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ABSTRACT

Global optimization (programming) has been attracting the attention of researchers

for almost a century. Since linear programming (LP) and mixed integer linear pro-

gramming (MILP) had been well studied in early stages, MILP methods and software

tools had improved in their efficiency in the past few years. They are now fast and

robust even for problems with millions of variables. Therefore, it is desirable to use

MILP software to solve mixed integer nonlinear programming (MINLP) problems.

For an MINLP problem to be solved by an MILP solver, its nonlinear functions must

be transformed to linear ones. The most common method to do the transformation

is the piecewise linear approximation (PLA). This dissertation will summarize the

types of optimization and the most important tools and methods, and will discuss in

depth the PLA tool. PLA will be done using nonuniform partitioning of the domain

of the variables involved in the function that will be approximated. Also partial PLA

models that approximate only parts of a complicated optimization problem will be

introduced. Computational experiments will be done and the results will show that

nonuniform partitioning and partial PLA can be beneficial.
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Chapter 1

INTRODUCTION

Optimization (or programming) is a large field of research that takes interest

in making some decisions to optimize an objective. The main components of an

optimization problem are an objective function that needs to be optimized (minimized

or maximized) by assigning values to decision variables, and restrictions or constraints

that are applied on the variables. Given a vector x = (x1, x2, . . . , xn), the optimization

model can be generally formulated as:

min f(x) (1.1a)

subject to g(x) ≥ 0 (1.1b)

x ∈ X ⊆ Rn, (1.1c)

where f : X → R and g : X → Rm. The optimization problem of the form 1.1 has n

variables and m constraints and the goal is to minimize the function f .

The research on optimization can be divided into many areas based on different

aspects. For example, based on what kind of a solution is required to solve the opti-

mization problem, the field of study can be divided into local optimization and global

optimization. The local optimization aims at finding local solutions (the smallest or

largest value of the objective function over a part of the original domain). In the case

of global optimization, the goal is to find a global solution, then prove it is global.

The discussion in this dissertation is mostly on the global optimization.

Another important classification of optimization is based on the domains of the

variables. If the research area studies problems where the variables have continuous
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domains, then the area is in the continuous optimization field. Discrete optimization

deals with problems that have variables with discrete domains. Integer and binary

variables are special cases of discrete variables. Both classes are discussed in the

following chapters.

Also there are constrained and unconstrained optimization fields that study op-

timization problems with or without constraints. Other classes can be classified de-

pending on the functions in the objective or constraints, whether the functions are

linear, convex, nonconvex, etc.

Although the optimization classes mentioned above can be studied separately,

they are usually linked together. For example, local optimization is very helpful to

do global optimization, and doing constrained optimization starts in many cases by

doing it as if it is unconstrained. Therefore, even though the main discussion is on

the nonconvex global optimization, all other classes are discussed thoroughly in this

dissertation.

1.1 Motivation

Many research areas in engineering, science, economics, depend on optimization

techniques to solve their optimization problems. Real life optimization problems arise

in economics modeling, finance, networks, transportation, operation research, chemi-

cal; electrical; and civil engineering, biology, mechanics, and many other areas. Most

of these problems have the most complicated form of optimization problems (noncon-

vex constrained global optimization). Therefore, many optimization techniques and

algorithms have been introduced to solve complicated problems arising from these

fields.

Although the improvement of optimization methods is notable, it is still not

enough. Countless instances of problems from different optimization classes may
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still be unsolved (this is either due to the size of these problems or the complexity).

The number of unsolved problem is declining due to the continued improvement of

software solvers, algorithms, tools, etc. Detailed discussion on this development will

be presented in this dissertation.

The main contribution of the dissertation will be on one of the effective tools in

nonconvex global optimization. This tool, Piecewise Linear Approximation (PLA),

helps approximating a complicated problem, e.g., nonlinear, by a simpler one, linear.

As PLA is used by many algorithms, improving it can improve these algorithms, and

therefore a better performance of solvers can be obtained.

The existing PLA models will be modified by either modifying the models them-

selves or changing how to apply them to a problem. The test results show that in

many cases the solvers perform better with modified models compared to the standard

ones. Also with the PLA models, successful attempts were made on fully transforming

nonlinear problems to linear ones, enabling linear solvers to deal with these problems.

1.2 Dissertation Outline

Each chapter provides an overview of the literature that is related to the chap-

ter subjects. The materials of this dissertation are organized as follows: Chapter

2 presents an overview of global optimization. Different classes of problems are de-

fined, followed by a short survey of optimization tools and techniques. After that, a

summary of the most important algorithms that deal with each class is presented.

Chapter 3 concentrates on the class of mixed integer nonlinear programming

(MINLP) problems. The most common methods and algorithms that handle these

problems are discussed in detail. Then an overview of the global solvers that can solve

this class of problems (nonconvex MINLP global solvers) is presented. The end of
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the chapter provides the results of computational experiments that compare between

the performances of these solvers on solving some difficult problems.

The main topic of the dissertation, PLA, is demonstrated in Chapter 4. This

chapter starts by presenting the background of PLA and a summary of the most

common models for both one and two dimensional cases. Then, few approaches on

how to improve the models are introduced. One of the approaches shows how to take

an advantage of a local solution to produce a better PLA model. Another approach

is to apply the PLA on only a part of the optimization problem, which makes it easier

to be handled by a solver.

Finally, the computational results are presented in Chapter 5. The PLA models

were tested on two classes of nonconvex optimization: quadratically constrained pro-

gramming and mixed integer quadratically constrained programming. The chapter

ends by testing the models on few MINLP problems with two variables. The following

chapter, Chapter 6, will provide the conclusions that summarize the main aspects of

the dissertation.
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Chapter 2

GLOBAL OPTIMIZATION

The goal of global optimization is to find a solution where the function value

at this solution is the same as or better than the value at any feasible solution.

Assume x∗ is the global minimum of the function f , then f(x∗) ≤ f(x) for any

x. The degree of difficulty of global optimization varies depending on the class of

the optimization problems. In order to easily distinguish between different types of

optimization problems, Model 1.1 can be reformulated to

min f(x) (2.1a)

subject to h(x) = 0 (2.1b)

g(x) ≥ 0 (2.1c)

x ∈ X ⊆ Rn (2.1d)

xi ∈ Z, for i ∈ Z ⊆ {1, 2, . . . , n}, (2.1e)

where f : X → R, g : X → Rm, h : X → Rl for l ≤ n. Before listing the

types of problems, two general types should be mentioned: convex and nonconvex

programming. If f is convex and X is a convex set, and the constraints define a

convex feasible set,then the continuous problem (Z = φ) is convex. Convex problems

have an important property that makes the global optimization much easier compared
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to nonconvex problems. The property implies that every local solution is also a global

solution, thus doing global optimization only requires finding a local solution.

2.1 Types of Optimization Problems

Assume f and all functions in the constraints in Model 2.1 are linear functions

and Z = ∅, then the optimization problem is linear and it can be solved using linear

optimization or programming (LP). This is the easiest optimization problem. Not

only is any local solution the global one (since any linear function is convex), but also

the global solution will be at one of the vertices of the polytope that is formed by

the constraints. Simplex method and interior-point methods are highly efficient in

finding the global optimum of LP problems.

Quadratic Programming (QP) is the second easiest type of programming after LP.

The problem settings are the same, but f is a quadratic function instead of being

linear. f(x) is called a quadratic function if it can be written as f(x) = 1
2
xTQx+xT c,

where Q ∈ Rn×n is a symmetric matrix and c ∈ Rn. If Q is positive semidefinite, then

f is convex, and therefore 2.1 becomes a convex QP problem which is usually as easy

as a LP problem and both can be solved in polynomial time. When Q is indefinite,

then the QP problem is nonconvex and the number of local solutions may increase

exponentially with the number of negative eigenvalues of Q. Even though finding the

global solution is hard in this case, many methods were developed to deal with this

kind of problem.

When at least one of the functions in the constraints is quadratic and f is lin-

ear or quadratic, then 2.1 will be quadratically constrained programming (QCP) or

quadratically constrained quadratic programming (QCQP), respectively. They are

both harder than QP but they were well studied and the global optimum can be

found using several methods. Convexifying the problem (bounding the nonconvex
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function by a convex one) is one of the most important tools that are used by some of

these methods and quadratic functions have the advantage of being easy to convexify.

The problem needs nonlinear programming (NLP) if f or at least one of the

functions in the constraints is nonlinear (Z is still an empty set). NLP is considered

to be harder than QCQP. One of the reasons is that convexifying an NLP problem

with high degree polynomial functions is more complicated than convexifying a QCQP

problem. Turning the problem into a simpler one (like a convex or LP problem) is a

tool that is used by most of the algorithms that perform well on finding the global

solution of NLP problems.

Now assume Z 6= ∅, Then the difficulty of the optimization problem rises to an

entirely different level. Even the simplest optimization problem, LP, when some of

its variables are integer, could be harder than problems that are already complex

such as NLP problems. The type of optimization in this case is mixed integer linear

programming (MILP). Similarly, the other types include MIQP, MIQCP, MIQCQP,

and finally MINLP, which is the general case.

In the following section, we will define some concepts and introduce tools that

are used by most of the global optimization algorithms that deal with the classes of

optimization problems mentioned above. These algorithms play an important role in

solving MINLP problems globally, which will be discussed in detail in Chapter3.

2.2 Techniques and Tools

The purpose of any technique or tool introduced in this section is to overcome

one or more of the global optimization challenges. Some techniques could target the

complicated functions in the problem and replace them by simple functions. Other

techniques target the feasible area and divide it to many areas resulting in many

7



subproblems but simpler ones than the original problem. The components of most

algorithms are formed by these techniques.

1. Divide and conquer

Divide and conquer is a technique that recursively divides the original problem

into subproblems, then finds the solution of each subproblem. The goal is to

find a sequence of solutions that converges to the original problem solution.

This is one of the earliest optimization techniques and it became the base of

many known algorithms, such as branch and bound, and branch and select.

2. Convexification and Linearization

This tool is the most popular tool used by global optimization algorithms. Since

it is hard to deal with nonconvex problems, applying under or over-estimators

to the nonconvex functions will result in a much simpler problem. If the non-

convex functions of the problem are under-estimated (in case the problem is

a minimization problem) by a convex function, then the process is called con-

vexification. Linearization is under-estimating the nonconvex function by a

piecewise linear function. Assume the function f̂ is convex (or linear), then f̂

is an under-estimator of the function f if f̂(x) ≤ f(x) for all x ∈ X. Once the

under-estimator is found, its minimum can be found easily, and therefore can

be used as a lower bound of the global minimum of the original problem.

It is not a simple task to find a good under-estimator in general, but much

research has been done in this area, and under-estimators for common non-

convex functions have been introduced. A popular example is the product

function under-estimator that was introduced by McCormick (1976). Assume

f(x, y) = xy, where x ∈ [xl, xu] and y ∈ [yl, yu], then f can be under-estimated

8
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Figure 2.1: An Example of an Under-estimator of a Product Function.

by the function

f̂(x, y) = max{yux+ xuy − xuyu, ylx+ xly − xlyl}.

Figure 2.1 illustrates this example for (x, y) ∈ [−5, 5]2.

f(x, y) = xy is a quadratic function, so it was not challenging to find a good

under-estimator. However the more complex the function is, the harder the

convexification gets. A detailed study about under-estimators can be found in

Tawarmalani and Sahinidis (2002).

3. Separation

In case it is hard to find a good under-estimator of a nonconvex function, sepa-

ration of the function might help. A function f : Rn → R is said to be separable

if it can be written as

f(x) =
n∑
i=1

fi(xi),

where fi : R → R for i = 1, 2, . . . , n. This property is useful because under-

estimating is easier for a univariate function. Thus after finding a convex under-
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estimator of each univariate function, the sum of these under-estimators is also

a convex under-estimator of the original function.

4. Factorization

Factorization is another useful tool to find a good convex under-estimator. The

complicated multivariate function is transformed to a univariate function by

introducing new variables and constraints, see McCormick (1976). For example,

assume f : R3 → R is defined by f(x, y, z) = exp (xy
z2

). Then it can be rewritten

as f(w1) = ew1 , where w1 = w2

w3
,w2 = xy,and w3 = z2. Now the function f

is univariate, and the other functions are either convex or easy to be under-

estimated by convex functions.

5. Piecewise Linear Approximation

Approximating the nonlinear functions in the objective or constraints by piece-

wise linear functions gives the advantage of turning an MINLP problem into an

MILP problem. This approach is more useful when the number of variables is

small or the function is separable. When the problem has many variables, this

approach might complicate the problem. Comprehensive study on this approach

is provided in Chapter 4.

6. Cuts

Cuts (cutting planes) are additional constraints that are added to the original

problem resulting in decreasing the feasible area without eliminating any feasible

solution. This technique can be very powerful in simplifying MILP problems. If

the problem is simple, applying enough cuts can form the convex hull, which is

the smallest possible feasible area that contains all integer solutions. In this case

the global solution is guaranteed to be found on the boundary of the feasible

area. Although finding the convex hull of an MILP problem is next to impossible
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in general, obtaining cuts is possible and they will still be extremely useful even

if they do not form a convex hull.

Many methods were introduced to find good cuts and the research in this area

is still improving. Examples of methods to obtain cuts are Gomory cuts, mixed-

integer rounding (MIR) cuts, and cover cuts. Adding cuts to a global optimiza-

tion method produces new effective algorithms that can solve more complicated

problems. For example, the simplex method algorithm can only solve LP prob-

lems, but adding Gomory cuts during the steps of the algorithm allows it to

solve MILP problems, see Gomory (1958).

2.3 Algorithms

Many exact algorithms arose from combining techniques, such as the ones men-

tioned in the previous section, with recursive strategies. In this section we will briefly

describe common algorithms that are highly efficient in solving problems easier than

MINLP problems. In general, they cannot do global MINLP, but they will be the

main ingredients of forming MINLP algorithms.

2.3.1 Branch and Bound

The Branch and Bound (B&B) algorithm is one of the fundamental methods that

are used to solve MILP problems, see Land and Doig (1960). This algorithm embodies

a divide and conquer strategy. It enumerates candidate solutions that form a rooted

tree and it seeks the global solution. An MILP problem with only n binary variables

has up to 2n possible solutions, which makes it impossible to evaluate them all if n

is large. The advantage of this method is its ability to eliminate a huge amount of

these possible solutions, as will be shown below.
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To describe the Algorithm, assume the problem 2.1 is an MILP problem, i.e., f ,

g, and h are linear, and Z 6= ∅. The B&B algorithm starts solving this problem by

ignoring the integer variables, and solves it as an LP problem. The solution will return

some or all of the integer variables having fractional values (if all integer variables

turned out to be integer, then the solution is the optimal solution).

After solving the LP problem, B&B chooses one of the integer variables that have

fractional values (usually the variable with the smallest fractional part) to partition

its domain and create two sub-problems, which we will call nodes. Assume the chosen

variable is xj = x∗j , where j ∈ Z and x∗j is not integer. The two nodes are similar to

the original node with one extra constraint to each node: one node with xj ≤ bx∗jc

and the other node with xj ≥ dx∗je. Notice that any resulting node will have an

objective value that is greater than or equal to the branched node.

Now B&B keeps branching and creating more nodes by repeating the process that

was applied to the original node on every node. Whenever a node’s solution returns

with all integer variables having integer values, then no further branching is needed

on that node and the node is pruned or fathomed. The solution now is a candidate for

the global solution. The best available integer solution so far is called the incumbent

solution. The incumbent solution is updated every time a node results in a better

integer solution.

The objective value at the incumbent solution (incumbent value) is an upper

bound of the optimal value. Therefore, if a node results in an objective value that

is greater than the incumbent value, then branching will only result in nodes with

greater objective values. Thus the node is pruned and no more branching is required

on it. Another case that results in pruning a node is when the node has no feasible

solution. With pruning property, the B&B method is able to eliminate big parts of
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the search region in short time. When all nodes are pruned (there is no branching

required on any node), then the current incumbent solution is the global optimum.

Considerable research has been done to improve the components of the B&B

method. These components include search strategies (which node should be tested),

branching strategies (which variable should be selected for branching), and pruning

rules. Variations of these components have proved that some strategies are better

than others. A recent survey by Morrison et al. (2016) presents more detail about

these strategies.

Since it was introduced, the B&B method has been efficiently used to solve a wide

range of MILP problems. Its components became the basis of many algorithms that

are able to deal with all types of optimization problems, including nonconvex MINLP.

2.3.2 Outer Approximation

The outer approximation method is a good option to solve any convex optimiza-

tion problem. The presence of convex functions in this kind of problems gives the

advantage of easy Linearization of the functions. For any convex function f(x), we

have the following inequality:

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄), (2.2)

where x̄ is in the domain of f . Now if the optimization problem is convex, then the

constraints will form a convex area which can be approximated from outside by linear

functions using Inequality 2.2. Figure 2.2 illustrates this approximation in the two

dimensional case.

The outer approximation algorithm was first introduced by Duran and Grossmann

(1986), and it targets convex MINLP. Solving convex MINLP problems using this

method starts with assigning feasible values for the integer variables. Now since the
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Figure 2.2: Outer Approximation of a Convex Area.

integer variables are given, the problem becomes a convex NLP, and Model 2.1 can

be rewritten as

min f(x) (2.3a)

subject to g(x) ≤ 0 (2.3b)

x ∈ X ⊆ Rn (2.3c)

xi = xIi , for i ∈ Z ⊆ {1, 2, . . . , n}, (2.3d)

where xIi is a fixed integer value, and f and g are convex and continuously differ-

entiable (the equality constraints are omitted for simplicity). Now the convex NLP

model is easy to solve and the resulting solution is feasible for the original problem

and it will produce an upper bound of the global minimum. The NLP solution and

its objective value are denoted by x̄ and v̄, respectively.

To obtain a lower bound of the optimal value, the original problem, the convex

MINLP, can be reformulated to be an MILP problem using the NLP solution x̄ and

Inequality 2.2. By introducing an auxiliary variable α, the model is written as
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min α (2.4a)

subject to f(x̄) +∇f(x̄)T (x− x̄) ≤ α (2.4b)

g(x̄) +∇g(x̄)T (x− x̄) ≤ 0 (2.4c)

x ∈ X ⊆ Rn (2.4d)

xi ∈ Z, for i ∈ Z ⊆ {1, 2, . . . , n}. (2.4e)

The outer approximation methods depend on the property that all optimal solu-

tions of the original model are optimal for Model 2.4 with the same objective values,

see Duran and Grossmann (1986); Fletcher and Leyffer (1994); Bonami et al. (2008).

Solving this MILP model will produce a lower bound of the optimal value, which

is denoted by v. The global optimal value must be between v̄ and v. Now the values

of the integer variables are updated from the MILP solution, and they can be used

as new xIi in 2.3d. Then 2.3 is solved again to get a new x̄ and update v̄ if it is

better. The new x̄ will lead to more linearizations so solving 2.4 might lead to an

improvement in v value.

The algorithm keeps alternating between solving the Models 2.3 and 2.4 and the

values v̄ and v are updated. When the difference between v̄ and v is arbitrarily small,

then v̄ is the global optimal value and x̄ is the global optimum.

Similar to the B&B method, the outer approximation method cannot deal with

nonconvex MINLP problems. However, this method is an important component of

most of the MINLP algorithms, as we will see in Chapter3

2.3.3 Cutting Plane Algorithms

Many algorithms have benefited from cutting planes and became able to solve

optimization problems that cannot be solved using these algorithms without cuts.
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One of the earliest algorithms is Gomory’s algorithm, see Gomory (1958), which can

use the simplex method to solve MILP problems. The procedures of solving an MILP

problem starts by using the simplex method to solve the problem as an LP problem.

Then a Gomory cut is applied by using a constraint that violates the integrality of

one of the integer variables in the optimal tableau.

To illustrate the step of adding the Gomory cut, consider the following numerical

example. Assume the constraint

1.3x1 + 2.8x2 + 0.5x3 + x4 = 3.7

is in the optimal tableau, and all variables are non negative integer. If the fractional

part of the coefficients is split from the integer part then the left hand side will be

x1 + 2x2 + x4 + 0.3x1 + 0.8x2 + 0.5x3. Now the sum of the first three terms has to be

integer, so the fractional part of the right hand side results from the sum of the last

three terms. Therefore, the Gomory cut in this case is the inequality

0.3x1 + 0.8x2 + 0.5x3 ≥ 0.7.

In general, if a constraint is given by
∑n

i aixi = b, then the Gomory cut is

n∑
i

fixi ≥ f,

where fi = ai − baic and f = b− bbc.

After adding this inequality to the constraints of the original problem, the solution

obtained by the simplex method is no longer feasible. Therefore, the simplex method

is applied again to the LP problem with the extra constraint. A new solution is

obtained and a new cut is added. These steps are repeated until the simplex method

produces a solution that does not violate the integrality constraints, and it is the

global solution. If all variables are integer, this method is guaranteed to produce the

optimal solution in a finite number of steps.
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Cutting plane methods are not limited to MILP problems. For example, the

extended cutting plane method by Westerlund and Pettersson (1995) can deal with

convex MINLP, which the Gomory method cannot deal with. This method is an

extension to the Kelley cutting plane method that was introduced by Kelley (1960)

to solve convex NLP problems. Its algorithm is similar to the outer approximation

algorithm that was explained in the previous section. The difference here is that

the extended cutting plane method does not solve the NLP relaxation during the

iterations. It keeps adding linear cuts and solving the MILP relaxation until a solution

that satisfies the nonlinear constraints within an ε tolerance is found. The objective

value at this solution is at most ε below the objective value at the global optimal

solution.

The cuts that are added in every iteration of the extended cutting plane and Kel-

ley’s methods are different from Gomory cuts. The cuts are obtained by constraints

similar to Inequality 2.2 for convex functions.

Another example of cuts is cover cuts, which can be used to significantly improve

the performance of algorithms for most kinds of optimization problems. These cuts

are easily obtained from the constraints of the original problem. For example, assume

x1, x2, and x3 are binary variables and 3x1 + 4x2 + 8x3 ≤ 10 is one of the constraints.

Few possible cuts can be obtained from the constraint such as x1 + x3 ≤ 1 and

x2 + x3 ≤ 1. For more examples of cuts and cutting planes algorithms, Belotti et al.

(2013) presented a detailed study about the subject.
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Chapter 3

MINLP

The most difficult class of optimization is MINLP, where the model takes the

form of Model 2.1 with f ,g, and h being at least twice differentiable and noncon-

vex. Having both continuous/discrete variables and nonlinear functions allows most

of deterministic real life problems to be modeled and solved using MINLP. However,

even the simplest example of MINLP problems is considered to be an NP-hard prob-

lem. Therefore, with the increasing need for MINLP in many applications, this area

has been a target for researchers for few decades. The development of MINLP algo-

rithms and computational methods increased dramatically in the past few years, and

handling global MINLP problems in real life applications is promising.

3.1 Background

The promising results of methods and algorithms that were introduced to deal with

the easier classes of optimization problems encouraged researchers to extend these

methods and apply them to solve MINLP problems. Early attempts take advantage

of methods such as B&B, outer approximation, and cutting planes and use them on

MINLP problems with a small number of variables. Horst (1990) presents a review

of these methods. Unfortunately, if a solution is found by any of these methods, it

cannot be proven to be global, also the methods are not effective in the presence

of integer variables and nonconvex functions. Therefore, further improvement on

MINLP algorithms is needed.

A major improvement in the MINLP research area was when Falk and Soland

(1969) applied the B&B method on separable NLP problems. Later, McCormick
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(1976) introduced a B&B algorithm that deals with general nonconvex NLP problems.

This algorithm has the same divide and conquer principles of B&B described 2.3.1.

Branching is applied to a continuous variable by partitioning its domain and creating

a subproblem for each part, and the lower bound of the function’s optimal value

is obtained by solving a convex or linear relaxation of the original problem. This

algorithm later came to be known as the spatial branch and bound (sB&B) algorithm

and became one of the most significant algorithms that deal with MINLP problems.

More details about sB&B are presented in the following section.

The outer approximation algorithm is also modified to deal with nonconvex MINLP

problems. One of the most successful attempts to do this modification was presented

by Viswanathan and Grossmann (1990). Kesavan et al. (2004) presented a more re-

cent outer approximation method that deals with nonconvex MINLP problems whose

functions can be separated into integer variable functions and continuous variable

functions.

3.2 Spatial Branch and Bound (sB&B)

After the sB&B algorithm was first introduced to solve NLP problems, it was

later realized that it can be applied to MINLP problems, as mentioned for example

by Smith and Pantelides (1997). It is possible to use the B&B algorithm to solve

MINLP problems and the global optimum will be found eventually, but performing

nonconvex NLP at every node would be very expensive. On the other hand, sB&B

requires either convex NLP or LP at every iteration, as will be explained below.

To describe the algorithm, the following notations are needed: Let Rj be the jth

search area (region) to be tested. Let Lj and Uj be the lower and upper bounds of the

optimal value of the objective function on Rj. The algorithmic steps are described as

follows:
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• Step 1: Initialization:

Define U := min
j
Uj to be the incumbent value and set U = ∞. Define a

convergence tolerance ε > 0. Set the whole domain of the original problem as

R1 to start the search on it and divide it later to get more subproblems.

• Step 2: Region Selection:

Select a region Rj that has not been tested yet. The region selection can be done

in many ways. One popular way is to select one of the regions with the smallest

lower bound computed in the previous iteration. After selecting a region, go to

Step 3.

• Step 3: Lower Bounding:

Apply some relaxations to the original problem in the selected region Rj. This

can be done by applying linear or convex under-estimators to the nonconvex

terms in the original problem. Factorization and separation are applied by most

of sB&B algorithms to facilitate the process of finding a good under-estimator.

The optimal value of the relaxed problem in Rj is Lj, and it will be a lower

bound of the optimal solution in Rj. In Figure 3.1a, the nonconvex objective

function, f , is under-estimated by the convex function f̂ .

If the relaxed problem is linear then it will be easy to handle, but if it is non-

linear (but convex) then convex programming is needed. Outer approximation

algorithms are usually used by sB&B algorithms during this step.

• Step 4: Upper Bounding:

Many ways can be used to find the upper bound Uj. It can be found using any

local solver to find a local solution to the problem in Rj. Another way is to use

the solution of the relaxed problem if it is feasible. U is updated as needed.
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Figure 3.1: Finding Lower and Upper Bounds of the Objective Function Values in
the Search Regions.

• Step 5: Check Solution:

If Uj − Lj ≤ ε, then Uj is the global optimal value at Rj. The region Rj

is pruned. If U = Uj, then the solution x∗ = x∗j associated with Uj is the

incumbent solution. Also the region Rj is pruned if it has no feasible solution,

or if the lower bound of the optimal value is larger then the incumbent value,

i.e., Lj > U . In Figure 3.1b, L3 > U2 = U , so the global optimal solution

cannot be in the region R3, therefore the region is pruned.

After checking the solution, if the region is pruned and there exist at least one

region that has not been tested, then go to Step 2. If there are no more regions

to be tested, then the current incumbent solution is the global optimum.

If Uj − Lj > ε, then the optimal solution of the region Rj is not found; hence

further branching is needed to tighten the bounds. Go to Step 6.
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• Step 6: Branching:

The region Rj is divided into two or more regions by partitioning the domain of

one of the variables in the vector x. The branching variable and the branching

point are not chosen randomly. Many branching strategies can be used to

determine how to branch Rj. For example, if the solution x∗j has a noninteger

value for an integer variable, then it is always a good idea to branch on this

variable. After branching the region, go to Step 2.

Finding good upper and lower bounds may spare much time during the solution

process. For example, in the lower bounding step, the integrality constraints can

be ignored, resulting in a convex NLP or LP problem, which will make the relaxed

problem easy to solve, but the resulting lower bound may not be tight, which will lead

to more search regions being tested. On the other hand, if the integrality constraints

are not ignored, the lower bound will be better than the one produced by the other

case, and hence, many fewer search regions are explored. This advantage will come

at the price of solving a convex MINLP or MILP problem, which is more expensive

than convex NLP problems. The same logic applies to the upper bounding. A good

upper bound can be found using an expensive method, but it will help reducing the

search time.

Branching strategies were also investigated to aid finding better bounds or reduc-

ing the search area. One of the strategies is the strong branching strategy, which

was introduced by Applegate and Bixby (1995) and Applegate et al. (1998) to deal

with the travelling salesman problem (TSP) problem (MILP). Using this strategy,

for every branching variable candidate, a branching point is selected, then the two

resulting problems are solved. Some variables may result in pruning one or both

nodes. Others may result in improving the lower or upper bound of the objective

value. Based on these results, the branching variable is selected. Although this strat-
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egy may considerably decrease the search area, the solving time may increase because

of the computations that are required to solve two subproblems for many variables

before branching. An alternative strategy that avoids these computation is the pseu-

docosts branching strategy (Bénichou et al. (1971)). The improvements of the bounds

for any branching variable are estimated by keeping track of all improvements gained

by earlier branchings on that variable. Reliability branching, introduced by Achter-

berg et al. (2005), is another strategy that combines the previous two strategies to

avoid their drawbacks and exploit their benefits. A discussion on bound tightening

and branching strategies for the MINLP case was given by Belotti et al. (2009).

Although this method guarantees global optimality, it will not produce the so-

lution quickly most of the time, so further advances are needed. Improvements of

the strategies of the steps are made, and additional steps are added. Consequently,

many sB&B-based algorithms are developed, and in the following sections, the details

about some of these algorithms are discussed.

3.2.1 Branch and Reduce

The branch and reduce (B&R) algorithm is a sB&B-based algorithm that was in-

troduced by Ryoo and Sahinidis (1995) and further discussed in Ryoo and Sahinidis

(1996). This algorithm resulted in a significant improvement in the sB&B method.

In addition to the steps performed in the sB&B method, this algorithm adds variable

domain reduction (bound tightening) steps before the lower bounding step and after

the upper bounding step. If the domain reduction is successful for at least one vari-

able, then steps 3 and 4 are repeated, since the optimal value bounds are likely to be

improved.

The goal of the domain reduction is to change the domain of a variable xj from

[lj, uj] to [l′j, u
′
j], where lj < l′j and u′j < uj (changing either the upper or the lower
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bound is enough). If new variables are introduced due to factorization, then their

domains are also subject to reduction and this reduction can be very useful.

One of the benefits of domain reduction is related to the under-estimators of

the nonconvex functions in the problem, especially the linear under-estimators. The

domain reduction of an auxiliary variable will lead to a tighter linear under-estimator.

The tighter the under-estimator is, the better the lower bound of the optimal value,

and hence, less time is needed until the global minimum is found.

The benefit of domain reduction can go beyond improving the bounds of the

optimal value in a region. In some cases, reduction will result in fathoming a search

region, instead of just improving its bounds. This happens when the reduction of the

domain of a variable in the search region leads to an infeasible subproblem. Also if

the objective function is factorable and replaced by the auxiliary variable xk whose

domain is reduced to [l′k, u
′
k], for k > n, l′j might be larger than U . As a result, the

search region is fathomed, thus sparing the time that would be used on solving the

relaxed problem.

The impact of domain reduction on the sB&B method resulted in including do-

main reduction steps in most of the sB&B algorithms. There are many techniques

that can be applied to reduce the domain of a variable. Two common techniques

are optimality-based (OB) and feasibility-based (FB) tests, that were discussed by

Ryoo and Sahinidis (1995). More recent details about OB and FB and other domain

reduction techniques can be found in Belotti et al. (2013), who use the term bound

tightening to refer to domain reduction.

3.2.2 α Branch and Bound

Another algorithm that is based on sB&B is αBranch and Bound (αB&B), which

was introduced by Androulakis et al. (1995) for NLP problems, inspired by the algo-
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rithm proposed by Maranas and Floudas (1994). The algorithm was extended later

by Adjiman et al. (2000) to deal with MINLP problems. With domain reduction

steps, the steps of this algorithm are similar to those of the B&R algorithm, but the

way these steps are done might be different.

One of the biggest advantages of the αB&B algorithm is its capability of finding a

lower bound of the optimal value (Step 3) for nonfactorable problems. Creating good

under-estimators does not require factorization in the αB&B algorithm. Although

factorization helps finding linear or convex under-estimators, it requires introducing

new auxiliary variables, which can be avoided here.

αB&B constructs the under-estimators of special cases of nonconvex functions

(bilinear, trilinear, fractional,... etc.) using the convex envelopes that already existed,

and they are summarized in Adjiman et al. (1998). For a general nonconvex function

f(x), where l ≤ x ≤ u for l, u ∈ Rn, the convex under-estimator constructed by this

algorithm is given by

f(x)−
n∑
i=1

αi(xi − li)(ui − xi), (3.1)

where αi, for i = 1, 2, . . . , n, are real positive scalars that make the matrix Hf (x) +

2diag(αi) positive semidefinite, where Hf (x) is the Hessian matrix of f(x). Choosing

αi’s that produce a good under-estimator is not simple. If the αi’s are large enough,

the matrix Hf (x)+2diag(αi) will be positive semidefinite, and therefore, the function

(3.1) is convex. However, it is not guaranteed that (3.1) will be a good under-

estimator, especially if the αi’s are very large. A detailed study of strategies on how

to choose αi is given by Adjiman et al. (1998).

Since the Hessian matrix of a nonconvex function is required to construct its

convex under-estimator, the nonconvex functions of an optimization problem must

be twice differentiable, if the problem is solved using the αB&B algorithm. Also

using the function (3.1) to under-estimate the nonconvex part, restricts the αB&B
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algorithm to solving a convex NLP problem in Step 3, instead of having the LP option

as a possible relaxation.

3.2.3 Other sB&B-based Algorithms

The promising results of sB&B-based algorithms encouraged the introduction of

more algorithms that deal with MINLP problems. The core components of these

algorithms are lower and upper bounding, region fathoming, and branching. The

strategies on how to do each step and the addition of some optional steps, make

these algorithms different from each other. For example, as mentioned earlier, adding

domain reduction steps resulted in B&R algorithms, and αB&B is a result of a lower

bounding strategy. In this section, a few sB&B-based algorithms are briefly discussed.

Branch and Cut (B&C) algorithms were introduced initially to solve MILP prob-

lems. Cutting planes methods are applied during B&B iterations, resulting in the

B&C algorithms, more detail can be found in Padberg and Rinaldi (1991). A version

of the B&C algorithm that deals with MINLP problems is introduced by Kesavan and

Barton (2000) after combining cutting planes methods with sB&B methods. After

the lower and upper bounding steps, cuts are generated and the new constraints are

added to all search regions. Different types of cuts are generated depending on the

relaxed problem, the original problem, the current solution, etc. For example, if the

problem is transformed to an MILP problem, Gomory cuts or MIR cuts might be

added.

Adding cuts at each iteration of the algorithm might lead to fewer search regions to

be explored. However, a major drawback of this method is that the size of the relaxed

problem increases exponentially since new constraints are added at every iteration.

Therefore, developing strategies that assist with adding and removing cuts as needed

during the algorithm is required.
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Another sB&B variation is the algorithm proposed by Smith and Pantelides (1997,

1999). A symbolic reformulation step is applied before starting a similar B&R algo-

rithm. This step, which is similar to factorization, transforms the original problem to

an equivalent standard problem with linear functions or nonlinear ones whose convex

under-estimators are found. It was shown that the reformulation is not affected by

the presence of integer variables.

To reformulate a problem of the form (2.1) to the standard form, it is necessary

to introduce k auxiliary variables, and to replace the objective function by the last

auxiliary variable: f(x) = xn+k. The resulting model is completely equivalent to the

original model, and is given by

min xn+k (3.2a)

subject to xi = Φi(x), for i = n+ 1, n+ 2, . . . , n+ k (3.2b)

li ≤ xi ≤ ui, for i = 1, 2, . . . , n+ k (3.2c)

xi ∈ Z, for i ∈ Z ⊆ {1, 2, . . . , n}, (3.2d)

where Φ is a function of two variables (addition, product, etc. functions) or one

variable (log, trigonometric, etc, functions); and the vector x ∈ Rn+k includes the

original variables x1, . . . , xn in addition to the auxiliary variables xn+1, . . . , xn+k. The

domains of the variables in Equation 3.2c are given from the set X for the first

n variables, and are constructed through the reformulation process for the last k

variables. The constraints g(x) ≥ 0 and h(x) = 0 are included in the definitions

of the auxiliary variables or in the variable domains. For illustration, assume the
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following problem is to be reformulated:

min x1 + x1x2

subject to cosx1 + x2
2 ≤ 4

0 ≤ x1 ≤ 10

− 5 ≤ x2 ≤ 5.

The equivalent reformulated problem would be

min x7

subject to x3 = cosx1 − 5 ≤ x2 ≤ 5

x4 = x2
2 − 1 ≤ x3 ≤ 1

x5 = x3 + x4 − 4 0 ≤ x4 ≤ 25

x6 = x1x2 − 5 ≤ x5 ≤ 0

x7 = x1 + x6 − 50 ≤ x6 ≤ 50

0 ≤ x1 ≤ 10 − 50 ≤ x7 ≤ 60.

Note that the constraint in this example before reformulation is replaced by the

definition of the variable x5 and its domain. It can be observed that the reformulation

will immediately produce a lower and upper bound of the objective function value,

which is x7 in this example. Thus, applying domain reduction on this variable might

help fathoming many search regions during the sB&R algorithm.

One of the disadvantages of this algorithm is that introducing many new variables

will increase the size of the problem. However, the benefits of reformulation overcome

the disadvantages. It was shown in Smith and Pantelides (1999) that this is not a

major issue. In fact, the performance of sB&R algorithms might be better with

reformulation.

28



3.3 Global MINLP Solvers

The development of optimization solver software is analogous to the development

of the techniques and algorithms that solve optimization problems. It was initiated by

the development of solvers for simple optimization problems like LP problems. Then,

using combinations of the methods and techniques described above, many solvers have

been introduced for any class of optimization problems. One of the earliest software

packages that solves the MINLP problems is Sciconic, developed in the 1970s. It

does not solve the MINLP problem globally, but it solves a linear approximation by

turning the nonlinear low dimensional functions into piecewise linear functions using

a special ordered set (SOS) of the types 1 and 2 (this technique will be discussed in

detail in Chapter 4). More detail about the software can be found in Forrest and

Tomlin (2007).

After that, more MILP and convex MINLP solvers were used to solve noncon-

vex MINLP. These solvers are based on the methods described above. Solvers based

on B&B methods include Bonmin (in B-BB mode), CPLEX, fminconset, Knitro,

LindoBB, MILANO, MINLP BB, MOSEK, SBB, and XPRESS. AOA, Bonmin (in

B-OA mode), and DICOPT are examples of solvers that are based on outer approxi-

mation methods, whereas AlphaECP is a solver that uses the extended cutting planes

method. BONMIN (in B-QG mode) and FilMINT also deal with only convex prob-

lems and they are based on linearization in the B&C algorithm. Most of theses solvers

can find good solutions to MINLP problems but the global optimality is, in general,

not guaranteed. Also some solvers will not attempt to solve the problem if it is not

convex.

With the introduction of MINLP algorithms in the 1990s, many solvers that guar-

antee global optimality were developed to solve nonconvex MINLP problems. These
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solvers combine the techniques outlined in the previous sections, and the majority of

them are sB&B-based algorithms with domain reduction and lower bounding tech-

niques. Also, factorization is commonly applied. Reliable MILP or convex NLP

solvers are used by the global solvers to solve linear or convex relaxations through the

iterations. Examples of nonconvex MINLP solvers are alphaBB, BARON, Couenne,

LaGO, LINDO, ANTIGONE, and SCIP. More details about five global MINLP solvers

are discussed in the following sections. Recent discussions about MINLP solvers and

their development can be found in Trespalacios and Grossmann (2014) and Bussieck

and Vigerske (2010).

3.3.1 BARON

BARON (Branch And Reduce Optimization Navigator) is the earliest global MINLP

solver and one of the most powerful ones. It was introduced by Sahinidis (1996) and

it employs the sB&R algorithm introduced around a year earlier. Later, it was fur-

ther developed by Tawarmalani and Sahinidis (2005). BARON starts solving an

MINLP problem by factorizing the problems using the techniques explained in Ryoo

and Sahinidis (1995, 1996) or McCormick (1972, 1976). This is followed by primal

heuristics and presolve methods to find a feasible solution and apply some domain

reduction if possible. After that, BARON finds a valid lower bound of the optimal

objective values by solving a convex relaxation of the problem obtained by under-

and over estimating nonconvex terms in the problem.

The main loop of BARON is the same loop described in the sB&R algorithm.

After a node is selected, FB tests are applied followed by finding a lower bound, then

OB tests are applied. For each node, BARON has several options on how to find a

lower bound. It can be based on an LP, MILP, or NLP relaxation. BARON has a

dynamic strategy that allows it to choose whether it uses a relaxation that can be
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solved easily but produces a weak lower bound (LP), or an expensive relaxation that

results in a tight lower bound (MILP).

Studying the lower bounds obtained by an MILP relaxation of the parent nodes

will help estimating the MILP lower bound of the current node. This can be very

useful to compare the estimated value with the incumbent value, so if there is a po-

tential in pruning the current node, then it is worth while to use an MILP relaxation,

otherwise an LP relaxation is enough. Insights into the BARON strategy for choos-

ing the lower bounding method is given in the recent study by Kılınç and Sahinidis

(2017).

The solving time is influenced by the branch-and-bound tree size. The tree size is

affected by branching methods and node selection strategies. The priority in choosing

a branching variable is for integer variables. The branching points are the floor and

ceiling value of the chosen integer variable. If the selected branching variable is

continuous, then the branching point can be a convex combination between the value

and the variable domain midpoint. BARON has a strategy to switch between node

selection rules. The selected node could be the node with the best lower bound, the

node with minimum infeasibility, based on depth first, or other selection rules. Details

about branching and node selection methods in BARON can be found in Tawarmalani

and Sahinidis (2002, 2004).

BARON can handle nonlinear binary functions and most unary functions, includ-

ing log(x), exp(x), xα, and αx, for α ∈ R. The trigonometric functions are not

supported by BARON. This disadvantage did not prevent BARON from being one

of the best global MINLP solvers. In fact, comparisons between MINLP solvers show

that, in different kinds of MINLP problems, BARON mostly performs better than

other solvers in term of speed and number of solved test problems (even though it

does not handle trigonometric functions).
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3.3.2 Couenne

Couenne (Convex Over- and Under-ENvelopes for Non-linear Estimation), in-

troduced by Belotti et al. (2009), is another MINLP solver that guarantees global

optimality. Couenne is also based on sB&B algorithm and implements reformulation,

relaxations, domain reduction, and upper bounding techniques to solve MINLP prob-

lems. Couenne starts solving the problem by reformulating it to take a simpler form

to the Model 3.2.

The main loop in Couenne starts by applying a domain reduction step. This is

done by several techniques including OB and FB tests. FB tests are performed at

every node, since they are easy to do and might result in useful bound reductions.

However, the reduction is usually weak, so other strong tests are performed . Couenne

also uses a technique that is known as Aggressive FB. This technique requires applying

FB tests several times for each variable in the node and might require doing NLP, see

Belotti et al. (2009) for more detail. They produce better bounds than FB tests, but,

unlike FB tests, OB and aggressive FB are expensive, so they are not called at every

node. Couenne controls when to use each method. Another implemented method is

reduced-cost domain reduction, which was explained in Ryoo and Sahinidis (1996).

If the bounds stop improving and the node is still feasible, then Couenne moves to

the lower bounding step.

The relaxation that is used by Couenne to find a lower bound of the optimal

objective value in the current node is a linear relaxation. After all nonlinear terms

in the problem are under-estimated by linear functions, a lower bound can be found

by solving the LP problem. Before moving to the branching step, Couenne improves

the lower bound by creating new linear relaxations resulting from adding more lin-

earization inequalities. Different approaches to add linear inequalities are discussed
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in Belotti et al. (2009). Couenne repeats this step until the solution of the linear

relaxation is feasible for the original problem or the specified maximum number of

iterations is reached.

When the lower bound refining is done and the node is still feasible and its global

optimum is not found, then the node needs branching. For choosing the branch-

ing variable in Couenne, the selection priority is for violated integer variables. If

all integer variables have integer values, then Couenne selects a continuous variable

using different strategies such as strong branching, an extended version of reliability

branching (Belotti et al. (2009)), and Violated Transfer (Tawarmalani and Sahinidis

(2004)).

After selecting a branching variable, the branching point is selected based on

several strategies. The most trivial strategy is to branch on the selected variable value.

However, this strategy could result in an unbalanced tree, especially if the value is

close to the variable bounds, so branching will produce two nodes: one of them will be

similar to the current node. A better strategy is to use a convex combination between

the value and domain midpoint (similar to the one used in BARON) to produce the

branching point. Alternatively, Couenne chooses the branching point based on the

nonlinear function of the selected variable. The point is selected such that in both

new nodes, the distance between the function and its linear over- or under-estimator

is the same. Both strategies produce more balanced trees than the first one.

Even though Couenne may perform worse than other global MINLP solvers in

terms of number of problems that can be handled, it has an advantage over BARON

in dealing with trigonometric functions. Also tests by Belotti et al. (2009) show that

Couenne can perform better than BARON in some instances.
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3.3.3 SCIP

One of the recently introduced global MINLP solvers is SCIP (Solving Constraint

Integer Programs). This solver was initially introduced to solve MILP by Achterberg

(2004, 2009), then it was extended by Berthold et al. (2012) to solve MINLP problems.

It implements a sB&B algorithm with domain reduction steps and uses reformulation

and linear relaxations for the lower bounding step. SCIP has numerous unique tools

and the most important tool is its constraint handler. Each constraint handler in the

solver deals with a certain class of constraints, such as linear constraints, quadratic

constraints, etc. The task of a constraint handler is to check if the solution of the

LP relaxation is feasible for all of its constraints. If some of the constraints are not

satisfied, the handler decides whether the next step is to do domain reduction, add

another constraint, or branch. Also, the constraint handler has other features that

help decreasing the computation time. Vigerske (2013) presents details about the

constraint handler and other tools implemented by SCIP.

Similarly to BARON, before selecting a node, SCIP performs primal heuristics

and presolve techniques to find feasible solutions, reduce the search area, and obtain

initial bounds for the optimal value. After that SCIP starts the main loop by selecting

a node and then performing domain reduction. In addition to FB and OB tests, SCIP

also uses other methods such as forward and backward propagation, where they are

applied taking advantage of the problem reformulation, see Vigerske (2013). Also to

avoid the complexity of applying OB tests, SCIP uses an approximation obtained by

a valid inequality called Lagrangian variable bound, Gleixner and Weltge (2013). This

approximation gives bounds that are close to the bounds obtained by OB tests, and

it is much faster than an OB test.
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The lower bound is obtained by solving a linear relaxation, generated by an outer

approximation method. The LP problem is solved by the built in solver SoPlex.

Before moving to the branching step, SCIP improves the lower bound by performing

pricing and cut loops. The pricing loop regulates adding the auxiliary variables to

the node by calculating the reduced costs (the amount by which the objective value

will improve) of the variables and adds the ones with negative reduced cost to the

node. The LP relaxation is then solved again. The cut loop, on the other hand,

aims at adding valid inequalities to tighten the search area or prove infeasibility. The

loops keep running until the lower bound stops improving (or the improvement is not

significant) or the node becomes infeasible.

In the branching process, the candidate branching variables are all the variables

from the LP solution that violate constraints, whether they are integer or continuous

variables. SCIP mostly applies reliability branching and pseudocost branching, but it

also applies other techniques that are used by other solvers. The branching point is

mostly the variable value from the LP solution unless the value is close to one of the

bounds; in this case, the branching point is shifted towards the middle of the variable

domain.

The numerous techniques and plugins implemented in SCIP make it suitable for

handling all kinds of optimization problems. Also most of nonconvex functions can be

handled by SCIP. Like BARON, trigonometric functions are not supported. Recent

discussion on SCIP and its development is given by Vigerske and Gleixner (2018).

3.3.4 LINDO

Another global MINLP solver is LINDO, and it was developed by Lin and Schrage

(2009). LINDO implements a B&C algorithm, where the lower bound is obtained by

solving a linear relaxation. MILP and NLP relaxations are also solved in LINDO
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relying on other solvers like MOSEK and CONOPT. In the beginning of the solution

process, LINDO finds a good feasible solution by a multi-start built in feature. This

feature performs local optimization several times using different starting points, which

will lead to many good local solutions and LINDO will pick the best one. If the

problem is not complicated, this solution is often the global solution, But LINDO

does not guarantee the globality at this point. To confirm the globality, it has to go

through similar steps performed by other global solvers.

After selecting a node, a reformulation of the original problem is applied by LINDO

to create a linear relaxation. If linearization is not possible, or if it does not give a

good approximation to the nonlinear part, convex relaxations are used. One of the

useful features in LINDO is its ability to recognize whether the function is convex,

concave, quadratic, etc. This helps the solver making a quick decision about the type

of relaxation that should be used. After solving the relaxation, cut loops are are used

by LINDO to improve the lower bound.

After solving the relaxation, LINDO branches on one of the variables that violate

some of the constraints. In particular, the furthest variable from its bounds is usually

the branching variable. Also variables with small domains are not considered by

LINDO for branching. The branching point is selected depending on the functions in

the problem. For some functions, dividing the domain of the variable at certain points

will create functions that are much easier to handle. For example, the absolute value

function f(x) = |x| is nonsmooth, but splitting the domain of x to x ≤ 0 and 0 ≤ x

will create two smooth linear functions. Another example is trigonometric functions;

they can be transformed to convex or concave functions by dividing the domain of

the variable at the points iπ, for i ∈ Z.

LINDO can handle most types of functions, including trigonometric functions. It

also supports logical statements, such as if, and, or, etc. One of the drawbacks of this
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solver is that it does not have variable domain reduction steps as a main component

of its algorithm. Adding these steps might lead to potential improvement of the solver

performance.

3.3.5 ANTIGONE

ANTIGONE (Algorithms for coNTinuous/Integer Global Optimization of Non-

linear Equations) was developed by Misener and Floudas (2014) after upgrading the

MIQP solver Glomiqo by Misener and Floudas (2013). The algorithm used to solve

the MINLP problems is a B&C algorithm. A reformulation step is performed before

entering the main loop. ANTIGONE does not do a symbolic reformulation (Smith and

Pantelides (1999)) as introducing auxiliary variables is not preferred. ANTIGONE

reformulates the original problem to an equivalent problem that only contains terms

of special structure recognized by the solver. For each term, ANTIGONE learns

the variables involved, convexity and concavity of the term along the parts of the

interval, linearization or convexification of the term, derivatives, etc. This is an im-

portant step that helps the acceleration of the computation process before or during

the main loop. Finally, if it is complicated to transform some terms to ones recognized

by ANTIGONE, it introduces auxiliary variables to overcome the complexity of the

term.

The main loop starts by solving a relaxation on the selected node, then it performs

domain reduction steps before branching or fathoming the node. Many strategies are

used to produce the relaxed problem depending on the structure of the term, such

as Reformulation-Linearization Technique (RLT) (Sherali and Alameddine (1992)),

convex envelopes by McCormick (1976); Al-Khayyal and Falk (1983), and the αB&B

under-estimators. Outer approximation methods are also used to linearize some of

the convex terms. If ANTIGONE detects that the problem is convex at the selected
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node, it will call a local solver to solve the problem and the feasibility of the solution

is checked. If the solution is not feasible, or if the convexity is not detected, then

the LP relaxation is solved. After solving the LP problem, cuts are added and the

problem is solved again, until the LP solution stops improving. after that, integrality

is enforced and the MILP is solved. ANTIGONE uses CPLEX to solve both LP and

MILP relaxations and obtain, the lower bound of the node’s optimal value.

After solving MILP, domain reduction is applied. Antigone uses methods that

are used by other solvers, e.g., FB and OB tests, and reduced cost domain reduction.

FB tests are performed at every node since they are cheap. On the other hand, OB

tests are applied on the root node. Then Antigone continues to apply them on the

children nodes until the tests fail to reduce the domains of the variables. In this case,

Antigone stops applying the OB tests on the children nodes of the node that failed

to improve. Reduced cost domain reduction is applied on the root node after each

solve of the MILP problem and the improved variables bounds (if any) are stored for

the rest of the nodes.

When the node needs branching, Antigone does not branch on the integer variables

because the integrality constraints are already satisfied since Antigone solves an MILP

relaxation. To select a branching variable, Antigone usually uses reliability branching.

The branching point is selected based on the same convex combination formula that is

used by BARON and Couenne, with a condition of being far enough from the bounds

of the variable.

Antigone is the most recent global MINLP solver in our list. Its performance on

MINLP test problems is shown to be one of the best MINLP solvers with BARON.

It can handle all classes of optimization problems and most types of functions are

supported, including trigonometric functions.
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3.3.6 Comparison

Concise computational experiments were made to test the solver performances in

solving a few selected instances. These experiments are not extensive because the

comparison between the solvers is not the main purpose of the dissertation. Twenty

MINLP instances were selected from the MINLPLib library 1 and most of them

are nonconvex. The instances were written by many authors from different sources,

and they are distinctive in their structures and applications. The selection was on

instances that are not trivial and not very difficult, so most of them were solved to

global optimality by at least one solver.

An overview of the selected instances is given in Table 3.1. According to the

library, instances number 8, 11, and 19 are not solved to optimality, but they are

included in these experiments to test the solver performances in challenging instances.

Instances that contain trigonometric functions are not selected because these functions

are not supported by some of the solvers.

The computations were made using the solvers through the NEOS server 2 , and

no changes were made on the solvers’ default settings in the server. The time limit

was set to 1000 seconds which was enough for the solvers to solve many instances

to global optimality. Also, for instances that were not solved within the time limit,

the solvers gave a sufficient insight into their performances on these instances. The

comparison between the solver performances is in the time needed to find a solution,

and on the quality of the solution (whether it was proven to be global or not).

The results of the computational experiments are summarized in Table 3.2. If a

solver successfully finds the global optimal solution of an instance within the time

limit, then the result will be written in the table as S, and the result will be F if

1http://www.minlplib.org/index.html

2https://neos-server.org/neos/index.html
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Table 3.1: An Overview of the Instances, Where seq # is the Sequential Number
of the Instance That Will Be Used Later as a Reference in the Results Table; #
c, # d , and # cons Refer to the Number of Continuous, Discrete Variables, and
Constraints; and obj val is the Best Found Value of the Objective Function. Instances
with Asterisks at the End of Their Names are Convex.

Instance seq # # c # d # cons obj val

autocorr bern30-04 1 1 20 1 -324

batchs201210m* 2 307 251 2327 2295349

cecil 13 3 660 180 898 -115657

ex1252a 4 15 9 34 128894

fin2bb 5 414 175 618 0

gastrans135 6 961 232 2472 0

hda 7 709 13 718 -5964.53

heatexch gen1 8 100 12 120 154896

jit1* 9 21 4 32 173983

johnall 10 4 190 192 -224.73

kport20 11 61 40 27 31.8093

minlphix 12 64 20 92 316.693

nvs20 13 11 5 8 230.922

oil2 14 934 2 926 -7.333

pooling epa1 15 184 30 340 -280.806

procsel 16 7 3 7 -1.9231

sepasequ convent 17 621 20 1128 482.5

sfacloc2 3 80 18 216 107 2268 11.0585

sporttournament20 19 1 190 1 192

waterno2 02 20 314 18 410 39.5714
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the solver fails to produce any solution. If the time limit is reached (expressed as

TL in the table), and the solver managed to find a local solution, then the result

will be L() with the best objective value written between the parentheses. In case

the solver found the global solution but failed to close the gap between the lower

and upper bounds of the objective value (did not prove global optimality), then G()

is written under the results column with the absolute gap between the parentheses.

The absolute gap is the difference between the best objective value and its lower

bound. The solver LINDOGlobal reached its size limit, which is denoted by SL, in

few instances. Sometimes a solver finds a solution that is not the global one, but the

solver claims the solution is global; in this case, the solving attempt is considered to

be a failure.

From the results in Table 3.2, it can be seen that BARON has the most successful

attempts, solving 16 out of 20 instances to global optimality. BARON also found the

global solution (without closing the gap) for two instances, and for the instances for

which BARON did not find their global solutions, they were not solved by any solver.

SCIP and ANTIGONE also have good success rates solving 13 and 12 instances,

respectively. ANTIGONE seemed to perform better than SCIP in finding the global

solution (4 compared to 1) of the instances that were not solved within the time

limit. With only 9 solved instances, LINDOGlobal has the least number of successes,

despite the fact that it did not attempt to solve 3 instances due to the size limit.

To compare the speed between the solvers, only instances that were successfully

solved by at least four solvers are considered. The average time is obtained by cal-

culating the arithmetic mean of solving times in the considered instances. BARON

needed an average of 7.58 seconds solving time per instance, which is the shortest

time among the solvers. SCIP is the second fastest solver achieving an average of
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Table 3.2: Computational Test Results.

BARON Couenne LINDOGlobal SCIP ANTIGONE

seq # time result time result time result time result time result

1 1.9 S TL G(88.7) TL G(12) 681 S 4.8 S

2 11 S 161 S SL 4.2 S 2.4 S

3 0.8 S 42 S 6.5 S 0.4 S 1.1 S

4 7.7 S 9 S 85.5 S 14 S TL G(26585)

5 662 S TL L(349) TL L(0.006) 48 S 60 S

6 5.66 S TL F SL TL F 667 F

7 4 F TL F 41.9 F TL L(621) 41 F

8 TL G(54395) TL L(288241) TL L(160349) 14 L(685572) TL G(49461)

9 0.2 S 0.06 S 0.07 F 0.4 S 1.5 S

10 3.3 S 3 S 42.6 S 14 S 9.9 S

11 TL L(32.23) TL L(32.31) TL L(32.21) TL L(32.12) TL L(32.13)

12 TL G(∞) 0.88 S 10.9 S TL F 1.2 S

13 2.8 S 0.68 S 1.75 S 0.5 S 19 S

14 38 S 21.3 S 5.2 S 120 S 190 S

15 185 S 911 S TL G(176) TL L(-279.9) 293 S

16 0.3 S 0.01 S 0.02 S 0.03 S 0.01 S

17 20.1 S 72.4 F 38.1 S 24.2 S 0.21 F

18 127 S TL G(4.41) SL 93.5 S TL G(0.5251)

19 75 S TL G(34) 0.06 F TL G(6.8) tl G(10.6)

20 4.1 S 14.3 F 46.7 S 9.4 S 47.7 S
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18 seconds per instance, followed by LINDOGlobal, Couenne, and ANTIGONE with

averages 27, 29, and 33 seconds, respectively.

Other interesting outcomes about the instances can be observed from the table.

For example, although Instance 2 is one of the largest instances in size, it was solved

easily by the solvers, confirming that convex problems are usually easy regardless of

their size. Instance 19 can be a good example that not all quadratic problems can

be handled easily, as the instance is quadratic but it was solved within the time limit

only by BARON. All solvers failed to solve instances 7, 8, and 11 (8 and 11 are marked

as unsolvable in the MINLPLib library), and many instances resulted in a failure by

at least one solver. This outcome supports the fact that MINLP problems are still

challenging, even with all the advances that have been made on the global solvers.

These results suggest that BARON performs better than other solvers in terms of

speed and the number of handled instances, in spite of these experiments being brief.

SCIP also is proved to be a reliable MINLP solver. More comprehensive experiments

on instances from the MINLPLib library were done by Mittelmann (2020), and they

suggested similar conclusion to the one that was discussed here.
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Chapter 4

PIECEWISE LINEAR APROXIMATION

The rapid advances of linear optimization in the 20th century led to the devel-

opment of robust MILP solvers that can easily handle problems with millions of

variables. Even with the current improvements in the MINLP solvers, it would be

a great step forward if MINLP problems can be solved globally by MILP solvers.

In principle, this can be done by approximating the MINLP problem by an MILP

one, but solving this approximation by an MILP solver will probably be harder than

solving the original problem by an MINLP solver.

The most common method to remodel MINLP as MILP is the piecewise linear

approximation (PLA). This method takes an advantage of the fact that any continuous

function can be approximated by a piecewise linear one.

Definition 4.1 A function f is called a piecewise linear (PL) function if its domain

can be partitioned into a finite number of subdomains such that f is linear over each

subdomain.

Replacing every nonlinear function in the MINLP model by their PLAs will yield

an MILP model. Because of the size of the new approximated model, the PLA was

not introduced to do full approximations to the MINLP models. Instead, it was

used mostly to find linear under/over estimators to some of the functions involved

in the models. In the following sections, PLA background will be provided, followed

by a description of the most common PLA models. After that, a discussion on two

approaches will be presented: one approach is on improving the quality PLA models,
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Figure 4.1: PLA of the Function f(x) = 0.5x cos(x) + 1.

and the other approach will be on using them in a way that might improve the MINLP

solvers.

4.1 Background

Modeling problems with nonconvex PL functions as MILP problems dates back to

the 1950s, and many authors have discussed this topic since then (see, for example,

Markowitz and Manne (1957), Dantzig (1960), and Jeroslow and Lowe (1984)). The

procedures of approximating a nonlinear function f(x), where x ∈ [xl, xu] ⊆ R, by a

PL function are simple. First, the domain of the variables x is divided into n intervals

by introducing the breakpoints x0 = xl < x1 < x2 < · · · < xn = xu (Note that this

notation is similar to the one that represents the vector of variables in the previous

chapters, but since the functions in this chapter will not have more than two variables,

there should not be confusion). Then the function f is evaluated at each breakpoint,

and the lines that connect the points (xi, f(xi)) and (xi+1, f(xi+1)) form the desired

PL function, denoted by f . The PLA idea was also extended to higher dimensional

functions. An example of PLA of a one dimensional function is shown in Figure 4.1.

Increasing the number of breakpoints will increase the accuracy of the approxima-

tion, but it will result in problem size growth. This major drawback may restrict the
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PLA benefits to functions of only few dimensions. Rebennack and Kallrath (2015)

discuss minimizing the number of breakpoints needed to approximate a nonlinear

function up to a given tolerance. This subject will not be discussed here. Doing PLA

by introducing breakpoints, both binary and continuous variables must be introduced.

The number of the new variables may increase exponentially with the number of di-

mensions of the function and it varies depending on the model used to do the PLA,

as will be shown in the following sections.

4.2 One Dimensional PLA

It is important to mention that if a function with more than one variable is

separable, then the one dimensional PLA is applicable to this function. Therefore,

for the remainder of the discussion, any separable multidimensional function will be

considered as one dimensional.

To do PLA of a function f(x), the breakpoints x0 = xl < x1 < x2 < · · · < xn = xu

for the variable x ∈ [xl, xu] ⊆ R are required by all PLA models that will be presented

in this section. It is also required to introduce an ordered set of continuous variables

and binary variables.

Definition 4.2 A special ordered set of type k (SOSk) variables is a set of variables

of which at most k variables can be nonzero, and all of the nonzero variables have to

be adjacent.

The idea of these variables was introduced by Beale and Tomlin (1970) as SOS (re-

ferring to SOS1) before other types of SOS variables were introduced. The tool of

SOS is essential for most PLA models and can be generally useful in optimization.

A straight forward approximation to the function f(x) is to replace it with f =∑n
i=0 zixi, where the zi’s are SOS1 binary variables. This approximation will evaluate
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the function f only at the breakpoints but not along the lines connecting the pairs

(xi, f(xi)). Therefore, more accurate approximation can be obtained by the models

that will be described below. These models require introducing continuous SOS2

variables in addition to binary variables and linear constraints.

4.2.1 Convex Combination

The convex combination model (also called the λ-model in some sources) is one of

the most common PLA models and it was introduced by Dantzig (1960). As suggested

by the name, this approximation replaces the nonlinear function by a convex combi-

nation between the function values of two adjacent breakpoints, and the variable x is

expressed as convex combination of these breakpoints. This model requires introduc-

ing SOS2 continuous variables, with each variable corresponding to one breakpoint,

and these variables are denoted by λi, where λi ∈ [0, 1] for i = 0, 1, . . . , n. To ensure

that the λi’s are SOS2, the binary variables zi, for i = 1, 2, . . . , n are required. The

binary variables correspond to the intervals between the breakpoints. e.g., a binary

variable zi corresponds to the interval [xi−1, xi] and the variable x can take value from

this interval only if zi = 1. The PLA of the nonlinear function f using the convex

combination model will be as follows:
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f =
n∑
i=0

λif(xi) (4.1a)

x =
n∑
i=0

λixi (4.1b)

λ0 ≤ z1 (4.1c)

λn ≤ zn (4.1d)

λi ≤ zi + zi+1 , for i = 1, . . . , n− 1 (4.1e)

n∑
i=1

zi = 1 (4.1f)

n∑
i=0

λi = 1. (4.1g)

The right hand side of Equation 4.1a would replace the function f in the original

optimization problem and the rest of the equations are added as constraints. Since

Equation 4.1f guarantees that exactly one binary variable will take the value one,

Constraints 4.1c to 4.1e ensure that no more than two λ’s can be greater than zero.

It can be concluded from Equation 4.1g that the sum of the two nonzero λ’s is one,

enforcing the convex combination condition.

Replacing the nonlinear function f by the piecewise linear f will come at the

price of adding n binary variables, n+ 1 continuous variables, and n+ 5 constraints.

These numbers are not too large and can be handled easily by MILP solvers, but

if many nonlinear functions are present in an optimization problem and they need

many breakpoints to get a good approximation, then MILP solvers might not be able

to handle the resulting size of the problem.
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xixi−1

f(xi)

f(xi−1)

x

f(x)

δi = x− xi−1

Figure 4.2: The Incremental Method.

4.2.2 Incremental Method

Another model that was introduced by Markowitz and Manne (1957) is the in-

cremental model. It is also known as the δ-model because of the notation that is

used to represent the introduced variables. The positive continuous variables that

are introduced in this model are δi and they correspond to the intervals [xi−1, xi], for

i = 1, . . . , n, instead of the breakpoints as in the convex combination model. The vari-

able x that is taking a value in interval j can be expressed as x = xj−1+δj. As shown in

Figure 4.2, the PL function value at that point can take the form f(x) = f(xi−1)+siδi,

where si is the slope of the ith segment of f which is given by

f(xi)− f(xi−1)

xi − xi−1

.

After introducing the binary variables zi, for i = 1, . . . , n − 1, the incremental

model will be:
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f = f(x0) +
n∑
i=1

siδi (4.2a)

x = x0 +
n∑
i=1

δi (4.2b)

(xi − xi−1)zi ≤ δi , for i = 1, . . . , n− 1 (4.2c)

δi+1 ≤ (xi+1 − xi)zi , for i = 1, . . . , n− 1. (4.2d)

For Equation 4.2b to be feasible, δi = xi − xi−1 must hold whenever δi+1 > 0.

This condition is satisfied by Constraints 4.2c and 4.2d, and they also ensure that if

zi = 0, then zj = 0 and δj+1 for all j > i, and if zi = 1, then zj = 1 for all j < i.

To illustrate this, assume zj = 1, then xj − xj−1 ≤ δj follows from 4.2c, and the

inequality δj ≤ (xj − xj)zj−1 will follow from 4.2d. Now if zj−1 = 0 then there will

be a contradiction between the two inequalities, so zj−1 must take the value 1.

It can be seen that the incremental model has one less binary variable and one

less continuous variable, but it has nearly twice as many constraints, compared to the

convex combination model.

4.2.3 Multiple Choice Method

The incremental model was modified by Balakrishnan and Graves (1989), leading

to the multiple choice model. The value of any variable δi in the incremental model

must be in the interval [0, xi − xi−1], but in this model, the variable δi can either be

0 or take its value from the interval [xi−1, xi]. Thus, if the value of variable x is in

the interval [xi−1, xi] then x = δi. The function value at x can be computed using

the slope and the y-intercept of segment i, denoted by fi, and it can be calculated by

f(x) = siδi + fi. an illustration of these notations is given in Figure 4.3.
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δi = x

Figure 4.3: The Multiple Choice Method.

To ensure that only one of the δi’s can take a nonzero value, a constraint that

allows only one binary variable to be nonzero must be added. The multiple choice

model will take the form:

f =
n∑
i=1

siδi + fizi (4.3a)

x =
n∑
i=1

δi (4.3b)

xi−1zi ≤ δi , for i = 1, . . . , n (4.3c)

δi ≤ xizi , for i = 1, . . . , n (4.3d)

n∑
i=1

zi = 1. (4.3e)

Equation 4.3e along with Constraints 4.3c and 4.3d indicate that if, for example,

zj = 1, then xj−1 ≤ δj ≤ xj and δi = 0 for any i 6= j, therefore, the feasibility of

Equations 4.3a and 4.3b is guaranteed. The number of newly introduced variables

and constraints is similar to the incremental model.
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4.2.4 Disaggregated Convex Combination

Another PLA model is the disaggregated convex combination model which uses

the same idea as the convex combination model. The only difference is that instead

of introducing one continuous variable corresponding to each breakpoint, two positive

variables are introduced for each interval. These two variables will be associated with

the lower bound of the interval and the upper bound, denoted by λli and λui , for

i = 1, . . . , n, resulting in the following model:

f =
n∑
i=1

λlif(xi−1) + λui f(xi) (4.4a)

x =
n∑
i=1

λlixi−1 + λui xi (4.4b)

λu1 ≤ z1 (4.4c)

λln ≤ zn (4.4d)

λli + λui ≤ zi , for i = 1, . . . , n (4.4e)

n∑
i=1

zi = 1 (4.4f)

n∑
i=1

λli + λui = 1. (4.4g)

Even though the disaggregated convex combination model requires almost double

the number of continuous variables needed by the convex combination model, it will

have a tighter approximation; that is the integrality constraints of the new MILP

model are satisfied by the extreme points of its LP relaxation. More about this

model can be found in Meyer (1976); Jeroslow and Lowe (1984).
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4.2.5 Logarithmic Formulation

As the number of the breakpoints increases, the more accurate PLA can be ob-

tained, and for all of the models mentioned so far, the required number of binary

variables is almost the same as the number of breakpoints. A large number of bi-

nary variables may lead to a deep and unbalanced B&B tree if the solver’s branching

priority is on the binary variables, which is the case for most solvers. As a result,

the efficiency of MILP solvers will be affected if the PLA is done using many break-

points, especially for higher dimensional functions. On the other hand, if the number

of breakpoints is reduced, the solvers might handle the PLA well, but the solution

probably will not be good enough to the original problem.

Many attempts have been made to deal with the branching problem such as the one

suggested by Geißler et al. (2012), which modifies the branching strategies mentioned

by Beale and Tomlin (1970); Beale and Forrest (1976) and others. The modification

basically forces the branching to be on the continuous variables only. However, these

attempts do not resolve the size problem completely. Vielma et al. (2010); Vielma and

Nemhauser (2011) introduced a technique that allows PLA models to use dramatically

fewer binary variables. They applied the technique to both versions of the convex

combination model and denoted it by logarithmic model, and it was later applied

to other PLA models. In this section, it will be shown how to use the logarithmic

formulation in the convex combination model.

The logarithmic convex combination model with n + 1 breakpoints requires in-

troducing only dlog2 ne binary variables, denoted by zi, instead of n (required by the

convex combination model). To do this, every interval is assigned a binary vector in

0, 1dlog2 ne using the so-called Gray code. Therefore, the assigned vectors of any two

adjacent intervals will differ only by one component.
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Example 4.1 Assume PLA is done using the convex combination model with five

intervals. The number of needed binary variables will be dlog2 5e = 3. A possible set

of assigned vectors will be 000, 001, 011, 010, 110 in this particular order.

After assigning suitable vectors for the intervals, two index sets for every k ∈

{1, 2, . . . , dlog2 ne}, denoted by I1(k) and I0(k), are introduced. Let I1(k) be the set

of breakpoint indices where every binary vector of the breakpoint’s adjoining intervals

has one at its kth component; and I0(k) will be the index set where the binary vector

has zero at its kth component. Back to Example 4.1, the index sets are given as

follows:

I1(1) = 5 I0(1) = 0, 1, 2, 3

I1(2) = 3, 4, 5 I0(2) = 0, 1

I1(3) = 2 I0(3) = 0, 4, 5.

With the index sets defined, the logarithmic convex combination model can be

expressed by:

f =
n∑
i=0

λif(xi) (4.5a)

x =
n∑
i=0

λixi (4.5b)

∑
i∈I1(k)

λi ≤ zk , for k = 1, . . . , dlog2 ne (4.5c)

∑
i∈I0(k)

λi ≤ 1− zk , for k = 1, . . . , dlog2 ne (4.5d)

n∑
i=0

λi = 1. (4.5e)
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In this model, the SOS2 condition on the continuous variables is enforced by

Constraints 4.5c and 4.5d. The two variables that are allowed to be nonzero are the

ones associated with the interval whose binary vector is (z1, z2, . . . , zdlog2 ne).

4.2.6 Comparison

To compare between these PLA models, some of their theoretical and numerical

properties will be studied. Croxton et al. (2003) presented a good overview of the

models mentioned in the previous sections and showed they are equivalent in terms of

the feasibility of their solutions. In term of tightness, it is desired for a PLA model to

be locally ideal. According to Padberg (2000), a model is locally ideal if the vertices

of its LP relaxation satisfy the integrality constraints of the original problem. Vielma

et al. (2010) proves that all PLA models mentioned earlier are locally ideal except the

convex combination model. However, this model has the sharpness property, i.e,. the

projection of the vertices of the model onto the original set of the variables is exactly

the convex hull of the set. Also it can be shown that any locally ideal model is sharp.

More recent theoretical comparison between the models was given by Sridhar et al.

(2013).

In theory, all models have similar properties, but in terms of the number of newly

introduced variables and constraints, they are different. It is clear that the logarithmic

formulation of the models will have the advantage of requiring considerably fewer

binary variables. In practice, it was shown that logarithmic models have similar

performance to other models for few breakpoints , but they have the advantage over

other models when a larger number of breakpoints is used or higher dimensional

functions are approximated.

In the computational experiments made by Vielma et al. (2010), they approxi-

mated functions with one variable in 100 test instances, and used CPLEX to solve
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the PLAs. It was observed that for less than 10 breakpoints, all models performed

well with the multiple choice model being slightly better. As the number of break-

points increases, the logarithmic models started to gain the upper hand. When 33

breakpoints were used, the logarithmic models are around 20 times faster than the

incremental model, which is more than two times faster than the convex combination

and multiple choice models. The disaggregated convex combination is much slower

than the rest. Similar outcomes resulted from testing 100 problems where the ap-

proximated functions have two variables. A less extensive experiment was done by

Geißler et al. (2012), and it was concluded that in some cases, it is better to use

the incremental model rather than the logarithmic one, even though the latter has

smaller size.

4.3 Two Dimensional PLA

All of the models presented in the previous section can be extended to higher

dimensions. A discussion about the PLA of general n-dimensional functions can be

found in Geißler et al. (2012) and Vielma et al. (2010). In this section, PLA of

functions with two variables will be discussed.

Similarly to the one dimensional models, the domains of x and y are divided into

n and m intervals by the breakpoints x0 = xl < x1 < x2 < · · · < xn = xu and

y0 = yl < y1 < y2 < · · · < ym = yu, respectively. For every two adjacent breakpoints

xi and xi+1 along the x-axis, and yj and yj+1 along the y-axis, two triangles can be

formed: lower and upper triangle as illustrated in Figure 4.4a. This partitioning of

the domain is called a triangulation, and it can be done in different ways. Then the

function f(x, y) is evaluated at each vertex to approximate it by the PL function

formed by simplices instead of lines, as in the one dimensional case.
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(a) A Valid Triangulation.
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y

(b) Union Jack Triangulation.

Figure 4.4: Different Triangulations of the Variables’ Partitioned Domain.

In this section, the convex combination model will be extended to approximate

a function of two variables f(x, y). The extension to other models will not be dis-

cussed here, but a study of two dimensional PLA can be found in D’Ambrosio et al.

(2010), where three models are explained and a theoretical comparison, as well as

computational tests, are presented.

Also the 2d logarithmic formulation will be discussed in this section. According

to Vielma et al. (2010), the triangulation needed for logarithmic convex combination

is required to be equivalent to the Union Jack triangulation, illustrated in Figure

4.4b. Since the logarithmic disaggregated convex combination model can accept any

triangulation, it will be presented later, and for the remainder of the dissertation,

only the triangulation in Figure 4.4a will be considered.

4.3.1 Convex Combination Model

For the two dimensional convex combination model, to express the point (x, y) and

the function f(x, y) as convex combination of vertices and the function values at these
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vertices, the continuous variables λij ∈ [0, 1], for i = 0, 1, . . . , n and j = 0, 1, . . . ,m,

are introduced and associated with the vertices. Since only the variables associated

with the vertices of one triangle are allowed to be nonzero, they need to be introduced

as SOS3 variables.

The SOS3 condition is ensured by introducing the binary variables zuij and zlij

associated with the upper and lower triangle of the rectangle formed by the intervals

[xi−1, xi] and [yj−i, yj]. The PLA model will be:

f =
n∑
i=0

m∑
j=0

λijf(xi, yj) (4.6a)

x =
n∑
i=0

m∑
j=0

λijxi (4.6b)

y =
n∑
i=0

m∑
j=0

λijyj (4.6c)

λi−1,j−1 ≤ zuij + zlij + zui,j−1 + zli−1,j−1 + zui−1,j−1 + zli−1,j

for i = 1, . . . , n− 1 and j = 1, . . . ,m (4.6d)

n∑
i=0

m∑
j=0

zuij + zlij = 1 (4.6e)

n∑
i=0

m∑
j=0

λij = 1, (4.6f)

with the dummy variables z∗0∗ = z∗∗0 = 0. Equation 4.6e guarantees that ex-

actly one triangle is picked, where Constraint 4.6d ensures that only the variables

corresponding to the vertices of that triangle can be nonzero. Therefore, the SOS3

condition is satisfied. The number of needed binary variables is 2nm, in addition

to nm continuous variables and nm constraints, so using many breakpoints would

result in a huge PL problem. Many computational tests, including ours, showed that

using more than 10 breakpoints will produce complicated approximation, and with
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10 or less, the approximation will be very inaccurate if the problems have large vari-

able domains. Thus, using a logarithmic formulation to reduce the number of binary

variables can resolve the size issue.

4.3.2 Logarithmic Disaggregated Convex Combination Model

The 2d logarithmic formulation is similar to that in one dimension. In this case,

every simplex is assigned a binary vector with dlog2 2nme components, assuming the

triangulation in Figure 4.4a is used. Let S = {s1, s2, . . . , s2nm} be the set of all

simplices in the triangulation. For every simplex s ∈ S, three positive continuous

variables are introduced, and let Λ be the set of all variables. Note that the common

vertex shared by multiple simplices, will be associated with multiple variables. For

any variable λ ∈ Λ, define the point (xλ, yλ) to be the vertex associated with this λ.

Finally, for k ∈ {1, 2, . . . , dlog2 2nme}, let I1(k) ⊂ Λ and I0(k) ⊂ Λ be the sets of

variables associated with simplices whose binary vector has one and zero, respectively,

on its kth component. The model now can be described as:

f =
∑
λ∈Λ

λf(xλ, yλ) (4.7a)

x =
∑
λ∈Λ

λxλ (4.7b)

y =
∑
λ∈Λ

λyλ (4.7c)

∑
λ∈I1(k)

λ ≤ zk , for k = 1, . . . , dlog2 2nme (4.7d)

∑
λ∈I0(k)

λ ≤ 1− zk , for k = 1, . . . , dlog2 2nme (4.7e)

∑
λ∈Λ

λ = 1. (4.7f)
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Constraints 4.7d and 4.7e ensure that only the variables corresponding to the

simplex with binary vector (z1, z2, . . . , zdlog2 2nme) are allowed to be nonzero, and with

Constraint 4.7f, the convex combination condition is satisfied. It can be observed that

this model requires many fewer binary variables and constraints than the 2d convex

combination model. On the other hand, the number of continuous variables is six

times larger in the logarithmic model. Comparing the two models described in this

section, as will be shown in Chapter 5, the logarithmic model performs better.

4.4 Improving PLA Models

In this section, a few approaches to improve the PLA models will be presented.

Since PLA requires introducing many binary and continuous variables and con-

straints, it was not studied as a stand-alone method to solve MINLP problems until

recently. It is usually used as a tool in optimization algorithms to find local solutions

or to under/over estimate some of the nonlinear functions. For PLA models to com-

pletely transform an already hard MINLP problem and produce an MILP problem

that is easier than the original to be handled, more improvements on these models

are needed. Note that even if the targeted problems in this dissertation have many

variables, the PLA models will be applied separately only to functions of two variables

or less.

One approach to improve the models is introducing a new method to choose the

breakpoints. This approach was motivated by the desire to produce an accurate

approximation with reasonable problem size. Unfortunately, this is rarely possible

since an accurate approximation requires many breakpoints. One of the methods to

overcome this issue is to study how to partition a domain. Most existing PLA models

choose the locations of breakpoints based on a uniform partitioning of the domain.

The approach proposed in this chapter, namely a nonuniform partitioning, leads to
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a better PLA model than the one produced by uniform partitioning with the same

number of breakpoints. The details are given in Section 4.4.1

Another approach that will be presented in this chapter is applying the PLA

partially to problems with many nonlinear functions. Given a complicated MINLP

problem, applying the PLA to only some of its nonlinear constraints will not make the

problem solvable by an MILP solver, but it might make the problem less complicated

for MINLP solvers. The idea is to identify complicated nonlinear constraints and

approximate some of them by linear ones, then the modified problem is solved using

MINLP solvers. An algorithm that identifies these constraints and approximates

them will be provided in Section 4.4.2.

4.4.1 New Method to Choose BreakPoints

Most PLA models, that are used within the context of optimization, rely on uni-

form partitioning of variable domains. A few methods to do nonuniform partitioning

were introduced within other contexts. For example, Dahl and Realfsen (1996) used

nonuniform partitioning to approximate a one dimensional curve. The idea is to add

more breakpoints in the part of the domain where the function has higher curvature.

This method is done by solving a shortest path problem, and it was later used within

the PLA approach for one and two dimension by Vasudeva (2015). Other meth-

ods were introduced to use nonuniform partitioning to get piecewise convex/linear

relaxations, such as the one proposed by Nagarajan et al. (2019).

The partitioning method suggested in this section is to build the partitioning

around a local solution. The density of breakpoints increases as they get closer from

both sides to the local solution, which itself is a breakpoint. Assume the local solution

of a variable l ≤ x ≤ u is x∗, then a possible partitioning is to have a breakpoint

in the halfway in the interval from the upper/lower bound to x∗, then another point
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(a) k = 2

l x∗ u

(b) k = 1.7

l x∗ u

(c) k = 1.5

Figure 4.5: Partitioning Using the Formulas x∗ + u−x∗
ki

and x∗ − x∗−l
ki

.

halfway toward x∗ and so on. This partitioning can be given by using the formulas

x∗ +
u− x∗

ki
and x∗ − x∗ − l

ki
, (4.8)

for k = 2 and i = 1, 2, . . . , to get the breakpoint values on both sides of x∗, as shown

in Figure 4.5a.

The problem with the case k = 2 is that it leaves half of the interval between the

upper/lower bound and x∗ without any breakpoints, which may affect the accuracy

of the PLA. Thus, giving k different values between one and two, as in Figures 4.5b

and 4.5c, may yield better partitioning. It can be noticed that as k gets closer to one,

the density of breakpoints shifts away from x∗. If x∗ happened to be at or very close

to one of the bounds, the partitioning will be on one side only. In the case that the

approximated function has two variables, the same logic is applied to both domains.

The PLA using this partitioning was tested for many values of 1 < k < 2 against

PLA with uniform partitioning. The results show that models with nonuniform parti-

tioning were solved faster and yielded better solutions to most of the tested instances.

Details about the targeted optimization problems and the test results will be given

in Chapter 5.
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4.4.2 Partial PLA

In this section, PLA will be performed only on parts of a given MINLP problem,

instead of approximating all nonlinear functions. This is done by targeting functions

with high nonlinearity to be handled by PLA, leaving the remaining functions un-

changed. The goal of this approach is to avoid introducing unnecessary variables

that result from approximating simple functions. To test this approach, an algorithm

is introduced to deal with problems having many nonlinear constraints by picking

one constraint at every iteration and approximating it, until enough constraints are

replaced.

Assume the algorithm is applied to an MINLP problem of the form 2.1 with x∗

and f ∗ as its global optimal solution and objective function value, respectively. The

algorithm starts by solving the problem using an MINLP solver for a few nodes before

it stops the solving process when a specified number of nodes, N , is reached. Then

all nonlinear constraints are identified, and since the solving process was interrupted,

using the current node solution will probably result in some of these constraints being

violated. Now all nonviolated constraint are considered to be easy since the solver

was able to satisfy them within few nodes, so the PLA will not be applied to these

constraints.

Now the algorithm picks a constraint from the violated ones to be approximated

using a PLA model, and this constraint is suggested to be the most violated one.

As a result, the problem now has one less nonlinear constraint. Then the process is

repeated until the problem has no violated constraints. At this point, the problem

is solved regularly to produce a solution x∗ to the modified problem with a function

value f
∗
. |f ∗ − f ∗| is evaluated and the solving times of the original and modified

63



problems are compared. Algorithm 1 shows the steps of the partial PLA approach,

for some ε > 0 and k ∈ N.

Obviously, if k is large enough, then all violated constraints will be replaced and

the resulting problem will probably be harder to solve because of the size. The

computational experiments with large k came as expected and produced extremely

large problems. Then k was set to one, i.e., PLA was applied to only the most violated

constraint in the first iteration. For some test instances, both PLA models, that were

introduced in the previous section, produced modified problems that were solved

faster than the original ones, with similar solution and objective value. As the number

of replaced constraints increases, the modified problem gets more complicated. Most

of the tested instances appeared to be better off without PLA if k ≥ 3. In Chapter

5, a summary of the test instances will be presented in addition to the main findings

on applying PLA to only parts of these instances.
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Algorithm 1: An algorithm that chooses some constraints to be approxi-

mated.

Input:MIQCP problem;

Output:MIQCP problem with up to k constraints being approximated;

while |f ∗ − f ∗| ≥ ε and iteration ≤ k do

start the solving process;

if solving is done before number of nodes reaches n then

set the current objective value = f ∗;

if |f ∗ − f ∗| ≥ ε then

add more breakpoints;

end

else

stop the solving process when the tree has N nodes;

identify the quadratic constraints;

if number of violated constraints ≥ 1 then

replace the most violated one with its PLA;

set f ∗ =∞;

else

solve the PL problem and set the current objective value = f ∗;

end

end

end
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Chapter 5

COMPUTATIONAL EXPERIMENTS

This chapter presents detailed reports on computational experiments that target

QCP and MIQCP problems. The approaches that were introduced in the previous

chapter can be applied to MINLP problems, but they were implemented to test the

quadratic problems only. Most of these problems are not trivial and are based on

different real world applications. The QCQP problems were taken from the kall

instances in the MINLPLib library, whereas the MIQCQP problems were taken from

both MINLPLib and QPLIB 1 . Two dimensional functions are involved in all of the

instances, so 2d PLA is required.

The non linear functions in the instances are approximated by linear ones using

the convex combination and logarithmic disaggregated convex combination models

described by 4.6 and 4.7, and for the remainder of this chapter, they are referred

to by CC and LOG, respectively. If the breakpoints needed for CC and LOG are

determined using nonuniform partitioning, then the models will be called NCC and

NLOG. These four models are also used to do partial PLA to the test instances by

approximating all the nonlinear functions in one constraint.

The PLA models were implemented using PySCIPOpt 2 , which is a Python in-

terface for the global solver SCIP. For now, the written codes can only approximate

quadratic and bilinear terms. After the instance is read by SCIP, all quadratic con-

straints are identified before the domain of every variable involved in a quadratic func-

tion is partitioned (uniformly or nonuniformly). Then SCIP adds all necessary vari-

1http://qplib.zib.de/

2http://scip-interfaces.github.io/PySCIPOpt/docs/html/index.html
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ables and constraints needed to replace the targeted function. Finally, any quadratic

constraint is deleted from the instance and linear constraints, that approximate the

deleted ones, are added. Now the instance is written in a format that can be read by

MILP solvers.

The local instance solutions, that are needed for the nonuniform partitioning,

are generated using the solver Knitro. The comparison between the uniform and

nonuniform partitioning is determined through solving the MILP problems resulting

from applying CC, LOG, NCC, and NLOG to the test instances. The MILP problems

are solved using CPLEX 12.10 with its default settings, and the computations are

done in a Linux machine with Intel Xeon E5-2620 2GHz processor. The time limit

for each problem is set to one hour.

The partial PLA tests are done by solving the original instances and the same

instances with one constraint replaced. The instances are solved using SCIP Opti-

mization Suite 6.0.0 on a Linux machine with Intel Core i5-7y54 1.2GHz processor.

The default solver settings were used with a time limit of two hours.

The results of the computational experiments will be described in detail in the

following sections. Section 5.1 will show the results regarding the continuous in-

stances, QCQP, while in Section 5.2, the findings of MIQCQP instance tests will be

shown. Both sections will provide instance statistics and compare between the CC

and LOG models with respect to the sizes of MILP problems produced by them.

Also the sections will discuss the computational test results, where solving speed

and approximation quality will be examined. At the end of the chapter, Section 5.3
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will summarize the outcome of solving some examples of MINLP problems with two

variables using the PLA models.

5.1 Continuous Variables

The computational results that are reported in this section are for the kall in-

stances, where the objective is linear and the constraints are linear and quadratic.

The quadratic constraints contain up to two functions with two variables of the forms

(x+ y)2 or xy. Also, one variable functions of the form x2 appear in the constraints

of some of the problems.

Statistics of the instances are given in Table 5.1, where seq# is the sequential

number that will refer to the corresponding instance throughout the section. The

number of variables is shown under #v, and #cons (q) represents the total number

of constraints including (q) quadratic ones. The best objective values found so far

(according to the MINLPLib library) are entered under the obj val column header.

All objective values shown in the table are proven to be the global optimum by at

least 3 global solvers except instances 2, 3, 5, and 12.

The instances were solved regularly by SCIP, with time limit of 2 hours. The

solving times are recorded and presented in seconds in the last column of Table 5.1.

For some instances, the limits, machine memory (ML) or time (TL), were reached

before the instance is solved to optimality. Also it can be observed from the solving

times that some instances are trivial and solved quickly but others took time to be

solved. Solving the instances here was not intended to find their global solutions,

since the best solutions are already found and listed in the library and no further

improvement to the solutions can be done. Instead, they were solved to give an idea

about their difficulty levels, and to have a reference when it is needed to compare

their results to the modified problems results.
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Table 5.1: Statistics of Continuous Test Instances, and the Solving Time by SCIP.

instance seq# #v #cons (q) obj val time

kall circles c6a 1 18 54 (22) 2.1117 1927

kall circles c6b 2 18 54 (22) 1.9736 2964

kall circles c7a 3 20 69 (29) 2.6628 2612

kall circles c8a 4 22 86 (37) 2.5409 TL

kall congruentcircles c31 5 10 16 (4) 0.6438 1

kall congruentcircles c32 6 10 16 (4) 1.3759 1

kall congruentcircles c41 7 12 24 (6) 0.8584 1

kall congruentcircles c42 8 12 24 (7) 0.8584 1

kall congruentcircles c51 9 14 34 (11) 1.073 12

kall congruentcircles c52 10 14 34 (11) 1.5371 4

kall congruentcircles c62 11 16 46 (16) 1.2876 16

kall congruentcircles c63 12 16 46 (16) 1.2876 11

kall congruentcircles c72 13 18 60 (22) 1.9663 225

kall diffcircles 10 14 24 71 (45) 11.9355 6356 (ML)

kall diffcircles 5a 15 14 24 (11) 5.1162 63

kall diffcircles 5b 16 14 24 (11) 5.1162 44

kall diffcircles 6 17 16 31 (16) 7.7879 102

kall diffcircles 7 18 18 40 (22) 7.1531 177

kall diffcircles 8 19 20 49 (28) 14.4813 3350

kall diffcircles 9 20 22 60 (36) 13.3503 5118 (ML)
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Before discussing the results of instance PLAs, one important factor about the

instances has to be taken into account: the sizes of variable domains. When the

variable involved in PLA of a function has a large domain, the domain will need more

breakpoints to get a good approximation. However, introducing many breakpoints

will affect the size, so the number of breakpoints for the computational tests is set to

10 for all domains. The domain size for each variable in the tested instances ranges

between 1 and 18, with average size of 7.25 per domain. Therefore, 10 points should

be enough to get good models for test purposes.

To compare between the PLA models with respect to the sizes of the produced

problems, the instances were transformed into MILP problems by the models CC and

LOG (using nonuniform partitioning would give the same size). Each instance was

approximated by these models using 10, 20, and 30 breakpoints. Then the average

numbers of constraints and binary/continuous variables per problem is recorded for

each set of breakpoints, as shown in Table 5.2. It is apparent from the table that there

is a significant advantage for the model LOG in terms of needed number of binary

variables and constraints. Moreover, it will be shown later that this advantage is not

outweighed by the CC model’s advantage of having many fewer continuous variables.

Although Table 5.2 gives enough insight on the problem seizes, detailed statistics

for every problem approximated using 10 breakpoints is given in Table 5.3. This table

makes it easier to track the detail of every tested problem and compare between its

size and computational results. It should be expected that most problems will not be

solved easily by CPLEX due to the large number of binaries and constraints.

5.1.1 Uniform vs Nonuniform Partitioning

The computational experiments on solving the MILP problems approximating the

selected instances were made by CPLEX with a time limit of one hour per problem.
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Table 5.2: Average Sizes per Problem Produced by CC and LOG Models Using 10,
20, and 30 Breakpoints.

10 20 30

BV
CC 6135 27195 63355

LOG 303 377 414

CV
CC 3808 15083 33916

LOG 22738 90416 203417

Cons
CC 3983 15259 34092

LOG 764 891 983

The objective of these experiments is to compare between uniform and nonuniform

partitioning. The nonuniform partitioning is done using different values for the pa-

rameter k in Formulas 4.8.

Table 5.4 compares the results obtained from solving the CC and NCC problems,

with k = 1.5, 1.7. For each model, the solving time is listed in seconds or as TL if the

time limit is reached. The objective value of the best integer solution found within

the time limit is listed under BI, and F means the solver failed to find an integer

solution. Initially, 10 breakpoints were used by the models, but CPLEX failed to find

a solution for most of the problems, so they were regenerated using 7 points. The

third column measures the difference, if applicable, between the best integer value,

f ∗ and the best value of the original instance, f ∗, which can be found in Table 5.1.

Smaller |f ∗− f ∗| value indicates that the approximation is acceptable. Note that for

problems that reached time limit, the best integer value could keep improving if there

is no time limit.

Given the fact that most of the original instances were solved by SCIP to global

optimality within less than an hour (Table 5.1), it can be confirmed that complete
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Table 5.3: The Sizes of the Instances Produced by CC and LOG Models with 10
Breakpoints.

p#
CC LOG

BV CV Cons BV CV Cons

1 6966 4318 4526 344 25818 871

2 6966 4318 4526 344 25818 871

3 9234 5720 5991 456 34220 1152

4 11826 7322 7678 584 43822 1473

5 1134 710 744 56 4210 149

6 1134 710 744 56 4210 149

7 2106 1312 1376 104 7812 271

8 2106 1312 1376 104 7812 271

9 3402 2114 2218 168 12614 433

10 3402 2114 2218 168 12614 433

11 5022 3116 3270 248 18616 635

12 5022 3166 3270 248 18616 635

13 6966 4318 4532 344 25818 877

14 14742 9124 9535 728 54624 1800

15 3402 2114 2208 168 12614 423

16 3402 2114 2208 168 12614 423

17 5022 3118 3255 248 18616 620

18 6966 4318 4512 344 25818 857

19 9234 5720 5977 456 34220 1132

20 11826 7322 7652 584 43822 1447
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Table 5.4: Results of Solving MILP Problems Produced by CC and NCC Models
Using 7 Breakpoints.

p#
CC NCC (k = 1.5) NCC (k = 1.7)

time BI |f ∗ − f ∗| time BI |f ∗ − f ∗| time BI |f ∗ − f ∗|

1 TL F NA TL 1.184 0.9277 TL 2.47 0.3583

2 TL F NA TL 3.324 1.3504 TL F NA

3 TL F NA TL 2.0317 0.6311 TL 2.6628 0

4 TL F NA TL F NA TL F NA

5 18 0.5724 0.0714 29 0.6009 0.0429 81 0.5847 0.0591

6 11 1.366 0.0099 8 1.3831 0.0072 5 1.3544 0.0215

7 1 0.8084 0.05 1 0.8584 0 1 0.8584 0

8 TL 0.8084 0.05 133 0.8269 0.0315 110 0.8052 0.0532

9 TL 1.5373 0.4643 TL 0.7367 0.3363 TL 0.5087 0.5643

10 1200 1.473 0.0641 TL 1.5371 0 TL 1.588 0.0509

11 TL 1.221 0.0666 TL 1.2876 0 TL 1.2876 0

12 856 1.118 0.1696 TL 1.2876 0 TL 1.2876 0

13 TL 1.6689 0.2974 TL 1.9663 0 TL 1.817 0.1493

14 TL F NA TL F NA TL F NA

15 TL 5.2619 0.1457 TL 5.1162 0 TL 6.479 1.3628

16 1400 2.838 2.2782 527 3.172 1.9442 TL 3.4476 1.6686

17 3400 7.5885 0.1994 TL 7.2298 0.558 TL F NA

18 TL F NA TL F NA TL F NA

19 TL F NA TL 15.431 0.9497 TL 17.611 3.1297

20 TL F NA TL F NA TL F NA
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transformation of MINLP problems into MILP ones will not make the problems eas-

ier, especially when approximating many functions. Nonetheless, this is not the goal

of the experiments since the main purpose is to compare partitioning methods for

PLA models. The aspects of the comparison between uniform and nonuniform par-

titioning will be the accuracy of the approximation and the time needed to solve the

approximation.

The data listed under the time columns indicate that all models are close in terms

of the number of problems that were solved within the time limit. However, for

problems that reached the time limit, the model with uniform partitioning failed

to find an integer solution in eight problems, compared to four problems for the

NCC model with k = 1.5. This implies that problems generated by CC models

with nonuniform partitioning usually find feasible solutions faster than with uniform

partitioning. The same outcome resulted when other nonuniform cases were tested

for k = 1.4, 1.6, 1.8. Even when both uniform and nonuniform cases resulted in

a problem that produced an integer solution within the time limit, the gap in the

nonuniform case is smaller most of the times. Therefore, it can be concluded that

problems produced by NCC models are usually solved faster than the ones produced

by CC models.

The quality of the approximation is better tested without the time limit, where

the solver runs until the global solution is found, and then the solutions of the original

and approximated problems are compared. In spite of that, the table provides enough

data to compare the quality of CC and NCC approximations. It can be observed

that the integer solution is the same as the solution of the original instance in many

problem for both cases of nonuniform partitioning, while the uniform partitioning

never produced an identical integer solution to the original one. Also for the cases
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that the integer solution is not the same as the original one, the difference between

the two solutions is mostly less in the NCC cases.

The computational results for solving problems produced by the models LOG

and NLOG are summarized in Table 5.5. The test setting and comparison aspects

for these models are the same as the CC and NCC models, except for the number of

breakpoints where 11 is used for this test. The outcomes also turned out to be similar:

the nonuniform partitioning improved the models in both speed and accuracy. Both

NLOG models resulted in more problems that were solved within time limit, compared

to LOG models; and when a problem is solved within time limit for all models, almost

always the NLOG problem needs less solving time. Also the difference |f ∗ − f ∗| is

mostly smaller in the NLOG cases. It should be mentioned that in nonuniform

partitioning, having a local solution as one of the breakpoints helped improving the

model’s quality.

Comparing between the data in Tables 5.5 and 5.4 makes it clear that the logarith-

mic models are significantly better than the non logarithmic ones. This confirms the

fact that for a PLA model, increasing the number of binary variables has more neg-

ative impact than increasing the continuous variables. Even though the logarithmic

models used 4 points more (11 compared to 7), which considerably affects the size,

the solving times turned out to be much less than the times for the non logarithmic

case. Therefore, using logarithmic models allows introducing more breakpoints and,

consequently, producing more accurate approximation. For example, the average dif-

ference between optimal value of the original instance and approximation, |f ∗ − f ∗|,

per LOG problem is 0.328, while it is 0.667 for CC problems.

The computational experiments in this section have shown that full PLA of

MINLP problems will not make the new problems any better, yet they prove that the

improvement of PLA models is promising. In addition to the major development of
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Table 5.5: Results of Solving MILP Problems Produced with LOG and NLOG
Models Using 11 Breakpoints.

p#
LOG NLOG (k = 1.5) NLOG (k = 1.7)

time BI |f ∗ − f ∗| time BI |f ∗ − f ∗| time BI |f ∗ − f ∗|

1 TL F NA TL F NA TL F NA

2 TL F NA TL 1.9488 0.0248 TL F NA

3 TL F NA TL 2.6628 0 TL 2.6628 0

4 TL F NA TL F NA TL F NA

5 8 0.5435 0.1003 6 0.6009 0.0429 73 0.5847 0.0591

6 10 1.368 0.0079 2 1.3831 0.0072 157 1.3544 0.0215

7 3 0.8324 0.026 1 0.8584 0 47 0.8584 0

8 37 0.8348 0.0236 16 0.8269 0.0315 133 0.8052 0.0532

9 TL 2.944 1.871 TL 1.036 0.037 TL 0.378 0.695

10 1764 1.51 0.0271 194 1.5371 0 915 1.5371 0

11 TL 1.651 0.3634 1042 1.2876 0 821 1.2876 0

12 346 1.038 0.2496 231 1.2876 0 478 1.2876 0

13 TL 2.097 0.1307 TL 1.9663 0 TL 1.9663 0

14 TL F NA TL F NA TL F NA

15 2980 5.038 0.0782 TL 5.1162 0 161 4.6298 0.4864

16 TL 4.201 0.9152 191 3.172 1.9442 1625 3.4476 1.6686

17 TL 7.642 0.1459 450 7.2298 0.5581 2516 7.572 0.2159

18 TL F NA TL 6.411 0.7421 TL F NA

19 TL F NA 935 7.182 7.2993 TL 2.288 12.1933

20 TL F NA TL 7.217 6.1333 TL F NA

76



the PLA model caused by logarithmic formulation, different components of the model

can also be improved. For example, it was demonstrated that nonuniform partition-

ing based on local solutions can add more improvement to the models. Finally, the

uses of PLA are not limited to the full PLA; it can be useful if applied to only parts

of an MINLP problem, as will be shown in the next section.

5.1.2 Partial PLA

PLA was applied partially to different QCQP and MIQCQP using Algorithm 1.

If the number of approximated constraints is large, then the modified problem gets

more complicated and the original problem is better off without this approximation.

However, in this section, the algorithm is applied with one iteration to many in-

stances belonging to different groups from the MINLPLib library. Interestingly, this

approach worked on some instances, and produced problems that needed shorter solv-

ing times. Table 5.6 summarizes the statistics of some of these instances, in addition

to computational results of solving them using SCIP with 2 hours time limit.

Table 5.6: Statistics of Different Test Instances, and the Solving Results by SCIP.

instance seq# #v #cons (q) obj val time gap %

kall circlespolygons c1p12 1 43 48 (21) 0.3396 TL ∞

kall circlespolygons c1p13 2 43 48 (21) 0.3396 TL ∞

kall circlesrectangles c1r12 3 49 41 (23) 0.3396 TL ∞

kall diffcircles 5a 4 14 24 (11) 5.1162 63 0

kall diffcircles 6 5 16 31 (16) 7.7879 102 0

pooling foulds3stp 6 832 1089 (1024) -8 5730 0

pooling foulds4stp 7 832 1089 (1024) -8 6235 0
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As can be seen in the table, SCIP failed to close the gap when solving instances 1,

2, and 3; but it succeeded for the other problem. The goal of testing these instances

is to show that approximating one constraint per instance aids the solver to handle

the instance better. For each modified instance Table 5.7 presents the solving time,

the optimal objective value f ∗, and the difference between the optimal values of the

original and modified instance.

Table 5.7: Computational Results of Problems Produced by Partial PLA Using 10
Breakpoints.

p#
CC LOG

time f ∗ |f ∗ − f ∗| time f ∗ |f ∗ − f ∗|

1 92 0.2949 0.0447 241 0.2848 0.0548

2 258 0.2914 0.0482 358 0.3227 0.0169

3 TL 0.3396 0 TL 0.3396 0

4 38 4.96 0.1562 29 4.96 0.1562

5 68 7.7879 0 47 7.7879 0

6 215 -8 0 2631 -8 0

7 3143 -8 0 622 -8 0

The results table shows that for the first three instances, SCIP was able to solve

them and close the gap, except for the third instance, the gap was closed shortly

after 2 hours (when time limit was disabled) for the cc case, and the gap was ∞% in

the LOG case. The solving time of the modified instance is mostly shorter than the

original problem.

From instances with |f ∗− f ∗| > 0, it can be implied that even if it is only one out

of many constraints that was approximated, there will probably be an approximation

error. These instances were approximated again with 15, 20, and 25 breakpoints,

78



and that led to better optimal values but longer solving time. For example, when

instance 1 was generated by CC with 15 points, SCIP needed 250 seconds to solve it

and the objective value was 0.311; and with 25 points, it needed 440 seconds, yielding

an objective value of 0.334.

An interesting finding is that the solving times of CC problems are shorter than

those of LOG problems. This agrees with what was mentioned in the comparison

section in Chapter 4, which is that the models have similar performance when ap-

proximating problems with few variables using few breakpoints.

The experimental results suggest that partial PLA can produce less complicated

problems with small or zero approximation error. Also, it was shown that LOG

models have no advantage here in contrary to the case in the previous section. In

the following section, similar computational experiments are performed on MIQCP

problems.

5.2 Mixed Integer Variables

The PLA models, that were used in the previous section, were applied to problems

where the variables involved in the quadratic terms can be integer. When introducing

the breakpoints to an integer variable’s interval, every integer value in the interval will

be a breakpoint, so the number of breakpoints depends on the length of the interval.

If this results in a large number of breakpoints, some integer values can be skipped so

the number stays reasonable. Also there is no need to have a convex combination of

two breakpoints since the variable cannot take noninteger values. For all noninteger

variables involved in the quadratic functions, the PLA procedures are still the same.

The objective of the computational tests is the same as in the case of continuous

variables: to test the uniform against the nonuniform partitioning, and to assess the

performance of the partial PLA models. A summary of the test instances’ statistics
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is given in Table 5.8, where they were solved by SCIP with a time limit of two hours.

Instances 1, 2, and 3 were taken from the QPLIB library and the remainder are from

MINLPLib instances.

Table 5.8: Statistics of MIQCP Test Instances, and the Solving Results by SCIP.

instance seq# #v #cons (q) obj val time gap %

3562 1 63 42 (7) 15 TL 305

3780 2 168 72 (12) 90.6 TL 1138.3

3816 3 187 387 (24) 7.3936 TL 27.37

blend029 4 102 213 (12) 13.359 8 0

blend146 5 222 624 (24) 45.297 TL 1.87

ex1236 6 92 55 (4) 19.6 1 0

gabriel02 7 261 597 (96) 39.6 TL 22.3

sep1 8 29 31 (6) -510.81 1 0

st e31 9 112 135 (5) -2 4 0

tln4 10 24 24 (4) 8.3 6 0

Based on the solving times in Table 5.8, it can be concluded that half of the tested

instances are challenging and the other half are not. It should be mentioned that in

instances 1, 2, and 10, only integer variables are involved in the quadratic functions,

so no nonuniform partitioning is done for these instances (a breakpoint is introduced

at every integer value in the interval). Tables 5.9 and 5.10 show the results of solving

the problems produced by the convex combination and the logarithmic models with

11 breakpoints. The computations were done by using CPLEX with 2 hours time

limit.

The results in the tables show that CPLEX failed to find an integer solution to

3 NLOG problems and 4 problems produced by the other models. For problems for
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Table 5.9: Results of Solving MILP Problems Produced by CC and NCC Models
Using 11 Breakpoints.

p#
CC NCC (k = 1.5) NCC (k = 1.7)

time BI |f ∗ − f ∗| time BI |f ∗ − f ∗| time BI |f ∗ − f ∗|

1 TL 19.6 4.6 similar

2 TL F NA similar

3 TL F NA TL F NA TL F NA

4 TL 12.73 0.629 TL 12.73 0.629 TL 13.359 0

5 TL F NA TL F NA TL F NA

6 360 19.6 0 68 19.6 0 237 19.6 0

7 TL F NA TL F NA TL F NA

8 109 -510.29 0.25 88 -510.08 0.73 21 -510.08 0.73

9 331 -2.019 0.019 29 -2.087 0.087 16 -2.188 0.188

10 TL 8.3 0 similar

which CPLEX found integer solutions, it can be observed that the problems with

nonuniform partitioning are solved faster than the uniformly partitioned problems,

for both logarithmic and nonlogarithmic models. The data under |f ∗ − f ∗| columns

show that no clear advantage can be confirmed for any of the models in the accuracy

of the approximation.

Partial PLA was applied to the same set of instances and the most violated con-

straint of each challenging instance was approximated using CC and NLOG models.

As Table 5.8 shows, instances 1 and 2 have a relative gap of 305% and 1138%, re-

spectively, after two hours of solving time. After PLA, SCIP reached the time limit

and resulted in gaps of 53% and 1862% for the CC problems, and 200% and 774%
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Table 5.10: Results of Solving MILP Problems Produced with LOG and NLOG
Models Using 11 Breakpoints.

p#
LOG NLOG (k = 1.5) NLOG (k = 1.7)

time BI |f ∗ − f ∗| time BI |f ∗ − f ∗| time BI |f ∗ − f ∗|

1 TL 18.4 3.4 similar

2 TL F NA similar

3 TL F NA TL 6.6 0.7936 TL 6.2 1.1936

4 5088 13.359 0 756 13.359 0 970 13.359 0

5 TL F NA TL F NA TL F NA

6 146 19.6 0 29 19.6 0 41 19.6 0

7 TL F NA TL F NA TL F NA

8 103 -509.72 1.09 34 -510.08 0.73 43 -510.08 0.73

9 198 -2.01 0.01 89 -2.087 0.087 103 -2.188 0.188

10 354 8.3 0 similar

for the LOG problems. The rest of instances resulted in better performances by the

solver without PLA.

From the results of the computational experiments performed for both continuous

(Section 5.1) and mixed integer problems, it can be concluded that PLA models can

be improved by using nonuniform instead of uniform partitioning. Also, the tests have

shown that some challenging QCP and MIQCP problems can be less challenging with

only a small change to them by applying partial PLA.

5.3 MINLP 2d Examples

In this section, PLA will be applied to five MINLP problems with functions of

two variables. The functions in these problems are characterized by their many local
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minima and maxima. The problems are not necessarily transformed to MILP prob-

lems, but the PLA will be applied to functions to either get simpler problems, or to

give some solvers the ability to solve problems having unsupported functions. For

example, BARON and SCIP do not support trigonometric functions, so PLA will

convert them to supported forms. The problems are given by the following examples:

Example 5.1

max |(cos(x)4 cos(y)4 − 2 cos(x)2 cos(y)2)√
(x2 + 2y2)

| (5.1a)

subject to − xy + 0.75 ≤ 0 (5.1b)

x+ y − 15 ≤ 0. (5.1c)

Example 5.2

min (cos((x− 0.1)y))2 − x sin(3x+ y) (5.2a)

subject to x2 + y2 ≤ (2cos(
2y

x
))− 0.5 cos(2

2y

x
)

− 0.25 cos(3
2y

x
)− 0.125 cos(4

2y

x
)2

+ (2 sin(
2y

x
))2.

(5.2b)

Example 5.3

min sin(y)e(1−cos(x))2 + cos(x)e(1−sin(y))2 + (x− y)2 (5.3a)

subject to (x+ 5)2 + (y + 5)2 ≤ 25. (5.3b)

Example 5.4

min (4− 2.1x2 + x
4
3 )x2 + xy + (−4 + 4y2)y2 (5.4a)

subject to − sin(4πx) + (sin(2πy))2 ≤ 0. (5.4b)
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Example 5.5

max
(sin(2πx))3sin(2πy)

x3(x+ y)
(5.5a)

subject to x2 − y + 1 ≤ 0 (5.5b)

1− x+ (y − 4)2 ≤ 0. (5.5c)

The objective functions of the optimization problems, mentioned in the examples

above, are illustrated in Figure 5.1. Since the problems have only two variables, it

is expected that they will be handled easily by any global solver. Note that even

though the objective function in Example 4 looks simple, the constraint adds some

complexity to the problem.

The objective of the computational tests performed on these problems is to show

how PLA can be useful, even to some global solvers such as BARON and SCIP.

Currently, these two solvers cannot solve the problems because all problems con-

tain trigonometric functions either in the objective function or in the constraints.

Trigonometric functions are involved in many real world problems, and it could be

disappointing that two of the most powerful solvers do not handle them. Therefore,

an attempt was made to apply PLA models to these problems so they could be han-

dled by the solvers. The CC model was applied to the trigonometric functions in

the problems, and the other nonlinear functions remain unchanged. Consequently,

trigonometric functions were replaced by piecewise linear ones and both BARON and

SCIP were able to handle the problems. Also the PLA was applied to all nonlinear

functions to transform the problems to MILP so CPLEX and other linear solvers can

handle them.

Table 5.11 shows the global optimal solutions of the original problems, where they

were solved using Couenne, and their approximations that were solved by BARON

and SCIP. The variable bounds for all problems were set such that the interval length
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Figure 5.1: Different Nonlinear Objective Functions with Two Variables.
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is 2 and the global solution is in the interval. The PLA was done using the CC model

with 10 and 30 breakpoints, and it can be seen from the table that both models

resulted in good approximations, with an advantage to the 30 breakpoints model. All

variations of the problems were solved by the NEOS server’s solvers with their default

settings.

Table 5.11: The Examples’ Global Solutions and Optimal Values Before (Couenne)
and After PLA.

Couenne
PLA (CC)

10 30

Ex.1
(x, y) (2.722, 0.276) (2.719, 0.276) (2.71, 0.277)

f ∗ 0.344815 0.34236 0.3445

Ex.2
(x, y) (-2.074. -1.0714) (-2.05, -1.11) (-2.055. -1.103)

f ∗ -2.22789 -2.1845 -2.2275

Ex.3
(x, y) (-3.123, -1.589) (-3.11, -1.67) (-3.103, -1.62)

f ∗ -106.788 -106.284 -106.68

Ex.4
(x, y) (0.097, -0.71) (0.089, -0.71) (0.097, -0.71)

f ∗ -1.03136 -1.0316 -1.03134

Ex.5
(x, y) (1.228. 4.245) (1.336,4.33) (1.245, 4.241)

f ∗ 0.095825 0.04 0.09414

Each problem was solved many times and the average solving times were recorded

in Table 5.12. Although the problems are simple and it took no more than a few

seconds to solve the variations of each problem, some interesting findings can be

observed. For example, the improvement of the approximation gained by adding
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more breakpoints might not be worth the increase in the solving time. The solving

time for BARON and SCIP using 10 points is comparable to Couenne’s, but increasing

the points to 30 gave Couenne the advantage, and this advantage would be greater

if the variables’ interval length is greater than 2. Another interesting observation is

that the performance of CPLEX in the MILP problems with 30 points is even better

than the performance of Couenne in the original problems. This might indicate that

using PLA on small MINLP problems might produce MILP problems that are easier

to be dealt with, although it is hard to conclude this by only testing these trivial

problems.

Table 5.12: The Time Needed by Solvers to Solve the Original Problems and their
Approximations(in seconds).

solver #bp Ex.1 Ex.2 Ex.3 Ex.4 Ex.5

Couenne 5.5 10.5 0.2 0.08 0.12

BARON
10 0.4 1 0.1 3.1 0.27

30 10 18 3.2 37.2 2.4

SCIP
10 0.5 7 0.08 2.9 0.28

30 7.2 6.3 3.6 9 4

CPLEX
10 0.02 0.1 0.01 0.01 0.11

30 0.2 1.2 0.11 0.02 0.9
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Chapter 6

CONCLUSIONS

This dissertation has discussed optimization in general and global MINLP in de-

tail. It was shown that LP, MILP, and NLP methods are proved to be efficient, so

they were adapted to be the main parts of the MINLP methods. The most important

solvers that employed these methods were inspected and computational results that

compare their performance were provided.

Piecewise linear approximation is a method that transforms a nonlinear function

to a piecewise linear one, and it is applied to MINLP problems to allow them to be

handled by robust MILP solvers. The PLA background was given and the models

were described for one and two dimensional functions.

While it is desired to get good approximation, it should not come at the expense

of creating a large problem. Therefore, this dissertation suggests some modifications

to the PLA models to produce better approximation without affecting the size of the

problem. Also the dissertation suggests another PLA approach that improves the

performance of some MINLP solvers on some problems.

It was demonstrated through computational experiments that the approaches in-

troduced in Chapter 4 are promising. The PLA models that were used for the exper-

iments are coded in a Python interface for the solver SCIP. Four codes were written

and they can transform any MIQCQP problem into an MILP one through SCIP. Also

a PLA model was applied to MINLP problems with trigonometric functions which
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allows SCIP and BARON to solve the approximated problems, while they do not

handle the original ones because of the trigonometric functions.

6.1 Future Work

PLA was proved to be a promising method to tackle MINLP problems, and it can

be improved in many areas. In Section 4.4.1, a nonuniform partitioning is introduced

to improve the quality of the approximation. This can be improved by studying

the approximated function and choosing a relevant partitioning formula. Also the

partial PLA, Section 4.4.2, can be improved by modifying the constraints selection

rule. In this dissertation, the selection rule is to select the most violated constraint

and approximate it. Partial PLA using this rule improved SCIP in 10 to 20% of the

tested examples, so other selection ideas may increase the rate.

The written codes implement the convex combination and logarithmic disaggre-

gated convex combination models, for one and two dimensions, and one triangulation

(Figure 4.4a). The codes can be modified to allow to pick from more than one trian-

gulation, and more codes can be written to implement the other models. Also they

can be extended to be applicable to the NLP and MINLP problems through SCIP.
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