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ABSTRACT

A model of self-heating is incorporated into a Cellular Monte Carlo (CMC) particle-

based device simulator through the solution of an energy balance equation (EBE) for

phonons. The EBE self-consistently couples charge and heat transport in the simu-

lation through a novel approach to computing the heat generation rate in the device

under study. First, the moments of the Boltzmann Transport Equation (BTE) are

discussed, and subsequently the EBE of for phonons is derived. Subsequently, several

tests are performed to verify the applicability and accuracy of a nonlinear iterative

method for the solution of the EBE in the presence of convective boundary condi-

tions, as compared to a finite element analysis solver as well as using the Kirchhoff

transformation. The coupled electrothermal characterization of a GaN/AlGaN high

electron mobility transistor (HEMT) is then performed, and the effects of non-ideal

interfaces and boundary conditions are studied.

The proposed thermal model is then applied to a novel Π-gate architecture which

has been suggested to reduce hot electron generation in the device, compared to the

conventional T-gate. Additionally, small signal ac simulations are performed for the

determination of cutoff frequencies using the thermal model as well.

Finally, further extensions of the CMC algorithm used in this work are discussed,

including 1) higher-order moments of the phonon BTE, 2) coupling to phonon Monte

Carlo simulations, and 3) application to other large-bandgap, and therefore high-

power, materials such as diamond.
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Chapter 1

INTRODUCTION

The semiconductor industry is constantly shrinking devices in order to increase

performance and yield. This comes at the cost of increased power density losses, which

in turn causes a large amount of heat to accumulate within the devices. Thermal

effects can lead to the degradation of electrical characteristics as well as reliability

issues [1–4] resulting in device breakdown. As devices are pushed even further, both

in terms of smaller size and higher performance, these problems are only expected

to become more severe. In addition, new architectures such as the FinFET and 3-D

integrated circuit layouts may exacerbate thermal problems.

These problems illustrate the necessity of bringing the simulation and study of

thermal characteristics closer to the current state of electrical characteristics in the

context of a comprehensive electrothermal device simulation, as the two are closely

intertwined. Coupled electrothermal simulations offer the possibility of obtaining

temperature maps within a device, allowing the “hot spot” in a device to be more

accurately predicted. Hence, the potential effects of self-heating may be better un-

derstood prior to fabrication. Furthermore, these results can be used to mitigate the

negative effects associated with self-heating either through more efficient heat dissi-

pation and/or modified device layouts leading to a reduction in heat generation and

peak temperatures.

Monte Carlo (MC) techniques have been widely utilized to study electrical trans-

port in semiconductor materials and devices in a number of seminal works [5–8]

which have been built upon in the following decades. Although drift-diffusion and

hyrdrodynamic simulation models offer shorter simulation times than MC methods,
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they are generally based on low-order moments of the Boltzmann Transport Equation

(BTE) and become inaccurate as devices are pushed smaller in size and correspond-

ingly closer to material limits. Furthermore, assumptions made in the derivation of

these models are often only valid near-equilibrium. On the other hand, MC methods

provide a full stochastic solution to the BTE, and hence improved accuracy, at the

expense of being more expensive in simulation time, hardware requirements, or both.

However, the use of MC methods in thermal device simulations has been less

widespread until more recently. A rigorous and comprehensive treatment of self-

heating and heat transport in devices, from a thermodynamics viewpoint, is given

in [9]. As for simulation approaches, the method of incorporating self-heating effects

using a set of hydrodynamic equations, i.e., the first three moments of the BTE, was

developed in [10–12], and subsequently used in more recent studies [13, 14]. This

approach uses relaxation time approximations (RTAs) for both the energy transfer

between electrons and optical phonons as well as that between optical and acoustic

phonons. In addition, it assumes a specified energy decay path starting from elec-

trons to optical phonons and then to acoustic phonons. While these methods take

into account temperature-dependent scattering rates, the temperature dependence of

material properties, such as thermal conductivity, is often neglected.

One approach to incorporate these temperature-dependent thermal conductivities

at the device scale is that of Bonani and Ghione [15] based on the Kirchhoff trans-

formation, which implicitly maps the temperature dependence into a new “apparent

temperature” variable. The Kirchhoff transformation is discussed in detail in Sec.

3.3. Elsewhere, Pilgrim et al. [16–19] used the Kirchhoff transformation along with a

net phonon emission approach to obtain internal temperature maps of high electron

mobility transistor (HEMT) devices. Here, it is assumed that all optical phonons

emitted and/or absorbed correspond to only a single energy value, i.e., the optical

2



phonons are assumed to be dispersionless. An analytical temperature distribution

was then computed using a thermal resistance matrix method developed in [20]. It

can be seen, however, that issues arise when using the Kirchhoff transformation in the

presence of non-ideal interfaces [21, 22], as discussed in Section 3.3 and in Chapter 4.

The rather comprehensive model of Hao et al. [23, 24] improves upon many of

these aspects by directly coupling electron and phonon MC simulations in particular

regions of interest within a device. The reason for limiting its use to specific regions is

that the phonon MC algorithm is quite expensive computationally, and hence in the

majority of the device a simpler, faster Fourier’s law solution is used. In these works,

the electron MC is used to extract parameters such as the electron density, energy,

and drift velocity in order to determine the energy exhanged between electrons and

phonons.

The aim of the work detailed here is to provide electrothermal simulation func-

tionality within the Cellular Monte Carlo (CMC) framework [25], which offers several

performance advantages to the more traditional Monte Carlo techniques. Throughout

this work, a full electronic bandstructure and full phonon dispersion representation is

used, including the full dispersion for the optical phonon modes rather than assum-

ing them to be dispersionless. In addition, a novel method of computing the heat

generation rate in the heat transport equation in real time by tracking the individual

scattering events is utilized, rather than by extracting parameters such as electron

density, energy, and drift velocity to be used within a relaxation time approximation.

This new approach allows us to move away from the RTA for electrons and provide

a more direct self-consistent coupling between charge and heat transport.

In Chapter 2 an overview of the method of moments for the solution of the BTE is

given, as well as the drift-diffusion and hydrodynamic methods obtained with them.

These are then contrasted with Monte Carlo methods used in the Cellular Monte Carlo

3



approach. The energy balance equation for phonons is derived from the moments of

the phonon BTE, and its manipulation into the form of a linear elliptical partial

differential equation (PDE) through the use of the Kirchhoff transformation and an

iterative approach to its full solition are introduced in Chapter 3.

Subsequently, the structure and properties of the computational grid and the

boundary conditions are discussed in Chapter 3. Benchmark simulation results for

both the Kirchhoff transformation and the iterative approach are shown in Chapter

4. In particular, the iterative approach overcomes two limitations of using the Kirch-

hoff transformation: it allows for 1) the straightforward implementation of non-ideal

interfaces, and 2) the inclusion of temperature dependence of properties such as the

thermal conductivity within a finite-difference framework. It will be shown that the

Kirchhoff transformation requires a priori knowledge of the solution in the case of

non-ideal interfaces, while the iterative method does not.

Additionally, fully coupled nonlinear electrothermal simulations performed on a

simple GaAs diode as well as an experimentally characterized GaN high electron

mobility transistor (HEMT) using both approaches are detailed in Chapters 5 and 6,

respectively.

Finally, these results are then built upon in Chapter 7 to study a novel gate

structure and the outcome of extending the electrothermal model to small-signal AC

simulations.
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Chapter 2

SIMULATION METHODS

Generally speaking, an electron device simulation includes the coupling of the

charge transport and scattering with the solution of Poisson’s equation in addition

to the application of suitable boundary conditions. Mathematically, a differential

equation must include a Dirichlet boundary condition at some point in the domain

for a unique solution to exist. In the case of a problem with only Neumann boundary

conditions by constrast, one obtains an infinite family of solutions differing from each

other by a constant. Fortunately, from a physical perspective, an electrical device

always includes contacts where a voltage is applied which corresponds to a Dirichlet

condition on the electrostatic potential computed as a solution of Poisson’s equation.

For the case of charge transport, the majority of simulation approaches used for

semiconductor devices are based on the BTE. Rather than solving Newton-like equa-

tions for every particle, the BTE instead describes the particle ensemble with what

is known as the particle distribution function, f (r,k, t). This distribution function

represents the probability of finding a particle at a specific time t, position r, and mo-

mentum k. Hence, f (r,k, t) describes the time evolution of the particle distribution

in phase space.

The BTE therefore represents an equation which simply accounts for all the ways

in which the distribution function of the carrier ensemble may undergo changes and

is written as [26–29]

∂f

∂t
= −∇r ·

[
dr

dt
f

]
−∇k ·

[
dk

dt
f

]
+
∂f

∂t

∣∣∣∣
coll

. (2.1)
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This equation says that the time variation of the distribution function, the left-

hand side (LHS) of Eq. (2.1), is given by the contributions from the flux in position

space, the first term on the right-hand side (RHS), and the flux in momentum space,

the second term on the RHS. The latter two of these are the so called “drift terms”,

and are entirely classical in nature. Additionally, the final term on the RHS, often

called the collision term, describes changes in the distribution function due to any

collisions the carrier might undergo and is computed including quantum mechanical

considerations. Hence, these methods are described as the semi-classical approach.

Using the relations for velocity, dr
dt

= v and force, F = ~dk
dt

, Eq. (2.1) can then be

written as

∂f

∂t
= −1

~
F · ∇kf − v · ∇rf +

∂f

∂t

∣∣∣∣
coll

, (2.2)

which is a commonly seen form of the BTE [27, 30].

2.1 Moments of a Distribution Function

The drift-diffusion and hydrodynamic models can be derived from Eq. (2.2) by

using the first two (the zeroeth and first) moments or the first three (zeroeth, first,

and second) moments of the distribution function, respectively. In general, if X is a

continuous random variable, and g(x) its continuous probability distribution function,

then the nth central moment, 〈Xn〉, of X is defined as [31, 32]

〈Xn〉 =

∫ ∞
−∞

xng(x)dx, (2.3)

where 〈Xn〉 is also called the expected value of Xn. On the other hand, the nth

moment about the mean is given by
〈
(X − µ)2〉

〈
(X − µ)2〉 =

∫ ∞
−∞

(x− µ)ng(x)dx (2.4)
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where µ is the expected value or mean of the distribution. In fact, µ is simply the

first moment corresponding to n = 1 in Eq. (2.3).

The nth moment of a distribution is said to exist if the integral in Eq. (2.3) is

absolutely convergent. That is:

∫ ∞
−∞

xng(x)dx =

∫ 0

−∞
xng(x)dx+

∫ ∞
0

xng(x)dx

= lim
a→−∞

∫ 0

a

xng(x)dx+ lim
b→∞

∫ b

0

xng(x)dx

(2.5)

where both of the limit terms must converge to finite values. Subsequently, if the nth

moment exists then all moments of an order lower than n also exist [33].

The moments of a distribution (provided they exist) are, in a qualitative sense,

analogous to the terms of a Taylor series expansion of a function. For a Taylor ex-

pansion, each successive higher-order term gives a more accurate approximation to

the true function itself. In the same way, successive higher-order moments for a prob-

ability distribution give a more accurate representation of its shape. In statistics, in

addition to the mean it is common to use the moments for n = 2, 3, and 4 corre-

sponding to 〈X2〉 = σ2 being the variance of g(x), 〈X3〉 a measure of its skewness

(or asymmetry), and 〈X4〉 its kurtosis which contains information about both the

tailedness and peakedness of the distribution. Note, however, that the information

in the kurtosis is separate from that contained in the variance. This is discussed here

as some hydrodynamic models do take into account the 4th moment as well as even

higher-order moments [34].

A popular measure of kurtosis is normalized such that the normal distribution

possesses a kurtosis of zero, and that of any other distribution is relative to the normal

distribution. This value is called the excess kurtosis [35]. In general, a positive excess

kurtosis corresponds to a distribution with both a sharper peak and larger tails than
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a normal distribution, while a negative excess kurtotsis corresponds to a distribution

with both a flatter peak and smaller tails [35]. In Fig. 2.1a, all of the distributions

shown are scaled to a variance of 5/3 to match that of the student t-distribution [36].

The student t-distribution with 5 degrees of freedom is shown to represent a

positive excess kurtosis distribution, while a uniform distribution is shown to represent

negative excess kurtosis [35]. Figure 2.1b shows the Maxwell-Boltzmann distribution

often used in semiconductor theory, which has only a slightly positive excess kurtosis

of ≈ 0.1. This may be surprising initially, but looking at Fig 2.1, it is seen that

while for the Maxwell distribution the tails are clearly “heavier” the peak is much

flatter. In comparison, the t-distribution, with a much larger excess kurtosis of 3, also

has “heavier” tails than the normal distribution, but in addition has a sharper peak

and the “shoulder” area in between dips below that of the normal distribution. The

reason changes in both the tails and peak are involved in a change in kurtosis is that

it represents a change in the distribution function that does not affect its variance

[35]. Hence, if the tails of the distribution become “heavier” they must be offset

by the distribution becoming sharper near the peak in order to leave the variance

unchanged.

In terms of an electron distribution function, the kurtosis would physically corre-

spond to additional information about the “hot” electron population in the distribu-

tion, which are those that have a much higher energy than the mean, i.e., the effects

of the outliers of the distribution function.

As a further note, while including successive higher-order moments results in a

more accurate representation of the actual distribution function, it should be clear

that whatever information is contained in the discarded higher-order moments is lost.
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(a)

(b)

Figure 2.1: (a) The normal distribution (zero kurtosis) compared to the student
t-distribution with 5 degrees of freedom (positive kurtosis) and the uniform distribu-
tion (negative kurtosis). Reproduced from [35]. (b) Maxwell-Boltzmann distribution
compared to normal distribution. All distributions shown are set to a variance of 5/3.
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2.2 Moments of the BTE

Starting with Eq. (2.3), if we instead use the carrier distribution function of Eq.

2.2 rather than g(x), and use orders of the wavevector k rather than x, where φ(kn)

is some function of order n, the nth moment of the carrier distribution function, nφ,

is given by [6, 27, 37]

nφ =

∫
φ(kn)f (r,k, t) dk. (2.6)

For the zeroeth moment in particular, n = 0 and we obtain

nφ =

∫
φ(k0)f (r,k, t) dk. (2.7)

which simply gives the total number of carriers. It follows that the carrier density, n,

is obtained by dividing Eq. (2.7) by a unit volume of the reciprocal space, and hence

the carrier density is found from the zeroeth moment of the distribution function,

n =
1

Ω

∫
φ(k0)f (r,k, t) dk. (2.8)

Similarly, from the first moment one obtains the average carrier velocity, or corre-

spondingly the current density, and from the second moment one obtains the average

particle energy.

Just as we can take moments of the distribution function, we can also take the

moments of the BTE itself. This is done by multiplying Eq. (2.2) by φ(k)/Ω and

summing (or integrating) over momentum space. Rearranging terms, the general

moment equation can then be written as [37–39]

1

Ω

∂

∂t

∑
k

φ(k)f = − 1

Ω
∇r ·

∑
k

φ(k)vf +
F

Ω~
∑
k

f∇kφ(k) +
1

Ω

∑
k

φ(k)
∂f

∂t

∣∣∣∣
coll

. (2.9)
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Taking the zeroeth moment using φ(k0) = 1 and using Eq. (2.8), the term on

the LHS of Eq. (2.9) is just the time derivative of the carrier density from Eq. 2.8,

∂n/∂t. The first term on the RHS is a carrier flux, denoted by Fφ,0,

Fφ,0 =
1

Ω

∑
k

φ(k0)vf =
1

Ω

∑
k

vf = nv = −Jn
q
, (2.10)

where q and Jn are the usual carrier charge and the current density, respectively. As

for the second term on the RHS, if φ(k) is a constant then ∇kφ(k) = 0 and hence

this entire term is zero. Finally, if we let Sn denote the change in the distribution

function due to collisions we obtain from the zeroeth moment of the BTE:

∂n

∂t
= ∇r · Fφ,0 + Sn, (2.11)

which is the charge continuity equation. However, if we consider the velocity to be

some general function of k such that v = u(k), then from Eq. (2.10)

Fφ,0 = −Jn
q

=
1

Ω

∑
k

u(k)f, (2.12)

which is a first order moment of the distribution function proportional to k1. Hence,

by taking the zeroeth moment of the BTE we end up with an equation which includes

the first moment of the distribution function, and therefore the equation is not in

closed form.

In turn, for the first moment of the electron BTE, corresponding to n = 1, we

assume φ(k1) = u(k). That is, we assume that φ(k) is some general function of the

carrier velocity as in Eq. (2.12). Here, a parabolic bandstructure is often assumed in

order to simplify the derivation. In that case, the relation u(ki) = ~ki/m∗ relates the

carrier momentum to the velocity where m∗ is the effective mass [1]. Then, we can

use Eq. (2.10) to obtain the time variation of the current density as the term on the
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LHS:

1

Ω

∂

∂t

∑
k

u(ki)f = −1

q

∂Jn
∂t

. (2.13)

Since we assumed a parabolic bandstructure, the energy is of the form E(k) =

~2k2
i /2m

∗, and we can also express the velocity in the BTE as v = ~kj/m∗

− 1

Ω
∇r ·

∑
k

u(ki) · vf = − 1

Ω
∇r ·

∑
k

~2kikj
m∗2

= − 2

m∗
∇r ·Wn, (2.14)

where Wn = 1/Ω
∑

kE(k)f is the total energy of the carrier ensemble, and hence

Eq. (2.14) represents the energy flux of the carrier ensemble. In general, Wn is a

tensor whose trace is the average energy density, however, it is often assumed that

the tensor is diagonal [27].

For the second term on the RHS, one obtains:

F

~
1

Ω

∑
k

f∇kv =
F

~
n = −qnE

m∗
, (2.15)

where E is the electric field. Lastly, the collision term represents the rate at which

momentum is lost by the carriers due to collisions, as collisions result in a change in

the state k, and for the time being can simply be denoted by Sm.

The final result for the first moment of Eq. (2.3) is

∂Jn
∂t

=
2q

m∗
∇r ·Wn +

nq2E

m∗
− Sm, (2.16)

which says the time variation in the current density is given by contributions from

the energy flux, the electric field, and the change of the momentum due to scattering,

respectively. Just as the zeroeth moment of the BTE included a term containing the

first moment, this equation from the first moment of the BTE contains a term, Wn,

which is the expected value of the second moment of the BTE.
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In fact, due to the first term on the RHS of Eq. (2.9) containing v(k), when

the BTE is multiplied by the function φ(kn), it always results in a term of the order

φ(kn+1), and so the nth moment of the BTE always has a term involving the (n+1)st

moment. Furthermore, an infinite number of moments exist for the BTE [40] so

that one could obtain an infinite number of equations. In order to close the system

of moment equations, a closure relation must be devised to simplify the nth order

equation such that it does not depend on the (n + 1)st order equation. This is done

either by simply ignoring a higher-order term [38, 41, 42], by using phenomenological

reasoning [27, 37, 43], or by an assumption on the electron distribution function itself

[38, 44], which is usually assumed to be a Maxwellian distribution seen in Fig. 2.1b.

Additionally, in Eqs. (2.11) and (2.16), a relaxation time approximation (RTA) is

used to evaluate the collision terms, Sn and Sm, respectively.

2.3 The Drift Diffusion Model

The drift-diffusion model is obtained directly from Eqs. (2.11) and (2.16) coupled

with Poisson’s Equation for the electrostatic potential. To derive the drift-diffusion

equation, if we assume that the total energy density is given by only the thermal

energy, then

W =
3

2
nkBTC , (2.17)

where n is the carrier density, kB is Boltzmann’s constant, TC is the carrier tempera-

ture, and where W has a contribution of W/3 from each degree of freedom, x, y, and

z. Then, taking the divergence of the diagonal W tensor results in 1
3
∇rW , and Eq.

(2.16) becomes

∂Jn
∂t

=
2

3

1

m∗
∇rW +

nq2

m∗
E− Sm. (2.18)
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Next, let the momentum relaxation term Sm be represented by a RTA of the form

Sm =
Jn
τm
, (2.19)

where τm is a characteristic relaxation time. If we assume that it is short enough that

Jn does not change during τm, the time derivative on the LHS of Eq. (2.18) is zero,

and we obtain

Jn =
τmnq

2

m∗
E +

2

3

τm
m∗
∇rW =

τmnq
2

m∗
E +

τm
m∗

kBTC∇n+
τm
m∗

kBn∇TC . (2.20)

Defining the carrier mobility, µn = (qτm)/(m∗), the diffusion coefficient, Dn =

µnkBTc/q, the thermal diffusivity, DT = µnkBn/q, and subsequently substituting

them into Eq. (2.20) results in the drift-diffusion equation for electrons [27, 45]

Jn = qµnnE + qDn∇rn+ qDT∇TC . (2.21)

Additionally, a similar equation can be found for the holes in terms of Jp, µp, Dp,

and p. Hence, the drift-diffusion model is given by the following set of equations:

∂n

∂t
=

1

q
∇r · Jn + Sn

∂p

∂t
= −1

q
∇r · Jp + Sn

(2.22)

Jn = qµnnE + qDn∇rn+ qDT∇TC

Jp = qµnnE− qDn∇rp− qDT∇TC
(2.23)

∇r · ε∇V = −P, (2.24)

where P is the forcing function of Poisson’s equation, i.e., the total charge density.

In this case, as a closure relation it was assumed that W = 3
2
nkBTC , and implicitly

that TC = Tn = Tp = TL where Tn and Tp are the electron and hole temperatures,
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respectively, and TL is the lattice temperature. In other words, it was assumed that

the carrier ensembles n and p are in thermal equilibrium with the lattice. Due to this

assumption, non-equilibrium thermal effects cannot be accounted for in this model.

This consequence is the principle motivation for the development of the hydrodynamic

model from higher-order moments. However, the simple drift-diffusion model is still

useful in some cases due to its suitable computational cost.

2.4 Hydrodynamic Models

The hydrodynamic models of charge transport, referred to as such due to their

similarity to the equations of fluids, extend and improve upon the drift-diffusion

models by including the n = 2 moment of the BTE, which allows them to include

some non-equilibrium effects and hence improved thermal modeling. This is due to

the fact that the balance equation obtained from the additional moment includes

information on the average carrier energy [45]. The second moment of the BTE is

found by letting φ(k) = E(k) ∝ k2. The moment equation is then written as:

1

Ω

∂

∂t

∑
k

E(k)f = − 1

Ω
∇r ·
∑
k

E(k)vf+
F

Ω~
∑
k

f∇kE(k)+
1

Ω

∑
k

E(k)
∂f

∂t

∣∣∣∣
coll

(2.25)

The LHS of Eq. (2.25) gives the time variation of the energy density:

1

Ω

∂

∂t

∑
k

E(k)f =
∂W

∂t
, (2.26)

where W is the total energy density of the carrier ensemble. The first term on the

RHS represents the energy density multiplied by a velocity, or the “flow” of the energy

density:

− 1

Ω
∇r ·

∑
k

E(k)vf = −∇r · FW , (2.27)
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where FW is an energy flux. This again is a term in the equation for the n = 2 moment

which includes information from the n = 3 moment, just as in the previous cases for

the n = 1 and n = 0 moments, and as such it will require a closure relation. For the

second term on the RHS we use the general relation between the carrier energy and

velocity, ∇k
1
~E(k) = v, as well as the fact that, for an electron, the force due to the

electric field is given by F = −qE to obtain

F

Ω~
∑
k

f∇kE(k) = −qE
∑
k

vf = E · Jn, (2.28)

which represents the increase in energy from the electric field, and has been used as

a first approximation for the heat generation rate in some cases [9].

The final term is simply denoted here as

1

Ω

∑
k

φ(k)
∂f

∂t

∣∣∣∣
coll

=
∂W

∂t

∣∣∣∣
coll

, (2.29)

which represents the change in the ensemble energy density due to collisions. As in

the drift-diffusion equation, this is often approximated using the RTA of the form

∂W

∂t

∣∣∣∣
coll

=
(W −W0)

τW
, (2.30)

where W0 is the equilibrium energy density and τW is the characteristic relaxation

time of W towards equilibrium, i.e., towards W0. Putting these terms together, the

final electron energy balance equation is then

∂W

∂t
= −∇r · FW + E · Jn +

∂W

∂t

∣∣∣∣
coll

. (2.31)

The general set of hydrodynamic equations (for electrons) from the first 3 moments

of the BTE is therefore given by:
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∂n

∂t
=

1

q
∇r · Jn + Sn (2.32)

∂Jn
∂t

=
2q

m∗
∇r ·Wn +

nq2E

m∗
− Sm (2.33)

∂W

∂t
= −∇r · FW + E · Jn +

∂W

∂t

∣∣∣∣
coll

. (2.34)

In general, a similar equation from each moment would also be obtained for holes

as well, as in the drift-diffusion model of Eqs. (2.22), (2.23), and (2.24). While the

hydrodynamic model has the advantage of being less computationally expensive than

MC, it includes parameters such as the carrier mobilities, µC , and effective masses,

m∗C , whose values must be taken as input from elsewhere. Furthermore, it is not

uncommon for these values to be computed from MC where they are themselves an

output of the simulation. [38].

The hydrodynamic models have been widely used in the literature [38, 41, 46, 47].

An excellent review of the various hydrodynamic models as well as their similarities

and differences is given in [45]. These models are discussed here to highlight the

differences between transport simulations based on the moments of the BTE and MC

methods, as well as the similarity of the electron energy balance equation with the

energy balance equation developed for phonons, Eq. (3.8) in Sec. 3.2.

2.5 Monte Carlo Methods

In contrast to the drift-diffusion and hydronamic methods mentioned previously,

the MC approach provides a full statistically exact solution to the BTE. In other

words, the MC solution is a statistical one which includes all moments of the BTE

[5, 7, 8]. Moreover, the MC method uses fewer assumptions and its accuracy does

not depend on the macroscopic transport parameters used in the closure relations

mentioned previously. To the contrary, these parameters are an output of the MC
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simulation.

Monte Carlo simulations were first developed by Ulam and Metropolis for the

study of differential equations [48, 49], along with Von Neumann, while working on

the Manhattan Project at Los Alamos [50]. Since then, MC techniques have found

use in a wide range of fields from finance [51] to the social sciences [52, 53]. In the

context of semiconductors, they have been consistently employed since the 1980s to

study charge transport, especially under high field conditions where, due to systems

being far-from-equilibrium, other methods may fail [5–8].

As depicted in Fig. 2.2, the overall process of particle-based Monte Carlo device

simulation generally consists of five distinct stages: 1) initializing the system, 2) free

flight and particle tracking, 3) scattering algorithm, 4) the solution of field equations,

and 5) recording average quantities.

At the start of the simulation, the particle populations are initialized and dis-

tributed within the geometry under the assumptions of charge neutrality and thermal

equilibrium. That is, the carriers are placed according to the defined doping levels

and any surface charges that may be defined so that the overall charge is neutral.

Other approaches are possible to obtain an initial particle distribution. In addition,

the carriers are given an initial Maxwellian velocity distribution corresponding to the

initial temperature as defined in the simulation setup. As the simulation progresses,

a charge density needs to be computed from the positions of the individual charge

carriers. The standard charge assignment schemes are the nearest grid point (NGP),

the cloud-in-cell (CIC) scheme, or the triangular shaped cloud (TSC) scheme [54].

By using the charge density, Poisson’s equation can then be solved to find the

electrostatic potential and hence the electric field at each point in space. Note that

Poisson’s equation does not need to be solved after every free flight and scattering step,

but its solution is required in time-steps short enough to resolve plasma oscillations
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Figure 2.2: Simulation flowchart showing the stages of a general Monte Carlo device
simulation.

[54].

Once the force on the carriers is known, their positions are updated using a ray

tracing algorithm along with a time integration scheme and taking into account pos-

sible interactions with the layout geometry, e.g., from specular or diffuse reflections

against a boundary or “wall” of the device. The two stages discussed thus far account

for the “drift terms” Eqs. (2.1) and (2.2).

A stochastic selection is then performed in the scattering algorithm to decide

if a carrier undergoes a scattering event based on a pre-computed scattering rate.

Scattering mechanisms, as a whole, represent a process through which the carrier

distribution function evolves towards steady-state [55]. Since the scattering rate is a

function of energy, “lucky” electrons which become highly energetic are more likely
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to scatter, therefore dissipating excess energy. This stochastic model of scattering

corresponds to the evaluation of the collision term in Eq. (2.2), and is generally

the most expensive to evaluate. Simpler approaches based on carrier mobility values

and/or relaxation time approximations are often used to model the effects of the

collision term in the drift-diffusion and hydrodynamic models. This evaluation is

carried out through a process in which the momentum vector, k, of the particle is

assumed to change instantaneously and independently of its previous state, i.e., as a

Markovian process.

The scattering mechanisms taken into account in our simulations include those

with the lattice resulting in the absorption or emission of acoustic or optical phonons,

scattering with ionized impurities, dislocation scattering, and impact ionization. In

particular, those resulting in the absorption or emission of a phonon are taken into

account using both deformation potentials and, when needed, polar scattering mech-

anisms for both acoustic and optical phonon modes. The calculation methods used

for these individual scattering rates can be found in the literature [5, 8, 25, 27]. Here,

only two separate approaches for selecting the scattering mechanisms are discussed:

1) the Ensemble Monte Carlo (EMC) method [5], and 2) the Cellular Monte Carlo

(CMC) method [25].

2.6 Ensemble Monte Carlo and Cellular Monte Carlo

The EMC and CMC methods mainly differ in the manner of selecting the final

state of a carrier after the occurrence of a scattering event. When a scattering event is

modeled in a traditional EMC simulation, a scattering mechanism is chosen, then the

First Brillouin Zone (BZ1) [26] is searched for all possible final states which are energy-

and momentum-conserving. A scattering rate is then computed for each of these

potential final states, and subsequently the final state is chosen among all candidates
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with a stochastic selection [5]. As scattering events are extremely common, this is

very computationally expensive and has a significant contribution to total simulation

time.

In comparison, prior to a device simulation, the CMC method performs the scat-

tering rate calculations from every initial momentum state, ki, in BZ1 to every final

state, kf , for each scattering mechanism taken into account. This scattering informa-

tion is then stored in a large look-up table which is loaded into fast computer memory

(RAM) at the start of a simulation, i.e., during the initialization stage of Fig. 2.2.

Given the initial state of a carrier, ki, the selection of the final state in the original

CMC algorithm is therefore reduced to the generation of a random number [25].

A scattering table look-up approach is much less expensive than the process per-

formed in the EMC method, however the table itself can be large in size, but rea-

sonably so with modern hardware. Hence, this represents a trade-off between com-

putational cost and hardware requirements. The size of the look-up table in a device

simulation is generally about 1 - 20 GB, although in some extreme cases the table

can be larger, or more than one table is necessary, as in devices composed of different

materials.

2.6.1 Adapting the CMC: Energy Conservation

In the current implementation of the CMC, the process of choosing a final state

represents a highly efficient hybrid between the EMC and the CMC.

In our CMC algorithm, the full-band energy dispersion relationship is tabulated

over momentum space, corresponding to the crystal wavevectors ki at the center of

cell i in the momentum space grid are computed and stored. The energy at every

point k 6= ki is computed by the sum of the contributions of cell i and seven of its

neighboring cells in a trilinear interpolation scheme as [56]
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E(k) =
7∑
i=0

wi(k) · Ei(k), (2.35)

where wi is a geometric weighting factor. Both energy and momentum should be

conserved during a scattering event. When a scattering event occurs, finding a final

state which conserves energy means finding the k′ corresponding to a target energy,

E ′, within the final momentum-space cell. This means that one would need to invert

Eq. (2.35) which does not have a closed-form solution. Hence, a series of approxi-

mations is made, in a non-iterative manner, which seek to minimize the error made

in the conservation of energy. The mathematical details of performing this inversion

can be found in [57], where it is shown that the error made in energy conservation is

smaller than the single precision machine in 80% of cases.

2.6.2 Adapting the CMC: Rejection

Distinct from the issue of energy conservation, is the issue of adapting the pre-

computed scattering table to account for runtime conditions at each point in the

real-space computational grid. For example, let’s assume that we have computed a

scattering table for a given material at a temperature of T = 300K. In the case of an

electrothermal simulation, the temperature in the entire device is initialized to 300K

which corresponds to a computed scattering rate, Γ(300K).

As we allow the simulation to evolve under an applied electrical bias, some amount

of electron-phonon scattering events, which transfer energy from the electrons to the

lattice, in turn generating heat, will occur at a rate of Γph(300K). As this causes

the temperature to increase in some parts of the device, say we find a location in

the device with a temperature of T = 350K. Now we would need a scattering rate

corresponding to this temperature, Γ(350K).

The calculation of the scattering table is a lengthy process and it cannot be per-
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formed at runtime. Moreover, several scattering tables would be necessary to account

for the entire range of temperatures within the device. One option is to use multiple

scattering tables in a simulation corresponding to increasing temperatures, say every

25K, and then using some sort of interpolation to find scattering rates at interlying

temperatures. However, each scattering table is rather large, and hence loading sev-

eral tables into memory is unfeasible. A better approach uses only a single table and

is based on the rejection algorithm [58, 59], which comes at only a slight cost in terms

algorithmic performance [57].

Figure 2.3: Illustration of the rejection method. The probability distribution func-
tion f(x) is the desired pdf, and g(x) > f(x) is a proposed pdf. The region below
f(x) is accepted while the region between g(x) and f(x) is rejected, reproducing f(x)
from g(x) [57].

Rejection is an effective technique when the desired probability distribution, f(x),

is not known a priori. In this case, another distribution, g(x), is taken as a proposed

distribution subject to the condition that g(x) is greater than f(x) everywhere. Fig.
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2.3 illustrates the rejection method being used to reproduce f(x) from g(x) where the

regions of acceptance and rejection are labeled. Assume first that we are at a given

point, a, on the x-axis, from which we know the probabilities f(a) and g(a). The

rejection probability is then given by Pr = f(a)/(g(a)), which must be between 0 and

1. Subsequently, a uniform random number, R is generated, also between 0 and 1. A

given event is rejected if R > Pr and accepted if R ≤ Pr [57].

This idea intuitively maps over to the case where g(x) is a scattering rate cor-

responding to a maximum expected temperature, and f(x) is the one for a local

temperature found at runtime. As long as the scattering rates monotonically in-

crease with temperature,the condition g(x) ≥ f(x) is satisfied. For example, the

total electron-phonon scattering rates g(x) = Γ(800K), corresponding to T = 800K,

and Γ(300K), corresponding to T = 300K, are shown in Fig. 2.4, where it is also seen

the condition that Γ(800K) ≥ Γ(300K) everywhere is satisfied.

-5 0 5
0

1

2

3

4

Figure 2.4: Phonon scattering rates for Wurtzite GaN used in the CMC rejection
algorithm for T = 800K and T = 300K.
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Of course, in the context of the electrothermal simulations discussed in this doc-

ument, the scattering rate corresponding to f(x) is not known until runtime, while

the scattering rate corresponding to g(x) for the maximum expected temperature is

pre-tabulated in the look-up table. Therefore, in these flux-based CMC simulations

an electron-phonon scattering event will tentatively “occur” at the rate corresponding

to Γph(Tmax), where in this example Tmax = 800K, and the potential final state is

chosen to be k′. The change in the carrier wavevector is known from k = k′−ki, and

hence the energy associated with the phonon, Eph, can be found from Eq. (2.35).

The expected value of the phonon occupation number, assuming local thermal

equilibrium, is given by the Bose-Einstein distribution

n (Eph, T ) =

(
exp

(
Eph
kBT

− 1

)−1
)
, (2.36)

Hence, the probability for Tmax and Tloc in the electron-phonon rejection algorithm

is computed as

Pmax = nph
(
E ′ph,Tmax

)
(2.37)

Ploc = nph
(
E ′ph,Tloc

)
. (2.38)

A stochastic decision is subsequently made by generating a uniform random number

in the range from zero to one, R0,1, and the scattering event is accepted if:

R0,1Pmax ≤ Ploc (2.39)

and rejected otherwise.

It should be noted that this approach is only valid in the cases where phonons are

modeled via energy balance equations. The more general case where electrons and

phonons are modeled as particles is more complex, but conceptually similar [57].
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Conclusion

The meaning of the moments of a distribution, especially that corresponding to

its kurtosis, have been discussed as well as how they physically relate to an electron

distribution. Subsequently, the moments of the electron BTE were considered which

lead to the ubiquitous drift-diffusion model as well as the more accurate hydrodynamic

models. These models based on lower order moments of the BTE have the advantage

of being less expensive computationally, at the expense information contained in the

higher-order moments of the electron distribution function being lost. Furthermore,

since the BTE has an infinite number of moments it requires a closure relation in

order to obtain solutions for a system made of a finite number of equations. Monte

Carlo methods, on the other hand, are more computationally expensive but yield a

statistically exact solution to the BTE.

The algorithmic differences between the EMC and the CMC were then discussed.

The speed advantage of the CMC comes principally from pre-tabulating all of the

scattering rates in the simulation. Additionally, using the rejection algorithm, the

pre-tabulated scattering table can be adapted to include local runtime conditions,

akin to the EMC algorithm.
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Chapter 3

THEORETICAL AND COMPUTATIONAL FOUNDATIONS

3.1 Introduction

In this chapter, we will first discuss the derivation of the energy balance equation

for phonons and the conditions which must satisfied relating to the continuity of the

solution. Subsequently, two separate approaches will be detailed to solve the energy

balance equation in a finite difference framework, including nonlinear thermal effects,

based on transforming it into a Poisson-like equation. This is accomplished through

the use of the Kirchhoff transformation [15, 21, 60] as well as by an iterative approach

which overcomes many of the difficulties imposed by the Kirchhoff transformation,

as discussed in Secs. 3.3 and 3.4, respectively. Finally, the numerical details for the

computational framework used to represent the Laplacian operator and the boundary

conditions will be derived.

3.2 Energy Balance Equation

The particle- and flux-based electrothermal simulator discussed here solves an

energy balance equation (EBE) for phonons, derived directly from the phonon Boltz-

mann Transport Equation (BTE), in lieu of the Heat Transport Equation (HTE). It

is easily seen in Eq. (3.10) that the final form of the EBE is the same as that of the

HTE [60, 61]. However, the EBE is better suited for self-consistent coupling with the

electron dynamics modeled by CMC simulations and it allows for greater accuracy

by giving a separate solution for each respective phonon mode (or groups of modes,

i.e., all of the acoustic or optical modes grouped together).
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The derivation for the EBE from the phonon BTE used here is similar to the

derivation of the balance equations from the electron BTE offered in, e.g., [38] or

[27]. Again, the well-known electron BTE is written as

∂f

∂t
= −∇r ·

[
dr

dt
f

]
−∇k ·

[
dk

dt
f

]
+
∂f

∂t

∣∣∣∣
coll

. (3.1)

However, the traditional electron BTE is not valid for phonons. This is because

in its derivation Boltzmann made the assumption that all collisions were binary, i.e.,

they involved only two particles, while this can not hold for phonons. In fact, in order

to obtain a finite thermal conductivity, three-phonon processes must be included.

Fortunately, Rudolf Peierls used a similar approach by assuming that the occupation

number includes all possible information about the system and that phonon states are

quantized [62]. The resulting phonon BTE has the same form as that for electrons,

but excluding the term due to external forces

∂f

∂t
= −v · ∇rf +

∂f

∂t

∣∣∣∣
coll

. (3.2)

Similar to the moment equation for the electron BTE, the moment equation for

the phonon BTE is obtained by multiplying Eq. (3.2) by some function of k, φ(k),

and dividing by a volume of reciprocal space, Ω. The nth moment then is given by

nφ = − 1

Ω

∑
k

φ(kn)
∂f

∂t
− 1

Ω

∑
k

φ(kn)v · ∇rf +
1

Ω

∑
k

φ(kn)
∂f

∂t

∣∣∣∣
coll

. (3.3)

Before working with the moments of Eq. (3.2), first we will define the total

energy density of the ensemble, which will be used later in the derivation of the EBE

for phonons. In order to find the total energy density of the phonon ensemble, we

need to weight the energy of each state in momentum space, E(k), by the probability
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the state is occupied and sum over all possible states. Therefore, assuming that

E(k) ∝ k · k, we find the second moment of the distribution function

nφ = (r, t) =
1

Ω

∑
k

E(k)f (r,k, t) = W, (3.4)

where W is used to denote the total ensemble energy density in the volume Ω, having

units of [J/m3]. It follows that the derivative of Eq. (3.4) with respect to time is

∂W

∂t
=

1

Ω

∑
k

E(k)
∂f(r,k, t)

∂t
, (3.5)

representing the rate of change of the ensemble energy density in the volume Ω.

Now, letting φ(k) = E(k) in Eq. (3.3), yields

1

Ω

∑
k

E(k)
∂f

∂t
+

1

Ω

∑
k

E(k)v · ∇rf =
1

Ω

∑
k

∂f

∂t

∣∣∣∣
coll

, (3.6)

where the first term is simply ∂W/∂t, while the second term is the energy flux and

can be denoted by

FW (r, t) =
1

Ω

∑
k

E(k)v · ∇rf(r,k, t). (3.7)

Here, we will approximate this term by using Fourier’s law [63] for the heat flux,

FW = −κ∇T , where κ is the thermal conductivity of the material, ∇T is the temper-

ature gradient, and FW is the heat flux. Finally, the collision term on the RHS can

be split into two distinct processes which contribute to changes in the phonon energy

density through changes in the phonon populations themselves: 1) the increase (or

decrease) in the phonon energy density due to an electron-phonon scattering event

where phonons are emitted or absorbed, and 2) the change due to phonon-phonon

interactions causing the recombination of acoustic phonons to a high energy optical

phonon or the decay of optical phonons to low energy acoustic phonons. In other
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words, they denote the heat generation rates, for the particular phonon mode due to

interaction with electrons, ∂W/∂t|e−p, and other phonons, ∂W/∂t|p−p, respectively.

Using these substitutions in Eq. (3.6), we can write the time-dependent EBE for

phonons as

∂W

∂t
= −∇ · (−κ∇T ) +

∂W

∂t

∣∣∣∣
e−p

+
∂W

∂t

∣∣∣∣
p−p

. (3.8)

In order to account for the different phonon modes, one equation in the form of

Eq. (3.8) is obtained for each phonon mode, or group of modes, being considered.

Generalizing the time-dependent EBE for phonons to a system of equations, where µ

denotes the particular mode, we therefore have

∂Wµ

δt
= −∇ · Fµ +

∂Wµ

δt

∣∣∣∣
e−p

+
∂Wµ

δt

∣∣∣∣
p−p

. (3.9)

Under steady-state conditions the time derivative on the LHS is zero, and if Pµ is

used to represent the sum of the electron-phonon and phonon-phonon contributions,

then Eq. (3.9) becomes

∇ · (κµ (r,T)∇T) = −

(
∂Wµ

δt

∣∣∣∣
e−p

+
∂Wµ

δt

∣∣∣∣
p−p

)
= −Pµ. (3.10)

One should note that ballistic heat transfer effects are not explicitly included in

our model as a consequence of using Fourier’s law to approximate the heat flux. This

is because Fourier’s law is diffusive in nature, implying the presence of scattering.

However, it has been suggested that ballistic heat transfer effects can in fact be cap-

tured either through a choice of boundary conditions [64] or by solving a generalized

form of Fourier’s law derived using the Peierls-Boltzmann Equation [23].

Equation (3.10) is subject to the conditions that both the temperature (in the ab-

sence of a nonideal interface) and the heat flux in the normal direction are continuous
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across a boundary [15], Σ. That is,

T continuous across Σ (3.11)

κ1(T)n̂ · ∇T|Σ = κ2(T)n̂ · ∇T|Σ, (3.12)

which must also be satisfied in the derivation of the computational grid as discussed

in Sec. 3.5.

Equations of the form of Eq. (3.10) can be solved directly with a nonlinear finite

element analysis (FEA) approach, while such an equation is non-trivial to solve using

finite difference methods. Although, in principle, a MC device simulator could include

a field solver using finite element methods, the process of particle tracking would

become more complicated when using non-rectangular grids, as is often the case in

FEA simulation.

An efficient finite-difference solver for the Poisson equation, a linear elliptical

PDE, is present in any MC electrical device simulator. Hence, manipulating Eq.

(3.10) into the form of a linear elliptical PDE would allow for a more straightforward

implementation including temperature-dependent effects within the finite difference

framework. Simply put, if we are able to pull κµ (r,T) outside of the divergence

operator on the LHS of Eq. (3.10), we can then work with a Poisson-like linear

equation of the form:

κµ∇2T = −Pµ, (3.13)

The main issue in performing this manipulation is the dependence of κµ (r,T) on

both position and temperature. For the former, we assume that the thermal con-

ductivity is piecewise constant. In other words, the thermal conductivity is constant

within any particular cell, C, but allowed to vary when moving from one cell to an-
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Table 3.1: Thermal conductivity α parameter values for selected materials [69]

Material k300 [W/K m] α

Si 148 -1.65

Ge 60 -1.25

GaAs 46 -1.25

AlAs 80 -1.37

InAs 27.3 -1.1

InP 68 -1.4

GaP 77 -1.4

other. This is perfectly analogous to the approach used for the dielectric constant

in the solution of Poisson’s Equation. Hence, we will express this restricted position

dependency with the cell index C rather than via a full functional dependence on the

position vector r. For the latter case of the temperature dependence, two separate

approaches have been taken to perform this manipulation and are discussed in Sec.

3.3 and Sec. 3.4, respectively: 1) using the Kirchhoff transformation, and 2) an it-

erative approach which overcomes many of the restrictions imposed by the Kirchhoff

transformation.

As for the functional form used for the temperature dependence of the thermal

conductivity itself, it has been found that a simple power law provides a good fit to

experimental measurements for a large number of materials [15, 65–69]

κµ,C (T) = κref

(
T

Tref

)α
, (3.14)

where kref is the independently known thermal conductivity at the reference temper-

ature Tref , often taken as 300K. The values used for k300 and α taken from [69] are

shown in Table 3.1, while a comparison between experimentally measured thermal
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Figure 3.1: Experimental results compared with the power law model for tem-
perature dependent thermal conductivities of Si, GaP, Ge, InP, GaAs, and InAs
[15, 65–69].

conductivities and Eq. (3.14) is shown in Fig. 3.1. Due to the good agreement with

experimental data seen here for the materials of interest, the power law fit has been
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adopted as the general form for the material thermal conductivity throughout this

work.

3.3 Kirchhoff Transformation

The Kirchhoff transformation is defined as [15, 21, 60]

Θµ,C (T) = Tref +
1

κµ,C (Tref )

∫ T

Tref

κµ,C (τ) ∂τ, (3.15)

where Θ denotes a new “apparent” temperature which implicitly includes the temper-

ature dependence of the thermal conductivity. Tref is a chosen reference temperature,

often 300K, at which the thermal conductivity value, κµ,C (Tref ), is independently

known.

Using the apparent temperature, Θ, we can now linearize the EBE in the form of

a Poisson-like equation as

∇2Θµ,C = − Pµ (r)

κµ,C (Tref )
. (3.16)

However, a few significant restrictions are imposed by the Kirchhoff transformation.

First, Eq. (3.16) requires that both the temperature and its derivative in the normal

direction, i.e., the heat flux, are continuous across a boundary [15]. These are in fact

the same conditions of the standard heat equation, however they must be transformed

as well. The heat flux is invariant under the transformation, and so the second

condition is satisfied [15]. For the temperature continuity condition, say from the left

(L) side of an interface to the right (R), from Eq. (3.15)

ΘL −ΘR =
1

κL (Tref )

∫ TL

Tref

κL (τ) ∂τ − 1

κR (Tref )

∫ TR

Tref

κR (τ) ∂τ. (3.17)
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In order for the apparent temperature to be continuous across a boundary, ΘL −

ΘR = 0, the two materials must have the same functional form for the thermal

conductivity. If we use the power law fit discussed previously, this means that the

two relationships can differ only by the multiplying constant κref , while the exponent

α must be the same for both materials.

However, this clearly introduces a further limitation if the materials have a dif-

fering temperature dependence. Indeed, while this approximation may be reasonable

for most semiconductor materials as the values of α generally lie between -1.25 and

-1.4 [69], metals and oxides display vastly different temperature dependent behavior

which is relevant at their respective semiconductor interfaces.

Secondly, functions representing Dirichlet and simple Neumann boundary condi-

tions, corresponding to a constant temperature or heat flux, respectively, are linear

under the Kirchhoff transformation. In contrast, convective boundary conditions be-

come nonlinear under the Kirchhoff transformation [21, 60]. Convective boundary

conditions describe thermal contacts that have an inherent thermal resistance, Rth,

or a finite heat transfer coefficient, H, where H = 1/Rth. Clearly, as Rth → 0,

H →∞ and the perfect thermal contact of a Dirichlet boundary condition is recov-

ered. In addition, convective conditions can also occur at material interfaces, which

often introduce a resistance to the heat passing from one material to the other.

Convective boundary conditions are expressed as

−κ∇T = H (TL − TR) , (3.18)

which relates the heat flux approaching the interface, −κ∇T, with the heat transport

coefficient and the temperature jump across the interface, (TL − TR).

Since the Kirchhoff transformation is nonlinear for any nonlinear functional form

of the thermal conductivity, it is generally not true thatH (ΘL −ΘR) = H (TL − TR).
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Bagnall et al. [21] overcame this non-linearity in large-scale thermal spreading prob-

lems by choosing the reference temperature and thermal conductivity in the Kirchhoff

transformation such that the convective boundary condition is roughly linear, i.e.,

H (ΘL −ΘR) ≈ H (TL − TR). However, this requires some a priori knowledge of

the temperature distribution expected at the convective boundary in order to choose

Tref around which to linearize the transformation, so as to reduce the error due to

the nonlinearity. This approach poses problems for coupled electrothermal device

simulations where the heat generation is not necessarily known ahead of time. In ad-

dition, Bagnall demonstrated that in cases where the temperature distribution along

the convective boundary is less uniform this approach becomes less accurate. This is

simply because a single temperature is chosen around which to linearize the Kirch-

hoff transformation, and calculations at temperatures far away from the chosen value

become more inaccurate, again due to the nonlinearity.

3.4 Iterative Method

To overcome the discussed restrictions related to the Kirchhoff transformation,

a classical iterative approach to solving the EBE has also been implemented. This

takes advantage of the fact that the thermal conductivity is allowed to vary, in a

piece-wise constant way, from one cell to another to incorporate the temperature-

dependent values, and a sequence of constant-conductivity problems is solved where

the thermal conductivity in each cell is updated with each new solution according to

the local temperature. In other words, we solve a system of the form:

∇2Ti
µ,C = − Pµ (r)

κµ,C
(
Ti−1

) . (3.19)

where the new temperature Ti, for iteration i, on the LHS is obtained using the

temperature-dependent thermal conductivity in each cell obtained from the previous
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temperature solution from iteration i − 1. The temperatures on the LHS are solved

self-consistently, and the thermal conductivities are subsequently updated, until the

change for both the acoustic and optical temperature between two successive itera-

tions has become sufficiently small and the procedure has converged, as depicted in

Fig. 3.2.

Figure 3.2: Flowchart for the self-consistent thermal solution using the iterative
method.

This iterative approach uses the same power law fit previously discussed for the

thermal conductivity, however it is not subject to the requirement that the expo-

nent α in the temperature dependence be the same for different materials, as that

requirement is due to the Kirchhoff transformation and not Eq. (3.10) itself.

In addition, while the convective boundary condition in Eq. (3.18) is linear in and

of itself, it becomes non-linear under the Kirchhoff transformation as mentioned pre-

viously. However, as seen in Sec. 3.5, convective boundary conditions are accounted
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for in a straightforward manner under the iterative approach, i.e., in the same manner

Dirichlet and Neumann conditions are handled. Therefore, this approach allows us

to accurately simulate heat transport across interfaces possessing non-ideal effects,

including realistic convective heat sinks and thermally-resistive material interfaces.

This is significant for devices such as a High Electron Mobility Transistor (HEMT)

which is studied in a later section, where material interfaces are used to create a 2-D

electron gas (2DEG) conduction channel, as well as in layouts attempting to use a

high thermal conductivity material to transport heat away from the active device,

where the interface can have an associated thermal resistance.

It should be noted, however, that the thermal conductivity is likely to assume

different values in every computational cell in Eq. (3.19), and so classical multigrid

methods are likely to become very inefficient. One possible approach to mitigate this

if multigrid methods are desired is to attempt to average the thermal conductivity,

assuming the values fall within a reasonable range, between cell which are merged

together, however this could be dubious. Fortunately, in an electrothermal simulation

the solution to Poisson’s equation, where the iterative method is not used, is required

orders of magnitude more times than that of the phonon EBE.
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3.5 Computational Difference Scheme

The computational grid developed for the solution of Eq. (3.10) must satisfy the

heat flux condition in Eq. 3.12. A schematic of a two-dimensional grid showing the

nearest neighbors and denoting the relevant distances between points of the grid is

shown in Fig. 3.3.

s

w

dxw

dw

dyn
dn

dy

dys
ds

dxe

de

dx

n

e
e'w'

c
n'
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Figure 3.3: A schematic of the computational grid. Points labeled with n,e,w,s are
neighbors of the point labeled c. Intermediate points on the cell boundary are used
for interpolations, and the various δ’s are distances used in the calculation of the
Laplacian coefficients.

For a given cell inside the computational domain, labeled c, the northern, eastern,

western, and southern neighbors are labeled as n, e, w, and s, respectively. The

distances δx and δy are the x and y dimensions of cell c. The distances δn, δs, δw, and

δe are the respective distances from the center of cell c to the center of the northern,

southern, western, and eastern neighbor cells, respectively. These distances cannot

be assumed to be equivalent the δx and δy for inhomogenous grids. Lastly, the δxw,xe,

δyn,ys are the distances from the center of the neighbor cell to the nearest boundary

of cell c, which are needed to perform interpolations from cell-to-cell.

The Laplacian operator in Eq. (3.13) can be approximated by the difference
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relation

∇2Tc ≈ anTn + aeTe + asTs + awTw + acTc,+O(∆x∆y)
m, (3.20)

where the final term is an error term dependent upon the chosen grid sizing. For

uniformly spaced grids m = 3, while for inhomogenous grids m < 3 [70].

In the most general case, considering an inhomogenous grid with a piece-wise

constant thermal conductivity, the coefficients in Eq. (3.20) are given by

aw =

[
2

δw (δe + δw)

] [
1 +

δxw
δx/2

] [
κwδx/2

κcδxw + κwδx/2

]
ae =

[
2

δe (δe + δw)

] [
1 +

δxe
δx/2

] [
κeδx/2

κcδxe + κeδx/2

]
an =

[
2

δn (δn + δs)

] [
1 +

δyn
δy/2

] [
κnδy/2

κcδyn + κnδy/2

]
as =

[
2

δs (δn + δs)

] [
1 +

δys
δy/2

] [
κsδy/2

κcδys + κsδy/2

]
ac = − 2

δeδw
− 2

δnδs
+ pw + pe + ps + pn,

(3.21)

where the values of the pi terms in the center coefficient are further given by

pw =

[(
1 +

δxw
δx/2

)(
κcδxw

κcδxw + κwδx/2

)
− δxw
δx/2

]
pe =

[(
1 +

δxe
δx/2

)(
κcδxe

κcδxe + κeδx/2

)
− δxe
δx/2

]
ps =

[(
1 +

δys
δy/2

)(
κcδys

κcδys + κsδy/2

)
− δys
δy/2

]
pn =

[(
1 +

δyn
δy/2

)(
κcδyn

κcδyn + κnδy/2

)
− δyn
δy/2

]
.

(3.22)

In the case of the Kirchhoff transformation, the temperature dependence of the

thermal conductivity is absorbed into the temperature variable Θ, and so the κ values

in the above coefficients are simply those at the reference temperature. Hence, the

Laplace operator, and all of the associated coefficients, only need be set up once at
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the beginning of the simulation and stored as they will be constant throughout the

simulation. On the other hand, in the iterative approach the various values of κ

in Eqs. (3.21) and (3.22) are updated only after each new temperature solution is

found.

3.6 Boundary Conditions

Two kinds of boundary conditions are considered in this work with the context of

device simulation in mind. These are the Dirichlet boundary condition [61, 71] of a

prescribed constant temperature (Eq. (3.23), and the convective (or Robin) boundary

condition [61, 71] which is related to a prescribed non-zero Neumann condition on

the heat flux (Eq. (3.25)).

The Dirichlet condition on the temperature of the boundary cells, Tb, is expressed

as:

Tb = T. (3.23)

To implement the Dirichlet condition on the cell c, the coefficients of Eq. (3.21)

reduce in the normal way such that

aw = 0

ae = 0

an = 0

as = 0

ac = 1.

(3.24)

This reduces Eq. (3.20) to Tc = Tb and has the effect of fixing the temperature

in the Dirichlet cells where the forcing function is set to the prescribed value Tb.

The convective boundary condition is based on Newton’s law of cooling [60, 61, 71],
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and given by

−κ∇T = H(Tb − T∞), (3.25)

where Tb is again the interior temperature at the boundary cell, T∞ is the ambient

temperature specified outside of the boundary, which is assumed to be constant,

and H is a heat transfer coefficient. In particular, the heat transfer coefficient is

expressed in W
m2K

and is the inverse of an associated thermal resistance, RTH . The

problem modeled by Eq. (3.10) with the convective boundary condition of Eq. (3.25)

is well-posed as long as the ratio of thermal conductivity and heat transfer coefficient

is positive, κ
h
> 0 [71], which represents any physically realistic case, as either a

negative thermal conductivity or a negative heat transport coefficient if nonsensical

from a physical perspective.

3.6.1 Interface Conditions

Figure 3.4: Diagram of a 1-D material interface.

To implement the material interface condition, we follow the work of Hickson et

al. [72]. However, here we are interested in solving the steady-state problem rather

than the time-dependent problem studied in [72]. Furthermore, here we use a first

order accurate expression for the interface coefficients as the second order expressions
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are much more cumbersome [72], and, since we generally work with non-homogeneous

grids, we expect only first order accuracy in the Laplacian. Considering only the 1-D

case on the x-axis, Fig. 3.4 depicts the cells nearest an interface with an associated

heat transfer coefficient H. The temperatures at the edge of each side of the boundary

are given by TL and TR, while the temperatures at the central cell points are denoted

Ti±n.

The second derivatives on each side of the interface are written as follows [70]:

∂Ti−1

∂x2
≈ ∆xwTL − (∆xL + ∆xw) Ti−1

∆xL∆xw(∆xL + ∆xw)
, (3.26)

∂Ti+1

∂x2
≈ ∆xeTR − (∆xR + ∆xe) Ti+1

∆xL∆xe(∆xL + ∆xe)
, (3.27)

where Ti−1 denotes the nearest grid point to the left of the interface, Ti+1 the nearest

grid point to the right of the interface, ∆xL the distance between the point i− 1 and

the interface, ∆xR the distance between the point i + 1 and the interface, and lastly

∆xw the distance between the points i − 1 and i − 2 to the left, ∆xe the distance

between points i + 1 and i + 2 to the right. In Eqs. (3.26) and (3.27) we have 4

unknowns: Ti−1, Ti+1, TL, and TR. The temperatures at the grid points everywhere

in the simulation, such as Ti−1 and Ti+1 are independently solved for using numerical

methods such as successive over-relaxation (SOR), and so we need to find expressions

to substitute for TL and TR. To find these expressions, we use the Taylor series

around Ti−1 and Ti+1, the fact that the flux must be continuous on each side of the

interface, and the boundary condition itself. The Taylor series around Ti−1 and Ti+1

are given by

Ti−1 ≈ TL −∆xL
∂TL

∂x
(3.28)

Ti+1 ≈ TR + ∆xR
∂TR

∂x
, (3.29)
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while the flux continuity and boundary conditions are

κL
∂Ti−1

∂x
= κR

∂Ti+1

∂x
(3.30)

κL
∂Ti−1

∂x
= H (TR − TL) . (3.31)

Using Eqs. (3.28 - 3.31), TL and TR can now be obtained as

TL =
(H∆xR + κR)κL

(H∆xR + κR)κL +H∆xLκR
Ti−1 +

H∆xLκR
(H∆xR + κR)κL +H∆xLκR

Ti+1 (3.32)

TR =
H∆xRκL

(H∆xR + κR)κL +H∆xLκR
Ti−1 +

(H∆xL + κL)κR
(H∆xR + κR)κL +H∆xLκR

Ti+1 (3.33)

which can be substituted back into Eqs. (3.26) and (3.27) to obtain the Laplacian in

the neighborhood of the interface. On a uniform grid where ∆xR = ∆xL = ∆x, and

letting H → ∞ it can be shown that the Laplacian reduces to the straightforward

case with no interface resistance.

To verify the robustness of the proposed iterative approach in the presence of in-

terfaces, a 10-layer structure similar to that in [72] has been simulated. The boundary

conditions are modified from [72] as we are interested in the steady-state problem, and

hence we have imposed a 400K Dirichlet condition on the left and a 300K Dirichlet

condition on the right of Fig. 3.4. No heat generation is present inside the de-

vice. The alternating layers are labeled and denoted by the light dashed lines. The

parameters used are κA = 1 W/mK, κB = 0.1 W/mK, and the heat transport co-

efficient at each interface is Hi = 5 · 108 W/m2K, which is a reasonable value for a

semiconductor-semiconductor interface.

Interestingly, we see that the temperature-dependent solution here follows that of

the constant conductivity quite closely, which is reasonable as each layer is only 1

nm and the total size of the simulation is 10 nm. The Kirchhoff transformation solu-
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Figure 3.5: A 10-layer structure simulated using 1) a constant thermal conductivity,
2) the iterative algorithm, and 3) the Kirchhoff transformation with the thermal
conductivity taken at 300K.

tion, however, becomes more inaccurate the further it moves away from the Dirichlet

conditions due to the non-linearity.
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Conclusion

The EBE equation for phonons is obtained from the n = 2 moment of the phonon

BTE, similarly to the EBE for electrons. As any method based on moments of the

BTE must use a closure relation, Fourier’s law is then used to close the resulting

system of equations.

When considering the temperature dependent thermal conductivity, it is found

that a relatively simple power law fit shows good agreement with experimental re-

sults. The conductivity-vs-temperature relationship can then be used to incorporate

temperature dependent effects through either the Kirchhoff transformation or an it-

erative method. However, the Kirchhoff transformation is ill-suited, compared to the

iterative method, to take into account convective boundary conditions which arise

from imperfect material interfaces or heat sinks.

On the other hand, in the proposed iterative algorithm convective boundary con-

ditions are implemented in a relatively straightforward way, i.e., in the same manner

as a Dirichlet or Neumann condition as coefficients of the Laplacian operator.
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Chapter 4

BENCHMARK SIMULATIONS

4.1 Introduction

To verify the computational framework developed in Ch. 3, the simulation tests

performed in [21, 73] have been reproduced here using both the Kirchhoff Transfor-

mation of Sec. 3.3 and the proposed iterative approach of Sec. 3.4. The results of

each approach are compared with the full nonlinear FEA solver in the commercial

MATLAB R© 2018b release [74]. As mentioned previously, a full nonlinear FEA solver

is capable of solving the full nonlinear EBE in Eq. (3.10) directly.

All of the simulations performed in this chapter have the heat generation set

either at a constant rate, or at zero. First, we consider a simple 1-D heat transfer

problem using a 100 µm thick piece of silicon with a constant heat generation rate

being pumped into the top layer of the material and a convective heat sink located on

the bottom layer. Next, we consider a more complicated 2-D heat transfer problem.

Here, rather than a constant heat flux across the entire top boundary of the material,

a single 2-nm wide heat source is centered at x = 250µm on the top of the 500 µm

long sample. Finally, the most complicated test case of a 11-finger GaN HEMT power

amplifier is modeled in Sec. 4.4.

4.2 One-Dimensional Simulations

As an initial test of both the Kirchhoff transformation and the proposed iterative

approach, the simple layout of Fig. 4.1 is simulated [21]. In this simplest case of a

1-D simulation, we use the material parameters of a 500 µm long by 100 µm thick
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Heat Flux, 5e6 W/m
2

H = 1e5 W/m K, T = 350K
2

�300 = 150 W/mK

        � = -1.3

Figure 4.1: Schematic of the 1-D heat transfer layout. A uniform inward heat flux
of H = 5 · 106 W/m2 is applied uniformly across the top layer

piece of silicon. The thermal conductivity of silicon at 300K is taken as 150 W/m·K,

and the exponent in the temperature power law of Eq. (3.14) is taken as α = −1.3

[21, 69]. In other words, the temperature dependent thermal conductivity is taken as

κ (T) = 150

(
T

300

)−1.3

. (4.1)

Here, we are simulating only a single bulk temperature as would be measured by

a thermometer, and so the subscript µ has been dropped in Eq. (4.1). The boundary

conditions used, also indicated in Fig. 4.1, are a constant inward heat flux all along

the top boundary of 5·106 W/m2, while a convective boundary is set along the bottom

of the material characterized by a heat transfer coefficient of H = 105 W/m2K and

an ambient temperature of T∞ = 350K. In other words, the boundary condition is

−κ∇T = 105 (Tb − 350K) . (4.2)

The Kirchhoff transformation approach was used to solve Eq. (3.10) with the

convective boundary condition of Eq. (4.2) in two cases: 1) effectively linearizing

the boundary condition under the Kirchhoff transformation by choosing the reference

temperature to be that of the average temperature expected at the boundary, and
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2) without linearizing the transformation but instead using Tref = 300K and κref =

κ300 = 150 W/mK.

In the simple 1-D case, the temperature expected at the convective boundary can

be determined analytically. Since Eq. (3.10) is subject to the condition that the

flux is continuous and there is no heat generation inside the material, then the flux

leaving the convective boundary at y = 0 must be the same as the flux entering the

top boundary at y = L, i.e., Φ = −κ∇T where Φ denotes the inwards flux at the top

boundary. The temperature at the boundary is then [21]

Tb =
Φ

H
+ T∞. (4.3)

If the reference temperature in Eq. (3.15) is chosen to be Tb, then it immediately

follows that the apparent temperature, Θ, is also equal to Tb. The nonlinear EBE

can then be solved analytically using the Kirchhoff transformation. Because the heat

generation rate is zero, Eq. (3.15) becomes:

−κµ,C (Tref )∇2Θµ,C = 0, (4.4)

which has the solution Θ = C1y + C2. If, as in [21], we then consider the convective

boundary condition at at y = 0, to be a Dirichlet condition prescribed by Eq. (4.2),

then the solution is

Θ (y) =
Φ

κref
y + Tb. (4.5)

As seen in Fig. 4.2, the solution for the Kirchhoff transformation agrees exactly

with the full nonlinear FEA solution when the reference temperature in the Kirchhoff

transformation is chosen in this manner, such that the transformation of the boundary

condition is effectively linearized around the convective boundary. One should note
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Figure 4.2: 1-D heat transfer solution for a 100µm thick piece of silicon using
the expected boundary temperature of Tref = 400K (linearized), and Tref = 300K
(unlinearized) in the Kirchhoff transformation [22] c©2020 ASME.

that this also requires using the associated value of the thermal conductivity at this

chosen reference temperature. However, this approach requires some knowledge of

the solution a priori. To illustrate this, an unlinearized Kirchhoff transformation

solution, where the reference temperature is taken as 300K, is also shown in Fig. 4.2.

In this case, the unlinearized version is seen to be inaccurate by 26K when compared

to the full nonlinear FEA and the linearized Kirchhoff transformation, representing a

roughly 6.5% error in absolute temperature, but a 52% error in terms of the increase

in temperature above ambient.

One advantage of the proposed iterative method is that no a priori knowledge of

the solution is required. To demonstrate this, the same 1-D simulation is performed

with the iterative approach using Tref = 300K and the associated thermal conduc-

tivity value. In Fig. 4.3 the iterative solution is shown as compared to that of the full
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nonlinear FEA. The iterative approach is seen to agree exactly with the full nonlinear

FEA using both a constant and a temperature dependent thermal conductivity, while

requiring no information about the solution ahead of time.

Figure 4.3: 1-D heat transfer solution for a 100 µm thick piece of silicon using both a
constant and temperature dependent thermal conductivity in the iterative algorithm
[22] c©2020 ASME.

4.3 Two-Dimensional Simulations

Next, a more complicated 2-D heat transfer problem is considered. Here, rather

than a constant heat flux across the entire top boundary of the material, a single 2-nm

wide heat source is centered on the top surface at x = 250µm. All other simulation

parameters are the same as used previously, i.e., the layout size is 500µm long by

100µm thick and the material properties as shown in the schematic of Fig. 4.4. Here,

one cannot manipulate the convective boundary condition into the form of a Dirichlet

one as was done in Sec. 4.2 because the temperature distribution at the convective

boundary will be non-uniform simply due to the two-dimensional nature of the heat
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conduction in this layout.

Figure 4.4: Schematic of the 2-D heat transfer layout. An inward heat flux of
H = 1 · 109 W/m2 is applied over a 2 µm length centered at the middle of the top
layer.

However, Bagnall et al. found that a reasonable approximation could be made in

some instances by choosing the reference temperature in the Kirchhoff transformation

to be that of the average temperature at the convective boundary [21]

Tref = Tb =
Φ · l
b ·H

+ T∞ (4.6)

where Φ = 1 · 109 W/m2 is the heat flux applied to the top boundary, l = 2µm is the

length over which the heat flux is applied, b = 500µm is the length of the convective

boundary, H = 1 · 105 W/m2K is the heat transfer coefficient, and T∞ = 350K is the

ambient cooling temperature. This corresponds to a reference temperature value of

Tref = Tb = 390K.

In Fig. 4.5, the temperature distributions along the top boundary of Fig. 4.4,

where the heat flux is applied, are shown as obtained from the Kirchhoff transfor-

mation with Tref = 390K, Tref = 300K, and from the full nonlinear FEA solution.

When the reference temperature is chosen in this way, the Kirchhoff transformation

shows excellent agreement with the full nonlinear FEA solution. However, when the

reference temperature is chosen as Tref = 300K there is a temperature discrepancy
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of approximately 20K throughout the entire curve.

Figure 4.5: 2-D heat transfer solution for a 500µm long x 100µm thick piece of silicon
using the average expected boundary temperature of Tref = 390K (linearized), and
Tref = 300K (unlinearized) in the Kirchhoff transformation [22] c©2020 ASME.

Moreover, Bagnall et al. [21] also found that the approach of effectively linearizing

the Kirchhoff transformation around a suitably chosen temperature becomes inaccu-

rate at smaller thicknesses (as compared to the length of the material). For this

reason, the Kirchhoff transformation was used to simulate the same 500 µm long

silicon slab, but with its thickness reduced to 5 µm and then to 2 µm. Note that

the chosen reference temperature, Tref = 390K, does not change since the material

thickness does not appear in Eq. (4.3).

From Figs. 4.6 and 4.7 it is clear that the result using the Kirchhoff transformation

becomes increasingly inaccurate. In the case of the 5µm thickness the linearized

Kirchhoff transformation solution over-estimates the peak temperature by roughly

4K over the FEA (≈ 517K vs ≈ 513K), while the unlinearized solution is off by

over 50K (≈ 564K). For the 2µm thickness the linearized Kirchhoff transformation
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solution over-estimates the peak temperature by roughly 25K over the FEA (≈ 640K

vs ≈ 615K), while the unlinearized solution is off by over 115K (≈ 732K).

Figure 4.6: 2-D heat transfer solution for a 500µm long x 5µm thick piece of silicon
using the average expected boundary temperature of Tref = 390K (linearized), and
Tref = 300K (unlinearized) in the Kirchhoff transformation [22] c©2020 ASME.

As in the previous section, the iterative method was again used to simulate the of

layout of Fig 4.4 for thicknesses of 100µm, 5µm, and 2µm using a reference temper-

ature of 300K. For the 100µm thick substrate the iterative method agrees extremely

well with the nonlinear FEA solution, similarly to the linearized Kirchhoff transforma-

tion. However, the iterative method displays far better accuracy than the linearized

Kirchhoff transformation in the 5µm and 2µm thick simulations while requiring no a

priori knowledge, as seen in Figs. 4.8 and 4.9.
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Figure 4.7: 2-D heat transfer solution for a 500µm long x 2µm thick piece of silicon
using the average expected boundary temperature of Tref = 390K (linearized), and
Tref = 300K (unlinearized) in the Kirchhoff transformation.

Figure 4.8: 2-D heat transfer solution for a 500µm long x 100µm thick piece of
silicon using the proposed iterative method with Tref = 300K [22] c©2020 ASME.
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Figure 4.9: 2-D heat transfer solution using the proposed iterative method with
Tref = 300K for (a) a 500µm long x 5µm thick piece of silicon. (b) a 500µm long x
2µm thick piece of silicon [22] c©2020 ASME.
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4.4 Multifinger GaN HEMT

One of the most robust tests found in literature for thermal simulation at the pack-

age scale, including convective boundary conditions, is that of a GaN radio frequency

(RF) power amplifier (represented by a constant heat flux) on top of a SiC substrate

[21, 73]. In [21, 73], the RF power amplifier package’s thermal characteristics were

simulated in a 3-D layout, whereas here it is simplified to a 2-D layout for practical

reasons, namely memory and computational expense. The generalization to the 3-D

case is straightforward.

The simulated layout consists of 11 heat sources of 0.5 µm width located at the

very top of the material (y = 102 µm), each representing the heat generated by a

GaN HEMT with an inward flux of 1010 W/m2. The first source is located at x = 25

µm, and the sources are separated by 50 µm, with the final one located at x = 525

µm. The dimensions of the entire layout are 1000 µm by 102 µm. In the y-direction,

the lower 100 µm layer is composed of a high thermal conductivity SiC substrate,

while the top 2 µm layer is GaN.

As an initial benchmark, first a constant-conductivity simulation was performed

using both the MATLAB R© FEA solver in it’s Partial Differential Equation (PDE)

Toolbox [74] and the iterative approach. This was done to ensure the accuracy of

the numerical grid used, and the full convergence of the solutions. The constant-

conductivity solution was also used to find the average temperature along the con-

vective boundary, Tref = 460K, to be used in the Kirchhoff transformation. The

full nonlinear problem was then solved using the same thermal conductivities and

temperature dependencies found in [21, 73] for each material, namely

κGaN = κref,GaN

(
T

Tref

)−1.3

, κSiC = κref,SiC

(
T

Tref

)−1.4

, (4.7)
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where the values of the reference thermal conductivities to be used in the linearized

Kirchhoff transformation at Tref = 460K are κref,GaN = 85.8 W/mK and κref,SiC =

240.4 W/mK. On the other hand, in the iterative approach, as well as the unlinearized

Kirchhoff transformation, the reference thermal conductivity values taken at Tref =

300K are κref,GaN = 150 W/mK and κref,SiC = 420 W/mK.

It should be noted again that when using the Kirchhoff transformation, the expo-

nent must be identical for each material in the simulation, while this is true neither

in the fully nonlinear FEA nor the iterative approach proposed here. Due to this, if

using the Kirchhoff transformation, it is necessary to adjust the exponent for GaN to

α = −1.4 to match the value for SiC, as in [21].

As seen in Fig. 4.10a, The linearized version of the Kirchhoff transformation still

gives a reasonably good result. In fact, the discrepancy in the peak temperature

is only approximately 7K, with Tpeak ≈ 746K for the Kirchhoff transformation vs.

Tpeak = 739K for the nonlinear FEA solution. However, in order for the Kirchhoff

transformation to obtain this level of accuracy, a simulation will always have to be per-

formed twice. Firstly, with a constant thermal conductivity to obtain the appropriate

reference temperature to be used, and secondly, using the Kirchhoff transformation

to capture temperature-dependent effects.

On the other hand, the iterative approach follows the nonlinear FEA nearly ex-

actly. The difference in the peak temperature between the two is 0.7K, which is likely

due to using a fairly coarse grid with the iterative approach. The finite element mesh

generated by the MATLAB R© PDE toolbox [74] has 236,000 elements while the finite

difference grid used for the iterative approach has dimensions of 383 cells x 205 cells

for a total of 78,515 cells.
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Figure 4.10: 2-D heat transfer solution for an 11-finger GaN RF power amplifier
modeled using constant heat sources. a) The solution using the Kirchhoff Transfor-
mation. b) The solution using the proposed iterative method [22] c©2020 ASME.
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Conclusion

In conclusion, the Kirchhoff transformation is able to provide reasonable results

in the simulation of heat transfer with convective boundary conditions, however, it

requires a priori knowledge of the solution. In contrast, the iterative method shows

extremely good agreement with a nonlinear finite element method solution in the

wide range of tests performed.
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Chapter 5

COUPLED ELECTROTHERMAL SIMULATION: FORCING FUNCTIONS

5.1 Introduction

It is well known that electronic devices suffer from reliability issues and perfor-

mance degradation due to self-heating effects [3, 4]. An excellent and comprehensive

thermodynamic treatment of self-heating and heat transport in devices is given by

Wachutka [9]. The simplest approach for computing the heat generation rates in

a semiconductor is to use the dot product of the current density and electric field,

J ·E [W/m3], which represents the projection of the current density along the electric

field. Fushinobu et al. [10] developed one approach to include self-heating through

a hydrodynamic model by assuming an energy decay path and using a relaxation

time approximation, which has also been used elsewhere [13, 14]. On the other hand,

Pilgrim et al. modeled heat generation through a net phonon emission approach

and solved a thermal resistance matrix in order to obtain temperature maps [16–

19]. While these approaches incorporate temperature-dependent scattering rates, the

temperature dependence of material properties, like thermal conductivity, is often

neglected.

Bonani and Ghione [15] took the temperature-dependent thermal conductivity

into account in the context of device simulation by using the Kirchhoff transforma-

tion [60], which has also been used in the study of larger scale thermal spreading

problems in semiconductor packages [21]. However, as discussed previously, convec-

tive boundary conditions, which physically represent an imperfect heat sink, become

nonlinear under the Kirchhoff transformation.
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A rather comprehensive model of electrothermal GaN device simulation is the

one offered by Hao et al. [23, 24], where electron and phonon MC simulations are

coupled along the 2DEG channel where heat generation is most significant, while

Fourier’s law is used in the rest of the domain. In [23, 24], as well as [10, 13, 14],

parameters such as electron density, energy, and drift velocity are extracted from

MC simulations in order to compute the energy exchanged between electrons and

phonons, whereas here the heat generation rate is computed in real time by tracking

the individual scattering events. However, in this work we do not carry out full phonon

MC simulations solving the phonon BTE for heat transport, but instead we solve a

steady-state EBE based on Fourier’s law. In addition, a full electronic bandstructure

and phonon dispersion is used, including all optical phonon modes without assuming

them to be dispersionless. In other words, the optical modes are allowed to contribute

to the thermal conductivity based on the material-specific phonon dispersion.

The computation of the heat generation rate is discussed in Sec. 5.2, while the

Kirchhoff transformation and the iterative method for incorporating temperature-

dependent thermal conductivities are applied to the electrothermal simulation of an

experimentally characterized HEMT in Secs. 6.3 and 6.4, respectively.

5.2 Heat Generation Rate

The EBE from Sec. 3.2 is written as

∇ · (κµ (r,T)∇T) = −

(
∂Wµ

δt

∣∣∣∣
e−p

+
∂Wµ

δt

∣∣∣∣
p−p

)
= −Pµ, (5.1)

where the heat generation rate Pµ represents the forcing function for the EBE. The

simplest choice to model the heat generation is given by Pµ = J ·E [75–77]. However,

when this approach is used, the maximum value of Pµ is likely to occur at the peak

of the electric field, Epeak. This is because the electric field also affects the carrier
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velocity and concentration, which is taken into account as J = qnv.

One particular hydrodynamic model [10, 13] solves the system of equations given

by

CLO
∂TLO
∂t

=
3

2
nkB

(
Te − TLO
τe−LO

)
+
nm ∗ v2

d

2τe−LO
− CLO

(
TLO − TA
τLO−A

)
(5.2)

CA
∂TA
∂t

= ∇2TA + CLO

(
TLO − TA
τLO−A

)
(5.3)

where the LO subscript indicates the longitudinal optical mode value in particular for

the temperature, specific heat, and relaxation times. The first term on the RHS of Eq.

(5.2) represents the rate at which energy moves from electrons to LO phonons, and

the final term that from LO phonons to acoustic phonons. Meanwhile, the second

term is the energy relaxation rate from electrons to LO phonons, computed using

parameters extracted from the MC.

The capabilities of the CMC simulation framework have been expanded to in-

clude a coupled flux-based electrothermal device solver based on the phonon scatter-

ing events themselves. This allows us to retain the speed advantages of the CMC,

while obtaining a physically accurate picture of steady-state heat generation within

a device. Here, rather than by using the macroscopic Joule Heating term, J · E, the

generation of heat is computed in real-time directly from the principles of energy con-

servation. As electron-phonon scattering events occur, the energy lost by electrons is

used to compute a heat generation rate in each computational cell in the simulation.

This offers a physically intuitive picture of heat generation in the device which is

not dependent on macroscopic parameters such as the effective mass or the carrier

mobility.

This heat generation rate is then used as the forcing function in the EBE for the

optical and acoustic phonon modes. Meanwhile, the relaxation time approximation
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Figure 5.1: Flowchart of the electrothermal simulation process

is retained only for the net energy exchange between the optical and acoustic phonon

modes, with a 10 ps relaxation time for GaAs [10]. The term for the phonon relaxation

rate is written similarly to Eqs. (5.2) and (5.3) as

∂Wµ

δt

∣∣∣∣
p−p

= Cop
TO − TA
τOA

. (5.4)

In particular, Cop is approximated by the Einstein model [78, 79] where each optical

mode has a contribution of

Cµ,op = nkB
(~ωop/kBT )2 exp(~ωop/kBT ))

(exp(~ωop/kBT )− 1)2
, (5.5)

where n is the number of primitive cells per unit volume and ωop is the assumed single
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frequency of the optical phonons. This must then be multiplied by the number of

optical modes, dependent on the number of atoms in the unit cell.

Using the rejection algorithm, the scattering rates in each cell are subsequently

updated according to the new temperature (as scattering increases with temperature),

a new heat generation rate is obtained, and the process is repeated until the heat

generation rate stabilizes and the temperature maps reach convergence in the outer

iterative loop.

The final result is a temperature map for both acoustic and optical modes and

the full electrothermal operating characteristics, e.g., an I-V curve accounting for the

effects of self-heating.

Although carriers will gain the bulk of their energy near the location of Epeak,

they do not scatter instantaneously but instead travel up to a few mean free paths

(mfps) before scattering away energy [77]. To illustrate this, and compare to the

heat generation rate computed directly from the scattering events, simulations were

performed on a rather simple 0.9µm long GaAs n+-n-n+ diode, seen schematically in

Fig. 5.2. Here, the current density is computed as J = qnv, where n and v represent

the average carrier density and carrier velocity obtained in each position-space cell in

the Monte Carlo computational domain.

Figure 5.2: Schematic of 0.9µm x 0.2µm GaAs n+-n-n+ diode

Even in this simple device simulation, the CMC uses a full electronic bandstructure

computed from the non-local Empirical Pseudo-Potential (EPM) method [80–82], and

a full phonon dispersion computed from the 14 parameter valence shell model [83].
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The bandstructure and phonon dispersion for GaAs are shown in Fig. 5.3.

(a) (b)

Figure 5.3: The full electronic bandstructure (a) and phonon dispersion (b) used in
the CMC for GaAs.

The bias point being considered is that of V = 3 V applied to the right contact

with respect to the left contact, while in the first case the heat generation rate was

considered to be J · E and in the second case computed directly from the electron-

phonon scattering events. The scattering rates were computed and tabulated for

GaAs corresponding to a maximum temperature of 500K and this scattering rate ,as

modeled by using the rejection algorithm, is shown in Fig. 5.4.

The diode is quasi-1-D as far as electrostatics are concerned because the contacts

cover the entire device in the y-direction. Due to this, slices along the x-direction

of the device can be taken, and their values averaged to smooth curves and reduce

noise. This has been done in Fig 5.5, with the field and heat generation rates averaged

over 10 horizontal slices for illustrative purposes. The heat generation rate given

by J · E very closely follows the electric field seen in the device, and the peaks

align exactly, as expected. However, since the electrons are expected to travel a

few mfps before dissipating energy, the heat generation rate computed directly from
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Figure 5.4: GaAs scattering rates for T = 500K used in the rejection algorithm.

the electron-phonon scattering events is shifted to the right approximately by 25nm.

Since the saturation drift velocity of GaAs is ≈ 1.2 ·107cm/s, and the electron-phonon

energy relaxation time is approximately 0.1ps, this corresponds to a mfp of ≈ 12nm,

indicating that the shift seen if Fig. 5.5 represents approximately 2 mfps.

Moreover, the same behavior is seen in the temperature profiles obtained from the

CMC simulations, seen in Fig. 5.6 even for very small temperature differences. This

is because the difference in the location of the hot spot is simply due to the difference

in the location of the peak heat generation.
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Figure 5.5: Electric field vs heat generation rates of J · E and that computed from
electron-phonon scattering events (PE), respectively.

µ

µ

Figure 5.6: Electric field vs. lattice temperature obtained from the J · E heat gen-
eration rate, and the acoustic temperature from the electron-phonon heat generation
rate, respectively.
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Conclusion

The simplest choice for the heat generation rate, J ·E, yields inaccurate results for

the location at which energy is dissipated by electrons through scattering events with

the lattice. In contrast, a typical hydrodynamic model improves the heat generation

rate by better accounting for the electron dynamics. However, these models generally

use parameters which are often themselves obtained from Monte Carlo simulations.

In contrast, computing the heat generation rate directly from the CMC, by using

the scattering rejection algorithm to find the energy transferred to the lattice through

electron-phonon interactions, shows the expected shift of the hot spot of up to a few

mean free paths from the location of the peak electric field.
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Chapter 6

ELECTROTHERMAL GAN HEMT SIMULATION

6.1 Introduction

As wireless communications are ever-increasingly popular, radio-frequency com-

munication systems are broadly encountered in everyday life. In consumer applica-

tions, fifth generation (5G) wireless networks have recently started rolling out and

the so-called Internet of Things (IoT) has been a particular area of attention in the

consumer product industry. However, other large markets in terms of applications are

the defense sector as well as satellite and space exploration. Both high performance

and high reliability are an emphasis in both fields of operation, however these two

aims generally present a trade-off relationship, i.e., an increase in one is often at the

expense of the other. Additionally, many devices are generally battery powered, as

in most cases a power source is not always locally available. Hence, power efficiency

and portability are also of concern. All of these requirements need to be addressed

in modern radio frequency (RF) systems.

Large bandgap materials improve reliability in two aspects: 1) higher tempera-

tures are required for the doped material to become intrinsic, and 2) they possess

higher breakdown voltages. Electrical breakdown is often driven by impact ioniza-

tion scattering events which occur at high electric fields, as seen in the scattering

rates of Fig. 6.1 where impact ionization becomes significant at energies above 7eV.

Although the rate is fairly low at these energies, it does not take a large number of

impact ionization events to set off an “avalanche effect”. The GaN impact ionization

rate can be compared with the rates shown for GaAs in Fig. 5.4, where it becomes
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significant under 5eV and dominates the total scattering rate above 6eV.

Figure 6.1: GaN scattering rates used in the rejection algorithm, where it is seen
impact ionization begins to become significant above 7eV.

Another advantage for GaN is its high thermal conductivity as compared to tra-

ditional semiconductors such as Si or GaAs. This, in principle, allows GaN to better

dissipate the heat generated inside the device. However, as seen in Sec. 6.4, convective

conditions at material interfaces can be a bottleneck for heat dissipation. Addition-

ally, AlGaN/GaN heterostructures have the advantage of the spontaneous formation

of a 2DEG at the junction due to polarization effects, whereas in AlGaAs/GaAs

systems the 2DEG must be formed with a modulation doping layer.

6.2 Polarization Effects

In III-V compound materials such as GaN, AlN, and InN, the crystal structure is

typically of the Wurtzite variety, in contrast to GaAs which has a zinc-blende crystal

structure [84]. This hexagonal crystal structure is characterized by the dimensions
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a, the sides of the hexagon, c, the height, and u, the distance from the Ga and N

neighbors, as depicted in Fig. 6.2.

Figure 6.2: Illustration of the (Ga face) Wurtzite GaN crystal structure. In the N
face configuration, the positions of the Ga and N atoms are interchanged.

An electric polarization results from the fact that N is more electronegative than

Ga. At the face of the material, this spontaneous polarization is not canceled out as

it is inside the material and hence there exists a polarization along the c-axis. For

InN, GaN, and AlN spontaneous polarization values of PSP = −0.032,−0.029, and−

0.081 C/m2 have been reported, respectively [84, 85]. Additionally, AlGaN/GaN

heterostructures display a strong piezoelectric polarization at the interface due to

the differing lattice constants of the two materials resulting in a strain in the lattice.

Ambacher et al. [86] obtained the piezoelectric polarization as

PPE = 2
a1 − a
a

(
e31 − e33

c13

c33

)
, (6.1)

where a is the hexagonal edge length of the relaxed crystal, as in Fig. 6.2, a1 is the
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lattice constant of the strained layer, e31 and e33 the piezoelectric coefficients, and c13

and c33 the elastic constants.

The total polarization is given by the sum of the spontaneous and piezoelectric

coefficients as

P = PSP + PPE, (6.2)

which, in the proximity of an interface with a high polarization discontinuity is related

to the charge density [C/m2] by the following relation:

σP = −∇P. (6.3)

6.3 GaN HEMT: Kirchhoff Transformation

An area of particular interest in electrothermal simulation is that of device relia-

bility. Self-heating effects are well known to cause a decrease in operating current, as

seen in phenomena such as the well known current collapse in HEMTs. The ability

to design devices accounting also for their thermal characteristics, rather than only

the electrical ones, would help in addressing reliability concerns prior to fabrication.

In this section, the CMC framework used for charge transport simulations takes

into account scattering due to both optical and acoustic phonons (both polar and

deformation potential), ionized impurities, and impact ionization. The material prop-

erties used for GaN are the same as those in Yamakawa et al. [87]. The electronic

bandstructure and phonon dispersion used in the simulation are shown in Fig. 6.3.

To perform the coupled electrothermal simulation, first the electrical CMC is

allowed to reach steady-state, just as in an isothermal simulation. Then, we average

the power density transferred from the charge carriers to the respective phonon modes

over a sufficiently large window to reduce statistical noise. That is, we obtain the
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(a) (b)

Figure 6.3: The full electronic bandstructure (a) and phonon dispersion (b) used in
the CMC for Wurtzite GaN.

value of ∂Wµ/δt|e−p in Eq. (3.10) directly from the CMC simulation. Nevertheless,

the energy exchange between the acoustic and optical phonon modes is still treated

via the relaxation time approximation, and for GaN assumes values between 2 and 5

ps [88].

Here we have chosen the GaN/AlGaN structure characterized experimentally by

Altuntas et al. [89]. The experimental layout of this device is shown in Fig. 6.4a,

and the simulated layout consisting of a T-gate structure with a relatively large 1 µm

buffer layer is shown if Fig. 6.4b [90]. A thin 1 nm AlN barrier is used to create a

2DEG conduction channel within the device due to a triangular well that is formed

because of the conduction band mismatch at the heterojunction. In addition, thread

dislocations are included in the simulations at a 2-D density of TDD = 5 · 109 cm−2.

Meanwhile, in addition to the triangular well, in the simulation the 2DEG channel

is created by placing a polarization charge sheet at the heterointerface according to

Ambacher’s formalism [86]. A Dirichlet boundary condition is then imposed on the

bottom of the simulated device representing a perfect heat sink held constant at 300K,
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and so there is no complication due to nonlinearities introduced under the Kirchhoff

transformation.

(a) (b)

Figure 6.4: (a) Layout of the GaN/AlGaN HEMT characterized experimentally by
Altuntas [89] and (b) the layout used in the coupled electrothermal simulation [90]
c©2019 IEEE.

The resulting acoustic mode and optical mode temperatures at the bias point

VDS = 2V, VGS = 10V, where both high currents and high electric fields are present,

are shown in Figs. 6.5a and 6.5b, respectively. Here the temperatures are shown as

a color map on top of the 3-D surface representing the conduction band to illustrate

where the gate, source, drain, and channel regions are located in the device.

The optical mode temperature peaks at near 950K and is highly localized to the

drain edge of the gate as should be expected. This is because the optical phonons

have very low group velocity, and hence a low thermal conductivity. Hence, the dom-

inant decay path available to them is to decay into acoustic phonons which generally

happens at a rate slower than new optical phonons are generated. On the other

hand, the acoustic temperature map is much more spread out because of the acoustic

phonon modes’ high thermal conductivity, and the peak acoustic temperature is seen

to be roughly 375K, also to the drain side of the gate.
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(a)

(b)

Figure 6.5: Acoustic (a) and optical (b) mode temperature maps obtained for the
T-gate device at VDS = 10V and VGS = 2V [90] c©2019 IEEE.
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Electrothermal Kirch.

Experimental

Isothermal 300K

Figure 6.6: Full electrothermal I-V curve for VGS = 2V and VGS = 0V for the
GaN/AlGaN HEMT using the Kirchhoff transformation with a Dirichlet boundary
condition. The isothermal 300K simulation result is shown as a reference.

Finally, the IDS-VDS curves under DC operation from Altuntas [89] along with

the those of the electrothermal model presented in this section are shown in Fig. 6.6

[90]. In this case, capturing thermal effects through the Kirchhoff transformation is

seen to accurately reproduce the operating currents throughout the entire curve. In

comparison, the isothermal simulations at 300K overestimate the current at higher

drain voltages.

6.4 GaN HEMT: Iterative Method

In this section, first the electrothermal simulation on the same GaN HEMT from

Sec. 6.3 is performed with a simple Dirichlet boundary condition and the result

compared to that of the Kirchhoff transformation. Then, the effects of introducing

convective boundary conditions are studied using the iterative approach, as it this a
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principle advantage of the iterative method compared to the Kirchhoff transformation.

In the Dirichlet case, the boundary condition at the bottom edge of the device

is again taken as a constant 300K, while for the convective condition the boundary

condition is that of Eq. (3.18), i.e., −κ∇Tb,C = H(Tb,C − T∞) with the ambient

temperature, T∞ assumed to be a constant 300K, denoted in the results of Figs.

6.9 and 6.10. All other boundary conditions are assumed to be perfectly insulating

Neumann conditions, i.e., a zero flux exiting in the direction normal to the boundary.

In other words, we iteratively solve:

∇2Ti
µ,C = − Pµ (r)

κµ,C
(
Ti−1

) , (6.4)

subject to either the Dirichlet or convective boundary condition

Tb = 300K (6.5)

−κ∇Tb = H (Tb,C − 300K) , (6.6)

where Tb,C denotes the temperature in each respective boundary cell C along the

bottom of the device.

Once the iteration of Eq. (6.4) has converged, in this case using the SOR (suc-

cessive over-relaxation) method, the scattering rates are then updated in every cell

of the simulation domain according to the new local temperature, and the process

is repeated until both the optical and acoustic temperatures have converged to a

steady-state value everywhere. The described simulation procedure is depicted in the

flowchart of Fig. 6.7. Note that the process depicted in the thermal solver is solved

self-consistently in an inner loop, and then convergence is tested based on the change

between two successive temperature solutions.

Using this iterative approach, the final temperature maps obtained at the bias
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Figure 6.7: Flowchart of the electrothermal simulation process using the iterative
thermal solver [22] c©2020 ASME.

point VDS = 2V, VGS = 10V, where both high currents and high electric fields are

present, are shown in Fig. 6.8a and Fig. 6.8b, respectively. Here the temperatures

are again shown as a color map on top of the 3-D surface representing the conduction

band to illustrate where the gate, source, drain, and channel regions are located in

the device. These can be directly compared to the previous result obtained using the

Kirchhoff transformation in Sec. 6.3, and we see good agreement between the two

sets of results.

Namely, the optical mode temperature peaks at near 950K and is again highly

localized to the drain edge of the gate. While on the other hand, the acoustic temper-

ature map is much more dispersive because of their high thermal conductivity, and

the peak acoustic temperature is seen to be roughly 380K, also to the drain side of

79



the gate.

Next, the effects of using of using both convective boundary conditions and con-

vective interface conditions are illustrated, as this is one of the main features of the

iterative method.

In Fig 6.9, the I-V curves for three separate cases of modeling the heat sink are

shown as follows: 1) using a simple 300K Dirichlet boundary condition, 2) using a

convective boundary condition with H = 108 W/m2K, and 3) using a convective

boundary condition with H = 107 W/m2K. Note that the perfect heat sink repre-

sented by the Dirichlet boundary condition would be represented by H → ∞, and

also that the most extreme condition of H = 107 W/m2K is an unrealistically poor

heat sink, as evidenced by the extremely large temperatures seen in Fig 6.10. How-

ever, the heat transport across semiconductor/substrate material interfaces is often

poor, resulting in lower values of H than considered here.

Intuitively, as the value of the heat transport coefficient, H, of the heat sink

decreases, its ability to dissipate the heat generated in the device is deteriorated, and

an associated large decrease in current is seen due to the increase in electron-phonon

scattering rates with temperature. Moreover, the current degradation is much more

pronounced going from H = 108 W/m2K to H = 107 W/m2K than is seen between

the Dirichlet and H = 108 W/m2K boundary conditions. This is due to the large

temperature increase when using the H = 107 W/m2K heat sink, which in turn

greatly increases the scattering rates seen in the device leading to the reduced current.

Therefore, the ability to simulate non-ideal thermal contacts is highly valuable, as

their effect on electrical characteristics are significant even for relatively large values

of H, as seen in Fig. 6.9.
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(a)

(b)

Figure 6.8: Acoustic (a) and optical (b) mode temperature maps obtained for the
T-gate device at VDS = 10V and VGS = 2V using the iterative method [22] c©2020
ASME.
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Figure 6.9: Full electrothermal I-V curve for VGS = 2V for the GaN/AlGaN HEMT
using both Dirichlet and convective boundary conditions [22] c©2020 ASME.
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Figure 6.10: Maximum optical and acoustic temperatures seen in the device at each
simulated bias point.
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Conclusion

The presence of polarization effects makes GaN heterostructures an attractive

candidate for RF applications. The spontaneous polarization at the interface due to

the differing electronegativity of Gallium and Nitrogen, in addition to the piezoelectric

polarization due to strain between epitaxial layers create a 2DEG without the need

for a modulation doping layer.

The Kirchhoff transformation has been used in the electrothermal characterization

of an experimental AlGaN/GaN HEMT, and accurately reproduced the effects of self-

heating in the DC operating characteristics.

Additionally, the results of the iterative method agree well with those from the

Kirchhoff transformation. Furthermore, the iterative method is also able to account

for the study of imperfect interfaces. The ability to more accurately study such heat

transport characteristics in electrothermal simulations can alleviate issues prior to

fabrication of a device, and potentially lead to device layouts and architectures which

more effectively dissipate heat.

84



Chapter 7

NOVEL GATE STRUCTURES

7.1 Introduction

It has been suggested [91] that rather than using the T-gate structure of Fig. 6.4,

hot electron generation can be reduced by splitting the gate into two stems, creating a

Π-gate. This layout has the effect of increasing reliability while retaining performance.

In essence, this effect is achieved by increasing the electron-phonon scattering rates,

which is due to the Π-gate layout producing a higher carrier concentration under the

gate as well as a longer transit time due to a spacer region between the two stems

[91]. The schematics of these layouts are shown in Fig. 7.1. In particular, in [91]

they found that the Π-gate layout with LG,1 > LG,2 reduced hot electron generation

up to 40% under DC operation at bias points corresponding to peak DC power in

the dynamic load lines.

(a) (b)

Figure 7.1: The T-gate and Π-gate structures. Design rules require that LG =
LG,1 + LG,2 [91].

This idea has been applied to the T-gate layout of Fig. 6.4b to produce the
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Π-gate layout shown in 7.1b, where LG,1 = 50nm, LG,2 = 25nm, d = 25nm, and

h = 120nm. The source-to-gate and gate-to-drain lengths have been kept constant

at LSG = 500nm and LDG = 925nm, respectively. All other device and simulation

parameters are kept the same as in Sec. 6.4. As this is expected to decrease hot

electron generation, it should correspond to a decrease in peak temperatures obtained

from the iterative electrothermal model.

The temperature maps obtained for the bias point VDS = 10V and VGS = 2V are

shown in Fig. 7.2, with the T-gate results shown in 7.2a and 7.2b and those for the

Π-gate in 7.2c and 7.2d.

In these 3-D plots, the temperature is again plotted as a contour map on top of

the 3-D conduction band edge. From this, the acoustic temperature is seen to be

uniformly lower throughout the active region of the device near the AlN/GaN barrier

at approximately y = 1µm, while the difference in the optical temperature distri-

butions are more difficult to discern. To further investigate the temperature maps,

the maximum acoustic and optical temperature at each bias point were extracted

from the simulation results, and plotted in Fig. 7.3. A decrease of 4K is seen in the

peak acoustic temperature at higher voltages while for the optical temperatures the

peak decreases 49K in the asymmetric Π-gate as compared to the conventional T-gate

structure. The decrease in the acoustic temperature corresponds to a reduction of

4.8% in the temperature rise above the heat sink temperature of 300K, and for the

optical case a 7.5% decrease.

Moreover, the drain current for the two layouts was studied for a VGS = 2V

and VDS = 0− 10V. It was found that the drain current for the two layouts in these

simulations are nearly identical, and therefore the simulated decrease in temperatures

came with no cost in terms of DC performance. Hence, novel gate architectures such

as the Π-gate may be a viable path to mitigating undesirable hot electron effects,
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(a) (b)

(c) (d)

Figure 7.2: Acoustic and Optical temperature obtained for the T-gate (a,b) and the
Π-gate (c,d) device structures.

without drastically reducing device performance.
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Π

(a) (b)

Figure 7.3: Maximum optical and acoustic temperature seen in the T-gate and the
Π-gate structures.

Π

Figure 7.4: Drain current vs drain bias for the T-gate and the Π gate layouts.
Results are for a gate voltage of 2V, as it was studied in Ch. 6.

7.2 Electrothermal Small-Signal RF Simulation

The iterative method developed for electrothermal device simulation has also been

extended to the domain of small signal AC simulations. In the case of small-signal

simulation, it can be assumed that the applied AC signal doesn’t have a significant
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effect on the temperature maps of the device. Hence, the electrothermal simulations

from the previous section can be used to generate small signal RF device character-

istics as in [92, 93].

These simulations have been performed as follows: 1) perform a full DC elec-

trothermal characterization of the device, 2) superimpose a small-signal AC sine wave

on top of the DC operating point of interest, and 3) extract the relevant RF param-

eters to determine the cutoff frequency.

In Fig. 7.5a, the results of an isothermal sinusoidal small-signal AC simulation are

shown. Using a 20 dB/decade line, for the T-gate layout from [89] a cutoff frequency

of 135GHz is found compared to ft = 122 GHz in the Π-gate. However, in [89] the

cutoff frequency was experimentally determined to be 116 GHz. It is hypothesized

that this discrepancy is due to thermal effects not being taken into consideration.

Π

(a)

Π

(b)

Figure 7.5: Small signal simulation using sinusoidal inputs to determine the cutoff
frequency in both (a) isothermal and (b) electrothermal simulations.

To test this hypothesis, the iterative electrothermal model has been applied to

both layouts, and the results shown in Fig. 7.5b. Here, a cutoff frequency of ft = 115

GHz is found for the Altuntas device, agreeing very closely with the value of ft = 116
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GHz, while for the Π-gate structure a cutoff frequency of 104 GHz is obtained. Hence,

the cutoff frequency in the Π-gate structure is slightly less degraded by the inclusion

of thermal effects in the model.

However, it is of note that the electrothermal simulation methods studied here

are able to obtain much improved results for small-signal AC simulations in addition

to those seen for DC operating currents. Therefore, this new model represents an

obvious improvement on isothermal simulation

7.3 Conclusion

A novel gate architecture based on splitting the conventional T-gate in order to

mitigate the generation of hot electrons also shows a decrease in the peak acoustic

and optical temperatures obtained through electrothermal simulations. In addition,

small-signal AC simulations using the electrothermal model are able to accurately

reproduce the effects of self-heating in the determination of cutoff frequencies. This

is evidenced by the electrothermal simulation for the T-gate layout recovering the

experimental cutoff frequency of 115 GHz.
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Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Thermal management is nowadays perhaps the largest problem facing semicon-

ductor devices, and is still an area of active research. Methods based on low order

moments of the BTE can provide reasonable results in many cases, and lend insight to

device characteristics in a relatively short simulation time. However, they necessarily

neglect whatever information about the carrier ensemble is contained in the higher

order moments that are not taken into account. In addition, assumptions made in

order to derive these models in closed form are often only valid near-equilibrium.

Monte Carlo methods, on the other hand, are more computationally expensive

but yield a full stochastic solution to the BTE. Furthermore, Monte Carlo methods

are invaluable at high electric fields where far-from-equilibrium conditions apply. The

cellular Monte Carlo (CMC) approach shifts some of the computational cost to hard-

ware cost by pre-tabulating the scattering rates and loading them into memory at

the start of a simulation. This provides a significant decrease of the simulation time

as compared to the traditional Ensemble Monte Carlo (EMC), where final states are

obtained at run-time for each scattering event. Moreover, the CMC is able to be

adapted to local runtime conditions, akin the the EMC algorithm, by employing a

rejection method to decide if a “proposed” scattering event should occur or not based

on the local conditions.

Still, the use of MC methods in the study of thermal transport along with elec-

trical characteristics has been less widespread until recently. While thermal models
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have been developed and implemented in MC simulation, they often neglect the tem-

perature dependence of material properties, namely the thermal conductivity.

The iterative approach for solving an energy balance equation, based on the n = 2

moment of the phonon BTE, and including temperature-dependent properties within

a Monte Carlo simulation has been detailed here. This approach has been developed

to overcome the drawbacks of using the Kirchhoff transformation while still allowing

us to solve a linear Poisson-like equation. In particular, it tackles problems including

convective boundary conditions, such as material interfaces or non-ideal heat sinks,

in a straightforward way which is relatively easy to implement. The importance of

solving a Poisson-like equation is that often an efficient finite-difference solver for the

Poisson equation is present in any MC electrical device simulator.

However, one potential drawback of the iterative approach is that, since the ther-

mal conductivity is likely to have a different value at each computational gridpoint,

multigrid methods are likely to become very inefficient. Fortunately, in an electrother-

mal simulation, the solution to Poisson’s equation is required much more often (orders

of magnitude more times), than that of the phonon EBE.

Furthermore, a novel method for computing the heat generation rate is used in the

CMC based directly on the electron-phonon scattering events using energy conserva-

tion principles. This provides a physically sound model of heat generation, and is not

subject to macroscopic parameters such as the effective mass or carrier mobility.

The iterative method has been shown in Chapter 4 to work extremely well for ther-

mal large-scale thermal spreading problems, as well as coupled to the CMC framework

for full non-linear electrothermal device simulation, e.g., as applied to the GaN HEMT

devices as shown in Chapter 6. Moreover, it can be used to study the electrothermal

characteristics of novel device layouts with the aim of mitigating thermal effects and

improving device performance and reliability. Small-signal AC simulations using the
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iterative electrothermal model are able to reproduce experimentally determined cutoff

frequencies in devices.

8.2 Future Work

Recommendations for future work are as follows: 1) further validation of the

electrothermal CMC model with experimental results 2) comparison with results for

full phonon MC simulations, 3) coupling of the electrothermal model developed here

to a full phonon MC, and 5) Expanding the work to other high power materials.

Any model should always be further validated, especially one which is fully nu-

merical and whose results are not easily seen experimentally. For example, direct

measurement of the internal temperature distribution of a device under operation is

difficult, and most often surface measurements are used to deduce the internal tem-

perature profile. Therefore, efforts have been made to reproduce macroscopic exper-

imental results such as I-V curves and cutoff frequencies. The most significant use of

the model presented here would be in the development of further device architectures

to mitigate the effects of self heating by offering improved thermal management, either

through decreased heat generation or through improved heat dissipation, or both.

As mentioned in [23, 24], a full phonon MC simulator has been coupled to an

electron MC, in specific regions of interest, to obtain electrothermal device charac-

teristics using macroscopic parameters extracted from the electron MC. In fact, that

is also a goal of the electrothermal model presented here. While it provides many

useful results of its own, as the hydrodynamic models for electron transport do, one

aim is to use the temperature solutions obtained by the present simulation in order

to initialize a full phonon MC simulation as presented in [57]. This could decrease

the cost of the phonon MC by providing an improved initial guess of the temperature

map in the device in order to start the phonon population closer to its steady state
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distribution. Additionally, this will provide evidence on the effects of the approxima-

tion made by using Fourier’s law in the phonon EBE, as it has been suggested that

Fourier’s Law overestimates the heat flux [94, 95]. Another open question is what

useful information may be obtained by using higher order moments of the phonon

BTE as is sometimes done in the similar models for the electron BTE.

Additionally, since Fourier’s law is diffusive in nature, it is believed that ballistic

heat transport cannot be included in the model presented. However, it has been

suggested in [96] that Fourier’s law may contain information on ballistic heat transfer

in some cases, and it can be modeled with a boundary condition precisely the form

of the convective boundary conditions used here.

Finally, the electrothermal CMC model has principally been applied to Wurtzite

GaN. However, other materials such as SiC and diamond are potentially attractive

alternatives for high power devices due to their high thermal conductivity, in principle

allowing for better thermal management. The potential bottleneck for GaN and SiC

is that these materials are generally grown on top of another material and hence

present an inherent interface between the active region of the device and the heat

sink. Diamond on the other hand, if it can be efficiently doped with impurities,

provides a very attractive alternative as its thermal conductivity is roughly one order

of magnitude larger than other materials (approximately 2200 W/mK for diamond

compared to approximately 220 W/mK for GaN).

In fact, it has been predicted that diamond is potentially the principle next gener-

ation material allowing for significant gains in performance and reliability [97]. Many

advances have been made regarding using diamond in semiconductor devices [98], and

an RF transistor has been fabricated showing a cutoff frequency of ft = 41 GHz [99].

Hence, the characterization of such devices in the electrothermal CMC is a logical

next step. In fact, the initial work for adding diamond as a material has been un-
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dertaken within the CMC. The full electronic bandstructure and phonon dispersion

computed in our CMC is shown in Fig. 8.1, which was independently verified against

Watanabe, et al. [100].

(a) (b)

Figure 8.1: Full electronic bandstructure (a) and full phonon dispersion (b) for
diamond as modeled in the CMC.

Additionally, a simple scattering model for diamond accounting for impact ion-

ization and deformation potential has been implemented and shows good agreement

with the velocity vs. field curves found experimentally by Nava et al [101–103], as

shown in Fig. 8.2.

Regarding the thermal properties of diamond, the power law model used here

show agrees well with temperature dependent values reported in [104, 105] with

κ(T) = 2450

(
T

300K

)−1.3

, (8.1)

where κ300 = 2450 W/mK and α = −1.3.

Subsequently, the multifinger IC benchmark simulation of Fig. 4.10b has been

reproduced using diamond instead of GaN on SiC. The thermal conductivity rela-

tionship is that of Eq. (8.1), and the resulting temperature map along the top plane
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(a)

(b)

Figure 8.2: Scattering rates including deformation potentials and impact ionization
(a), and field-velocity curves (b). Experimental data from [101–103].
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of the layout is shown in Fig. 8.3 where it is shown that diamonds superior thermal

properties, as modeled here, results in a peak temperature reduction of ≈ 233K in the

2-D simulation. Therefore, diamond is a promising material for the potential future

of devices.

Each of these represent viable potential paths for the extension of, or applications

for, the current state the electrothermal CMC package as detailed here.
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(a)

(b)

Figure 8.3: 2-D heat transfer solution for an 11-finger RF power amplifier modeled
using constant heat sources (a) composed of diamond and (b) composed of GaN-on-
SiC [22] c©2020 ASME.
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