
Developing a Neural Network Based Adaptive Task Selection System for an

Undergraduate Level Organic Chemistry Course

by

Refika KOSELER EMRE

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2020 by the
Graduate Supervisory Committee:

Kurt A. VanLehn, Chair
Hasan Davulcu

Dianne Hansford
Sharon Hsiao

ARIZONA STATE UNIVERSITY

May 2020

ABSTRACT

In the last decade, the immense growth of computational power, enhanced data

storage capabilities, and the increasing popularity of online learning systems has led to

adaptive learning systems becoming more widely available. Parallel to infrastructure

enhancements, more researchers have started to study the adaptive task selection

systems, concluding that suggesting tasks appropriate to students’ needs may increase

students’ learning gains.

This work built an adaptive task selection system for undergraduate organic

chemistry students using a deep learning algorithm. The proposed model is based on

a recursive neural network (RNN) architecture built with Long-Short Term Memory

(LSTM) cells that recommends organic chemistry practice questions to students

depending on their previous question selections.

For this study, educational data were collected from the Organic Chemistry

Practice Environment (OPE) that is used in the Organic Chemistry course at Arizona

State University. The OPE has more than three thousand questions. Each question is

linked to one or more knowledge components (KCs) to enable recommendations that

precisely address the knowledge that students need. Subject matter experts made

the connection between questions and related KCs.

A linear model derived from students’ exam results was used to identify skilled

students. The neural network based recommendation system was trained using

those skilled students’ problem solving attempt sequences so that the trained system

recommends questions that will likely improve learning gains the most. The model

was evaluated by measuring the predicted questions’ accuracy against learners’ actual

task selections. The proposed model not only accurately predicted the learners’ actual

task selection but also the correctness of their answers.

i

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Kurt VanLehn,

for his continuous support, patience, motivation, and immense knowledge. He

supported me throughout the completion of my long journey. Kurt is definitely the

best PhD advisor I could have ever hoped for.

I am immensely thankful to the other members on my thesis committee, Hasan

Davulcu, Dianne Hansford, and Sharon Hsiao, for their feedback and support.

I received tremendous help from my husband, Yunus Emre, who turned my

intention into an achievement with his superhuman support. I am so lucky to have a

husband that is extremely supportive, open-minded, and inspiring.

I want to thank my father, my mother, and my sister for their unconditional

love and support. I could never have come this far without their support and

encouragement.

Last but not the least, I would like to thank Duru for keeping me happy and

cheerful with her light and energy, Bashir for his critical contributions, Alpay Bicer

for his valuable suggestions, Gozde for her great friendship, and my extended family

for their unconditional support.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 What is an Adaptive Learning Technology (ALT)? 2

1.2 Adaptive Task Selection (ATS) . 4

1.2.1 What is a Task? . 4

1.3 What Are the Options for Selecting the Task? . 4

1.4 Why Does Adaptability Matter in Education? . 5

1.5 Why Is the Task Selection Decision Important? 7

1.6 Can Students Make Effective Problem Selection Decisions? 7

1.7 ATS Framework . 9

1.7.1 Question (Task) Model . 9

1.7.2 Student Model . 11

1.7.3 Task Selection Policy . 11

1.8 Our Research Questions . 12

2 THEORETICAL BACKGROUND . 14

2.1 ATS Systems Categorization . 15

2.2 Expert-Driven Adaptive Task Selection Systems 16

2.2.1 Task Selection Criteria: Mastery Learning 17

2.2.2 Task Selection Criteria: ZPD (Zone Proximal Development) . 19

2.2.3 Task Selection Criteria: Content Based (Relational Graph

of Concepts) . 20

2.2.4 Task Selection Criteria: Spacing or Sequencing Effect 21

iii

CHAPTER Page

2.2.5 Task Selection Criteria: Adaptive Navigation Support 24

2.2.6 ATSs Using Other Task Selection Criteria 26

2.3 Data-Driven Adaptive Task Selection Systems . 30

2.4 Why do we develop an ATS in Undergraduate Level Organic

Chemistry? . 35

2.5 Deep Learning . 36

2.5.1 Deep Learning Based Recommendation System 37

2.6 Deep Learning Based Recommendation System used in Education . . 41

2.6.1 Classification for Educational Deep Learning Based

Recommendation Systems . 42

2.7 Justification for Training Our Model with Golden Learners and

Their Attempts . 46

3 ORGANIC CHEMISTRY PRACTICE ENVIRONMENT (OPE) AND

DATA SET DESCRIPTION. 50

3.1 Data Pre-Processing . 56

3.2 Question Representation . 57

4 QUESTION (TASK) MODEL . 60

4.1 Dimensionality Reduction . 62

4.1.1 PCA (Principle Component Analysis) - Linear

Dimensionality Reduction . 63

4.1.2 Autoencoder (Embeddings) - Non-Linear Dimensionality

Reduction . 70

4.1.3 Autoencoder vs PCA . 79

iv

CHAPTER Page

5 RECURRING NEURAL NETWORK BASED ADAPTIVE TASK

SELECTION (ATS) MODEL . 80

5.1 Recurring Neural Network Based ATS Model . 80

5.2 Why Do We Choose the Recurring Neural Network Model? 82

5.3 Backbone of the Proposed Model: Golden Learners 83

5.4 Student Learning Gain (SLG) Model for Classifying Golden Learners 83

5.4.1 Components of SLG. 86

5.4.2 Justification for SLG . 88

5.4.3 How to Prevent the Filter Bubble Effect? 93

5.5 Recurrent Neural Networks (RNN) with Long-Short Term Memory

(LSTM) Cells . 97

5.6 RNN Architecture for Question Prediction . 99

5.7 Question Selection . 103

6 MODEL EVALUATION . 105

6.1 Recurring Neural Network Model Training . 105

6.2 RNN Model Evaluation . 106

7 CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK 116

7.1 Future Studies . 118

REFERENCES . 121

APPENDIX

A IRB APPROVAL LETTER . 135

v

LIST OF TABLES

Table Page

3.1 Dataset - Basic Statistics . 53

3.2 Sample Data Set . 56

3.3 Unprocessed Data Set . 57

3.4 Revised Data Set . 57

3.5 One-hot Encoded Questions . 58

3.6 One-hot Encoded Questions . 59

4.1 Question - Knowledge Component Association . 61

5.1 Linear Regression vs Classification . 92

vi

LIST OF FIGURES

Figure Page

1.1 ATS Framework . 9

3.1 The OPE Question Categories and the First Category’s Subcategories . 51

3.2 OPE Questions Page . 51

3.3 Solution with a Video Explanation . 52

3.4 Histogram - Number of Students and Their Attempts 54

3.5 Scatter Plot - Relationship between the Number of Attempt and Final

Exam Results . 55

4.1 Power Profile for the PCA Based Representation of Questions with

respect to Number of Principal Components . 65

4.2 PCA Results Before and After the Dimensionality Reduction with 25

Components . 66

4.3 PCA Results Before and After the Dimensionality Reduction with 75

Components . 67

4.4 PCA Results Before and After the Dimensionality Reduction with 150

Components . 68

4.5 PCA Results Before and After the Dimensionality Reduction with 250

Components . 69

4.6 Autoencoder Architecture for Question Embeddings 71

4.7 Autoencoder Loss for Different Embedding Sizes . 72

4.8 Autoencoder Results Before and After the Dimensionality Reduction

with 20 Components . 73

4.9 Autoencoder Results Before and After the Dimensionality Reduction

with 30 Components . 74

vii

Figure Page

4.10 Autoencoder Results Before and After the Dimensionality Reduction

with 40 Components . 75

4.11 Autoencoder Results Before and After the Dimensionality Reduction

with 50 Components . 76

4.12 Autoencoder Results Before and After the Dimensionality Reduction

with 75 Components . 77

4.13 Autoencoder Results Before and After the Dimensionality Reduction

with 100 Components . 78

5.1 Model Training . 81

5.2 Linear Regression Model for Student Learning Gain 84

5.3 Student Learning Gain (SLG). 85

5.4 Illustration of SLG Computation for m >=0 and m <0 85

5.5 Comparison of Two Students with (a) Same Slope (b) Different Slopes . 87

5.6 Single LSTM Cells Architecture . 98

5.7 RNN Using LSTM Cells for Sequence to Output Architecture 100

5.8 RNN Using LSTM Cells for Sequence to Sequence Prediction Used in

Our ML Algorithm to Predict the Next Question . 101

5.9 Question Selection Flow Chart . 103

6.1 Training/Test Loss during Training . 106

6.2 Histograms of Distances Between Predicted Embedding and Selected

or Unselected Questions . 108

6.3 ROC Curve for Question Selection Capability of the RNN Model 109

6.4 Histograms of Correct and Incorrect Embeddings . 110

viii

Figure Page

6.5 ROC Curve for Correct/Incorrect Estimation Capability of the RNN

Model . 111

6.6 Student Learning Gain (SLG) Model Formula . 111

6.7 ROC Curve for Correct/Incorrect Estimation Capability with Varying

w0 . 112

6.8 Model Evaluation . 114

6.9 High/Low Achiever Comparison. 115

ix

Chapter 1

INTRODUCTION

We live in a world where people, machines, and businesses produce incredible

amounts of information. The accumulated data creates huge information overload

that makes it harder for people to find the information they need (Lü et al., 2012).

Recommendation systems help narrow the choices and guide people to the right

information as it becomes abundant. They suggest a product to buy, a film to watch,

a stock to purchase, a website to visit, or a question to solve. These systems are

commonly used in e-commerce, education, finance, entertainment, and social media.

People often rely on recommendation system results (Finger, 2014).

Similar to recommendation systems, online learning technologies recently garnered

much attention and became indispensable part of formal education (Alkhuraiji

et al., 2011). Many of these educational websites overwhelm their students by

providing large quantities of study materials and exercises. (Segedy, 2014). This

information overload creates disorientation, cognitive overload, and focus problems

(Chen et al., 2005). Audiences of these online portals may have a hard time finding

the information they need. Investigating how to support audiences with a task or

1

content recommendation system plays an essential role in helping learners succeed

while they’re using the online learning environments.

1.1 What is an Adaptive Learning Technology

(ALT)?

A recommendation system used in education is an Adaptive Learning Technology

(ALT).

Aleven et al. (2016) define adaptivity in learning environments. They state

that a learning environment is adaptive to the degree that its design is based on

data about common learner challenges in the target subject matter, its pedagogical

decision making changes based on psychological measures of individual learners, and

it interactively responds to learner actions. Especially worth mentioning is that not all

systems have the same adaptivity. Some ALTs are more adaptive by adjusting their

instructions after every student action. Others are less so because their adaptivity

only occurs at the design level.

ALTs suggest learning instruction, which can be a learning activity, content,

exercise, or task to their users. Additionally, ALTs also can

• alter the sequence of the given content e.g. hypermedia, book chapters, topics,

learning objects, etc.

• provide questions/tasks for practice

• suggest feedback and hints

The goal of an ALT may vary based on its use. It can directly or indirectly

increase the students’ learning gain by providing better choices for their competency

level, it can offer a better learning environment by keeping them engaged with the

2

system longer, or it can provide personalized learning style to make the experiences

more enjoyable. Many ALTs are built on different domains (math, chemistry,

computer programming, etc.) using many different learner characteristics, such as

prior knowledge, affect, motivation, learning styles, among others. Aleven et al.

(2016) present a general framework for organizing ALTs according to the learner

characteristics for which instruction is adapted. They categorized them into five

categories based on what kind of student information is used to best adapt the

system’s behavior to fit the students’ needs.

• Prior knowledge and knowledge growth

• Path through a problem: strategies and errors

• Affect and motivation

• Self–regulated learning strategies, meta-cognition, and effort

• Learning styles

In addition to the general framework that Aleven et al. (2016) drew in their

research paper (Aleven et al., 2016a), ALTs can be categorized into three different

categories:

• Design Level Adaptivity – A system is adaptive at the design level when

design or redesign decisions are based on data from students using prior

implementations and the design doesn’t change during the run time (when users

are using the system).

• Task Level Adaptivity – A system is adaptive at the task level when it makes

decisions based on prior data from the users immediately after they solve a task.

3

• Step Level Adaptivity – A system is adaptive at the step level when it makes

the decision based on users’ actions on each step. A task can be formed from

many steps.

1.2 Adaptive Task Selection (ATS)

Adaptive Task Selection systems (ATSs) are an Adaptive Learning Technology

(ALT) that assigns exercises, activities, tasks, and questions. They offer great

potential to increase learning support to students by providing learning material

matching individual learning levels (Aljojo, 2012).

1.2.1 What is a Task?

The International Commission on Mathematical Instruction (ICMI) (Kilpatrick,

2014) defines learning tasks as tools that bridge the gap between tutoring and learning.

In our case, a task is an undergraduate Organic Chemistry question. We

explain the type of questions in Chapter 3 - Organic Chemistry Practice Environment

(OPE) and Data Set Description.

1.3 What Are the Options for Selecting the Task?

In the literature, ALTs use different policies, goals, algorithms, and learner and task

characteristics to decide the next learning object (e.g. task, link, website, exercise,

module, and etc.). The most common factors ATSs adapt their instruction to are

listed.

4

• Policies – what criteria they use to decide task selection

– Mastery learning, zone proximal development (ZPD), adaptive navigation

support

• Goal – what the ATSs aim to achieve

– Increase learning gain, motivation

• Algorithms – which model or algorithm ATSs use to predict tasks

– Collaborative filtering, Bayesian Knowledge Tracing (BKT), Deep

Knowledge Tacing (DKT), Reinforcement Learning (RL), heuristic models

• Learner characteristics – what should tasks adapt to

– Prior knowledge, knowledge growth, student errors, affect, motivation,

mental efficiency, learning style, personality, mental effort, performance

• Task characteristics – what kind of tasks should be adapted

– Task difficulty, sequence of questions

• System design – at which point tasks should be adapted

– Design level adaptivity (the instructions set during the system design), and

task level adaptivity (instructions are updated based on student responses)

1.4 Why Does Adaptability Matter in Education?

The technological shift in education created several opportunities; for example

expanded access to high quality educational materials, and eased the spread of

information. However, it also brought unforeseen negative consequences, such

5

as making the search for valuable material more difficult. New technological

improvements attempt to solve those negative aspects. Adapting educational content

presented to students according to their needs and knowledge gaps is one such

improvement. The literature shows promising results. In this section, we elaborate

on how adaptive learning solutions help students learn more efficiently.

Providing Personalized Content: According to (Cronbach and Snow, 1977)

”optimal learning results occur when the instruction is exactly matched to the

learner’s aptitudes. Adaptively pacing the instruction, tasks, and feedback to fit the

specific needs, preferences, and abilities of the learners creates an effective learning

environment.

Designing Accessible Learning Solutions: Tracking student performance,

and providing content according to students’ needs minimize the knowledge gaps

students face and provide more robust and higher quality learning. These capabilities

are possible with an adaptive learning solution that applies mastery learning

methodologies. Khan (2018), the owner of Khan Academy, mentioned that mastery

learning is the key to accelerating learning and transforming education. With mastery

learning, no average learners is sacrificed to serve for the extremes, no below average

learners fail as they advanced to the next topic without understanding and, no

advanced learners sit through class and in which they learn nothing.

Mimicking Tutoring: One–to–one tutoring is one of the most effective way

learning methods. In conventional classroom environments, having one–to–one

relationships may not be possible; however, adaptive learning technologies can mimic

one–to–one tutoring and provide such an environment for individual learners.

Scaffolding Learning: Scaffolding is essential in self–regulated learning

environments. For example, when students need to select their own tasks, or their

6

own learning material, they might need guidance. Adaptive learning environments

can fill this gap and provide the necessary scaffolding.

1.5 Why Is the Task Selection Decision

Important?

Selecting the most appropriate task is one of the most important parts of the

learning process. Improperly selected questions might hurt learning and decrease

students’ learning gains (Long, 2015). For example, solving problems that include

already mastered concepts does not increase learning gain and causes students to

lose time. Picking extremely difficult questions has the same effect. Selecting the

appropriate problem requires critical metacognive skills: (1) knowing yourself:

assessing knowledge accurately, (2) knowing the task: accurately analyzing

question complexity. If a student fails to correctly analyze, the task selection fails

and the student either under–practices or over–practices the learning materials, which

wastes time and leads to poor learning outcomes.

Many cognitive and instructional theorists also highlight that selecting appropriate

tasks is one of the key factors to achieving the best learning outcomes (Kostons et al.,

2010a; Flegal et al., 2019; Andersen et al., 2016).

1.6 Can Students Make Effective Problem

Selection Decisions?

Different studies show that students who control their own problem selection

experience lower learning gains than students who solve the system–selected tasks

7

(Atkinson, 1972; Long et al., 2015). Even though the system selected tasks yield better

results, students tend to prefer their own selected tasks over the system suggestions.

(Mitrovic et al., 2003) state that student–selected problems that were vastly different

from the system–selected problems even when an Open Learner Model was presented.

Not all students can select suitable questions for their level of competency.

There are many reasons why do students fail to make effective problem selection

decisions?: (1) Students have insufficient self–regulated learning skills to select the

most suitable task for their level of competency (Kicken et al., 2008). (2) They

want to remain in their comfort zone and prefer to solve questions that they are

familiar with. (3) Students focus more on the surface features (e.g., the size of

the question text) than the structural features (e.g., the complexity of the solution

paths) when they select problems for themselves in an online learning environment

(Paas et al., 2010). (4) Students are not good at accurately self–assessing their own

learning status (Dunlosky and Lipko, 2007; Metcalfe, 2009). (5) Sometimes they lack

positive motivation toward selecting the questions that most improve their learning

gains (Zimmerman and Bandura, 1994; Kostons et al., 2010a). (6) Transferring

self-assessment and task-selection skills from one domain to another domain is hard.

For example, students who effectively select math tasks may not effectively select tasks

in another domain. Skill transfer is very limited (Kostons et al., 2012; Raaijmakers

et al., 2018). (7) Lack of domain knowledge negatively effects the task selection

skills. In order for students to find the proper questions for their level, they should

sufficiently know the domain and then they can make an educated guess about what

exercise they should solve next (Clark et al., 2011; Gay, 1986). (8) Lastly, students

may lack problem selection strategies (Long and Aleven, 2013).

8

1.7 ATS Framework

Most ATS systems are formed from three important components.

• Question (Task) Model — The system represents the task in a machine

readable form and categorizes it based on difficulty, topic

• Student Model — The system models the individual knowledge, personality

(self-efficacy, self-esteem), behavior, affect

• Task Selection Policy — The system decides and presents the best

personalized task

Figure 1.1: ATS Framework

1.7.1 Question (Task) Model

A significant initial stage of constructing an adaptive learning environment is the

accurate machine readable representation of questions. The main question is how we

can model questions. What question characteristics (e.g. difficulty, knowledge key

that defines the scope of the question) should we consider? Those questions must be

9

answered while designing a new ATS. A good question model ensures each question

in the database is represented. A machine can calculate differences between questions

numerically and a system can compare the questions and select the most appropriate

based on the results. We used six common dimensions:

• Content Area — Indicates which key knowledge portion the question includes.

• Difficulty Level — A ranking system distinguishes the hard questions from

the easier questions.

• Category — The dependency graph requires answers to questions before

moving onto another question. The dependencies often represent pre-requisites,

that is, knowledge or tasks that should be mastered before other knowledge or

tasks can be assigned.

• Question Type — Categorizes questions based on their types: Procedural

knowledge (how to perform a specific skill or task), which measures

cognitive skills to solve certain tasks like computation, Declarative

knowledge (facts and conceptual information), which measures

knowledge level.

• Scope — A question can be associated with one key skill whereas some

questions can be formed from several skills.

• Solution Map — Specifies the index of skills, and concepts that are needed

to solve the problem.

There are many different ways to formally represent a machine readable question.

Some research uses the dependency graph between questions, some of them use

machine learning methods to convert questions, and some of them represent the

10

questions with skills or knowledge components. In our study, we use Deep Neural

Network algorithm Autoencoder to covert Organic Chemistry questions into machine

readable embeddings. See Section 4 - Question (Task) Model for more details.

1.7.2 Student Model

Assessing student knowledge for an adaptive learning system is challenging since

every student has their own pace and observations may not accurately represent

the student’s knowledge level. Predicting learners organic chemistry competency

level plays a major role in selected task quality. Therefore, building an accurate

student model is the first and most essential step in creating an effective adaptive

learning system. Several different models have been built to capture and trace

student knowledge with given observations on a given topic. Chrysafiadi et.al. (2013)

surveyed all the student modeling approaches. According to their study, the most

popular student models are: (1) Bayesian Networks, (2) Overlay, (3) Stereotypes, (4)

Perturbation, (5) Machine Learning, (6) Cognitive Theories, and (7) Ontology based

(Chrysafiadi and Virvou, 2013a). In our study, we haven’t used any student model to

assess students’ competency level. Instead, the student’s history of problem-solving

attempts is input to the recommendation system directly.

1.7.3 Task Selection Policy

Students perform better than expected when they solve targeted questions at their

competency level. ATSs can suggest helpful instructions to students and teachers to

optimize the learning process. Task selection policies are the key elements of providing

task suggestions. Many different methods are used as task selection policies and we

explain them in the next section.

11

1.8 Our Research Questions

In this study, we build an adaptive task selection system for undergraduate

organic chemistry students. This interdisciplinary work combines three fields: (1)

undergraduate organic chemistry education, (2) deep neural networks, and (3)

adaptive learning technologies. In the next section, we will elaborate.

The main hypothesis of this study is that some students are skilled at selecting

the next task, so an ATS induced from their task selections will help all learners.

We hypothesized that the neural network based–model we trained with those skilled

learners can predict their tasks better than other students’ tasks. To answer this

research question, we must answer three other research questions:

• How can we classify high achiever learners who benefit most from the online

exercises?

• How can we induce a model of their task selections?

• How can we evaluate the model?

• (future work): Does the ATS based on this model help all learners make

productive task selections? That is, does it increase their learning?

In this study, we only focus on one type of ALT, task selection systems,

which focus on prior knowledge and knowledge growth. Other learning

characteristics like affect, motivation, and learning styles are beyond this

study’s scope. In the next section, we’ll define a task and describe the options for

task selection. Finally, we share how we can adaptively recommend tasks.

The rest of the study is divided into seven chapters. Chapter 2 discusses

the theoretical background for adaptive task selection systems that focus on prior

12

knowledge and knowledge growth. Chapter 3 describes the Organic Chemistry

Practice Environment (OPE) that presents the details of the dataset and explains

how we represent the question and how we associate the questions with knowledge

components. Chapter 4 summarizes the Question (Task) model and how we prepare

the questions for our Neural Network model. Chapter 5 describes the proposed

Neural Network based adaptive task selection model, model training. Chapter

6 describes the model evaluation methods and our results. The last chapter

summarizes the main findings, provides conclusions, and discusses our contributions.

13

Chapter 2

THEORETICAL BACKGROUND

Researchers have investigated incorporating advance technology in ALTs from

different perspectives. Some utilize expert knowledge on student behavior to increase

interaction (Phobun and Vicheanpanya, 2010), while some use content-centric

methods to provide better selection materials/questions in order to improve student

motivation and interest (Huang and Shiu, 2012; Hsu, 2008). In more advanced

methods, researchers use students’ log data (Woolf et al., 2010; Murray and Arroyo,

2002), knowledge tracking models (Garc et al., 2007; Kaburlasos et al., 2008), and

combinations of content and student models to better understand student behavior

and knowledge level (Vozár and Bieliková, 2008; Salehi and Kamalabadi, 2013). In

this section, we provide the theoretical background on using these techniques to

provide interesting results in the development of sophisticated adaptive task selection

(ATS) systems. This literature review only focuses on ATS systems that specialize

in knowledge growth.

Most of the ATS systems have been formed from 3 components. Each represents

very important aspect of an ATS. Those features are:

• Question (Task) Model — The system represents the task in a machine

readable form and categorizes it based on difficulty, topic

• Student Model — The system models the individual knowledge,

personality(self-efficacy, self-esteem), behavior, affect

• Task Selection Policy — The system decides and presents the best

personalized task for individual students’ knowledge

14

Even though this literature review only focuses on the task selection policy and

categorizes ATS systems based on their task selection policies, it worthy briefly noting

our approach to the task and student models. Often, experts build the task model in

ATS systems. They use various methods to flag tasks, such as dividing the task into

skills (knowledge components) or categorizing questions based on their difficulty, or

topics. In our ATS system, we tagged questions with knowledge components, and the

process was undertaken by organic chemistry experts as explained in the ”Organic

Chemistry Practice Environment (OPE) and Data Set Description” section (Chapter

3). In this study, we do not use any student models. Our method and algorithm does

not require a complex student model.

2.1 ATS Systems Categorization

In this review, we categorized ATS systems different than the categorizations that

has been done in Aleven et al. (2016b), Okpo et al. (2017), and Grubǐsić et al. (2015).

We group the ATS systems based on who designed a policy or the algorithm that

selected a task.

If an ATS system uses experts to design a policy or algorithm for selecting tasks,

then it is an expert-driven ATS. There are many expert-driven ATS systems using

different task selection policies like mastery learning, or relational graph of concepts.

If an ATS system relies on data and machine learning techniques in its task

selection policies while minimally depending on the learner, content modelling, and

expert defined features, then it is a data-driven or data-induced ATS. In this

category, researchers use sophisticated algorithms such as reinforcement learning

(Chi et al., 2011b), genetic algorithms (Koutsojannis et al., 2007) and the MAB

(Multi-Armed Bandit) method (Teng et al., 2018). One of the main advantages of

15

this category is to avoid potential inaccuracies of human interventions and achieve

minimum requirements for expert interaction.

The next section groups different ATS systems into two main categories:

• Expert-Driven Adaptive Task Selection Systems — for which an expert

designs a policy or algorithm to select a task

• Data-Driven Adaptive Task Selection Systems — in which the task

selection policy is induced from data

2.2 Expert-Driven Adaptive Task Selection

Systems

Expert-Driven Adaptive Task Selection Systems fall into five categories:

• Mastery – ATS assigns a set of tasks based on student competency level and

only advances to the next set when the student masters the currently assigned

set.

• ZPD (zone proximal development) – ATS assigns tasks that are neither

too hard nor too easy.

• Content based (relational graph of concepts) – ATS provides the right

content by obeying the dependency graph between concepts.

• Spacing or sequencing effect – ATS assigns tasks based on the time

difference between two similar assigned tasks or adaptively controls the order

of tasks.

16

• Adaptive navigation support – ATS adapts the presentation of task links to

student goals, needs, and preferences. Navigation support is offered in different

methods like direct guidance, hiding, sorting, and annotation.

• ATSs with other decision criteria – ATS uses heuristic task selection criteria

developed bby researchers such as rule-based models, jump size, ant colony

optimization, or ATS picks the next task using users’ self-reported data on

motivation, cognitive load, or confidence level.

2.2.1 Task Selection Criteria: Mastery Learning

Ormrod (2008) defines mastery learning as ”an approach to instruction in which

students must learn one lesson well before proceeding to the next lesson” (Ormrod,

2008). Tasks are divided by skills or instructional units in mastery learning based

ATS systems. After a student solves the task(s), the system evaluates the student’s

understanding of the skill. Students must master the given topic before proceeding

to the next one. The clear advantage of mastery learning is that it provides tasks at

the level of students’ own proficiency and enables students to progress at their own

pace. Researchers in this category typically use a complex student model to evaluate

students’ competency level and decide whether to allow the student to advance to

the next topic, skill or unit. Several studies listed in the Kulik et al. (1990) also

show the positive effects of mastery learning on high school and college students’

learning gain (Kulik et al., 1990). Even though there are many advantages to mastery

learning, there are some downsides. The chief downside of this approach is that its

high sensitivity to the student model in the question selection. If the student model

does not reflect the actual state of the student, the system likely provide irrelevant

questions. Another drawback of mastery learning is that students in the same class

17

are in different units, which makes it difficult to conduct whole-class activities and

demotivates the slower learners (Pane et al., 2015). Another disadvantage is that

slower paced learners require more time to learn the concepts. Mastery learning is

also not helpful for students who are wheel-spinning, a concept introduced by (Beck

and Gong, 2013) when they observed a set of students who couldn’t master skill(s) in a

given time period. These students were ASSISTments (Aniszczyk, 2004) or Cognitive

Tutor (Koedinger et al., 1997) users who struggled to master a set of skills even after

many attempts and couldn’t advance to the next topic, skill or unit. Mastery learning

technique might even be detrimental to wheel-spinners learning.

Corbett, (2000) created Cognitive Tutor, which monitors students’ competency

levels with fine-grained knowledge components and adapts the sequence of its tasks

according to the estimated students’ knowledge level. The Cognitive Tutor traces

the students’ competency level by their Bayesian Knowledge Tracing (BKT) based

student model. The student model updates its estimate of whether the student knows

the skill after every action that student takes. The whole lesson is divided into sections

and for each section, students first solve a fixed set of problems. Based on student

model estimates of competency level, Cognitive Tutor presents the remedial problem

until a student’s competency level for that specific skill reaches a threshold value,

e.g. 0.95. As long as student’s predicted level of competency is lower than this

threshold, the system keeps suggesting questions with the highest proportion of that

skill presented in the question. They evaluated their Cognitive Tutor with different

experiments and found that the average post-test scores of the students who use

Cognitive Tutor were better than students who completed a fixed set of problems

(Corbett, 2000).

18

2.2.2 Task Selection Criteria: ZPD (Zone Proximal

Development)

Murray and Arroyo (2002) define ZPD as ”adapting instruction to keep students within

a ’zone’ where they are neither too frustrated nor too bored”. The ATS systems in this

category propose methods to measure this zone and provide tasks to keep students

in this zone. Researchers exploiting ZPD avoid assigning tasks that are too easy or

too hard. This approach is justified by the hypothesis that students learn little from

tasks that are too simple or too hard. ATS systems must tag tasks with the difficulty

level determined by the experts or directly computed from data. The main advantage

is that the method increases the students’ engagement. The main drawback is to find

the personalized support level. The method assumes that the difficulty of a task

is the same for all students, and that may be inaccurate and undermine the whole

approach. The system should accurately determine when students start to struggle

and need specific instructions or easier tasks to progress again, or when they need

less specific instructions or harder tasks (Murray and Arroyo, 2002).

Although many ATS use mastery learning, just one will be described here for

illustration of the concept.

Mu et al. (2018) develop a learning scheme that adaptively orders and provides

practice tasks to the users in a Korean language learning environment. The authors

claim to reduce the expert knowledge requirement by having minimum assumption

about the student learning process and curriculum. The proposed algorithm consists

of 2 main steps: (1) Organizing vocabulary knowledge: In the first step,

sentences from Korean language is ordered based on their complexity. A directed

graph is built based on the complexity of each Korean sentences. (2) Tracking

student progress with Multi-Arm Bandits: Initially, students are likely to

19

receive questions from a set of questions that do not require any apriori learning

(simplest) with equal probability. Later, based on the progress of students, system

records the mastery level of students and generates candidate set of questions. Those

questions are called ZPD questions, which creates the most productive learning

outcome. Authors have proposed a reinforcement learning based reward mechanism

to update the mastery level information of each question (add higher rewards to

mastery of a question when a student provides correct answer in the last several

attempts). When the reward value becomes higher than a threshold; then that

question is pushed into mastery set. Questions that are neighbors of the mastered

question, which are coming from the directed graph, are pushed into the candidate

set. Decisions of mastery on a question is controlled by several hyperparamters

with weight factors that requires precise tuning. Questions within the candidate

set (ZPD) have weights that are proportional to rewards values earned at every

attempt of a student (Multi-Arm Bandits mechanism). During question selection, all

weights are normalized and a single question is stochastically selected based on the

probability distribution generated from these weights. For instance, when a student

answers a question correctly for the last several attempts, system is likely to record

that question as mastered and do not ask the same question again. Then, it does

unlock new questions, and randomly pick a question stochastically proportional to

the accumulated reward value for the next attempt of the student (Mu et al., 2018).

2.2.3 Task Selection Criteria: Content Based (Relational

Graph of Concepts)

In this category, researchers exploit explicit pre-requisite relationships between

knowledge components, sets of tasks, topics, or concepts. Representation of the

20

relationships is typically modelled using graph-based approaches and honored by the

algorithm using the rule that only assigns tasks with pre-requisites that have been

met. Students are also tracked based on their scores on the knowledge components.

Content modelling is one of the most effective ways of finding the right content for

students to maximize student learning. Many content based recommendation systems

that has a very large corpus even after mastered tasks’ pre-requisites are excluded.

So some other method of selecting tasks must also be employed. Another main

disadvantage of this method is the accuracy of the pre-requisite relationships between

knowledge components. This relationship often set by subject matter experts. If it

does not reflect the actual relationship of the learning components, the system will

likely provide irrelevant questions.

Again, just one ATS is used to illustrate the use of pre-requisite relationships

describes a programming tutoring system using relational graphs that use taxonomic

map with topics as nodes. Student models are as simple as keeping track of the

history and correct/incorrect answers on a specific topic. Tasks are tagged with one

or more concepts. A concept is mastered if the student completes at least N tasks

(default: N=2) and succeeds on M% of the attempts (default: M = 60%). Because

this criterion leaves a large set of tasks to consider for assignments, the tasks are

sequenced, and the system presents the first task that is unmastered, unless the

concept has been attempted P times, in which case, the system returns to it after the

rest of the concepts have been mastered or skipped (Kumar, 2006).

2.2.4 Task Selection Criteria: Spacing or Sequencing Effect

In this approach, researchers focus on spacing/repetition of the tasks over time

and aim to maximize the learning gain by optimizing the distance between these

repetitions. Balancing two factors is necessary in this policy. (1) The wider the

21

spacing, the better the transfer to routine usage. (2) When spacing is too wide, then

students tend to get the task wrong, which harms retention and wastes time.

Hundreds of cognitive and educational research proves that spacing out the similar

skills produces better long-term learning (Kang, 2016). The main drawback of this

method is finding the length of the spacing interval that is the key to better learning

results. Many researchers compare different lengths of spacing with mixed results.

As an illustration of this type of ATS, (Michĺık and Bieliková, 2010) propose an

adaptive task selection system that combines the spacing effect with a content-based

method. The goal of the proposed model is to help students improve their performance

on programming learning tests. They developed a relation graph (domain model)

between (1) learning objects such as questions, exercises, possible solutions, question

difficulty, task definition, hints, etc. and (2) concepts/skills they call it metadata

entities. Each concept is associated with one or more than one learning objects.

Students self-report their attempt by selecting one of the following options after every

exercise they solved: solved correctly, solved correctly with hint, solved incorrectly

but understand the presented solution, or solved incorrectly and did not understand

the presented solution). Using this feedback, concept-based knowledge levels of the

student was updated for the attempted exercise’s underlying concepts. Some of the

exercise is associated with more than one concepts and the knowledge level change

of each concept is calculated differently. Authors explained the knowledge model

updates in their paper. This students’ self-reported knowledge levels combined is

used to calculate the appropriateness value of a concepts that is used by the exercise

recommendation algorithm.

In order to recommend the exercise, every exercise is assigned an appropriateness

score ranging between 0 to 1. This evaluation criteria consider three different factors:

(1) exercise difficulty, (2) appropriateness of the concept(s) for the student, and

22

(3) the time since the student last attempted exercise. Claim that ”repeating the

same exercise after a short interval is not suitable” (Michĺık and Bieliková, 2010).

Therefore, they hold the recent questions to be asked again. To calculate the time

interval, they used the following hyperbolic function where t is time period since

student’s last attempt to the exercise, and C is associated with students’ self-reported

knowledge levels. If student’s self-reported feedback is negative then the function

steepness become higher which results recommending the exercise sooner. Similarly,

if the students’ feedback is positive then C become lower and repeating the exercise,

which includes that specific concept become unlikely.

H = 1− (
1

(C ∗ t) + 1
)

The purpose of this hyperbolic function is to minimize the likelihood of the last

attempted question(s) to be asked again.

They evaluate their proposed method in the context of learning a programming

language. They conducted two experiments and separate the students into

three groups: Group A got the adaptive recommendations, group B got the

manual recommendations created by an expert, and group C got no adaptive

recommendations. In the first experiment, students took a pre-test followed by

a 60-minute learning session, and then took a post-test. The second experiment

started with a 50-minute learning session and then student completed a post-test. In

the post-test comparison, group A scored the best with a large standard deviation,

rendering the results insignificant.

Maass et al. (2015) worked on a model that captures how spacing between

practices affects the learning of statistical concepts. Their study is useful for adaptive

learning systems to optimally schedule the practices. Their model shows the effect

23

of long-term and short-term practices. Highlighting that while the model measures

the spacing effect between tasks, it suppresses the students’ individual differences in

performance. So, the difference in their experiment can be solely attributed to the

intervals between practices. According to their results, the wider the space between

performances on the same skill, the worse the performance during learning. But, the

same spacing effect positively affects post-test results. Additionally, if the tasks on the

similar skills are presented in constant intervals, the forgetting rate is higher; whereas

if the tasks are presented in different intervals, then the forgetting rate decreases.

They conclude that the learning is more durable when the practice is varied (Maass

et al., 2015).

2.2.5 Task Selection Criteria: Adaptive Navigation Support

Adaptive Navigation Support guides students to the most appropriate sequence

of activities that can improve their average learning rate over all the skills. This

method has been tested by (Brusilovsky and Pesin, 1998; Davidovic et al., 2003), and

proven to be successful in students to learning faster, and improving their learning

gain the most.

(Hsiao et al., 2010a) create an adaptive navigation support guide that directs

students to the most appropriate questions by changing the appearance of the

questions. They developed two different systems: (1) QuizJet, a system for

authoring, delivery, and evaluation of parameterized questions for teaching Java

programming and (2) JavaGuide, a system that provides adaptive navigation

support to direct learners to the best QuizJet questions. The questions in QuizJet

are categorized into three buckets according to their complexity: easy, moderate,

and complex. The complexity is measured by the number of concepts involved. The

more concepts a question has, the more complicated it will be. On the topic level,

24

JavaGuide shows students progress via different navigation cues by using its open

learner model, which allows students to observe their progress along with their peers.

Each topic is annotated by different cues, which represent the current knowledge level

of a student. (Hsiao et al., 2009) evaluate the effectiveness of the adaptive navigation

support on student learning. They compare QuizJet with JavaGuide. According to

the results, adaptive navigation support encourages students to solve more questions.

They categorize students who use the system by their initial knowledge levels: strong

and weak. The adaptive navigation support better helps weaker students more.

Significantly easier questions were solved in JavaGuice than in QuizJet, which better

prepares student for harder concepts.

(Brusilovsky et al., 2011) integrate social adaptive navigation support to

self-assessment questions and presente students’ progress on those questions via an

open social student model. They calle this new interface as QuizMap, which is a

TreeMap representation. TreeMap is a robust method that visualizes hierarchical

information– in this case, the performance of the students. The ultimate goal of this

open social student model is to provide information to students about their and their

peers’ weaknesses and strengths. Another benefit is ”trailblazing behaviour” where

stronger students with a better understanding of the topic can lead and guide weaker

students (Brusilovsky et al., 2011).

(Hsiao et al., 2013) introduce Progressor, a web-based learning tool with social

navigation support and an open student learning model. Progressor helps students

find the most relevant Java programming questions. Similar to QuizMap’s results,

Progressor supports that strong students with a deeper understanding of the Java

concepts can guide students to the most relevant resources. Since those resources are

visible to all students, weaker students can follow the strong students’ trails.

25

2.2.6 ATSs Using Other Task Selection Criteria

Although many ATS use unique methods that do not fit well into the preceding

classifications, just a few will be presented here as illustrations.

(Corbalan et al., 2008) created a learning-task database for the dietetics domain.

Each task had two distinct features: task difficulty and embedded support. There

were 5 difficulty levels and each difficulty level had five unique embedded supports,

i.e. different levels of scaffolding. After each learning task, students were given six

multiple choice questions to measure acquired knowledge competence. Then students’

cognitive load level were measured with a one-item 7-point rating scale to measure

the the required effort to solve the task. Lastly, the database tracked the time (in

minutes) that participants spent during training. Based on all those metrics, the

authors assigned a jump size for each student. The jump size was the number that

determined the next question from a fixed sequence of tasks that gradually increased

in difficulty and coverage. The bigger the jump size, the faster the learner move along

the sequence. After each task, the jump size was recalculated for the next task.

(Diao et al., 2018) present a personalized exercise recommendation framework.

Its main purpose is to recommend exercises to learners to achieve their learning

objectives. It is formed from following components:

• Course Knowledge Tree (CKT) — Representation of the relationships between

exercises and knowledge components which is called knowledge points in the

paper. The multi-layered tree includes the prerequsite relationship between

knowledge points. Each knowledge point can be formed from sub-knowledge

points. Their relationships are also preserved in the CKT.

• Learner's learning objective — Representation of learner's learning needs.

They are initially defined by the instructor and automatically updated by

26

personalized exercise recommendation framework after each learner attempt.

It is represented as a set of knowledge points in CKT.

• Learner's learning behaviors — Representation of learner's attempt statistics

such as number of correctly and incorrectly attempted exercises, answers

preferences. Answer preferences are calculated by using the past answers of

learners i.e. the ratio of attempted exercises difficulty and correct answer rate.

• Recommendation model — Representation of recommendation strategies that

is selected by instructors.

For a learner, a node in the CKT graph can be in three different states: Complete

Grasp (knowledge point is mastered), Basic Grasp (knowledge point is closer to

mastery but not mastered yet), and Fail Grasp (knowledge point is not attempted

or mastered yet). After each learner attempt, a reasoning algorithm updates the

learner's knowledge points using the learner's attempt statistics.

The exercise recommendation method works as a rule engine. It takes into

consideration the learner's attempt statistics, learning objectives, answer preferences,

question difficulty and the recommendation rules that is created by instructor, then it

updates learner's knowledge points (grasp states). Then, the recommendation module

filters a set of recommended exercises. In the last step, it selects a random exercise

from that set and recommend it.

In the study, the authors conduct a case analysis based on the C Language

Programming Design course to evaluate the proposed architecture, but they did not

provide any experimental results.

Kalyuga et al. (2005) design an adaptive task selection system for an elementary

algebra tutor. Students are given an initial test and asked to indicate their first

step toward a solution for each equation to measure their expertise. After each

27

question, students are asked to rate the question difficulty (what they called mental

effort) from 1 (extremely easy) to 9 (extremely difficult). Students performance

measures are divided into their self-reported mental effort rating and authors then

calculated Cognitive Efficiency. Depending on this Cognitive Efficiency level, the

system proposes different types of questions, such as fully-worked-out examples,

shortened-worked examples, and problem-solving exercises. E.g. If cognitive

efficiency was low, then the system asks more fully-worked-out examples. If cognitive

efficiency was high, then the system tends to ask more problem-solving exercises.

At the end, the authors evaluate the effectiveness of their system by a yoked

control design. They group students into two categories: control (non-adaptive) and

experimental (adaptive). The experimental group increases their knowledge more

than control group (Kalyuga and Sweller, 2005).

(Corbalan et al., 2006) creates a personalized task-selection model in the dietetics

domain, and embed their model in a simulator called Body-Weight. Body-Weight

is a practice environment for students to answer multiple-choice questions and learn

how body weight affected by food intake, exercise and etc. The recommended tasks

are influenced by (1) characteristics of the learner, such as expertise, abilities, and

attitudes and (2) characteristics of the tasks, such as task complexity and amount

of learner support. The researchers uses three components in the recommendation

algorithm: First, Characteristics includes two sub-components: (1) the task

characteristics such as level of task difficulty level, embedded support (level of

provided scaffolding -tasks can be varied from no-hint to fully worked-out examples)

and (2) the learner portfolio such as students performance, mental effort. The second,

Personalization determines the level of adaptation it can be either purely learner

controlled, shared controlled (combination of learner and system), or purely system

controlled. The third, Learning-task database stores the learning tasks.

28

The purely system controlled one includes three types of information: tasks, each

task's difficulty level, and each task's support level. There are five levels of complexity

ranging from easiest to hardest and in each level of complexity, there are five different

support levels provided for each task. After each learning task, students are asked

multiple-choice questions to measure their performance and a mental effort rating to

measure their cognitive load. Then, the system calculates performance and mental

effort and computes jump size to assign the next task for learners. Authors present

the jump size values in complexity between learning tasks. Based on those values, if

a learner has a high performance and lower mental effort, then the jump size is bigger

so the level of support decreases and complexity of the task increases.

The authors conducted a pilot study to compare different personalization levels:

(1) shared controlled (combination of learner and system), or (2) purely system

controlled. They examine those different personalization levels with respect to

different student's factors: (1) mental efforts, (2) performance, and (3) motivation.

According to their findings, student's motivation and performance levels are higher in

the shared controlled (combination of learner and system) than purely system control

one.

Even though, we categorized expert-driven ATS systems into five groups:

(1)Mastery, (2) ZPD (zone proximal development), (3) Content based (relational

graph of concepts), (4) Spacing or sequencing effect, and (5) Adaptive navigation

support, most systems in the literature combine approaches. Many researchers

often follow heuristic rules that don’t fit easily into the taxonomy. Thus, many

of the research projects presented in this work are not crystal clear examples of

expert-driven approaches. However, when humans engineer the task selection policy,

they often combine some common ideas with some of their own ideas in complex

ways. Thus, expert-driven ATS systems often suffer from complexity that makes it

29

difficult to improve. In contrast, the data-induced system, which are reviewed next,

are built mainly from data. Even though, the data-induced systems are less prone

to human errors and intervention, they often suffer from complexity where the used

algorithms and methods are very intricate like Neural Network algorithms. Their

internal mechanism is very hard for humans to understand.

2.3 Data-Driven Adaptive Task Selection Systems

Researchers reviewed in this section wish to avoid potential inaccuracies of human

intervention. They also minimize the requirement of expert interaction while

using more adaptive algorithms. Therefore, they use data-driven algorithms, which

minimizes the human involvement in their task selection policies. In this section, we’ll

list some ATSs that uses data-driven methods.

Clement et al. (2013) create an ATS system that trains math learners to add,

subtract, and multiply numbers. They introduce the term ”intrinsically motivating

activities”, which refers to an activity that is neither too easy nor too difficult, but

it is slightly above the learner’s competency level. According to (Gottlieb et al.,

2013), ”intrinsically motivating activities” increase the joy of learning and increase

the learner’s motivation that, in turn, improves their learning gain. The whole

purpose of an ATS is to find those activities that maximize student progress. This

requires two sub-tasks: (1) correctly estimating students’ current competency levels

empirically, and (2) determining the most optimal tasks that neither frustrate nor bore

the learners. In their study, Clement et al. (2013) achieve those two sub-tasks by

combining three approaches: (1) using Zone of Proximal Development and Empirical

Success (ZPDES) theory to estimate learners’ competency level (2) using Multi-Arm

Bandit (MAB) techniques to efficiently manage the exploration/exploitation challenge

30

of finding the best question(s), and (3) using expert knowledge to formulate the

pre-requisite relationship map among skills to prevent a cold start, e.g. experts know

that integer multiplication cannot be done without mastering integer summation. The

content is modeled with the help of experts in the field using relational graphs. They

propose the right activity at the right time (RiARiT) algorithm that uses simplified

knowledge tracing to estimate the knowledge level of the student. Each activity

is associated by a knowledge component and level by experts and this algorithm

accumulates the knowledge on a specific topic for a student if a student succeeds.

New challenging tasks are exposed when a student reaches a certain level. It should

be noted that the policy to determine prerequisites is done by experts, but using a

MAB to pick the difficulty level is data-driven. We include this study in the data

induced ATS systems category because the main task selection is done by MAB

algorithm which is in the category of data-induced ATS systems (Clement et al.,

2013).

(Chi et al., 2010) investigate the effectiveness of the Reinforcement Learning (RL)

induced pedagogical tutorial tactics on student learning. State representation is the

most crucial step of RL. Abstracting states from raw data by eliminating all the

detail without losing too much information is crucial for ATS success. Chi et al.

(2009) began with a large state feature set (50 features) defined in their previous

study (Chi, 2009). They used several methods for induction: (1) Limit the number of

features used to define states. Each state definition was limited to six features from

total of 50 features. (2) Represent the states such that each action from the same

state leads to another state. (3) Compare policies from different states by calculating

expected cumulative reward (ECR) for each feature. The higher ECR values yield

better results. Hence, they pick those that yield the highest ECR values. (4) Use

three training corpora to improve the effectiveness of the RL-induced policies. They

31

derive policies from each training set and then select the best policy from all sets. (5)

Include specific pedagogical policies from a smaller subset of KCs (8 KCs) than using

a whole KC set (32 KCs). Lastly, they discretized each feature to limited number of

values such as (0,1).

A set of policies called DichGain are induced from the Exploratory corpus. The

authors use dichotomized learning gains as the reward function when applying RL,

bringing only two levels of reward. The proposed policies replace the random policy

in Cordillera and the new version was named DichGain-Cordillera; its effectiveness

was tested by training 37 students. In this paper, the authors define only 18

features and use a greedy procedure to select a small subset of features for the

state representation in order to induce the DichGain policies. In (Chi et al., 2011a),

the authors expand this approach to multiple training datasets, a larger feature

set, and more feature selection approaches in their RL approach. In this paper,

the authors use Reinforcement Learning on pre-existing human interaction data to

compare two sets of pedagogical policies. For the first policy, NormGain, they improve

tutorial decisions that enhance learning. For the other policy, InvNormGain, they

use the opposite approach and enhance the tutorial decisions contribute little or

nothing to learning. The main difference between these two methods is how the

reward function is computed. Although both sets use Normalized Learning Gain

(NLG), which is defined as (pretest−posttest)/(1−pretest), as the reward function,

the NormGain tutorial tactics utilize student’s NLG100 as the final reward while

(1−student′sNLG)×100 is utilized by InvNormGain. The authors show that different

pedagogical policies differ in learning when the content is the same and students using

NormGain approach outperform their peers. Their results also indicate that content

exposure and practice opportunities positively affect student learning even with poor

pedagogical tutorial tactics.

32

As an example of data-induced ATS systems, the Multi-Arm Bandit (MAB)

algorithm is used by several researchers. In general, MAB’s goal is to maximize

the expected gain of a process while allocating fixed limited set of resources between

different choices when the returns from each one is partially known. This feature

of MAB algorithm behaves similar to the exploration/exploitation of Reinforcement

Learning.

(Teng et al., 2018) uses MAB to address problems during the exploration of

student-unknowns during the interactive question-answering process in E-learning

systems. Student-unknowns are concepts that are not mastered by a student. In

addition, the authors use two general notions to build their systems: 1)A pre-requisite

knowledge requirement for a concept to be mastered and 2) concept closeness where

two concepts share similar features, such as a cylinder and a cube. If a student does

not know the pre-requisite concept or has not mastered some of the close concepts

of a given topic, the student is less likely to succeed with this specific topic. The

authors build an interactive framework that aims to maximize the student ultimate

reward with the help of the MAB algorithm while discovering student unknowns.

Their framework, CagMab, embeds concept-aware graph into a MAB model. During

the question selection, MAB interactively updates its arm-selection policy based on

user feedback. The exploration phase is adjusted such that students can benefit from

this stage the most by learning their weaknesses and gaining the most information

about their current status.

Another approach that can be put under this category is genetic algorithms (GA).

(Koutsojannis et al., 2007) present an adaptive web-based system using a hybrid AI

(Artificial Intelligence) approach to determine the difficulty levels of exercises to be

presented to the students. The authors combine of a genetic algorithm approach and

the expert systems approach. Initially, questions in the database are classified by

33

the experts, including the difficulty levels, the number of expected trials, and time

spent. The genetic algorithm approach is used to extract rules from the interactions

of students, such as the number of tries, the number of hints, time spent on exercises,

and correct/incorrect answers. Later, these extracted rules are used to change the

expert-provided rules, which eventually change the difficulty level of questions asked

to student. In other words, system rules evolve to a new set of rules after sufficient

use of the system and all data is updated accordingly. Rules are modeled as binary

string structures consisting of ones and zeros. Over time, some of the rules, which

are used to determine the difficulty level of questions, are changed using selection,

crossover or mutation based on the user statistics.

The last study investigate is the Skill-Based Task Selector (SBTS) algorithm.

This algorithm is a type of MAB algorithm developed by (Andersen et al., 2016) to

estimate which programming language topic (IF, FOR, GUI) students should work

on and which level of complexity the question should be. SBTS is formed from three

different components: (1) A task and skill matrix to store student knowledge (2)

reward and punishment methods to adapt the learning rate and punishment, and (3)

a task generator to select questions. The task generator uses a knowledge matrix

where the higher percentage topics (cells) can be recommended to students. The task

generator also has a decay function to reduce the chances of recommending the same

topics again. The authors create three different environments with 3 different MAB

implementations for simulating the complexity of student’s behavior. They have not

to test their system in a classroom setting.

34

2.4 Why do we develop an ATS in Undergraduate

Level Organic Chemistry?

Organic chemistry has been selected to create our adaptive system, because organic

chemistry is a challenging task for many students. The concepts of organic chemistry

are rich and complex, so many students get confused and fall behind as compared

to some of their peers (Cooper et al., 2009; Grove et al., 2012a,b). Cooper et

al. (2010) state that for an expert organic chemist, the subject is self-consistent

and logical; however, for many students the subject requires rote memorization.

Indeed they solve problems by analogy or surface-level features (Cooper et al., 2010).

Zoller et al. (2007) highlight the importance of higher-order cognitive skills, critical

thinking, and problem solving abilities for organic chemistry students to be successful

(Zoller and Pushkin, 2007). Additionally, chemistry students are coming from

diverse backgrounds, such as science, technology, engineering, pre-medical, pre-dental,

pre-health, so they are required to take organic chemistry courses. Therefore, large

undergraduate classes, like organic chemistry, face several challenges in meeting the

needs of diverse students. Lastly, organic chemistry students face another unique

difficulty. They need to comprehend vast content in a short semester. Universities

tend to offer organic chemistry courses in two consecutive semesters due to high

volume of content. This creates a natural gap between two consecutive sessions.

Organic chemistry summer classes face the same problem. Some of the students

were enrolled in Organic Chemistry I (CHM233) at Arizona State University, some

took it at community colleges, and many others had more than one semester gap

between their first and second course, leading to low retention rates (Shapley, 2000).

All these listed factors make an organic chemistry class a diverse one, and adaptive

online homework tools have the best teaching solutions for this type of heterogeneous

35

student populations (Chrysafiadi et al., 2013; Chrysafiadi and Virvou, 2013b). There

are many helpful educational web-based homework systems for the general chemistry

high school curriculum such as OWL, Sapling, (Woolf et al., 1999; Parker and Loudon,

2012), and for the organic chemistry high school curriculum: (1) OrganicPad, (2)

WE LEARN, (3) EPOCH, (4) Reaction Explorer, (5) Synthesis Explorer, and (6)

CAN (Chamala et al., 2006; Chen and Duh, 2008; Chen et al., 2012; Cooper et al.,

2009; Penn and Al-Shammari, 2008; Penn et al., 2000). However, none of these

learning systems comprise adaptive learning capabilities, meaning the homework

system detects the needs of learners and automatically adapts to increase student

learning gain.

2.5 Deep Learning

Deep learning is a subset of general machine learning (ML) algorithms that uses

artificial neural network structures that try to mimic the data transfer of synapses in

the brain. During the learning process, connections, or synapses of the artificial neural

network are trained to understand the input data provided. This training can be

supervised (data is labeled) or unsupervised (data is not labeled) (Bengio et al., 2013;

LeCun et al., 2015). The superiority of deep learning algorithms not only comes from

their higher accuracy/quality, but also the ability to extract the important features

from the input data with minimum intervention from the algorithm developer. It

can capture the linear or non-linear relation between different features of the data

without the developer fully realizing the connection.

Different architectures over the last decade solve problems in different domains

using deep learning architectures that exploit the artificial neural network. CNN

architectures over tens of layers of convolution operations are used in image

36

understanding/computer vision such as traffic sign recognition (Sermanet and LeCun,

2011) or face authentication(Schroff et al., 2015). In natural language processing, deep

learning systems have reached new levels, such as Google language translation engine

(Wu et al., 2016) that uses the same RNN architecture used in this thesis. Deep

learning systems have also found applications in the development of recommendation

systems (Ying et al., 2018). There are also various architectures that are used to build

deep models such as the Restricted Boltzmann Machine (RBM) (Sutskever et al.,

2009), the variational auto-encoder (Kusner et al., 2017), and multi-layer perceptron

(MLP) (Karlik and Olgac, 2011) etc.

2.5.1 Deep Learning Based Recommendation System

Traditional recommendation systems fall intro three categories: content based,

collaborative filtering, and hybrid recommendation systems (Adomavicius and

Tuzhilin, 2005). Content-based systems compare the features of the content (subject)

and generate signals used during recommendation. For example, term frequency

(TF), inverse document frequency (IDF) are used in document ranking. On the other

hand, collaborative filtering uses the interaction between the user and the subjects to

build an understanding of the relation between these two. Hybrid systems typically

incorporate multiple recommendation systems to get one recommendation.

In the last decade, the amount of information available online has increased

enormously, making recommendation systems more attractive. Companies like

Facebook, Google, and Netflix are building more accurate recommendation systems

for their users to satisfy users needs with minimum effort. (Cheng et al., 2016) uses

a widedeep model to improve the Google App recommendation, while (Covington

et al., 2016) show a video recommendation system using deep learning models.

37

Motivations of using Deep Learning Algorithms for Recommendation

Systems

With the success of deep learning algorithms on computer vision and natural language

processing and the amount of data accumulated from the users, deep learning methods

become attractive for recommendation systems. There are several reasons for such a

trend for deep learning algorithms one of which is the structure of recommendation

systems that consists of sequential user interactions (clicks/views etc.)(Hidasi et al.,

2015). We list some of these features that makes deep learning attractive as follows:

Automated Feature Extraction Recommendation systems rely on features

extracted from input data. Traditional techniques explore data to find these

relations and generate hand-crafted features used by the system. NN based deep

learning systems offload this effort by extracting the underlying relations during

learning/training phase from the data. This not only reduces the development and

engineering phase of the feature learning, it also makes the learning dynamic while

changing the weights of different features over time with periodic re-training. It

reduces the contribution of certain features when their effectiveness diminishes while

promoting unused features when new relations in the content arise.

Composite Structure: Deep learning models typically combine multiple

information sources from different features in a single architecture. This aggregated

information makes them quite effective exploiting relations between different domains

that traditional techniques may not use. For instance, it becomes very essential for

a content-based filtering type of operation where multiple relations from different

resources are combined. Deep learning models can express these interactions with a

single network and provide a joint representation.

38

Support for Linear/Nonlinear Transformation One of the key advantages

of NN based deep learning systems is their capability of representation. The use of

non-linear operation within the network (such as sigmoid, relu etc.) gives them the

ability to extract these relations from the data. Furthermore, they also support the

linear operation that is widely used in traditional recommendation systems such as

matrix factorization (Kawale et al., 2015). One can think of linear operations as

special cases of nonlinear operations that the network is capable of representing.

Challenges and Possible Remedies of Deep Recommendation Systems

Even though deep learning offers several advantages and provides new opportunities

for researchers to explore undiscovered relations in recommendation systems, it comes

with some challenges that are focus of several researchers. We summarize these points

in the following sections.

Interpretability One of the most pronounced challenges of deep learning systems

is their interpretability. Deep learning models capture very complex behavior in

end2end joint frameworks, but understanding the relations from their complex

structure is not easy. Interpretability also causes limitations when algorithm

developers explains the the discovered relations. However, researchers are working

on models that provide some insight about the features learned by deep learning

models (Seo et al., 2017; Hong et al., 2015).

Interpretability is a bigger issue in the education field. (Baker, 2019) highlighted

four challenges that learning analytics and educational data mining researchers should

solve. The 3rd challenge was interpretability. Deep Learning Based Recommendation

Systems (DLRS) are generally very complicated and it is so hard to explain their

internal mechanism in human terms. Many of these models are black boxes and

providing explanations on their predictions is very hard, even for experts. This might

39

not be important for some fields e.g. one might not need to know how Facebook

recommends your friends, but interpretability is really important in education.

Instructors and students want to learn how a course, a task, or a step is recommended

to them. So, educational technologists should focus on this problem and try to make

the model clearer and explainable.

Overfitting Overfitting is a general problem of machine learning systems that

cause models to track the training data too closely and losing the capability of

generalization. Based on the model architecture, this issue may arise for different

reasons such as over-trainig, model complexity, noisy training data etc. There

are several ways to reduce the possibility of overfitting such as cross-validation,

regularization, early stopping, dropout, etc. Even though there is no single solution

for all overfitting problems, the combination of these techniques is often effective.

Data Dependency/Requirement Training of deep learning systems requires

a high volume of data to generate decent models. In general, deep learning

models are data-hungry and their quality is highly correlated with the amount of

training data. Researchers are trying to overcome this short-coming of deep learning

systems by using several techniques from data-augmentation (Perez and Wang, 2017)

to simulated data generation (Kim et al., 2017). More recently, researchers use

generative adversarial networks to transfer learning from one domain to another

(Goodfellow, 2016) without knowing the details of the transferred domain. This

enabled them to generate as many data as possible when they have a good transfer

learning.

Expensive/Intricate Training Typically, deep learning systems start with no

assumptions on the data or use hand-crafted features. Hence, their learning process

through back-propogation of the error over the complex structure of theirs is slow.

Additionally, their structure consists of several hyperparameters, which include the

40

parameters that define the network, such as the number of hidden layers, learning rate

etc., that needs to be properly tuned for converging deep learning model. Researchers

are proposing mechanisms to reduce the overhead of hyper-parameter tuning by

inducing the problem to s single hyper-parameter (Tay et al., 2018) and introducing

new concepts that minimize the tuning, such as learning to learn (Andrychowicz et al.,

2016), that moves learning of these hyper-parameter tuning to machines.

Ethics and Fairness One of the important topics related to recommendation

system is the ethics and fairness of the algorithms. Since deep learning systems are

not easy to interpret, it becomes harder to understand their decisions and making sure

those decisions do not incur any unwanted biases. Researchers have been analyzing

decisions from different machine learning systems to understand the fairness aspect of

these systems (Barocas et al., 2017; Chouldechova and Roth, 2018). Unfortunately,

the dependency of a deep learning system on the data, since it learns everthing from

the provided data and nothing else, makes it very hard for researchers to teach the

fairness and ethics to the models. One general flow that is used is to generate uniform,

unbiased sample sets during testing to make sure decisions show no unpextected bias

resulting unfair recommendations for certain user set.

2.6 Deep Learning Based Recommendation

System used in Education

The benefits of deep learning systems use automated feature learning, and have

a composite structure that combines multiple concepts into a single model,

and nonlinear transformation support make it attractive for education systems.

Especially, the strength of the sequential event modelling capability of recursive

networks makes them especially good candidates for extracting features of the learning

41

process. In the next section, we summarize some of these deep learning models used

in education.

2.6.1 Classification for Educational Deep Learning Based

Recommendation Systems

Deep learning algorithms have been widely and successfully used in many educational

studies. Personalization has gained much attention, and deep learning algorithms’

success in information filtering makes them ideal candidates for research. Deep

learning algorithms have been used knowledge tracing, student modeling, and

educational recommendation systems. (Hernández-Blanco et al., 2019) surveyed deep

learning techniques applied to Educational Data Mining (EDM). They used different

taxonomies to categorize the studies in the field of deep learning applied to EDM.

Especially noteworthy is task based grouping where authors categorized the papers

into these groups:

1. Predicting student performance

2. Detecting undesirable student behaviors

3. Profiling and grouping students

4. Social network analysis

5. Providing reports

6. Creating alerts for stakeholders

7. Planning and scheduling

8. Creating courseware

42

9. Developing concept maps

10. Generating recommendations

11. Adaptive systems

12. Evaluation

13. Scientific inquiry

The authors analyzed papers from four of those categories: (1) predicting

student performance, (2) detecting undesirable student behaviors, (3) generating

recommendations, and (4) evaluation. Please note that authors couldn’t find any

research and studies on the other nine categories.

In this study, we also come up with our own classification method for deep learning

based recommendation systems used in educational. We categorized deep-learning

algorithms used in education into four categories:

1. Deep Knowledge Tracing: Deep learning algorithms used in student

knowledge modeling, and student knowledge tracing. Some of the research

that uses deep learning algorithms in student modeling are: (Piech et al., 2015;

Mao et al., 2018; Xiong et al., 2016; Khajah et al., 2016).

2. Deep Predictive Systems: Deep learning algorithm to predict or estimate

student academic performance (e.g.final exam scores), attrition rates, student

dropout rates, or predict liveliness in educational videos. Some of the research

that uses deep learning algorithms in predictions are: (Mao et al., 2018; Hu

and Rangwala, 2019; Yeung and Yeung, 2018; Gardner et al., 2019; Umair and

Sharif, 2018; Mao et al., 2019; Wang et al., 2017).

43

3. Deep Recommendation Systems: Deep learning algorithms used in

recommendation engines to help students select their next task, next course,

next hint, next step, etc. Some of the research that uses deep learning algorithms

in recommendations are: (Pardos and Jiang, 2019b; Wong, 2018).

4. Supportive (Complimentary) Deep Learning Algorithms: Deep

learning algorithms used as supportive or secondary methods to other machine

learning algorithms (i.e. a student modeling method or recommendation

engine). Some of the research that uses deep learning algorithms as supportive

model are: (Abhinav et al., 2018; Zhou et al., 2019).

The following subsections provide more details.

Deep Knowledge Tracing

(Piech et al., 2015) used Recurrent Neural Networks (RNNs) specifically LSTM

(Long-Short Term Memory) cells to successfully model student learning. They called

it Deep Knowledge Tracing (DKT), the term refers to the numerous layers that deep

learning uses while mapping inputs to outputs.

(Xiong et al., 2016) compared DKT with two other very popular student modeling

techniques: BKT (Bayesian Knowledge Tracing) and PFA. They concluded that using

deep learning algorithms in student modeling is promising, but researchers carefully

represent questions especially those questions that are associated with more than one

knowledge component.

(Khajah et al., 2016) also compare BKT with DKT, but they improve BKT and

add four different advancements: (1) recency effects, (2) the contextualized trial

sequence, (3) inter-skill similarity, and (4) individual variation in ability. They showed

that BKT performed as well as DKT with those extensions.

44

Deep Predictive Systems

(Mao et al., 2018) compares three different student models: BKT, its variant

Intervention-BKT (IBKT), which incorporates a tutor’s intervention to tell or elicit

the next step, and DKT, which uses LSTM to predict students’ post-test scores and

learning gains. They also incorporate an automatic skill discovery method to their

student model and evaluate the skill discovery method with the regular BKT version

where domain experts link the questions and skills. According to their results, BKT

on top of the skill discovery method was the best at predicting the post-tests scores of

students whereas LSTM with the skill discovery method achieved the highest accuracy

in predicting students’ learning gains.

(Hu and Rangwala, 2019) use RNN to predict students grades, and they evaluated

the performance of their model using data collected from a large public university. The

experimental results show that the RNN based model performed better in predicting

students’ grades than prior state-of-the-art approaches like Multi-layer Perceptron

(MLP).

(Yeung and Yeung, 2018) use deep learning techniques to predict students’ future

occupations. They categorize the occupation into two groups: STEM (Science

Technology, Engineering, Mathematics) jobs or non-STEM jobs. Their model

accurately predicts the occupations of students. They also show that STEM students

have a higher mastery level and learning gains in mathematics.

(Wang et al., 2017) create a deep neural network model to predict student dropout

rates in MOOCs. They show that their deep learning-based model accurately predicts

the dropout rates.

45

Deep Recommendation Systems

(Pardos and Jiang, 2019b) create a course recommendation system used at the

University of California Berkeley. (Wong, 2018) also worked on LSTM based course

recommendation engine in higher education.

My model fall intro this category. We show how a Neural Network based adaptive

task selection system improves student performance in an undergraduate level organic

chemistry course.

Supportive (Complementary) Deep Learning Systems

(Abhinav et al., 2018) combine collaborative filtering approach with deep a

learning-based algorithm to recommend learning objects to learners based on their

learning preferences. They claim that the proposed approach solves the cold start

problem in which the system knows nothing about students who are new to the

system.

(Zhou et al., 2019) combine reinforcement learning with deep learning and created

deep reinforcement learning model to make recommendations at both the problem and

step levels.

2.7 Justification for Training Our Model with

Golden Learners and Their Attempts

In this section, we list the empirical or theoretical justification supports for training

the model with golden learners who most improve their learning gain. We explain

how we differentiate golden learners from other students in Section 5. In here, we

answer the following questions:

46

1. Why do we train our model with golden learners and their attempts?

2. Who are golden learners?

3. How do we select golden learners?

4. How are golden learners different from other students?

5. How do we justify using golden questions and golden question sequences in our

model training? How does knowledge of the golden questions and the golden

question sequences enable the ATS to improve the learning gain of all students?

Many studies have analyzed the patterns of different types of students (i.e.

high achievers, low achievers, wheel-spinners) and their strategic actions in different

learning situations (Hsieh and Knudson, 2018; Malmberg et al., 2013; Salikin et al.,

2017).

(Malmberg et al., 2013) trace the log files of an online learning tool to understand

the different behaviors of low and high achievers in challenging and favourable learning

situations. They found that high achievers behave differently from low achievers

especially in more challenging learning environments. High achievers (1) use deep

strategies for learning, (2) set clear, task-specific goals for studying, (3) know study

tactics, and (4) apply self-regulated learning techniques more effectively. When the

learning situation is especially challenging, the low achieving students use surface-level

strategies and fail to set proper goals.

(Salikin et al., 2017) study high achiever learning strategies and answer two

research questions:

1. What kind of learning strategies do high achievers apply?

2. What is the role of those learning strategies in student learning gain?

47

According to their findings, high achievers use the following strategies effectively:

1. Meta-cognitive strategies — Coordinate their own learning process (e.g.

setting goals and objectives, identifying the purpose of a task, seeking practice

opportunities, self-monitoring, and self-evaluating)

2. Cognitive strategies — Develop a mental process to perform specific

tasks such as summarizing or reasoning deductively (e.g. transferring and

highlighting)

3. Social strategies — Learn how to interact with others (e.g. asking for

clarification, verification, correction, and cooperating with proficient users)

4. Affective strategies — Manage emotions, motivation, and attitudes during

learning (e.g. lowering anxiety, and self-encouraging)

5. Memory strategies — Arrange things in order make associations, and review

(e.g. grouping, associating, placing new learned items into a context, and using

semantic mapping)

The listed learning strategies, especially meta-cognitive awareness were significant

predictors for academic success (Salikin et al., 2017; Keskin, 2014; McCoach and

Siegle, 2001). There are three important meta-cognitive strategies that high

achievers apply: understand the meanings of the task that they are given,

accurately evaluate their current level of knowledge, and regulate their

learning strategies accordingly. All meta-cognitive strategies help high

achievers select the questions in an order that maximizes their learning

gain. In our model, we use those capabilities of high achievers and share

them with all users. In other words, we use high achievers’ effective task

48

selection capabilities and apply them to all students to enhance learning

gains.

We claim that golden learners who improve their learning gain the most

throughout the semester can serve as a masters or in an apprenticeship relationship

to the rest of the class. (Collins et al., 1989) defined the apprenticeship as ”a teaching

method to teach students how to solve problems, understand tasks, perform specific

tasks, and deal with difficult situations”. In an apprenticeship, experienced students

work with novices and direct them to specific tasks and teach them how to react when

faced with challenging tasks. Paired learning is beneficial to both novices (learning

from master) and master (learning by teaching).

We want to guide all students, but especially low achievers with golden learners’

learning strategies. Many other studies paired golden learners and low achievers

in a classroom and exemplified the benefits of pair programming on meta-cognition

(Benadé and Liebenberg, 2017; Williams and Kessler, 2001, 2000). Similarly, our

model shares the golden learner meta-cognitive strategies (e.g. task

selection sequences) with all learners.

49

Chapter 3

ORGANIC CHEMISTRY PRACTICE ENVIRONMENT (OPE) AND DATA SET

DESCRIPTION

The Organic Chemistry Practice Environment (OPE) is an online website

that consists of many undergraduate level Organic Chemistry questions

(http://www.ochem-practice.com/chm233f2019/?page=class login). The website is

used as part of an introductory level Organic Chemistry undergraduate course at

Arizona State University (ASU). The OPE consists of a chronological sequence of

tasks that students solve as they wish. Students select the questions they want, and

provide their answers on OPE.

Data for this present study was collected from the OPE used in an undergraduate

general organic chemistry course for six semesters from Fall 2014 to Spring 2017. The

general organic chemistry course is offered over two consecutive semesters at ASU.

The study was classified as exempt by the institution Institutional Review Board

(IRB). The OPE website was built as a homework system that was available to all

students in both semesters (Figure 3.2).

On the OPE website, there are nine main question categories; each category

includes five to ten sub categories. In each sub category, there are two types of

questions: (1) credit, i.e. students receive credit just for looking at the suggested

solution page, and (2) non-credit, i.e., the students receive no credit regardless of

how much they interact with those non-credit questions. Figure 3.1 shows the main

categories and one sub category. Figure 3.2 shows one specific category, Bonding

Concepts I, with five subcategories and the number of credit and non-credit questions

answered thus far by a hypothetical student.

50

Figure 3.1: The OPE Question Categories and the First Category’s Subcategories

Figure 3.2: OPE Questions Page

51

While students answer a question on OPE, the user interface provides feedback

at different support levels. This scaffolding can be varied from providing just the

correct answer foil to present the course instructor in a video that gives a detailed

explanation for the answer (Figure 3.3). Solving the task with a high support level is

a way of improving the learning gain. Hence, a solving a task might require several

minutes. The OPE assumes that the students are working alone on a task. The OPE

is not the only resource for students; students are supported with a textbook, and

have access to an instructor, the internet and other resources.

Figure 3.3: Solution with a Video Explanation

52

All the student metric data that is used in our proposed Neural Network based

adaptive task selection system collected from the OPE. OPE is very rich resource

for students. It provides nearly 3000 organic chemistry practice problems to them.

Every problem is associated with at least one of 373 skills (also called knowledge

components). Over 2,000 students have used the platform. There are more than two

million attempts in the dataset (Table 3.1).

Table 3.1: Dataset - Basic Statistics

Figure 3.4 is a histogram displaying the number of students and their attempts.

53

Figure 3.4: Histogram - Number of Students and Their Attempts

The number of attempts is highly correlated to the final exam results. As shown

in Figure 3.5, practice positively affect the learning gain.

54

Figure 3.5: Scatter Plot - Relationship between the Number of Attempt and Final

Exam Results

A knowledge component (KC) is defined as the process which is used individually

or combining with others to accomplish a simple task by learners (van de Sande and

Sande, 2013). It is building block of a given concept under study in a variety of

subjects, such as physics, math, or organic chemistry (Ritter et al., 2009; VanLehn

et al., 2006; Zhang and VanLehn, 2017). Each question in the subject can be

related to one or many KCs that need to be mastered to solve such questions. The

undergraduate organic chemistry course is quite complex and often, there is more

than one KC involved in a typical question. Those questions are called multi-skill

(multi-KC) questions.

The raw dataset is a log file of every student action that saved by the OPE (Table

3.2). In every row, the raw log file has student ID, attempted question, KCs that

55

the question is associated, correctness of the attempt, response time (in milliseconds)

and time stamp.

Table 3.2: Sample Data Set

3.1 Data Pre-Processing

Data pre-processing is one of the many factors affect the success of a deep neural

network algorithm. Proper data pre-processing and the accurate representation of the

instance data positively impact the performance of a deep neural network algorithm

(Kotsiantis et al., 2006). Irrelevant and redundant information in the dataset should

be removed. In our dataset, a common flaw is missing exam scores. Some students

did not take one of four the exams (midterm 1, midterm 2, midterm 3, final). There

are many ways experts can handle the missing data problem. We adopted one of the

most popular approaches – ignore the missing data. For example, table 3.3 shows

some missing data. We deleted that data and trained our model to eliminate:

1. Duplicates

2. Empty sets

56

3. Students who missed any exams

4. Students who solved fewer than 11 questions

The revised is formed from 3325 student records table 3.4. The final dataset is

formed from student question attempts and student exam results. In every row, a log

file includes a student ID, the attempted question and correctness, the semester, and

exam scores.

Table 3.3: Unprocessed Data Set

Table 3.4: Revised Data Set

3.2 Question Representation

Questions are categorized by the experts in the field and are tagged with a set of KCs.

Hence, each question can be considered an N dimensional vector that represents

57

all KCs, where N is the number of all KCs in the subject of study. This one-hot

encoding represents knowledge components by using their binary existence in the

original subject. Table 3.5 illustrates one hot encoding for two questions. Each row

represents one question and multiple questions may use the same encoding based on

associated KCs.

Table 3.5: One-hot Encoded Questions

Representing the questions as a vector of features (KCs) has multiple benefits.

First, it is a simple way of representing complex questions using a handful of smaller

concepts. Second, it provides enough abstraction for each question without loosing

too much information. Third, it maps questions into N-dimensional space, which

helps to compute the distance/similarity of one question to another without knowing

too many details about the original questions. We can easily find the similarity

between two two questions by computing the distance between these vectors using

the following formula:

d(q1, q2) = ||q1− q2|| (3.1)

where q1 and q2 are vector representations of two different questions, and ||x||

represents the Euclidean distance (also called the L2 norm). In this context, two

questions with the same KC are equal.

58

One downside of this representation is that dimensionality of the questions

increases linearly with the number of KCs associated with the learning concepts

(as shown in Figure 3.6). For instance, our organic chemistry study uses more

than 350 KCs, causing a well know challenge: curse of dimensionality (Bellman,

1957). This well-known phenomenon for Machine Learning occurs when the increasing

dimensionality increases the volume of the space so fast that the available data becomes

sparse. Eventually, this sparsity causes the methods to lose statistical significance. In

addition, high dimensions with a small dataset increase the chance of overfitting for

the ML models. The amount of data needed to balance the high dimension increases

exponentially.

Table 3.6: One-hot Encoded Questions

There are multiple techniques to cope with the curse of dimensionality which are

described in the next section. They basically convert the original sparse representation

of the problem space into lower dimensional representation without losing too much

information about the original data. The trade-off between the reduction of dimension

and information loss needs to be well-balanced without affecting the system quality.

59

Chapter 4

QUESTION (TASK) MODEL

The tasks domain of our proposed system is multiple choice type exercises in a

undergraduate level Organic Chemistry course.

Problem solving is an integral part of any type of learning process. Exercise is even

more important for the courses that require a lot of conceptual learning like organic

chemistry. Students rely on problem solving and critical thinking skills all the time.

It is obvious that problem solving highly correlated with learning, however, they are

not the same thing. VanLehn (2006) defines a learning event as the construction or

application of a knowledge component, often while trying to achieve the task, whereas

problem solving is a physical event (Vanlehn, 2006). A learning event occurs in the

brain, unfortunately we cannot observe it. However, a problem solving occurs while a

student is interacting with the tutoring system and it is occurred at the physical level

and measurable. One of the main tasks of an ATS system is to log those observable

interactions of the students, and then interpret the students’ learning as accurately

as possible from those observed interactions. The first step to accomplish this goal is

accurately representing the questions in a machine readable way.

In our practice environment each and every question is associated with one or

more than one KC by Organic Chemistry experts over the course of this project (10

years) (Figure 4.1). The most experienced Organic Chemistry experts fine tuned

KC-Question association, and we created a mapping of questions to KCs from those

experts views (Q-Matrix) from those experts views. All the attribution goes to Dr.

Ian Gould from ASU Chemistry Department.

60

Table 4.1: Question - Knowledge Component Association

61

In the next section, we explain how we represent the questions-kcs in a machine

readable way.

4.1 Dimensionality Reduction

Reducing the dimensionality of the problem space is a well studied learning technique

that has been used to lower the number of random variables while obtaining a set

of principal variables (James et al., 2013). Despite there being several techniques to

achieve this goal, this section focuses on two main techniques for our problem: (1)

Principle Component Analysis (PCA) and (2) Autoencoder. The main goal of each

technique is to reduce dimensions without losing too much information. One of the

benefits of the reduced space is that we can still use the distance metric defined in

Equation 3.1 to calculate the similarity between questions. The representation in the

reduced dimension will still contain the most of the information from the original

space.

Although reducing dimensionality helps in several aspects, such as reducing

the possibility of overfitting, improving the model convergence, or lowering the

data requirement, it combines multiple dimensions from the original space. Hence,

associating the original problem space with the new dimensions is more difficult

especially for non-linear reduction techniques (interpretability). Because non-linear

techniques (for autoencoders) use more complex associations between dimensions

from the original space. We trade off understandibility of the questions with the

efficiency in dimensionality reduction. We use two techniques to evaluate the effect

of dimensionality reduction:

• Principal Component Analysis (PCA) - Linear

• Embeddings (Autoencoder) - Nonlinear

62

4.1.1 PCA (Principle Component Analysis) - Linear

Dimensionality Reduction

PCA is a well-known technique in dimensionality reduction (James et al., 2013).

PCA uses eigenvalues/eigenvectors of the original space and finds weights for

each orthogonal vectors that represents the strength of the contribution from that

dimension. The technique achieves this preservation of the variance by computing

the axes, which are orthogonal to each other, that has the highest variation. Then,

it removes the dimensions with weak contributions while keeping strong ones; hence

reduces the dimensions of the original space with a minimum loss of information. It

is a linear transformation over eigenvectors of the question space.

Generally, a standard matrix factorization technique, such as singular value

decomposition (SVD) as illustrated in Equation 4.1. It is used to convert the original

space representation into a matrix multiplication where each vector has a special

property.

M = UΣVT (4.1)

where M is the input matrix, U is the right most unitary matrix(conjugate

transpose is also inverse), Σ is a rectangular diagonal matrix where diagonal elements

are from σ0 to σN in which N is the dimension of Σ and V is the left-most unitary

matrix. Columns of V become the principal components of the original input space

and σx represents the contribution (power) of each principal component.

We considered PCA as an option to reduce dimensionality of the original question

space. We applied PCA to one-hot encoded questions to reduce its dimensionality in

our procedure. In this section, we describe our observations about the PCA quality

given to our question space.

63

We investigated the PCA performance with respect to the number of components

(number of columns from V used in the new representation). We know that as we

increase the number of components, the PCA will represent the original space better

by using more principal components. On the other hand, it will lose information in

the new representation space as we lower the dimension. For the problem space, we

are dealing with the issue of finding the sweet spot. To sum up, it should cover the

good portion of the original space while keeping the reduced dimension as small as

possible.

Figure 4.1 illustrates the maintained power of the original distribution with respect

to the number of components. The x-axis shows the number of principal components

kept for the represented space while the y-axis shows the normalized power of the

new space (
∑K

i=0 σ
2
i∑N

j=0 σ
2
j

where K is the number of components used) represented by the

given number of dimensions (ratio=1 is the full representation of the original space).

We showed here upto 250 components where the original question space consists of

373 components in which one KC holds a single dimension (one-hot encoding). We

realized that 60% of the power is detained when dimensionality is reduced from N=373

to N=50. We can increase the number of components and improve the quality as seen

from the Figures 4.2 to Figure 4.5.

Following figures (Figure 4.2 to Figure 4.5) illustrate the quality of some randomly

picked questions when different numbers of components are used between 25 and

250. Before-PCA graphs, which is represented using blue color, are the original

representation of the questions where non-zero values show the existence of the

associated KC (one-hot encoding). For instance, Q-1500 (Question-1500) has a single

KC at the 310th position, while Q-1000 (Question-1000) has two KC values, one of

which is at the 108th position and other is at the 307th position. After-PCA graphs

show the distribution of the KC components when an inverse-PCA is applied to the

64

Figure 4.1: Power Profile for the PCA Based Representation of Questions with respect

to Number of Principal Components

reduced component. This shows us the how well some of the features are retained

from the original question space. If these two plots overlap, then the original features

are fully retained in the reduced space. If the plots differ, then it shows higher

information loss. Parallel to figure 4.1, we see that quality of the PCA improves

as we add more components. When we look at the results with 25 components, we

see that most of the information in questions is lost and the PCA fails to provide

good representation in the reduced space. Until we reach to 150 components, we see

noticeable information loss for the PCA, where the overlap of the reduced space and

original space is low. We also see a small improvement by moving to 250 principal

components from 150 principal components. This improvement is expected since the

PCA has diminishing returns in detained power as we move to higher dimensions.

65

Figure 4.2: PCA Results Before and After the Dimensionality Reduction with 25

Components

66

Figure 4.3: PCA Results Before and After the Dimensionality Reduction with 75

Components

67

Figure 4.4: PCA Results Before and After the Dimensionality Reduction with 150

Components

68

Figure 4.5: PCA Results Before and After the Dimensionality Reduction with 250

Components

69

4.1.2 Autoencoder (Embeddings) - Non-Linear

Dimensionality Reduction

Autoencoders have recently become popular in dimensionality reduction due to their

strength in capturing non-linear behavior of input data. They consist of artificial

neural network stacks in symmetric architecture where the input and output maintain

the same representation. The goal of the network is to retain the maximum amount

of information from the original representations at its reduced dimension. Input data

at its original representation feeds into the network and the dimension of the network

gets smaller gradually as the data moves from layer to layer until it reaches the

bottleneck nodes (this part is called encoder). Then, the data flows to the output

layer by passing through expanding nodes until it reaches the same size of the input

(this part is called decoder). This structure ensures the input and output dimensions

match and the loss is defined as the difference between input and output nodes. This

forces the bottleneck nodes to keep the highest information to minimize the loss. The

reduced size encoded values are called embeddings.

Autoencoders support non-linear transformation with the relu, sigma, or tanh

operations incorporated within their architecture. In the case of disabling these

non-linear operations, autoencoders become linear transformations like principal

component analysis. Hence, we can see PCA as a subset of autoencoders with only

linear transformations.

In this study, we used a simple autoencoder architecture to reduce the

dimensionality of the questions. Figure 4.6 illustrates Neural Net architecture with

multiple fully connected (FC) layers that consist of four fully connected layers. The

first and second layers of FC coefficients are tied to the third and fourth layers

to construct the symmetric architecture and ensure reconstruction of the original

70

space for loss computation. In our case, inputs are one-hot encodings of questions

and outputs are the same values. We use the mean square error (MSE) difference

between the original input and reconstructed version and feed this difference back to

the network to generate embeddings from the bottleneck nodes.

The original question space consists of 373 knowledge components; hence, our

autoencoder architecture uses 200 neurons in the first layer and 40 neurons in the

second layer which is the embedding size. Layer-3 and Layer-4 are decoders that use

the same coefficients of the first two layers (no additional training for those layers)

but with different bias values.

Figure 4.6: Autoencoder Architecture for Question Embeddings

We trained the autoencoder using our questions (their one-hot encoded versions)

and we plot the loss function for various embedding sizes (Figure 4.7). Different

colors in this figure shows different sizes of the autoencoder bottleneck sizes (also

final embedding). The x-axis illustrates the training steps and the y-axis shows the

71

loss values in log scale. As expected, increasing the embedding sizes help us to achieve

lower loss values (better representation of the original space in a reduced dimension).

However, we see that the improvement of quality is diminishing when the embedding

size is larger than 40 (as we compared 40 to 50 and onward).

Autoencoder based dimensionality reduction does achieve much better quality for

the same reduced space. One can easily see this by comparing component=25 of PCA

(Figure 4.2) and embedding size of 20 of Autoencoder (Figure 4.8).

Figure 4.7: Autoencoder Loss for Different Embedding Sizes

72

Figure 4.8: Autoencoder Results Before and After the Dimensionality Reduction with

20 Components

73

Figure 4.9: Autoencoder Results Before and After the Dimensionality Reduction with

30 Components

74

Figure 4.10: Autoencoder Results Before and After the Dimensionality Reduction

with 40 Components

75

Figure 4.11: Autoencoder Results Before and After the Dimensionality Reduction

with 50 Components

76

Figure 4.12: Autoencoder Results Before and After the Dimensionality Reduction

with 75 Components

77

Figure 4.13: Autoencoder Results Before and After the Dimensionality Reduction

with 100 Components

78

4.1.3 Autoencoder vs PCA

The PCA is a well-known technique to reduce dimensionality. The PCA is a linear

model that captures the important dimensions of the original data space. On the

other hand, autoencoders are non-linear models with has higher flexibility that

capture the main contributors of the original space in very low dimensions. This has

given an upper hand to autoencoder to represent the dimension in much lower space

without too much loss from the original representation. Without loss of generality,

autoencoders are the super-set of PCA models since they can capture the linear

relation in addition to non-linear transforms. We clearly see this for the low reduced

spaces such as, 20 to 50, where autoencoder outperformed the PCA to detain the

original information in the reduced space.

Furthermore, autoencoders use loss function as the difference between the original

input and its representation after passing through encoder/decoder pairs. This does

not require any additional labelling, in this sense they are more like unsupervised

learning schemes like PCA. Hence both techniques require no external labelling to

reduce the dimension.

Our experiments prove that autoencoders capture more information compared to

the PCA when both operate at the same reduced dimension. This makes them more

attractive for our application since we do want to operate at reduced space with

minimum information loss.

79

Chapter 5

RECURRING NEURAL NETWORK BASED ADAPTIVE TASK SELECTION

(ATS) MODEL

This section describes how our model predicts students’ next questions. Various

approaches in the literature use different models to recommend optimum questions

as described in Section 2. In this section, we describe a data-driven adaptive task

selection method that does not require a complex student model, minimizes the

potential inaccuracy of the expert driven features (e.g. human intervention). We

explain the model specifications and how we implement an artificial recurrent neural

network architecture LSTM in this chapter.

5.1 Recurring Neural Network Based ATS Model

At the core of the question selection method, our algorithm relies on the golden

set of students (high achievers) who improve learning gain the most throughout the

semester. Student academic success results help us determine the golden learners and

their actions in our training set helps us to determine those golden learners’ question

sequences. These question sequences then help our ATS system recommend tasks

that increase other students’ learning gains. Student competency level is encapsulated

within the structure of the recurrent neural network model by looking at the previous

actions, successes and failures of the student. Figure 5.1 illustrates the high level

block diagram of the model training flow.

In order to select a subgroup of students (e.g. high achievers) to construct the

backbone of the algorithm, we define a Student Learning Gain (SLG) metric

(see section 5.4). This metric selects the students whose actions over time positively

80

Figure 5.1: Model Training

benefited their learning without adding any constraints, such as learning pace,

pre-existing knowledge, motivation, due dilligence, etc. Hence, the group is comprised

of students that provide good representation of all student types. We called those

high achievers are as golden learners. Given that all the actions of the golden

set of students are recorded, we use Neural Network based model to predict those

actions. This approach reduces our problem to a sequence learning problem that has

been explored in several contexts, such as natural language processing that is used

in machine translation (Wu et al., 2016; Yao et al., 2015; Sutskever et al., 2014), and

time series analysis in financial markets (Bao et al., 2017; Chen et al., 2015). One of

the most prominent approaches is to use recurrent neural network architecture. In

the next section, we explain why this architecture works the best for our problem.

81

5.2 Why Do We Choose the Recurring Neural

Network Model?

Our ATS algorithm trains the question prediction model using the student actions

(last N question attempts) from the golden subset of students. Therefore, we use

Recurring Neural Network (RNN) architecture based on LSTM (Long Short-Term

Memory) cell structures to predict golden students' next questions. During the

inference time when we provide questions to a student, we feed in the last N actions of

the current student and get an embedding (see Section 3 for dimensionality reduction)

from the model. Computing the distance of all questions to this embedding generates

a set of candidate questions from all the questions. Figure 5.1 illustrates the general

flow of the model training/inference. We select the questions from this candidate

set using distance calculation (Euclidean distance). Even though the lower distances

provide better matches based on the current state of the student, we can also pick

slightly farther away distant questions to provide more exploration to the student.

Adding a room for exploration has many benefits: (1) training our model in the

following semesters, (2) reducing the risk of repeating the same questions and (3)

preventing the model to fall into filter bubble effect that is explain in this section.

Even though, there is no solid distinction between neural network architectures,

and the architecture can be modified for different applications, we select RNN

primarily because of its strong ability to predict sequence of actions better

than Multi-Layer Perceptrons (MLP) that mainly use fully connected layers or

Convolutional Neural Networks (CNNs). Multi-Layer Perceptrons are good for

learning mapping between input and output data like simple classification or

prediction; CNNs are powerful for learning features from image data where there

is a high correlation between neighboring pixel values. However, RNN architecture

82

using LSTM cells is good at keeping track of the internal state of the transitions

between input/output data with its memory cells and forgetting factors.

5.3 Backbone of the Proposed Model: Golden

Learners

In this section, we explain the Student Learning Gain (SLG) model that we developed

to differentiate golden learners from other students. We answer the following

questions:

1. How do we separate golden learners from other students?

2. What are the components of SLG model and why do we use them in SLG?

3. Why is SLG a linear model?

4. How do we associate academic success with effective usage of online learning

portal?

5. How do we prevent the filter bubble effect?

5.4 Student Learning Gain (SLG) Model for

Classifying Golden Learners

One of the most important parts of the proposed model is the separation of golden

learners from other students. Our goal is to generate a subset of students who most

increased their learning gain throughout the semester. We developed a Students

Learning Gain (SLG) model. SLG is our metric for selecting golden learners.

83

We use three midterms and one final exam for each student who completed the

course to understand learning gains over time. In order to quantify the learning gain

of the students, we run a very simple linear regression using the normalized exam

results and evaluate the learning gain by looking at the slope and bias of this simple

metric. Figure 6.6 illustrates the four exam scores (Midterm 1, Midterm 2, Midterm

3, and Final) of a student and estimated linear regression model for this student.

Figure 5.2: Linear Regression Model for Student Learning Gain

The linear regression model provides three main features:

1. Bias (intercept) - incorporates the apriori knowledge of the students

2. Slope - quantifies pure student learning gain

3. Weighted midterm-3 values - adds overall performance of the students

We use these three parameters to calculate the student learning gain (SLG) using

the following formula:

84

Figure 5.3: Student Learning Gain (SLG)

The SLG model reduces the student learning gain to a single number which we

use to find golden students and low achievers. The SLG equation illustrates how SLG

is computed from the linear regression model for m >= 0 and m < 0 (Figure 5.4).

Figure 5.4: Illustration of SLG Computation for m >=0 and m <0

85

In the normalized exam score dimension, the highest SLG score a student can

earn is 1. We use the SLG score to rank the students based on their learning gain.

Then we call the highest 20% golden learners and least 20% of the student as least

progressives (low achievers).

Golden learners are used to train the proposed ATS model for question

prediction. Our ATS algorithm relies on predicting golden learner actions using

question attempts. Our ultimate goal for this ATS model is to increase learning gain.

Good question suggestions should increase the student learning. With this goal, if

we can find the sequence of questions solved by golden learners and extract their

question attempt sequences from the log data, then we can train our model. Later,

this model trained by golden learners, generates an embedding for given sequence

data over the last N attempts and answers and becomes the anchor of our question

selection algorithm.

5.4.1 Components of SLG

The SLG induces the student learning gain to a single number that we can compare

to identify golden learners and least progressives. In order to quantify the learning

gain, we run a very simple linear regression model using four exam results (Midterm1,

Midterm 2, Midterm 3, Final).

In SLG, we evaluate the learning gain by looking at the slope, bias and student

linear regression value at midterm-3 to add overall performance from the regression

model.

One reasonable question to ask why we use more than the slope of the normalized

score to rank the students. This approach lacks the apriori knowledge of the students

and their relative knowledge levels. For instance, Figure 5.5-a shows two students with

the same learning gain slope where student-A started from a high score and increased

86

his/her scores same as student-B in absolute terms. However, we know that increasing

the learning gain for student-A is much harder (and requires higher ranking) given

that this student is very close to the maximum achievable scores. As another example,

Figure 5.5-b illustrates two students where student-C has no-slope while student-D

has one slightly positive slope. If we only use the slopes, then we need to rank

student-C below student-D; however student-C is close to the maximum learning

gain and increasing the learning at that level is very hard to achieve. However,

student-C successfully maintains the high performance, which needs to be rewarded

when we rank the students to find the golden set. Hence, we use both slope and bias

in our formula to balance learning gain increase as well as keep high performers well

rewarded in the ranking.

Figure 5.5: Comparison of Two Students with (a) Same Slope (b) Different Slopes

We used both slope, bias, and weighted midterm-3 values in our formula to

balance the learning gain increase, as well as keep high performers well rewarded in

87

the ranking. Without combining bias, slope, and weighted Midterm-3 values, we are

unable to incorporate the following corner cases:

1. We add slope because it is an indicator for learning gain. Students who increase

their learning throughout the semester have a positive slope whereas students

who decrease their learning have a negative slope.

2. We add bias because each student has different background knowledge. The

high bias value is associated with high apriori knowledge, and a low bias value

is associated with low apriori knowledge.

3. We take into consideration the weighted midterm-3 values to smooth harsh

penalization of students who have a high apriori knowledge and don’t increase

learning very much and favor low apriori knowledge students who still increase

learning through the semester.

4. We divide slope with (1-b) because increasing learning is harder for students

whose grades are very close to the maximum achievable scores, and we want to

add this factor to our equation.

5.4.2 Justification for SLG

Measuring the student learning gain is very complex because it depends on a variety of

factors (e.g. socioeconomic, background knowledge, due dilligence, etc) (Randles and

Cotgrave, 2017). In this section, we provide justifications for measuring the academic

success with SLG. We start our analysis with answering following three questions:

1. How to use student exam results to measure how effectively students are using

our system

88

2. How to use a linear regression model over other classification methods for

classifying golden learners

3. How SLG - a basic linear model of student exam results - and its components

(bias and intercept) can predict academic success

4. How to prevent filter bubble effect i.e. training the model with one type of

learners

Is Exam Result Correlated with Effective Usage of Online Learning

Systems?

Learning does not only occur during OPE usage but also outside of the

learning portal - Assuming learning only occurs within the practice environment

would be wrong. We are aware that a great deal of learning occurs outside of the

learning portal in the classroom and during teacher-student interactions, project work,

discussion forums, and student to student interactions. Baker (2019) listed challenges

of the educational data mining researchers in (Baker, 2019). One of the challenges he

lists is Knowledge Tracing Beyond Screen. He mentioned that most learning doesn’t

take place with one student sitting at one computer and educational researchers should

focus on finding ways to track student knowledge outside of the learning portal.

In our study, using exam results as a success metrics help us to avoid this pitfall.

Additionally, most of the students that we include in our training model are using

OPE very regularly. So, students’ regular interactions with OPE can help us to track

students’ overall learning gains in a more efficient way.

Correlation between effective online learning system usage and student

academic success - The correlation of online usage and academic success are two

89

ways, effective online usage is a good indicator of academic success and academic

success is a good indicator of effective online usage.

Many studies find a very strong correlation between online learning system usage

for educational purposes and academic performance of students. Many studies

investigate indicators of student course achievement in online learning and claim

some measures, like number of questions solved, total time spent, and regular logins,

and etc. They are significant predictors of student course achievements (You, 2016;

Kauffman, 2015; Zacharis, 2015). The field of learning analytics, which tracks,

measures, and predicts student progress, then, predict academic success is now one of

the most important fields in educational research. So, this clear correlation between

online portal usage and academic success helps us to convey our hypothesis stronger.

There is a strong relationship between the successful use of online

learning portals and student academic success - If there is a direct and very

strong correlation between successful usage of an online learning portal and student

academic success, then we can clearly assume that if a student is academically

successful, then this student is effectively using the online learning portal.

Use academic success as a measure of achievement - Our model’s goal is

to pick the students who most increased their learning gain throughout the semester.

Many factors are used to predict the success of the student such as student motivation,

affective state, emotions, income, etc., but we developed a linear model representing

the student learning gain as a linear combination of student exam results. The SLG

models the student midterms and final exams using linear regression. We used student

midterms and final exams over other success possible predictors because those are the

only available independent variables. However, this doesn’t mean that our model is

weak. Many studies confirm that student midterms and final exams are exceptionally

good indicators of academic success.

90

Why use a Linear Model in the SLG?

We use the linear regression model to classify golden learners over other models for

classification.

One of the most important parts of our proposed model is the separation of

golden learners from other students. Our goal is to generate a subset of students

who have most increased their learning gain throughout the semester, and use this

subset to train our model. The success of our model depends on the accuracy of the

classification. Therefore, we carefully analyze our options. While selecting our model,

we ensured our model contained the following features:

1. Reliability — Accurately differentiates high achievers

2. Scientific acceptance, and widespread availability — Successfully, and

commonly used in literature

3. Interpretability — Easily comprehensible

4. Suitability — Suitable for our problem, i.e. linear models resolve linear

problems well, and non-linear models create better predictions in non-linear

problems.

After carefully reviewing similar studies, we determined two methods were

predominantly used:

1. Classification — A supervised data mining technique to assign items to

target categories. It used widely in similar studies: (Ahmed and Elaraby, 2014;

Shahiri et al., 2015; Saa et al., 2016; Devasia et al., 2016; Daud et al., 2017;

Mueen et al., 2016)

91

2. Linear Regression — A robust model to predict the relationship between one

dependent and many independent variables. It used widely in similar studies:

(Widyahastuti and Tjhin, 2017; Ibrahim and Rusli, 2007; Oyerinde and Chia,

2017). (Naseem et al., 2010) used linear regression for face recognition.

We compared both classification and linear regression models with respect to four

features listed above. Table 5.1 compares our results.

Table 5.1: Linear Regression vs Classification

Our problem is linear; using a non-linear model (i.e. classification) might

create an unnecessary burden and complexity that is best avoided. Additionally,

in linear regression, the linearity of the learned relationship between dependent

and independent variables makes the interpretation easy, thus improving the

interpretability. We use LSTM (Long-Short Term Model) to model the recommended

questions. Even though LSTM is a very robust and very powerful technique to model

sequential data, the interpretability of the deep learning algorithm is extremely low.

In order to lower the complexity of the whole system, we prefer a robust and highly

interpretive method to group golden learners.

92

5.4.3 How to Prevent the Filter Bubble Effect?

We trained our model with golden learner question attempt sequences. One might

claim that our approach might create a filter bubble effect, and prevent to incorporate

some valuable information i.e. to learn from mistakes. In this section, we address this

issue. Let’s start by defining the filter bubble effect. The term filter bubble refers

to the results of the algorithms that dictate what we encounter online (far, 2017).

Algorithms are intentionally biased towards what we engage with more than what

is accurate. This phenomenon creates a confirmation bias defined as ”the tendency

to interpret new evidence as confirmation of one’s existing beliefs or theories”. In

an educational context, the filter bubble can be harmful if it isolates students from

seeing a diverse set of questions or learning content. Also as (Ziegler et al., 2005)

stated, diversification improves user satisfaction.

Much educational research suffers from the filter bubble effect. (Nguyen et al.,

2014) conducted a research on the filter bubble effect in terms of content diversity.

They found that recommender systems suggest a narrower set of items over time.

However, they highlighted that taking recommendations lessened the risk of a filter

bubble. At the end of their study, (Nguyen et al., 2014) suggested designers of

recommender systems alleviate the negative effects of narrowing by:

1. Using collaborative filtering algorithms that slow the narrowing effect

2. Informing users about this narrowing effect

3. Exploring other options to increase diversification

(Pardos and Jiang, 2019a) create deep learning based university course

recommendation system for University of California Berkeley students. They used

RNNs to make predictions based on past observed student behaviors (i.e. students’

93

course enrollments sequences). However, the past data leads algorithms to a narrow

set of recommendations that lack serendipity and puts users in a filter bubble.

Educational technologists and researchers should measure the filter bubble effect

in terms of content diversity at the student level. The following questions must be

addressed: Do deep learning-based recommendation systems (DLRSs) show users

narrower content over time? And if so, how does this affects student learning gain

compared to other students who are not exposed to DLRSs suggestions? We propose

other remedies to prevent or lessen the possible effects of a filter bubble in our DLRS.

Following section discusses three different remedies.

Possible Remedies for the Filter Bubble Effect in an Educational Context

Discussion 1: Experiment with the Exploration vs Exploitation Rate

When students request a recommendation question in our proposed system, the

algorithm runs the RNN model based on the students’ last N (e.g. 10) attempts and

calculates an embedding that the model thinks student should solve next. Then, the

system compares this embedding with the actual questions in the database, and it

finds the closest matching question. The model believes that this question, which is

the closest one to the embedding that the model identifies, offers the highest chance

of increasing the learning gain. When the algorithm selects this closest question as its

recommendation, it uses pure exploitation, but there is no room for exploration. As

a result, a filter bubble effect that isolates students from seeing different questions,

or viewpoints, may hurt long-term learning gain because of the lack of serendipity.

On the other hand, when the algorithm selects the question with the highest distance

from the model prediction (lowest ranked question), then pure exploration might

hurt long-term learning gain due to a lack of prediction accuracy. We can balance

the exploitation vs exploration rate of the algorithm. Through experiments, we find

94

the sweet spot where we can keep the learning gain as high as possible and feed new

less-personalized questions in which the students might show interest.

Discussion 2: Education vs Social Media with respect to the Filter

Bubble Effect

In fields like social media, entertainment, or news-feeds, Artificial Intelligence (AI)

driven recommendation engines typically recommend what their users want to see

but very little of what they should see because their goal is to keep them on the

screen as long as possible. However, in education fields, AI driven recommendation

engines aim to achieve just the opposite. We recommend more of what the students

should see rather than what they want to see because we are trying to propel the

regular students from their comfort zone and challenge them with the questions that

they do not typically pick. As (Hsiao et al., 2010b) also stated Without proper

guidance, students frequently select too simple or too complicated problems and ended

either bored or discouraged. We claim students need extra scaffolding to improve their

meta-cognitive abilities (i.e. their questions selection decisions). Any improvement

in their meta-cognitive abilities is associated with increased learning gain (Kistner

et al., 2010). (Kostons et al., 2010b) highlights that ineffective learners might not

able to accurately assess their own level of competencies and cannot pick the tasks

that fit their learning needs. To improve learning gains, we direct the students to the

questions selected by the students who have high meta-cognitive abilities (i.e. students

who are good at question selection) (Najar et al., 2016). To achieve this goal, we pick

questions and present them in such an order that maximizes student learning gain.

Even though this data-driven approach leaves room for improvement, the approach

does have very important advantages; It not only deduces its recommendations

from individual user behavior but from all the users’ combined behaviors. This

cumulative effect is especially true for our proposed deep learning model where the

95

system infers its recommendations from other golden learner past experiences. The

questions deduced by DLRS use the wisdom of others.

The following claim needs to be proven but, we can hypothesize that the questions

that are picked by student have a greater chance of the echo-chamber effect than a

recommendation question deduced from other learner data, leading us to research.

Discussion 3: Add Shared Control

Shared control is a tutoring system that incorporates both student control and

recommender system suggestions.

(Long and Aleven, 2017) investigate the effects of shared control and the Open

Learner Model (OLM) over problem selection on learning gain. They find that

shared student and system control accompanied by an OLM was highly successful and

learning gain significantly increased. Despite finding shared student control without

an OLM does not significantly increase learning gain, other studies find that the

shared control improves student motivation, which encourages students to use the

system longer and solve more questions. We can change our system’s user interface

and incorporate a shared controlled environment where the recommendation engine

can narrow the recommendations and allow students to pick a question from this

narrowed list.

(Nguyen et al., 2014) also states, there are many different solutions to reverse

the filter bubble effect. As educational researchers, we must show the existence of

filter bubble effects in our study, and if we find any, then we also need remedies to

maximize the perceived benefit from the recommendation system.

96

5.5 Recurrent Neural Networks (RNN) with

Long-Short Term Memory (LSTM) Cells

Recurrent Neural Networks consist of a directed graph where information (message)

passes through earlier nodes to later nodes through information processing cells.

These cells include memory (storage) units that provide the tracking capability of

actions (attempted questions and corresponding answers) over time to RNNs. This is

one of the most distinctive factors of RNN compared to typical feedforward networks

like CNNs and MLPs. RNNs have temporal dynamic behavior that makes them a

very widely used architecture for handwriting recognition and speech recognition in

which small signal portions (phones in speech and strokes in handwriting recognition)

build human understandable words. LSTM is one memory block architecture that

is widely used in RNNs. LSTM consists of input, output and forgetting factors that

are tied together with different weighting factors to form the memory cells processing

behavior. Each cell has multiple input and output states that are passed to the next

layer that is later weighted by gains and forgetting factors.

Figure 5.6 illustrates the general block diagram architecture of the LSTM. t is the

notation representing the state number of the current LSTM cell (in our case it is

the question number from the sequence), Xt is the current state that is a vector (the

corresponding question embedding in our sequence), ht is the output state that is also

a vector that becomes the part of input state to the next cells (intermediate states

when cells put together to build the RNN - See Figure 5.8). Formulas generate the

intermediate state of Ct, which is state that is passed to the next cell, ft, which is the

forgetting factor, it, kt which are the intermediate states, ot which is the unfiltered

output state is also given in the following formula. All the weights (Wx) and biases

(bx) are learned during the backpropogation stage. σ and tanh are the activation

97

Figure 5.6: Single LSTM Cells Architecture

functions that are the sigmoid and hyperbolic tangent respectively in this case. The

[] symbol constructs a matrix using the vectors within (Xt and ht). This matrix is

multiplied with the coefficients Wx, and bias bx is added to the multiplication for the

internal operations before the activation function.

ft = σ(Wf [ht, Xt] + bf)

it = σ(Wi[ht, Xt] + bi)

kt = tanh(Wk[ht, Xt] + bk)

ot = σ(Wo[ht, Xt] + bo)

Ct = Ct−1ft + itkt

ht = ot tanh(Ct)

98

LSTM is not the only cell architecture that can be used in RNN. Gated Recurrent

Units (GRU)s have been introduced with higher performance speed claims over

LSTMs (Cho et al., 2014).

5.6 RNN Architecture for Question Prediction

There are different ways to combine LSTM cells to construct an RNN architecture

to generate predictions for a time-series or consecutive events such as stock prices, or

hearth/brain waveforms, etc. The main promise of RNN is to generate an estimate

of the next possible event/action given the previous events/actions in the series

data. Two of the most common architectures are sequence to output and sequence

to sequence predictions. In a sequence to output LSTM network, the architecture

consumes the sequence of input data and generates only one output. The error is

calculated between the generated output and feedback into the network to update

the coefficients. This architecture is very simple but requires much more data to

confidently update the coefficients as the network length becomes larger. Figure 5.7

illustrates such an architecture that can be used for our problem. The last N question

(their corresponding embedding after dimensionality reduction) is provided as input

to the model and the loss is computed as the difference of predicted embedding and

actual embedding of the N+1th question. This loss is backpropogated to the network

to train the coefficients. Softmax (also named as softargmax) is a function that takes

an input vector consist of K dimension and converts these K dimensions into K

probabilities proportional to their values. The FC stands for fully connected layer

(Géron, 2017). Even though this simple architecture exploits the benefits of LSTM

cells, the network becomes as complex as N (number of input sequence) increase and

may cause the network to require many training samples to converge.

99

Figure 5.7: RNN Using LSTM Cells for Sequence to Output Architecture

Sequence to sequence LSTM architecture reduces the requirement of the training

set and improves the convergence by using multiple loss functions at different levels

of the network. Figure 5.8 illustrates a sequence-to-sequence LSTM model at a high

level that can be used for our problem. Similar to sequence-to-output architecture,

this model basically recommends a question to a student given the last N question

attempts of the student. However, this model predicts not only the N + 1th question

but also N−1 questions before it. This generates N loss function for network to train.

Basically, the model computes the loss function for the first question (Q1), second

question (Q2), and all the way to the N + 1th question, and it simultaneously feeds

them back. This makes the network to see many more loss functions for the same

number of training set compared to sequence-to-output architecture. Time shared

FC is a fully connected layer in which input comes from all the states (N states),

100

Figure 5.8: RNN Using LSTM Cells for Sequence to Sequence Prediction Used in Our

ML Algorithm to Predict the Next Question

and output is used to generate the embedding. It is basically a matrix multiplication

followed by an activation function between its input and output.

The training flow of the sequence to sequence network is as follows. Students last

N questions are fed into the network as shown from the input layer and shifted N

questions including the next question are used as the ground truth of the network

output. This constructs the sequence to sequence estimator where the output is

shifted version of the input sequence. QN becomes the last question solved, Q0 is

the question solved at N attempt before the last one, and QN+1 is the next question

solved by the student. Loss function is defined as the distance between the embeddings

of the student questions (last N question embeddings) and embedding generated by

101

the model for the whole sequence (from Q1 to QN+1). This loss is back-propagated

to the network to train the coefficients of the network and selection quality.

During the evaluation phase, we compute the whole sequence from Q1 to QN+1

(given the input sequence is from Q0 to QN), but we only use the prediction of QN+1

to find the similarity score from all unsolved questions.

The promise of our architecture relies on the students improving their learning

the most should have solved a sequence of questions that most helped them. Hence,

if we can find the good students who improved their learning level using the questions

from the system, we can provide sequences similar to these and achieve the highest

learning gain for all students.

The architecture provided here has several design knobs that we have evaluated.

We investigate the quality of the network by changing the number of layers from one

to three where we finally choose a two-layer network hence did not see improvement

moving from two to three layers. Furthermore, having three layers complicates the

network architecture and causes overfitting for the model learned.

Furthermore, we evaluate the number of sequence (N) and change values from

5 to 20. We find that we do not see any improvement in network quality on more

than 10 questions (hence N=10). Hence, we use the last 10 questions in our network

to learn golden student behavior. Furthermore, we also study different numbers of

states for internal nodes from 20 to 100 (LSTM internal state). We note that the

quality does not improve after we reached the internal state number of 50. Hence, to

keep the network quality at its best without incurring any risk of overfitting and/or

complexity, we finalize the architecture.

102

5.7 Question Selection

After dimensionality reduction is applied to all questions that are originally one-hot

encoded, each question is represented by a certain embedding with K (such as 40)

features (see Section-3). At the inference stage (question selection), we use the RNN

model, which is trained using the golden student attempt sequences to provide an

embedding from the question space. When a student selects a question from the

database, our algorithm runs the RNN model using the last N attempt of the student

and provides an embedding. This embedding is a point in the question space that has

different distances to different questions. All questions from the database are ranked

using their distance to this embedding. Figure 5.9 illustrates the question selection

flow chart.

Figure 5.9: Question Selection Flow Chart

103

The question with the minimum distance is the one that has the highest chance

of increasing the learning gain. When we select questions from only the top questions

after ranking, we exploit the algorithm and its functionality to provide questions. On

the other hand, we can also select a set of questions for which the distance to the

embedding generated from the algorithm is within a certain value, allowing students

to explore different questions without losing the learning track too much. We show

the quality of the selection question selection algorithm ROC curve using the distance

metric in Section 6. Even though this question may not be the optimal question for a

student, it helps us train the model using this additional data at the end of a semester.

One of the advantages of this algorithm is the ability to encapsulate multiple

student features into a single model. The algorithm uses student question selections

from the past sequences to find the corresponding sequence. It also understands the

student level of success for the context by looking at the answers from the attempts.

This challenge is one faced by other question selection methods use student models

to predict students’ competency levels.

104

Chapter 6

MODEL EVALUATION

In this chapter, we describe the evaluation metrics, model evaluation methods,

and model quality using results generated from the trained model.

6.1 Recurring Neural Network Model Training

We built an RNN using LSTM cells based task suggestion system that outputs the

next question given students last N attempts. We split the student question/answer

data into training and test groups by randomly allocating 20% of the data for the

test and the remaining 80% for the training. The training set was further divided

with 40% being golden learner and 40% being low achievers. This system learned the

sequence of questions attempts from golden learners. For each run of the training

phase, we randomly selected 10 sequences (batch of 10) from golden learners from

the training set and fed this into the network. The actual questions solved by these

students and their correct/incorrect results were also fed into the model to compute

the error and backpropagate the gradients. After using several learning rates from

0.01 to 0.0001 and optimizer selections ((Adam, Adagrad, etc.) (Géron, 2019)), we

achieved an increased error rate curve over training (Figure 6.1). As shown in the

figure, training loss for the golden learners reduced as we proceed through larger

numbers of training data. We started to achieve plateau around 300 epochs (a single

epoch is the point where all data passes though the network once). On the other

hand, loss from the test data of the low achievers remained high and did not follow

the trend of golden learners. This result shows that the model is learning the question

selection behavior of the high achievers better than the low achievers.

105

Figure 6.1: Training/Test Loss during Training

6.2 RNN Model Evaluation

Evaluation Method: Model with Golden Learners and Calculate Distance

From the test set that consists of golden learners, each time that a student makes a

choice (we know the choice from the data), we collected the last N questions of the

student up until that choice and fed those questions into our RNN model to get a

prediction for recommendation (predicted or recommended embedding). Then, we

calculated the distance from the recommended question (predicted embedding) to

the actual selection of the question (actual embedding). As a first step, we computed

106

the distance between the actual question and predicted question using the distance

equation from figure 3.1.

First, we randomly selected 10K sequences from the test data each of which

consists of 11 consecutive questions and answers from students’ attempts. Then

we fed this data into the trained RNN model and calculated the distance (loss value)

between the predicted question and actual question (11th question). We used the

embeddings of the questions to compute the loss value. This has given us one

set of distance/loss values. Simultaneously, we calculated the distance between the

predicted question to all other questions whose embedding is different than the 11th

question. This has given us another set of distance/loss value. Figure 6.2 illustrates

the distribution of these two sets where selected questions refers to the former set.

As expected, distances from the actual selected questions were dense at lower values

while unselected questions has much wider spread and higher mean distance value.

We computed the ROC values (True Positive and False Positive) of the question

prediction for the RNN model as shown in Figure 6.3 using the distance distribution

from Figure 6.2. True positive value represent the percentage of cases where the

model result and actual question matches, while false positive value represents the

percentage of cases where model selects a different question than the actual one.

Based on the distance threshold we selected, we can operate at one of the points on

this ROC curve. For instance, if we allowed less than 10% False Positive question

selection, we can achieved more than a 80% true positive (correct selection of the

questions).

In addition, we also predicted whether the student answer to the question is

correct or incorrect with some accuracy. In the embedding space (last embedding

value from 41 values), we have used ’1’ when a student answers the question correct

and ’0’ when the answer is incorrect. Our RNN model generates a likelihood value

107

Figure 6.2: Histograms of Distances Between Predicted Embedding and Selected or

Unselected Questions

(at the last embedding space) as the probability of students’ answers being correct

(P between 0 and 1). Then, we have generated two sets of probability distributions

where the first set is when the answer is correct and the second set is when the answer

is incorrect. Figure 6.4 illustrates the distribution of probabilities from these two sets.

x-axis shows the probability values generated from the model, y-axis is the probability

density. This plot shows a clear separation between the correct and incorrect sets,

which indicates that the model learned these during the training stage.

We computed the ROC values of the answer prediction (correct/incorrect) for the

RNN model as shown in Figure 6.7 using the distributions from Figure 6.4. When

we calculate the area under curve (AUC) for this ROC, we found 0.9 value. This is

108

Figure 6.3: ROC Curve for Question Selection Capability of the RNN Model

a simple binary model where state can only be correct or incorrect. The baseline for

this estimation was 0.5 where the simplest model randomly selects correct or incorrect

states and achieves 50% accuracy. On the other hand, our model accuracy is around

90%.

We classify golden learners and calculate students’ learning gains by using Student

Learning Gain Model that we described in Section 5.4. In the original calculation 6.6,

we took into consideration midterm 3 value to smooth harsh penalization of students

who have a high apriori knowledge and don’t increase learning very much and favor

low apriori knowledge students who still increase learning through the semester.

109

Figure 6.4: Histograms of Correct and Incorrect Embeddings

110

Figure 6.5: ROC Curve for Correct/Incorrect Estimation Capability of the RNN

Model

Figure 6.6: Student Learning Gain (SLG) Model Formula

111

In here, we looked at the effect of weighted midterm value contribution (w0). We

plotted the ROC curves using the prediction capability on the student answer to the

question is correct or incorrect. Figure 6.7 shows three ROC curves from w0 = 0.5

to w0 = 1.0. We saw that increasing the weight of contribution from midterm value

improves the model quality.

Figure 6.7: ROC Curve for Correct/Incorrect Estimation Capability with Varying w0

In addition to student question selection and correct/incorrect estimation results,

we also knew the group that each student belongs to based on the decision

mechanism introduced in Section 5.4 (golden learners or low achievers). In this metric

computation, we wanted to see if there is any difference between student groups for

their prediction of questions. First, we randomly selected 10K sequences from the

112

test data each of which consists of 11 consecutive questions and answers from both

student groups. Then, we fed this data into the RNN model (trained using golden

students training set) and calculated the distance/loss value between the predicted

question and actual question (11th question). Figure 6.8 shows the general evaluation

methodology of the trained model. dg is the distribution of the distance/loss value

(between predicted questions and actual questions) from the golden learners while

dw is the distribution of distances/loss value from low achievers. We expected the

dg to have a smaller distance compared to dw if model learns golden student specific

features.

We plotted the histogram of distances/loss values for both golden learners and

low achievers sets and compared these distributions. Figure 6.9 illustrates the

distributions of these two groups. The distance between the predicted values coming

from the golden learners was typically lower than the values computed from low

achievers group. This was another sign that model learned features specific to golden

learners.

113

Figure 6.8: Model Evaluation

114

Figure 6.9: High/Low Achiever Comparison

115

Chapter 7

CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK

In the last decade, adaptive learning systems have grown rapidly. Many

educational scientists, researchers, and engineers have developed these systems in

contexts such as language, physics, algebra, chemistry. Adaptive learning systems

are not easy to develop. Adapting educational material, for example tasks, websites,

learning objects, content, hints, to the students’ needs and preferences is vital to

those systems. There are many different algorithms, policies have been used to select

the most appropriate educational material to students.

This research study adapts one educational learning object: selecting personalized

tasks to improve student knowledge growth. To achieve our purpose, we started

building a neural network-based adaptive task selection system for an undergraduate

level general organic chemistry course. While developing our task selection system,

we addressed three research questions:

1. Can we classify golden learners (high achiever students) who are most

benefited by online practice environment?

As we developed our system, we wondered if golden learners used the online

practice environment differently than others.

The backbone of our proposed model was golden learners. Therefore, accurately

differentiating golden learners from other students was paramount. To address

this issue, we developed a linear-based Student Learning Gain (SLG) model as

our metric. Our data set included three midterms and the final exam scores.

The scores were graded by organic chemistry professors and we used those scores

116

to quantify the learning gain. We ran a very simple linear model that considered

important academic success factors: (1) the apriori knowledge of the students,

(2) student learning gain rates, and (3) overall performance of the students.

Based on the SLG model, we then classified golden students and low achievers.

2. Can we represent organic chemistry question as machine readable?

We started searching the literature and learning how other educational

researchers represent the questions and tasks in their intelligent tutoring

systems. One of the most widely used methods associates every question with

one or more KCs. Therefore, we adopted a similar approach in which organic

chemistry experts associated the questions in the OPE with KCs. All 3000

questions in the OPE database were associated with one of the 373 KCs. Each

question was represented by 373 dimensional one-hot encoded file. Then, we

applied two different dimensionality reduction methods–PCA and Autoencoder

to prevent model overfitting, improve model convergence, and lower the data

requirement for the RNN model. We compared Autoencoder to PCA results

and learned that Autoencoders capture more information than the PCA method

when both methods operate at the same reduced dimension. Therefore, we chose

Autoencoder as our dimensionality reduction method.

3. Can we develop a neural network based adaptive task selection system

that is trained by data from golden learners attempts?

Finally, to answer our third research question, we developed an RNN-based

adaptive task selection system for organic chemistry students. Before developing

the model, we defined our problem, which was generating an estimate of the

next possible task given the previous student attempts in the series data. We

again searched the literature for possible architectures to solve this problem.

117

We realized that LSTM cells to construct an RNN architecture are very robust

and widely used to generate predictions for consecutive events. Since we were

trying to predict the next consecutive item in a list, we believed using RNNs

was the best option. We then preprocessed our training data. The input data

is collected from the OPE environment used by organic chemistry students at

Arizona State University. After the data preprocessing phase, we developed our

model with golden learner attempt sequences.

In the last phase of our study, we evaluated the effectiveness of our model with

several widely-used evaluation methods. First, we dedicated the 20% of the dataset

to test where we did not use this dataset during model training. Then, we tested the

model with this test dataset. Since the model was trained by the golden learners,

we expected that the model’s next questions predictions would be more accurate for

golden learners than others. Similarly, the model was learning the question selection

behavior of the golden learners better than the low achievers.

7.1 Future Studies

One of the main drawback of our proposed model is lack of real student experiments.

Unfortunately, due to time constraints, we could not evaluate our proposed adaptive

task selection method with actual organic chemistry students. In the future, we

want to perform a pilot study to measure the effectiveness of our adaptive learning

system over a non-adaptive counterpart. Fortunately, the General Organic Chemistry

courses at Arizona State University (and many other U.S. universities) are taught in

a two-course sequence, normally over consecutive semesters. According to data we

have collected, many students take General Organic Chemistry courses in a sequence

which allows us to track the same students over a longer period of time (2 semesters).

118

This will allow us to perform our experiments over multiple semesters to minimize

other factors, such as instructors, and exam differences. In the experiment we are

going to conduct, the participants will be organic chemistry students who register for

one Organic Chemistry course. We will create two versions of the Organic Chemistry

Practice Environment. One OPE will have an adaptive task selection capability and

other one will not include an adaptive task selection capability so students will select

their own tasks. We can randomly assign students to either the experimental or the

control group. At the end of the semester, we will measure the performance of these

students and compare the learning gains.

Another drawback of our research is the limited scope of our adaptive task selection

system. The educational content modeled in this dissertation was only for General

Organic Chemistry. There are different adaptive task selection systems in other

domains, and the characteristics of those other domains differ significantly depending

on the field. For example, the math domain would differ from the physics domain.

Therefore, it is important to build effective and efficient adaptive task selection

systems for other domains as well.

This dissertation research represents a starting point for developing an RNN based

adaptive task selection system. Additional research is needed in order to

1. Extract more information from the OPE dataset to find latent patterns what

makes some students increase their learning gain more. In section 5, we

briefly mention why golden learners’ questions attempts are different from other

learners, but further work can define the relationship between certain attempt

sequences and students’ academic success better.

2. Understand the contributions of using RNNs over other popular

recommendation algorithms in adaptive task selection systems. Further

119

work can compare different algorithms on the same dataset to show how

accurately an RNN based model predict the next task of students compare to

other machine learning algorithms defined in the literature review section.

3. Incorporate the proposed RNN model to other type of students like middle

school students, elementary students. Future research is needed to develop and

study the value of having an RNN based model for different type of audiences.

Finally, we believe that our work, along with the current direction of the

educational researches, advance the cause of providing a better personalized learning

environment to a broader audience in several other different learning domains.

120

REFERENCES

“How filter bubbles distort reality: Everything you need to know”, URL https:
//fs.blog/2017/07/filter-bubbles/ (2017).

Abhinav, K., V. Subramanian, A. Dubey, P. Bhat and A. D. Venkat, “Lecore: A
framework for modeling learner’s preference.”, in “EDM”, (2018).

Adomavicius, G. and A. Tuzhilin, “Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions”, IEEE
transactions on knowledge and data engineering 17, 6, 734–749 (2005).

Ahmed, A. B. E. D. and I. S. Elaraby, “Data mining: A prediction for student’s
performance using classification method”, World Journal of Computer Application
and Technology 2, 2, 43–47 (2014).

Aleven, V., E. A. McLaughlin, R. A. Glenn and K. R. Koedinger, Instruction based
on adaptive learning technologies (2016a).

Aleven, V., E. A. McLaughlin, R. A. Glenn and K. R. Koedinger, “Instruction based
on adaptive learning technologies”, (2016b).

Aljojo, N., “Teacher assisting and subject adaptive material system: an arabic
adaptive learning environment”, University of Portsmouth, Portsmouth (2012).

Alkhuraiji, S., B. Cheetham and O. Bamasak, “Dynamic adaptive mechanism in
learning management system based on learning styles”, in “2011 IEEE 11th
International Conference on Advanced Learning Technologies”, pp. 215–217 (IEEE,
2011).

Andersen, P.-A., C. Kr̊akevik, M. Goodwin and A. Yazidi, “Adaptive task assignment
in online learning environments”, in “Proceedings of the 6th International
Conference on Web Intelligence, Mining and Semantics”, pp. 1–10 (2016).

Andrychowicz, M., M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford and N. De Freitas, “Learning to learn by gradient descent by gradient
descent”, in “Advances in neural information processing systems”, pp. 3981–3989
(2016).

Aniszczyk, C. R., “The analysis of an its–the assistments project.”, (2004).

Atkinson, R. C., “Optimizing the learning of a second-language vocabulary.”, Journal
of experimental psychology 96, 1, 124 (1972).

Baker, R. S., “Challenges for the future of educational data mining: The baker
learning analytics prizes”, JEDM— Journal of Educational Data Mining 11, 1,
1–17 (2019).

Bao, W., J. Yue and Y. Rao, “A deep learning framework for financial time series
using stacked autoencoders and long-short term memory”, PloS one 12, 7, e0180944
(2017).

121

https://fs.blog/2017/07/filter-bubbles/
https://fs.blog/2017/07/filter-bubbles/

Barocas, S., M. Hardt and A. Narayanan, “Fairness in machine learning”, NIPS
Tutorial (2017).

Beck, J. E. and Y. Gong, “Wheel-spinning: Students who fail to master a skill”,
in “International conference on artificial intelligence in education”, pp. 431–440
(Springer, 2013).

Bellman, R., “Dynamic programming, princeton univ”, Princeton, 19S7 (1957).

Benadé, T. and J. Liebenberg, “Pair programming as a learning method beyond the
context of programming”, in “Proceedings of the 6th Computer Science Education
Research Conference”, pp. 48–55 (ACM, 2017).

Bengio, Y., A. Courville and P. Vincent, “Representation learning: A review and new
perspectives”, IEEE transactions on pattern analysis and machine intelligence 35,
8, 1798–1828 (2013).

Brusilovsky, P., I.-H. Hsiao and Y. Folajimi, “Quizmap: open social student modeling
and adaptive navigation support with treemaps”, in “European Conference on
Technology Enhanced Learning”, pp. 71–82 (Springer, 2011).

Brusilovsky, P. and L. Pesin, “Adaptive navigation support in educational
hypermedia: An evaluation of the isis-tutor”, Journal of computing and
Information Technology 6, 1, 27–38 (1998).

Chamala, R. R. R. C., R. B. R. Grossman, R. a. B. Finkel, R. A. Kannan,
S. Ramachandran, P. J. Epoch:, R. Ciochina, R. B. R. Grossman, R. a. B.
Finkel, S. Kannan and P. Ramachandran, “EPOCH: An Organic Chemistry
Homework Program That Offers Response-Specific Feedback to Students”, Journal
of Chemical Education 83, 1, 164, URL http://pubs.acs.org/doi/abs/10.
1021/ed083p164 (2006).

Chen, C. and L. Duh, “Personalized web-based tutoring system based on fuzzy item
response theory”, Expert Systems with Applications 34, 4, 2298–2315, URL http:
//linkinghub.elsevier.com/retrieve/pii/S0957417407001236 (2008).

Chen, C.-M., H.-M. Lee and Y.-H. Chen, “Personalized e-learning system using item
response theory”, Computers & Education 44, 3, 237–255 (2005).

Chen, K., Y. Zhou and F. Dai, “A lstm-based method for stock returns prediction:
A case study of china stock market”, in “2015 IEEE International Conference on
Big Data (Big Data)”, pp. 2823–2824 (IEEE, 2015).

Chen, Y.-C., R.-H. Hwang and C.-Y. Wang, “Development and evaluation of a
Web 2.0 annotation system as a learning tool in an e-learning environment”,
Computers & Education 58, 4, 1094–1105, URL http://linkinghub.elsevier.
com/retrieve/pii/S0360131511003332 (2012).

122

http://pubs.acs.org/doi/abs/10.1021/ed083p164
http://pubs.acs.org/doi/abs/10.1021/ed083p164
http://linkinghub.elsevier.com/retrieve/pii/S0957417407001236
http://linkinghub.elsevier.com/retrieve/pii/S0957417407001236
http://linkinghub.elsevier.com/retrieve/pii/S0360131511003332
http://linkinghub.elsevier.com/retrieve/pii/S0360131511003332

Cheng, H.-T., L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir et al., “Wide & deep learning for recommender
systems”, in “Proceedings of the 1st workshop on deep learning for recommender
systems”, pp. 7–10 (2016).

Chi, M., K. VanLehn, D. Litman and P. Jordan, “Inducing effective pedagogical
strategies using learning context features”, in “International Conference on User
Modeling, Adaptation, and Personalization”, pp. 147–158 (Springer, 2010).

Chi, M., K. VanLehn, D. Litman and P. Jordan, “Empirically evaluating the
application of reinforcement learning to the induction of effective and adaptive
pedagogical strategies”, User Modeling and User-Adapted Interaction 21, 1-2,
137–180 (2011a).

Chi, M., K. Vanlehn, D. Litman, P. Jordan, T. Advanced, K. Vanlehn, D. Litman,
P. Jordan, T. Advanced, K. Vanlehn, D. Litman, P. Jordan, T. Advanced,
K. Vanlehn, D. Litman and P. Jordan, “An evaluation of pedagogical tutorial
tactics for a natural language tutoring system: A reinforcement learning approach”,
International Journal of Artificial Intelligence in Education 21, 1-2, 83–113 (2011b).

Chi, M. T. H., “Active-Constructive-Interactive: A Conceptual Framework for
Differentiating Learning Activities”, Topics in Cognitive Science 1, 1, 73–105, URL
http://doi.wiley.com/10.1111/j.1756-8765.2008.01005.x (2009).

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation”, arXiv preprint arXiv:1406.1078 (2014).

Chouldechova, A. and A. Roth, “The frontiers of fairness in machine learning”, arXiv
preprint arXiv:1810.08810 (2018).

Chrysafiadi, K. and M. Virvou, “Student modeling approaches: A literature review
for the last decade”, (2013a).

Chrysafiadi, K. and M. Virvou, “Student modeling approaches: A literature review
for the last decade”, Expert Systems with Applications 40, 11, 4715–4729, URL
http://dx.doi.org/10.1016/j.eswa.2013.02.007 (2013b).

Chrysafiadi, K., M. Virvou, K. Chrysa and M. Virvou, “PeRSIVA: An empirical
evaluation method of a student model of an intelligent e-learning environment
for computer programming”, Computers & Education 68, 322–333, URL
http://linkinghub.elsevier.com/retrieve/pii/S0360131513001486http:
//www.sciencedirect.com/science/article/pii/S0360131513001486 (2013).

Clark, R. C., F. Nguyen and J. Sweller, Efficiency in learning: Evidence-based
guidelines to manage cognitive load (John Wiley & Sons, 2011).

Clement, B., D. Roy, P.-Y. Oudeyer and M. Lopes, “Multi-armed bandits for
intelligent tutoring systems”, arXiv preprint arXiv:1310.3174 (2013).

123

http://doi.wiley.com/10.1111/j.1756-8765.2008.01005.x
http://dx.doi.org/10.1016/j.eswa.2013.02.007
http://linkinghub.elsevier.com/retrieve/pii/S0360131513001486 http://www.sciencedirect.com/science/article/pii/S0360131513001486
http://linkinghub.elsevier.com/retrieve/pii/S0360131513001486 http://www.sciencedirect.com/science/article/pii/S0360131513001486

Collins, A., J. S. Brown, S. Newman and L. Resnick, “Knowing, learning, and
instruction: Essays in honor of robert glaser”, Cognitive apprenticeship: Teaching
the craft of reading, writing, and mathematics pp. 453–494 (1989).

Cooper, M. M., N. Grove, S. M. Underwood and M. W. Klymkowsky, “Lost in lewis
structures: An investigation of student difficulties in developing representational
competence”, Journal of Chemical Education 87, 8, 869–874 (2010).

Cooper, M. M., N. P. Grove, R. Pargas, S. P. Bryfczynski and T. Gatlin, “OrganicPad:
an interactive freehand drawing application for drawing Lewis structures and the
development of skills in organic chemistry”, Chemistry Education Research and
Practice 10, 4, 296, URL http://xlink.rsc.org/?DOI=b920835f (2009).

Corbalan, G., L. Kester and J. J. Van Merriënboer, “Towards a personalized task
selection model with shared instructional control”, Instructional Science 34, 5,
399–422 (2006).

Corbalan, G., L. Kester, J. J. van Merriënboer and J. J. G. V. Merrie, “Selecting
learning tasks: Effects of adaptation and shared control on learning efficiency and
task involvement”, Contemporary Educational Psychology 33, 4, 733–756, URL
http://linkinghub.elsevier.com/retrieve/pii/S0361476X08000118 (2008).

Corbett, A., “Cognitive mastery learning in the act programming tutor”, in “AAAI
Tech. Rep. SS-00-01”, (2000).

Covington, P., J. Adams and E. Sargin, “Deep neural networks for youtube
recommendations”, in “Proceedings of the 10th ACM conference on recommender
systems”, pp. 191–198 (2016).

Cronbach, L. J. and R. E. Snow, Aptitudes and instructional methods: A handbook
for research on interactions. (Irvington, 1977).

Daud, A., N. R. Aljohani, R. A. Abbasi, M. D. Lytras, F. Abbas and J. S.
Alowibdi, “Predicting student performance using advanced learning analytics”, in
“Proceedings of the 26th international conference on world wide web companion”,
pp. 415–421 (International World Wide Web Conferences Steering Committee,
2017).

Davidovic, A., J. Warren and E. Trichina, “Learning benefits of structural
example-based adaptive tutoring systems”, IEEE Transactions on Education 46,
2, 241–251 (2003).

Devasia, T., T. Vinushree and V. Hegde, “Prediction of students performance using
educational data mining”, in “2016 International Conference on Data Mining and
Advanced Computing (SAPIENCE)”, pp. 91–95 (IEEE, 2016).

Diao, X., Q. Zeng, H. Duan, F. Lu and C. Zhou, “Personalized exercise
recommendation driven by learning objective within e-learning systems.”,
International Journal of Performability Engineering 14, 10 (2018).

124

http://xlink.rsc.org/?DOI=b920835f
http://linkinghub.elsevier.com/retrieve/pii/S0361476X08000118

Dunlosky, J. and A. R. Lipko, “Metacomprehension: A brief history and how to
improve its accuracy”, Current Directions in Psychological Science 16, 4, 228–232
(2007).

Finger, L., “Recommendation engines: The reason why we love big data”, Forbes
(2014).

Flegal, K. E., J. D. Ragland and C. Ranganath, “Adaptive task difficulty influences
neural plasticity and transfer of training”, NeuroImage 188, 111–121 (2019).

Garc, P., S. Schiaffino, M. Campo, P. Garćıa, A. Amandi, S. Schiaffino and M. Campo,
“Evaluating Bayesian networks’ precision for detecting students’ learning styles”,
Computers and Education 49, 3, 794–808 (2007).

Gardner, J., Y. Yang, R. S. Baker and C. Brooks, “Modeling and experimental design
for mooc dropout prediction: A replication perspective”, (2019).

Gay, G., “Interaction of learner control and prior understanding in computer-assisted
video instruction.”, Journal of educational psychology 78, 3, 225 (1986).

Géron, A., Hands-on machine learning with Scikit-Learn and TensorFlow: concepts,
tools, and techniques to build intelligent systems (” O’Reilly Media, Inc.”, 2017).

Géron, A., Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems (O’Reilly Media,
2019).

Goodfellow, I., “Nips 2016 tutorial: Generative adversarial networks”, arXiv preprint
arXiv:1701.00160 (2016).

Gottlieb, J., P.-Y. Oudeyer, M. Lopes and A. Baranes, “Information-seeking,
curiosity, and attention: computational and neural mechanisms”, Trends in
cognitive sciences 17, 11, 585–593 (2013).

Grove, N. P., M. M. Cooper and E. L. Cox, “Does Mechanistic Thinking Improve
Student Success in Organic Chemistry?”, Journal of Chemical Education 89, 7,
850–853, URL http://pubs.acs.org/doi/abs/10.1021/ed200394d (2012a).

Grove, N. P., S. Lowery Bretz, S. Lowery, S. Lowery Bretz and S. Lowery,
“A continuum of learning: from rote memorization to meaningful learning
in organic chemistry”, Chemistry Education Research and Practice 13,
3, 201, URL http://xlink.rsc.org/?DOI=c1rp90069bhttp://www.eric.
ed.gov/ERICWebPortal/recordDetail?accno=EJ984469{%}5Cnpapers3:
//publication/doi/10.1039/c1rp90069b (2012b).

Grubǐsić, A., S. Stankov and B. Žitko, “Adaptive courseware: A literature review”,
Journal of universal computer science 21, 9, 1168–1209 (2015).

Hernández-Blanco, A., B. Herrera-Flores, D. Tomás and B. Navarro-Colorado,
“A systematic review of deep learning approaches to educational data mining”,
Complexity 2019 (2019).

125

http://pubs.acs.org/doi/abs/10.1021/ed200394d
http://xlink.rsc.org/?DOI=c1rp90069b http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ984469{%}5Cnpapers3://publication/doi/10.1039/c1rp90069b
http://xlink.rsc.org/?DOI=c1rp90069b http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ984469{%}5Cnpapers3://publication/doi/10.1039/c1rp90069b
http://xlink.rsc.org/?DOI=c1rp90069b http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ984469{%}5Cnpapers3://publication/doi/10.1039/c1rp90069b

Hidasi, B., A. Karatzoglou, L. Baltrunas and D. Tikk, “Session-based
recommendations with recurrent neural networks”, arXiv preprint
arXiv:1511.06939 (2015).

Hong, S., T. You, S. Kwak and B. Han, “Online tracking by learning discriminative
saliency map with convolutional neural network”, in “International conference on
machine learning”, pp. 597–606 (2015).

Hsiao, I.-H., F. Bakalov, P. Brusilovsky and B. König-Ries, “Progressor: social
navigation support through open social student modeling”, New Review of
Hypermedia and Multimedia 19, 2, 112–131 (2013).

Hsiao, I.-H., S. Sosnovsky and P. Brusilovsky, “Adaptive navigation support
for parameterized questions in object-oriented programming”, in “European
Conference on Technology Enhanced Learning”, pp. 88–98 (Springer, 2009).

Hsiao, I.-H., S. Sosnovsky and P. Brusilovsky, “Guiding students to the right
questions: adaptive navigation support in an E-Learning system for Java
programming”, Journal of Computer Assisted Learning 26, 4, 270–283, URL
http://doi.wiley.com/10.1111/j.1365-2729.2010.00365.x (2010a).

Hsiao, I.-H., S. Sosnovsky and P. Brusilovsky, “Guiding students to the right
questions: adaptive navigation support in an e-learning system for java
programming”, Journal of Computer Assisted Learning 26, 4, 270–283 (2010b).

Hsieh, C. and D. Knudson, “Important learning factors in high-and low-achieving
students in undergraduate biomechanics”, Sports biomechanics 17, 3, 361–370
(2018).

Hsu, M.-H., “A personalized english learning recommender system for esl students”,
Expert Systems with Applications 34, 1, 683–688 (2008).

Hu, Q. and H. Rangwala, “Reliable deep grade prediction with uncertainty
estimation”, arXiv preprint arXiv:1902.10213 (2019).

Huang, S. L. and J. H. Shiu, “A user-centric adaptive learning system for e-learning
2.0”, Educational Technology and Society 15, 3, 214–225 (2012).

Ibrahim, Z. and D. Rusli, “Predicting students academic performance: comparing
artificial neural network, decision tree and linear regression”, in “21st Annual SAS
Malaysia Forum, 5th September”, (2007).

James, G., D. Witten, T. Hastie and R. Tibshirani, An introduction to statistical
learning, vol. 112 (Springer, 2013).

Kaburlasos, V. G., C. C. Marinagi and V. T. Tsoukalas, “Personalized
multi-student improvement based on Bayesian cybernetics”, Computers &
Education 51, 4, 1430–1449, URL http://linkinghub.elsevier.com/retrieve/
pii/S036013150800033X (2008).

126

http://doi.wiley.com/10.1111/j.1365-2729.2010.00365.x
http://linkinghub.elsevier.com/retrieve/pii/S036013150800033X
http://linkinghub.elsevier.com/retrieve/pii/S036013150800033X

Kalyuga, S. and J. Sweller, “Rapid dynamic assessment of expertise to improve
the efficiency of adaptive e-learning”, Educational Technology Research and
Development 53, 3, 83–93 (2005).

Kang, S. H., “Spaced repetition promotes efficient and effective learning: Policy
implications for instruction”, Policy Insights from the Behavioral and Brain
Sciences 3, 1, 12–19 (2016).

Karlik, B. and A. V. Olgac, “Performance analysis of various activation functions
in generalized mlp architectures of neural networks”, International Journal of
Artificial Intelligence and Expert Systems 1, 4, 111–122 (2011).

Kauffman, H., “A review of predictive factors of student success in and satisfaction
with online learning”, Research in Learning Technology 23 (2015).

Kawale, J., H. H. Bui, B. Kveton, L. Tran-Thanh and S. Chawla, “Efficient thompson
sampling for online matrix-factorization recommendation”, in “Advances in neural
information processing systems”, pp. 1297–1305 (2015).

Keskin, H. K., “A path analysis of metacognitive strategies in reading, self-efficacy
and task value”, International J. Soc. Sci. & Education 4, 4, 798–808 (2014).

Khajah, M., R. V. Lindsey and M. C. Mozer, “How deep is knowledge tracing?”,
arXiv preprint arXiv:1604.02416 (2016).

Kicken, W., S. Brand-Gruwel and J. J. van Merriënboer, “Scaffolding advice on
task selection: a safe path toward self-directed learning in on-demand education”,
Journal of Vocational Education and Training 60, 3, 223–239 (2008).

Kim, C., A. Misra, K. Chin, T. Hughes, A. Narayanan, T. Sainath and
M. Bacchiani, “Generation of large-scale simulated utterances in virtual rooms to
train deep-neural networks for far-field speech recognition in google home”, (2017).

Kistner, S., K. Rakoczy, B. Otto, C. Dignath-van Ewijk, G. Buttner and E. Klieme,
“Promotion of self-regulated learning in classrooms: Investigating frequency,
quality, and consequences for student performance”, Metacognition and learning
5, 2, 157–171 (2010).

Koedinger, K. R., J. R. Anderson, W. H. Hadley and M. A. Mark, “Intelligent tutoring
goes to school in the big city”, (1997).

Kostons, D., T. V. Gog, F. Paas, T. van Gog and F. Paas, “Self-assessment and
task selection in learner-controlled instruction: Differences between effective
and ineffective learners”, Computers & Education 54, 4, 932–940, URL
http://linkinghub.elsevier.com/retrieve/pii/S0360131509002668http:
//dx.doi.org/10.1016/j.compedu.2009.09.025 (2010a).

Kostons, D., T. van Gog and F. Paas, “Self-assessment and task selection
in learner-controlled instruction: Differences between effective and ineffective
learners”, Computers & Education 54, 4, 932–940 (2010b).

127

http://linkinghub.elsevier.com/retrieve/pii/S0360131509002668 http://dx.doi.org/10.1016/j.compedu.2009.09.025
http://linkinghub.elsevier.com/retrieve/pii/S0360131509002668 http://dx.doi.org/10.1016/j.compedu.2009.09.025

Kostons, D., T. van Gog and F. Paas, “Training self-assessment and task-selection
skills: A cognitive approach to improving self-regulated learning”, Learning and
Instruction 22, 2, 121–132, URL http://linkinghub.elsevier.com/retrieve/
pii/S0959475211000697 (2012).

Kotsiantis, S., D. Kanellopoulos and P. Pintelas, “Data preprocessing for supervised
leaning”, International Journal of Computer Science 1, 2, 111–117 (2006).

Koutsojannis, C., G. Beligiannis, I. Hatzilygeroudis, C. Papavlasopoulos and
J. Prentzas, “Using a hybrid ai approach for exercise difficulty level adaptation”,
International Journal of Continuing Engineering Education and Life Long Learning
17, 4/5, 256 (2007).

Kulik, C.-L. C., J. A. Kulik and R. L. Bangert-Drowns, “Effectiveness of mastery
learning programs: A meta-analysis”, Review of educational research 60, 2,
265–299 (1990).

Kumar, A., “A scalable solution for adaptive problem sequencing and its evaluation”,
in “International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems”, pp. 161–171 (Springer, 2006).

Kusner, M. J., B. Paige and J. M. Hernández-Lobato, “Grammar variational
autoencoder”, in “Proceedings of the 34th International Conference on Machine
Learning-Volume 70”, pp. 1945–1954 (JMLR. org, 2017).

LeCun, Y., Y. Bengio and G. Hinton, “Deep learning”, nature 521, 7553, 436–444
(2015).

Long, Y., Supporting learner-controlled problem selection in intelligent tutoring
systems, Ph.D. thesis, Carnegie Mellon University (2015).

Long, Y. and V. Aleven, “Supporting students self-regulated learning with an open
learner model in a linear equation tutor”, in “International conference on artificial
intelligence in education”, pp. 219–228 (Springer, 2013).

Long, Y. and V. Aleven, “Enhancing learning outcomes through self-regulated
learning support with an open learner model”, User Modeling and User-Adapted
Interaction 27, 1, 55–88 (2017).

Long, Y., Z. Aman and V. Aleven, “Motivational design in an intelligent tutoring
system that helps students make good task selection decisions”, in “International
Conference on Artificial Intelligence in Education”, pp. 226–236 (Springer, 2015).

Lü, L., M. Medo, C. Ho, Y.-c. Zhang and Z.-k. Zhang, “Recommender systems”,
Physics Reports 519, 1, 1–49, URL http://dx.doi.org/10.1016/j.physrep.
2012.02.006 (2012).

Maass, J. K., P. I. Pavlik and H. Hua, “How spacing and variable retrieval practice
affect the learning of statistics concepts”, in “International Conference on Artificial
Intelligence in Education”, pp. 247–256 (Springer, 2015).

128

http://linkinghub.elsevier.com/retrieve/pii/S0959475211000697
http://linkinghub.elsevier.com/retrieve/pii/S0959475211000697
http://dx.doi.org/10.1016/j.physrep.2012.02.006
http://dx.doi.org/10.1016/j.physrep.2012.02.006

Malmberg, J., H. Järvenoja and S. Järvelä, “Patterns in elementary school students
strategic actions in varying learning situations”, Instructional Science 41, 5,
933–954 (2013).

Mao, Y., C. Lin and M. Chi, “Deep learning vs. bayesian knowledge tracing: Student
models for interventions”, JEDM— Journal of Educational Data Mining 10, 2,
28–54 (2018).

Mao, Y., R. Zhi, F. Khoshnevisan, T. W. Price, T. Barnes and M. Chi, “One minute
is enough: Early prediction of student success and event-level difficulty during a
novice programming task”, (2019).

McCoach, D. B. and D. Siegle, “A comparison of high achievers and low achievers
attitudes, perceptions, and motivations”, Academic Exchange 2, 71–76 (2001).

Metcalfe, J., “Metacognitive judgments and control of study”, Current directions in
psychological science 18, 3, 159–163 (2009).

Michĺık, P. and M. Bieliková, “Exercises recommending for limited time learning”,
Procedia Computer Science 1, 2, 2821–2828 (2010).

Mitrovic, A., K. R. Koedinger and B. Martin, “A comparative analysis of cognitive
tutoring and constraint-based modeling”, in “International Conference on User
Modeling”, pp. 313–322 (Springer, 2003).

Mu, T., S. Wang, E. Andersen and E. Brunskill, “Combining adaptivity with
progression ordering for intelligent tutoring systems.”, in “L@ S”, pp. 15–1 (2018).

Mueen, A., B. Zafar and U. Manzoor, “Modeling and predicting students’ academic
performance using data mining techniques”, International Journal of Modern
Education and Computer Science 8, 11, 36 (2016).

Murray, T. and I. Arroyo, “Toward Measuring and Maintaining the Zone of
Proximal Development in Adaptive Instructional Systems”, Proceedings of the 10th
International Conference on Intelligent Tutoring Systems (ITS 2002) , 1, 749 – 758
(2002).

Najar, A. S., A. Mitrovic and B. M. McLaren, “Learning with intelligent tutors and
worked examples: selecting learning activities adaptively leads to better learning
outcomes than a fixed curriculum”, User Modeling and User-Adapted Interaction
26, 5, 459–491 (2016).

Naseem, I., R. Togneri and M. Bennamoun, “Linear regression for face recognition”,
IEEE transactions on pattern analysis and machine intelligence 32, 11, 2106–2112
(2010).

Nguyen, T. T., P.-M. Hui, F. M. Harper, L. Terveen and J. A. Konstan, “Exploring
the filter bubble: the effect of using recommender systems on content diversity”, in
“Proceedings of the 23rd international conference on World wide web”, pp. 677–686
(ACM, 2014).

129

Okpo, J., J. Masthoff, M. Dennis and N. Beacham, “Conceptualizing a framework
for adaptive exercise selection with personality as a major learner characteristic”,
in “Adjunct publication of the 25th conference on user modeling, adaptation and
personalization”, pp. 293–298 (ACM, 2017).

Ormrod, J., “Human learning . new jersey, ny”, (2008).

Oyerinde, O. and P. Chia, “Predicting students academic performances–a learning
analytics approach using multiple linear regression”, (2017).

Paas, F., T. Van Gog and J. Sweller, “Cognitive load theory: New conceptualizations,
specifications, and integrated research perspectives”, Educational psychology
review 22, 2, 115–121 (2010).

Pane, J. F., E. D. Steiner, M. D. Baird and L. S. Hamilton, “Continued progress:
Promising evidence on personalized learning.”, RAND Corporation (2015).

Pardos, Z. and W. Jiang, “Designing for serendipity in a university course
recommendation system”, (2019a).

Pardos, Z. A. and W. Jiang, “Combating the filter bubble: Designing for serendipity
in a university course recommendation system”, arXiv preprint arXiv:1907.01591
(2019b).

Parker, L. L. and G. M. Loudon, “Case study using online homework in undergraduate
organic chemistry: Results and student attitudes”, Journal of Chemical Education
90, 1, 37–44 (2012).

Penn, J. H. and A. G. Al-Shammari, “Teaching Reaction Mechanisms Using the
Curved Arrow Neglect (CAN) Method”, Journal of Chemical Education 85, 9,
1291, URL http://pubs.acs.org/doi/abs/10.1021/ed085p1291 (2008).

Penn, J. H., V. M. Nedeff and G. Gozdzik, “Organic chemistry and the internet: A
web-based approach to homework and testing using the we learn system”, Journal
of Chemical Education 77, 2, 227 (2000).

Perez, L. and J. Wang, “The effectiveness of data augmentation in image classification
using deep learning”, arXiv preprint arXiv:1712.04621 (2017).

Phobun, P. and J. Vicheanpanya, “Adaptive intelligent tutoring systems
for e-learning systems”, Procedia - Social and Behavioral Sciences 2, 2,
4064–4069, URL http://www.sciencedirect.com/science/article/pii/
S1877042810006816http://dx.doi.org/10.1016/j.sbspro.2010.03.641http:
//linkinghub.elsevier.com/retrieve/pii/S1877042810006816 (2010).

Piech, C., J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas and
J. Sohl-Dickstein, “Deep knowledge tracing”, in “Advances in neural information
processing systems”, pp. 505–513 (2015).

130

http://pubs.acs.org/doi/abs/10.1021/ed085p1291
http://www.sciencedirect.com/science/article/pii/S1877042810006816 http://dx.doi.org/10.1016/j.sbspro.2010.03.641 http://linkinghub.elsevier.com/retrieve/pii/S1877042810006816
http://www.sciencedirect.com/science/article/pii/S1877042810006816 http://dx.doi.org/10.1016/j.sbspro.2010.03.641 http://linkinghub.elsevier.com/retrieve/pii/S1877042810006816
http://www.sciencedirect.com/science/article/pii/S1877042810006816 http://dx.doi.org/10.1016/j.sbspro.2010.03.641 http://linkinghub.elsevier.com/retrieve/pii/S1877042810006816

Raaijmakers, S. F., M. Baars, F. Paas, J. J. van Merriënboer and T. Van Gog,
“Training self-assessment and task-selection skills to foster self-regulated learning:
Do trained skills transfer across domains?”, Applied cognitive psychology 32, 2,
270–277 (2018).

Randles, R. and A. Cotgrave, “Measuring student learning gain: a review of
transatlantic measurements of assessments in higher education”, Innovations in
Practice 11, 1, 50–59 (2017).

Ritter, S., T. K. Harris, T. Nixon, D. Dickison, R. C. Murray and B. Towle,
“Reducing the knowledge tracing space”, Proceedings of International Conference
on Educational Data Mining pp. 151–160 (2009).

Saa, A. A. et al., “Educational data mining & students performance prediction”,
International Journal of Advanced Computer Science and Applications 7, 5,
212–220 (2016).

Salehi, M. and I. N. Kamalabadi, “Hybrid recommendation approach for learning
material based on sequential pattern of the accessed material and the learners
preference tree”, Knowledge-Based Systems 48, 57–69 (2013).

Salikin, H., S. Z. Bin-Tahir and C. Emelia, “The higher achiever students strategies
in english learning”, Modern Journal of Language Teaching Methods 7, 11, 79–95
(2017).

Schroff, F., D. Kalenichenko and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering”, in “Proceedings of the IEEE conference on computer
vision and pattern recognition”, pp. 815–823 (2015).

Segedy, J. R., “Adaptive Scaffolds in Open-Ended Computer-Based Learning
Environments”, Thesis (2014).

Seo, S., J. Huang, H. Yang and Y. Liu, “Interpretable convolutional neural networks
with dual local and global attention for review rating prediction”, in “Proceedings
of the eleventh ACM conference on recommender systems”, pp. 297–305 (2017).

Sermanet, P. and Y. LeCun, “Traffic sign recognition with multi-scale convolutional
networks”, in “The 2011 International Joint Conference on Neural Networks”, pp.
2809–2813 (IEEE, 2011).

Shahiri, A. M., W. Husain et al., “A review on predicting student’s performance using
data mining techniques”, Procedia Computer Science 72, 414–422 (2015).

Shapley, P., “On-line education to develop complex reasoning skills in organic
chemistry”, Journal of Asynchronous Learning Networks 4, 2, 43–52 (2000).

Sutskever, I., G. E. Hinton and G. W. Taylor, “The recurrent temporal restricted
boltzmann machine”, in “Advances in neural information processing systems”, pp.
1601–1608 (2009).

131

Sutskever, I., O. Vinyals and Q. V. Le, “Sequence to sequence learning with neural
networks”, in “Advances in neural information processing systems”, pp. 3104–3112
(2014).

Tay, Y., L. Anh Tuan and S. C. Hui, “Latent relational metric learning via
memory-based attention for collaborative ranking”, in “Proceedings of the 2018
World Wide Web Conference”, pp. 729–739 (2018).

Teng, S.-Y., J. Li, L. P.-Y. Ting, K.-T. Chuang and H. Liu, “Interactive unknowns
recommendation in e-learning systems”, in “2018 IEEE International Conference
on Data Mining (ICDM)”, pp. 497–506 (IEEE, 2018).

Umair, S. and M. M. Sharif, “Predicting students grades using artificial neural
networks and support vector machine”, in “Encyclopedia of Information Science
and Technology, Fourth Edition”, pp. 5169–5182 (IGI Global, 2018).

van de Sande, B. and B. V. D. Sande, “Applying Three Models of Learning to
Individual Student Log Data”, Proceedings of the 6th International Conference
on Educational Data Mining pp. 193–199 (2013).

Vanlehn, K., “The Behavior of Tutoring Systems”, Int. J. Artif. Intell. Ed. 16, 3,
227–265, URL http://dl.acm.org/citation.cfm?id=1435351.1435353 (2006).

VanLehn, K., A. C. Graesser, G. T. Jackson, P. Jordan, A. Olney and C. P.
Rosé, “When are tutorial dialogues more effective than reading?”, Cognitive
science 30, 1–60, URL http://captcha.aladdin.cs.cmu.edu/uploads/mypslc/
publications/vanlehngraesserjacksonetalcogsciarticle07.pdf (2006).

Vozár, O. and M. Bieliková, “Adaptive test question selection for web-based
educational system”, in “2008 Third International Workshop on Semantic Media
Adaptation and Personalization”, pp. 164–169 (IEEE, 2008).

Wang, W., H. Yu and C. Miao, “Deep model for dropout prediction in moocs”,
in “Proceedings of the 2nd International Conference on Crowd Science and
Engineering”, pp. 26–32 (ACM, 2017).

Widyahastuti, F. and V. U. Tjhin, “Predicting students performance in final
examination using linear regression and multilayer perceptron”, in “2017 10th
International Conference on Human System Interactions (HSI)”, pp. 188–192
(IEEE, 2017).

Williams, L. A. and R. R. Kessler, “The effects of” pair-pressure” and” pair-learning”
on software engineering education”, in “Thirteenth conference on software
engineering education and training”, pp. 59–65 (IEEE, 2000).

Williams, L. A. and R. R. Kessler, “Experiments with industry’s pair-programming
model in the computer science classroom”, Computer Science Education 11, 1,
7–20 (2001).

132

http://dl.acm.org/citation.cfm?id=1435351.1435353
http://captcha.aladdin.cs.cmu.edu/uploads/mypslc/publications/vanlehn graesser jackson et al cogsci article 07.pdf
http://captcha.aladdin.cs.cmu.edu/uploads/mypslc/publications/vanlehn graesser jackson et al cogsci article 07.pdf

Wong, C., “Sequence based course recommender for personalized curriculum
planning”, in “International Conference on Artificial Intelligence in Education”,
pp. 531–534 (Springer, 2018).

Woolf, B., R. Day, B. Botch, W. Vining and D. Hart, “Owl: An integrated web-based
learning environment”, in “International conference on mathematics/science
education and technology”, pp. 106–112 (Association for the Advancement of
Computing in Education (AACE), 1999).

Woolf, B. P., I. Arroyo, K. Muldner, W. Burleson, D. Cooper, R. Dolan and
R. M. Christopherson, “The Effect of Motivational Learning Companions on Low
Achieving Students and Students with Disabilities 2 Learning Disability and Low
Achieving Students : Affective Needs”, (2010).

Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation
system: Bridging the gap between human and machine translation”, arXiv preprint
arXiv:1609.08144 (2016).

Xiong, X., S. Zhao, E. G. Van Inwegen and J. E. Beck, “Going deeper with deep
knowledge tracing.”, International Educational Data Mining Society (2016).

Yao, K., T. Cohn, K. Vylomova, K. Duh and C. Dyer, “Depth-gated lstm”, arXiv
preprint arXiv:1508.03790 (2015).

Yeung, C.-K. and D.-Y. Yeung, “Incorporating features learned by an enhanced deep
knowledge tracing model for stem/non-stem job prediction”, International Journal
of Artificial Intelligence in Education pp. 1–25 (2018).

Ying, R., R. He, K. Chen, P. Eksombatchai, W. L. Hamilton and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems”, in
“Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining”, pp. 974–983 (2018).

You, J. W., “Identifying significant indicators using lms data to predict course
achievement in online learning”, The Internet and Higher Education 29, 23–30
(2016).

Zacharis, N. Z., “A multivariate approach to predicting student outcomes in
web-enabled blended learning courses”, The Internet and Higher Education 27,
44–53 (2015).

Zhang, L. and K. VanLehn, “Adaptively selecting biology questions generated from
a semantic network”, Interactive Learning Environments 25, 7, 828–846 (2017).

Zhou, G., H. Azizsoltani, M. S. Ausin, T. Barnes and M. Chi, “Hierarchical
reinforcement learning for pedagogical policy induction”, in “International
Conference on Artificial Intelligence in Education”, pp. 544–556 (Springer, 2019).

133

Ziegler, C.-N., S. M. McNee, J. A. Konstan and G. Lausen, “Improving
recommendation lists through topic diversification”, in “Proceedings of the 14th
international conference on World Wide Web”, pp. 22–32 (ACM, 2005).

Zimmerman, B. J. and A. Bandura, “Impact of self-regulatory influences on writing
course attainment”, American educational research journal 31, 4, 845–862 (1994).

Zoller, U. and D. Pushkin, “Matching higher-order cognitive skills (hocs) promotion
goals with problem-based laboratory practice in a freshman organic chemistry
course”, Chemistry Education Research and Practice 8, 2, 153–171 (2007).

PENDIX

134

APPENDIX A

IRB APPROVAL LETTER

135

136

To: Ian Gould

PHYSICAL S

From: Mark Roosa, Chair

Soc Beh IRB

Date: 07/25/2013

Committee Action: Exemption Granted

IRB Action Date: 07/25/2013

IRB Protocol #: 1306009315

Study Title: Motivation and Cultural Capital of Organic Chemistry Students

The above-referenced protocol is considered exempt after review by the Institutional Review Board pursuant to
Federal regulations, 45 CFR Part 46.101(b)(1) (2) .

This part of the federal regulations requires that the information be recorded by investigators in such a manner that
subjects cannot be identified, directly or through identifiers linked to the subjects. It is necessary that the information
obtained not be such that if disclosed outside the research, it could reasonably place the subjects at risk of criminal or
civil liability, or be damaging to the subjects' financial standing, employability, or reputation.

You should retain a copy of this letter for your records.

137

	LIST OF TABLES
	LIST OF FIGURES
	
	What is an Adaptive Learning Technology (ALT)?
	Adaptive Task Selection (ATS)
	What is a Task?

	What Are the Options for Selecting the Task?
	Why Does Adaptability Matter in Education?
	Why Is the Task Selection Decision Important?
	Can Students Make Effective Problem Selection Decisions?
	ATS Framework
	Question (Task) Model
	Student Model
	Task Selection Policy

	Our Research Questions

	
	ATS Systems Categorization
	Expert-Driven Adaptive Task Selection Systems
	Task Selection Criteria: Mastery Learning
	Task Selection Criteria: ZPD (Zone Proximal Development)
	Task Selection Criteria: Content Based (Relational Graph of Concepts)
	Task Selection Criteria: Spacing or Sequencing Effect
	Task Selection Criteria: Adaptive Navigation Support
	ATSs Using Other Task Selection Criteria

	Data-Driven Adaptive Task Selection Systems
	Why do we develop an ATS in Undergraduate Level Organic Chemistry?
	Deep Learning
	Deep Learning Based Recommendation System

	Deep Learning Based Recommendation System used in Education
	Classification for Educational Deep Learning Based Recommendation Systems

	Justification for Training Our Model with Golden Learners and Their Attempts

	
	Data Pre-Processing
	Question Representation

	
	Dimensionality Reduction
	PCA (Principle Component Analysis) - Linear Dimensionality Reduction
	Autoencoder (Embeddings) - Non-Linear Dimensionality Reduction
	Autoencoder vs PCA

	
	Recurring Neural Network Based ATS Model
	Why Do We Choose the Recurring Neural Network Model?
	Backbone of the Proposed Model: Golden Learners
	Student Learning Gain (SLG) Model for Classifying Golden Learners
	Components of SLG
	Justification for SLG
	How to Prevent the Filter Bubble Effect?

	Recurrent Neural Networks (RNN) with Long-Short Term Memory (LSTM) Cells
	RNN Architecture for Question Prediction
	Question Selection

	
	Recurring Neural Network Model Training
	RNN Model Evaluation

	
	Future Studies

	REFERENCES
	

