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ABSTRACT

Humans perceive the environment using multiple modalities like vision, speech (lan-

guage), touch, taste, and smell. The knowledge obtained from one modality usually

complements the other. Learning through several modalities helps in constructing an

accurate model of the environment. Most of the current vision and language models

are modality-specific and, in many cases, extensively use deep-learning based atten-

tion mechanisms for learning powerful representations. This work discusses the role

of attention in associating vision and language for generating shared representation.

Language Image Transformer (LIT) is proposed for learning multi-modal representa-

tions of the environment. It uses a training objective based on Contrastive Predictive

Coding (CPC) to maximize the Mutual Information (MI) between the visual and

linguistic representations. It learns the relationship between the modalities using the

proposed cross-modal attention layers. It is trained and evaluated using captioning

datasets, MS COCO, and Conceptual Captions. The results and the analysis offers

a perspective on the use of Mutual Information Maximization (MIM) for generating

generalizable representations across multiple modalities.
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Chapter 1

INTRODUCTION

We have achieved success in learning from a labeled data set using supervised tasks

in vision and language [Devlin et al. (2018); He et al. (2015)]. But there is limited

success in solving tasks in different modalities by learning a common representation.

Extracting shared high-level features between modalities [Oord et al. (2018)] is one of

the key challenges in representation learning. Several recent works have focused on

generating a shared representation that can perform well in a variety of downstream

tasks.

Vision and language have individually received wider attention in recent years.

Several important contributions [He et al. (2016); Devlin et al. (2018)] have been made

in both modalities. In many cases, development in one modality has transformed well

and received adoption in another [Sun et al. (2019)]. Hence, there is a high degree

of similarity between the model architectures in vision and language. This similarity

motivates us to hypothesize that there could be benefits in developing multi-modal

representation that can transform well between several modalities with a minimal

overhead of specialization.

Human language has evolved specialized words for representing high-level objects,

events, and actions. Hence, it is beneficial for models to exploit the language’s use

for developing a high-level representation of the objects in the visual context [Oord

et al. (2018)]. The objects that are present in the visual context can effectively be

represented using sentences in the language domain.

Image captioning is the ability of the model to automatically generate captions

that describe the scene presented in the image. It reflects the ability of humans to
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compress a large amount of visual information in descriptive language. This efficient

compression technique is rooted in the ability to understand the scene and extract the

relevant aspects of the scene. Hence the task forces the model to detect the important

objects in the image and understand their relationship. The model learns to represent

this relationship in natural language.

There have been several efforts to develop representations that transform well from

vision to language in the field of image captioning [Johnson et al. (2015)]. The cost

of acquiring and captioning the images has led to increased demand for automated

extraction and annotation of the images [Sharma et al. (2018)]. Automatic image

captioning contributes to reducing human bias in the annotations. It exploits the

availability of a large amount of visual content on the internet to increase the diversity

of the images in the corpus.

Several downstream tasks [Agrawal et al. (2015); Wang et al. (2017)] in vision

and language have focused on creating multi-modal embeddings that can bridge the

semantic gap between the two modalities. Many works (Lee et al., 2018, Yu.et.al.,

2018) that have achieved success in the shared downstream tasks, have studied the

latent alignment between the modalities. In case of vision and language models, it

can be alignment between image regions and text. While many of these models have

achieved state-of-art in their respective tasks, they have used very task-specific design

approaches to accomplish it.

These factors motivated me to develop a model that can generate multi-modal

representation in the shared embedding space between vision and language. I have

adopted a transformer architecture and used attention mechanism across the network.

I have trained the model to generate suitable captions for the presented image.

2



I utilize learning techniques from self-supervised learning that have achieved suc-

cess in creating visual-linguistic representations. The techniques use ’proxy’ training

tasks to learn the deep semantic relationship between the data sources. The proxy

training tasks leverage the structure within the data to generate pseudo supervised

objectives. The model can learn the semantic relationship within the data by training

on the objectives. The self-supervised learning techniques have shown the greatest

impact in language models. BERT model uses a masking technique to learn the se-

mantic relationship between the tokens in the input sequence. I also use a similar

objective to train the model on image captioning task.

3



Chapter 2

RELATED WORKS

2.1 Language Modeling

Language models are designed to be efficient in handling sequential data such as

words, tokens, and sentences. Sequence-to-sequence based architectures have achieved

great success in language modeling. Recurrent Neural Networks (RNN) [Schuster and

Paliwal (1997)] and Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber

(1997)] models and their variants have traditionally been used in designing language

models. There have been several works to address the issues with space and time

complexity due to the sequential processing of input in sequence-to-sequence archi-

tectures [Schuster and Paliwal (1997)]. One of the recent works in this domain is

Transformer by Vaswani et al. (2017). The authors managed to achieve state-of-art

results in machine translation. It significantly reduced the computations by designing

the transformer model to handle the sequences in parallel and leveraging the compu-

tation power offered by GPUs. Several models were introduced that use transformers

as their primary blocks [Devlin et al. (2018); Sun et al. (2019)]. Our work aligns with

this field of study, by adopting a transformer-based architecture. We have extended

the transformer model to use visual embedding for sequence generation.

2.1.1 Attention in Language Models

Sutskever et al. (2014) introduced the seq2seq model architecture for Neural Ma-

chine Translation. The seq2seq model consists of a decoder stacked sequentially on

top of an encoder. The model computes a probability P (E|F ) of output E given an

4



input F . If the input and output are sentences belonging to different languages, then

the process is Neural Machine Translation.

In a sequence-to-sequence architecture, encoder learns to generate a hidden state

representation of the input sequence. The decoder network utilizes the hidden state-

representation to create the output sequence. The encoder and the decoder networks

learn the function map between the input and output sequences.

I will initially discuss the problems associated with the encoder-decoder architec-

ture in the context of Neural Machine Translation. Later, i will also discuss how

attention resolves many issues with seq2seq architecture.

Ideally, a seq2seq architecture that is large and is well-trained can perform machine

translation accurately. But multiple issues can arise in a seq2seq model.

It is difficult for the model to capture long-range dependencies between the words

in sentences of longer length. The model tries to embed the information from the

sequences of varying lengths with the hidden-vector of a fixed size. It results in

poor representation as the hidden-vector doesn’t accurately fit the length of the in-

put sequence. While small dimensions of hidden-vector are insufficient for lengthy

sequences, oversized dimensions can be excessive. As the amount of data available

for training is limited, large networks may overfit to the training sequences.

In attention, the model doesn’t learn a single hidden-vector for the input sentence.

Instead, the model learns a vector for every word and refers to them at every step in

decoding. So the number of vectors learned is equal to the number of words in the

input sequence. Attention, therefore, provides an efficient representation of the input

sequence.

5



2.2 Attention in Bi-directional RNN

In the case of bi-directional RNN, the encoder first generates representation from

left to right (~hfj ) and right to left ( ~h
f

j ). The encoder outputs the concatenated vector

of both embedding hfj = [~hfj ,
~h
f

j ]. By concatenating all the bi-directional vectors,

we obtain a single matrix, Hj = concat[hf1 . . . h
f
mod F ]. In matrix Hj each column

corresponds to one word in the input sentence.

The number of columns in matrix Hj depends on the length of the input sentence.

Hence, the size of the vector can vary based on the input sentence. It is essential to

generate a single vector ct by combining the columns of the matrix H.

ct = Hfαt (2.1)

where αt is the attention vector .The attention vector is the measure of focus

required on a particular word while predicting the next word in the output sentence.

2.3 Types of Attention

Bahdanau et al. (2014) introduced the Attention mechanism for Neural Machine

Translation. Attention is an elegant technique that shares characteristics with the

natural perception mechanism (Rensink, 2000;Corbetta Shulman, 2002). Instead of

compressing the input into a static representation, attention dynamically selects the

salient features in the input as required [Xu et al. (2015)]. Attention can be defined as

a mechanism of assigning weights to the inputs by computing their relative importance

score. It is widely applied to solve tasks in various domains including language and

vision [Vaswani et al. (2017); Devlin et al. (2018); Kaiser and Bengio (2016); Sun

et al. (2019)]. Several types of attention such as Bottom-Up and Top-Down[Anderson

et al. (2018)], Self-attention [Vaswani et al. (2017)] have been introduced over the

6



years. Self-attention relates several positions in the same input for generating a

representation that captures the relationship between the elements in the same input.

My model extensively uses Self-attention as part of the transformer architecture to

generate a representation that captures the semantics of the input image and caption.

2.4 Image/Video Captioning

Image captioning models traditionally used CNN and RNN based architecture

[Xu et al. (2015)]. CNN was used to encode the image features from the given image.

The encoder was followed by an RNN, which generated text sequences or captions

conditioned on the image features generated by CNN.

Humans’ ability to describe a scene using diverse contexts and references arise from

their capability to strongly relate to the various aspects of the scene. Understanding

the semantics of the scene remains a challenging task for deep learning models. First,

there is significant progress in object detection. The models are trained to capture

the various objects present in a scene and label them into a set of well- defined

classes. Second, there is rapid progress in language representation. The label space

has expanded to include sentences that can capture the underlying context in the

image. DenseCap [Johnson et al. (2015)] has unified the progress in the two tasks

using a dense captioning task. The model was trained to predict a set of descriptions

by detecting the objects present in the image.

Xu et al. (2015) studied the role of attention in image captioning. The au-

thors introduced a soft deterministic attention mechanism and trained it using back-

propagation. They also introduced a hard attention mechanism that was trained by

maximizing an approximate variational lower bound. The Encoder model extracted

the convolutional features present in the image. These features were fed to a Decoder

using LSTM (Long Short Term Memory) network. The decoder used attention to

7



learn and attend to the appropriate positions in the input image and predict their

captions. Our model uses an Encoder-Decoder based architecture

2.5 Bidirectional Encoder Representations from Transformer (BERT)

BERT [Devlin et al. (2018)] learns deep bidirectional representations from the

unlabeled text by jointly conditioning on the left and right context in the input se-

quence. It uses a proxy task called masked language modelling to learn the left and

right context in the sequence. In masked language modeling, tokens in the input se-

quence are randomly selected and replaced with the mask. The objective is to predict

the vocabulary id of the masked token using the context. BERT achieved state-of-art

in eleven NLP tasks. The use of pre-training and self-attention are two reasons for

the effectiveness of BERT. The model is pre-trained on the Books Corpus (800M

words)Zhu et al. (2015) and English Wikipedia (2,500M words). Two types of proxy

tasks are used for pre-training. The first task is the masked language modelling. The

second task is predicting if the two given sentences follow each other in the text cor-

pus. After pre-training the model, it is fine-tuned for the downstream task. During

fine-tuning, task-specific inputs and outputs are fed into BERT and all parameters

are fine-tuned from end-to-end. At the output, the token representation from BERT

is fed into the output layer for the specific downstream task. My model uses a sim-

ilar transformer-based sequence-to-sequence architecture and is trained using MLM

proxy task. While BERT is completely designed for language modeling, My model is

adopted to visual inference.

2.6 VideoBERT

VideoBERT [Sun et al. (2019)] is a joint visual-linguistic model designed to learn

high-level features from YouTube videos through self-supervision from the audio. It
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uses vector quantization and Automatic Speech Recognition (ASR) to generate visual-

linguistic tokens. The authors achieved state-of-art in video captioning. The visual

data is transformed into a discrete sequence of tokens using hierarchical vector quan-

tization and is combined with the linguistic sentence derived from audio using ASR.

The model is trained using two proxy tasks. The first task is to predict the masked

token. The second task is estimating the alignment between visual and linguistic to-

kens. Similar to BERT, The trained model is then fine-tuned for downstream tasks.

The model also learns a joint probability distribution between the two modalities.

2.7 Vision-and-Language BERT (ViLBERT)

ViLBERT [Lu et al. (2019)] introduced separate streams for vision and language

processing. The model used co-attentional transformer blocks to share the parameters

between the vision and language streams. The motivation is that different modalities

may require distinctive pre-processing steps due to their complexity. The authors also

propose that the pre-trained weights cannot accommodate for the higher number of

visual tokens and may corrupt the BERT language model. The co-attentional blocks

produce attention-pooled features for each modality conditioned on the other. The

first task is predicting the masked portions in the image and caption. The second

task is to predict if the image and text segment align with each other. The authors

evaluate the model using four different downstream tasks. Unlike ViLBERT, We

use unique attention mechanism called cross-modal attention. In ViLBERT, A pre-

trained object detection network extracts the image features. Instead, My model

functions on input pixels. I hypothesize that operating directly on input pixels helps

the model to learn the semantic relationship between the pixel regions.

9



2.8 UNiversal Image Text Representation (UNITER)

UNITER [Chen et al. (2019)] introduced additional proxy tasks for pre-training

the model for generating visual-language representation. In Masked Region Modelling

(MRM), the masked regions of the image are reconstructed by conditioning on the

text. The authors proposed three variants of MRM. They are Masked Region Feature

Regression, Masked Region Classification using KL-divergence. While It used image

embedder to encode image regions, it used a text embedder to embed text in a shared

embedding space. The model used a transformer to generate a cross-modal embed-

ding. The authors conditioned the masking on full observation of image/text instead

of masking random positions in sequences. Our model conditions the generation of

the masked region of captions on the image pixels. The authors feed the extracted

features from an R-CNN into the model for learning the cross-modal embedding. In-

stead, i extract image features using attention-augmented convolution. I generate

cross-modal embedding using the extracted features.

2.9 Stand-Alone Self-Attention in Vision Models

Convolution is extensively used in computer vision models for extracting visual

features [He et al. (2016); Gehring et al. (2017)]. Many deep learning-based vision

models have used convolution for their translation equivariance and weight sharing

properties. One of the drawbacks with the convolution is its inability to efficiently

model long-range dependencies. This is due to their poor scaling properties for large

receptive fields. There have been many recent works [Ramachandran et al. (2019);

Bello et al. (2019)] that have focused on augmenting convolution with attention to

increase the content-based interactions. In Ramachandran et al. (2019), authors

conclude through extensive studies that a self-attention based vision layer can act as
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an effective stand-alone layer. Similar to convolution, the authors initially select a

local region of pixels within a fixed spatial extent of the given pixel (a memory block).

To limit the number of computations required by the self-attention layer, they select

a fixed spatial extent around the given pixel.Consider a pixel xij in position ij in any

channel of a given image. The attention is computed at the position ij using equation

(2.2).

yij =
∑

a,b∈Nk(i,j)

softmaxab(q
T
ijkab)vab (2.2)

where query qij = WQxij, key kab = WKxab and value vab = WV xab are the linear

transformation of the pixel xij and its neighbouring pixels.

2.10 Attention Augmented Convolution

Bello et al. (2019) proposed a novel two-dimensional self-attention mechanism

for replacing convolutions as a stand-alone layer. The authors proposed a combined

framework using self-attention and convolution. While convolution allows transla-

tion invariance, self-attention contributes to an increased receptive field. Through

experiments, the authors demonstrated that the combined framework applying aug-

mented convolutional operators with self-attention delivered the best results in image

classification. One limitation of self-attention is that the operation is permutation

invariant. This makes it inefficient in modeling structured data like images. Hence

the model uses a two-dimensional relative positional encoding. We use multiple layers

of attention-augmented convolution to encode the images as attention maps. The at-

tention maps are fed to the decoder. The output of the decoder is used for generating

relevant captions for the given image.
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Chapter 3

ATTENTION IN LANGUAGE MODEL - SENTIMENT ANALYSIS

3.1 Introduction

In this chapter, I will deviate from the current discussion on multi-modal represen-

tation and focus on the importance of attention in language models. I will consider a

use case in sentiment analysis and compare the performance of traditional statistical

models with the attention based models. I will demonstrate the improvement in pre-

diction achieved using attention-based models such as BERT (Bi-directional Encoder

Representation from Transformer) over traditional architectures. In this chapter, I

will develop a model that can perform stock market sentiment prediction. I will con-

sider 2 companies viz. Amazon and Apple. I will develop a model that can predict if

the value of stock might increase or decrease. I utilize the sentiment from the news

articles for the prediction. I will train a classifier on the sentence embeddings of the

news articles and predict if the outcome will be an increase in stock price or decrease

in stock price.

The possible prediction of a stock market direction may act as an unforeseen rec-

ommendation system for short-term investors and as an unforeseen financial warning

methodology for long-term shareholders. The single most important factor in choos-

ing any forecasting methods is forecasting accuracy. Research efforts in this direction

to improve the accuracy of forecasting models are increasing since the last decade.

The essential aim for each investor is to maximize profits on their investments. Over

the years there have been many approaches to find a correlation between stock re-

lated twitter posts and a considerable surge of related stock prices following such
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posts. However, a direct attempt to simply correlate both of above seems naive.

Since our objective is to find significant news indicators that caused a boost in stock

prices, we need a similar data source to assure ourselves that the directional stock

prediction is reliable.

The financial analysts who invest in stock market are generally not aware of the

stock market behavior. They constantly face the issue of trading as they cannot make

a correct decision on the stocks to buy or the stocks to sell. The internet provides

extensive resources to understand the current state of each company. Inferring the

state from the available information is an difficult task. This will allow financial

analysts to foresee the behavior of the stock that they are interested in and thus can

act accordingly. The input to the model will be historical data from news sources

and Apple/Amazon stock data. The prediction model will predict if the stock price

of the company might rise/fall. We make a probabilistic prediction through one of

the following methods.

• By evaluating the trading volume following the news announcement as an indi-

cator of the impact of news on the stock price.

• By evaluating the diffusion rates and volumes of messages on different platforms

which has the stock symbol and news links of interest present in it.

One of the very prominent sources of data is Twitter as it presents a consider-

ably accurate platform to evaluate properties of such information diffusion and gauge

their volumes. Now diffusion analysis using the three-sigma rule can be employed to

investigate “viral Tweets” to create early-warning indicators that can intimate if a

breakout started to emerge in its early stages. We find the URL links relevant to the

breaking-news hour of Tweets and thus we can ascertain the second part of the exper-

iment whether the information indicated by breaking Tweet volumes will contribute
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to statistically considerable boost in the directional prediction accuracy for the prices

of the associated stock symbols mentioned in the URL links. The characteristics of

such an experimental system can be explained as follows: Recent computational ad-

vances have led to implementation of machine learning techniques for the predictive

models in financial markets. In this chapter, I am using various Machine Learning

models for the prediction task and compare their performance with attention based

models.

3.2 Relevant Works

Commendable work is done by Cutler et al. (1989) in their publication of What

moves stock? Though published in 1989, their impact analysis of news on stock

price movement direction was admirable. Stock price reaction to news and no-news:

drift and reversal after headlines discusses how news impact the drift and reversal in

stock prices due to public news articles. Using a comprehensive database of headlines

about individual companies, he examined monthly returns following public news. He

compared them to stocks with similar returns, but no identifiable public news. The

relation between the sentiment of news, earnings and return predictability. Tetlock

et al. (2008) discussed how a firm’s stock prices under-perform/ under-react to the

public news embedded with negative words. Directional Prediction of Stock Prices

using Breaking News on Twitter by Alostad and Davulcu (2015) most closely aligns

with our goal to predict the stock prices using news articles. Wang et al. (2016)

recommends use of Recurrent neural networks for small news articles. After cleaning

and data processing, I extract relatively smaller volume of data containing only the

information about relevant stocks.
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3.3 Data Pre-processing

In order to achieve accurate results, the data must be well-formatted and usable by

machine learning models. As we experiment with multiple models on same dataset,

it should be in acceptable format for all models under consideration.

Data pre processing is done in mainly two stages.

3.3.1 Data Cleaning

Initially, i extracted paragraphs containing relevant stock news from news corpus

for Amazon and Apple. I removed any non-English characters (other language or

emojis). I used NLTK library developed by Loper and Bird (2002) to perform initial

text pre-processing such as removal of stop words.

3.3.2 Data Labeling

I labelled each article as positive or negative class based on the increase or decrease

in the stock value for the provided time period. The increase was given positive label.

3.4 Method

The primary goal of the project is to predict movement in the price of the stock

using news articles and stock chart data. I make an assumption associating the

rise/drop of the stock price to the sentiment of the article published in the same time

frame. I label all the news articles that were published in the time frame as either

positive/negative based on the stock price. The news articles with positive sentiment

are labelled as Class ’1’ while news articles with negative sentiment are labelled as

Class ’0’.
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3.4.1 Model

I initially perform classification using statistical Machine Learning models. I cat-

egorized news data into 2 classes: class 0 and class 1. Specifically, I used 4 supervised

learning models and trained each model using Distributed Bag of words (D-BOW)

and Distributed Memory (DM) respectively.

Bi-directional Encoder Representations from Transformers (BERT)

A BERT is a seq2seq model that uses a transformer-based architecture. It uses atten-

tion mechanism to learn relationship between words or sub-words in a sentence. The

language embedding generated by BERT has shown to outperform existing models in

a number of downstream tasks [Devlin et al. (2018)]. I use a pre-trained BERT repre-

sentation for training a simple linear classifier to predict the sentiment present in the

input sentence. There are two factors that contribute to BERT’s performance. BERT

model is pre-trained on a large corpus of text using self-supervised proxy tasks. The

model uses masked-language-modelling where it is trained to predict a portion of the

sentence using its context. Hence, the model learns to capture relationship between

the context and the selected word effectively. Also, it helps the model to capture

bi-directional context as the selected word can be present in any position in the sen-

tence. Use of attention is another factor that contributes to BERT’s performance.

BERT uses multiple layers of transformer architecture. Previously, Vaswani et al.

(2017) had shown that transformers generate powerful sequential representation.

3.5 Results

The tables 3.1 and 3.2 show the results obtained using different models on the

Amazon and Apple data sets. I followed the steps presented in Section 3.3 to pre-
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process and label the data. Initially, i applied traditional statistical models such as

logistic regression, Support Vector Machine and Random Forest to study their per-

formance in the sentiment prediction task. I tested the model with two types of

sentence embeddings. I used word embedding generated using Distributed Memory

and Distributed Bag-of-Words models [Le and Mikolov (2014)], two popular tech-

niques for generating word embeddings. Each model was tested on both embeddings

to understand their overall performance on the task. I used L2 based penalty for

the logistical regression model. It offered moderate performance on the task with an

accuracy around 59. SVM model with ’rbf ’ kernel offered relatively similar perfor-

mance to logistic regression. Random Forest offered the best performance among the

statistical models with the average accuracy of 60% for Distributed Memory mod-

els and 51% for Distributed Bag-of-Words model. Overall, The Distributed Memory

models performed relatively well on Amazon dataset and Distributed Bag-of-Words

performed well on Apple dataset. Also, the overall performance with 4 hours window

was better than 24 hours window. It matches with the intuition that the sentiment in

the market might fluctuate between positive and negative over a period of 24 hours.

Hence, It is difficult to classify the news articles based on the difference in stock prices

in a 24 hours window.

When we compare the performance of the classifier using representation from

BERT against the statistical models, the classifier out-performs the statistical models

in all categories. It can be attributed to multiple factors. One primary reason is that

the features obtained from BERT representation is highly predictive of the text and

the sentiment associated with it. It is particularly due to the use of attention in

the transformer models such as BERT. The attention mechanism helps in providing

powerful sequence representation particularly for language. It has resulted in BERT
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performing well in wide range of language tasks mentioned in Devlin et al. (2018)

including tasks related to Sentiment analysis.

Amazon

DM DBOW

Window 4 Hours 24 Hours 4 Hours 24 Hours

Model Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

LR 59.06% .58 58.29% .58 52.33% .52 53.30% .53

SVM 58.83 % .58 56.18 % .56 51.85 % .51 52.89 % .50

Random Forest 61.59 % .55 59.29 % .59 51.83 % .52 51.70 % .52

Apple

DM DBOW

Window 4 Hours 24 Hours 4 Hours 24 Hours

Model Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

LR 52.33% .52 53.30% .53 62.91% .63 62.84% .63

SVM 51.85 % .51 52.89 % .50 62.89 % .63 62.64 % .63

Random Forest 51.83 % .52 51.70 % .52 64.03 % .64 64.98 % .65

Table 3.1: Results using Statistical Models
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Metric Amazon Apple

AUC .68 .67

Accuracy 68% 67%

F1 .70 .68

Precision .65 .65

Recall .76 .72

Table 3.2: Results using BERT Embedding on 24 hours window
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Chapter 4

VISUAL LANGUAGE REPRESENTATION

4.1 Formulation

Image captioning is the problem of identifying appropriate captions that capture

the context presented in the given image. Given an input image I ∈ RH×W×C , the

captioning model tries to find an ordered sequence vector S : (t1, t2, t3. . . .tm) where

ti represents a token in the language space. If the context of the image I can be

represented in a shared embedding space H using a Rd dimensional feature vector,

then the ordered sequence S can be considered as the projection of Rd dimensional

feature vector in the language space. The model uses encoder-decoder based architec-

ture similar to many language and multi-modal models Devlin et al. (2018); Vaswani

et al. (2017); Lu et al. (2019); Sun et al. (2019). The encoder E(x) is the transfor-

mation function mapping the input image I on to the shared embedding space H

and the decoder D(x) transforms the encoded feature vector E(I) to the language

space. The output of decoder is represented as sequence vector S. Both encoder and

decoder use attention mechanism to capture the relationship between the different

input elements in the source space and also identifies the vector in the target feature

space (language) that is closely aligned with the elements in the source feature space

(vision). In the following sections, I will describe different components of the model

in detail.
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4.2 Attention in Language Model

Vaswani et al. (2017) proposed the transformer architecture which is based entirely

on the attention mechanism. Attention transforms the input into 3 matrices viz.

query and key-value pairs. The output is then computed as the weighted sum of the

value. The weights assigned to each value is decided based on the compatibility of

the query with the key. In the case of language modeling, both the input and output

of the model are sequences of varying length. First, an input embedding of dimension

dmodel is created using a pre-trained vector representation of words. Query Q, Key

K- Value V pairs are generated by a linear transformation of the input embedding

vector. The transformer model uses ’Scaled Dot-Product Attention’. The queries and

keys of dimension dk and the values of dimension dv are used to compute the output.

In scaled dot-product attention, we compute the dot product between the query Q

and the key K. The dot product is scaled by a factor of 1/
√
dk to offset the effect

due to extremely small gradients that are generated by the softmax function.

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (4.1)

4.3 Attention in Vision Model

Inspired by the success of attention in language models, variants of attention are

developed for vision models. Bello et al. (2019) proposed a novel two-dimensional

relative self-attention mechanism for vision models.The self-attention is combined

with the traditional convolution to offer the best performance. An input image I ∈

RH×W×Fin is flattened to a matrix X ∈ RHW×Fin . The flattened matrix is treated

similar to the input sequence embedding in the language model. I compute the query
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Q, key K and value V by applying a linear transformation on input X. We later use

the matrices Q, Key K and Value V to compute the output.

Oh = Softmax

(
(XWq)(XWk)

T√
dhk

)
(XWv) (4.2)

where Wq,Wk ∈ RFin×dk and Wv ∈ RFin×dv . We use learned linear transformations

Wq,Wk and Wv for computing the Queries Q and Key K - Value V pairs. A linear

transformation WO is applied to the output Oh and then reshaped to the dimensions

of the input image RH×W×dv .

4.4 Cross-Modal Attention

The attention techniques used in the previous works [Vaswani et al. (2017); Bello

et al. (2019)] have focused on applying attention to either vision or language modality.

The image captioning task requires attending to both vision and language simulta-

neously. I have developed a novel attention mechanism to accommodate this need

for attending to different modalities. In the case of the multi-modal tasks, previous

works have focused on sharing the queries and key-value pairs across the layers. In

case of ViLBERT [Lu et al. (2019)], the co-attention blocks use key-value pairs from

each modality as input to the other modality’s multi-headed attention block. The

technique mimics the common attention mechanism in vision and language models.

In my work, I focus on generating output sequence (predicted caption) from the input

embedding of the image.

First, I flatten the input tensor I ∈ RH×W×Fin into matrix X ∈ RHW×Fin . I ex-

tract the input key K and value V matrices applying the linear transformation on

the flattened input tensor. I generate relative position encoding. I sum the flattened

input attention map with the relative position encoding. The computed output is

fed to the cross-modal attention layer. I use the query Q from the sequence to learn
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the relevant pixels that the query needs to attend. The relative importance scores of

the different image regions are obtained through a dot product between the key-value

pairs from the input image and the query. The relative weights are then used to

compute the weighted sum of the value vector V .

During training, I compute the query Q from the sequence (caption) S and learn

the linear transformation weights W t
q ,W

I
k and W I

v for the image embedding. During

testing, the input query Q is a vector of < start token > of dimension Rdmodel and

the model generates the output sequence using the input image and the learned linear

transformation weights.

Oh = Softmax

(
(SW t

q )(XW
I
k )T√

dhcm

)
(XW I

v ) (4.3)

where W t
q ∈ Rdmodel×dcm and W I

k ,W
I
v ∈ RFin×dcm . A linear transformation WO ∈

Rdcm×dmodel is applied on the output Oh to generate the output caption Oc ∈ Rn×dmodel ,

where n is the length of the generated caption and dcm and dmodel are the dimensions

of the cross-modal hidden embedding and the dimension of the sentence embedding.

Fin is the number of filters in the image embedding.

4.5 Multi-Head Attention

Similar to the Transformer [Vaswani et al. (2017)] architecture, I employ multi-

head attention in attention blocks. The input image and caption are linearly projected

Nh times using different linear projections and attention applied in parallel to Nh

operations. The results of different attention operations are then concatenated and

projected again using a linear transformation WO to obtain the final values. Multi-

head attention is applied on both image and text inputs. Vaswani et al. (2017) claims
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that multi-head attention jointly attends to information from different representation

sub spaces at different positions.

MultiHead(Q,K,V) = concat(head1, . . . , headh)W
O (4.4)

where headi is the Attention(QWQ
i , KW

K
i , V W

V
i ).

The dimensions of the linear parameters while applied to text sequences are WQ
i ∈

Rdmodel×dk , WK
i ∈ Rdmodel×dk ,W V

i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel where dk = dv =

dmodel

h

The dimensions of the linear parameters while applied to images are WQ
i ∈

RFin×dhk , WK
i ∈ RFin×dhk ,W V

i ∈ RFin×dhv and WO ∈ Rdv×dv . In my model , I have

used dk = dv = dmodel and dq = dmodel/h while processing images.

4.6 Architecture

The model uses an encoder-decoder based architecture similar to other language

models [Vaswani et al. (2017); Devlin et al. (2018); Sun et al. (2019)]. The position

encoding representing the position of different pixels in the input image is computed.

The position encoding is aggregated with the input image. The attention operation is

position invariant and doesn’t encode the position information naturally. Hence, we

require position encoding to propagate position information across the layers. The

encoder is a stack of N identical layers. Each layer consists of Nc sub layers. The

decoder is also a stack of N identical layers with three sub layers. I will describe each

layer in detail in below sections. The figure 4.1 describes the model architecture.

4.7 Encoder

Following the architecture of Transformer [Vaswani et al. (2017)], each sub layer in

the encoder consists of Attention Augmented Convolution [Bello et al. (2019)] which
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Figure 4.1: The cross modal transformer has Nx = 6 encoder and decoder layers.

The encoder layer consists of Nc = 2 sub layers of Attention Augmented Convo-

lution. The sub layers in both encoder and decoder use residual connections [He

et al. (2015)] followed by Group Normalization [Wu and He (2018)]. The decoder

employs masked multi-head attention which is followed by cross-modal attention and

feed forward layers. During training, I feed image and relevant caption to encoder

and decoder respectively. After encoding the position information, The encoder uses

AA-Convolution layers to generate attention maps. After encoding the position infor-

mation, the decoder uses masked multi-head attention to mask random positions in

the sequence embedding. The masked sequence embedding along with the attention

maps are fed to the cross-modal attention block.
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Figure 4.2: I use Masked Language Modelling (MLM) proxy task for training the

network. First, I encode the image of dimensions (h,w, c) into attention maps of

same dimensions (h,w, c) using Attention-Augmented Convolution layers. I generate

sentence embedding of shape n × dmodel for the caption of length n. The tokens in

sentence embedding are randomly masked with < mask > token. I use Cross-modal

attention to predict the masked token. The model learns the linear transformation

parameters W t
q , W

i
k and W i

v .
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implements a multi-head self-attention followed by a position-wise fully connected

feed-forward network.

I also implement residual connection [He et al. (2016)] around each of the sub-

layers followed by Group Normalization [Wu and He (2018)]. The output of each

sub-layer is GroupNorm(x + Sublayer(x)), where Sublayer(x) is the function imple-

mented by the sub-layer.

4.7.1 Attention Augmented Convolution

Each sub layer in the encoder implements Attention Augmented Convolution

[Bello et al. (2019)]. The architecture of the Attention Augmented Convolution is

presented in Figure 4.3. Since the AA-Conv layers flattens the input image to apply

attention, it results in a memory cost of O((Nh(HW )2). This prohibits us from using

larger spatial dimensions. Hence, I down-sampled the input images to 124 pixels and

used smaller batch sizes to meet the memory constraints.

4.8 Decoder

Similar to encoder, decoder is stack of Nx identical layers. Each decoder layer

consists of three sub layers. I use residual connections around the sub-layers ,followed

by Group Normalization [Wu and He (2018)]. The attention in decoder is modified

to not attend to subsequent positions ensuring that the output at any time step

depends only on the known outputs and not on future positions. This is done by

masking the inputs present in the future positions using < pad > token. The cross-

modal attention layer follows the self-attention block and accepts the inputs from the

encoder and masked multi-head attention in decoder. Feed forward and normalization

layers follows the cross-modal attention.
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4.9 Position Encoding

4.9.1 Position Encoding of Image in Encoder

Following the technique used in AA-Convolution [Bello et al. (2019)] , I use relative

position encoding in the encoder. Since the attention mechanism doesn’t naturally

encode the position information, it is essential to explicitly propagate position in-

formation through the layers. But the encoding scheme should satisfy translation

equivariance to extract reliable features. The relative positional embedding indepen-

dently adds relative height and width information. Consider pixels i = (ix, iy) and

j = (jx, jy). If qi is the query vector for pixel i and kj is the key vector for the pixel

j and rWjx−ix and rHjy−iy are learned embedding for relative width jx − ix and relative

height jy − iy, respectively, then the relative logit is computed as,

li,j =
qTi√
dhk

(kj + rWjx−ix + rHjy−iy) (4.5)

The output of the attention for each head can be computed using equation (4.6),

Oh = Softmax

(
QKT + SrelH + SrelW√

dhk

)
V (4.6)

where relative position matrices SrelH , SrelH ∈ RHW×HW is computed as,

SrelH [i, j] = qTi r
H
jy−iy (4.7)

SrelW [i, j] = qTi r
W
jy−iy (4.8)

4.9.2 Position Encoding of Sequences in Decoder

In case of decoder, it is essential to model the order of sequence. For this, I inject

the information about the relative or absolute position of the tokens. The dimension

of the position encoding is dmodel allowing them to be aggregated with the sequence
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embedding. Following the encoding technique in Transformer [Vaswani et al. (2017)],

I use sine and cosine functions of different frequencies to create position embedding.

For position pos and dimension i, the encoding is given by,

PEpos,2i = sin

(
pos

10000
2i

dmodel

)
(4.9)

PEpos,2i+1 = cos

(
pos

10000
2i

dmodel

)
(4.10)

4.10 Training

This section details the training strategy for my model. The figure 4.2 describes

the training strategy.

4.10.1 Microsoft COCO Dataset

MS COCO dataset is a large dataset used for multiple vision-based tasks such

as image recognition, segmentation and captioning. The dataset contains various

features for images. It contains 300,000 images belonging to 80 different categories.

The dataset contains 5 different human-annotated captions for each image. Several

previous works [Anderson et al. (2018); Bello et al. (2019); Xu et al. (2015)] in image-

captioning have used MS COCO dataset for training and reporting.

I used MSCOCO 2017 captions dataset [Lin et al. (2014)] in this work. I applied

karpathy splits [Karpathy and Fei-Fei (2017)] similar to previous implementations on

image captioning [Anderson et al. (2018)]. The split contains 113,287 training images

with five captions each, and 5K images for validation and testing each. I perform

few text pre-processing steps on the caption sentences. The captions are converted

to lower case. The model vocabulary is of size 10,000 words.
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Figure 4.3: Following the technique proposed in Attention-Augmented Convolution

[Bello et al. (2019)], I perform multi-head attention on the input image of dimensions

(h,w, c) and generate Nh attention maps using the queries and keys of the input

image. I use the attention maps to compute the Nh weighted averages of values V .

I concatenate the results of the multi-head attention and reshape them to match the

dimensions of the original image. I compute standard convolution on the input image

in parallel and concatenate the results of the attention and convolution.

4.10.2 Conceptual Captions

Sharma et al. (2018) used Automatic Image Captioning technique to compile

Conceptual Captions dataset. The dataset contains an order of magnitude more

images than the MS COCO dataset. It contains a wide variety of images and caption

styles collected from a large number of web pages. It contains only JPEG formatted

images with dimensions greater than 400 pixels. Each image contains an alt-text

description extracted from the online page. Also, each image contains a conceptual

caption. It contains 3.3M images and description pairs. The validation and test
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Figure 4.4: Sample 1 for category ’dog’ in MS COCO. The dataset contains five

different captions for each image. The dataset has a wide variety of samples. It

contains 300,000 images belonging to 80 different categories

set contain 28 K and 22.5 K images respectively. Unlike the COCO dataset, the

Conceptual Caption dataset contains images harvested from the internet and hence

represent a wider style of images and captions. The conceptual captions have unique

word ratios covering various POS tags. The dataset contains a wide variety including

natural images, professional images, product images, and drawings.
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Figure 4.5: Sample 2 for category ’dog’ in MS COCO

4.10.3 Hardware and Training Schedule

I trained the model on one machine using 2 NVIDIA V100 32 GPUs. I used mini

batches of size 4 and trained it for 10 epochs. Each epoch comprised of 30 K steps.

Each epoch took around 10 hours to complete.

4.10.4 Optimizer

Following Transformer [Vaswani et al. (2017)], I used an Adam Optimizer Kingma

and Ba (2015) with β1 =0.9 and β2 =0.98 and ε = 10−9.
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Figure 4.6: Sharma et al. (2018): The dataset contains 3.3 M images and alt-text

extracted from the web pages. It also contains pre-processed Conceptual Caption for

each image.

I used the following strategy to increase the learning rate linearly for first warm

up steps.

lrate = d−0.5model ·min(step0.5, step · warmup−1.5) (4.11)

4.10.5 Masked Language Modelling

Similar to training strategy in BERT [Devlin et al. (2018)], I use Masked Language

Modelling (MLM) task for training the model. In this task, I replace random positions

in the embedded vector of the sequence with the < MASK > token. I train the model

to predict the token in the masked position using the context offered by the other

tokens in the sequence. This training strategy optimizes the below joint probability,

logP (x|θ) =
1

Z(θ)

N∑
I=1

log φi(x|θ), (4.12)
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where φi is the potential function for the ith input element, θ is the parameter and

z(θ) is the partition function. The potential function is given by,

log φi(x|θ) = xTi fi(x\i|θ)i, (4.13)

where fi(x\i|θ) is the output of the model for the ith position, where

x\i = {x1, . . . xi−1, [MASK], xi+1, . . . , xN}. For a random sentence x and random

position i chosen for masking, the loss is computed as ,

LMLM(θ) = −Ex∼D,I∼{1,...,N} log φi(x) (4.14)

4.11 Results

I trained the model using the configuration presented in Section[4]. I used Nx=6

layers of encoders and decoders. Encoder contained Nc=2 layers of the Attention

Augmented convolution network. I trained the model on the MS COCO dataset

for 10 epochs. I present the results of the image captioning task in figures 4.7, 4.8

and 4.9. In many cases, the model is able to capture the context and understand

the relationship between the different objects present in the images. The generated

captions are coherent and are grammatically correct with proper punctuation. The

model is, therefore, able to learn semantics and the context of the captions.

4.11.1 Inductive Bias

The generated captions are sometimes affected by the inductive bias due to human-

annotated captions. Since many images contain humans, the generated captions

usually begin with phrases such as ‘A man/ A woman / A person’. The issue is

visible in the third image in figure 4.8. The image contains a dog sitting in front of
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a laptop. But the model incorrectly identifies the dog as woman. I hypothesize that

training the model with different categories would help in resolving the issue.

4.11.2 Attention to Context

The inability to understand the central context of the image is another issue

reflected in some of the images. Sometimes the model doesn’t capture the central

theme of the image, instead describes the events in the background. The second

image in figure 4.5 is an example of this issue. The actual caption describes the

person in a blue shirt as the person occupies major portion of the frame. The model

instead describes the group of people in the background. I suspect the issue is due to

the limited amount of training data which is insufficient for the model to understand

the central aspect in the given image. Additionally, the relevance of caption generated

can be subjective. It is a challenge to estimate the relevance of a caption generated

to the associated image.

4.12 Conclusion

I proposed a model that can generate cross-modal representation of a visual and

linguistic representations in the shared visual-linguistic space. I use a transformer-

based architecture where I replace the sequence encoder with an image encoder. The

image encoder uses several layers of Attention Augmented convolution, which employs

self-attention to generate attention maps. I introduce a novel cross-modal attention

layer to perform attention across vision and language modalities. I use a masked

language modeling technique to train the model. I present the samples from the im-

age captioning task to demonstrate its effectiveness. In this work, I have focused on

applying cross-modal attention to the vision-to-language task.We can further extend

the architecture and the cross-modal attention technique to accommodate the lan-
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Image Actual Caption Generated Caption

A guy skateboarding

on the bars of stairs

A person sitting on a

skateboard at a skate

park

A young man stand-

ing in front of a fence

holding a skateboard

A man is standing on

the side of a bench

A dog sitting in front

of a laptop on top of a

bed

A woman is sitting on

a couch with a laptop

Two women in glasses

using Nintendo wiI re-

mote controllers

A person playing a

video game in a room

Figure 4.7: Visualizations of image captions from MS COCO. Qualitative samples

from the results. For each example, I show the input image (left), human-annotated

caption (center), model-generated caption (right).
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Image Actual Caption Generated Caption

fish and broccolI

plated neatly on a

dish sitting on a table

a close up of a plate of

food

a man in a blue shirt

playing with a white

ball

a couple of people on

a bench near a tree .

A referee and tennis

player speaking while

fans watch in the

stands .

A man in a a blue

short and white shirt

and a woman .

A woman sits on a mo-

torcycle with a sidecar

.

A man in a a kitchen

with a stove and a

Figure 4.8: Visualizations of image captions from MS COCO. Qualitative samples

from the results. For each example, I show the input image (left), human-annotated

caption (center), model-generated caption (right).
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Image Actual Caption Generated Caption

A man on a surfboard

riding a wave .

A man with a surf-

board on the beach .

A skier stands on a

small ledge in the

snow

A man riding a skate-

board ramp .

A man and women

looking at a small

child .

A man A woman with

a

A white plate topped

with a sandwich and

sliced veggies

A plate of pizza on a

white plate

Figure 4.9: Visualizations of image captions from MS COCO. Qualitative samples

from the results. For each example, I show the input image (left), human-annotated

caption (center), model-generated caption (right).
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guage to vision tasks. I hypothesize that such an architecture would be capable of

generalizing to many vision and language tasks . Such a model would further improve

state-of-art in several downstream tasks in vision and language.
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Chapter 5

LANGUAGE IMAGE TRANSFORMER

5.1 Introduction

One of the fundamental characteristics of human intelligence is the ability to asso-

ciate information from different modalities, such as vision and language. Understand-

ing the context in various modalities can be crucial for learning in the real-world. The

complexity of the real-world environment is a challenge for representing in a single

modality. While an image is particularly useful for understanding finer details about

a scene, a sentence description can capture high-level qualitative aspects about the

context. Each modality is useful for optimally learning a different aspect of the scene.

Learning to associate different modalities would help in generating a better model of

the real world.

With the recent progress in self-supervised learning, there is an increased focus on

developing techniques that can generalize across domains and tasks. I have achieved

great success in domain-specific tasks associated with vision and language. Many

popular techniques in both domains use some kind of pre-training proxy task to learn

the association between the modalities. These techniques have also proved to be suc-

cessful across a wide range of downstream tasks in both domains. The similarities

between the techniques in vision and language motivate us to hypothesize that there

could be a common learning approach that can be developed for learning simulta-

neously from vision and language. A natural starting point towards this goal would

be to explore the techniques that have achieved success in both vision and language.

Instead of developing separate proxy tasks for learning from vision and language, I
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explore the possibility of using a common proxy task for learning simultaneously from

both modalities.

Contrastive Predictive Coding is a unsupervised learning technique that has shown

significant results in image recognition. It learns to model the global structure in the

data by predicting spatio-temporal variation in the data. It has recently also been

applied to vision-language tasks [Sun et al. (2019)]. With the ability to model the

high-level distribution and adaptability across domains makes it a great candidate

for the use in cross-domain applications. Attention techniques has also received wide

adaption in both vision and language applications.

In this chapter, I propose a transformer-based architecture for learning multi-

modal representation by maximizing the Mutual Information (MI) between the vision

and language representations. I also propose a novel attention layer that can accept

representation from two modalities and generate a shared representation.

5.2 Approach

5.2.1 Mutual Information Maximization

There are several recent successes in applying the InfoMax Principle to maximizing

Mutual Information. The tasks involve learning a representation that maximizes

the Mutual Information between the input signal and the encoded output. The MI

between two random variables X and Y can be defined as the amount of information

that can be learnt about Y by observing X. MI is formally defined as Kullback-Leibler

(KL) divergence measure between the joint probability distribution p(x, y) and the

product of its marginals p(x)p(y). p(x, y) is the joint probability distribution between

the random variables X and Y , while p(x) and p(y) are the marginal distributions.

I(X;Y ) = DKL(p(x, y)||p(x)p(y)) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
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It is a challenging task to estimate MI in higher-dimensional space. Hence, recent

efforts have focused on maximizing a tractable lower bound on MI [Poole et al. (2019)].

Oord et al. (2018) introduced Contrastive Predictive Coding to maximize the lower

bound in MI. Sun et al. (2019) adapted BERT to learn multi-modal representation

that maximizes the lower bound.

One of the common approaches is to maximize MI between two related encoded

inputs in relatively lower dimensional space than the original input. For example, in

unsupervised image representation learning, two overlapping views of image X are

constructed and encoded using different encoders. Finally, to learn a representation

of the image, the mutual information between the two encoded views are maximized.

While learning a shared representation space between modalities such as image

and text, the related inputs from individual modalities are handled similar to views

in the previous example. In this case , the views describe a shared context in different

modalities. In the task of image captioning, the image and its related caption are two

different views describing the same underlying setting. Although present in differ-

ent modalities, the representations share many characteristics describing the shared

context. In order to learn a common representation, I maximize the MI between the

related inputs in the individual modalities. I learn encoders in the two modalities

and then maximize the MI between the output representations of the two encoders.

Consider an input image X
(i)
m and a related caption X

(i)
t where i ∈ {1 . . . n} from the

n paired samples. The caption X
(i)
t is a sentence describing the context presented

in the image X
(i)
m . Our objective is to learn shared representation for the image-

caption pair (X
(i)
m ;X

(i)
t ). In order to achieve this objective, the model initially learn

image representation gm(X
(i)
m ) using a generic image encoder gm(.). Similarly, the
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Figure 5.1: We can describe hidden context ‘Engine’ (X) with an image (X
(i)
m ) dis-

playing its different components or a caption (X
(i)
t ) describing its characteristic. Both

modalities provide different perspectives of the context. We try to learn from both

modalities using a shared representation. Initially, image encoder gm(.) generates

a representation of the image (Ẑm), while text encoder gt(.) generates a sentence

representation of the caption (Ẑt) . Finally, we learn a shared representation that

maximizes the mutual information I(Ẑm; Ẑt) between the modalities.

model also learns a text representation gt(X
(i)
t ) using a sentence encoder gt(.). Once

the model learns individual representations in the two modalities, it learns a shared

representation that maximizes the MI between the two representations gm(X
(i)
m ) and

gt(X
(i)
t ).

max
gm∈Gm,gt∈Gt

IEST

(
gm(X(i)

m ); gt(X
(i)
t )
)

with i ∈ {1 . . . n} (5.1)

where IEST is a estimator of true MI I(X;Y ) between the encoded representations

gm(X
(i)
m ) and gt(X

(i)
t ).

As described in Micheal et. al. 2019, there are multiple advantages in choosing

the objective in 5.1 . First, it provides the flexibility to choose the dimension of

representations gm(X
(i)
m ) and gt(X

(i)
t ). We can choose a representation space that

is computationally feasible and is best suitable for the downstream task in hand.
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Second, it provides the flexibility to choose the modelling architecture for the image

encoder gm(.) and language encoder gt(.) that can complement each other is capturing

the overall context.

5.2.2 Contrastive Predictive Coding (CPC)

Oord et al. (2018) proposed CPC, a self-supervised learning technique to extract

useful high level representations in speech, images and text. The CPC model uses

powerful autoregressive model to predict the representation of future observations

using those of the past observation. By predicting the future observations, the model

learns to discard noisy low-level features and instead captures shared high-level global

features essential for predicting future observations. In other words, the objective

maximizes the mutual information between the encoded representations of the in-

put signals. The technique uses a contrastive loss, where the model classifies future

observations amongst the set of unrelated negative samples.

This work uses Contrastive Predictive Coding (CPC) in the image stream to

capture high level image features in the shared representation. Unlike the original

implementation, the model is not trained on a uni-directional prediction task. Instead,

it learns the features by predicting randomly masked input representations amongst

the set of negative samples. I hypothesize that the modified objective helps the model

to capture the overall context using the neighbouring patches in all direction.

The model uses an encoder gm to map the sequence of input observation xm to a

sequence of low-dimensional latent representations zm = gm(xm). A set of n repre-

sentations are randomly chosen and masked from the sequence. An auto-regressive

model gar(.) then summarizes the partially-masked input representation as a context

vector cm = gar(zm\n). A linear transformation ẑn = Wkcm is later applied to the
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context vector cm. The weights Wk are learnt by predicting the masked representation

ẑn among the set of randomly chosen negative samples {zl}.

When applied to images, The input image is initially segmented into a set of

overlapping patches xi,j which are encoded using a network fθ into a embedding

vector zi,j = fθ(xi,j). A random set of input representation{zn}n<(i×j) are masked in

the embedding vector of size i× j. The partially-masked vector z(i,j)\n is summarized

using a transformer model gar into a context vector ci,j. The transformer model

discussed in 5.3.3 is specially adapted to handle cross-modal inputs from different

modalities. A linear transformation is then applied to the output representation ci,j

from the transformer layer to generate predicted feature vector ẑn = Wkci,j.

Similar to the original implementation, the model uses contrastive loss to evaluate

the prediction task. The goal is to recognize the targets zn amongst the randomly

sampled feature vectors {zl} from the dataset. I apply softmax to obtain a proba-

bility distribution over the sampled feature vectors.The model evaluates the output

prediction using cross-entropy loss.

LCPC = −
∑
i,j

logP (zi,j|ẑi,j, {zl}) = −
∑
i,j

log
exp(ẑTi,jzi,j)

ẑTi,jzi,j +
∑

l exp ẑTi,jzl

5.2.3 Attention

Vaswani et. al. initially proposed the Transformer architecture for the Neural

Machine Translation (NMT). The architecture was based entirely on the attention

mechanism. Attention transforms the input signal into 3 matrices viz. query Q and

key-value (K−V ) pairs. The matrices are obtained from the linear transformations of

the input signal. The query Q and the key K vectors define the similarity between the

different components in the input sequences considered. The similarity/compatiblity

score between the components is obtained using the dot product between relevant
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Query and Key vectors. The scores are used for assigning the relative weights to the

value vector. The output of the attention block is computed as the weighted sum

of the value vector. The weight assigned to each value vector is decided based on

the compatibility of the query with the key. In the case of language modeling, both

the input and output of the model are sequences of varying length. First, an input

embedding of dimension dmodel is created using a pre-trained vector representation of

words. Query Q, Key K- Value V pairs are generated by a linear transformation of the

input embedding vector. The transformer model uses scaled dot product attention.

The queries and keys of dimension dk and the values of dimension dv are used to

compute the output. In scaled dot-product attention, We compute the dot product

between the query Q and the key K. The dot product is scaled by a factor of 1√
dk

to

offset the effect due to extremely small gradients that are generated by the softmax

function.

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (5.2)

The model uses a variant of the attention block, as a autoregressive function to

summarize the context vector. The original implementation of the transformer uses

attention for learning sequence representation of language sentences. Several recent

efforts have focused on adapting attention-based models such as BERT for sequence

generation tasks in various domains. Sun et al. (2019) focused on adapting BERT

to learn shared representation for videos. Similarly, models such as ViLBERT [Lu

et al. (2019)] , UNITER [Chen et al. (2019)] adapted BERT for performing a wide

variety of Image-Language tasks such as Visual Question Answering [Antol et al.

(2015)] and Image Retrieval. Our model falls under a similar category. The attention

block is used to align the image and language embedding together. In other words,
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it generates a shared representation that maximizes the MI between the modality-

specific representations.

One of the general approaches developed for vision-language representation in-

volves defining separate streams for Image and Language. The model uses a shared

cross modal transformer to share the parameters between the image and language

streams.

5.3 Architecture

5.3.1 Image Encoder

Following the architecture presented in Contrastive Predictive Coding (CPC)

[Oord et al. (2018)], the model uses a ResNet-18 architecture [He et al. (2016)] for

generating the image embedding. The model reshapes images to 256×256 and flips

some images horizontally. It segments each image into 7 × 7 grid. Each segment in

the grid is of shape 64 × 64 with 32 pixels overlap with its neighbors. The model

extracts the embeddings for each of the segmented patches from the penultimate layer

of the ResNet. Finally, the model flattens each image embedding to a sequence of

length 49 with the embedding length of 512. The embedding is used as input for the

image stream to the cross-modal transformer.

5.3.2 Text Encoder

The model uses learned word embedding of 512 dimensions from Glove [Penning-

ton et al. (2014)] to represent the input caption associate with the input image. It

applies masked self-attention to the embedding vector, similar to the one used in

the decoder layer of the transformer. Each position in the layer output can attend

to all the previous and current positions in the input embedding but not the future
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Figure 5.2: Language Image Transformer consists of two streams, vision and language.

The vision stream consists of a pre-trained ResNet as encoder. It generates visual

representations for the input image. The language stream consists of a position

encoder followed by a masked multi-head attention layer. It has similar architecture

to the decoder in transformer. The masked multi-head attention layer predicts the

word in the input sentence using the previous observed words. Finally, a Cross

Modal Transformer is used to generate shared representations using the image and

language representation from vision and language streams. The decoders uses the

shared representations to predict the masked image embedding and word embedding

simultaneously.
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observations. It prevents the leftward information flow to preserve the autoregressive

property. I mask out (set values to -∞) the invalid positions in the input of the

softmax.

5.3.3 Cross Modal Attention

The model uses a Cross-Modal Transformer layer to generate multi-modal em-

bedding using the inputs from the image and language streams. The cross-modal

transformer acts as an auto-regressive model to predict the future states using the

observed states. ViLBERT [Lu et al. (2019)] uses the co-attentional transformer layer

to learn a shared representation of intermediate visual and linguistic representations.

The co-attentional transformer consists of two sub-modules. One module performs

language-conditioned image attention in the visual stream, and the other performs

image-conditioned language attention in the language stream.

The model passes keys and values from one modality to the other modality atten-

tion block to achieve it. Consider Qv, kv and Vv are the query, key and value matrices

corresponding to image stream. The three matrices are linear transformations of the

image representation Hv. Similarly, Qw, kw and Vw are the query, key and value

matrices corresponding to the language stream. They are linear transformations of

the language representation Hw.

In ViLBERT, the multi-head attention module in the image stream performs

attention(Qv, Kw, Vw) and the language stream performs attention(QW , Kv, Vv). I

replace the two modules with a single two-stage operation. The model applies two

linear transformations on the intermediate representation of image Hv to obtain ma-

trices Sv, Vv. Similarly, apply linear transformations on language representation Hw

to obtain the matrices Sw, Vw. It completes the first stage. Next, it computes the

scaled dot product between the matrices Sv and Sw. The resulting matrix signifies the
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dependency between the inputs of the two modalities. It calculates two sets of scores

by applying softmax across the rows and columns of the resulting matrix. The first

set of scores obtained by softmax( SvST
w

dmodel
) is scaled by value matrix Vw. It results in

the output for the image stream. The other set of scores obtained by softmax( SwST
v

dmodel
)

is scaled by value matrix Vv resulting in the output for the language stream.

5.4 Results

Papineni et al. (2002) introduced BLEU score as a metric for Machine Translation.

The basic intuition behind BLEU score is that, closer the machine translated sentence

is to the professional human translation, the better it is. It uses weighted average of

variable length phrase matches against the reference translation. The BLEU score

uses a modified n-gram precision score. The n-gram counts of the candidate sentences

and their corresponding maximum overlap with the reference sentences are computed.

The candidate counts are clipped by their corresponding maximum values and aver-

aged across the total number of candidate n-grams. The BLEU score computes the

geometric mean and adds a brevity penalty to discourage short sentences. BLEU4,

which is a popular metric, uses 1-grams up to 4-grams . BLUE scores are usually

computed at corpus level as the correlation of human judgement with the individual

sentences might be low. In this work, I have used BLUE1 till BLUE4 for evaluating

individual sentences generated by the model as part of image captioning.

Although BLEU score seems to be a good candidate for evaluating translations,

it is not ideal for evaluating generated captions [Kulkarni et al. (2013)]. This is

primarily because there can be vast variations in the captions that can be generated

for a single image. As a result, there can be multiple instances where a semantically

correct caption generated by model can be assigned a low BLEU score. Kulkarni
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et al. (2013) demonstrated that the generated BLUE score in many cases were not in

correlation with the human judgement.

ROGUE [Lin (2004)] is a similar metric used commonly for evaluating the gener-

ated sentences. Recall Oriented Understudy of Gisting Evaluation (ROGUE) follows a

similar approach as BLEU but uses recall instead of precision for computing the scores.

Metric for Evaluation of Translation with Explicit ORdering (METEOR) [Banerjee

and Lavie (2005)] computes the clipped F-score based on the overlap with the set

of references. It computes the similarity between the words using exact matches,

stemming and semantic similarity.

In order to better align with the human judgements, I have also presented the

CIDEr (Consensus-based Image Description Evaluation) score [Vedantam et al. (2015)].

CIDEr score uses a consensus protocol to measure the similarity of candidate sen-

tences to a majority of how most people describe the image (reference sentences).

CIDEr score initially computes the Term Frequency Inverse Document Frequency

(TF-IDF) of the n-grams across the corpus of all captions. CIDEr score is then

computed as the average cosine similarity between the candidate and the reference

sentences, accounting for both precision as well as recall.

The figures 5.3, 5.4, 5.5 and 5.6 show qualitative examples from the generated

captions of the model. The examples highlight that the model is able to understand

the context and generate captions that is relevant to the image. The results can

serve as an empirical evidence to infer that learning from both image and language

embedding simultaneously helps in improving the quality of captions. The tables 5.1

and 5.2 show the experimental results of the image captioning obtained by applying

Language Image Transformer (LIT) on the MS COCO and Conceptual Captions

dataset respectively. The LIT model performs better than similar attention based

models. The performance closely resembles the Soft and Hard Attention models. I
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROGUE CIDEr

LIT .699 .536 .403 .301 .270 .515 .865

BRNN .642 .451 .304 .203 - - -

NIC .666 .461 .329 .246 - - -

Soft .707 .492 .344 .243 .239 - -

Hard .718 .504 .357 .250 .234 - -

Table 5.1: The table highlights the scores on the comparison metrics used to evaluate

the Language Image Transformer (LIT) Model against similar models that use at-

tention. BRNN was proposed by Karpathy and Li (2015), Google NIC from Vinyals

et al. (2014) and soft/hard attentions proposed by Xu et al. (2015). All the models

are evaluated using MS COCO.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROGUE CIDEr

LIT .191 .95 .059 .040 .077 .177 .327

5en CE - - - - - .278 1.04

Ultra - - - - - .26 .98

Table 5.2: The table highlights the scores of Language Image Transformer (LIT)

Model on Conceptual Captions dataset with top entries in the leader board of the

Conceptual Captions .
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hypothesize the reason behind the improvement in performance can be attributed to

the use of unified model and a unified training objective.

5.4.1 Sharing of Parameters

Most of the other multi-modal models such as ViLBERT and VLBERT handle

vision and language tasks independently and use separate streams for training using

image and language modalities. With a unified architecture, there is better sharing

of parameters between the vision and language streams. It is achieved in LIT using

novel Cross Modal Attention layer that generates the shared Vision and Language

representations simultaneously.

5.4.2 Unified learning objective

Unlike other multi-model representation models, LIT also uses a unified and self-

supervised objective for learning shared representations. It drives the model to gen-

erate a shared representations that is predictive of individual modalities. The Visual

stream uses a Contrastive Predictive Coding loss (LCPC). The Language stream uses

a standard Kullback-Leibler Divergence (LKLD) loss between the predicted word and

actual word. I discuss the model and its architecture in detail in sections 5.2 and 5.3.

The overall objective uses individual penalty parameters associated with vision

and language objectives for controlling the influence of the individual vision and

language embeddings on the generated shared embeddings.

Loverall = α ∗ LCPC + β ∗ LKLD (5.3)

In equation (5.3) , I determine the values of α and β based on the downstream

task. For Image captioning, I set the α to 0.01 and β to 0.5.
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Image Actual Caption Generated Caption

a number of birds fly-

ing over a body of wa-

ter

A flock of seagulls fly-

ing over the ocean.

A laptop and com-

puter monitor with

the same screen.

A laptop computer

sitting on top of a

desk.

Two giraffes walking

around in the grass

and dirt.

A giraffe standing in

the middle of a dirt

road.

A stainless steel

kitchen sink on a

black granite counter-

top

A kitchen with a

stove, sink, and a

stove.

Figure 5.3: Visualizations for image caption prediction (MS COCO). Qualitative

samples from the results. For each example, I show the input image (left), human-

annotated caption (center), model-generated caption (right).
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Image Actual Caption Generated Caption

A man playing a game

of tennis on a tennis

court.

A man holding a ten-

nis racket on a clay

court.

The school bus is re-

flected in the rear view

mirror

A large green and

yellow train traveling

down a track.

A train engine ap-

proaches a switch in a

train yard.

A train traveling down

train tracks next to a

forest.

A person riding on the

back of a horse walk-

ing across a field

A man riding a horse

across a field.

Figure 5.4: Visualizations of image captions from MS COCO. Qualitative samples

from the results. For each example, I show the input image (left), human-annotated

caption (center), model-generated caption (right).
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Image Actual Caption Generated Caption

person, on stage, play-

ing a musical instru-

ment, guitar, night

and indoor

person, on stage, play-

ing a musical instru-

ment and indoor

the view i loved when

riding the ferry

the view from the win-

dow of the house.

think outside of your

box

the kitchen is a great

example of a clas-

sic wood cabinets and

stainless steel appli-

ances.

the latest men ’s de-

signs from the label

a model walks the run-

way at the fashion

show during fashion

week.

Figure 5.5: Visualizations of image captions from Conceptual Captions. Qualitative

samples from the results. For each example, I show the input image (left), human-

annotated caption (center), model-generated caption (right).
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Image Actual Caption Generated Caption

buses line up in in

front in the early

1980s.

the main street is a

city in the world ’s

most beautiful cities

players and staff show

their respect by hold-

ing a minutes silence

for football player who

passed away today be-

fore the training ses-

sion

players warm up dur-

ing a training session

ahead of the match.

actor attends the pre-

miere of person

actor arrives at the

premiere of thriller

film held

small dock and boat at

the lake

the sun rises over the

horizon, the sky

Figure 5.6: Visualizations of image captions from Conceptual Captions.Qualitative

samples from the results. For each example, I show the input image (left), human-

annotated caption (center), model-generated caption (right).
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5.5 Conclusion

Attention mechanism has become an essential component in vision and language

models. It is primarily due to the efficiency of attention models in generating powerful

representations. It’s relevance to both vision and language tasks, makes it an ideal

candidate for associating the two modalities.

I proposed Cross Modal Transformer (CMT) and Language Image Transformer

(LIT) models for learning shared embedding between vision and language. The LIT

model learns shared representation by maximizing the mutual information between

the modalities. The model uses self-supervised objective based on Contrastive Predic-

tive Coding (CPC), for learning the shared representation. The objective drives the

model to learn a representation that is predictive of both modalities simultaneously.

I trained the model on popular captioning datasets, MS COCO and Conceptual-

Captions. I evaluated the model in generating meaningful and relevant captions.

Multi-modal representation models can highly benefit from the improvements in

self-supervised learning techniques and larger vision-language datasets. Enhancing

the cross modal attention mechanism to handle a diverse number of tasks is an inter-

esting area to explore in future.
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Image Generated Caption Actual Caption

A man sitting at a
table with a plate of
food

a little girl in a blue
apron and chefs hat
and a girl in a red
apron and hat

A zebra standing in a
zoo enclosure with a
zebra.

A zebra that is bend-
ing it ’s neck back-
wards to reach it ’s
tail.

A black and white im-
age of a cat sitting on
a park bench.

Three dogs sitting on
the levels of an empty
tiered garden.

A man flying through
the air while riding a
skateboard

A MAN IS JUMPING
ON HIS SKATE
BOARD IN THE
SKY

Figure A.1: Visualizations for images to caption prediction.Qualitative samples from
the results. For each example, we show the input image (left), human-annotated
caption (center), model-generated caption (right). The samples are from the MS
COCO captioning dataset.
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Image Actual Caption Generated Caption

a man wearing a tradi-
tional dress and a tra-
ditional dress

woman selling food by
the railway line

the interior of the
church ’s largest tem-
ple complex.

our homage to the
necklace and earrings
won the aesthetic first
prize at award.

person poses for a
photo with a black
suit and white shirt
and white shirt.

before and after of
person the mid 1800
’s, carefully restored
and preserved for gen-
erations to come

portrait of a boy ly-
ing on the beach with
a blue sky

woman relaxing at the
sea

Figure A.2: Visualizations for images to caption prediction.Qualitative samples from
the results. For each example, we show the input image (left), human-annotated cap-
tion (center), model-generated caption (right). The samples are from the Conceptual
Captions dataset.
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