that HoneyPLC is simulating at any given time. This component also includes

the Profiler tool. We implemented this tool to automate the collection of PLC

Profiles from real PLCs. This component addresses the lack of extensibility

discussed in Chapter 4.

To hammer this home we present the next example scenario. When we deploy

HoneyPLC we must first choose what PLC model we want to simulate, for this exam-

ple we select the S7-1200 model. We then run HoneyPLC using the S7-1200 Profile.

HoneyPLC is running and standing by. Now we suppose that an attacker tries to

fingerprint our honeypot with Nmap. All the TCP/IP requests will be handled by

Honeyd’s personality engine. Because we selected the S7-1200 PLC model in the be-

ginning, Honeyd will use the appropriate fingerprint to reply to Nmap. At this point,
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Nmap confirms to the attacker that he is dealing with a PLC and not a honeypot.

Next, he might try to initiate an s7comm connection to check what PLC memory

blocks are available. The connection is first handled by Honeyd and forwarded to the

s7comm server. The s7comm server then replies with the information and Honeyd

again forwards the replies to the attacker. In the maintime, our s7comm server is

logging all the interactions, including source IP and memory block requests. Finally,

when the attacker identifies what PLC memory block he wants to attack, he uses an

s7comm application like PLCinject to load a malicious ladder logic program. When

he does this, the s7comm server will write the program into HoneyPLC filesystem.

At this point, the attacker might do two things. First, continue interacting with

HoneyPLC, for example, she might try to download the MIB via the SNMP protocol

to get more information about the network configuration or any banner present.

Second, she might stop interacting alltogether, at which point HoneyPLC’s work is

over.

After the attack has been completed we now have very important information

logged. We know the public IP address of the attacker, what specific PLC memory

blocks the attacker was tergetting, and best of all, we have the critical piece, the

ladder logic program she injected. We can use this malware sample to analyze it

at the byte level and understand what instructions the attacker wanted the PLC to

perform.
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Chapter 6

IMPLEMENTATION

In this chapter, we describe how the different parts that compose HoneyPLC are

implemented. First, we implement the following network services: s7comm, HTTP

and SNMP. The integration of all these elements is made possible by the Honeyd

framework. The Honeyd framework allows us to easily integrate new network services

and new HoneyPLC profiles. Additionally Honeyd’s personality engine is leveraged

in order to provide a sophisticated TCP/IP Stack simulation.

We also detail how HoneyPLC Profiles are structured, generated, and used. Our

profiles are based on the following Siemens PLC models: S7-300, S7-1200 and S7-

1500. We designed our implementation around these particular PLC models as they

are commonly found in the wild as shown in Figure 6.1. This figure shows more than

a thousand internet-facing Siemens PLCs with the s7comm protocol enabled across

different countries.

Although, the list of supported PLC devices might seem limited, the Profiler

feature of HoneyPLC makes it possible to extend the number of supported PLCs.

In the following sections we describe our implementation approach for the Profiler

feature and each of the supported honeypot attack surfaces.

What follows is an in-depth discussion about how each component was imple-

mented and integrated.
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Figure 6.1: Shodan Query Revealing Siemens PLCs in the Wild.

6.1 Integration via the Honeyd Framework

In order to build HoneyPLC and integrate our sophisticated service simulations,

we leveraged various of Honeyd’s capabilities including its personality engine, config-

uration files and subsystem virtualization.

6.1.1 Honeyd Configuration Files

The first thing that Honeyd requires before running is a configuration file. The

configuration file is a simple text file, the language of the file should follow a context

free grammar that specifies command options and the correct syntax [34]. Some of the

configuration commands allow Honeyd to change the personality of a honeypot, select

the network space, set port behavior and more. HoneyPLC leverages the personality

setting, subsystem virtualization, port behavior and network space commands. Figure
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create base

add base subsystem "/usr/share/honeyd/s7commServer" shared restart

clone host1 base

set host1 personality "Siemens Simatic 300 programmable logic controller"

bind 172.16.0.1 host1

Figure 6.2: Honeyd Configuration File.

6.2 shows an example of a configuration file. First we create the base subsystem and

add the s7comm server subsystem by providing the required directory. Next we clone

the base to create host1. This host will be the actual virtual honeypot that Honeyd

exposes. Then we set the personality of host1 to use the S7-300 PLC fingerprint.

Finally, we bind host1 to an IP address.

6.1.2 Honeyd Subsystem Virtualization

The Subsystem Virtualization feature allows for Honeyd to start a regular Unix

application within Honeyd’s virtual address space [34]. In theory, any Unix applica-

tion that supports networking can be used as a subsystem by Honeyd and in turn by

HoneyPLC.

This features allows the integration of all our network services, s7comm, http and

snmp. In Figure 6.2 we can see how the subsystem command is used to start our

s7comm server.
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6.1.3 TCP/IP Stack Attack Surface

Honeyd’s personality engine enables HoneyPLC to deceive fingerprinting tools,

e.g., Nmap, and present our honeypot as any device we wish [34]. To achieve this, the

engine reads a particular fingerprint from Nmap’s database and reverses it. Reversing

the fingerprint means that when Honeyd simulates a particular device it introduces

its IP/TCP stack peculiarities. These peculiarities are for example, TCP SYN packet

flags, IMCP packet flags and timestamps. Figure 6.3 shows an example fingerprint.

It contains information about the name of the fingerprint, classification of the device

and the results of the multiple tests that Nmap performs for OS detection.

In order to provide the best possible simulation we first used Nmap to generate a

detailed TCP/IP Stack fingerprint for each of the Siemens PLCs. We then integrated

these fingerprints with the Honeyd fingerprint database. This is done by appending

our fingerprints to Honeyd’s nmap-os-db text file.

6.2 SNMP Attack Surface

SNMP is used to monitor network connected devices. It listens to requests over

UDP port 161. A typical SNMP setup, includes a manager and an agent, the manager

continually queries the agent for up-to-date data. A SNMP agent exposes a set of

data known as Management Information base or MIB. In order to simulate the SNMP

protocol we use a light Python application called snmpsim. This application is capable

of simulating any SNMP agent based on real time or archived MIB data. When a

SNMP request is received by HoneyPLC, snmpsim handles the request and replies

with the correct OID in the same way as the real PLC would do.
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# SIMATIC 1200 PLC

Fingerprint Siemens Simatic 1200 programmable logic controller

Class Siemens | embedded || specialized

SEQ(SP=9E%GCD=1%ISR=A0%TI=I%TS=U)

OPS(O1=M5B4%O2=M578%O3=M280%O4=M5B4%O5=M218%O6=M109)

WIN(W1=2000%W2=2000%W3=2000%W4=2000%W5=2000%W6=2000)

ECN(R=Y%DF=N%TG=20%W=2000%O=M5B4%CC=N%Q=)

T1(R=Y%DF=N%TG=20%S=O%A=S+%F=AS%RD=0%Q=)

T2(R=N)

T3(R=Y%DF=N%TG=20%W=2000%S=O%A=O%F=A%O=%RD=0%Q=)

T4(R=Y%DF=N%TG=20%W=2000%S=A%A=Z%F=R%O=%RD=0%Q=)

U1(R=N)

IE(R=Y%DFI=N%TG=20%CD=S)

Figure 6.3: Nmap Fingerprint of Siemens PLC S7-1200.

6.3 HTTP Attack Surface

Most Siemens PLC devices include an optional HTTP service to manage some of

its features. We implemented this with lighttpd, a lightweight webserver to handle

all HTTP quests. When an HTTP request hits the honeypot, Honeyd’s Subsystem

virtualization relays it to the lighttpd server and in turn the webserver replies with

the website data from a HoneyPLC profile.
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6.4 S7comm Attack Surface

The implementation of the s7comm protocol was by far the most challenging as-

pect of HoneyPLC. At the time of writing, Siemens had not released any specification

for their protocol and the information that is available has been collected by third

parties like the Snap7 project[26] and the Wireshark Wiki [25].

We leveraged the Snap7 framework described in 2.10.4 to write an s7comm server

application in C++. Additionally we modified and recompiled the source code of

the main Snap7 library to add our own features. Our s7comm server offers a very

sophisticated level of interaction. It simulates a real Siemens PLC and exposes several

memory blocks via TCP port 102. Our implementation is so sophisticated that we

were able to test it with the Siemens SIMATIC STEP7 software.

One of our new additions to the s7comm server arsenal is the Ladder Logic malware

capture. When an adversary uploads a ladder logic program to any of the server’s

memory blocks this feature automatically writes them into the file Linux file system

with the corresponding timestamp. These captured ladder logic programs can then

be analyzed at the byte level to extract new attack patterns used by adversaries

targeting PLCs.

6.5 HoneyPLC Profiler

The HoneyPLC Profiler was implemented to automate the creation of new Honey-

PLC Profiles. It was written as a command line script in Python and interfaces with

four different applications: snmpwalk, nmap, and wget. HoneyPLC Profiler requires

the IP address of the target PLC device as the only input. It will then run a series

of queries to obtain three discrete sets of data from the target PLC: An SNMP MIB,

a webiste directory, and an nmap fingerprint.
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Nmap
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MIB

fingerprint
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Application Data

Figure 6.4: HoneyPLC Profiler Architecture.

Figure 6.4 illustrates the HoneyPLC Profiler architecture. First, snmpwalk is

used to read all the available OIDs from the public community string. The default

configuration assumes the PLC is using SNMP version 1, this is because this is default

version of the protocol for the PLCs we have encountered. After all OIDs are read

we create an identical MIB to the one used by the PLC. Second, we use Nmap’s OS

detection to get the TCP/IP stack fingerprint of the target PLC. In order to obtain

a better fingerprint we scan all well-known TCP and UDP ports. After the scan is

completed we extract the Nmap formatted fingerprint so that Honeyd can understand

it. Finally, wget is used to download a complete copy of the administration website

of the PLC.

If there are no errors after gathering the data, HoneyPLC Profiler will create a

custom directory and data structure that can be used by the HoneyPLC to simulate

the target PLC.
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6.6 Logging

All of HoneyPLC’s components have powerful built-in logging functionalities. We

configured Honeyd, lighttpd and snmpsim to automatically log all interactions. Our

s7comm server is the exception. The Snap7 framework doesn’t create log files au-

tomatically modified the main library source code to write to the file system all

interactions including: IP address of originating host, timestamp, memory block ID

in case of reading or writing. Next, snmpsim logs IP information, what OIDs were ac-

cessed and timestamps. Finally, the lighttpd webserver includes all the major features

of a modern webserver with detailed logging that includes IP address information,

accesses website files and timestamps. All of them log every single interaction all the

time.
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Chapter 7

EVALUATION AND RESULTS

7.1 Covert Operation (Nmap and Honeyscore Experiment)

The moment the honeypot nature of HoneyPLC is revealed to an attacker or

malware, the quantity and value of the gathered interaction data drastically decreases.

For this reason HoneyPLC has to maintain covertness. In order to evaluate the

stealthiness of our approach we decided to test it against two of the most popular

tools used by both black hat and white hat community: Nmap and Shodan.

Nmap, as described in Chapter 2.10.2, is a free and open source utility used

by millions of people for network discovery and OS fingerprinting. [42]. Shodan’s

Honeyscore is a tool part of the Shodan API. Its purpose is to expose the many

ways in which honeypots fall short of creating realistic simulations. Given an IP

address Honeyscore calculates the probability that the host is a honeypot or not.

This Honeyscore is a value between 0.0 and 1.0 where 0.0 means that the host is

definitively a real system and 1.0 means that the host is definitively a honeypot. In

order to learn more about Honeyscore’s algorithm we contacted John Matherly and

the following are the criteria by which the Honeyscore is calculated. An email (J.

Matherly, personal communication, November 27, 2019) gave us specific information

about the Honeyscore algorithm and what it looks at:

• Too many open network ports.

• Service not matching the environment, for example, an ICS running on AWS

EC2.

• Default settings of known honeypots.
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Honeyd's
Personality
Engine

Ubuntu	18.04	LTS
10.0.0.100	/24 10.0.0.101	/24

Nmap's
fingerprint	DB

Ubuntu	18.04	LTS

Nmap	Scanning	Host HoneyPLC	Host

Honeyd's
Subsystem
Virtualization

Nmap's	OS
detection Honeyd's

Configuration
File

Figure 7.1: Nmap Test Environment.

• If it was a honeypot 1 month ago then it’s a honeypot today, even though the

configuration looks real.

• Machine learning.

• Same configuration across multiple honeypots.

7.1.1 Nmap Test Environment

Figure 7.1 shows our experimental setup. It was composed of two physical com-

puters. The first one had Ubuntu 18.04 LTS with HoneyPLC and all its components

installed. The second one was a simple laptop that had the latest version of Nmap

installed. Both hosts were directly connected via an Ethernet cable. Both hosts

belonged to the same local network.

In order to conduct a successful experiment we made several configurations to our

test environment. First, in the HoneyPLC host we install HoneyPLC and all of its

components:

• Honeyd

• lighttpd
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Figure 7.2: Real PLC Nmap Test Environment.

• snmpsim

• s7comm server

We built Honeyd version 1.6d from source, the latest version is available in the of-

ficial GitHub repository [46]. Next we installed the lighttpd web server version 1.4.45,

which is available using Ubuntu’s packaging system. After that, we installed snmp-

sim version 0.4.7 available using Python’s package management system pip and all

its dependencies. Finally we installed our s7comm server and our custom libsnap7.so

library in /usr/lib. Moving on to the laptop used for Nmap scanning we deployed

Nmap version 7.80 and proceeded to install our three Siemens PLCs fingerprints in

Nmap’s fingerprint database nmap-os-db.

Since we needed a baseline to compare the results of our approach, we decided

to get the Nmap confidence data of the real PLCs for this purpose. To accomplish

this we setup an additional test environment as shown in Figure 7.2. This second

test environment was composed of one laptop with Ubuntu 18.04 LTS installed. The
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laptop also ran Nmap version 7.80 and the Siemens proprietary software S7 Manager.

The laptop was directly connected to one of our three different PLCs (S7-300, S7-1200

and S7-1500). Both hosts belong to the same local network and were connected using

a standard Ethernet cable.

The PLCs needed to be configured before the laptop could reach them over the

network. In order to accomplish this we used the Siemens proprietary software S7

Manager. This software allows us to change the network settings of the PLCs. For

our experiments we set the IP addresses of each PLC to 192.168.0.101 with a network

mask of 24 bits. Next, we conducted two different sets of Nmap scans with OS

detection enabled. One set for HoneyPLC and another set for the real PLCs. Each

PLC model is scanned 10 times.

For the HoneyPLC experiment we installed the corresponding HoneyPLC Profile

so that the aforementioned applications were correctly configured.

7.1.2 Honeyscore Test Environment

Because Honeyscore works on internet facing IP addresses our Honeyscore test

environment needed to be made public. We deployed three EC2 instances accessible

from the internet with the following specifications: 2 vCPUs, 4GB RAM and Ubuntu

18.04 LTS OS. Then we deployed HoneyPLC in each one of the servers.

We followed the configuration steps detailed in 7.1.1 to deploy all of our three

PLC profiles. Each instance exposes TCP ports 80 and 102 and UDP port 161. We

discovered that port 22 for the SSH service was being logged by Shodan, this service

should not be present since the real PLCs do not implemented. Because of this, we

blocked all connections to SSH, except when originated from our workstations IP

addresses, so we could keep administration access.
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Device type: specialized|printer

Running (JUST GUESSING): Siemens embedded (97%), Brother embedded (90%),

Toshiba embedded (88%)

OS CPE: cpe:/h:siemens:simatic_300 cpe:/h:brother:mfc-7820n

cpe:/h:toshibatec:e-studio-280

Aggressive OS guesses: Siemens Simatic 300 programmable logic controller (97%),

Siemens SPS programmable logic controller (91%), Brother MFC-7820N printer (90%)

Figure 7.3: Nmap Scan Results Example.

In order to compare our honeyscores to other real PLCs and other honeypots we

decided to leverage Shodan’s search engine to gather data of internet facing real PLCs

and PLCs flagged as honeypots by Shodan. We looked at open ports, geolocation,

honeyscore, PLC model and IP addresses. Then we analyzed these data and use it

to compare it to our approach.

7.1.3 Results

The results of our Nmap experiment can be seen in Figure 7.4. Before interpreting

our results we should explain how Nmap reports the results of its OS detection scans.

After the OS detection scan is completed Nmap can either report a single OS match or

report a list of potential OS guesses, each guess with its own confidence rate. Figure

7.3 shows an example.

The results show that for all three PLC models, the Real PLCs get the best

confidence by a small margin. However, these results are highly successful since for

all scans across all sets Nmap identified the correct PLC model with the highest

confidence. Our results are even more impressive when you consider that a Linux
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S7-300 (Real)

S7-300 (HoneyPLC)

S7-1200 (Real)

S7-1200 (HoneyPLC)

S7-1500 (Real)

S7-1500 (HoneyPLC)

Confidence (%)

Figure 7.4: Nmap OS Detection Scan Results.

kernel simulation of the TCP/IP Stack will not fool Nmap. In fact, Nmap will report

Linux as the OS and not even mention the PLC as one of its guesses [5]. There is a

small drop of confidence for the S7-1500 HoneyPLC scans. We believe this change is

due the fact that the S7-1500 is much more recent product, it has 2 Ethernet ports

instead of 1 and the processor is much faster.

The results of our Shodan experiment are shown in Figure 7.5. It took about a

week for Shodan to index our honeypots and identify the s7comm service on port 102

and the http service on port 80. In Figure 7.5 we can observe that Shodan assigns

a honeyscore of 0.0 to our S7-300 profile and how this honeyscore compares to real

S7-300 PLCs and other S7-300 honeypots found in the wild by Shodan. Next, we

can see that our S7-1200 profile get 0.3 and we can compare it to real S7-1200 PLCs

indexed by Shodan. We could not find any S7-1200 honeypots using Shodan.

The results of our experiment shows that HoneyPLC is able to fool fingerprint

and reconnaissance tools like Nmap, much better than Linux kernel TCP/IP Stack

simulation. Additionally we provide detailed evidence data. As far as we know, there

has not been a similar evaluation in the literature where confidence data is provided.
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0 0.1 0.2 0.3 0.4 0.5

S7-300 HoneyPLC

S7-300 Shodan Real ICS

S7-300 Shodan Honeypot

S7-1200 HoneyPLC

S7-1200 Shodan Real ICS

Honeyscore (0.0 - 1.0)

Figure 7.5: Honeyscore Results Comparison.

Additionally, our Honeyscore results show that HoneyPLC performs better than

other honeypots found in Shodan.

7.2 Ladder Logic Capture (PLCinject and AWS Experiment)

The goal of this experiment is to demonstrate the capabilities of HoneyPLC’s

Ladder logic capture feature. To demonstrate the effectiveness of our approach we

must answer the question: is it possible for an attacker to successfully inject malicious

ladder logic code into HoneyPLC?

In order to try and answer this question we setup a test environment completely

exposed to the internet in hopes that an attacker will inject a malicious ladder logic

program to HoneyPLC that can later be analyzed to reveal her attack methods. Be-

fore doing that we also must make sure that our ladder logic capture feature actually

works. To accomplish this goal we use PLCinject. PLCinject is a research tool pub-

lished by the SCADACS team [47] [48] capable of injecting arbitrary compiled ladder

logic programs into a Siemens PLC memory block. Figure 7.6 shows a sample of the

ladder logic code dropped by the Stuxnet malware. We also setup an internet facing
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UC FC1865

POP

L DW#16#DEADF007

==D

BEC

L DW#16#0

L DW#16#0

Figure 7.6: Ladder Logic Example.

test environment where we can use PLCinject to test our approach.

7.2.1 Test Environment

For this experiment we use the same AWS test environment described in Section

7.1.2. Additionally we setup a laptop with Ubuntu 18.04 LTS installed and with the

latest version of PLCinject available on Github [49]. PLCinject also leverages the

Snap7 framework, so we installed our custom library and then compile PLCinject

from source. Figure 7.8 illustrates our setup. The PLCinject host contains the ladder

logic program sample that PLCinject will upload into HoneyPLC. Figure 7.7 depicts

how an injection is performed. The AWS Instance with HoneyPLC installed runs our

s7comm server and exposes the standard PLC memory blocks that will be targeted

by PLCinject. Finally, all malicious ladder logic programs are saved directly to the

Linux file system with its corresponding timestamp.
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sudo ./plcinject -c 3.15.22.159 -p DB3 -b FC1000 -f /home/edlopezm/PLCinject

plcinject Copyright (C) 2015 SCADACS (Daniel Marzin, Stephan Lau, Johannes Klick)

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions.

For details check the full license at

http://www.gnu.org/licenses/gpl-3.0.html.

This program is for demonstration purposes only.

You may only use this program to access your own devices and do not

carry out any malicious changes to other devices.

We accept no liability in any way.

Do you agree with that? [y/N]:y

PLC patched!

Figure 7.7: PLCinject Execution Example.

7.2.2 Results

Our PLCinject experiment was succesful and we were able to inject a sample

ladder logic program into HoneyPLC. After the injection was completed, we logged

into our honeypot file system and found the ladder logic file with its corresponding

timestamp. Figure 7.9 depicts our experiment result. We use the Linux ls command

to show the file details.

Additionally, we got a multitude s7comm connections and requests. Our results

can be observed in Figure 7.11. The figure shows the percentage distribution of TCP

connections made to HoneyPLC simulating a S7-1200. This honeypot received a to-

tal of 195140 TCP connections. We can see that the HTTP service received a the
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Figure 7.8: PLCinject Test Environment.

ubuntu@ip-172-31-9-194:~/s7server$ ls -la

-rw-r--r-- 1 root root 256 Mar 19 21:47 ’blockdump_Thu Mar 19 21:47:10 2020’$’\n’

Figure 7.9: Ladder Logic Captured in Linux Filesystem.

majority of the connections followed by SSH and s7comm. One thing to note is that

most of the SSH connections were started by us in order to administer the honeypot

host. The Other cathegory includes administrative protocols like NetBIOS and ran-

dom ports that are not relevant to this work. Finally we are most interested in the

s7comm protocol. 7.10 shows how many TCP connections we received and how many

read requests for both S7-300 and S7-1200 profiles. Read requests attempt to read

information from the PLC memory blocks. The fact that we got these read requests

means that attackers interacted with HoneyPLC beyond a simple TCP connection,

they might have been performing reconnaissance. At the time of writing this Thesis

we did not received any malicious ladder logic. Figure 7.12 shows the geo-location of
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Figure 7.10: Comparison of S7comm Connections Received by HoneyPLC.

the IP addresses that had a TCP conversation using the s7comm protocol. We can

clearly see that most of them originated from the United States followed by China

and the Netherlands.

Overall, our results clearly show that HoneyPLC provides a higher level of inter-

action that has not been shown in the current literature and certainly not with our

detailed data. HoneyPLC received read requests from s7comm clients from countries

usually linked to cyber-warfare that were most likely performing reconnaissance. Ad-

ditionally, we proved that HoneyPLC is capable of capturing malicious ladder logic

programs and saving it for further analysis.
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Figure 7.11: Distribution of TCP Connections per Port for HoneyPLC with the
S7-1200 Profile.

United States 50
China 6

Netherlands 6
France 5
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Russia 5
Japan 2

Romania 2
United Kingdom 2

Bulgaria 1
Hong Kong 1

Panama 1
Sweden 1

Figure 7.12: S7comm Conversations by Geolocation. These Belong to HoneyPLC
Running the S7-1200 Profile.
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Chapter 8

DISCUSSION AND FUTURE WORK

HoneyPLC addresses most of the current literature shortcomings. It provides

a higher level of interaction than most existing implementations. For example, it

simulates the s7comm protocol with PLC memory block read and write features,

in contrast, CryPHL [5] simulates the s7comm protocol is simulated by showing an

incorrect password response, limiting any other interaction by an attacker. HoneyPLC

also improves in extensibility and support by introducing PLC profiles and supporting

three PLC devices out of the box. For comparison, Conpot [4] provides XML files

to provide extensibility, however, they provide limited data customization and only

supports a single PLC device. Regarding, TCP/IP stack simulation, HoneyPLC

provides state-of-the-art simulation which is superior to CryPLH which uses the Linux

kernel to simulate the stack and fails to be identified as a PLC by network scanners.

Even though HoneyPLC introduces several improvements over the current liter-

ature still has some limitations. Out of the box it doesn’t support additional pro-

tocols e.g., Modbus [50], however, this can be updated by future research and using

HoneyPLC’s extensibility tools. Another limitation is the lack of production ICS

environments data, this is not exclusive to HoneyPLC, there is general lack of access

to production ICS environments [51].

50



8.1 Overall Comparison with Existing Approaches

Table 8.1 provides a color-coded comparison of the current literature in ICS hon-

eypots. We now explain what our criteria are for each of the color codes.

• Red: The feature has a deficient or non-existent solution coverage.

For example, in Table 8.1 we have colored Conpot’s Network Stack simulation

as Red because it fails to provide any solution for this problem. This is a clear

contrast with how the SCADA HoneyNet Project handles the Network Stack

simulation problem with Honeyd. Or even how Digital Bond’s Honeynet tries

to solve the problem using the Linux Kernel.

• Yellow: The feature has an existent but limited solution coverage.

For example, in Table 8.1 we colored yellow the honeypots that implement a low-

interaction level. This is clearly addressing the problem of what interaction level

the honeypot implements, however, it is not the best solution when compared

to, medium-interaction or high-interaction solutions.

• Green: The feature has an existent and optimal solution coverage.

For example, HoneyPLC provides PLC profiles to solve the problem of limited

extensibility and as a result it is marked as Green. In stark contrast, Gaspot,

for example, does not address extensibility at all and this it is marked as Red.

Future work will have to address how we can analyze and extract knowledge from

captured ladder logic malware. For example by simulating the execution of malicious

code using HoneyPLC itself. There are active research projects to better understand

the ladder logic machine code [15]. Another idea would be to beef up HoneyPLC’s

support by working on more PLC profiles that support additional PLC manufacturers
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Approach / Feature Level of Interac-

tion

Extensibility Network Stack

Simulation

PLC devices Network Services Ladder Logic

capture

Physics-

aware

Logging

SCADA HoneyNet

Project [6]

Low None Honeyd Not specified

(Generic PLC)

• Modbus

• http

• ftp

• telnet

None None Yes

Digital Bond’s Hon-

eynet [45]

Low None None Modicom Quantum

PLC

• Modbus

• http

• snmp

• telnet

None None Yes

CryPLH [5] High None Linux kernel Siemens S7-300 • s7comm

• http

• snmp

None None Not

speci-

fied

Conpot [4] Low XML template None Siemens S7-200
• Modbus

• http

• snmp

None None Yes

Gaspot [35] Low None None Veeder Root

Guardian AST

Not specified None None Yes

HoneyPhy [7] Hybrid XML files (not

implemented)

None Generic Analog

Thermostat

DNP3 Yes Not

speci-

fied

None

SHaPe [52] Low ICD or IID file None IEC 61850 Com-

pliant PLC (Not

Specified)

IEC 61850

(GOOSE)

None None Yes

S7commTrace [53] High User Template None Siemens S7-300 S7comm None None Yes

DiPot [54] Low XML template None Siemens S7-200
• Modbus

• http

• snmp

• S7comm

• Kamstrup

None None Yes

Antonioli et al. [55] High MiniCPS Con-

figuration

Linux Kernel Not specified

(Generic PLC)

• EtherNet/IP

• SSH

• Telnet

None Yes Yes

HoneyPLC Medium PLC Profiles Honeyd
• S7-300

• S7-1200

• S7-1500

• s7comm

• http

• snmp

Yes None Yes

Table 8.1: Current Literature Comparison.
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and models. This would also require updating our Profiler tool to support more

network services. Taking HoneyPLC as a proof of concept we could aim for a general

model that would simulate different devices found in ICS infrastructure (e.g. MTUs

Historian Servers, HMIs).
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Chapter 9

CONCLUSION

Attacks targeting ICS are now more real than ever and their consequences are catas-

trophic. Honeypots help us understand and prepare for these attacks, however, cur-

rent implementations do not allows us to analyze and tackle brand new threats. In this

Thesis we introduced HoneyPLC along with all its components to push ICS honey-

pots state-of-the-art forward. To maintain a covert operation and fool attackers and

malware, HoneyPLC implements sophisticated simulations of network services and

TCP/IP stack. To keep up with the ever changing malware we introduced the ladder

logic capture feature. Additionally we introduce advanced extensibility features, PLC

profiles and our Profiler tool, these allow HoneyPLC to adapt to the heterogeneous

world of ICS. HoneyPLC might very well be the starting point for future medium-

interaction ICS honeypots that help researchers not only to deter ongoing attacks,

but to design and evaluate new protection technologies.
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