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ABSTRACT  
 

Model-based clustering is a sub-field of statistical modeling and machine learning. The 

mixture models use the probability to describe the degree of the data point belonging to the 

cluster, and the probability is updated iteratively during the clustering. While mixture 

models have demonstrated the superior performance in handling noisy data in many fields, 

there exist some challenges for high dimensional dataset. It is noted that among a large 

number of features, some may not indeed contribute to delineate the cluster profiles. The 

inclusion of these “noisy” features will confuse the model to identify the real structure of 

the clusters and cost more computational time. Recognizing the issue, in this dissertation, 

I propose a new feature selection algorithm for continuous dataset first and then extend to 

mixed datatype. Finally, I conduct uncertainty quantification for the feature selection 

results as the third topic.  

The first topic is an embedded feature selection algorithm termed Expectation-

Selection-Maximization (ESM) model that can automatically select features while 

optimizing the parameters for Gaussian Mixture Model. I introduce a relevancy index (RI) 

revealing the contribution of the feature in the clustering process to assist feature selection. 

I demonstrate the efficacy of the ESM by studying two synthetic datasets, four benchmark 

datasets, and an Alzheimer’s Disease dataset.  

The second topic focuses on extending the application of ESM algorithm to handle 

mixed datatypes. The Gaussian mixture model is generalized to Generalized Model of 
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Mixture (GMoM), which can not only handle continuous features, but also binary and 

nominal features.  

The last topic is about Uncertainty Quantification (UQ) of the feature selection. A 

new algorithm termed ESOM is proposed, which takes the variance information into 

consideration while conducting feature selection. Also, a set of outliers are generated in 

the feature selection process to infer the uncertainty in the input data. Finally, the selected 

features and detected outlier instances are evaluated by visualization comparison. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Clustering is an unsupervised data mining technique to group the data into different 

segments by discovering the patterns within the dataset [1]. Intuitively, data points from 

the same group are more like each other than the data from other groups. An example of 

clustering is depicted in Figure 1. The input patterns are shown in Figure 1(a) and the 

desired clusters are shown in Figure 1(b). From Figure 1(b), points belonging to the same 

clusters are given the same shape. Due to the nature of the problem, clustering has been 

broadly applied to many fields including manufacturing [2], biology [3], finance [4] and 

astronomy [5], just to name a few.  

Different approaches to clustering are proposed and can be described by Figure 2 from the 

clustering survey paper [1]. Generally, clustering algorithms are categorized as hierarchical 

and partitional methods. 

The hierarchical clustering starts by assigning each data point as its own cluster and 

obtaining the proximity distance matrix (e.g., single, complete link, group average) 

between each pair of data points (clusters). The algorithm then finds the closest pair of 

clusters to merge into a single cluster, and the new distances between the clusters are 

reassessed accordingly. Iteratively, the process ends until all data points are formed into 

one cluster as the root of the cluster tree. The cluster tree, a.k.a. dendrogram is generated 
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illustrating the cluster structures at different levels. Other than simplicity and intuitive 

visual presentation of the data, one known advantage of hierarchical clustering is its 

flexibility in deriving the clusters. That is, the user can visualize or use domain knowledge 

to decide the number of clusters as well as the level of the cluster structures to be 

investigated. However, as pointed out by [6], hierarchical clustering suffers from quadratic 

time complexity limiting its application to large dataset. In addition, for the data with noise, 

the performance of hierarchical clustering is unsatisfactory.  

In traditional partitional methods such as k-means and its extensions k-prototype, the 

number of clusters usually needs to be pre-specified. Centroid, the center of each cluster is 

used to guide the assignment of the data point to the cluster. Centroid is iteratively updated 

during the clustering process. Due to its computational effectiveness, these partitional 

methods have great advantage over hierarchical algorithms for large scale datasets [1], [7]. 

However, it is a non-trivial task to determine the number of clusters. Often, it requires 

either domain knowledge as prior or empirical experiments to identify the appropriate 

number of clusters. In addition, k-means methods are known as “hard assignment” in which 

the data point is assigned to one specific group with certainty. However, during the 

clustering process, it is very likely that a data point is assigned to one cluster initially and 

is reverted in the subsequent steps. The robustness of the model, especially to a noisy 

dataset, is thus questionable.  

Lately, mixture based partitional methods have attracted more attention. Example are 

Gaussian mixture models [8], Dirichlet process mixture models [9] and Latent Class model 
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[10]. These mixture models are built upon a well-studied statistical inference framework 

that provides guidelines for determining the optimal number of clusters. Also, the mixture 

model can generate statistical metrics from the data distribution instead of the simple 

distance between data points. The model uses the probability to describe the degree of the 

data point belonging to the cluster and the probability is updated iteratively during the 

clustering. Since most real-world problems are uncertain by nature, the use of this “soft 

assignment” approach may be a better alternative comparing to the “hard assignment” (e.g., 

k-means). Indeed, the Gaussian Mixture Model (GMM) is a generalized approach, and k-

means is a particular case of GMM [11]. 

 

Figure 1. Clustering Example. 
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Figure 2. A Taxonomy of Clustering Approaches (Adopted From [1]). 

 

1.2 Challenges and Research Scope 

While mixture model-based clustering has demonstrated its superior performance 

in handling noisy data, there exists some challenges in employing mixture model to cluster 

high dimensional dataset [12].   

The challenges of applying model-based clustering on high dimensional dataset are as 

follows: 

• Redundant Features: Among the large number of features, some may not truly 

contribute to delineate the cluster profiles. Inclusion of these “noisy features” requires 

more parameter estimations for the mixture model, which are computationally costly. 

Additionally, the noisy features will confuse the model to identify the true structure of 

the clusters [13].  



 

 

 

5 

• Mixed Data Type: Real world applications usually contain mixed data type instead of 

a single type (e.g., continuous or categorical). However, most existing clustering 

algorithms including Gaussian mixture model can only handle single data type.  

• Lack of uncertainty quantification: For machine learning, it is very important to 

assess the credibility of the models. However, for clustering and feature selection, it is 

very hard to evaluate the performance since the true labels are unknown. Also, the data 

collected are inherently uncertain due to noise, incompleteness, and inconsistency. 

Thus, rigorous quantification of uncertainty in the underlying data, the model, and the 

resulting predictions are critical and still a big challenge. 

 

1.3 Expected Original Contribution 

The objective of the research is to develop new embedded feature selection methods for 

model-based clustering that overcome the aforementioned challenges and demonstrate 

their utility in the health care application of Alzheimer’s disease. The expected original 

contributions include: 

• Development of an Expectation-Selection-Maximization (ESM) algorithm: I 

propose a new embedded feature selection algorithm for Gaussian Mixture Model. 

The embedded feature selection algorithm can simultaneously select features while 

estimating models. The proposed algorithm naturally embeds a feature selection 

step (S) in between the E step and M step, termed ESM. Specifically, we introduce 

a relevancy index of the feature based on the EM responsibility, a metric indicating 
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the probability of assigning a data point to a certain clustering group. The relevancy 

index of a feature is defined as the differences between the responsibility measures 

for the feature sets including and excluding the feature. This index reveals the 

contribution of the feature in the clustering process thus can assist the feature 

selection. To demonstrate the efficacy of the proposed ESM algorithm, we develop 

two synthetic datasets. One synthetic data has 10 independent features with two of 

them are relevant.  Another synthetic data includes 15 features with two of them 

are relevant.  Among the 15 features some are correlated with each other aiming to 

mimic the correlation effect in real data sets. In both experiments, the ESM 

algorithm can select relevant features in 100% accuracy for data size not less than 

300. In addition, to demonstrate the applicability of our proposed algorithm, a set 

of benchmark dataset and a real medical application of Alzheimer Disease data are 

studied. The results show that our proposed algorithm gains better performance 

than original GMM without feature selection in terms of correctly identifying 

cluster groups. The details of this work are illustrated in chapter 2. 

• Development of the Generalized Model of Mixtures (GMoM): I extend the 

Gaussian mixture model to the Generalized Model of Mixtures (GMoM) to handle 

mixed data type and then develop feature selection algorithm over GMoM. The 

basic assumption of GMoM is that data is generated from mixtures of distributions. 

Each mixture represents a cluster and can be expressed by a joint distribution of 

multiple types of features including continuous features (multivariate normal), 
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binary features (Bernoulli) and categorical features (Multinomial). Under the 

framework of GMoM, I propose a feature selection algorithm by introducing the 

term Feature Index (FI), which is based on the posterior probability of assigning 

data points to cluster group called responsibility as before. The basic assumption 

behind the feature selection algorithm is that given a feature, if the inclusion and 

the exclusion of the feature show no significant differences in responsibility 

measure, then the feature is not truly contributing to the clustering. Similar to ESM, 

the assessment of the FI is embedded in between the E and M steps in the EM 

implementation for feature selection. To demonstrate the efficacy of the feature 

selection algorithm on mixed type data, one synthetic dataset, one benchmark and 

one real application dataset are studies. For the synthetic dataset with known 

relevant features, the algorithm can select relevant features in 100% accuracy. For 

the benchmark dataset, the results show that the proposed algorithm gains better 

performance than the other four exiting algorithms in literature. Finally, the results 

on Alzheimer’s disease dataset show that the proposed algorithm can make full use 

of the data information (both categorical and continuous data types) and gain better 

performance than clustering algorithms without feature selection. The details of this 

work are illustrated in chapter 3. 

• Development of Uncertainty Quantification (UQ) for unsupervised feature 

selection results. I propose a new algorithm termed ESOM based on the original 

ESM algorithm to evaluate the uncertainty in the input data and feature selection 
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step. Specifically, the distribution of the delta values (difference between 

responsibilities before and after excluding certain feature) over all data points is 

generated and taken into consideration when doing feature selection. The 

confidence interval of the delta values is used to quantify the confidence of 

selecting a certain feature. In addition, for data points on the tail of the distribution 

are detected as candidate outliers, which are further quantified and visualized to 

represent the uncertainty of input dataset.  To evaluate the performance of the 

ESOM algorithm, I conducted experiments on four benchmark datasets.  The 

experiments show that the selected features form a new space that’s easier to cluster 

compared with the original feature space. Also, the ESOM algorithm improves the 

clustering accuracy compared with the original ESM algorithm. The details of this 

work are illustrated in chapter 4. 

 

1.4 Dissertation Organization 

My dissertation research will be presented in three chapters, as shown in Figure 3. Chapter 

2 presents the development of topic (I): embedded feature selection for Gaussian Mixture 

Model. Chapter 3 presents the development of topic (II): feature selection for Generalized 

Model of Mixture to handle mixed type dataset. Chapter 4 presents the development of 

topic (III): Uncertainty Quantification of the proposed embedded feature selection. Chapter 

5 summarizes the dissertation with conclusion remarks and discussions on future work. 
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Figure 3. Dissertation Framework.  

Phase I:
Feature selection 
for Gaussian 
Mixture Model

Phase II: 
Feature selection 
for Generalized 
Model of Mixture

Phase III: 
Uncertainty 
Quantification of 
Feature Selection
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CHAPTER 2 

FEATURE SELECTION FOR GAUSSIAN MIXTURE MODEL 

 

2.1 Introduction 

Lately, Gaussian Mixture Model (GMM) has demonstrated its superior performance in 

handling noisy data in the field of image classification and segmentation [14], automatic 

speaker recognition [15]. However, there still exists some challenges in GMM research for 

high dimensional dataset [12]. It is noted that among the large number of features, some 

may not truly contribute to delineate the cluster profiles. Inclusion of these “noisy features” 

requires more parameter estimations for GMM, which are computationally costly. 

Additionally, the noisy features will confuse the model to identify the true structure of the 

clusters [13].  

Recognizing this issue, researchers consider feature selections for solution. The current 

feature selection methods designed specific for GMM are divided into three groups: filters, 

wrapper, and embedded as defined for general feature selection approaches [16].  

Filters address the problem of feature selection and model building independently and treat 

feature selection as a pre-processing step. For example, Krishnam et al. [17] propose a 

feature selection method for GMM based on the Fisher ratio. The Fisher ratio between two 

classes is defined as the mean differences square over the mean of variances. Then the 

method ranks features by Fisher ratio assuming that discriminating features have a higher 

Fisher ratio. As the Fisher ratio method, typical filters select features with no regard to the 
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model building process. They are generally fast but can select feature subsets with low 

predictive accuracy. 

Wrappers usually build models on the subset of the features and evaluate the model 

performance for the subset of features. The wrappers require iterations between searching 

from subset space and constructing models based on subsets. Under the umbrella of 

wrappers, one typical feature selection approach for GMM is to formulate the feature 

selection problem as model comparison problem.  For example, Raftery and Dean [18] 

propose to use Bayesian information criteria (BIC) to compare models. In detail, the 

features are divided into three sets: relevant set, irrelevant set and the set of features 

proposed for inclusion or exclusion from relevant set. The univariate analysis is launched 

to identify the first most important feature for the clustering as the initial relevant feature 

set. Remaining features, one by one, is evaluated via Bayes factor, the likelihood of adding 

vs. excluding the feature from the relevant feature set. The features excluded from the 

clustering form the irrelevant feature set. A greedy stepwise forward selection approach is 

applied.  In calculating the Bayes factor, Raftery and Dean [18] assume the irrelevant 

features are dependent on the features from the relevant feature set. Maugis et al. [13] argue 

such assumption may not hold. Therefore, Maugis et al. [13] propose a backward stepwise 

strategy starting with all features so the model takes block interactions between features 

into account. To optimize the search process, Scrucca [19] proposes to use genetic 

algorithm, which is a stochastic search algorithm inspired by evolutionary biology and 

natural selection. In all three approaches: forward selection (Raftery & Dean [18]), 
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backward selection (Maugis et al. [13]) and genetic algorithm (Scrucca [19]), the 

comparison between two models: the model with and without the feature, is conducted to 

make the feature selection. Since the parameter estimation process for GMM is iterative, 

which in itself is computational expensive, the wrapper technique that needs iterations 

between selecting feature subset and model estimation can quickly become unfeasible.  

Besides the expensive computational cost, another drawback of wrappers is the difficulty 

of handling unsupervised data. Since the label is unknown for unsupervised data, the 

evaluation metric such as “accuracy” used in supervised data is infeasible and thus an 

unsupervised evaluation metric is needed. The proposed metrics such as Bayesian 

Information Criteria (BIC) often tradeoff between the likelihood and the number of features 

included in the model can be inaccurate and uninformative for feature selection [16]. 

Compared with filters that gives low accuracy and the wrappers that require high 

computational cost, embedded method that can simultaneously select features while 

constructing models is leading the trend [16]. Numerous embedded feature selection 

approaches for GMM have been developed. In general, they belong to three types. The first 

type is penalized model-based clustering, which introduces a penalty term in the forms of 

log-likelihood function to regularize parameter estimation in the EM [20]–[22]. The second 

type is feature saliency-based approach. Law et al. [23] introduce a latent variable for each 

feature indicating whether the feature is relevant or not and the probability of the feature 

being relevant is defined as feature saliency. The posterior probability estimates of the 

latent variables are updated in the EM procedure. One advantage of this approach is that 
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the estimated feature saliency can be used as feature rank as provided by filters approach. 

The third type is Bayesian feature weighting methods, which treats mean and covariance 

as random variables [24]. To obtain analytical solutions, all three approaches require the 

diagonal covariance matrix for the EM implementation. In other words, they are under the 

strict assumption that the features are independent with each other.  

In this research, we propose a new embedded feature selection approach for GMM, which 

considers the inter–dependences of the features and gives feature relevance rank 

automatically. The general idea is as follows. Delving into the detailed EM implementation, 

one interesting observation is responsibility metric calculated as an intermediate step. 

Responsibility is to measure the probability assigning the data point to a specific cluster. 

Given a feature, if the inclusion and the exclusion of the feature show no significant 

differences in responsibility measure, we conclude this feature is not truly contributing to 

the clustering. We define this responsibility difference as RI, the relevancy index for the 

feature. Based on RI, we propose ESM algorithm, the assessment of the RI is embedded 

naturally in between the E and M steps in the EM implementation for feature selection. 

One advantage of our proposed ESM is that it follows GMM principle on data 

dependencies, it is generalized thus can handle the dataset with dependent and independent 

variables. The second advantage is that the proposed ESM is embedded in the EM 

procedure which guarantees the convergence. The third advantage is that the relevancy 

index gives the feature relevancy rank automatically as provided in filters method.  
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The remainder of this study is organized as follows. Section 2.2 reviews the basics of GMM 

and EM algorithm. Section 2.3 presents the proposed ESM algorithm in detail with 

theoretical analysis on the RI.  Next, three sets of experiments on two synthetic datasets 

and one Alzheimer’s Disease dataset are illustrated in Section 2.4. In Section 2.5, the 

conclusion and future direction are presented.  

 

2.2 Review of GMM and EM 

A finite Gaussian mixture model is the weighted sum of K Gaussian components (clusters) 

and can be written as  

 𝑝(𝒙) =&𝜋!𝑁(𝒙|𝝁! , 𝜮!)
"

!#$

 (2.1) 

where 𝝁!  is the mean vector of 𝑘"#  component, 𝚺!  is the covariance matrix of 𝑘"# 

component, 𝜋!  is the mixing coefficient representing the proportion of 𝑘"#  component, 

and 𝑁(𝒙|𝝁! , 𝚺!) is the probability distribution of 𝑘"# component shown in equation (2.2).  

 𝑁(𝒙%|𝝁! , 𝜮!) =
1

(2𝜋)
&
' |𝜮!|

$
'
𝑒𝑥𝑝	{−

1
2
(𝒙% − 𝝁𝒌))𝜮!*$(𝒙% − 𝝁!)} (2.2) 

As in [25], we use a K-dimensional binary random variable 𝒛  having a one of K 

representation in which an element 𝑧! is equal to 1 and all other elements are equal to 0. 

The marginal distribution over 𝒛 is specified in terms of the mixing coefficient 𝜋!,  

 𝑝(𝑧! = 1) = 𝜋! (2.3) 
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where 0 ≤ 𝜋! ≤ 1 and ∑ 𝜋! = 1$
!%& . Suppose we have a data matrix 𝑋 ∈ 𝑅'×)  with N 

data points and D features in which the 𝑛"#  row is 𝒙*+ 	 . If the data points are drawn 

independently from the distribution, the log likelihood function is given by 

 𝑙𝑛 𝑃(𝑋|𝝅, 𝝁, 𝜮) = &𝑙𝑛 ;&𝜋!𝑁(𝒙%|𝝁! , 𝜮!)
"

!#$

<
+

%#$

 (2.4) 

In a Gaussian mixture model, the goal is to maximize the likelihood function with respect 

to the parameters including means 𝜇! , covariances 𝛴!  and mixing coefficients 𝜋! , k=1, 

2…, K. EM is a commonly used four-step algorithm to estimate these parameters. The 

algorithm starts from initializing 𝜇! , 𝛴!  and 𝜋! ,  and evaluates the initial value of log 

likelihood function. In the second step (known as E step), the EM evaluates the 

responsibilities under the current parameter settings. The responsibility is defined as the 

probability of assigning a data point to a specific clustering group: 

 𝛾(𝑧%!) = 𝑝(𝑧! = 1|𝒙%) =
𝑝(𝑧! = 1)𝑝(𝒙%|𝑧! = 1)

∑ 𝑝?𝑧, = 1@𝑝?𝒙%A𝑧, = 1@"
,#$

=
𝜋!𝑁(𝒙%|𝝁𝒌, 𝜮𝒌)

∑ 𝜋,𝑁?𝒙%A𝝁𝒋, 𝜮𝒋@"
,#$

         (2.5) 

In the third step, the EM re-estimates the parameters given the responsibilities. The 

estimation method is maximum likelihood, and therefore the third step is called “M step”. 

The final step is to check the convergence of log-likelihood. If the log likelihood difference 

between two iterations is small enough (e.g., less than a small number), it is converged. 

Otherwise, the algorithm goes back to the E step initiating the next iteration. For details of 

the EM algorithm, interested readers are to refer to [25]. We present our proposed ESM 

algorithm based on responsibility metric in the next section.  
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2.3 Proposed Method: ESM 

2.3.1 Relevancy Index and ESM 

We The proposed ESM algorithm takes advantage of the responsibility measures in the E 

step. Let us consider the responsibilities 𝛾(𝑧*!), the probability of assigning the data point 

𝑥* to cluster k, if we remove one specific feature, responsibilities shall change. Specifically, 

let the full feature space with D features be 𝐹 = {𝑓&, 𝑓,, … , 𝑓)}, the feature space excluding 

feature 𝑗  be 𝐹-. 	= {𝑓&, 𝑓,, … , 𝑓)}\{𝑓-} . Here, we denote the responsibility on the full 

feature space as 𝛾/(𝑧*!) and the responsibility on the reduced feature space (excluding 

feature	𝑗) as 𝛾/.
/
(𝑧*!) which is related to the 𝑛"# data point and the 𝑘"# cluster. Relevancy 

index (RI) is defined as the difference between two responsibilities averaged over N data 

points and K clustering groups to evaluate the importance of  𝑗"# feature to the clustering. 

It is written as:  

 𝑅𝐼(𝑗) =
1
𝑁𝐾&&|𝛾0(𝑧%!) − 𝛾0!

"
(𝑧%!)|

"

!#$

+

%#$

 (2.6) 

The assumption behind our proposed method is that if 𝑅𝐼(𝑗) is smaller than a pre-defined 

threshold, feature 𝑗 is neglectable in assigning data points to clusters. Thus, feature 𝑗 can 

be removed in feature selection process under the condition the 𝑅𝐼(𝑗) converges over the 

iterations. Concerning the convergence criteria for 𝑅𝐼, we evaluate the changes of 𝑅𝐼(𝑗) 

between the current and previous iteration, let say, if it is less than a small number, e.g., 

0.0005, we conclude	𝑅𝐼(𝑗) converges. Regarding the pre-defined threshold for feature 

selection, it can be set based on the approximate number of features to be selected (see 
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experiments in Section 4 for details). Table 1 summarizes the ESM algorithm with the 

proposed S step highlighted. 

Table 1. ESM Algorithm Pseudo Code. 

1. Initialize the means 𝜇!, covariances 𝛴! and mixing coefficients 𝜋!, and 
evaluate the initial value of the log likelihood. 

2. E step.  Evaluate the responsibilities using the current parameter values 

 𝛾/(𝑧*!) =
𝜋!𝑁(𝑥*|𝜇! , 𝛴!)

∑ 𝜋!𝑁(𝑥*|𝜇! , 𝛴!)$
!%&

  

and responsibilities after excluding each feature 

𝛾/.
/
(𝑧*!) =

𝜋!𝑁(𝑥*∗ |𝜇!∗ , 𝛴!∗)
∑ 𝜋!𝑁(𝑥*∗ |𝜇!∗ , 𝛴!∗)$
!%&

	𝑓𝑜𝑟	𝑗 = 1,2, . . 𝐷 

where 𝑥*∗ , 𝜇!∗  and 𝛴!∗  are the corresponding vector of 	𝑥*  , 𝜇!  and 𝛴!  after 
excluding 𝑗"# variable. 
 

3. S step. Calculate the difference between responsibilities before and after 
excluding 𝑗"# feature at iteration t. 

𝑅𝐼(𝑗)(") =
1
𝑁𝐾I|𝛾/(𝑧*!) − 𝛾/.

/
(𝑧*!)|

*,!

 

If  K𝑅𝐼(𝑗)("4&) − 𝑅𝐼(𝑗)(")K < 𝜖  (converged) and 𝑅𝐼(𝑗)(")  is small enough, then 
discard the feature with smallest 𝑅𝐼 and update the full feature space F.    
 

4. M step. For reduced data with feature space F, re-estimate the parameters using 
the current responsibilities	

𝜇!*56 =
1
𝑁!

I𝛾(𝑧*!)𝑥*

'

*%&

 

𝛴!*56 =
1
𝑁!

I𝛾(𝑧*!)(𝑥* − 𝜇!*56)(𝑥* − 𝜇!*56)7
'

*%&

 

𝜋!*56 =
𝑁!
𝑁  

5. Evaluate the log likelihood  

 𝑙𝑛	𝑃(𝑋|𝜋, 𝜇, 𝛴) = I 𝑙𝑛	{I𝜋!𝑁(𝑥*|𝜇! , 𝛴!)
$

!%&

}
'

*%&

  

If the parameters or the log likelihood are not converged, go back to step 2.   
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2.3.2 Theoretical Analysis on Relevancy Index 

In As stated in [26], for a specific feature, when the variances are the same among clusters, 

if the mean of a cluster on the feature is equal to the global mean, this feature is 

uninformative or irrelevant to clustering. Intuitively, the bigger difference between the 

means, the more relevant the feature is. The following theorem gives the relationship 

between RI and difference of means which justifies the use of RI can identify the irrelevant 

features to be removed.  

Theorem 1. Given a dataset with D features and K clusters, let the conditional mean of 

cluster 𝑙  on the 𝑗"#  feature given all the other features be 𝜇8- , the conditional mean 

difference between two clusters 𝑙 and 𝑚 be 𝜖-(𝑙,𝑚) = |𝜇8- − 𝜇9-|, the lower bound of 

𝑅𝐼(𝑗) is an increasing function of 𝜖-(𝑙,𝑚) for some 𝑙, 𝑚 ∈ {1,2, … , 𝐾}. Specifically, if 

𝜖-(𝑙,𝑚) = 0, 𝑅𝐼(𝑗) = 0.  

Proof:  

Let  𝑥* be a data point with D features and the  𝑗"# variable is denoted as 𝑥*-. Let  𝑥*∗  be 

the corresponding vector of 𝑥* after excluding the 𝑗"# feature. Let 𝜇! , Σ! be the mean and 

covariance of cluster 𝑘 on full D feature dataset and 𝜇!∗  and 𝛴!∗  be the corresponding vector 

of  𝜇! and 𝛴! after excluding 𝑗"# variable.  

The joint distribution of D features can be decomposed into the joint distribution of all the 

other features except 𝑗"# feature and the conditional distribution of 𝑗"# feature. That is,  

 𝜋!𝑁(𝑥%; 𝜇! , 𝛴!) = 𝜋!𝑁(𝑥%∗ ; 𝜇!∗ , 𝛴!∗)𝑁 I𝑥%,J𝑥%∗ ; 𝜇!,(𝑥%∗), 𝜎!,' (𝑥%∗)L (2.7) 

where 𝜇!-(𝑥*∗) is a linear function of 𝑥*∗ . Hence, we can rewrite 𝑅𝐼(𝑗) as 
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𝑅𝐼(𝑗) =
1
𝑁𝐾&&|𝛾0(𝑧%!) − 𝛾0!

"
(𝑧%!)|

"

!#$

+

%#$

 

 

 
		=

1
𝑁𝐾&&M

𝜋!𝑁(𝑥%; 𝜇! , 𝛴!)
∑ 𝜋2𝑁(𝑥%; 𝜇2 , 𝛴2)"
2#$

−
𝜋!𝑁(𝑥%∗ ; 𝜇!∗ , 𝛴!∗)

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$

M
"

!#$

+

%#$

 

 
 

 

 

		=
1
𝑁𝐾&&N

𝜋!𝑁(𝑥%∗ ; 𝜇!∗ , 𝛴!∗)𝑁 I𝑥%,J𝑥%∗ ; 𝜇!,(𝑥%∗), 𝜎!,' (𝑥%∗)L	

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)𝑁 I𝑥%,J𝑥%∗ ; 𝜇2,(𝑥%∗), 𝜎2,'(𝑥%∗)L"
2#$

"

!#$

+

%#$

−
𝜋!𝑁(𝑥%∗ ; 𝜇!∗ , 𝛴!∗)

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$

N 

 

 

 

		=
1
𝑁𝐾&&

O

O 𝜋!𝑁(𝑥%∗ ; 𝜇!∗ , 𝛴!∗)

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$

𝑁I𝑥%,J𝑥%∗ ; 𝜇2,(𝑥%∗), 𝜎2,'(𝑥%∗)L

𝑁 I𝑥%,J𝑥%∗ ; 𝜇!,(𝑥%∗), 𝜎!,' (𝑥%∗)L

"

!#$

+

%#$

−
𝜋!𝑁(𝑥%∗ ; 𝜇!∗ , 𝛴!∗)

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$ O

O
 

 

        
(2.8) 

 

 

Given any data point 𝑥*, where 𝑛 ∈ 	 {1,2… ,𝑁}, there exists a component 𝑚*, which has 

the largest likelihood:  

 𝑚% = argmax
2∈{$,'..,"}

𝑁 I𝑥%,J𝑥%∗ ; 	𝜇2,(𝑥%∗), 𝜎2,'(𝑥%∗)L (2.9) 

Let the ratio of likelihood between any two components, component l and component k be  

 𝑅𝑎𝑡𝑖𝑜(𝑙, 𝑘; 𝑥%) =
𝑁 I𝑥%,J𝑥%∗ ; 𝜇2,(𝑥%∗), 𝜎2,'(𝑥%∗)L

𝑁 I𝑥%,J𝑥%∗ ; 𝜇!,(𝑥%∗), 𝜎!,' (𝑥%∗)L
 (2.10) 

 

where 𝑙, 𝑘	 ∈ {1,2, … , 𝐾}. By equation (2.8), we have 
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𝑅𝑎𝑡𝑖𝑜(𝑙,𝑚%; 𝑥%) =
𝑁 I𝑥%,J𝑥%∗ ; 𝜇2,(𝑥%∗), 𝜎2,'(𝑥%∗)L

𝑁 I𝑥%,J𝑥%∗ ; 𝜇8#,(𝑥%
∗), 𝜎8#,

' (𝑥%∗)L
≤ 1 

Expanding the Ratio in equation (2.9), we obtain  

𝑅𝑎𝑡𝑖𝑜(𝑙,𝑚%; 𝑥%) =
exp	{− 1

2𝜎2,'
?𝑥, − 𝜇2,(𝑥∗)^

exp	{− 1
2𝜎8#,

' ?𝑥, − 𝜇8#,(𝑥∗)^
 

 

 										= exp _−
1
2𝜎,'

I2𝑥, − 𝜇2,(𝑥∗) − 𝜇8#,(𝑥
∗)L I𝜇8#,(𝑥

∗) − 𝜇2,(𝑥∗)L` (2.11) 

 

Since 𝑅𝑎𝑡𝑖𝑜(𝑙,𝑚*; 𝑥*) ≤ 1, we have 

V2𝑥- − 𝜇8-(𝑥∗) − 𝜇99-(𝑥
∗)W V𝜇99-(𝑥

∗) − 𝜇8-(𝑥∗)W ≥ 0 , which can be rewritten as 

K2𝑥- − 𝜇8-(𝑥∗) − 𝜇99-(𝑥
∗)KK𝜇99-(𝑥

∗) − 𝜇8-(𝑥∗)K=K2𝑥- − 𝜇8-(𝑥∗) − 𝜇99-(𝑥
∗)K𝜖-(𝑚*, 𝑙). 

Therefore, 

𝑅𝐼(𝑗) ≥
1
𝑁𝐾&O

O 𝜋8#𝑁?𝑥%
∗ ; 𝜇8#

∗ , 𝛴8#
∗ @

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$

𝑁 I𝑥%,J𝑥%∗ ; 𝜇2,(𝑥%∗), 𝜎2,'(𝑥%∗)L

𝑁 I𝑥%,J𝑥%∗ ; 𝜇8#,(𝑥%
∗), 𝜎8#,

' (𝑥%∗)L

−
𝜋8#𝑁?𝑥%

∗ ; 𝜇8#
∗ , 𝛴8#

∗ @
∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$ O

O+

%#$

 

=
1
𝑁𝐾&

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜋8#𝑁?𝑥%
∗ ; 𝜇8#

∗ , 𝛴8#
∗ @

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$

𝑁I𝑥%,J𝑥%∗ ; 𝜇2,(𝑥%∗), 𝜎2,'(𝑥%∗)L

𝑁 I𝑥%,J𝑥%∗ ; 𝜇8#,(𝑥%
∗), 𝜎8#,

' (𝑥%∗)L

−
𝜋8#𝑁?𝑥%

∗ ; 𝜇8#
∗ , 𝛴8#

∗ @
∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$

⎦
⎥
⎥
⎥
⎥
⎥
⎤

+

%#$

 

=
1
𝑁𝐾&

𝜋8#𝑁?𝑥%
∗ ; 𝜇8#

∗ , 𝛴8#
∗ @

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$ exp _− 1

2𝜎,'
A2𝑥, − 𝜇2,(𝑥∗) − 𝜇8#,(𝑥∗)A𝜖,(𝑚%, 𝑙)`

+

%#$
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						−
1
𝑁𝐾&

𝜋8#𝑁?𝑥%
∗ ; 𝜇8#

∗ , 𝛴8#
∗ @

∑ 𝜋2𝑁(𝑥%∗ ; 𝜇2∗, 𝛴2∗)"
2#$

+

%#$

 

 

Hence the lower bound of 𝑅𝐼(𝑗) is an increasing function of conditional mean difference 

of two clusters 𝜖-(𝑙,𝑚) . If 𝜖-(𝑙,𝑚) = 0	 for any 𝑙, 𝑚	 ∈ 	 {1, 2… , 𝐾}  and conditional 

variances are the same for all clusters, the ratio between any two components equals to 1. 

By equation (2.8), 𝑅𝐼(𝑗) = 0. 

End of Proof. 

We prove that an irrelevant feature having the same mean and variance among all clusters 

given all the other features has an RI being zero. In addition, the bigger mean difference 

between clusters can lead to a bigger lower bound value of the RI. If the lower bound of 

𝑅𝐼(𝑗) is small, the mean differences are small indicating the 𝑗"# feature does not contribute 

to clustering. One advantage of RI over mean differences used in [26] is RI considers both 

mean difference as well as variance differences. As shown in equation (2.8), the mean and 

the variances are both incorporated in the formula. Often, there are cases that the means 

from two clusters are the same, but the variances differ. Simply using the mean difference 

will not capture the features contributing. Here we use an illustration example to explain 

this idea.  

[Illustration example] For a two-dimensional dataset X, there are 100 samples. The first 

feature is generated from normal distribution 𝑁(3,1). The second feature is generated from 

two normal distributions with 50 samples from 𝑁(1.5,1) and another 50 samples from 

𝑁(1.5,10). In the setting, only the second feature contributes to clustering. If we use the 
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mean differences, both clusters have [3, 1.5] as the mean, the conclusion is both features 

are not contributing to the clustering. Now, if we study the EM implementation, given some 

initialized mean and variances, the RI values are calculated by equation (2.8), we get: 

𝑅𝐼(1) = 0.030		𝑅𝐼(2) = 0.461 

We conclude the second feature is contributing while the first feature should be treated as 

an irrelevant feature based on the RI. This simple example illustrates the advantages of RI 

over the mean differences. Some experiments to validate the efficacy of RI are discussed 

in the following sections. 

 

2.4 Experiments 

In the section, two synthetic datasets, four benchmark dataset, and one medical application 

(Alzheimer’s Disease) dataset are studied to demonstrate the performance of the proposed 

ESM algorithm. On the benchmark dataset, we compare the proposed algorithm with other 

existing model-based feature selection algorithms from R software packages. Please note 

our proposed ESM develops one model within which we decide the features to be kept or 

removed. In comparison, both the forward feature selection algorithm [19] and backward 

feature selection algorithm [14] need to develop a large number of models with each 

requiring the parameter estimations. For the dataset with a large number of features, we 

expect the computational advantages of the proposed ESM will show. Also, our 

experiments on the synthetic datasets indicate all three algorithms, including ours, can 
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identify the relevant features, here we choose to report the experimental results from our 

proposed ESM comparing to EM in the following sections.  

Since the ground truth of all the datasets are known, we use the following two metrics for 

the performance evaluation: (1) Relevancy Feature Selection (RFS): the percentage of 

relevant features being selected; (2) Accuracy: the percent of instances correctly clustered. 

 

2.4.1 Experiments on Synthetic Datasets 

We design both synthetic datasets with two relevant features, and two clusters. Additional 

irrelevant features are generated as “noise features”. In the first dataset, we have 10 features, 

all independent. As in most real-world data, there are some dependencies between features. 

To capture the dependency between the feature sets, we generated some correlated features 

in the second dataset.  

 

2.4.1.1 Experiments I 

In this experiment, we get 10 features with  𝑓&  and 𝑓,  being the relevant features for 

clustering, and the other 8 features are irrelevant features. The relevant features are 

simulated from a two-component mixture of Gaussian distributions with the equal number 

of data points for each component. The irrelevant features are randomly generated from 

normal distributions. Since the data size may affect the performance of clustering 

performance, we create the 10 datasets from 100 to 1000 data points with 100 increments 
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(see Table 2 for the experiment settings). For each setting, 10 experiment runs are 

conducted. 

Figure 1 illustrates that the clustering performance varies with different data sizes. We 

observe that as the data size increases from 100 to 300, the clustering accuracy improves. 

The performance remains the same afterward. This concurs with the challenges commonly 

identified in the clustering research. That is, when the ratio between the number of data 

points vs. the number of features is small, it is difficult to derive the stable cluster structures. 

The second observation is that the standard deviation of the accuracy has similar pattern. 

However, the performance is relatively unstable (large standard deviation) for the 

experiments on 100 data points and 200 data points depending on the ESM initializations. 

In the 10 repeated runs, about three to five with good initializations are able to successfully 

identify the relevant features. Here we argue this should not be a concern since a run with 

a bad initialization tends to converge slower. It is our intention to design an initialization 

mechanism to improve the performance as a future task.  

Table 2. Experiment Setting for Synthetic Dataset I. 

# of features 2 relevant +8 irrelevant 
# of 
groups/components 

a mixture of 2 components 

# of data points 100, 200,300, 400,500,600,700,800,900,1000 
# of repeated runs 10 
Distribution of 
relevant features 
for each 
component 

𝜇& = V−11 W	𝜇, = V 2−1W	     𝛴& = V1 0
0 1W	𝛴, = V1 0

0 1W	 
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Distribution of 
irrelevant features 

𝑓: = 𝑁(1.5, 1) 
	𝑓; = 𝑁(3, 0.5) 
𝑓< = 𝑁(1.8, 0.9) 
	𝑓= = 𝑁(2.7, 1.5) 
𝑓> = 𝑁(0.3, 0.5) 
𝑓? = 𝑁(0.8, 0.9) 
𝑓@ = 𝑁(−2, 0.5) 
𝑓&A = 𝑁(−3, 0.9) 

# of repeated runs 10 
 

 

 

Figure 4. Synthetic Dataset I: The Clustering Performance vs. Data size. 

As shown in Figure 4, the ESM shows good performance when the ratio reaches 30 (300 

data points, 10 features). We will use this experiment setting to illustrate the value of the 

RI in feature selection. 
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Figure 5 shows the trace of the RI for each feature over the iterations. One sharp 

observation is both 𝑓& and  𝑓, have significantly higher 𝑅𝐼	values than the other 8 irrelevant 

features. Besides, the accuracy of ESM is 97.0% while the accuracy of EM (on the full 

feature set) is only 71.5%. We conclude ESM can identify the relevant features 

(independent features) and exclude the irrelevant “noisy features” resulting in much-

improved clustering performance.    

 

Figure 5. Relevancy Index Value for Each Feature Over Iterations on 300 Synthetic Data 
Points.  

 
2.4.1.2 Experiments II 

In this experiment, we include 15 features with 𝑓& and 𝑓, being the relevant features for 

clustering and remaining 13 features being irrelevant features. The relevant features are 

generated from two-component mixture of Gaussian distributions with 225 data points for 

each component. In addition, we purposely add correlations between the features including 

𝑓&~ 𝑓,, 𝑓&, ~ 𝑓&: and 𝑓&; ~ 𝑓&< correlations. The experiment setting is summarized in Table 
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3. Similarly, 10 runs are conducted for each experiment. Figure 6 shows both 𝑓& and  𝑓, 

have significantly higher 𝑅𝐼	values than the other 13 irrelevant features. In addition, the 

accuracy of ESM is 97.5% while the accuracy of EM on the full feature set is only 84.7%. 

We conclude ESM is able to identify the relevant features with dependencies and exclude 

the irrelevant “noisy features” resulting much improved clustering performance.  

Table 3.Experiment Setting for Synthetic Dataset II. 

# of features 2 relevant + 13 irrelevant 
# of 
groups/components 

a mixture of 2 components 

# of data points 450 
# of repeated runs 10 
Distribution of 
relevant features 
for each 
component 

𝜇& = V−12 W	𝜇, = V 2−1W	     𝛴& = V 1 0.1
0.1 1 W	𝛴, = V 1 0.1

0.1 1 W	 
 

Distribution of 
irrelevant features 

𝑓: = 𝑁(1.5, 1) 
𝑓; = 𝑁(3,0.5) 
𝑓< = 𝑁(1.8,0.9) 
𝑓= = 𝑁(0.3,0.5) 
	𝑓> = 𝑁(2,1) 
𝑓? = 𝑁(−2,2) 
𝑓@ = 𝑁(4,3) 
𝑓&A = 𝑁(1.5,0.1) 
𝑓&& = 𝑁(−4,2) 
 𝑓&,	𝑎𝑛𝑑	𝑓&:	𝑎𝑟𝑒	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝜇&,_&: = V22W	𝛴&,_&: =

V 1 0.3
0.3 1 W 

𝑓&;	𝑎𝑛𝑑	𝑓&<	𝑎𝑟𝑒	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝜇&;_&< = V−32 W	𝛴&;_&<

= V 1 0.1
0.1 1 W 

# of repeated runs 10 
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Figure 6. Relevancy Index for Each Feature Over Iterations on 450 Synthetic Data Points.  

 

2.4.2 Benchmark Datasets 

In this part, we compare the proposed algorithm with other existing algorithms. To get a 

fair comparison, we focus on the feature selection algorithms for model-based clustering. 

The survey paper [27] summarized six GMMs variable selection R packages named as 

sparcl[28], clustvarsel [29], VarSelLCM [30], vscc [31], SelvarMix [32], bclust [33]. 

Among the six methods, ‘sparcl’ mainly performs sparse hierarchical and sparse K-means 

clustering; the ‘bclust’ package requires a deliciated initial transformed model.  Thus, we 

exclude these two methods and compare the proposed method with the other four methods.   

To evaluate the cluster quality, two evaluation metrics, accuracy (ACC) and adjusted rand 

index (ARI) were computed. In addition, we also report the running time on the following 

datasets:  
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G2: A synthetic Gaussian cluster datasets with 2048 rows and 128 columns. The variation 

is 40 indicating medium level of overlap. The data has two groups [34].  

Vowel: An empirical dataset with 990 rows and 9 context-sensitive features. The problem 

is to recognize a vowel spoken by an arbitrary speaker. The observations fall in eleven 

groups (different vowels) [35]. 

Wine: A chemical analysis of wines grown in the same region in Italy but derived from 

three different cultivars. The wine data contains three types of wines with 178 rows and 27 

columns. 

Crab: An empirical dataset with 200 rows and 8 columns, among which five columns 

describe the morphological measurements while the remaining three columns are the color 

(orange and blue), sex (Female and Male) and index that divide the 200 crabs evenly into 

four groups by the combination of color and sex. 

The results are summarized in Table 4. From the results of the experiments, we found that, 

on this set of benchmark datasets, the proposed ESM method has comparable accuracy 

with other algorithms but faster speed.  The model-based feature selection algorithms are 

generally slow and can’t handle high dimensional data easily. To evaluate the performance 

on a higher dimensional data, we included the synthetic G2 data, which has a higher 

dimension than the other three empirical datasets. On this dataset, all algorithms take much 

longer time than on low dimension empirical datasets. Specifically, we did not report the 

accuracy for ‘clustvarsel’ since it takes a stepwise approach, for which the computational 

time increases exponentially as dimension increases (takes over eight hours). One 
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interesting observation is that all the algorithms can achieve 100% accuracy on G2 

synthetic dataset. The reason is that the G2 synthetic dataset is generated from the Gaussian 

Mixture model without any noise; thus, the model can be easily fitted. 

Table 4. Performance Results on Benchmark Datasets. 

DATASET ALGORITHM ACC ARI TIME(SEC) 
G2 clustvarsel -- -- -- > 8 hr 

VarSelCluster 1 1 29.184 
vscc 1 1 178.893 

selvarclustLasso 1 1 4610.932 
ESM 1 1 494.896 

VOWEL clustvarsel 0.302 0.118 143.445 
VarSelCluster 0.377 0.211 64.623 

vscc 0.371 0.181 7.979 
selvarclustLasso 0.339 0.151 16.094 

ESM 0.358 0.169 3.973 
WINE clustvarsel 0.910 0.739 13.910 

VarSelCluster 0.944 0.830 4.086 
vscc 0.978 0.931 8.316 

selvarclustLasso 0.843 0.585 2.380 
ESM 0.916 0.755 2.953 

CRAB clustvarsel 0.935 0.840 1.982 
VarSelCluster 0.355 0.038 1.723 

vscc 0.620 0.428 0.196 
selvarclustLasso 0.595 0.354 0.914 

ESM 0.910 0.783 1.255 
 

Another observation from the results table is that the clustering performance depends a lot 

on the dataset. One algorithm can perform well one dataset while badly on the other. For 

example, ‘VarSelCluster shows the best accuracy on ‘Vowel’ dataset while worst on the 

‘Crab’ dataset. ‘vscc’ shows the best accuracy on ‘Wine’ dataset but wicked accuracy on 

‘Crab’ dataset. But luckily, the ESM algorithm has competitive accuracy on all benchmark 
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datasets here. The facts show the potential robustness of the ESM algorithm on different 

datasets. 

 

2.4.3 Real World Application: Alzheimer’s Disease 

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease that is the most 

frequent type among elderly dementia patients. In the U.S., approximately 5.2 million 

people over 60 are afflicted by AD [36]. The situation drives a significant amount of 

research investigating ways to slow down the AD progression and detect AD at an early 

stage for better treatment or even prevent the disease. Mild cognitive impairment (MCI) is 

a syndrome defined as cognitive decline more significant than expected for individuals 

during aging but that does not interfere notably with activities of daily life [37]. It is an 

intermediate stage between healthy aging with mild cognitive decline and dementia, where 

cognitive impairment is more severe, even impacting daily function. Though it is distinct 

from dementia, MCI patients with memory complaints and deficits (amnestic mild 

cognitive impairment) have high risks of progression to AD [37], [38]. The early diagnosis 

of the MCI stage is becoming essential when the interventional strategies may be more 

effective.  

Extensive research has investigated the predictive model for AD in hoping to predict the 

risk of each patient converting to AD, and this is still on-going effort. The focus of this 

research is to identify the underlying patient cohort structures which may discover patient 

subtypes for interventional treatment. In this study, we have collected 317 patients’ data 
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from Alzheimer’s disease neuroimaging initiative [39], a large-scale online repository 

designed to identify more sensitive and accurate methods to detect Alzheimer’s disease at 

an earlier stage and mark its progress via biomarkers. Specifically, the baseline data is 

collected to evaluate the efficacy of our proposed ESM method in AD early detection. 

Among all these patients, 22 are AD, 172 are MCI, and 123 are Normal Controls (NCs). 

For each patient, we obtain PET, MR images and cognitive tests (see Table 5).  

Table 5. Summary of Features for Alzheimer’s Disease Data. 

Feature              Notation Mean ± SE Category 
Age 𝑓$ 72.9 ± 7.3 Demographic 
Mini-Mental State 
Examination (MMSE) 

𝑓' 28.2 ± 2.3 Cognitive Test 

Clinical Dementia 
Rating (CDR) Score 

𝑓: 1.1 ± 1.6 Cognitive Test 

Volume of hippocampus 𝑓; 7157 ± 1160 MRI biomarkers 
Volume of ventricles 𝑓< 35086 ± 19333 MRI biomarkers 
Whole Brain 𝑓= 1048732 ± 112296 MRI biomarkers 
Entorhinal 𝑓> 3677 ± 741 MRI biomarkers 
Volume of Intracranial 𝑓? 1514196 ± 156568 MRI biomarkers 
Hypometabolic 
Convergence Index 
(HCI) 

𝑓@ 10.9 ± 5.6 FDG-PET biomarkers 

Statistical region of 
interest (sROI) 

𝑓$A 1.2 ± 0.07 FDG-PET biomarkers 

mean cortical Standard 
Uptake Value Ratio with 
cerebellum as reference 
region (mcSUVRcere) 

𝑓$$ 1.1 ± 0.2 F-AV45-PET 
biomarkers 

mean cortical Standard 
Uptake Value Ratio with 
corpus callosum and 
centrum semiovale 
combined as reference 
region (mcSUVRwm) 

𝑓$' 0.77 ± 0.17 F-AV45-PET 
biomarkers 
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Table 6 presents the correlation matrix of the features. Clearly, some features are highly 

dependent to each other, for example, the clinical test scores MMSE (f2) vs. CDR (f3), MRI 

biomarkers volume of hippocampus (f4) vs. whole brain (f6), FDG-PET biomarkers HCI 

(f9) vs. sROI (f10).  

One challenge in applying the traditional clustering approach to the data is that some noise 

features degrade the performance of GMM. Table 7 shows the clustering results from 

original EM using all 12 features. The overall accuracy of correctly identifying patients to 

disease types is only 58.68%. For the AD cohort, EM clusters 20 out of 22 AD patients 

correctly (90.91%). For the NC cohort, EM though, identifies 87 out of 123 correctly, 2 

NCs are put into the AD group, and another 34 NCs are labeled as MCI. The accuracy of 

the NC cluster is 70.73%. The results on the MCI cohort are even worse, with 79 out of 

172 are correctly labeled, and 58 MCIs are put into the NC group; remaining 35 are grouped 

to AD cohorts resulting in 45.93% accuracy.  

Table 6. Correlation Matrix 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 
f1 1.00 -0.09 -0.02 -0.37 0.41 -0.34 -0.15 0.02 0.03 -0.35 0.12 0.19 
f2  1.00 -0.72 0.44 -0.19 0.19 0.41 0.03 -0.48 0.41 -0.38 -0.47 
f3   1.00 -0.41 0.22 -0.14 -0.42 0.02 0.55 -0.45 0.38 0.48 
f4    1.00 -0.33 0.56 0.64 0.29 -0.39 0.54 -0.27 -0.39 
f5     1.00 0.06 -0.11 0.45 0.28 -0.43 0.11 0.44 
f6      1.00 0.49 0.79 0.00 0.35 -0.07 -0.05 
f7       1.00 0.30 -0.27 0.38 -0.19 -0.25 
f8        1.00 0.15 0.05 0.04 0.14 
f9         1.00 -0.65 0.32 0.49 
f10          1.00 -0.30 -0.41 
f11           1.00 0.84 
f12            1.00 
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Table 7. Confusion Matrix of EM Using All Features 

  GROUNDTRU
TH 

   

  NC AD MCI Overall accuracy 
CLUSTERI
NG 

NC 87 0 58  
AD  2 20 35  
MCI 34 2 79  

 Total 123 22 172  
 Accurac

y 
70.73% 90.91% 45.9

3% 
          58.68% 

 

Applying the ESM algorithm, three out of 12 features are selected: CDR(𝑓:), HCI (𝑓@) and 

mcSUVRcere (𝑓&&). As shown in Figure 7, the three features have significantly higher RIs 

than other features. If we only use the three features, the overall clustering accuracy is 

84.86% (Table 8). In comparing the results from Table 7 and Table 8, the accuracy of AD 

improves from 90.91% to 100%. The accuracy of NC improves from 70.73% to 92.68%, 

where one NC is mislabeled as AD, and 8 out of 123 NCs are labeled as MCIs. The 

accuracy of MCI improves from 45.93% to 77.33%, with the majority of the MCIs (133 

out of 172) are correctly labeled, one MCI is put into the NC group, and 38 MCIs are put 

to the AD group.   

We want to emphasize that it is not surprising to see the current results on MCI. Clinically, 

the MCI cohort has subtypes: MCI converter and MCI non-converter. MCI converter refers 

to the patient positively diagnosed as AD in the follow-up exams. Fortunately, ANDI is a 

rich data repository with longitudinal data available. We collect the updated patient staging 

information from the follow-up visit to explore the composition of the MCI group. For 
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illustration purposes, we show a 2D plot of the two most relevant features CDR (f3) and 

mcSUVRcere (f11).  

 

 

Figure 7. Relevancy Index for Each Feature Over Iterations on AD Data.  

 

Table 8. Confusion Matrix for ESM Clustering. 

  GROUNDTRUTH    
  NC AD MCI Overall accuracy 
CLUSTERING NC 114 0 1  

AD 1 22 38  
MCI 8 0 133  

 Total 123 22 172  
 Accuracy 92.68% 100% 77.33% 84.86% 
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Figure 8. Clustering Shown in Two Feature Space: CDR (f3) and mcSUVRcere (f11). 
 

The points are colored by the real diagnosis results: AD (red), MCI (green) and NC (blue). 

The shapes signify the converters: triangle for NC converting to MCI, square for NC 

converting to AD, and cross for MCI converting to AD. In Figure 8, 16 out of 26 green 

crosses are on the boundary between MCI and AD clusters, but close to AD. That is, among 

the 172 MCIs, 26 are staged as AD in the follow-up visit. Using baseline data, the 17 out 

of 38 MCIs mislabeled as AD (Table 8) are indeed converted. The blue triangle represents 

the patient converting from NC to MCI. In the 7 blue triangles, there is one particular point, 

which is diagnosed as NC in the first visit. However, in clustering, the point is closer to 

MCI than NC in Figure 8 and mislabeled as MCI in Table 8, which is verified by the 

diagnosis of MCI in the second visit. Indeed, the clustering technique can help to capture 

the convert between disease types.  
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2.5 Conclusion 

Gaussian Mixture Model (GMM), as a soft clustering methodology, has attracted 

considerable attention due to the distinct advantages from its statistical foundation. 

However, its performance deteriorates notably if the dataset has many noisy features 

irrelevant to the clustering process. This research proposes an ESM algorithm based on a 

new metric: relevancy index (RI). The traditional EM algorithm for GMM modeling 

parameter estimation is extended with an S step using RI for feature selection. ESM 

preserves the good properties of the EM algorithm, such as guaranteed convergence and 

optimum determination of the clustering number. To evaluate the performance of ESM 

algorithm, we conduct experiments on two synthetic datasets (with independent features, 

with dependent features), four benchmark datasets and one Alzheimer’s Disease (AD) 

dataset. The experiments on synthetic datasets show that ESM can identify the relevant 

features and improved clustering accuracy comparing to EM. The experiments on four 

benchmark datasets show that ESM has a competitive performance on accuracy and 

running time compared with existing algorithms. Other than improved clustering results, 

the experiment on AD indicates that ESM may potentially identify the patient subtypes, 

which is crucial for patient treatment planning. While promising, the algorithm is limited 

for applications on more complex data such as mixed data with both continuous and 

categorical features. In the future, we may tackle the issue for more general data types.  
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CHAPTER 3 

FEATURE SELECTION FOR GENERALIZED MODEL OF MIXTURE 

 

3.1 Background 

Most existing clustering algorithms are designed to tackle single data type (e.g., 

continuous, categorical) thus limit its applications to the real-world problems which often 

contain mixed data types. The intuitive solution to a mixture dataset is to convert the data 

set to a single type by either transforming the categorical features to numbers or converting 

the continuous features into categorical features. Classic clustering methods can then be 

applied afterwards. One example is to dummy coding all categorical features to continuous 

features [40]. There are three issues associated with this. First, the dimension of data set is 

increased, and this may cause problems when the number of categorical features or the 

level of the categorical feature is large. Second criticism is the semantic similarity in the 

original data set may be lost during the transformation [41]. The third issue is it is non-

trivial to give correct numeric values to categorical values like color [42]. While converting 

continuous features to categorical ones may be less problematic, the discretization process 

may again lose information [42]. An alternative approach on mixture dataset is to define 

new distance measures and cost function designed specifically for the types of the data. 

Enormous efforts have been invested on improving k-means and k-prototypes clustering 

algorithm. For example, based on k-prototypes, new measures such as Gower’s distance 

[43] are introduced to calculate the dissimilarity between data objects and prototypes of 



 

 

 

39 

clusters. Gower’s distance usually involves weights specified for the distance of continuous 

features and the distance of categorical features. As criticized by Foss et al. (2016), 

determining the weights is critical for the clustering and yet there is currently no explicit 

guideline on how to assign the weights for optimal clustering outcomes. The third approach 

on mixed data takes ensembled methods [44]. The idea is simple. The mixed data set is 

first divided into two sub-datasets: the categorical dataset and the continuous dataset. 

Traditional clustering algorithms designed for different types of datasets are applied 

respectively and the clustering results on the two sub-datasets are combined via a sequential 

combination method. The main issue of the ensemble method is that the clustering 

algorithms are biased by partial of the dataset. And, using single type of data does not take 

advantage of the complementary information from other data.  

The three approaches reviewed above are mostly instance-based focusing on the data 

points instead of the dataset distributions. One may argue that converting the categorical 

features into continuous features from the first approach does use the normal distribution 

as the guideline. However, this is under the assumption that the categorical data can be 

represented as continuous data from a normal distribution. The true distribution on the 

original categorical data is not utilized. In contrast, model-based methods look into the 

probabilistic distribution from the true data. It assumes that the instances (data points) are 

generated from a mixture of underlying probability distribution. Literature terms this 

approach as model-based clustering (Banfield & Raftery 1993; Bensmail et al. 1997; Fraley 

& Raftery 1998a, 1998b), mixture likelihood clustering (McLachlan & Basford 1988; 
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Everitt 1993), mixture-model clustering (Jorgensen & Hunt 1996; McLachlan, et al. 1999) 

and Latent Class cluster analysis (Vermunt & Mgidson, 1996). In general, model-based 

approaches (a.k.a. Latent Class models) have several advantages in clustering mixed type 

data. (1) Statistical metrics (e.g., mean and variance) derived from the data distribution 

instead of the distance between the data points are used in the modeling. The model uses 

the probability to describe the degree of the data point belonging to the cluster and the 

probability is updated iteratively during the clustering. Since most real world problems are 

uncertain by nature, the use of this “soft assignment” approach may be a better alternative 

comparing to the “hard assignment” (e.g., k-means) [45][8]. (2) Latent Class model enjoys 

the flexibility in choosing the distribution forms for each component. The continuous 

features can be modeled as normal distribution while the categorical features can be 

estimated from multinomial or Poisson distribution. In addition, some restrictions can be 

imposed on the model parameters to simplify the model structure and avoid overfitting. 

For example, the covariance matrix can be restricted to be diagonal for high dimensional 

data to reduce the number of parameters. Formal statistical test can also be applied to check 

the validity of parsimonious model [8] [9]. (3) The third advantage of the Latent Class 

model is it is scale-free, that is, the clustering results are independent from the data being 

normalized or not. For distance-based clustering algorithms like k-means, the scaling has 

been one of the main criticisms. Especially when handing mixed type of data, the 

categorical feature may influence the scaling of continuous features [1]. (4) Latent Class 
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models have formal criteria such as Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) to decide the number of clusters [18].  

While the Latent Class model may have great potentials in handling mixed type of data, 

it faces some challenges for high-dimensional dataset. It is noted that among the large 

number of features, some may not truly contribute to delineate the cluster profiles. 

Inclusion of these “noisy features” requires more parameter estimations, which cost 

unnecessary computational overhead. Additionally, the noisy features will confuse the 

model to identify the true structure of the clusters [13]. Recognizing the issue, in this 

research, we first develop a Generalized Model of Mixtures (GMoM) where a multivariate 

normal distribution is employed to describe continuous features, Bernoulli distribution and 

multinomial distribution are used to model binary and nominal features respectively. Next, 

we propose a novel Feature Index (FI) based on Kullback-Leibler (KL) divergence. FI is a 

measure based on the posterior probability of assigning data points to the cluster groups. If 

the inclusion and exclusion of a feature show no significant difference on the FI measure, 

we conclude this feature is not truly contributing to the clustering. Thus, FI can be used to 

rank and select important features for clustering and reduce the dimensionality of the 

feature space. One unique advantage of our proposed approach is the assessment of FI can 

be naturally embedded in the model parameters estimation procedure. The parameter 

estimation procedure for mixture models such as Expectation Maximization (EM) are often 

iterative and can be computational expensive. The classical feature selection technique 

such as wrapper that cycles between selecting feature subsets and estimating model 
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parameters, can become unfeasible in the feature selection for mixture model setting. This 

embedded approach that simultaneously select features and estimate model parameters can 

be more computational efficient compared to wrapper methods.  

The remainder of this study is organized as follows. Section 2 reviews the basics of 

Latent Class Model and EM algorithm. Section 3 presents the proposed algorithm in detail.  

Next, three sets of experiments on one synthetic dataset, one benchmark dataset and one 

real application dataset are illustrated in Section 4. In Section 5, the conclusion and future 

direction are presented.  

 

3.2 Review of Latent Class Model and EM 

Suppose we have a data matrix 𝑋 ∈ 𝑅'×C  with N data points and p features in which the 

𝑛"# row is 𝒙*+ = (𝑥*&, 𝑥*,, … , 𝑥*C). Let (𝑥&, 𝑥,, … , 𝑥C) be a vector of p features where each 

feature can be continuous, binary or nominal. Let 𝑥*,D be the value of the 𝑛"#	sample for 

the 𝑖"# feature.  

In the Latent Class model, we assume that the data can be grouped into K clusters. For each 

cluster k is an associated probability 𝜋!. The joint distribution of the observed features is 

a finite mixture of probabilities 𝑔(𝒙*|𝑘): 

𝑓(𝑥%) =&𝜋!𝑔(𝒙𝒏|𝑘)
"

!#$

 

The probability density function 𝑔(𝒙*|𝑘) is discussed for binary, nominal, and continuous 

features separately [45]. Specifically, 

§ For a binary feature, we take the Bernoulli distribution: 



 

 

 

43 

 𝑔(𝑥C|𝑘) = 𝑝C!
D$(1 − 𝑝C!)$*D$ (3.1) 

§ For nominal features, the indicator feature 𝑥D  is replaced by a vector-valued 

indicator function with its sth element being defined as  

𝑥C(F) = k1, 	𝑖𝑓	𝑡ℎ𝑒	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑓𝑎𝑙𝑙𝑠	𝑖𝑛	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦	𝑠, 𝑓𝑜𝑟	𝑠 = 1,2, . . 𝑐C ,
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where 𝑐D  denotes the number of categories of feature 𝑖  and ∑ 𝑥D(E) = 1FH
E%& . The 

distribution assumed is multinomial 

 𝑔(𝑥C|𝑘) =t?𝑝C!(F)@
D$(&)	

I$

F#$

 (3.2) 

where 𝑝D!(E)  is the probability that an object who is in class k will belong to 

category s for feature 𝑖.  

§ For continuous features, normal distribution is employed for each single continuous 

feature:  

 𝑔(𝑥C|𝜇C! , 𝜎C') =
1

√2𝜋𝜎C
exp	[−

1
2𝜎C'

(𝑥C − 𝜇C!)'] (3.3) 

where 𝜇D! is the location parameter of the continuous feature 𝑥D in class 𝑗 and 𝜎D, is 

the variance of the 𝑖"# feature taken as constant across classes. However, normal 

distribution neglects the correlations between the continuous features. We extend 

Latent Class model by relaxing the independence assumptions on the continuous 

features using multivariate normal distribution. Among the p features, let the first 

c features are continuous, we have:  
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 𝑔?𝒙%($:I)A𝑘@ = 𝑁?𝒙%($:I)A𝝁! , 𝚺!@ =
1

(2𝜋)
K
'|Σ!|

$
'
exp k−

1
2?𝒙𝒏($:I) − 𝝁!@

)𝛴!*$?𝒙%($:I) − 𝝁!@z (3.4) 

where 𝝁! is the mean vector of the continuous feature 𝒙*(&:F) in class 𝑘 and 𝛴! is 

the covariance matrix.  

Then the joint likelihood of 𝑛"# sample belonging to 𝑘"# group is  

 𝑔(𝒙%|𝑘) = 𝑔?𝒙%($:I)A𝑘@ × t 𝑔?𝑥%,CA𝑘@ =tℎ(𝑥%C|𝑘)
K

C#$

K

C#IL$

,		 (3.5) 

Note the correlations among continuous features can be well represented by multivariate 

normal distribution. For mixed-type data, literature shows existing methods typically adopt 

a normal-multinomial finite mixture [46]–[50]. Location model [51] can be employed to 

allow a distinct distribution for the continuous variables for each unique combination of 

categorical levels. This approach accounts for any possible dependence structure between 

continuous and categorical variables, however, it becomes infeasible when the number of 

categorical variables or number of levels within each categorical variable is large [41]. In 

addition, deriving all possible dependence structures indeed is to “blend” the categorical 

features into the structure. As a result, the true identity of the categorical features may be 

lost which in turn, will impede the feature selection process. Therefore, in this research, we 

relax the dependence assumptions on the categorical features (binary and nominal) and 

assume the categorical features are independent to each other.  
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Given the probability density function 𝑔(𝒙*|𝑘)  for binary, nominal, and continuous 

features, Latent Class model aims to the maximize the log-likelihood of the full data for all 

features, which is shown in equation (3.6). 

 𝐿 = &ln𝑓(𝑥%)
+

%#$

=&ln&𝜋!𝑔(𝒙%|𝑘)
"

!#$

+

%#$

         (3.6) 

EM is a commonly used four-step algorithm to estimate the parameters including mixing 

coefficients 𝜋! and parameters for each distribution, e.g., mean 𝜇! and covariance 𝛴! for 

normal distribution. The algorithm starts from initializing parameters and evaluates the 

initial value of log likelihood function. In the second step (known as E step), the EM 

evaluates the responsibilities under the current parameter settings. The responsibility is 

defined as the probability of assigning a data point to a specific clustering group: 

 𝛾(𝑧%!) = 𝑝(𝑧! = 1|𝒙%) =
𝑝(𝑧! = 1)𝑝(𝒙%|𝑧! = 1)

∑ 𝑝?𝑧, = 1@𝑝?𝒙%A𝑧, = 1@"
,#$

=
𝜋!𝑔(𝒙%|𝑘)

∑ 𝜋,𝑔(𝒙%|𝑘)"
,#$

 (3.7) 

In the third step, the EM re-estimates the parameters given the responsibilities. The 

estimation method is maximum likelihood, and therefore the third step is called “M step”. 

The final step is to check the convergence of log-likelihood. If the log likelihood difference 

between two iterations is small enough (e.g., less than a small number), it is converged. 

Otherwise, the algorithm goes back to the E step initiating the next iteration. For details of 

the EM algorithm, interested readers are referred to [25]. In the next section, we present 
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the Feature Index used for feature selection on this Generalized Model of Mixtures 

embedded in the EM algorithm.  

 

3.3 Proposed Method 

3.3.1 Feature Index 

Our proposed Feature Index (FI) takes advantage of the responsibility measures in the E 

step. Let us consider the responsibilities 𝛾(𝑧*!), the probability of assigning the data point 

𝒙* to cluster k, if we remove one specific feature, responsibilities shall change. Specifically, 

let the full feature space with p features be 𝐹 = {𝑥&, 𝑥,, … , 𝑥C}, the feature space excluding 

feature 𝑗  be 𝐹-. 	= h𝑥&, 𝑥,, … , 𝑥Ci\{𝑥-} . Here, we denote the responsibility on the full 

feature space as 𝛾/(𝑧*!) and the responsibility on the reduced feature space (excluding 

feature	𝑗) as 𝛾/.
/
(𝑧*!) which is related to the 𝑛"# data point and the 𝑘"# cluster.  

To capture the difference between 𝛾/(𝑧*!) and 𝛾/.
/
(𝑧*!), we use the Kullback-Leibler, or 

simply KL divergence [52]. The KL divergence is closely related to relative entropy, 

information divergence, and information for discrimination. It is a non-symmetric measure 

of the distance between two probability distributions 𝑝(𝑥) and 𝑞(𝑥). The KL divergence 

of 𝑞(𝑥) from 𝑝(𝑥) is defined as  

𝐷"M(𝑝(𝑥)A𝑞(𝑥)@ = &𝑝(𝑥) 𝑙𝑛
𝑝(𝑥)
𝑞(𝑥)

D∈N

	, 

which measures the information lost when 𝑞(𝑥) is used to approximate 𝑝(𝑥). The reason 

of choosing KL divergence instead of other distance measure such as Euclidian metric is 

that KL divergence has a statistical meaning, which is helpful in handling probability 
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distributions. The statistical properties are further explained in the theoretical analysis 

section. 

Based on the definition of KL divergence, the proposed FI is defined as the KL divergence 

between two responsibilities averaged over N data points and K clustering groups. Since 

the two responsibilities are calculated under the full feature set and the feature set excluding 

the 𝑗"#  feature respectively, the divergence between the two responsibilities reveals the 

importance of  𝑗"# feature to the clustering. It is written as:  

 𝐹𝐼(𝑗) =
1
𝑁𝐾&&𝛾0(𝑧%!) ln

𝛾0(𝑧%!)
𝛾0!

"
(𝑧%!)

"

!#$

+

%#$

 (3.8) 

The assumption behind our proposed method is that if 𝐹𝐼(𝑗) is smaller than a pre-defined 

threshold, the contribution of feature 𝑗 in deciding the assignments of data points to clusters 

is trivial thus can be neglected. The feature 𝑗 can be removed during the feature selection 

process under the condition that 𝐹𝐼(𝑗)  converges over the iterations. Concerning the 

convergence criteria for 𝐹𝐼 , we evaluate the changes of 𝐹𝐼(𝑗)between the current and 

previous iteration, let say, if it is less than a small number, e.g., 0.0005, we conclude	𝐹𝐼(𝑗) 

converges. Regarding the pre-defined threshold for feature selection, it can be set based on 

the approximate number of features to be selected (see experiments in Section 4 for details). 

The pseudo code of the algorithm is described in Table 9. The algorithm starts with the 

initialization step and iterates between E step and M step until converged as traditional EM 

algorithm. On top of the traditional EM algorithm, an additional step termed S step is added 

to select features while updating the parameters of the Generalized Model of Mixtures.  
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Table 9. Pseudo Code on Extending EM With Feature Index on Generalized Model of 
Mixtures. 

1. Initialize the parameters which is from a converged Latent Class model. 
2. E step.  Evaluate the responsibilities using the current parameter values 

 𝛾0(𝑧%!) =
𝜋!∏ ℎ(𝑥%C|𝑘)

K
C#$ 		

∑ 𝜋2∏ ℎ(𝑥%C|𝑙)
K
C#$ 		"

2#$
	  

and responsibilities after excluding each feature 
 

𝛾0!
"
(𝑧%!) =

𝜋!∏ ℎ(𝑥%C|𝑘)
K
CO, 		

∑ 𝜋2∏ ℎ(𝑥%C|𝑙)
K
CO,

"
2#$

	𝑓𝑜𝑟	𝑗 = 1,2, . . 𝑝 

 
3. S step. Calculate the difference between responsibilities before and after excluding 𝑗PQ feature 

at iteration t. 

𝐹𝐼(𝑗)(P) =
1
𝑁𝐾&&𝛾0(𝑧%!) ln

𝛾0(𝑧%!)
𝛾0!

"
(𝑧%!)

"

!#$

+

%#$

 

If  A𝐹𝐼(𝑗)(PL$) − 𝐹𝐼(𝑗)(P)A < 𝜖 (converged) and 𝐹𝐼(𝑗)(P) is small enough, then discard the feature 
with smallest 𝐹𝐼 and update the full feature space F.    
 

4. M step. For reduced data with feature space F, re-estimate the parameters using the current 
responsibilities	
for binary features: 										𝑝C!%RS =

$
+(
∑ 𝛾(𝑧%!)𝑥%,C+
%#$ 	

for nominal features:								𝑝C!(F)%RS = $
+(
∑ 𝛾(𝑧%!)𝑥%,C(F)+
%#$ 	

for continuous features:				𝝁!%RS =
$
+(
∑ 𝛾(𝑧%!)𝒙%+
%#$  

𝛴!%RS =
1
𝑁!
&𝛾(𝑧%!)(𝒙% − 𝝁!%RS)(𝒙% − 𝝁!%RS)′
+

%#$

	

posterior probability:									𝜋!%RS =
+(
+
	

 
5. Evaluate the log likelihood  

 𝐿 = &ln𝑓(𝑥%)
+

%#$

=&ln&𝜋!𝑔(𝒙%|𝑘)
"

!#$

+

%#$

	  

              If the parameters or the log likelihood are not converged, go back to step 2.    
 

3.3.2 Theoretical Analysis on Feature Index 

In this section, the theoretical analysis on the statistical properties of FI is conducted to 

justify the use of feature index. 

The proposed FI is the KL divergence between two responsibilities averaged over N data 

points and K clustering groups. In the following equation, 𝑔(𝑥) function is defined as in 
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equation (3.1), (3.2) and (3.4) for bernoulli, multinomial and multivariate normal 

distribution respectively. The FI is calculated by equation (3.8). We decompose the FI into 

two parts as shown in equation (3.9) and (3.10). Note that in the following decomposition, 

the continuous features are the first c out of p features as used in equation (3.4) before.  

If the 𝑗"# feature is binary or nominal,  

𝐹𝐼(𝑗) =
1
𝑁𝐾&&𝛾0(𝑧%!) ln

𝛾0(𝑧%!)
𝛾0!

"
(𝑧%!)

"

!#$

+

%#$

 

=
1
𝑁𝐾&&𝛾0(𝑧%!) ln

⎩
⎪
⎨

⎪
⎧ 𝜋!𝑔?𝒙%($:I)A𝑘@ × ∏ 𝑔?𝑥%,CA𝑘@

K
C#IL$

∑ 𝜋2𝑔?𝒙%($:I)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

𝜋!𝑔?𝒙%($:I)A𝑘@ ×∏ 𝑔(𝑥%C|𝑘)
(IL$):K
CO,

∑ 𝜋2𝑔?𝒙%($:I)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
(IL$):K
CO,

"
2#$ ⎭

⎪
⎬

⎪
⎫

"

!#$

+

%#$

 

=
1
𝑁𝐾&&𝛾0(𝑧%!) ln ;𝑔?𝑥%,A𝑘@

∑ 𝜋2𝑔?𝒙%($:I)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
(IL$):K
CO,

"
2#$

∑ 𝜋2𝑔?𝒙%($:I)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

<
"

!#$

+

%#$

 

=
1
𝑁𝐾&&𝛾0(𝑧%!) ln{𝑔?𝑥%,A𝑘@}

"

!#$

+

%#$

+&&𝛾0(𝑧%!) ln ;
∑ 𝜋2𝑔?𝒙𝒏(𝟏:𝒄)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)

(IL$):K
CO,

"
2#$

∑ 𝜋2𝑔?𝒙𝒏(𝟏:𝒄)A𝑙@ × {∏ 𝑔(𝑥%C|𝑙)} × 𝑔(𝑥%,|𝑙)
(IL$):K
CO,

"
2#$

<
"

!#$

+

%#$

						(3.9) 

 

If the 𝑗"#  feature is continuous, let 𝒙𝒏	(𝟏:	𝒄)∗  be the corresponding vector of 𝒙𝒏(𝟏:	𝒄)  after 

excluding the 𝑗"# feature. 

𝐹𝐼(𝑗) =
1
𝑁𝐾&&𝛾0(𝑧%!) ln

𝛾0(𝑧%!)
𝛾0!

"
(𝑧%!)

"

!#$

+

%#$

 

=
1
𝑁𝐾&&𝛾0(𝑧%!) ln

⎩
⎪
⎨

⎪
⎧ 𝜋!𝑔?𝒙%($:I)A𝑘@ ×∏ 𝑔(𝑥%C|𝑘)

K
C#IL$

∑ 𝜋2𝑔?𝒙%($:I)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

𝜋!𝑔?𝒙%($:I)∗ A𝑘@ ×∏ 𝑔(𝑥%C|𝑘)
K
C#IL$

∑ 𝜋2𝑔?𝒙%($:I)∗ A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$ ⎭

⎪
⎬

⎪
⎫"

!#$

+

%#$
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Using the conditional probability formula, 

 𝑔?𝒙%($:I)A𝑙@ = 𝑔?𝑥%,A𝒙𝒏(𝟏:𝒄)∗ @ × 𝑔?𝒙%($:I)∗ A𝑙@, 

=
1
𝑁𝐾&&𝛾0(𝑧%!)ln _𝑔(𝑥%,|𝒙%($:I)∗ )

∑ 𝜋2𝑔?𝒙%($:I)∗ A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

∑ 𝜋2𝑔?𝒙%($:I)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

`
"

!#$

+

%#$

 

=
1
𝑁𝐾&&𝛾0(𝑧%!) ln�𝑔?𝑥%,A𝒙𝒏(𝟏:𝒄)∗ @^

"

!#$

+

%#$

+
1
𝑁𝐾&&𝛾0(𝑧%!) ln _

∑ 𝜋2𝑔?𝒙%($:I)∗ A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

∑ 𝜋2𝑔?𝑥%,A𝒙𝒏(𝟏:𝒄)∗ @ × 𝑔?𝒙%($:I)∗ A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

`
"

!#$

+

%#$

																															(3.10) 

  

From equations (3.9) and (3.10), the FI is decomposed into two: (1) weighted conditional 

log-likelihood of feature j given all other features; (2) weighted log-likelihood ratio for all 

features vs. all except feature j. The first term reveals the absolute contribution of feature j 

to the model and the second term can be considered as the relative contribution of the 

feature. 

Let us delve more into the second terms from equations (3.9) and (3.10). For equation (3.9), 

the second term is the likelihood ratio shown in equation (3.11), 

 
∑ 𝜋2𝑔?𝒙𝒏(𝟏:𝒄)A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)

(IL$):K
CO,

"
2#$

∑ 𝜋2𝑔?𝒙𝒏(𝟏:𝒄)A𝑙@ × ∏ 𝑔(𝒙%C|𝑙) × 𝑔(𝒙%,|𝑙)
(IL$):K
CO,

"
2#$

 (3.11) 

In equation (3.11), the denominator is the likelihood of the full feature set and the 

numerator is the likelihood of the feature set excluding 𝑗"# feature. For each group 𝑙(𝑙 =

1, . . 𝐾), the denominator is the numerator times 𝑔(𝑥*-|𝑙), the likelihood of 𝑛"# data point 

on 𝑙"# feature, which is between 0 and 1. Hence, this second term is greater or equal to 1. 

Similarly, for equation (3.10), the likelihood ratio in the second term as follows:  
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∑ 𝜋2𝑔?𝒙%($:I)∗ A𝑙@ × ∏ 𝑔(𝑥%C|𝑙)

K
C#IL$

"
2#$

∑ 𝜋2𝑔?𝑥%,A𝒙𝒏(𝟏:𝒄)∗ @ × 𝒈?𝒙𝒏(𝟏:𝒄)∗ A𝒍@ × ∏ 𝑔(𝑥%C|𝑙)
K
C#IL$

"
2#$

 (3.12) 

In equation (3.12), for each 𝑙, the denominator is the numerator times 𝑔k𝒙*(&:F)
∗ K𝑙l, which 

is between 0 and 1. Thus, the likelihood ratio in Equation (3.10) is also greater or equal to 

1.  

From equation (3.11) and (3.12), we obtain the conclusion that the second term of 𝐹𝐼(𝑗) 

increases as the likelihood difference between the full model and the model excluding 𝑗"# 

feature increases. In special case, when the likelihood of the full model is the same as the 

model excluding one feature, then the second term is equal to one.  

From the analysis, we conclude FI is an integrated measure of the absolute and relative 

contribution of a given feature. A feature deemed to be important to the clustering model 

can be revealed from two aspects: a large likelihood showing dominating absolute 

contribution or a large log-likelihood ratio, indicating relative contribution to the full 

feature set.   

In the next section, we will conduct experiments to evaluate the plausibility of the 

algorithm and illustrate the typical values of the Feature Index. 

 

3.4 Experiments 

In the section, one synthetic dataset, one benchmark dataset and one medical application 

dataset are studied to demonstrate the performance of proposed algorithm. Since the ground 

truth of all the datasets are known, we use the following two metrics for the performance 
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evaluation: (1) RFS: the percentage of relevant features being selected; (2) Accuracy: the 

percentage of instances correctly clustered. 

 

3.4.1 Experiments on Synthetic Dataset 

We design the synthetic dataset with four relevant features, and two clusters. Additional 

irrelevant features are generated as “noise features”. In this experiment, we include 15 

features with 𝑓& , 𝑓,(continuous) and 𝑓&&, 𝑓&,(categorical) being the relevant features for 

clustering and remaining 11 features being irrelevant features. The continuous relevant 

features are generated from two-component mixture of Gaussian distributions with 300 

data points for each component. The categorical relevant features are generated from 

multinomial distributions for each component. In addition, we purposely add correlations 

between the features including 𝑓&~ 𝑓,, 𝑓> ~ 𝑓? and 𝑓@ ~ 𝑓&A correlations. The experiment 

setting is summarized in Table 10. Similarly, 10 runs are conducted for each experiment.  

In the experiment, we first test the classical Latent Class Model on the simulated data. The 

accuracy is 82.83%. Then we test our proposed algorithm on the synthetic dataset. That is, 

we do feature selection on latent class model. The accuracy improves to 94.63%. In 

addition, the selected features are 𝑓&, 𝑓,, 𝑓&& and	𝑓&,, which are exactly the relevant features 

we used to simulate the clustering group.  

Figure 9 shows all relevant features 𝑓&, 𝑓,, 𝑓&& and 𝑓&,  have significantly higher FI values 

than the other 11 irrelevant features. We conclude FI is able to identify the relevant features 
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with dependencies and exclude the irrelevant “noisy features” resulting much improved 

clustering performance.  

Table 10. Experiment Setting for Synthetic Dataset. 

# of features 10 continuous (2 relevant +8 irrelevant)  
+5 categorical (2 relevant+3 irrelevant) 

# of groups/components a mixture of 2 components 
# of data points 600 
# of repeated runs 10 
Distribution of relevant features for 
each component (continuous) 𝑓$, 𝑓' 

𝜇$ = I−11 L	𝜇' = I10L	     𝛴$ = 𝛴' = I 1 0.2
0.2 1 L		 

 
Distribution of irrelevant features 
(continuous) 𝑓: − 𝑓$A 

𝑓: = 𝑁(1.5, 1) 
	𝑓; = 𝑁(3, 0.5) 
𝑓< = 𝑁(1.8, 0.9) 
	𝑓= = 𝑁(2.7, 1.5) 
𝑓>	𝑎𝑛𝑑	𝑓?	𝑎𝑟𝑒	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝜇>_? = I22L	𝛴>_? = I 1 0.3

0.3 1 L 

𝑓@	𝑎𝑛𝑑	𝑓$A	𝑎𝑟𝑒	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝜇@_$A = I−32 L	𝛴@_$A

= I 1 0.1
0.1 1 L 

Distribution of relevant feature 
(categorical) 𝑓$$ 

Component 1: 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝 = (0.7,0.2)) 
Component 2: 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝 = (0.2,0.7)) 

Distribution of relevant feature 
(categorical) 𝑓$' 

Component 1: 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝 = (0.7,0.2,0.2)) 
Component 2: 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝 = (0.2,0.4,0.5)) 

Distribution of irrelevant feature 
(categorical) 𝑓$: − 𝑓$< 

𝑓$: = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝 = ($
:
, $
:
, $
:
)) 

𝑓$; = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝 = ($
;
, $
;
, $
;
)) 

𝑓$< = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝 = ( $
$A
, $
$A
, … , $

$A
)) 

# of repeated runs 10 
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Figure 9. Feature Index for Each Feature Over Iterations on 600 Data Points. 
 

3.4.2 Benchmark Dataset 

In this section, we compare our proposed algorithm with other clustering approaches that 

can handle mixed data on benchmark dataset obtained from UCI Machine Learning 

Repository [30]. The studied dataset is the heart rate disease dataset provided by Cleveland 

Clinic. The dataset has 303 instances with 6 numeric and 8 categorical features. The 

instances are labelled as two classes: healthy or sick (with heart disease). The summary of 

the features of the heart disease dataset is summarized in Table 11.  

In literature, there are four other clustering approaches reporting accuracy on the heart 

disease data. The K-prototype and K-medoids are two classical clustering approaches that 

can handle mixed data. The reported best accuracies on heart disease data are 81.0% and 

76.5% respectively [53][44].  The third approach is ensemble clustering proposed by Z.He 

and X.Xu etc. [44]. The general idea of ensemble clustering is to first divide the original 
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mixed dataset into two subsets: the pure categorical and the pure numeric dataset. Then 

they use the existing clustering algorithms designed for one certain type of dataset to cluster 

each dataset. Finally, they combine the clustering results on two datasets and generate final 

clusters. The best accuracy on the heart disease data is 81.3%, which is slightly better than 

K-prototype. The fourth approach is called UFL Fuzzy ART [53], which extends the basic 

unsupervised feature learning (UFL) for mixed type data using fuzzy adaptive resonance 

theory (ART). The best reported accuracy on heart disease data is 81.5%, the highest 

among all current approaches.  

In addition to the four approaches provided in literature, we also test the classical latent 

class model (LCM) on the heart disease data. The best accuracy obtained by LCM is 78.9%, 

which is slightly lower than other approaches.  Then finally, we employ our proposed 

feature selection algorithm using feature index on the heart disease data and the best 

average accuracy is 83.3%, which is higher than any other algorithms listed before. To 

have a better view of the comparison, the performance of each algorithm is summarized in 

Figure 10.  

After running the proposed feature selection algorithm, we show the importance of each 

feature by Feature Index illustrated in Figure 11. Feature no.4 (blood pressure), feature 

no.5 (serum cholestoral) and feature no.11 (the slope of the peak exercise ST segment) 

have higher Feature Index values than all other features.  
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Table 11. Summary of Features for Heart Disease Data. 

Feature              Notation Mean ± SE Category 
Age 𝑓$ 54.4 ± 9.1 Continuous 
Sex 𝑓' 0,1 Binary 
Chest pain type 𝑓: 1,2,3,4 Nominal 
Resting blood pressure 𝑓; 131.3 ± 17.9 Continuous 
Serum cholestoral in mg/dl 𝑓< 249.7 ± 51.7 Continuous 
Fasting blood sugar>120 
mg/dl 

𝑓= 0,1 Binary 

Resting 
electrocardiographic results 

𝑓> 0,1,2 Nominal 

Maximum heart rate 
achieved 

𝑓? 149.7 ± 23.2 Continuous 

Exercise induced angina 𝑓@ 0,1 Binary 
Oldpeak=ST depression 
induced by exercise 
relative to rest 

𝑓$A 1.1 ± 1.1 Continuous 

The slope of the peak 
exercise ST segment 

𝑓$$ 1,2,3 Nominal 

Number of major vessels 
colored by flourosopy 

𝑓$' 0,1,2,3 Nominal 

Thal: 3=normal; 6=fixed 
defect; 7=reversible defect 

𝑓$: 3,6,7 Nominal 

 

 

Figure 10. Summary of Accuracy Performance on Heart Disease Data. 
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Figure 11.Feature Index for Each Feature Over Iterations on Heart Disease Dataset.   
 

3.4.3 Real World Application: Alzheimer’s Disease 

Alzheimer’s Disease (AD) is a progressively neurodegenerative disease which is the most 

frequent type among elderly dementia patients. In the U.S., approximately 5.2 million 

people over 60 are afflicted by AD (Alzheimer's Association,2008). This drives a great 

amount of research investigating ways to slow down the AD progression and detect AD at 

early stage for better treatment or even prevent the disease. Mild cognitive impairment 

(MCI) is a syndrome defined as cognitive decline greater than expected for individuals 

during the course of aging but that does not interfere notably with activities of daily life 

[37]. It is an intermediate stage between normal aging with mild cognitive decline and 

dementia where cognitive impairment is more severe even impacting daily function. 

Though it is distinct from dementia, MCI patients with memory complaints and deficits 
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(amnestic mild cognitive impairment) have high risks of progression to AD [37], [38]. The 

early diagnosis of MCI stage is becoming essential when the interventional strategies may 

be more effective.  

Extensive research has investigated predictive model for AD in hoping to predict the risk 

of each individual patient converting to AD and this is still on-going effort. The focus of 

this research is to identify the underlying patient cohort structures which may discover 

patient subtypes for interventional treatment. In this study, we have collected 317 patients’ 

data from Alzheimer’s disease neuroimaging initiative [39], a large scale online repository 

designed to identify more sensitive and accurate methods to detect Alzheimer’s disease at 

earlier stage and mark its progress via biomarkers. Specifically, the baseline data is 

collected to evaluate the efficacy of our proposed method in AD early detection. Among 

all these patients, 22 are AD, 172 are MCI and 123 are Normal Controls (NCs). For each 

patient, we obtain PET, and MR images and cognitive tests (see Table 12).  

Table 12. Summary of Features for Alzheimer’s Disease Data. 

Feature              Notation Mean ± SE Category 
Age 𝑓! 72.9 ± 7.3 Demographic 
Mini-Mental State 
Examination (MMSE) 

𝑓" 28.2 ± 2.3 Cognitive Test 

Clinical Dementia Rating 
(CDR) Score 

𝑓# 1.1 ± 1.6 Cognitive Test 

Volume of hippocampus 𝑓$ 7157 ± 1160 MRI biomarkers 
Volume of ventricles 𝑓% 35086 ± 19333 MRI biomarkers 
Whole Brain 𝑓& 1048732 ± 112296 MRI biomarkers 
Entorhinal 𝑓' 3677 ± 741 MRI biomarkers 
Volume of Intracranial 𝑓( 1514196 ± 156568 MRI biomarkers 
Hypometabolic Convergence 
Index (HCI) 

𝑓) 10.9 ± 5.6 FDG-PET biomarkers 

Statistical region of interest 
(sROI) 

𝑓!* 1.2 ± 0.07 FDG-PET biomarkers 

mean cortical Standard 
Uptake Value Ratio with 

𝑓!! 1.1 ± 0.2 F-AV45-PET biomarkers 
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cerebellum as reference 
region (mcSUVRcere) 
mean cortical Standard 
Uptake Value Ratio with 
corpus callosum and centrum 
semiovale combined as 
reference region 
(mcSUVRwm) 

𝑓!" 0.77 ± 0.17 F-AV45-PET biomarkers 

Gender 𝑓!# Two levels 
(176:141) 

Demographic 

AV45 𝑓!$ Two levels 
(202:115) 

F-AV45-PET biomarkers 

APOE 𝑓!% Three level 
(22:103:192) 

Gene information 

 

Table 13 presents the correlation matrix of the features. Clearly, some features are highly 

dependent to each other, for example, the clinical test scores MMSE (f2) vs. CDR (f3), MRI 

biomarkers volume of hippocampus (f4) vs. whole brain (f6), FDG-PET biomarkers HCI 

(f9) vs. sROI (f10).  

Table 13. Correlation Matrix. 
 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 
f1 1.00 -0.09 -0.02 -0.37 0.41 -0.34 -0.15 0.02 0.03 -0.35 0.12 0.19 
f2 

 
1.00 -0.72 0.44 -0.19 0.19 0.41 0.03 -0.48 0.41 -0.38 -0.47 

f3 
  

1.00 -0.41 0.22 -0.14 -0.42 0.02 0.55 -0.45 0.38 0.48 
f4 

   
1.00 -0.33 0.56 0.64 0.29 -0.39 0.54 -0.27 -0.39 

f5 
    

1.00 0.06 -0.11 0.45 0.28 -0.43 0.11 0.44 
f6 

     
1.00 0.49 0.79 0.00 0.35 -0.07 -0.05 

f7 
      

1.00 0.30 -0.27 0.38 -0.19 -0.25 
f8 

       
1.00 0.15 0.05 0.04 0.14 

f9 
        

1.00 -0.65 0.32 0.49 
f10 

         
1.00 -0.30 -0.41 

f11 
          

1.00 0.84 
f12 

           
1.00 
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One challenge in applying classical latent class model to the data is that the correlations 

between continuous features are not captured.  Another challenge is that some noise 

features degrade the performance of Latent Class model. 

Table 14 shows the clustering results from classical Latent class model using all 15 features. 

The overall accuracy of correctly identifying patients to disease types is only 59.31%. 

Table 15 shows the clustering results after feature selection on the generalized model of 

mixtures. The overall accuracy improves from 59.31% to 84.86% compared with original 

LCM. For the AD cohort, the proposed algorithm clusters 22 out of 22 AD patients 

correctly (100%). For the NC cohort, our algorithm identifies 114 out of 123 correctly, one 

NC is put into the AD group, and another eight NCs are labeled as MCI. The accuracy of 

NC cluster is 92.68%. The results on MCI cohort also improves compared with LCM using 

full feature set. The feature selection on the GMoM can identify 133 out of 172 MCI 

correctly (77.33%) with only one mislabeled as NC and 38 mislabeled as AD.  

Figure 12 shows the feature index for all 15 features. The three features with highest feature 

index are: CDR(𝑓:), HCI (𝑓@) and mcSUVRcere (𝑓&&).  

 
Table 14. Confusion Matrix of Classical Latent Class Model Using All Features. 

  GROUNDTRUTH  

  NC AD MCI Overall accuracy 

CLUSTERING NC 92 0 88  
AD  0 21 9  
MCI 31 1 75  

 Total 123 22 172  
 Accuracy 74.80% 95.45% 43.60% 59.31% 
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Table 15. Confusion Matrix for Clustering After Feature Selection Using Feature Index. 

  GROUNDTRUTH  

  NC AD MCI Overall accuracy 

CLUSTERING NC 114 0 1  
AD 1 22 38  
MCI 8 0 133  

 Total 123 22 172  
 Accuracy 92.68% 100% 77.33% 84.86% 

 

 

Figure 12. Feature Index for Each Feature Over Iterations on AD Data.  
 

We want to emphasize that the results on MCI are not surprising. Clinically, MCI cohort 

has subtypes: MCI converter and MCI non-converter. MCI converter refers to the patient 

positively diagnosed as AD in the follow-up exams. Fortunately, ANDI is a rich data 

repository with longitudinal data available. We collect the updated patient staging 

information from the follow-up visit to explore the composition of the MCI group. For 
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illustration purpose, we show a 2D plot of the two most relevant features CDR (f3) and 

mcSUVRcere (f11).  

 
Figure 13. Clustering Shown in Two Feature Space: CDR (f3) and mcSUVRcere (f11).  

 
The points are colored by the real diagnosis results: AD (red), MCI (green) and NC (blue). 

The shapes signify the converters: triangle for NC converting to MCI, square for NC 

converting to AD and cross for MCI converting to AD. In Figure 13, 16 out of 26 green 

crosses are on the boundary between MCI and AD clusters, but close to AD. That is, among 

the 172 MCIs, 26 are staged as AD in the follow-up visit. Using baseline data, the 17 out 

of 38 MCIs mislabeled as AD (Table 15) are indeed the converted. The blue triangle 

represents the patient converting from NC to MCI. In the 7 blue triangles, there is one 

special point, which is diagnosed as NC in the first visit. However, in clustering, the point 

is closer to MCI than NC in Figure 4 and mislabeled as MCI in Table 15, which is verified 

by the diagnosis of MCI in the second visit. Indeed, the clustering technique can help to 

capture the convert between disease types.  
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3.5 Conclusion 

Latent Class Model, as a soft clustering methodology, has attracted great attention due to 

the distinct advantages from its statistical foundation. However, its performance 

deteriorates notably if the dataset has many noisy features irrelevant to the clustering 

process. This research proposes a new metric: Feature Index (FI). Traditional EM 

algorithm for Latent Class modeling parameter estimation is extended with a S step using 

FI for feature selection. Our proposed embedding the feature selection into the EM 

algorithm preserves the good properties of EM algorithm such as guaranteed convergence 

and optimum determination of the clustering number. To evaluate the performance of the 

proposed algorithm, experiments on one synthetic data set, one benchmark dataset and one 

Alzheimer’s Disease (AD) dataset are conducted. The experiments on synthetic and 

benchmark dataset show the proposed FI is able to identify the relevant features and 

improved clustering accuracy comparing to classical Latent Class model without feature 

selection. Other than improved clustering result, experiment on AD indicates the model-

based clustering with feature selection may potentially identify the patient subtypes which 

is crucial for patient treatment planning. 

  



 

 

 

64 

CHAPTER 4 

UNCERTAINTY QUANTIFICATION OF FEATURE SELECTION RESULTS 

 

4.1 Introduction 

Recently, computational models and machine learning algorithms are extensively applied 

in the safety-critical areas such as automotive, aerospace, and structural engineering 

industries [11] as massive amounts of datasets collected from sensors networks, cyber-

physical systems, and the Internet of Things (IoT) become available [55]. However, the 

data collected are inherently uncertain due to noise, incompleteness, and 

inconsistency[55][56]. As a result, rigorous quantification of uncertainty in the underlying 

data, the model, and the resulting predictions becomes critical. The interest in Uncertainty 

Quantification (UQ) has grown as part of a driver for rigorous and formal approaches to 

assess the credibility of computational models.  

Compared with the conventional heuristic approaches, model-based approaches have an 

advantage in providing the results in a probabilistic way. By using a probabilistic model, 

the experimental noise can be included explicitly in the model and estimated from the data, 

thus more robust to noise. However, existing feature selection algorithms for model-based 

clustering algorithms do not consider the quantification of the feature selection results in a 

probabilistic manner [57]. The feature selection processes generally compare the likelihood 

before and after adding (or removing) a feature. The likelihood measures the “average” 

reaction of all data points towards the feature space change. We contend that different data 
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points shall have different reactions to the change. Some data points do not depend on this 

newly added feature to choose a clustering group, while others do.  

Based on our literature review, we conclude the sufficient variance information has not 

been taken into consideration when making feature selection in existing feature selection 

algorithms. In our proposed ESM algorithm (Chapter 2), the “responsibility” difference 

values can easily capture the variation information. In this chapter, we propose to extend 

our work on Relevancy Index with the variance information and develop a new ESM 

algorithm. We first review types of uncertainties and uncertainty quantification methods. 

We then present our extension to ESM algorithm incorporating uncertainty consideration 

followed by experiments to demonstrate the performance improvement.  

 

4.2 Review of Uncertainty 

“uncertainty is a situation which involves unknown or imperfect information” [55]. 

Uncertainty quantification is essential for evaluating and predicting the performance of the 

complex engineering systems, especially when the experimental or real-world data is not 

adequate or not even exist [58]. For the specific data modelling application, uncertainty 

can exist in every phase and from many different sources, such as data collection, model 

training and numerical approximation. The handling of the uncertainty in each phase has a 

significant impact on the learning results from the data.  

 

4.2.1 Source of Uncertainty 
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There are several ways to categorize the source of uncertainty. One way is to classify 

uncertainty in two categories: Aleatoric uncertainty and Epistemic uncertainty [59][60]. 

The Aleatoric uncertainty is also known as inherent randomness. The word aleatory derives 

from the Latin alea, which means the rolling of dice [59]. Since the aleatory uncertainty is 

the intrinsic randomness, it is usually irreducible. The Epistemic uncertainty is also known 

as reducible uncertainty. The word epistemic derives from the Greek 𝜖𝜋𝑙𝜎𝜏𝜂𝜇𝜂 (episteme), 

which means knowledge. Thus, the epistemic uncertainty is caused by lack of knowledge 

or data [59]. In such scenario, the uncertainty can be reduced by enhancing knowledge or 

by performing measurements. 

Most engineering systems involve both types of uncertainties. However, in the modeling 

phase, often it is difficult to determine which category a particular uncertainty falls in. For 

computational models,  the uncertainty sources can be categorized into physical variability, 

data uncertainty, structural uncertainty and numerical uncertainty [58] [61]. 

Physical variability: This type of uncertainty is from natural or inherent random 

variability of physical processes and variables, thus also known as irreducible uncertainty. 

There is uncertainty regarding the precise values of the model inputs. Such quantities can 

be represented by random variables with statistical parameters such as mean and standard 

deviations.  

Data uncertainty: It is also known as reducible uncertainty or epistemic uncertainty 

(knowledge or information uncertainty). The uncertainty can be reduced by collecting more 

information. There are at least four forms of this uncertainty: (1) sparse data, meaning the 
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data is too small to estimate the distribution parameters; (2) interval data, meaning some 

variables in the data are only available as a range of values instead of a number; (3) missing 

data; (4) measurement error in the laboratory or in the field. 

Structural uncertainty: The structural uncertainty, also known as the model form error, 

means the difference between the chosen model and the real system that it represents. The 

models may not be fully calibrated.  

Numerical uncertainty: The numerical uncertainty is the solution approximation error 

during computing. The numerical uncertainty is introduced when using an approximation 

to the true solution of the equations of the mathematical model or a fast surrogate model is 

used when the optimal solution is very expensive to solve [61].  

 

4.2.2 Uncertainty Quantification Problems 

There are two types of uncertainty quantification problems: the forward and inverse 

uncertainty propagation. Forward uncertainty propagation quantifies uncertainties in the 

system outputs propagated from uncertain inputs. The forward uncertainty propagation 

focuses on the output uncertainty derived from the parametric variability in the sources of 

uncertainty. Inverse uncertainty quantification focuses on inferring the input parameters 

given measurement data through mathematical formulation. The difference between the 

two problems are illustrated in Figure 14 adopted from [62]. 
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Figure 14. Illustration of Forward and Inverse Propagation Uncertainty Problems 
(Adopted From [62]). 

 

The classic machine learning problem maps observed data to unobservable properties of 

interest, thus it is under the umbrella of the inverse uncertainty propagation problem [56]. 

Figure 15 illustrates the relationship between machine learning and uncertainty 

quantification. Since we are solving a machine learning problem, we will only consider 

approaches for inverse uncertainty quantification.  
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Figure 15. The Relation Between Machine Learning Problems and Uncertainty 
Quantification Problem (Adopted From [56]). 

 

4.2.3 Uncertainty Quantification Method 

To tackle the challenges raised from uncertainties, theories and techniques have been 

developed to model the uncertainties in various forms. Yet, there is currently no general 

definition for uncertainty that fits any situation. It is observed the uncertainties are studied 

often under a given context. Here since we are interested in a machine learning problem 

(specifically, a clustering problem), we will only consider approaches for inverse 

uncertainty quantification which can be categorized into probabilistic and non-probabilistic 

methods [63]. Probabilistic uncertainty approaches are based on rigorous probability 

theory under the availability of sufficient data, whereas non-probabilistic approaches are 

developed to cope with a lack of information or data.  
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4.2.3.1 Probabilistic Uncertainty Approach 

Probability theory is the main tool to estimate the uncertainty. It defines the random 

variable to describe the random events and use stochastic processes to analyze random 

phenomena [64].  

Probabilistic uncertainty approaches can be broadly categorized into frequentist and 

Bayesian approaches. In the Frequentist interpretation, probabilities represent long run 

frequencies of events; the true properties about parameters, which represent information 

about an event or system of interest, are revealed in the long run. In the Bayesian 

interpretation, probabilities represent the knowledge about a parameter. The knowledge 

without observing data is represented by a prior distribution. As more data being collected, 

parameters will be updated with a likelihood function. The posterior distribution represents 

the updated knowledge about the parameter after observing data [65]. Since the posterior 

is a probability distribution, it is used to quantify uncertainty about an event occurring [66], 

[67].  

Uncertainty in probabilistic model predictions can be presented as numerical values or as 

visual graphs. Numerical indicators are descriptive statistical measures including mean, 

median, percentile, standard deviation, and quantile. Confidence Intervals (CI) express the 

uncertainty with the minimum information (lower and upper bound), thus are the most 

understandable and widely used uncertainty quantification mechanism. Typical graphical 

methods include histogram, density plot, cumulative distribution functions, and box plots 

[68]. 
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4.2.3.2 Non-probabilistic Approach 

Starting with Lotfi Zadeh’s introduction of fuzzy set in 1965, alternative theories to 

classical probability approach have emerged for describing uncertainty. In general, for non-

probabilistic approaches, there four types [69]: 

The first category is around fuzziness. Fuzziness is used to measure uncertainty in classes, 

notably in human language [70]–[72]. Fuzzy logic then handles the uncertainty associated 

with human perception by creating an approximate reasoning mechanism [73], [74].  

The second category is Shannon’s entropy, which quantifies the amount of information in 

a variable, which ties to how difficult or easy it is to guess that information without looking 

at the variable. If it is very easy to guess the value of the variable, then the variable does 

not have enough “surprise” inside, and thus the variable contains less information [75]. 

Specifically, for a random variable x with values in a finite set 𝑋, Shannon entropy is 

defined as  

𝐻(𝑋) = 	−I𝑝(𝑥) log, 𝑝(𝑥) ≥ 0
L∈N

 

Shannon entropy quantifies the unevenness in the probability distribution 𝑝(𝑥) . In 

particular, for a constant random variable with determined value, the Shannon entropy 

achieves minimum as zero. At the opposite extreme, for a uniform distribution, the 

Shannon entropy achieves the maximum [76].  

The third category is classification entropy. Classification entropy measures the impurity 

of the class distribution [69]. Specially, for a two-class problem, if we divide the dataset S 

into positive or negative class, the classification entropy is defined as: 
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𝐶𝐸,(𝑃) = 	−[
|PW|
|P|
log,

|PW|
|P|
+ |P_|

|P|
log,

|P_|
|P|
		], 

where |𝑆| is the number of all samples in S,  |𝑆4| is the number of positive samples and 

|𝑆.| is the number of negative samples. When the class distribution is pure, that is, when 

all the samples are in positive class or all in negative class, the classification entropy 

reaches the minimum value of zero. In the opposite, when the number of positive samples 

are equal to the number of negative samples, the entropy reaches maximum. In general, the 

classification entropy for a C-class problem is defined as 

𝐶𝐸F(𝑃) = 	−∑
|PX|
|P|
log,

|PX|
|P|

F
!%& , 

where 𝑆! is the number of samples for 𝑘"# class.  

The last category is Rough set theory. Rough set theory provides a mathematical tool for 

reasoning on vague, uncertain or incomplete information. With the rough set approach, 

concepts are decided by two approximations (upper and lower) instead of one precise 

concept [77], making such methods invaluable to dealing with uncertain information 

system. The idea is simple, for each concept X, the greatest definable set contained X is 

called a lower approximation of X and least definable set containing X called is an upper 

approximation of X.  

By now we have reviewed the general concept of uncertainty. Specifically, we have 

reviewed the four sources of uncertainty, two uncertainty quantification problems and both 

probabilistic and non-probabilistic methods for the inverse quantification problem. In the 

next section, we will apply the uncertainty quantification approach to the specific feature 

selection and clustering problem.  
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4.3 Uncertainty for Feature Selection and Clustering 

In the clustering application, all four kinds of uncertainty listed above are involved. The 

first one is the inherent physical variability represented by the vector of random variables 

X (model inputs). The second one is data uncertainty, including inadequate data, interval 

data, missing data, and measurement error. The third kind of uncertainty is the model form 

error or structural uncertainty. For example, the Gaussian Mixture model may not be 

appropriate to represent the data. Fitting the data to GMM would probably fail when the 

data is far from the mixture of Gaussian distribution. The last one is the numerical 

uncertainty. The convergence at a local optimal in the EM algorithm could lead to an 

approximation error. Thus, the uncertainty exists both in the distribution assumption and 

the estimation of the parameters. 

The feature selection process should include an extra layer of uncertainties from different 

sources. Since the feature selection procedure keeps changing the estimation of parameters 

in the distribution, the key metric used to select features would also change. To make the 

decision easier, a quantification of the selection criteria (also known as Relevancy Index 

in ESM) is necessary.  

In this chapter, we will focus on measuring two sources of uncertainties in the feature 

selection process for clustering: (1) quantification of feature selection; and (2) data 

uncertainty.  

Quantification of the feature selection criteria determines what set of features would finally 

be selected. Here we will conduct a validation of feature selection results through 
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visualization. The importance of providing a quantification or validation of the selected 

features is in two folds. Firstly, identifying the true dominant features can help data 

collection more efficiently. Secondly, validation of identified insignificant features that 

confound the model could increase the efficiency of computing.  

Another source of uncertainty we will focus on measuring is the data uncertainty. To basic 

idea is to detect the outliers from the clustering results. In machine learning field, we 

typically assume the input data are the ground truth. However, in many chances, the data 

are inherently incomplete and inconsistent. These outliers may due to the measurement 

error in the lab, leading unnecessary clusters shown in clustering results. Since the 

clustering results can reveal the structure of the data, it is possible that we can identify the 

potential outliers of original dataset recessively by visualization.  

 

4.3 Proposed Method 

As proposed in chapter 2, the ESM algorithm takes advantage of the responsibility 

measures in the E step. The responsibilities 𝛾(𝑧*!) are the probability of assigning the data 

point 𝑥* to cluster k. The full feature space with D features is denoted as 𝐹 = {𝑓&, 𝑓,, … , 𝑓)}, 

and the feature space excluding feature 𝑗  is 𝐹-. 	= {𝑓&, 𝑓,, … , 𝑓)}\{𝑓-} . As defined in 

chapter 1, the responsibility on the full feature space is 𝛾/(𝑧*!) and the responsibility on 

the reduced feature space (excluding feature 	𝑗 ) is 𝛾/.
/
(𝑧*!) . From the definition, the 

responsibility is related to the 𝑛"# data point and the 𝑘"# cluster. The Relevancy index (RI) 

used in ESM algorithm is defined as the difference between two responsibilities averaged 
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over N data points and K clustering groups to evaluate the importance of  𝑗"# feature to the 

clustering. It is written as:  

 𝑅𝐼(𝑗) =
1
𝑁𝐾II|𝛾/(𝑧*!) − 𝛾/.

/
(𝑧*!)|

$

!%&

'

*%&

 (4.1) 

From the formula, the Relevancy Index only handles the average of all the differences, 

while all the remaining information were ignored. Specifically, if we denote the 

responsibility differences |𝛾/(𝑧*!) − 𝛾/.
/
(𝑧*!)| as 𝛿-(𝑧*!), the difference on instance 𝑥* 

caused by removing feature 𝑗. Then the difference values shall have a distribution over the 

instances. The variance information of the difference values can not only help to evaluate 

the confidence of excluding a feature, but also provides some clues to detect outlier 

instances. 

Based on this idea, an upgraded ESM algorithm called Expectation-Selection-Outlier-

Maximization (ESOM) is proposed, which takes variance information into account in S 

step for feature selection. In addition, some candidate outliers are detected as a side product 

in the O step. Table 16 summarizes the ESOM algorithm. 

 

Table 16. ESOM Algorithm Pseudo Code.  

1. Initialize the means 𝜇!, covariances 𝛴! and mixing coefficients 𝜋!, and evaluate the initial 
value of the log likelihood. 

2. E step.  Evaluate the responsibilities using the current parameter values 

 𝛾0(𝑧%!) =
𝜋!𝑁(𝑥%|𝜇! , 𝛴!)

∑ 𝜋!𝑁(𝑥%|𝜇! , 𝛴!)"
!#$

  

and responsibilities after excluding each feature 

𝛾0!
"
(𝑧%!) =

𝜋!𝑁(𝑥%∗ |𝜇!∗ , 𝛴!∗)
∑ 𝜋!𝑁(𝑥%∗ |𝜇!∗ , 𝛴!∗)"
!#$

	𝑓𝑜𝑟	𝑗 = 1,2, . . 𝐷 



 

 

 

76 

where 𝑥%∗ , 𝜇!∗  and 𝛴!∗ are the corresponding vector of 	𝑥% , 𝜇! and 𝛴! after excluding 𝑗PQ 
variable. 
 

3. S step. Calculate the differences between responsibilities before and after excluding 𝑗PQ feature 
at iteration t.  

𝛿(𝑗, 𝑛, 𝑘)(P) = A𝛾0(𝑧%!) − 𝛾0!
"
(𝑧%!)A			𝑓𝑜𝑟	𝑛 = 1,2, …𝑁	𝑎𝑛𝑑	𝑘 = 1,2, . . 𝐾. 

              For each 𝑗, calculate the mean and variance of the differences 𝛿(𝑗)(P) with respect to 𝑛 and 𝑘. 
 

𝜇(𝑗)(P) =
1
𝑁𝐾&𝛿(𝑗, 𝑛, 𝑘)(P)

%,!

 

𝜎(𝑗)(P) = �∑ (𝛿(𝑗, 𝑛, 𝑘)(P) − 𝜇(𝑗)(P))'%,!

𝑁𝐾 − 1  

 
If  A𝜇(𝑗)(PL$) − 𝜇(𝑗)(P)A < 𝜖$ (converged) and 𝜇(𝑗)(P) + 𝜎(𝑗)(P) < 𝜖', then discard the feature 
with smallest 𝜇(𝑗)(P) and update the full feature space F.    
 

4. O step. Keep a record of the instances with largest differences in each iteration and save them 
into set O. 
 

5. M step. For reduced data with feature space F, re-estimate the parameters using the current 
responsibilities	

𝜇!%RS =
1
𝑁!

&𝛾(𝑧%!)𝑥%

+

%#$

 

𝛴!%RS =
1
𝑁!
&𝛾(𝑧%!)(𝑥% − 𝜇!%RS)(𝑥% − 𝜇!%RS))
+

%#$

 

𝜋!%RS =
𝑁!
𝑁  

6. Evaluate the log likelihood  

 𝑙𝑛	𝑃(𝑋|𝜋, 𝜇, 𝛴) = &𝑙𝑛	{&𝜋!𝑁(𝑥%|𝜇! , 𝛴!)
"

!#$

}
+

%#$

  

              If the parameters or the log likelihood are not converged, go back to step 2.    

 

Illustration Example 

To get a basic idea of the responsibility difference values, Table 17 summarizes the mean, 

standard deviation, minimum and maximum value of the vector δ(j, n, k)  at a certain 

iteration on ten features. The data is a synthetic dataset with 300 data points and 10 features. 
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The first two features were the true important features. The detailed experiment settings 

were in Chapter 2 Table 2.  

As shown in the table, the first two features have the highest mean of responsibility 

difference δ(j, n, k). For the remaining features, the mean values are close to zero. Even 

though the fourth feature has a mean value as 0.006, the maximum is 0.388, meaning that 

some data points rely a lot on that feature. That data point could be an outlier or a key data 

point that has to be clustered by this feature’s information. 

Table 17. Delta Values Illustration. 
 

feature mean Standard 
deviation 

minimum maximum 

1 0.177502 0.228454 2.55E-05 0.911053 

2 0.043622 0.098034 5.24E-12 0.567292 

3 0.004453 0.017775 0.00E+00 0.197878 

4 0.006441 0.031047 0.00E+00 0.387684 

5 0.006979 0.034216 0.00E+00 0.382952 

6 0.00443 0.018156 0.00E+00 0.185167 

7 0.004065 0.017814 0.00E+00 0.173646 

8 0.005816 0.028182 0.00E+00 0.360028 

9 0.007329 0.025009 0.00E+00 0.189193 

10 0.002365 0.008477 0.00E+00 0.077799 

 

4.4 Experiments 

In this section, we first test the clustering performance of the ESOM algorithm on several 

benchmark datasets in comparison with the original ESM algorithm and other feature 
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selection algorithms. Then the selected features are evaluated through visualization. 

Moreover, we examine detected outliers by comparing them with the misclassified data 

points.  

Datasets: In order to show that ESOM works well with various datasets, we test the 

algorithm on both synthetic dataset and three real-world datasets.  

Synthetic Dataset: A synthetic dataset having 300 instances and 10 features with  𝑓& and 

𝑓, being the relevant features for clustering and other eight features are irrelevant features. 

The relevant features are simulated from two-component mixture of Gaussian distributions 

with equal number of data points for each component. The irrelevant features are randomly 

generated from normal distributions. The detailed experiment settings are in Table 2 at 

Chapter 2.  

Vowel: An empirical dataset with 990 rows and 9 context-sensitive features. The problem 

is to recognize a vowel spoken by an arbitrary speaker. The observations fall in eleven 

groups (different vowels) [35]. 

Wine: A chemical analysis of wines grown in the same region in Italy but derived from 

three different cultivars. The wine data contains three types of wines with 178 rows and 27 

columns. 

Crab: An empirical dataset with 200 rows and 8 columns, among which five columns 

describe the morphological measurements while the remaining three columns are the color 

(orange and blue), sex (Female and Male) and index that divide the 200 crabs evenly into 

four groups by the combination of color and sex. 
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Clustering Metrics: To evaluate the cluster quality, two evaluation metrics, accuracy 

(ACC) and adjusted rand index (ARI) were computed. The best mapping between cluster 

assignments and true labels is computed using the Hungarian algorithm [78]. In addition, 

we also report the running time. 

Alternative Models: We compare the proposed algorithm with other existing algorithms. 

To get a fair comparison, we focus on the model-based feature selection algorithms. The 

survey paper [27] summarized six GMMs variable selection R packages named as 

sparcl[28], clustvarsel [29], VarSelLCM [30], vscc [31], SelvarMix [32], bclust [33]. 

Among the six methods, ‘sparcl’ mainly performs sparse hierarchical and sparse K-means 

clustering; the ‘bclust’ package requires a deliciated initial transformed model.  Thus, we 

exclude these two methods and compare the proposed method with the other four methods.   

 

4.4.1 Clustering Performance Comparison 

The results are summarized in Table 18. From the results of the experiments, we found that, 

on this set of benchmark datasets, the ESOM algorithm outperforms the original ESM 

method and has comparable accuracy with other algorithms. 

Table 18. Performance Results on Benchmark Datasets. 
 

DATASET ALGORITHM ACC ARI TIME(SEC) 

SYNTHETHIC clustvarsel 0.977 0.909 0.929 

VarSelCluster 0.973 0.896 1.656 

vscc 0.970 0.883 0.332 

selvarclustLasso 0.977 0.909 0.450 
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ESM 0.977 0.909 0.617 

ESOM 0.977 0.909 0.694 

VOWEL clustvarsel 0.302 0.118 143.445 

VarSelCluster 0.377 0.211 64.623 

vscc 0.371 0.181 7.979 

selvarclustLasso 0.339 0.151 16.094 

ESM 0.358 0.169 3.973 

ESOM 0.384 0.204 26.404 

WINE clustvarsel 0.910 0.739 13.910 

VarSelCluster 0.944 0.830 4.086 

vscc 0.978 0.931 8.316 

selvarclustLasso 0.843 0.585 2.380 

ESM 0.916 0.755 2.953 

ESOM 0.955 0.864 6.707 

CRAB clustvarsel 0.935 0.840 1.982 

VarSelCluster 0.355 0.038 1.723 

vscc 0.620 0.428 0.196 

selvarclustLasso 0.595 0.354 0.914 

ESM 0.910 0.783 1.255 

ESOM 0.910 0.783 1.771 

 

Another observation is that the clustering performance depends a lot on the dataset. One 

algorithm can perform well one dataset while badly on the other. For example, 

‘VarSelCluster shows the best ARI (second-best accuracy) on ‘Vowel’ dataset while worst 

on the ‘Crab’ dataset. ‘vscc’ shows the best accuracy on ‘Wine’ dataset but wicked 

accuracy on ‘Crab’ dataset. Nevertheless, the ESOM algorithm has competitive accuracy 
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on all benchmark datasets here. The facts show the potential robustness of the ESOM 

algorithm on different datasets. 

 

4.4.2 Evaluation of Selected Features 

For simulated datasets with known selected features, it is easy to check the feature selection 

results by comparing the selected features with the ground truth. For example, in the two 

synthetic datasets above, we can verify that the ESOM algorithm selected the correct 

features. While for a real-world dataset, there is no knowledge about which features are 

correct and which features are redundant. One way to check whether the features are valid 

is through visualization.  

To visualize the dataset, mapping the original dimension to two-dimensional space is 

necessary. Here we use the t-Distributed Stochastic Neighbor Embedding (t-SNE) method 

for the visualization. The t-SNE is a dimension reduction technique that maps the original 

feature space to two or three-dimensional space for visualization [79].  

The following plot, Figure 16, compares the t-SNE plot of the Crab dataset mapped from 

full feature space and selected feature space. Precisely, the left plot maps from the original 

feature space, which includes all the features in the dataset. The right one maps from the 

selected feature space by the ESOM algorithm. The color represents the class or label 

information. In the left plot, the green and red classes are mixed and hard to separate. In 

the right one, the classes are well separated, except for a few data points. The observations 
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also hold for the Wine dataset, as shown in Figure 17. From the comparison, we conclude 

that excluding some noisy features could help to cluster. 

 

Figure 16. Compare Full Feature Versus Selected Features on Crab Dataset. 
 

 

 

 

Figure 17. Compare Full Feature Versus Selected Features on Wine Dataset. 
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4.4.3 Examine Detected Outliers 

One way to examine the detected outliers is to compare them with misclassified data points. 

Note that clustering is unsupervised learning. The models were trained without any label 

information, and thus the outliers were detected without labels. The outliers are either 

boundary points or probably misclassified. When we know the ground truth of labels, we 

can evaluate the performance of outliers by comparing them with misclassified data points. 

If the overlap is significant, then we can conclude that the outlier detection is robust. 

Figure 18 compares the detected outliers versus misclassified data points on the ‘Wine’ 

dataset. The dots with bigger sizes are the detected outliers in the left plot and misclassified 

in the right plot. In this wine dataset, there are 176 samples in total, of which eight instances 

are misclassified after applying the ESOM algorithm with accuracy 95.5%. From the 

‘Misclassified’ visualization plot, all of the misclassified samples belong to green class but 

clustered either in red or blue. The left plot shows the detected outliers from the ESOM 

algorithm. Of the eight detected outliers, four of them (No.62, 84, 95, and 99) are actually 

misclassified. No. 60 and No.96 are on the margin and may form a new cluster. The 

remaining two data points No.75 and No.82 are on the boundary between the green and red 

class. The three forms of “outliers” do make sense on the visualization plot based on full 

feature space.  
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Figure 18. Compare Detected Outliers with Misclassified Data Points on Full Feature 
Space. 

 

4.5 Conclusion 

In this chapter, we proposed an improved version of the ESM algorithm, which takes the 

variance information of the feature selection criteria into consideration while conducting 

the feature selection for clustering. Specifically, the proposed ESOM algorithm evaluates 

the distribution of the feature selection criteria, the responsibility difference values on 

instance 𝑥* caused by removing feature 𝑗, to quantify the confidence of selecting a certain 

feature. Besides, the variance information is also used to detect outliers to quantify data 

uncertainty. To evaluate the performance of the ESOM algorithm, we conducted 

experiments on four benchmark datasets.  The experiments show that (1) the selected 

features are promising as they form a new space that’s easier to cluster, compared with the 

original feature space; (2) the improved ESOM algorithm improves the clusteirng accuracy; 
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(3) The new algorithm can also detect candidate outliers which have a big overlap with 

misclassified instances. The promisng results show the potential of  applying uncertainty 

quantification to the general unsupervised feature selection problem as future work. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

Mixture model-based clustering approaches, as a soft assignment clustering methodology, 

have demonstrated their superior performance in many fields since most real-world 

problems are uncertain by nature. However, there still exist some challenges when applying 

mixture models on noisy datasets. The inclusion of the redundant features will confuse the 

model to identify the true structure of the clusters. To address the issue, I propose feature 

selection as a solution in this dissertation.  

In the first topic, a novel feature selection algorithm termed ESM is proposed based on the 

EM algorithm for Gaussian mixture model, which can handle the continuous dataset. 

Specifically, the traditional EM algorithm for GMM modeling parameter estimation is 

extended with an S step using RI for feature selection, where RI is the relevancy index to 

measure the importance of each feature. The ESM algorithm preserves the good properties 

of the EM algorithm, such as guaranteed convergence and optimum determination of the 

clustering number. The experiments on synthetic datasets show that ESM can identify the 

relevant features and improved clustering accuracy comparing to EM. The experiments on 

four benchmark datasets show that ESM has a competitive performance on accuracy and 

running time compared with existing algorithms. Other than improved clustering results, 

the experiment on AD indicates that ESM may potentially identify the patient subtypes, 

which is crucial for patient treatment planning.  
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The second topic extends the feature selection work from continuous only datasets to mixed 

type datasets. To achieve that, the mixture model is extended from GMM to Latent Class 

Model.  A new metric termed Feature Index (FI) is introduced to measure the importance 

of each feature. The extended algorithm is evaluated on one synthetic data set, one 

benchmark dataset and the Alzheimer’s Disease (AD) dataset with categorical variables 

included. The experiments show that the proposed FI is able to identify the relevant 

features and improved clustering accuracy comparing to classical Latent Class model 

without feature selection.  

The third topic proposes an improved version of the original ESM algorithm termed ESOM, 

which aims to quantify the uncertainty of the feature selection results. The ESOM 

algorithm takes the variance information of the feature selection criteria into consideration 

while conducting the feature selection for clustering. The variance information is also used 

to detect outliers to quantify the input data uncertainty. The experiments on four benchmark 

datasets show that  the selected features can form a new space that’s easier to cluster 

compared with the original feature space. Also, the improved ESOM algorithm improves 

the clusteirng accuracy. Finally, the new algorithm can detect candidate outliers which 

have a big overlap with misclassified instances.  

For the future work, I would like to consider an extension of the feature selection approach 

to higher dimensional datasets. The current ESM algorithm is still limited in handling real 

high dimensional dataset due to the exponentially increased parameters in the mixture 

model. More work could be done to speed up the algorithm and increase the robustness for 
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datasets without a mixture property. Also, the uncertainty quantification idea can be 

extended to more machine learning models to test the robustness of the model in the wild 

as future work. 
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