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ABSTRACT

Visual object recognition has achieved great success with advancements in deep

learning technologies. Notably, the existing recognition models have gained human-

level performance on many of the recognition tasks. However, these models are data

hungry, and their performance is constrained by the amount of training data. Inspired

by the human ability to recognize object categories based on textual descriptions

of objects and previous visual knowledge, the research community has extensively

pursued the area of zero-shot learning. In this area of research, machine vision models

are trained to recognize object categories that are not observed during the training

process. Zero-shot learning models leverage textual information to transfer visual

knowledge from seen object categories in order to recognize unseen object categories.

Generative models have recently gained popularity as they synthesize unseen vi-

sual features and convert zero-shot learning into a classical supervised learning prob-

lem. These generative models are trained using seen classes and are expected to

implicitly transfer the knowledge from seen to unseen classes. However, their per-

formance is stymied by overfitting towards seen classes, which leads to substandard

performance in generalized zero-shot learning. To address this concern, this disser-

tation proposes a novel generative model that leverages the semantic relationship

between seen and unseen categories and explicitly performs knowledge transfer from

seen categories to unseen categories. Experiments were conducted on several bench-

mark datasets to demonstrate the efficacy of the proposed model for both zero-shot

learning and generalized zero-shot learning. The dissertation also provides a unique

Student-Teacher based generative model for zero-shot learning and concludes with

future research directions in this area.
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Chapter 1

INTRODUCTION

Consider the following discussion between a kindergarten teacher and her student.

Teacher: Today we will learn about a new animal that roams the grasslands of Africa.

It is called the Zebra.

Student: What does a Zebra look like ?

Teacher: It looks like a short white horse but has black stripes like a tiger.

That description is nearly enough for the students to recognize a zebra the next

time they see it. The students are able to take the verbal (textual) description and

relate it to the visual understanding of a horse and a tiger and generate a zebra in

their mind. In this work, I focus on a Zero-shot learning model that transfers knowl-

edge from the text to the visual domain to learn and recognize previously unseen

image categories.

Collecting and curating large labeled datasets for training deep neural networks

is both labor-intensive and nearly impossible for many of the classification tasks,

especially for the fine-grained categories in specific domains. Hence, it is desirable to

create models that can mitigate these difficulties and learn not to rely on large labeled

training sets. Inspired by the human ability to recognize object categories solely based

on class descriptions and previous visual knowledge, the research community has

extensively pursued the area of “Zero Shot Learning” (ZSL) (Lampert et al. (2013);

Larochelle et al. (2008); Rohrbach et al. (2011); Yu and Aloimonos (2010); Xu et al.

(2017); Ding et al. (2017)).
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1.1 Zero Shot Learning

Zero-shot learning aims to recognize objects that are not seen during the training

process of the model. Mainly, the zero-shot paradigm has two domains, seen and

unseen. The data from seen and unseen classes are disjoint. ZSL leverages textual

descriptions/attributes to transfer knowledge from seen to unseen classes. Ideally,

the goal behind ZSL is to leverage the learning from the seen classes and general-

ize it for the unseen classes. Notice that the ZSL paradigm evaluates the models’

generalizability using its performance on the unseen classes.

1.2 Generalized Zero Shot Learning

Although ZSL tries to mimic human intelligence in the learning models, its evalua-

tion process limits the learning constraint for the Artificial models and often not able

to reveal the true potentials/weaknesses of them. Therefore, the research commu-

nity has proposed a more realistic evaluation setting named “Generalized Zero Shot

Learning” (Scheirer et al. (2012)), where both seen and unseen classes are considered

in the evaluation process of the learning model. Fig. 1.1 depicts the Zero-shot and

Generalized Zero-shot setting.

1.3 Goals and Motivations

The goal of this dissertation is to propose generative models to perform zero-shot

learning for image classification problems in computer vision. It seeks to highlight

the role of zero-shot learning in machine learning/deep learning and summarize the

literature. It also intends to outline a set of future directions for research in this

domain.
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DS Du ∪ Ds

Figure 1.1: Image credit (Xian et al. (2018a)), The left side showcases the training
phase, and the right side is for the Test phase. Note that, at training time, for both
ZSL and GZSL, the images and descriptions/attributes of the seen classes (Ds) are
available. During the test time, the trained model is evaluated only on unseen classes
(Du) in the ZSL, whereas in the GZSL, it is evaluated on both seen and unseen classes
(Ds ∪ Du). To facilitate classification without labels, both tasks use some form of
auxiliary information, e.g., descriptions/attributes.

This dissertation has been inspired by some overarching challenges in the exist-

ing zero-shot models, specifically, generative zero-shot models. Despite the recent

progress on such approaches, the generative models still have some key limitations.

First of all, these models are trained only on the seen classes as the visual features

for the unseen classes are not available. Knowing the fact that the seen and unseen

classes share the same semantic feature space, it is expected from the generator to

synthesize meaningful visual features for the unseen classes as well. However, these

models show a large quality gap between the synthesized and the actual unseen visual

features. The synthesized features for the unseen classes are prone to the seen class

references. This behavior indicates the domain shift problem (Fu et al. (2015)). As
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a result, the performance of generalized zero-shot (GZSL) learning suffers a lot since

many of the synthesized unseen features are classified as seen classes.

The second major concern behind the existing generative models is the assumption

that the semantic features are available in the desired form for a class category. e.g.,

clean attributes. However, in reality, it is hard to get. Getting the clean semantic

features require a domain expert to annotate the attributes manually. Moreover,

collecting a sufficient number of attributes for all the class categories is again labor-

intensive and costly.

1.4 Contributions

The contributions of the dissertation are as follows.

1. Detail survey of the existing zero-shot methods for visual object classification.

2. A novel Student-Teacher generative model with an episodic meta learning-based

training procedure.

3. A novel LsrGAN generative model to address the overfitting concern, it uses a

novel Semantic-Regularized loss, leading to the state of the art performance on

seven benchmark datasets in ZSL and GZSL.

4. Both Attribute-based and Wikipedia-based semantic information is considered

for knowledge transfer.

5. The proposed SR-Loss is orthogonal to any GZSL model. Hence, it can be

integrated with any GZSL model without adding any extra parameters.

4



1.5 Dissertation Outline

The dissertation is structured in the following manner.

Chapter 2 provides an overview of zero-shot learning. The first section introduces

the various semantic information employed in the existing methods to address the

ZSL and GZSL. The second section discusses the conventional ZSL methods termed

as “Embedding methods”. It is followed by an introduction to generative methods for

ZSL. Primarily, this section reasons the use of generative models to tackle zero-shot

object recognition and outlines the current state of art models in the field. The third

section provides a mathematical overview of the zero-shot problem setting. Afterward,

the fourth section describes the considered benchmark datasets in this dissertation,

followed by a table containing a set of terminologies used throughout this dissertation

to ease the reading.

Chapter 3 illustrates the Vanilla GAN model to address zero-shot learning. It high-

lights the main components of GANs such as Generator, Discriminator, and discusses

a way to perform the zero-shot recognition. The subsequent section discusses some

of the critical remarks behind the vanilla GAN model.

Chapter 4 describes a novel Student-Teacher model to simulate the zero-shot infer-

ence process in training itself. The first section introduces the novel student-teacher

concept in generative models. The second section proposes a meta learning-based

episodic training to simulate the zero-shot inference in the training process. It also

discusses the multi students single teacher network and how an additional discrim-

inator can help the Teacher to preserve the true distribution. The third section

examines the performance of the Student-Teacher network using Wikipedia-based

5



datasets. Finally, the chapter concludes by mentioning the problems in the existing

Student-Teacher model.

Chapter 5 progresses to demonstrate the gist of this dissertation, a novel LsrGAN

model. It introduces the novel Semantic Regularized loss that helps the LsrGAN to

learn from the unseen classes together with the seen classes. Thus, leading to address

the overfitting concern towards seen classes. The chapter concludes with showcasing

various experiments on seven benchmark datasets to prove the LsrGAN as a new

state of the art generative model for ZSL and GZSL.

Chapter 6 concludes the dissertation by summarizing the contributions of the dis-

sertation and highlights some of the future research directions.

6



Chapter 2

BACKGROUND AND RELATED WORK

This chapter will introduce the problem background, the available datasets, and

existing approaches to address the zero-shot object recognition. Mainly the chapter

is organized as follows. Section 2.1 introduces the various semantic information em-

ployed in the existing methods to address the ZSL and GZSL. Section 2.2 discusses

the conventional ZSL methods termed as “Embedding methods”. It is followed by

an introduction to generative methods for ZSL in section 2.3. Primarily, this section

reasons the use of generative models to tackle zero-shot object recognition and out-

lines the current state of art models in the field. Section 2.4 provides a mathematical

overview of the zero-shot problem setting. Afterward, section 2.5 describes the con-

sidered benchmark datasets in this dissertation, followed by a table containing a set

of terminologies used throughout this dissertation to ease the reading.

2.1 Semantic Information for ZSL and GZSL

In the zero-shot learning to perform the knowledge transfer, a piece of auxiliary

information is required for an object. Most of the recent works use object attributes

- nameable and shared visual properties of an object, as auxiliary information (men-

tioned in Fig. 1.1). However, getting this information for each class is a labor-

intensive and costly practice. Therefore, there are approaches (Rohrbach et al.

(2010); Akata et al. (2015b); Xian et al. (2016); Frome et al. (2013); Qiao et al.

(2016); Lei Ba et al. (2015)) to explore other sources to retrieve a piece of auxiliary

information. Mainly, these rely on the word embedding such as Word2Vec (Mikolov

7



et al. (2013)), glove (Pennington et al. (2014)), wordnet hierarchy (Miller (1995))

and recently BERT (Devlin et al. (2018)). However, getting these embeddings also re-

quire to have some standard semantic information available for an object class. Again

that is a costly practice in the real world for fine-grained classes. To address this,

(Elhoseiny et al. (2013)) proposes to use the Wikipedia articles for an object class.

This information is easy to get but comes with a lot of noise and redundant informa-

tion. Therefore, there are limited approaches that discuss the utilization of Wikipedia

information to perform ZSL and GZSL. This dissertation discusses models that are

capable of utilizing both Wikipedia and attribute-based auxiliary information.

2.2 Embedding Models

Early works on the zero-shot methods (Lampert et al. (2013); Norouzi et al.

(2013a); Kankuekul et al. (2012); Jayaraman and Grauman (2014)) were using the

human crafted attributes as a part of the semantic information. These models were all

two-stage based to infer the label of an unseen class. In the first stage, the attributes

of an input image are estimated, followed by searching the class, which attains the

highest similarity with these estimated attributes. DAP (Lampert et al. (2013)) was

one of the baseline models that proposes a two-state solution. It computes the poste-

rior for each attribute (both seen and unseen) for a given input image feature using

the probabilistic attribute classifiers in the first phase. Later, it estimates the class

posteriors and predicts the class labels using MAP estimate. (Al-Halah et al. (2016))

similarly uses the probabilistic classifier for each attribute in the first stage and later

uses the random forest to give labels. CONSE (Norouzi et al. (2013a)) uses Word2vec

(Mikolov et al. (2013)); first, it predicts the seen class posteriors followed by project-

ing an image feature into the word2vec space as a part of its second stage. These

8



two-stage methods were facing domain shift issue (Fu et al. (2015)) and had limited

performance on the zero-shot classes.

Afterward, the research community had started building models that map knowl-

edge from one space to the other space. These models were referred to as “mapping

models”. For example, mapping from visual feature space to the semantic space.

SOC (Palatucci et al. (2009)) maps the visual feature into the semantic space and

then uses the nearest neighbor method on semantic features to get the nearest class

for the label assignment. SJE (Akata et al. (2015b)) optimizes the structural SVM

loss for mapping learning. ESZSL (Romera-Paredes and Torr (2015)) utilizes square

loss to learn the mapping; it also regularizes the objective w.r.t Fornenius norm. On

the other hand, ALE (Akata et al. (2015a)) learns the bilinear compatibility function

between the image and the attribute space using ranking loss. Autoencoders (Baldi

(2012)) were also used to learn this visual to the semantic mapping, specifically, SAE

(Kodirov et al. (2017)) proposed a semantic autoencoder that tries to reconstruct

the visual feature projected in the semantic space. These mappings later learned by

nonlinear models such as Neural Networks. CMT (Socher et al. (2013)) uses a neural

network with two hidden layers to learn a nonlinear projection from visual space to

the semantic space - Word2vec (Mikolov et al. (2013)). Compared to previous models

that directly use the trained deep models to extract the visual features (Lei Ba et al.

(2015)), trains a deep convolution network to learn the visual features together with

the mapping.

The above-mentioned models were following mapping from visual feature space

to the semantic feature space. Later, (Zhang et al. (2017b)) claims that the visual

feature space is more discriminate compared to the semantic feature space and could

become beneficial for the zero-shot learning tasks. Therefore, it proposes the reverse

mapping deep model that maps the semantic feature space to the visual feature space.

9



Following this logic, (Changpinyo et al. (2017)) also proposes a similar mapping model

that projects the class semantic to the visual feature space. Later finds the nearest

visual neighbor to assign the label. The mapping is learned using SVM with seen

class examples.

Furthermore, there are other approaches (Zhang and Saligrama (2015, 2016)) that

projects both semantic and visual features to the latent space and learns to embed

them jointly there.

2.3 Generative Models

The embedding methods were preliminary models, but it played a crucial role

to motivate the research community for pursuing the zero-shot learning, and since

then, there is continuous research work progressing in this field. Especially, after the

advances in the Generative models (Goodfellow et al. (2014); Arjovsky et al. (2017);

Gulrajani et al. (2017)), the community has started utilizing these models to gain

better zero-shot performance. The focus of this dissertation is to also work in the

paradigm of generative models to address the zero-shot learning problem.

If we carefully look at the zero-shot problem setting. The ideal scenario is to

have access to the visual features of unseen classes. Let us assume that there is a

black box that gives us these features. In such a case, we could use the seen class

visual features and unseen class visual features to apply the supervised learning to

train a classifier for all the classes. Afterward, this trained classifier can be used

to perform the zero-shot and generalized zero-shot classification. The generative

model-based zero-shot approaches try to achieve the exact scenario. Mainly, using

generative models, researchers try to replicate the human level reasoning to classify

the unseen class objects. They claim that humans generally practice hallucination to

visualize the unseen class object based on their prior knowledge (a form of auxiliary

10



knowledge for an object, e.g., semantic attributes). Later they used this imagination

to perform the classification for unseen objects. Similarly, the trained generative

models hallucinate (generates) the visual characteristics (visual features) of an object

from its semantic features, which later used to perform zero-shot and generalized

zero-shot classification.

Among the GAN based models, f-CLSWGAN (Xian et al. (2018b)) was one the

earliest to highlight the use of GAN for zero-shot learning. Specifically, it used a

conditional W-GAN (Arjovsky et al. (2017); Gulrajani et al. (2017)) with a simple

classification loss. The classification loss enables the GAN to enforce the generated

features to remain in its respective class categories. The model became the state of the

art when it was published as it showed a significant improvement in zero-shot learning

across the benchmark datasets compared to the previous embedding based methods.

It used the attribute as semantic information. Inspired by the fact that training the

GAN is hard, (V. Verma and Rai (2018)) proposed a variational autoencoder (VAE)

based generative zero-shot model. Again this is a conditional generative model where

VAE takes semantic information as an input and generates the visual feature for a

class. Together with VAE, (V. Verma and Rai (2018)) uses a novel regressor network

that aims to map the generated visual feature back to its original semantic form.

Attributes are considered as semantic information here as well.

Later the advancement of the cycle GANs (Zhu et al. (2017)) inspired the com-

munity to utilize cyclic models to address the zero-shot learning problem. In cyclic

generative models (Felix et al. (2018)), two conditional generators are employed, one

that generates the visual features from the semantic feature information, and the

other learns to obtain semantic information from the visual feature. This model out-

performed the single GAN and VAE models across all the benchmark datasets, and

the cyclic loss helps it to have a better generalization. Attributes are employed as

11



semantic information here. Regularizing generative models to improve the knowledge

transfer capability of these models is also an active research area. (Li et al. (2019))

uses the same W-GAN model as f-CLSWGAN (Xian et al. (2018b)) but employs

the novel regularizer using the soul samples to improve the ZSL performance. The

authors suggest that soul samples capture the overall visual feature information of

a class. Threfore forcing the generator to generate samples close to the soul sample

results in more realistic visual feature generation. Here, the soul samples are nothing

but the mean of the visual feature for a class. Seeing the benefits of various regular-

ized losses, the community has started employing regularizers in the cyclic generative

models as well. As a result, (Huang et al. (2019)) uses three mappings with the

GANs, visual to semantic, semantic to visual, and metric learning. After realizing

the hubness problems (Radovanović et al. (2010)) in the generative zero-shot models

where the transformed data become hubs for the nearby class embedding leading to

performance degradation in both zero-shot and generalized zero-shot learning. (Paul

et al. (2019)) proposes a solution to address it by employing an intermediate network

layer to fine-tune the actual visual features using the semantic features. It also dis-

cusses the bias problem in GANs for the seen classes and details a method to address

using the validation set.

The single GAN and VAE based models that generate visual features from the

semantic feature information were giving an adequate performance on the unseen

classes, but they were not up to the mark, and mainly suffers in GZSL setting.

Recently, researchers have started employing more complex models that have more

than one generative models. CADA-VAE (Schonfeld et al. (2019)) uses two aligned

VAEs to encode and decode the visual and semantic information in an aligned manner.

The authors use a novel regularizer loss that tries to make the latent representation of

the visual and semantic feature to remain close. They employ an MSE loss between
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the mean and variance of two representations to force the latent representation to

remain close enough. Later, DAZL (Atzmon and Chechik (2018)) proposes a way

to incorporate two classifiers to get better performance on the generalized zero-shot

learning setting, where one of the classifier address the seen classes and the other

operates on the unseen classes. They also provided a novel gating classifier to select

which classifier to choose during the inference time under GZSL.

All the above mentioned generative models use attributes as semantic informa-

tion in their learning. There is not much work done using the Wikipedia articles

in the zero-shot field as these sets of information are very noisy and contain redun-

dant information. (Elhoseiny et al. (2013)) first time proposed the use case of noisy

descriptions (Wikipedia articles) in zero-shot learning. It built a model that used

Term Frequency - Inverse Document Frequency (TF- IDF) to deal with the semantic

information for zero-shot learning. (Qiao et al. (2016)) showcases a way to denoise

these noisy text descriptions by encouraging group sparsity on the connections to the

textual terms. Later, (Elhoseiny et al. (2013)) proposed a framework that identifies

the relevant text part from the text descriptions by understanding the visual feature

characteristics of an object, and keeps only this information to train the zero-shot

model. In the recent past, (Zhu et al. (2018)) presents the first GAN based model

that utilizes the Wikipedia text information using the TF - IDF and gives the state

of the art results. It employed an extra feed-forward layer together with the GAN as

a denoiser to process the noisy text.

For the Wikipedia-based semantic information, there is a couple of recent work

that employes state of the art cycle GAN and Meta- learning techniques to address

ZSL and GZSL. Among these, (Chen et al. (2020)) proposes a Cycle GAN that learns

the two-way generation from semantic to visual and from visual to semantic, almost

similar to (Felix et al. (2018)). (Hu et al. (2018)) proposes a correction network,
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a two-level meta-learning method, where the first module is considered as a learner

that maps the text deceptions of an object to its corresponding visual feature mean.

Later, the meta learner tries to add ε to do the correction.

2.4 Problem Setting

The zero-shot learning problem consists of seen (observed) and unseen (unob-

served) categories of images and their corresponding text information. Images be-

longing to the seen categories are passed through a feature extractor (ResNet-101)

to yield features {xsi}ns
i=1, where x ∈ X s. The corresponding labels for these fea-

tures are {ysi }ns
i=1, where ys ∈ Ys = {1, . . . , Cs} with Cs seen categories. The image

features for the unseen categories are denoted as {xui }nu
i=1, where x ∈ X u, the space

of all image features is X := X s ∪ X u. As the name indicates, unseen categories

are not observed, and the zero-shot learning model attempts to hallucinate these

features with the rest of the information provided. Although we do not have the

image features for the unseen categories, we are privy to the Cu unseen categories,

where the corresponding labels for the unseen image features would be {yui }nu
i=1, with

yu ∈ Yu = {Cs + 1, . . . , C}, where C = Cs + Cu. From the text domain, we have

the semantic features for all categories which are either binary attribute vectors or

Term-Frequency-Inverse-Document-Frequency (TF-IDF) vectors. The category-wise

semantic features are denoted as {tsc}Cs
c=1, for seen categories and {tuc}Cc=Cs+1 with

t ∈ T := T s∪T u. The goal of zero-shot learning is to build a classifier Fzsl : X u → Yu,

mapping image features to unseen categories, and the goal of the more difficult prob-

lem of generalized zero-shot learning is to build a classifier Fgzsl : X → Y := Ys∪Yu,

mapping image features to seen and unseen categories.
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Table 2.1: Dataset Information. For the attribute-based datasets, the (number) in
seen classes denotes the number of classes used for test in GZSL.

Attribute-based Wikipedia descriptions

AWA CUB SUN CUB (Easy) CUB (Hard) NAB (Easy) NAB (Hard)

No. of Samples 30,475 11,788 14,340 11,788 11,788 48,562 48,562

No. of Features 85 312 102 7551 7551 13217 13217

No. of Seen classes 40(13) 150(50) 645(65) 150 160 323 323

No. of Unseen classes 10 50 72 50 40 81 81

2.5 Datasets

In this dissertation, I have considered a total of seven benchmark datasets. Mainly,

these datasets have two subcategories based on the availability of the semantic in-

formation. They are categorized as (1) Attribute-based datasets, and (2) Wikipedia

descriptions-based datasets.

Attribute-based datasets : For the attribute-based datasets, I have consid-

ered three datasets: Animal with Attributes (AWA) (Lampert et al. (2013)), Caltech-

UCSD-Birds 200-2011 (CUB) (Welinder et al. (2010)) and Scene UNderstanding

(SUN) (Patterson and Hays (2012)). AWA is a medium scale coarse-grained animal

dataset having 50 animal classes with 85 attributes annotated. CUB is a fine-grained,

medium-scale dataset having 200 bird classes annotated with 312 attributes. SUN

is a medium scale dataset having 717 types of scenes with 102 annotated attributes.

Mainly I followed the split mentioned in (Xian et al. (2018a)) to have a fair comparison

with existing approaches.

Wikipedia descriptions-based datasets: In order to address a more challeng-

ing ZSL problem with Wikipedia descriptions as auxiliary information, I have used

two common fine-grained datasets with textual descriptions: CUB and North Amer-

ica Birds (NAB) (Van Horn et al. (2015)). The NAB dataset is larger compared

to CUB having 1011 classes in total. I have used two splits, suggested by (Elho-
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seiny et al. (2017)) in all the experiments to have a fair comparison with existing

approaches. The splits are termed as Super-Category-Shared (SCS, Easy split) and

Super-Category-Exclusive (SCE, Hard split). These splits represent the similarity be-

tween seen and unseen classes. The SCS-split has at least one seen class for every

unseen class belonging to the same parent. For example, “Harris’s Hawk” in the

unseen set and “Cooper’s Hawk” in the seen set belong to the same parent category,

“Hawks.” On the other hand, in the SCE-split, the parent categories are disjoint for

the seen and unseen classes. Therefore, SCS and SCE splits are considered as Easy

and Hard splits. The details for each dataset and class splits are given in Table 2.1.
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2.6 Terminology

Table 2.2: Terminology Used in This Dissertation.

Notation Description

Ds Seen class set

Du Unseen class set

D̃s Train seen class set for the student network

D̃h Train seen class set for the teacher network (held out set)

X Visual Feature space

X sc Visual Feature space for the seen class c

X uc Visual Feature space for the unseen class c

x̃c Generated visual feature for the class c

T Semantic space

T sc Semantic vector (TF-IDF) for the seen class c

T uc Semantic vector (TF-IDF) for the unseen class c

Y Label space

ysc Label for the seen class c

yuc Label for the unseen class c

Z Normal vector from N (0, 1), size :100

Gθg Generator network with θg parameter

Dθd Discriminator network with θd parameter

µc Visual feature mean of xc

µ̃c Generated visual feature mean of x̃c

εc Difference between µc and µ̃c

ε̃c Generated difference between µc and µ̃c by Teacher Network

Teacherθ Teacher Network with parameter θ

Tsim(ci, cj) Semantic similarity between class ci and cj

Xsim(µci ,µcj ) Visual similarity between the mean visual features of class ci and cj

εd The margin difference between Tsim and Xsim
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Chapter 3

VANILLA GAN BASED APPROACH FOR ZERO SHOT LEARNING

The use of GANs has become popular among the researchers because they allow

the learning models to have the human-level capability of performing hallucinations

while doing recognition tasks. Generally, humans practice the hallucination to visu-

alize the class objects when something is not known to them visually. Similarly, the

researchers try to model the same hallucination practice in the learning models by

employing conditional generative models.

The conditional generator hallucinates (generates) the visual characteristics (vi-

sual features) of an object from its semantic features. Once the generator trained, it

can be utilized to generate as many visual features as one wants for the unseen classes

by arbitrarily sampling the noise vector. Later, using these generated visual features,

the classification task simplifies to the conventional supervised learning problem. Al-

though the GAN based models seem promising, the generator network is not powerful

enough to give us the accurate visual features for all the unseen classes, and that lead

to the various GAN based architectures development to tackle zero-shot learning in

the research community. This chapter illustrates the Vanilla GAN model to address

zero-shot learning. Section 3.1 highlights the main components of GANs such as Gen-

erator and Discriminator. It also discusses a way to perform the zero-shot recognition

using these models. The subsequent section 3.2 analyze some of the critical remarks

behind the vanilla GAN model.
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Figure 3.1: Image credit (Zhu et al. (2018)), Illustration of the generative zero-shot
learning, the GAN uses semantic information to hallucinate (generate) the visual
feature information for the unseen classes. Later together with the seen visual features
and generated visual features, a supervised classifier can be trained to predict the label
for zero-shot and generalized zero-shot settings.

3.1 Introduction of Vanilla GAN for Zero Shot Learning

Let suppose the conditional generator as Gθg : Z×T → X , and the discriminator

as Dθd : RX → {0, 1} × Lcls, where Lcls is the set of class labels. θg and θd are the

parameters of the generator and the discriminator, respectively. Fig. 3.1 represents

the idea behind utilising GANs to address the zero-shot learning.

3.1.1 Generator (G)

As mentioned earlier, the conditional generator (Gθg) is used as a feature genera-

tor. It takes the semantic feature (Ti) of a class and a random vector Z sampled from

the Gaussian distribution N (0, 1) to generate the visual feature (Xi). The generator

network is a fully connected network since we are dealing with the visual features

not the images. After the advancement of WGANs (Arjovsky et al. (2017); Gulrajani

et al. (2017)) the training becomes more stable in GANs. Thus, the vanilla GAN that

I am introducing here is based on WGAN. The loss of the generator is,
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LG = −E∼pz [Dθd(Gθg(T ,Z))] + Lcls(Gθg(T ,Z)), (3.1)

Where the first term is a Wasserstein loss (Arjovsky et al. (2017); Gulrajani et al.

(2017)) and the second term is a classification loss (cross entropy). Once the Gen-

erator network is trained well. We can use it to generate the visual feature via

x̃c ← Gθg(Tc,Z).

3.1.2 Discriminator (D)

The discriminator has two branches, where one is used to distinguish between the

real and fake visual feature, and the second branch performs the classification - to

categorize the generated features belong to their respective classes. It is trained with

the following loss,

LD =Ez∼pz [Dθd(Gθg(T, z))]− Ex∼pdata [Dθd(x)] + λLGP

+
1

2
(Lcls(Gθg(T ,Z)) + Lcls(x)),

(3.2)

The first two terms are for the Wasserstein distance (Arjovsky et al. (2017); Gul-

rajani et al. (2017)) between the real and fake distributions. The third term enforces

the Lipschitz constraint - Gradient penalty term, and the last two terms are used for

classification (cross entropy).

3.1.3 Zero-Shot Recognition

After finishing the training, we can use the trained generator to generate features

for the unseen classes conditioning on the semantic features as x̃u = Gθg(tu,Z). We

can generate an arbitrary number of visual features by sampling different Z for the

same semantic feature tu. Together with the real visual features of the seen classes and

generated features of the unseen classes, zero-shot recognition becomes a conventional
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supervised classification problem as mentioned in Fig. 3.1. Any supervised learning

algorithm can work then after. Generally, researchers use SVM classifier or nearest

neighbourhood to perform the classification. In the further chapters will introduce

more details about this.

3.2 Remarks on Vanilla GAN Model for Zero Shot Learning

The vanilla GAN model was one of the simplest models to address the ZSL. The

purpose of introducing this model here is to make the reader aware of the basic

idea behind employing GANs to address ZSL. Notice that the vanilla GAN model

does not have any regularizer that can help it to generate visual features that mirror

characteristics of the actual visual features except the feedback from the discriminator,

this hinders the generation performance significantly. Also, since we do not have the

availability of the unseen visual features, the vanilla GAN model is trained using

the seen classes only. This leads to an issue of overfitting towards seen classes if the

training is extensively performed on seen classes, will give more details about it in the

next chapters. Primarily, the seen class overfitting is the driving motivation behind

my research work and the two novel models that I have proposed to tackle it.
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Chapter 4

PROPOSED STUDENT-TEACHER MODEL FOR ZERO SHOT LEARNING

The generative models have shown their value by uplifting the ZSL and GZSL per-

formance with a significant margin compared to the conventional embedding methods.

However, as mentioned in chapter 3, these models have some key limitations. The

current GAN based model follows the conventional learning process meaning, the

GAN is trained on the seen classes only, and it is not aware of the fact that there is

a possibility that it may encounter an entirely new class during inference time. For

instance, on the seen classes, this GAN based model gives a classification accuracy of

around 89% for the CUB, SCS split; however, when testing it on the unseen examples

- zero-shot testing, the accuracy drops to 40%. One way to think about this flaw is

because the GAN is not trained in a way to counter something new during the infer-

ence part (zero-shot testing). In short, the learning process requires some imitation

of the zero-shot pattern. With this in a view, I am introducing a Student-Teacher

based model. Here, the students are considered as conditional WGANs, similar to

the one mentioned in chapter 3, who generate the visual features from the semantic

information. On the other hand, the Teacher network tries to improve the student’s

generation for the unseen class.

The chapter is organized as follows. Section (4.1) provides an introduction to

the proposed generative model. Section (4.2) outlines the model training approach

by providing the Meta Learning based Episodic Training for Student-Teacher Model.

Finally, section (4.3) provides the results on various experiments with the proposed
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model on a Wikipedia-based datasets and showcase some of the limitations of the

Student-Teacher model.

4.1 Student - Teacher GAN : A Novel Generative Model Using the Meta Learning

Concepts

GAN
Teacher 
NetworkThc

Z - N(0,1)
~Xhc

Thc

Xhc
𝝁

෤𝜺𝒉𝒄

~X’hci = ~Xhci + ෤𝜺𝒉𝒄

Figure 4.1: Model overview of the Student-Teacher network. Note that the GAN
mentioned in the Green box is the Student network for zero-shot learning; essentially,
it follows the same architecture mentioned in chapter 3. The blue box depicts the
Teacher network; it is a fully connected network that takes the mean of the generated
features, Text description of a class, and outputs the ε̃ - the improvement for the
student. Later, ε̃ is added in the generated visual feature from the student network
as mentioned in the figure to have a rich visual feature synthesis.

4.1.1 Student Network

As mentioned in Fig. 4.1, the student network is the vanilla WGAN model. It

has to learn the mapping from the semantic features (T ) to visual features (X ) using

the seen class data examples.
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4.1.2 Teacher Network

The Teacher Network is a simple feed-forward network that takes the mean of the

visual features generated by the student GAN, the text description of a class, and

outputs the improvement (ε̃). The loss of the Teacher network is defined as,

Lt =
1

C

C∑
c=1

||εc − ε̃c‖2 (4.1)

Here εc is the difference between the generated visual feature mean and the real visual

feature mean. Basically, it is µc − µ̃c for a class c.

4.2 Meta Learning Based Episodic Training for Student-Teacher Model

This section will discuss the training strategy that can help to imitate the zero-

shot setting in the training process itself for the generative model. Notice that we

have access to the visual (Xs) and semantic (T ) features of the seen dataset (Ds).

The unseen dataset (Du) only allows us to have the text information (Tu). Therefore,

to imitate the zero-shot setting in the training part itself, we need to put a set of

classes aside from the seen class dataset (Ds) and treat them as a zero-shot class.

The subset of classes from the seen class set that is not used in the training phase of

the GAN is considered as a held-out set (D̃h), and the remaining classes used for the

training is termed as a new train set (D̃s). This is the basic plan behind the episodic

based meta-learning strategy for the Student-Teacher model.

The training process for Student and Teacher network is independent of each other,

meaning; it is a two-stage process. First, the GAN (Student network) is trained using

the train set (D̃s). Afterward, I will fix the GAN parameters and get the inference

using the held-out set (D̃h) from the GAN. The output of the GANs for the held-out

set (D̃h) will become the training input to the Teacher network. Since the true epsilon
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(ε) for the held-out set (D̃h) is already known, the Teacher network will be trained

using the loss mentioned in the equation 4.1 in the second stage of the training.

In the two-stage process, the held-out set (D̃h) seems zero-shot classes; the model

tries to adopt the zero-shot behavior in the training process itself with these held

out set. Notice that, the held-out set (D̃h) becomes a zero-shot set for the student

network, where the Teacher network tries to correct the student network’s guess.

Ideally, the Teacher should have more knowledge and experience on a particular

subject compared to his/her students. Following the same intuition, it is not a good

idea to train the Teacher network only using the output of the students on a held-

out set (D̃h), which has only a few sets of seen classes. Additionally, we have one

more challenge here; the Teacher network relies on the student network’s learning.

Therefore, to mitigate the aforementioned challenges, the next section will discuss

the multi Students single Teacher model described in Fig. 4.2.

4.2.1 Multi Students Single Teacher Network

In Fig. 4.2, we can see that there are five GAN models (student networks) and one

Teacher network. Here, I am specifically focusing on one of the benchmark datasets

- CUB 200 (Welinder et al. (2010)) with SCS split to explain the Multi Students

Single Teacher Network. CUB - 200, has a total of 200 classes from which 150 are

considered as seen classes, and the rest 50 are unseen classes. The split between

seen and unseen classes for the CUB 200 is standardized, and the zero-shot research

community follows the same. Ideally, we should utilize all the 150 seen classes to train

the Teacher network, making sure that the Teacher gets all the available knowledge.

To achieve the same, I trained five GANs (students). In order to have the zero-shot

pattern in the training set, I need to make sure that each student learns partial classes

from the overall seen class set. Therefore, I split the seen set (Ds) into 120 classes for
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GAN3

GAN4

GAN5
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Network
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Figure 4.2: The green box contains students (GANs); each of them is trained with

a seperate train set (D̃s). The blue box represents the Teacher network. It takes the
output of the students and generates the improvement - ε̃. Note that the input and
output of the Teacher network are the same as mentioned in Fig 4.1.

train set (D̃s) and rest 30 as held-out set (D̃h). Moreover, each GAN has a mutually

exclusive held-out set (D̃h) from each other. So when I combine these held-out sets

for all the five GANs, I should get the entire seen dataset (Ds), 30 ∗ 5 = 150. Each

student (GAN) learns from its respective train set (D̃s) as a part of the first phase

training. The training process for the Teacher network now becomes the ideal one

with the above mentioned episodic based data splitting. The teacher will get a chance

to learn from all the seen classes. During the second phase of the training, the Teacher

network will invoke each student to guess from its held-out set (D̃h) regarding the

visual characteristic of a class. Later, the Teacher will try to improve the student’s

guess using equation 4.1, as mentioned above. This process has been carried out for

every student. Learning from each student helps the Teacher network to generalize

well for all the seen classes.
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4.2.2 Zero Shot Recognition Using Student - Teacher Network

Now for the unseen (Du) feature generation, an equal number of samples are

extracted from each student GAN, the teacher network will later correct them, and

will have the unseen visual feature set. Notice that we already have access to the

seen visual features (xsi ) so we can use the generated unseen visual features (x̃ui ) and

seen visual features (xsi ) to train a classifier in a supervised manner to perform the

ZSL and GZSL.

4.2.3 Teacher Network with Discriminator

The previous section discussed the multi Student single Teacher network and the

training procedure. Note that the Teacher network has only one loss Lt . With

this, the Teacher network can help to improve the visual feature generation part but,

adding ε̃ to the generated visual feature from GAN can arbitrarily change the visual

feature distribution for a particular class. It could lead to the worst results for the

zero-shot and generalized zero-shot learning as the data distribution is not preserved

in the generated feature. An additional discriminator is employed with the teacher

network to preserve the feature distribution.

4.2.4 Discriminator with Teacher Network

The Teacher Discriminator (TD) is similar to the Discriminator mentioned in chap-

ter 3. It has mainly two branches, one to distinguish between the real and fake visual

features, and the second branch performs the classification to categorize the generated

features to their respective classes. It is trained with the following loss,

27



LTD =Ez∼pz [TD(Teacherθ(T , µ(x̃c))]− Ex∼pdata [TD(x)] + λLGP

+
1

2
(Lcls(Teacherθ(T, µ(x̃c))) + Lcls(x)),

(4.2)

Similarly, the loss for the Teacher network is also changed now,

Lt = −Ez∼pz [TD(Teacherθ(T , µ(x̃c)))] + Lcls(Teacherθ(T , µ(x̃c))) +
1

C

C∑
c=1

||εc − ε̃c‖2,

(4.3)

In equation 4.2, the first two terms are for the Wasserstein distance between

the real and fake distributions. The third term enforces the Lipschitz constraint

- Gradient penalty term, and the last two terms are used for classification (cross-

entropy). Note that the equation 4.3 is an updated version of 4.1 for the Teacher

network.

4.3 Experiment Results

This section will discuss the various experiments that are conducted to showcase

the performance of the Student-Teacher generative model.

4.3.1 Datasets

In order to evaluate the Student-Teacher model, mainly Wikipedia-based datasets

are explored. The details of the datasets are already mentioned in chapter 2.

4.3.2 Implementation Details and Performance

The part-based features (e.g., belly, leg, wing, etc.) from VPDE-net (Zhang

et al. (2016)) are used as visual features, suggested by (Zhu et al. (2018); Xian et al.

(2018b)). We have utilized the TF-IDF to extract the features from the Wikipedia
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descriptions. For a fair comparison, all of the experiment settings are kept the same

as reported in (Zhu et al. (2018)).

The base block of the Student-Teacher model is WGAN, which is implemented

using a multi-layer perceptron. Specifically, the student generator Gθg has one hidden

unit having 4096 neurons and LeakyReLU as an activation function. It has a Tanh

as an output activation since the VPDE-net feature varies from -1 to 1. Z is sampled

from the normal Gaussian distribution. To perform the denoising and dimensional-

ity reduction for Wikipedia descriptions, we have employed a fully connected layer

with a feature generator. In the proposed model, the student discriminator Dθd has

two branches. One is used to play the real/fake game, and the other performs the

classification on the generated/real visual feature. The discriminator also has 4096

units in the hidden layer with ReLU as an activation. The teacher network is a

simple multi-layer perceptron having 4096 hidden neurons with LeakyReLU as an

activation. It also uses Tanh, an output layer, to compensate for the -1 to 1 vi-

sual feature range. The associated discriminator with the Teacher network follows

the same student discriminator architecture. To perform the zero-shott recognition

nearest neighbor prediction is employed. Top-1 accuracy is used to assess the ZSL

setting.

Table 4.1 presents the summaries of the results for the Student-Teacher Net-

work (Multi Students Single Teacher). CUB (Welinder et al. (2010)) and NAB-404

(Van Horn et al. (2015)) are used with the standard splits, SCS and SCE for the per-

formance evaluation. Various state of the art methods is considered to showcase the

comparison performances. It is evident that Student-Teacher Network is not giving

us the state of the art results, and GAZSL (Zhu et al. (2018)) still holds the highest

performance. Despite that, the performance of the Student-Teacher network is way

better than the other models. Also, notice that the Student-Teacher Network for the

29



Table 4.1: ZSL results on CUB and NAB datasets with Wikipedia descriptions as
semantic information on the two-split setting. We have used Top-1 % accuracy for
ZSL.

Zero Shot Learning

Methods CUB NAB

Easy Hard Easy Hard

WAC-Linear (Elhoseiny et al. (2013)) 27.0 5.0 - -

WAC-Kernal (Elhoseiny et al. (2016)) 33.5 7.7 11.4 6.0

ESZSL (Romera-Paredes and Torr (2015)) 28.5 7.4 24.3 6.3

ZSLNS (Qiao et al. (2016)) 29.1 7.3 24.5 6.8

Sync-fast (Changpinyo et al. (2016)) 28.0 8.6 18.4 3.8

ZSLPP (Elhoseiny et al. (2017)) 37.2 9.7 30.3 8.1

GAZSL (Zhu et al. (2018)) 43.7 10.3 35.6 8.6

Student - Teacher 42.5 10.1 34.6 8.7

SCE split of the NAB-404 gives superior results than GAZSL, although the improve-

ment is too low. It is still an indication that there is a scope for an improvement.

In the following section, will discuss some of the potential issues with this Student-

Teacher model and some future direction to deal with them.

4.4 Limitations of Student-Teacher Model

Clearly, from Table 4.1, it is evident that the Student-Teacher model is not giving

us the state of the art results compared to other models such as (Zhu et al. (2018)).

Here, in this section, I will mention the issues and reasons for the performance. As

discussed earlier, the training process for the Student-Teacher model is a two-stage

process. The seen set is divided into two parts - train set (D̃s) and held-out set (D̃h).

When I evaluate the performance on the held-out set (D̃h) using the trained students

(GANs) only, the accuracy seems quite low. It was around 0.9% to 1%. This clearly
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shows that the GANs are not generalizing well, and students only know the classes

they have been trained on. The second stage of the training process uses GANs

with the held-out dataset to train the Teacher network. Clearly, at every epoch,

the performance on the held-out set increases, meaning the Teacher is helping the

GANs (Students) to improve their performance. However, the performance of the

zero-shot classes starts decreasing after certain epochs, meaning the Student-Teacher

model overfits the held-out set and have less generalizability towards unseen classes.

Initially, without the Teacher network, the GANs (students) were giving 40% to 41 %

accuracy on the unseen classes that reduces to 36% to 37% with the Teacher network.

This showcases the overfitting concern on the held-out set.

As mentioned above, the Teacher is not helping the GANs (Students) in the desired

manner; actually, it is worsening the zero-shot performance. Further understanding

this from the real-world perspective, I realized that I was training the Teacher network

using the held-out set (D̃h) only. The GANs (Students) have not seen those classes

before, so they would have made mistakes, and the teacher will rectify them by

supplying large ε̃. Unfortunately, following this strategy, the Teacher network always

tries to give large ε̃ as an output; since it assumes that all GANs (Students) are foolish.

However, in the real world, it may not be the case always. So to mitigate this issue,

I incorporated few classes from the train set (D̃s) of GANs (for which the students

were performing well) and forced the Teacher network to improve these classes as

well. It helped the Teacher network to control the output value of ε̃, and finally, the

teacher stopped worsening the student performance. Eventually, I see improvement

in performance. However, the improvement was not to a larger extent, the combined

performance of the Teacher-Student network is almost similar to GAZSL (Zhu et al.

(2018)). It seems the added complexity is not worth. Hence stopped pursuing this

idea.
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Chapter 5

PROPOSED LSRGAN MODEL FOR ZERO SHOT LEARNING

Driven by the recent advances in generative modeling (Goodfellow et al. (2014);

Arjovsky et al. (2017); Gulrajani et al. (2017)), there is a growing interest in the

research community to develop generative models (Xian et al. (2018b); V. Verma

and Rai (2018); Felix et al. (2018); Li et al. (2019); Zhu et al. (2018)) to tackle

the ZSL problem. Broadly, these models are conditional generative models that use

the semantic information (descriptions/attributes) to synthesize artificial examples.

Later, a classifier is trained using these synthesized examples to perform the zero-shot

classification. Since the conditional image generation is an arduous task as the images

are too subtle, these generative methods rely on the visual features extracted from

the deep models as mentioned in earlier chapters. For the reminder purpose, here

again describing the key limitations of the generative zero shot models. First of all,

these models are trained only on the seen classes as the visual features for the unseen

classes are not available. Knowing the fact that the seen and unseen classes share the

same semantic feature space, it is expected from these generative models to synthesize

meaningful visual features for the unseen classes as well. However, these models show

a large quality gap between the synthesized and the actual unseen features. The

synthesized features for the unseen classes are prone to the seen class references.

This behavior indicates the domain shift problem (Fu et al. (2015)). As a result, the

performance of generalized zero-shot (GZSL) learning suffers a lot since many of the

synthesized unseen features are classified as seen classes. For instance, the baseline

model F-GAN (Xian et al. (2018b)) achieves accuracy of 57.3% on Caltech-UCSD-

Birds 200-2011 (CUB) dataset (Welinder et al. (2010)) for ZSL. However, when it
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comes to GZSL, the accuracy drops to 43.7% (13.6% drop) for the unseen classes.

Notice that GZSL is a more realistic setting where the test set contains both seen

and unseen class instances.

The second major concern behind the existing generative models is the assump-

tion that the semantic features are available in the desired form for a class category.

e.g., clean attributes. However, in reality, it is hard to get. Getting the clean se-

mantic features require a domain expert to annotate the attributes manually. More-

over, collecting a sufficient number of attributes for all the class categories is again

labor-intensive and costly. To address these concerns, this chapter introduces a novel

LsrGAN - a generative model that Leverages the Semantic Relationship between seen

and unseen categories and explicitly performs knowledge transfer by incorporating a

novel Semantic Regularized Loss (SR-Loss). The proposed model learns to transfer

semantic knowledge from both noisy text descriptions (like Wikipedia articles) as well

as semantic attributes for zero-shot learning and generalized zero-shot learning.

The chapter is organized as follows. Section (5.1) provides an introduction to

the proposed generative model with an intuitive example. Section (5.2) outlines the

model approach by providing the various components of the model in detail. This

section also introduces a novel SR-loss proposed in this work to uplift the LsrGAN

performance. The training algorithm of the proposed generative model is mentioned

in section (5.3). Section (5.4) provides the results of various experiments with the

proposed model on a total of seven benchmark datasets, including the Wikipedia

text-based CUB and NABirds splits, and Attribute-based AWA, CUB, and SUN to

showcase the superiority of the proposed LsrGAN model.
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5.1 LsrGAN : A Novel Generative Model for ZSL and GZSL

LsrGAN leverages semantic relationships between seen and unseen categories and

transfers the same to the generated image features. The knowledge transfer has

been implemented through a unique semantic regularization framework called the

Semantic Regularized Loss (SR-Loss). In Fig. 5.1, “Dolphin”, an unseen class, has a

high semantic similarity with classes such as “Killer whale” and “Humpback whale”

from the seen class set. These two seen classes could become the potential neighbors

of Dolphin in the visual space. Therefore, if we do not have the luxury to get the real

visual feature for Dolphin class, we could utilize these neighbors to form indirect visual

references to make the learning possible for the Dolphin class. SR-Loss primarily helps

to achieve the same. In this way, supporting the generative model to learn from the

unseen classes helps it better understand the difference between seen and unseen

classes. The LsrGAN also trains a classifier that guides in the feature generation,

and since the classifier is integrated it is not required to train a separate classifier

to perform ZSL and GZSL recognition. Extensive experiments on seven widely used

standard benchmark datasets demonstrate that LsrGAN outperforms the previous

state-of-the-art approaches.
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Figure 5.1: Driving motivation behind leveraging the semantic relationship between
seen and unseen classes to infer the visual characteristics of unseen classes. Notice
that though the feature representations are different, the class similarity values are
almost the same. e.g. “Dolphin” has almost identical similarity values in visual and
semantic space with other seen classes. The similarity values are mentioned in the
circles, and computed using the cosine distance.

5.2 Proposed Approach

In this section, will introduce the proposed approach for the LsrGAN model, and

will discuss the novel SR-Loss and how it helps the LsrGAN to learn from the unseen

classes leading to address the overfitting concern towards seen classes.

5.2.1 Adversarial Image Feature Generation

Using the image features of the seen categories and the semantic features of the

seen and unseen categories, I propose a generative adversarial network to hallucinate

the unseen image features for each of the unseen categories. A conditional Wasserstein

Generative Adversarial Network (WGAN) is employed to generate image features for

the unseen categories using semantic features as input (Arjovsky et al. (2017)). The

35



Unseen

Fake

Te
xt Fe

a
tu

re
 

Z

Seen

Wikipedia 
Articles

T
F_

ID
F

OR

Swim : Yes 
Water : Yes 
Black : Yes 
Stripes : No 
Forest : No
…….

D
e

n
o

ise
Fe

a
tu

re
 

E
xtra

cto
r

Fake visual
Features

Real visual Features of seen classes

SoftMax Classifier

Noise : N(0,1) 

Attributes

SR-Loss

Dolphin 

Real 

Dolphin 
Attributes 

Figure 5.2: Conceptual illustration of the proposed LsrGAN model. The basis of
LsrGAN is a conditional WGAN. The novel SR-Loss is introduced to help the Gθg to
understand the semantic relationship between classes and guide it for applying the
same during visual feature generation. The Gθg will use T s and T u to generate visual
features. The Dθd has two branches used to perform real/fake game and classification.
Notice that when I train the Gθg using T u, only the classification branch remains
active in Dθd as the unseen visual features are not available.

WGAN aligns the real and generated image feature distributions. In addition, the

LsrGAN has a feature classifier that is trained to classify image features into C cat-

egories of seen and unseen classes. The components of the WGAN are described in

the following.

Feature Generator: The conditional generator in the WGAN has parameters

θg and is represented as Gθg : Z × T → X , where Z is the space of random normal

vectors (0, I) of |Z| dimensions. Since the TF-IDF features from the Wikipedia

articles may contain repetitive and non-discriminating feature information, I have

applied a denoising transformation upon the TF-IDF vector using a fully-connected

neural network layer as proposed by (Zhu et al. (2018)). The WGAN takes as input

a random noise vector z ∈ Z concatenated with the semantic feature vector tc for a
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category c, and generates an image feature x̃c ← Gθg(z, tc). The generator is trained

to generate image features for both seen categories (x̃sc ← Gθg(z, tsc)) and unseen

categories (x̃uc ← Gθg(z, tuc )). In order to generate image features that are structurally

similar to the real image features, I have added visual pivot regularization, Lvp that

aligns the cluster centers of the real image features with the cluster centers of the

generated image features for each of the Cs categories (Zhu et al. (2018)). This is

implemented only for the seen categories where we have real image features.

Lvp = min
θg

1

Cs

Cs∑
c=1

∣∣∣∣E(x,y=c)∼(X s,Ys)[x]− E(z,tsc)∼(Z,T s)[Gθg(z, tsc)]
∣∣∣∣. (5.1)

Feature Discriminator: I train the WGAN with an adversarial discriminator

having two branches to perform the real/fake game and classification. The discrimi-

nator has parameters θrd and θcd for two branches respectively and is denoted as Dθd .

The real/fake branch of the discriminator learns a mapping Dθrd
: X → R using the

generated and real image features to output Dθrd
(x̃s) and Dθrd

(xs) that are used to es-

timate the objective term Ld. The objective Ld is maximized w.r.t. the discriminator

parameters θrd and minimized w.r.t. the generator parameters θg.

Ld = min
θg

max
θd

Ex∼X s

[
Dθd(x)

]
− E(z,t)∼(Z,T s)

[
Dθd(Gθg(z, t))

]
+ λgpLgp (5.2)

where, the first two terms control the alignment of real image feature and the gener-

ated image feature distributions. The third term is the gradient penalty to enforce

the Lipschitz constraint with Lgp = (||∇xDθd(x)||2 − 1)2 where, input x are real

image features, generated image features and random samples on a straight line con-

necting real image features and generated image features (Gulrajani et al. (2017)).

The parameter λgp controls the importance of the Lipschitz constraint. The discrim-

inator parameters are trained using only seen category image features since xu are

unavailable.
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Feature Classifier: The category classifier has parameters θcd and is denoted

as Dθcd
. It is a softmax cross-entropy classifier for the generated and real image

features xs, x̃s, x̃u and is trained to minimize the loss Lc. For ease of notation the

real/generated image features are represented as x and corresponding labels y

Lc = min
θg ,θcd

−E(x,y)∼(X ,Y)

[ C∑
c=1

1(y = c)log(Dθcd
(x))c

]
, (5.3)

where (Dθcd
(x))c is the c-th component of the C-dimension softmax output and

1(y = c) is the indicator function. While the discriminator performs a marginal align-

ment of real and generated features, the classifier performs category based conditional

alignment.

So far, in the proposed WGAN model the Generator generates image features from

seen and unseen categories. The Discriminator aligns the image feature distributions

and the Classifier performs image classification. The LsrGAN model is illustrated

in Fig. 5.2. In the following will introduce a novel regularization technique that

transfers knowledge across the semantic and image feature spaces for the unseen and

seen categories respectively.

5.2.2 Semantic Relationship Regularization

Conventional zero-shot learning approaches only use the seen classes in the train-

ing process when generating image features (Xian et al. (2018b); Zhu et al. (2018);

Li et al. (2019)). This hinders the learning capability of the generator since there is

no knowledge about the unseen classes during the training phase. Moreover, this also

leads to overfitting the generator towards the seen classes leading to poor performance

in generalized zero-shot learning. The proposed model aim to mitigate these issues

by having a novel regularization procedure that will explicitly transfer knowledge of
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unseen classes from the semantic domain and guide the generator in generating seen

and unseen image features. I term this the “Semantic Regularized loss (SR-Loss)”.

Since the visual and semantic feature spaces share a common underlying latent

space that generates the visual and semantic features. I propose to exploit this

relationship by transferring knowledge from the semantic space to the visual space

to generate image features. Knowing the inter-class relationships in the semantic

space can help us impose the same relationship constraints among the generated

visual features. This is the idea behind the SR-Loss in the WGAN where we transfer

inter-class relationships from the semantic domain to the visual domain. Fig. 5.1

illustrates this concept. The visual similarity between class ci and cj is represented

as Xsim(µci ,µcj), where µc is the mean of the image features of class c. Note that

for visual similarity we are considering the relationship between the class centers and

not between individual image features. Likewise, the semantic similarity between

class ci and cj is represented as Tsim(tci , tcj). For semantic similarity, since there is

only one semantic vector tc available for the every category. I have not considered the

mean value of it, although the proposed approach can be extended to include multiple

semantic feature vectors. I impose the following semantic relationship constraint for

the image features,

Tsim(tci , tcj)− εij ≤ Xsim(µci ,µcj) ≤ Tsim(tci , tcj) + εij, (5.4)

where, hyper-parameter εij ≥ 0 is a soft margin enforcing the similarity between

semantic and image features for classes i and j. Large values of εij allow for more

deviation between semantic similarities and visual similarities. The constraints are

incorporated into the objective by applying the penalty method (Lillo et al. (1993)),

pcij
[
||max(0,Xsim(µci ,µcj)− (Tsim(tci , tcj) + εij))||2

+ ||max(0, (Tsim(tci , tcj)− εij)−Xsim(µci ,µcj))||2
]
, (5.5)
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where, pcij is the penalty for violating the constraint. The penalty becomes zero when

the constraints are satisfied and is non-zero otherwise.

Mainly the goal is to transfer semantic inter-class relationships to enhance the im-

age feature representations that are output from the generator. Consider a seen class

ci. I will estimate its semantic similarity Tsim(tci , tcj) with all the other seen semantic

features tcj where j ∈ {1, . . . , Cs} ∧ j 6= i. Not all the similarities are important and

for the ease of implementation the highest nc similarities are considered. Let Ici rep-

resent the set of nc seen categories with the highest semantic similarity with ci. I will

apply Eq 5.5 to train the generator to output image features that satisfy the semantic

similarity constraints against the top nc similarities from the seen categories. For the

seen image categories, the objective function is,

Lssr = min
θg

1

Cs

Cs∑
i=1

∑
j∈Ici

[
||max(0,Xsim(µscj , µ̃

s
ci

)− (Tsim(tscj , t
s
ci

) + ε))||2

+ ||max(0, (Tsim(tscj , t
s
ci

)− ε)−Xsim(µscj , µ̃
s
ci

))||2
]
, (5.6)

where, penalty pij = 1, and µscj := E(x,y=cj)∼(X s,Ys)[x] is the mean of the image

features for seen class cj, and µ̃sci := Ez∼Z [Gθg(z, tsci)] is the mean of the generated

image features of seen class ci. A constant value of ε is considered as the soft margin

to simplify the solution. Similarly, the objective function for the unseen categories is,

Lusr = min
θg

1

Cu

C∑
i=Cs+1

∑
j∈Ici

[
||max(0,Xsim(µscj , µ̃

u
ci

)− (Tsim(tscj , t
u
ci

) + εij))||2

+ ||max(0, (Tsim(tscj , t
u
ci

)− εij)−Xsim(µscj , µ̃
u
ci

))||2
]
, (5.7)

where, µ̃uci := Ez∼Z [Gθg(z, tuci)] is the mean of the generated image features of unseen

class ci.
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5.2.3 LsrGAN Objective Function

The LsrGAN leverages the semantic relationship between seen and unseen cat-

egories to generate robust image features for unseen categories using the objective

function defined in Eq. 5.6 and 5.7. The model generates robust seen image features

conditioned by the regularizer in Eq. 5.1. The LsrGAN trains a classifier over all the

C categories as outlined in Eq. 5.3. The LsrGAN is based on a WGAN model that

aligns the image feature distributions using the objective function defined in Eq. 5.2.

The overall objective function of the LsrGAN model is given by,

λcLc + Ld + λvpLvp + λsr(Lssr + Lusr) (5.8)

where, λc, λvp and λsr are hyper parameters controlling the importance of each of the

loss terms. Unlike standard zero-shot learning models that generate image features

and then have to train a supervised classifier (Xian et al. (2018b); Zhu et al. (2018);

Li et al. (2019)), the LsrGAN model has an inbuilt classifier that can also be used for

evaluating zero-shot learning and generalized zero shot learning.

5.3 Training Algorithm

Below, illustrated the training procedure for the LsrGAN model. Mainly, the

Generator (Gθg) and Discriminator (Dθd) are trained alternately with the Adam op-

timizer. Notice that the training of LsrGAN contains two phases, one for the seen

classes and another for the unseen classes.
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Algorithm 1 Training procedure for the LsrGAN
1: Input: number of epochs NE, the batch size m, dis-

criminator iterations Nd = 5 for seen classes, loss hyper

parameters λc, λvp and λsr, Nc = 1 or 2 discrimina-

tor iterations for unseen classes, and Adam parameters

β1 = 0.5 and β2 = 0.9.

2: for iter = 1, ..., NE do

3: // Seen Class Training

4: for i = 1, ..., Nd do

5: Minibatch sampling from T s with matching images

from X s and noise Z

6: x̃← Gθg(ts,Z)

7: Discriminator and classifier loss computation Ld

and Lc using Eq. 2 and 3

8: θd ← Adam(∇θrd
Ld,5θcd

Lc, θd, λc, β1, β2)

9: end for

10: Minibatch sampling from T s and noise Z

11: Generator loss computation LG using Eq. 8

12: x̃← Gθg(ts,Z)

13: θg ← Adam(∇θgLd,5θgLvp,5θgLc,5θgLssr, θg, λc, λvp, λsr, β1, β2)

14: // Unseen Class Training

15: for i = 1, ..., Nc do

16: Minibatch sampling from T u and noise Z

17: x̃← Gθg(tu,Z)

18: Classifier loss computation Lc using Eq. 3

19: θcd ← Adam(∇θcd
Lc, θcd, λc, β1, β2)

20: end for

21: Minibatch sampling from T u and noise Z

22: Generator loss computation LG using Eq. 8

23: x̃← Gθg(tu,Z)

24: θg ← Adam(∇θgLc,5θgLusr, θg, λc, λsr, β1, β2)

25: end for=0
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5.4 Experiments & Results

This section will discuss the various experiments that are conducted to showcase

the superiority of the LsrGAN with previous state of the art models.

5.4.1 Datasets

In order to evaluate the LsrGAN, I have considered a seven benchmark datasets.

These datasets include either Attribute-based or Wikipedia-based semantic informa-

tion. The details of the datasets are already mentioned in chapter 2.

5.4.2 Implementation Details and Performance Metrics

The 2048-dimensional ResNet-101 (He et al. (2016)) features are considered as a

real visual feature for attribute-based datasets, and part-based features (e.g., belly,

leg, wing, etc.) from VPDE-net (Zhang et al. (2016)) are used for the Wikipedia-

based datasets, as suggested by (Zhu et al. (2018); Xian et al. (2018b)). I have

utilized the TF-IDF to extract the features from the Wikipedia descriptions. For a

fair comparison, all of the experiment settings are kept the same as reported in (Xian

et al. (2018a); Zhu et al. (2018); Xian et al. (2018b)).

The base block of the proposed model is GAN, which is implemented using a

multi-layer perceptron. Specifically, the feature generator Gθg has one hidden unit

having 4096 neurons and LeakyReLU as an activation function. For attribute-based

datasets, I intend to get the top max-pooling units of ResNet - 101 (visual features).

Hence, the output layer has ReLU activation in the feature generator. On the other

hand, for the Wikipedia-based datasets, I have used Tanh as an output activation for

the feature generator since the VPDE-net feature varies from -1 to 1. Z is sampled

from the normal Gaussian distribution. To perform the denoising and dimensionality
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reduction from Wikipedia descriptions, a fully connected layer is employed with a

feature generator. Also, notice that the semantic similarity for the SR-Loss is com-

puted using the denoiser’s output in Wikipedia-based datasets and it will be discarded

when dealing with the attribute-based datasets. The discriminator Dθd of LsrGAN

has two branches. One is used to play the real/fake game, and the other performs the

classification on the generated/real visual feature. The discriminator also has 4096

units in the hidden layer with ReLU as an activation. Since the cosine distance is less

prone to the curse of dimensionality when the features are sparse (semantic features),

I have considered it as a distance measure for the SR-loss.

To perform the Zero shot recognition I have used nearest neighbor prediction on

datasets having Wikipedia descriptions, and the classifier attached to the discrimina-

tor for the attributes based recognition. The Top-1 accuracy is used to assess the ZSL

setting. Furthermore, to capture the more realistic scenario, I have also examined the

Generalized Zero-shot recognition performance. As suggested by (Chao et al. (2016)),

the area under the seen and unseen curve (AUC score) is considered as GZSL per-

formance metric for Wikipedia-based datasets, and the harmonic mean of the seen

and unseen Top-1 accuracies is reported for Attribute-based dataset. Notice that the

choice of these measures and predictions models is to make a fair comparison with

existing methods.

5.4.3 ZSL and GZSL Performance

The results for the ZSL are provided in the left part of Table 5.1 and 5.2. It can be

seen that LsrGAN achieves superior performance in both attribute and Wikipedia-

based datasets compared to the previous state of the art models, especially with gen-

erative models GAZSL, F-GAN, cycle-CLSWGAN, and LisGAN. It is worth noticing

that all the mentioned generative models have the same base architecture. e.g.,
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Table 5.1: ZSL and GZSL results on AWA, CUB, and SUN with attributes as
semantic information. T1 indicates the Top-1 % accuracy in the ZSL setting. On the
other hand, “U”, “S” and “H” denotes the Top-1% accuracy for the unseen, seen,
and Harmonic mean (seen + unseen).

Zero Shot Learning Generalized Zero Shot Learning

Methods AWA CUB SUN AwA CUB SUN

T1 T1 T1 U S H U S H U S H

DAP (Lampert et al. (2013)) 44.1 40.0 39.9 0.0 88.7 0.0 1.7 67.9 3.3 4.2 25.2 7.2

CONSE (Norouzi et al. (2013b)) 45.6 34.3 38.8 0.4 88.6 0.8 1.6 72.2 3.1 6.8 39.9 11.6

SSE (Zhang and Saligrama (2015)) 60.1 43.9 51.5 7.0 80.5 12.9 8.5 46.9 14.4 2.1 36.4 4.0

DeViSE (Frome et al. (2013)) 54.2 50.0 56.5 13.4 68.7 22.4 23.8 53.0 32.8 16.9 27.4 20.9

SJE (Akata et al. (2015b)) 65.6 53.9 53.7 11.3 74.6 19.6 23.5 59.2 33.6 14.7 30.5 19.8

ESZSL (Romera-Paredes and Torr (2015)) 58.2 53.9 54.5 5.9 77.8 11.0 2.4 70.1 4.6 11.0 27.9 15.8

ALE (Akata et al. (2015a)) 59.9 54.9 58.1 14.0 81.8 23.9 4.6 73.7 8.7 21.8 33.1 26.3

SYNC (Changpinyo et al. (2016)) 54.0 55.6 56.3 10.0 90.5 18.0 7.4 66.3 13.3 7.9 43.3 13.4

SAE (Kodirov et al. (2017)) 53.0 33.3 40.3 1.1 82.2 2.2 0.4 80.9 0.9 8.8 18.0 11.8

DEM (Zhang et al. (2017a)) 68.4 51.7 61.9 30.5 86.4 45.1 11.1 75.1 19.4 20.5 34.3 25.6

TCN (Jiang et al. (2019)) 70.3 59.5 61.5 49.4 76.5 60.0 52.6 52.0 52.3 31.2 37.3 34.0

GAZSL (Zhu et al. (2018)) 68.2 55.8 61.3 19.2 86.5 31.4 23.9 60.6 34.3 21.7 34.5 26.7

F-GAN (Xian et al. (2018b)) 68.2 57.3 60.8 57.9 61.4 59.6 43.7 57.7 49.7 42.6 36.6 39.4

cycle-CLSWGAN (Felix et al. (2018)) 66.3 58.4 60.0 56.9 64.0 60.2 45.7 61.0 52.3 49.4 33.6 40.0

LisGAN (Li et al. (2019)) 70.6 58.8 61.7 52.6 76.3 62.3 46.5 57.9 51.6 42.9 37.8 40.2

LsrGAN 66.4 60.3 62.5 54.6 74.6 63.0 48.1 59.1 53.0 44.8 37.7 40.9

WGAN. Hence, the superiority of LsrGAN suggests that the motivation behind

this research work is realistic, and experiments are effective. In summary, LsrGAN

achieves, 1.5 %, 3.9 %, 0.8 %, 0.44% improvement on CUB (Easy), CUB (Hard),

NAB (Easy) and NAB (Hard) respectively for the Wikipedia-based datasets under

ZSL. On the other hand, for the attribute-based ZSL, the LsrGAN attains 1.5% and

0.8% improvement on CUB and SUN, respectively. A little lower ZSL performance

achieved on AWA is probably due to the high feature correlation between seen and

unseen classes, e.g. Rat (unseen) and Mouse (seen). Notice that for ZSL and GZSL

with attributes, I am using the classifier associated with the discriminator having all

the classes. Although, in ZSL setting, I find the highest confidence over the unseen
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Table 5.2: ZSL and GZSL results on CUB and NAB datasets with Wikipedia de-
scriptions as semantic information on the two-split setting. We have used Top-1 %
accuracy and Seen-Unseen AUC (%) for ZSL and GZSL, respectively.

Zero Shot Learning Generalized Zero Shot Learning

Methods CUB NAB CUB NAB

Easy Hard Easy Hard Easy Hard Easy Hard

WAC-Linear (Elhoseiny et al. (2013)) 27.0 5.0 - - 23.9 4.9 23.5 -

WAC-Kernal (Elhoseiny et al. (2016)) 33.5 7.7 11.4 6.0 14.7 4.4 9.3 2.3

ESZSL (Romera-Paredes and Torr (2015)) 28.5 7.4 24.3 6.3 18.5 4.5 9.2 2.9

ZSLNS (Qiao et al. (2016)) 29.1 7.3 24.5 6.8 14.7 4.4 9.3 2.3

Sync-fast (Changpinyo et al. (2016)) 28.0 8.6 18.4 3.8 13.1 4.0 2.7 3.5

ZSLPP (Elhoseiny et al. (2017)) 37.2 9.7 30.3 8.1 30.4 6.1 12.6 3.5

GAZSL (Zhu et al. (2018)) 43.7 10.3 35.6 8.6 35.4 8.7 20.4 5.8

LsrGAN 45.2 14.2 36.4 9.04 39.5 12.1 23.2 6.4

classes, the availability of seen classes affects the prediction capability of the classifier

for ZSL. This could be the potential reason behind the substandard ZSL performance

on AWA. However, it is worth noticing that the GZSL result for the same dataset is

superior.

The primary focus behind this work is to elevate the GZSL performance, which is

apparent from the right side of Table 5.1 and 5.2. Following (Xian et al. (2018a); Zhu

et al. (2018); Xian et al. (2018b)), the harmonic mean and AUC score are reported

for the attribute and Wikipedia-based datasets, respectively. The mentioned metrics

help to showcase the approach’s generalizability as the harmonic mean and AUC

scores are only high when the performance on seen and unseen classes is high. From

the results, it is evident that the LsrGAN outperforms the previous state of the art

for the GZSL. In terms of numbers, LsrGAN achieves, 4.1%, 3.4% 2.8% and 0.6%

gain on CUB (Easy), CUB (Hard), NAB (Easy) and NAB (Hard) respectively for the

Wikipedia-based datasets and 0.7 %, 1.4% and 0.7 % improvement on attribute-based
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AWA, CUB and SUN respectively. It is worth noticing that the LsrGAN improves

the unseen Top-1 performance in the GZSL setting for the attribute-based CUB and

SUN by 1.6% and 1.9% with the previous state of the art LisGAN (Li et al. (2019)).

The majority of the conventional approaches, including the generative models,

overfit the seen classes as they ignore the utilization of the unseen semantic fea-

tures during the training process. Consequently, these models suffer from the domain

shift problem, which results in lower GZSL performance. Notice that most of the

approaches mentioned in Table 5.1 achieve very high performance on seen classes

compared to the unseen classes in the GZSL setting. For example, SYNC (Chang-

pinyo et al. (2016)) has around 90% recognition capability on the seen classes, and

it drops to only 10% (80% difference) for the unseen classes on AWA dataset. It is

also evident from Tables 5.1 and 5.2 that the performance on the unseen categories

drops drastically when the search space includes both seen and unseen classes in the

GZSL setting. For instance, DAP (Lampert et al. (2013)) drops from 40 % to 1.7

%, GAZSL (Zhu et al. (2018)) drops from 55.8% to 23.9% and F-GAN (Xian et al.

(2018b)) drops from 57.3% to 43.7 % on attribute-based CUB dataset. This indi-

cates that the previous approaches are easy to overfit the seen classes. Although

the generative models have achieved significant progress compared to the previous

embedding methods, they still possess the overfitting issue towards seen classes by

having substandard GZSL performance. On the contrary, LsrGAN incorporates the

novel SR-Loss that enables the utilization of the unseen semantics in the training

process itself, leading to explicit knowledge transfer from the similar seen classes to

the unseen classes. Therefore, the proposed LsrGAN alleviates the overfitting concern

and helps to achieve a state of the art GZSL performance. It is worth noticing that

LsrGAN not only outperforms the generative zero-shot models having single GAN

but also proves its worth against cycle-GAN (Felix et al. (2018)) in ZSL and GZSL
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Figure 5.3: Average class confidence score (Avg SoftMax Probability) comparison
for classifier trained with F-GAN and LsrGAN. Top 3 average guesses are mentioned
here. The red marked label showcase the top 1 average guess. The class names with
underline represent seen classes.

setting. As explained above, I owe the success of the LsrGAN model to the SR-loss for

enabling explicit knowledge transfer from similar seen classes to the unseen classes.

Lastly, to have fair comparisons, I have taken the performance numbers from (Xian

et al. (2018a,b); Zhu et al. (2018)).

5.4.4 Effectiveness of SR-Loss

Utilizing the semantic relationship between seen and unseen classes to infer the

visual characteristics of an unseen class is at the heart of the proposed SR-Loss.

Contrary to other generative approaches, it enables explicit knowledge transfer in the

generative model to make it learn from the unseen classes together with seen classes

during the training process itself. As a result, the LsrGAN will become more robust

towards the unseen classes leading to address the seen class overfitting concern. To

demonstrate such ability, I have computed the average class confidence score (avg

Softmax probabilities) of the classifier trained with the generated features from the

LsrGAN or F-GAN model. Since the confidence scores are computed under the

GZSL, the classifier’s training set contains real visual features from the seen classes

and generated features from LsrGAN or F-GAN of the unseen classes. To have a

48



fair comparison, I have used the same F-GAN’s Softmax classifier in LsrGAN. Since

LsrGAN learns from the seen and unseen classes during the training process itself,

the Softmax classifier associated with it is not trained in an offline fashion like in the

F-GAN model.

Fig. 5.3 depicts the confidence results on the AWA dataset under the GZSL

setting. I have taken mainly four confusing seen and unseen classes for the comparison

with classifier’s top 3 guesses. It is evident from the figure that the classifier trained

with the F-GAN has lower confidence for the unseen classes, and it mainly showcases

very high confidence towards the similar seen classes even if the test image comes from

the unseen classes. Also, during the seen class classification, the classifier’s confidence

values are mainly distributed among the seen classes in F-GAN. For instance, “mouse”

has its confidence spread between mouse and hamster only. On the other hand,

LsrGAN showcase decent confidence values for the seen and unseen, both leading to

better GZSL performance. It is worth noticing that the LsrGAN fails for the “mouse”

classification. However, the confidence is well spread among all the three categories

showing it has considered an unseen class “rat” with other seen classes “mouse” and

“Hamster”. These observations reflect the fact that F-GAN has an overfitting issue

towards the seen classes. On the other hand, the balanced performance of LsrGAN

manifests that explicit knowledge transfer from SR-loss helps it to overcome the

overfitting concern towards the seen classes. To bolster the claim further, I have also

computed the avg. class confidence across all the seen and unseen classes for these

two models on attribute-based AWA, CUB, and SUN datasets. Table 5.3 reports

avg. confidence values for seen and unseen classes. Clearly, it shows the superiority

of LsrGAN in terms of generalizability compared to F-GAN.

49



Table 5.3: Comparison of avg. class confidence score across all seen or unseen classes
(SoftMax Probability) between F-GAN and LsrGAN for attribute-based AWA, CUB
and SUN

F-GAN (Xian et al. (2018b)) LrsGAN

Unseen Seen Unseen Seen

AWA 0.29 0.86 0.69 0.83

CUB 0.33 0.65 0.60 0.64

SUN 0.32 0.35 0.65 0.39
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Figure 5.4: Parameter Sensitivity (a-b) of ε and λsr for SR-loss.

5.4.5 Model Analysis

Parameter Sensitivity : I have tuned the LsrGAN parameters by following the

conventional grid search approach. Mainly the SR-Loss parameters ε, λsr and nc are

considered for the tuning. For the fair comparison, I have adopted other parameters

λvp, λgp from (Xian et al. (2018b); Zhu et al. (2018)), also the λc is considered between

(0, 1], specifically, 0.01 for the majority of experiments. Fig. 5.4 (a)-(b) and Fig. 5.5

(b) show the parameter sensitivity for the SR-Loss. Notice that I estimate the ε value

from the seen class visual and semantic relations. It can be seen that a lower and
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Figure 5.5: Ablation Study of LsrGAN (a), and Parameter Sensitivity of nc (b) for
SR-loss.

higher value of ε affects the performance. On the other hand, λsr and nc maintain

consistent performance after reaching a certain threshold value.

Training Stability : Since GANs are notoriously hard to train, and the proposed

LsrGAN model not only uses GAN but also optimizes the similarity constraints from

the SR-loss. Therefore, reporting the training stability for ZSL and GZSL for attribute

and Wikipedia-based datasets. Specifically, for the ZSL, I have considered the unseen

Top-1 accuracy and Epoch behavior in Fig. 5.6 (a) and Fig 5.7 (a). The harmonic

mean of the seen and unseen Top-1 accuracy and Epoch behaviour is mentioned in

Fig. 5.6 (b) and Fig. 5.7 (a) to showcase the training stability for the GZSL. Mainly

we see the stable performance across all the datasets.

Ablation study : To showcase the effectiveness of the every component in the

LsrGAN model. I have reported the Ablation study in Fig. 5.5 (a) under ZSL for

both attribute and Wikipedia-based CUB. Primarily, I have used CUB (Easy) split

for the Wikipedia-based dataset. The S1 - WGAN with a classifier is considered as

a baseline model. S2 reflects the effect of the visual pivot regularizer in LsrGAN

model. Finally, S3 showcase the performance of a complete LsrGAN with SR-loss.
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Figure 5.6: Training Stability for Wikipedia-based Datasets Under ZSL and GZSL

(a) ZSL-GZSL Attribute
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Figure 5.7: Training Stability for Attribute-based Datasets Under ZSL and GZSL

To highlight the effect of the denoiser used to process the Wikipedia-based features,

I have also reported the LsrGAN without denoiser in S4. In summary, Fig. 5.5 (a)

showcases the importance of each component used in LsrGAN model.
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Chapter 6

CONCLUSION & FUTURE WORK

6.1 Conclusion

In this dissertation, I have proposed a two novel generative zero-shot models

named Student- Teacher GAN and LsrGAN. The Student- Teacher based GAN uses

the concepts of meta learning to mimic the zero-shot inference behaviour in the train-

ing process itself. On the other hand, the LsrGAN, Leverages the Semantic Relation-

ship between seen and unseen classes to address the seen class overfitting concern

in generative zero-shot models. Mainly, LsrGAN employs a novel Semantic Regu-

larized Loss (SR-Loss) to perform explicit knowledge transfer from seen classes to

unseen ones. The SR-Loss explores the semantic relationships between seen and un-

seen classes to guide the LsrGAN to generate visual features that mirror the same

relationship. Extensive experiments conclude that the Student - Teacher based GAN

is not improving the results to a greater extend. On the other hand, LsrGAN show-

cases a state of the art performance in ZSL and GZSL for all the seven benchmarks

datasets, including attribute and Wikipedia description based datasets. This veri-

fies that the propoesd LsrGAN effectively addresses the overfitting concern of the

generative zero-shot models, and comes out as a more robust model for the GZSL.
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6.2 Future Research Directions

Here, in this section will highlight some of the future research directions to extend

my work.

6.2.1 Student-Teacher GAN Model

First of all, the Student-Teacher model is highly complex. Imaging training more

than six GANs and fine-tuning them to get the desired performance; it is certainly

hard to achieve. One way to address this concern is to train a single student incre-

mentally and simultaneously make the Teacher network learn from it using the same

Meta Learning-based episodic training procedure. I would also recommend exploring

the recent Meta-Learning work such as “MAML” to devise an approach to train these

Student-Teacher networks. Lastly, it is also vital how one splits the data into a train

set and a held-out set for the student model. The splitting should have some common

relationship between class categories like the EASY and HARD splits mentioned in

the chapter 2.

6.2.2 LsrGAN Model

In my opinion, LsrGAN has many advantages compared to other generative mod-

els. Specifically, it only uses one GAN and hence easier to fine-tune. Although the

constraint optimization is complex together with notorious GANs, the performance

results state the GAN can handle these constraints well. I would only like to explore

various distance metrics in SR-loss; also, it would worth build an attention model

to automatically find the neighbors in the semantic and visual space and learn this

model together with the LsrGAN. I believe it will have less dimensionality curse issues

compared to cosine distance and Euclidian distance. Moreover, one can also devise a
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network to determine the ideal value of ε for every category. I believe different values

of ε can help to learn categories better since it is hard to generalize the value of ε for

all the categories.
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• For Attribute-based, CUB, AWA and SUN

• For Wikipedia-based CUB and NAB
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