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ABSTRACT

Bivariate responses that comprise mixtures of binary and continuous variables are

common in medical, engineering, and other scientific fields. There exist many works

concerning the analysis of such mixed data. However, the research on optimal designs

for this type of experiments is still scarce. The joint mixed responses model that

is considered here involves a mixture of ordinary linear models for the continuous

response and a generalized linear model for the binary response. Using the complete

class approach, tighter upper bounds on the number of support points required for

finding locally optimal designs are derived for the mixed responses models studied in

this work.

In the first part of this dissertation, a theoretical result was developed to facilitate

the search of locally symmetric optimal designs for mixed responses models with one

continuous covariate. Then, the study was extended to mixed responses models that

include group effects. Two types of mixed responses models with group effects were

investigated. The first type includes models having no common parameters across

subject group, and the second type of models allows some common parameters (e.g.,

a common slope) across groups. In addition to complete class results, an efficient

algorithm (PSO-FM) was proposed to search for the A- and D-optimal designs. Fi-

nally, the first-order mixed responses model is extended to a type of a quadratic mixed

responses model with a quadratic polynomial predictor placed in its linear model.

INDEX WORDS: complete class, generalized linear models, logistic models, locally

optimal design, equivalence theorem.
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Chapter 1

INTRODUCTION

In most experiments, statistical design and analysis of data are important tools

for experimenters to study the connection between the output (response variables)

and the input (explanatory variables) in order to draw conclusions and make recom-

mendations. There is much research on the design and analysis of experiments, where

the response(s) collected from each individual is (are) of the same data type (contin-

uous or categorical). However, not much has been done in the design of experiments

where the response variables are of the mixed (continuous and categorical) data type,

although there is a great demand for this research. Mixed responses models attract

more and more researchers as they have been increasingly seen in fields such as the

pharmaceutical industry, chemical, and engineering.

The research of developmental toxicity is among the many experiments that have

mixed responses (see also Aerts, Molenberghs, Geys, & Ryan, 2002). As an example,

the study of the effect of dose (ethylene glycol) on fetal weight and malformation of

pregnant mice is observed in laboratory animal experiments. The two outcomes of

interest include a continuous response like fetal weight and a binary response such

as fetal death or malformation. Mixed responses are also seen in dose-finding trials,

where the main interests are efficacy and toxicity of the drug. As observed in the

phase II lung cancer study, the two endpoints measured are the efficacy and toxicity,

where efficacy is frequently considered as the continuous response (shrinkage in tumor

size) while the toxicity is often the binary response (low/high adverse events). The

major difficulty in modeling mixed responses arises from the absence of a natural

multivariate (bivariate) distribution (Fedorov, Wu, & Zhang, 2012).
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A simple technique for modeling mixed responses with the assumption that the

responses are independent is to separately model and analyze each response vari-

able. However, this approach is unsatisfactory since the assumption is often violated

(Fedorov et al., 2012; Teixeira-Pinto & Normand, 2009). As a result, two common

likelihood-based techniques are popular among researchers to deal with the dilemma

of analyzing mixed responses. The first technique is inserting a continuous unob-

served (latent) variable to model the association within several mixed responses. The

initial attempt to use the latent variable in modeling the discrete variables goes back

to Pearson (1900) (Rabe-Hesketh & Skrondal, 2004).

Sammel, Ryan, and Legler (1997) proposed a model for multiple responses where

the covariates effects xi are included in the model through the unobservable latent

variable bi by using a linear regression model bi = λxi + δi. Here, λ represents

the association between the covariates and the latent variable, and δi is an error

term. Then the responses yi are modeled by conditioning on the unobservable latent

variables bi. Each response is assumed to be independent and can be any mem-

ber of the one-parameter exponential family model. For n = 1, · · · , N responses,

fn(yin|bi) = exp[(yinθn − d(θn))/φn + cn(yin, φn)], where θn = αn + βnbi and α, β

represent the association between the responses and the latent variable.

On the other hand, Arminger and Küsters (1988) proposed an alternative latent

variable model in which the effects of the covariates are included directly into the

model rather than through the latent variables. However, the sets of latent variables

are considered jointly normally distributed. Dunson (2000) generalized the model

introduced by Arminger and Küsters (1988) by allowing the latent variables and

the responses to follow any member of the one-parameter exponential family model.

However, the downside of this model is that it had several non-estimable parameters

that are related to the variance of the responses.
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The second common likelihood-based technique is by factorizing of the joint dis-

tribution of mixed responses in a rather straight-forward way (Catalano & Ryan,

1992; Cox, 1972; Deng & Jin, 2015; Fitzmaurice & Laird, 1995). Cox (1972) was

the first to consider modeling the joint distribution for the discrete and continu-

ous responses using the direct factorization technique where the joint distribution of

bivariate responses is computed by the product of the normal distribution for the

marginal continuous response and the logistic conditional distribution for the binary

response given the value of the continuous response.

Catalano and Ryan (1992) used the concept of the factorization approach with

the latent variable to model the bivariate mixed outcome. Their research was mo-

tivated by the development of toxicity in laboratory animals, in which they studied

the association between fetal weight and malformations. In their study, the fetal

weight is a continuous variable y, and the malformation is a binary response z. The

assumption was that the binary response had some corresponding unobserved con-

tinuous latent variable bi. They modeled the joint distribution as the product of the

continuous variable and the latent variable condition on the continuous variable, i.e.,

f(y, z) = f(y)f(zbi |y) that follows a bivariate normal distribution. They used the

probit link to connect the marginal distribution of the binary response to covariate

variables and used the linear link function to connect the marginal distribution of the

continuous response to covariate variables. The model accounted for the correlation

between the continuous variable and the latent variable and was extended to accom-

modate for any clustering in the data. According to Fitzmaurice and Laird (1995),

the models proposed by Cox (1972) and Catalano and Ryan (1992) have some down-

sides: the regression parameters in both models have no marginal interpretation, and

the efficiency of estimating the parameters depends on the correct specifications of

the association between the responses.
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By only using direct factorization techniques for modeling bivariate binary and

continuous responses, Fitzmaurice and Laird (1995) proposed a model for analyzing

data from developmental toxicity studies. The joint distribution of bivariate responses

is computed by the product of the marginal distribution of the binary response and

the conditional distribution of the continuous response given the value of the binary

response. Fitzmaurice and Laird (1997) extended their method to include multivariate

responses of mixed types with missing data.

More recently, in manufacturing systems where multiple endpoints of the mixed

data type are obtained, Deng and Jin (2015) considered a model termed as the “QQ

model”. They were interested in studying the wafer lapping process that involves a

continuous response, the total thickness variation (TTV), and a binary response, the

sit total indicator readings (STIR). When modeling the bivariate responses, Deng and

Jin (2015) also considered the previously mentioned factorization idea. Their model

formulation tends to be more flexible than that in the previous studies, and their focus

was on the association between the responses. This is in contrast to Fitzmaurice and

Laird (1995), in which the main concern was on modeling the marginal expectation of

the continuous response. As claimed by Deng and Jin (2015), their proposed model

allows for accurate predictions of both binary and continuous responses, which are

informative in the manufacturing system. Many models on the analysis of mixed

responses were proposed by different researchers. The book of De Leon and Chough

(2013) contains an aggregation of models on mixed responses analysis.

Another important question that often emerges is how to design the experiment so

that the study objectives can be effectively achieved with minimum cost. Our focus

here is on finding an optimal design for bivariate mixed responses models. Several

researchers have addressed the design problems for mixed responses models of certain

types. For example, Fedorov et al. (2012) searched for D-optimal designs for mixed

4



responses with one continuous efficacy response and one binary response for toxicity in

clinical trials. The modeling technique that was considered involves a latent variable

for determining the value of the binary response, and then the latent variable and

the continuous variable assumed to have a joint normal distribution. The first order

exchange algorithm was applied for optimal design selection.

Biswas and López-Fidalgo (2013) worked on a similar dose-finding design problem

in which the bivariate response variables can possibly be of different types (quantita-

tive/qualitative). To reach their goal of maximizing efficacy with no or low toxicity,

they defined a criterion function that additively combined two optimality criteria the

D-optimality criterion and a specialized continuous criterion function for active con-

trolled dose-finding experiment. The direct factorization approach was used when the

bivariate responses include a continuous variable and a binary variable. The model

that they considered contains two sub-models: a logistic model for the binary toxicity

response and a linear model for the continuous efficacy response given the value of

the binary response. By using the first-order algorithm, they completed their search

for the optimal design.

More recently, Kim and Kao (2019) investigated designs for a mixed responses

model with a single covariate and identified a complete class of designs having two to

four support points with two of them being the endpoints of the design region. The

complete class approach will be explained in the next chapter. They then searched

for the A- and D-optimality designs for some cases and confirmed the optimality

of the obtained designs by the general equivalence theorem. The model that Kim

and Kao (2019) had studied involved a first-order polynomial predictor and a form of

quadratic polynomial predictor. However, the research in optimal experimental design

for mixed responses models still needs additional investigation with the increasingly

sophisticated models and data analysis procedures.
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In practice, when researchers adopt mixed responses models, the responses may

depend on one or more groups. Finding optimal designs by including group effects in

the model is important in scientific studies. To our knowledge, there is currently no

systematic study on this design issue. One of our study objectives is to build upon

existing works to provide additional useful results in this research direction.

In this study, we are concerned with optimal experimental designs for mixed re-

sponses models. Our first focus is on a model that has the same form as the model

advocated by Deng and Jin (2015). This model has also been studied in Kim and Kao

(2019). Partly inspired by their research results, we work in this research direction.

We provide some relevant background knowledge about the complete class approach

in Chapter 2. In Chapter 3, we derive some additional results by considering the same

model as Kim and Kao (2019), which we will refer to as the simple mixed responses

model in this work. Some design issues and results for mixed responses models with

group effects are then explored in Chapter 4. In Chapter 5, the strategy used to obtain

and verify the results for the mixed responses models with group effects are discussed.

Then we proposed in Chapter 6 an extension on the mixed responses model with one

covariate by inserting a quadratic polynomial predictor into the model. Finally, in

Chapter 7, summary and discussion of future work for this study are provided.
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Chapter 2

LITERATURE REVIEW

2.1 Optimal Design Approach

Research on optimal experimental designs has been receiving much interest and

continues to develop over the past several decades. The optimal designs are a type

of designs that are optimal with respect to some criterion, which for example, allows

the most precise estimate of the model parameters. The goal of the experimenter is

to gain as much information as possible from the experiments with a given budget to

allow researchers to obtain high-quality statistical analysis results. In this case, given

the model and a particular optimality criterion, the researchers will need an optimal

design approach that guides them to the best number of combination levels of the

covariates, known as design points and the corresponding number of replicates.

The initial recorded work on the concept of optimal design might go back to Smith

(1918) who obtained optimum designs for a series of single-factor polynomial models

of order up to six (Atkinson, Donev, & Tobias, 2007). The criterion that was proposed

by Smith (1918), which minimizes the maximum variance of any predictor value over

the design region, was later referred to as G-optimality by Kiefer and Wolfowitz

(1959). Some fundamental optimal design theories were investigated and evolved by

Jack Kiefer in the 1950’s through the 1970’s (Fedorov & Leonov, 2013). Since then,

there has been much development in this important line of research. To provide

the relevant background on this research, let us consider N independent responses,

z1, · · · , zN , and a linear model:

zi = f(xi)
Tθ + ei, (2.1)
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where xi is the vector of q predictor variables of the ith experimental unit, f(xi) is a

vector of known functions of xi with f(xi) = (f1(xi), · · · , fp(xi))T, θ is a vector of p

unknown parameters, and ei is the error. A common assumption for linear model is

that the ei’s are iid normally distributed with mean 0 and variance σ2. With model

(2.1), the (Fisher) information matrix for θ is M(θ) =
FTF

σ2
= (1/σ2)

N∑
i=1

f(xi)f(xi)
T,

where F is an N × p design matrix that contains the 1× p vectors fT(xi) as its rows.

Under certain assumptions, the inverse of the information matrix is the variance-

covariance matrix of the maximum likelihood estimator (MLE) of θ, which is Σ(θ̂)=

σ2(FTF)−1. To estimate the model parameters as precise as possible, we select a

design that provides the minimum variance of the parameter estimator. Such an

optimal design for a given model is often achieved by maximizing the information

matrix (or minimizing the variance-covariance matrix). A design ξ for model (2.1)

can be expressed as

ξ =

 x1 x2 · · · xm

n1 n2 · · · nm

 ,

where xi is a design point indicating the values of the q predictor variables, m is

the total number of distinct design points, ni is the number of replicates of xi, and

i = 1, 2, · · · ,m. Here, the total number of observations is N =
m∑
i=1

ni. The design

space χ, which contains all the possible values of xi, may be an interval or hyper

rectangle and is normally determined by the experimenter. With ni being an integer,

such a design is often referred to as an exact design. Some major challenges of finding

an optimal exact design come from the discreteness of ni and the dependence of the

optimal designs on the total number of observations N . Because of these and other

challenges, many research works focus heavily on the continuous design, which is also

known as the approximate design to be described below.
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In order to avoid the mathematical complexity of discrete optimization, Kiefer

(1959) introduced a continuous design theory which became a common design ap-

proach. A continuous design can be illustrated as a probability measure with finite

support points that are defined on a given compact design space χ. In particular, a

continuous (approximate) design is normally denoted as

ξ =

 x1 x2 · · · xm

w1 w2 · · · wm

, or ξ = {(xi, wi), i = 1, ....,m}.

Here, wi =
ni
N

is called the weight and is the proportion of the total number of

observations that is assigned to the corresponding distinct design point xi; wi ≥ 0,

and
m∑
i=1

wi = 1. Only when wi is greater than zero, xi is known as a support point,

and the size of the design, ξ, is determined by the number of support points in it.

When studying continuous designs, we drop the constraint that Nwi has to be an

integer and allow it to be any real value between 0 and N . However in practice, the

number of trials of any design point must be an integer. When Nwi is not an integer,

a rounding procedure may be applied to obtain the number of replicates for xi with

the constraint that Nwi’s sum to N (Pukelsheim & Rieder, 1992). For a large N ,

the rounded continuous design (exact design) and the continuous design ought to be

close (Berger & Wong, 2009). Note that, the total number of observations, N, will

not affect the search for an optimal continuous design.

The theory of optimal design is mainly built upon the information matrix that,

in some sense, summarizes the amount of information for the parameters of in-

terest. The normalized information matrix for a continuous design with m sup-

port points corresponding to the linear model in (2.1), can be defined as M(ξ) =

(1/σ2)
m∑
i=1

wif(xi)f(xi)
T. We denote the inverse of a nonsingular information matrix

for θ by Σ(ξ,θ), which corresponds to the variance-covariance matrix of the MLE

of θ under the normality assumption. We aim at an optimal design that possesses
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the ‘smallest’ variance-covariance matrix or the ‘largest’ information matrix. Since

matrix ranking is often not practical, the selection of the optimal design is commonly

based on an optimality criterion. The optimal criterion is a real-valued function of

the information matrix that, in some sense, summarizes how good a design is. The

optimal design may vary with the selected optimality criterion. In other words, a

design that is optimal for one criterion may not be optimal for another criterion

(Atkinson et al., 2007). Several criteria coincide with particular statistical concepts,

so the selection of the criterion is often made depending on the objectives of the

experiment. For example, if the objective is to estimate all the parameters of the

model, then the D-optimal criterion, ΦD, may be considered. On the other hand, if

the objective is to estimate a specific linear function of the model parameters then

the c-optimal criterion is suitable. When the design factors are qualitative and of

the same scale as in optimal block designs, the A-optimal criterion, ΦA, is considered

(Atkinson et al., 2007). We now define the most commonly used optimality criteria,

known as “alphabet optimal criteria.”

D-optimality : this criterion is one of the most popular optimality criteria. It is the

determinant of the variance-covariance matrix of the parameter-estimator |Σ(ξ,θ)|,

or log|Σ(ξ,θ)|, which is also known as (the log of) the generalized variance of the

parameter estimates. Since the volume of the (asymptotic) ellipsoidal confidence re-

gions of the parameter vector θ is proportional to the square root of the determinant

of the variance-covariance matrix of θ̂, the criterion helps to identify designs that give

‘small’ joint confidence ellipsoid for θ.

A-optimality : this criterion is the trace of the variance-covariance matrix for the

parameter-estimator, i.e. tr (Σ(ξ,θ)). The A-optimal criterion aims to minimize the

average asymptotic variance of the estimates of the parameters θ.
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c-optimality : this criterion focuses on estimating some desirable functions, i.e.,

cTθ of the model parameters. The criterion minimizes cTΣ(ξ,θ)c, where c is a p× 1

vector.

G-optimality : this criterion focuses on minimizing the maximum of the standard-

ized variance d(x, ξ) over the design space. The standardized variance related to the

prediction model is defined as d(x, ξ) =
Nvar(ŷ(x))

σ2
, where var(ŷ(x)) =

σ2fT(x)Σ(ξ,θ)f(x). Therefore, the criterion seeks to minimize the worst prediction

variance over the design space.

E-optimality : this criterion focuses on minimizing the maximum eigenvalue ,λi,

of the variance-covariance matrix, λmax(Σ(ξ,θ)). The criterion helps to identify de-

signs that minimize the length of the major axis of the confidence ellipsoid for θ.

This criterion is a spacial case of the G-optimality when cTc is a unit sphere, thus it

will minimize the worst variance of linear combinations of the parameter estimates

var(cTθ̂) = cTΣ(ξ,θ)c, i.e., min max
1

λ
=
cTΣ(ξ,θ)c

cTc
is reached when cTc = 1.

Kiefer (1974) proposed a quite general criterion named as the Φp-optimality crite-

rion that includes the popular D-, A-, and E-optimality criteria as special cases, and

is defined as

Φp{Σ(ξ,θ)} =

[
1

v
tr{(Σ(ξ,θ))p}

]1/p

p ∈ (0,∞)

where v is the dimension of Σ(ξ,θ). When p → 0 the criterion reduces to the D-

optimality criterion, and when p → ∞ we have the E-optimality criterion. We get

the A-optimality criterion when p = 1. The optimality criteria mentioned previously

(or their equivalent forms) are convex functions of the information matrix. With

optimality criteria that are convex, differentiable, and a compact design space χ,

the general equivalence theorem can be applied to verify the optimality of a given

continuous design (Kiefer, 1974; Kiefer & Wolfowitz, 1960). The general equivalence
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theorem will be explained in Section 2.4.

2.2 Design for Generalized Linear Models

Another type of models that is useful when the linear model assumptions are vi-

olated is the Generalized Linear Models (GLM). This type of models includes the

classical linear models as special cases. It also contains models that are suitable for

cases where the response variable does not have a normal distribution, but some other

distributions such as Poisson or binomial distributions that belong to the exponen-

tial family for which the mean and variance might be highly related. McCullagh

and Nelder (1989) and Dobson and Barnett (2008) provided a historical summary

with examples of the progress and evolution of GLMs. The construction of exper-

imental design for a GLM presents a level of complexity. The main reason is that

the information matrix normally contains unknown model parameters. As a result,

experiments having the same model but with different model parameter values will

normally require different optimal designs. To see this, let us look at the following

GLM:

g[E(zi)] = g(µi) = ηi, (2.2)

where ηi is the linear predictor defined as ηi = f(xi)
Tθ, µi is the mean of zi, and g(·)

is the link function which relates the mean of the response variable to the linear predic-

tor. The normalized information matrix for θ isM(ξ,θ) =
m∑
i=1

wiΓ(f(xi)
Tθ)f(xi)f(xi)

T,

where Γ(·) is called the GLM weight defined as Γ(ηi) =
1

V (µi)

(
dµi
dηi

)2

, the variance

of the response is var(zi) = φV (µi), and φ is a dispersion parameter. Note that Γ(ηi)

depends on the model parameters through µi, and so does M(ξ,θ). Table (2.1) lists

some examples of commonly used GLMs. Obtaining optimal designs for GLMs nor-

mally requires some prior information regarding the possible values of the unknown
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parameters. Nevertheless, the theory of optimal design for linear models, including

the general equivalence theorem, can be extended to GLMs (and other nonlinear

models) by fixing the values of the parameters that the information matrix depends

on (Pukelsheim, 2006; Stufken & Yang, 2012b).

Table 2.1: Some Commonly Used GLMs

Model Linear Logistic Probit Poisson

Response continous Binary Binary Count

Distribution Normal Binomial Binomial Poisson

Link-Function Identity : η = µ Logit : η = log

(
µ

1− µ

)
Probit : η = Φ−1(µ) Log : η = log(µ)

Γ-Function Γ(η) =
1

V (µ)
Γ(η) =

exp(η)

(1 + exp(η))2
Γ(η) =

Φ′(η)2

Φ(η)(1− Φ(η))
Γ(η) = exp(η)

One of the widespread approaches to tackle the design issues for GLMs (or nonlin-

ear models) was introduced by Chernoff (1953), who suggested obtaining the “locally

optimal” designs based on the best guess of the unknown model parameters. In prin-

ciple, a locally optimal design is optimal in some sense when the guessed parameters

value turns out to be true, but can be sub-optimal when the guessed value is far from

the true parameter value. In the absence of any prior knowledge on the unknown

parameters, the locally optimal design is still useful since it can be considered as a

benchmark to evaluate the performance of other designs. A reasonable initial guess

on the unknown parameters can be obtained from previous experiments conducted

on the same objective. However, if there is no knowledge of the possible parameter

value, one possible solution is to use the multistage approach. For example, an ar-

bitrary design may be considered at the first stage to gain some knowledge about

the unknown parameters. In the next steps, a locally optimal design is constructed

based on the information gained from the previous step for estimating the unknown

parameters. Other common procedures include the Bayesian design approach that

places a prior distribution on the unknown parameters (see also Khuri, Mukherjee,
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Sinha, & Ghosh, 2006).

For obtaining locally optimal designs, a powerful algebraic procedure was intro-

duced by Yang and Stufken (2009). This algebraic procedure allows us to find a

“complete class” of designs for a variety of models under many commonly used opti-

mality criteria.

2.3 Complete Class Approach

The complete class approach allows us to restrict our search for optimal designs to

a small subclass, called complete class, of candidate designs. This subclass of designs,

denoted as Ξ, is constructed so that, for any given design, there is at least one design

in the subclass that is at least as efficient.

The idea for using a complete class had started some time ago (e.g., Ehrenfeld

et al., 1956; Kiefer & Wolfowitz, 1959), and the research on this direction has been

developed by several authors such as Pukelsheim (1989) who identified it as “essen-

tially complete class” under what he called the Kiefer ordering. There are several

recent contributions that are related to the development of the complete class ap-

proach, such as the work by Mathew and Sinha (2001) on the two parameters logistic

regression model. They demonstrate that a locally D-optimal design for estimating

the two model parameters of a simple logistic regression model can be found in the

class of two-point symmetric designs. A symmetric design is a design whose design

points are symmetric around 0 and the paired design points, x and −x, have the same

weights; note that x = −x = 0 can also be included in a symmetric design. However,

their numerical results for the A-optimality criterion revealed a different conclusion;

the design points of a locally A-optimal design are symmetric but the corresponding

weights of the symmetric design points may not be the same. The work of Mathew

and Sinha (2001) leads to the seminal work by Yang and Stufken (2009) who pro-
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posed an algebraic approach to identify a complete class of locally optimal designs

for nonlinear models with two parameters. Their complete class suggests that the

search for locally optimal designs for the previously mentioned setting can be done

within a subclass of designs with at most two support points. Specifically, for any

given design ξ, we can find a design ξ∗ within a subclass of designs with at most two

support points that is not inferior to the design ξ such that M(ξ∗) ≥ M(ξ) under

the Loewner ordering. Note that the Loewner ordering is a type of ordering among

(information) matrices. We say that an information matrix M∗ (or the corresponding

designs ξ∗) is no worse than another M (or the corresponding designs ξ) in Loewner

ordering when M∗− M is nonnegative definite; we denote this as M∗ ≥ M. Most

popular optimality criteria, like Φp-optimality criterion, obey the Loewner ordering,

so if M∗ ≥ M then Φp(M
∗) ≤ Φp(M). The construction of complete class was ex-

tended to include nonlinear models with more than two parameters by Yang (2010b)

who derived sufficient conditions for the De la Garza phenomenon to be applied to

nonlinear models. The de la Garza phenomenon is due to De la Garza et al. (1954),

which suggests that for a polynomial regression model with a degree p, an optimal

design can be found within the class of designs having p + 1 support points. Dette

and Melas (2011) then gave a more general result than Yang (2010b) by including a

broader class of nonlinear regression models. They utilized the Chebyshev systems,

see also Karlin and Studden (1966), for the study of the De la Garza phenomenon.

Yang and Stufken (2012) further extended the work to give a general and powerful

approach that allows researchers to easily identify complete classes for an even wider

class of models. For many of these models, the complete class achieved by this latter

approach can be much smaller than those identified by the previous methods. Since

then, this became an important research field that caught major attention.
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The complete class approach of Yang and Stufken (2012) can help determine a

sharp upper bound on the number of support points for (locally) optimal designs.

This upper bound is normally tighter than the classical Caratheodory’s bound which

restricted the maximum number of support points of the optimal design to p(p +

1)/2 + 1, where p is the number of parameters of interest. To explain the approach

of Yang and Stufken (2012), a bijection, which will be determined by the model, is

used to relate the induced design point ci ∈ [A,B] to the design point xi ∈ [L,U ].

This helps to rewrite the information matrix of a given nonlinear model as:

M(ξ,θ) = B(θ)(
∑

wiC(θ, ci))B
T(θ). (2.3)

By doing so, we can restrict our attention to the matrix C(θ, ci) instead of the entire

information matrix M(ξ,θ) since B(θ) is a non-singular matrix that depends only on

the parameters, and it is not affected by the selected design. In many cases, C(θ, ci)

is a matrix whose elements are smooth functions of ci defined on [A,B]. We denote

the (i, j)th element of C(θ, ci) as Γij(ci). With this decomposition, we may focus

on finding a design ξ = {(ci, wi), i = 1, · · · ,m} that ‘maximizes’ M(ξ,θ) for a given

value of θ, and then rewrite the design in term of xi. The strategy of Yang and

Stufken (2012) is performed by first partitioning the n×n symmetric matrix C(θ, ci)

by a chosen permutation matrix P as follows:

PC(θ, cj)P
T =

 C11(θ, ci) C12(θ, ci)

CT12(θ, ci) C22(θ, ci)

 , (2.4)

where C22(θ, ci) is a symmetric principal sub-matrix with dimension n1 × n1; 1 ≤

n1 < n. It can be seen that, for two designs ξ∗ = {(c∗i , w∗i ), i = 1, · · · ,m∗}, and

ξ = {(ci, wi), i = 1, · · · ,m}, we have M(ξ∗,θ) ≥ M(ξ,θ), whenever
m∗∑
i=1

w∗iC(θ, c∗i ) ≥
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m∑
i=1

wiC(θ, ci). The latter is satisfied if the following hold:

m∗∑
i=1

w∗iC11(θ, c∗i ) =
m∑
i=1

wiC11(θ, ci),

m∗∑
i=1

w∗iC12(θ, c∗i ) =
m∑
i=1

wiC12(θ, ci), and

m∗∑
i=1

w∗iC22(θ, c∗i ) ≥
m∑
i=1

wiC22(θ, ci).

This means that the weighted sum of the two matrices C(θ, ci) and C(θ, c∗i ) are

almost the same, except for the elements in the principle sub-matrix C22 that cre-

ates the information inequality. With this fact, the procedure of Yang and Stufken

(2012) suggests to first find a maximal set of linearly independent non-constant Γij’s

from the first n − n1 rows of the PC(θ, ci)P
T matrix. Denote these Γ-functions

by Ψ1, · · · ,Ψk−1. Set Ψ0 = 1, and Ψq
k = qTC22q for a nonzero vector q. The

next step is to check if the sets {Ψ0,Ψ1, · · · ,Ψk−1} and {Ψ0,Ψ1, · · · ,Ψk−1,Ψ
q
k} or

{Ψ0,Ψ1, · · · ,Ψk−1} and {Ψ0,Ψ1, · · · ,Ψk−1,−Ψq
k} form Chebyshev systems for all

q 6= 0. The Chebyshev systems (Dette & Melas, 2011; Karlin & Studden, 1966)

used in this step can be explained as follows. Suppose we have a set of k+ 1 continu-

ous functions Ψ0, · · · ,Ψk : [A,B]→ R. We say that {Ψ0, · · · ,Ψk} form a Chebyshev

system if for all A ≤ z0 < z1 < · · · < zk ≤ B the inequality∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ0(z0) Ψ0(z1) · · · Ψ0(zk)

Ψ1(z0) Ψ1(z1) · · · Ψ1(zk)

...
...

. . .
...

Ψk(z0) Ψk(z1) · · · Ψk(zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (2.5)

is satisfied. A rather simple way to identify a Chebyshev system other than using

the definition directly is to follow the strategy found in Proposition 4 of Yang and

Stufken (2012). Assume that all the Ψ functions are at least k times differentiable on
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(A,B). Let fl,t(c), 1 ≤ t ≤ l ≤ k be defined as in the following matrix:



f1,1 = Ψ
′
1(c)

f2,1 = Ψ
′
2(c) f2,2 =

(
f2,1

f1,1

)′
f3,1 = Ψ

′
3(c) f3,2 =

(
f3,1

f1,1

)′
f3,3 =

(
f3,2

f2,2

)′
f4,1 = Ψ

′
4(c) f4,2 =

(
f4,1

f1,1

)′
f4,3 =

(
f4,2

f2,2

)′
f4,4 =

(
f4,3

f3,3

)′
...

...
...

...
. . .

fk,1 = Ψ
′
k fk,2 =

(
fk,1

f1,1

)′
fk,3 =

(
fk,2

f2,2

)′
fk,4 =

(
fk,3

f3,3

)′
· · · fk,k =

(
fk,k−1

fk−1,k−1

)′


. (2.6)

If fl,l(c) > 0 ∀c ∈ [A,B] and l = 1, · · · , k − 1, then the set {Ψ0,Ψ1, · · · ,Ψk−1,Ψ
q
k}

forms a Chebyshev system if fk,k(c) > 0, whereas the set {Ψ0,Ψ1, · · · ,Ψk−1,−Ψq
k}

forms a Chebyshev system if −fk,k(c) > 0. Following this, we can conclude that

the sets {Ψ0,Ψ1, · · · ,Ψk−1} and {Ψ0,Ψ1, · · · ,Ψk−1,Ψ
q
k} form Chebyshev systems if

F (c) > 0, where as the sets {Ψ0,Ψ1, · · · ,Ψk−1} and {Ψ0,Ψ1, · · · ,Ψk−1,−Ψq
k} form

Chebyshev systems if −F (c) > 0, where F (c) is defined as:

F (c) =
k∏
l=1

fl,l(c) ∀c ∈ [A,B]. (2.7)

If the desired Chebyshev system can be formed, then based on Lemma 2 of Yang

and Stufken (2012) which is restated again in Lemma 2.3.1, for any given set S =

{(ci, wi) : wi > 0, A ≤ ci ≤ B, i = 1, · · · , N} with a sufficiently large N (to be spec-

ified in the Lemma), there exists a dominant set S∗ = {(c∗i , w∗i ) : w∗i > 0, A ≤ c∗i ≤

B, i = 1, · · · , n∗} such that

n∗∑
i=1

w∗i =
N∑
i=1

wi

n∗∑
i=1

w∗iΨl(c
∗
i ) =

N∑
i=1

wiΨl(ci), l = 1, · · · , k − 1;

n∗∑
i=1

w∗iΨ
q
k(c
∗
i ) >

N∑
i=1

wiΨ
q
k(ci) for every nonzero vector q.

(2.8)
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From (2.8), it is clear that we may change the sign of some Ψl for l = 1, · · · , k − 1

without changing the equality. The complete class results is thus invariant to a sign

change of these Ψ functions. We now state the Lemma 2 of Yang and Stufken (2012)

below.

Lemma 2.3.1 (Lemma 2 in Yang and Stufken (2012)). Consider a given set S =

{(ci, wi) : wi > 0, A ≤ ci ≤ B, i = 1, · · · , N}, and let the previously described Ψi

i = 0, · · · , k − 1, and Ψq
k be such that either

{Ψ0,Ψ1, · · · ,Ψ1−k} and {Ψ0,Ψ1, · · · ,Ψ1−k,Ψ
q
k} (2.9)

or

{Ψ0,Ψ1, · · · ,Ψ1−k} and {Ψ0,Ψ1, · · · ,Ψ1−k,−Ψq
k} (2.10)

form Chebyshev systems on the interval [A,B] for any nonzero vector q. Let n∗ =

dk/2e be the smallest integer ≥ k/2. Then the following results hold:

a. Assume k is odd and N ≥ n∗. If (2.9) holds, then there exists a set S∗, which

has n∗ points including B, such that S is dominated by S∗.

b. Assume k is odd and N ≥ n∗. If (2.10) holds, then there exists a set S∗, which

has n∗ points including A, such that S is dominated by S∗.

c. Assume k is even and N ≥ n∗. If (2.9) holds, then there exists a set S∗, which

has n∗ + 1 points including both A and B, such that S is dominated by S∗.

d. Assume k is even and N ≥ n∗ + 1. If (2.10) holds, then there exists a set S∗,

which has n∗ points, such that S is dominated by S∗.

Note that S and S∗ may or may not be designs depending on whether
∑
wi = 1

(and
∑
w∗i = 1) or not. In addition, to facilitate the construction of the complete

class, Yang and Stufken (2012) proposed the use of F (c) defined in (2.7) to verify if

the sets of Ψ-functions in (2.9) and (2.10) form Chebyshev systems. Kim and Kao
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(2019) made a necessary change to this complete class approach to identify complete

classes of locally optimal designs for the mixed responses models that they considered.

This main tool used by Kim and Kao (2019) is important, and is restated below

with the same notation as previously described. We note that instead of finding

a maximal set {Ψ1, · · · ,Ψk−1} of nonconstant linearly independent elements from

[C11(θ, c), C12(θ, c)] in (2.4), Kim and Kao (2019) required {Ψ0 = 1,Ψ1, · · · ,Ψk−1}

to be a maximal set of linearly independent Ψ-functions. Following their work, we

developed new complete class results for mixed responses under more complicated

settings.

Lemma 2.3.2. Let Ψ1, · · · , and Ψk−1 be nonconstant functions selected from [C11, C12]

such that {Ψ0,Ψ1, · · · ,Ψk−1} is a maximal set of linearly independent functions and

n∗ = dk/2e. Then the following results hold:

(a) If k is odd and F (c) > 0 for all c ∈ [A,B], then the designs containing at most

n∗ support points including B form a complete class.

(b) If k is odd and F (c) < 0 for all c ∈ [A,B], then the designs containing at most

n∗ support points including A form a complete class.

(c) If k is even and F (c) > 0 for all c ∈ [A,B], then the designs containing at most

n∗ + 1 support points including both A and B form a complete class.

(d) If k is even and F (c) < 0 for all c ∈ [A,B], then the designs containing at most

n∗ support points form a complete class.

2.4 General Equivalence Theorem

As mentioned before, the general equivalence theorem (GET) is a powerful tool

that can be used to verify the optimality of the selected design. It is one of the

traditional approaches that is widely used in the literature to establish optimal designs

and to verify their optimality.
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Let ξx be a design that contains a one design point x with design weight equaling

one. The general equivalence theorem for a given criterion function Φ{M(ξ)} states

that the following three conditions are equivalent (see also Atkinson et al., 2007):

1. The design ξ∗ minimizes Φ{M(ξ)}.

2. φ(x, ξ∗) ≥ 0 ∀ x ∈ χ, and the minimum is achieved at the support points of the

design ξ∗.

3. The design ξ∗ maximizes min
x∈χ

φ(x, ξ).

Here, φ(x, ξ) is the directional derivative of Φ(ξ) in the direction of ξx, and it is

defined as:

φ(x, ξ) = lim
α→0+

1

α
[Φ{(1− α)M(ξ) + αM(ξx)} − Φ{M(ξ)}]. (2.11)

Interestingly, the general equivalence theorem states that both the D-optimal and

G-optimal designs are equivalent under a given model even though the two criteria

have different statistical interpretations. While there is a general statement for the

equivalence theorem, each optimal criterion has its own form. The condition for

optimality criteria are examined as follows:

The D-optimality criterion: the directional derivative of ΦD(M) at ξ in the

direction of ξx is given as:

φ(x, ξ) =− tr{M−1(ξ)M(ξx)−M−1(ξ)M(ξ)}

=p− tr{M−1(ξ)M(ξx)} = p− dD(x, ξ),

(2.12)

where p is the number of parameters and dD(x, ξ) is known as the sensitivity function

for the corresponding criterion (Fedorov & Leonov, 2013). For the D-optimal designs

the function dD(x, ξ) should achieve its maxima of p at the support points of the

design.
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The A-optimality criterion: the directional derivative of ΦA(M) at ξ in the direc-

tion of ξx is given as:

φ(x, ξ) = −tr{M(ξx)M
−2(ξ)−M−1(ξ)} =tr{M−1(ξ)} − tr{M(ξx)M

−2(ξ)}

= q − dA(x, ξ)

(2.13)

where dA(x, ξ) is the sensitivity function for the A-criterion.

An easy and fast way to validate the optimality of a design is by graphing, when-

ever possible, the sensitivity function for the obtained ξ for the corresponding crite-

rion. If the maximum values of the graph of the sensitivity function is bounded above

by p or q for the D- or A-optimality criterion, respectively, and the tangent points

are exactly the obtained support points then the design is optimal.

2.5 The Relative Efficiency and Efficiency Lower Bound

In some cases, the researchers prefer to use other designs rather than the optimal

design. For example, when the sample size is small, the rounded optimal continuous

design (exact design) applied in practice can not be identical to the continuous optimal

design observed. In other words, the optimal design found acts as a benchmark for

other designs. In this case, we need a tool to assess how successful the applied design

is, in comparison to the optimal design found. The relative efficiency proposed by

Yates (1935) is a significant result in which the design of interest ξ is compared to

the optimal design ξ∗. If the relative efficiency is less than one, then we can achieve

the same estimation precision as the optimal design by multiplying the sample size

of the design ξ by the reciprocal of the ratio calculated. If the D- or A-optimality is

of interest, then the relative efficiency of the design is as follows:
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The D-efficiency:

Deff =

(
|M(ξ)|
|M(ξ∗)|

)1/p

, where p is the number of parameters. (2.14)

The A-efficiency:

Aeff =
tr(M(ξ))

tr(M(ξ∗))
. (2.15)

In calculating the relative efficiency of any design, the problem that arises is the

absence of the optimal designs. In this case the worth of the design is measured by

the efficiency lower bound, ε, which can be computed using the equivalence theorem

and the relative efficiency.

The D-efficiency of the design ξ can be bounded below by:

Deff (ξ) ≥ exp(− ε
p

) = Dlb(ξ). (2.16)

The A-efficiency of the design ξ can be bounded below by:

Aeff (ξ) ≥ (1− ε

ΦA(M(ξ))
) = Alb(ξ), (2.17)

(see Yang, Biedermann, & Tang, 2013).
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Chapter 3

SIMPLE MIXED RESPONSES MODEL

In this chapter, we restrict the search for optimal designs further to the class of

symmetric designs. This is especially useful when the D-criterion is considered. We

adopted the previously described complete class approach to identify a small class of

symmetric designs denoted as Ξs, for a given symmetric design space. In other words,

for any given continuous symmetric design ξs, we can identify a design ξ∗s ∈ Ξs so

that M(ξs,θ) ≤ M(ξ∗s ,θ) under Loewner ordering, i.e. M(ξ∗s ,θ) −M(ξs,θ) ≥ 0 is

non-negative definite. That is, the design ξ∗s is not inferior to the design ξs under the

D-optimality criterion. As a result, the search of D-optimal designs will be within Ξs,

and this can substantially decrease the effort for finding optimal designs.

Many research in optimal experimental designs for nonlinear models resulted in

symmetric designs. For example, Mathew and Sinha (2001) considered the logistic

model with two parameters. They first confined themselves to the class of two-

point symmetric designs when searching for A- and D-optimal designs. They found

that the design ξ∗s = {(±c∗, 1/2)} with c∗ = 1.5434 is D-optimal for estimating the

two parameters in the logistic model that they considerd. However, their numerical

results revealed that, in general, the A-optimal design is not a symmetric design.

Similar results were achieved by Yang (2008) who provided a mathematical proof of

the numerical findings of Mathew and Sinha (2001). In Chapter 2 of Liski, Mandal,

Shah, and Sinha (2002), the optimal designs for a polynomial model of degree one or

higher was studied by considering the symmetric design for symmetric domain. They

explain that the value of the Φp-criterion for symmetric designs is at least as good

as any other designs. Thus, in their models the search can be restricted to the class
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of symmetric designs. Symmetric designs were also studied by Hyun (2013) under

a probit model with a quadratic term for dose response relationship in toxicology

studies. He identified a four-point symmetric complete class for the probit model.

Then he searched for the A- and D-optimality designs and confirmed the optimality of

the obtained designs by the general equivalence theorem. Wu and Stufken (2014) also

eased the search for optimal designs by focusing on symmetric designs when forming

a complete class using Φp-optimal design for GLM with a single-variable quadratic

polynomial predictor. They showed under some assumptions that the optimal design

can be established depending on the value of the three parameters within the class

of symmetric designs that have either three or four support points. Kim (2017)

considered a quadratic mixed responses model, where she extended the simple mixed

responses model by inserting a quadratic term in the logistic sub-model. The focus

was on finding a complete class for symmetric designs, where she searched for the

locally D-optimal designs. Within the same framework, we consider a symmetric

complete class for locally optimal designs that can be applied to the simple mixed

responses models.

3.1 Statistical Model

Consider an experiment that has an independent variable x ∈ R, and bivariate

response variables; one response variable is binary, z ∈ {0, 1}, and the other is con-

tinuous, y ∈ R. We assume that the relationship between z and x can be described

by a generalized linear model (GLM), whereas the conditional distribution of y given

z and x follows a normal distribution.

The joint distribution of (y, z) can be obtained by f(y, z) = f(z)f(y|z), where f(·)

represents a probability density/mass function. With N observations i = 1, · · · , N ,
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the model that we consider can be represented as follows:

yi|zi ∼ N(fT
z (xi)θz, σ

2), with µy|z(xi) = fTz (xi)θz, z = 0, 1

and

Prob(zi = 1) = P(fT
2 (xi)θ2) ≡ p(xi),

(3.1)

where fr(x)’s are vectors of known functions of x for r = 0, 1, 2, P(·) is a cumulative

distribution function (cdf), and {θ0,θ1,θ2, σ
2} are unknown parameters. Note, we

assume that the bivariate responses (y, z) of the same observational unit might be cor-

related, but are independent across different units. Moreover, the correlation between

the response y and z can be calculated by cor(yi, zi) = di/
[ σ2

{p(xi)(1− p(xi))}
+d2

i

]1/2

,

where di = µy|z=1(xi)− µy|z=0(xi) (Olkin, Tate, et al., 1961).

The joint distribution of y and z is given as:

f(yi, zi) =f(zi)f(yi|zi)

=[p(xi)]
zi [1− p(xi)]1−zi [f(yi|zi = 1)]zi [f(yi|zi = 0)]1−zi ,

= [p(xi)]
zi [1− p(xi)]1−zi ×[

1

σ
√

2π
exp−

(yi − µy|z=1(xi))
2

2σ2

]zi [ 1

σ
√

2π
exp−

(yi − µy|z=0(xi))
2

2σ2

]1−zi

.

Let θ = (θT0 ,θ
T
1 ,θ

T
2 )T be the parameter vector of interest, then the log-likelihood

function is:

logL(θ) = log
N∏
i=1

f(yi, zi) = log
N∏
i=1

f(zi)f(yi|zi)

=
N∑
i=1

{
zilog

[
P(fT

2 (xi)θ2)
]

+ (1− zi)log
[
1− P(fT

2 (xi)θ2)
]

+ log

(
1

σ
√

2π

)
− zi

(yi − fT
1 (xi)θ1)2

2σ2
− (1− zi)

(yi − fT
0 (xi)θ0)2

2σ2

}
.

Based on the log-likelihood function, the information matrix can be calculated by

M(θ) = −E
(
∂2logL

∂2θ

)
. Then, the information matrix for θ under a continuous

design ξ = {(xi, wi), i = 1, · · · ,m} is a symmetric block diagonal matrix:
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M(ξ,θ) =

2⊕
r=0

m∑
i=1

wiΓr(f
T
2 (xi)θ2)fr(xi)f

T
r (xi) (3.2)

where, ⊕ is the direct sum operator,

Γ0(x) =
1− P(x)

σ2
,Γ1(x) =

P(x)

σ2
, and Γ2(x) =

[P′(x)]2

P(x)(1− P(x))
. (3.3)

Note that the model can be extended to the case where var(y|z) also depends on the

value of z (e.g., Cox & Wermuth, 1992).

For simplicity, we first follow Kim and Kao (2019) to consider the case where

fr(xi) = (1, xi)
T and θr = (αr, βr) for r = 0, 1, 2, and z has a logistic distribution;

i.e. P(z) =
ez

1 + ez
. We also consider an induced design ξ = {(ci, wi), i = 1, · · · ,m},

where ci = α2 + β2xi is defined through a bijection of xi. The information matrix of

θ can be re-written, for some nonsingular matrix B(θ) and non-nonegative definite

matrix C(θ, ci), in the following form:

M(ξ,θ) = B(θ)C̃(ξ,θ)BT(θ), (3.4)

where C̃(ξ,θ) =
m∑
i=1

wiC(θ, ci). Specifically, B(θ) = diag(
1

σ
B1,

1

σ
B1, B1), where B1 =(

1 0

α2 β2

)−1

. The C(θ, ci) matrix is a 6-by-6 symmetric matrix defined as:

Γ11 =
1

1 + eci
Γ12 = ci

1

1 + eci
0 0 0 0

Γ12 = ci
1

1 + eci
Γ22 = ci

2 1

1 + eci
0 0 0 0

0 0 Γ33 =
eci

1 + eci
Γ34 = ci

eci

1 + eci
0 0

0 0 Γ34 = ci
eci

1 + eci
Γ44 = c2i

eci

1 + eci
0 0

0 0 0 0 Γ55 =
eci

(1 + eci )2
Γ56 = ci

eci

(1 + eci )2

0 0 0 0 Γ56 = ci
eci

(1 + eci )2
Γ66 = c2i

eci

(1 + eci )2


=diag(C0, C1, C2),

(3.5)

where Cr = Γr

(
1 ci

ci c2i

)
, r = 0, 1, 2, Γ0 =

1

1 + eci
, Γ1 =

eci

1 + eci
, and Γ2 =

eci

(1 + eci)2
.
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3.2 Symmetric Complete Class Results

Our focus is to identify a small symmetric complete class where we provide an

upper bound on the numbers of symmetric design points and weights. By working

with the C matrix in (3.5), Kim and Kao (2019) identified a complete class for the

simple mixed responses model, which we restate it in the next theorem for later use.

Theorem 3.2.1. For the simple mixed responses model, for any given design ξ that

has at least four support points, there exists a design ξ∗ that has at most four support

points including both endpoints of the design space which satisfies C̃(ξ∗,θ) ≥ C̃(ξ,θ).

According to their numerical results, it can be conjectured that, when the range of

c is symmetric around 0, the locally D-optimal design can be found by searching over

the class of symmetric designs of at most 4 support points. Here, the symmetric design

is defined as ξs = {(±ci, wi/2), ci ≥ 0, wi > 0, i = 1, · · · ,m}, where ci is a support

point, wi is the corresponding weight for ci and −ci, and
m∑
i=1

wi
2

= 0.5. Without

restricting the number of the support points (m), we have the following simple result

whose proof can be found in the Appenedix.

Lemma 3.2.2. For any design ξ = {(ci, wi), i = 1, · · · ,m} in the induced design

space [−D,D] for some D > 0, we define the corresponding symmetric design as

ξs = {(±ci, wi/2), ci ≥ 0, wi > 0, i = 1, · · · ,m}. Then, ξs is at least as good as ξ

under D-optimality.

With this lemma, we may say that the set of all symmetric designs is a complete

class under D-optimality. However, this is a large complete class. In what follows, we

form a much smaller complete class.

With the same notation as in Lemma 3.2.2, it can be seen that C̃(ξs,θ) =

1

2
[(C̃(ξ,θ) + GC̃(ξ,θ)GT )] =

1

2
[(C̃(ξ,θ) + C̃(ξr,θ)], where ξr is a reflected design
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with ξr = {(−ci, wi), i = 1, · · ·m} generated from ξ = {(ci, wi), wi > 0,
∑
wi =

1, i = 1, · · ·m}, and G is an orthogonal transformation matrix with det(G) = ±1 and

GGT =I. In particular,

G=



0 0 1 0 0 0

0 0 0 −1 0 0

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


. (3.6)

We then have C̃(ξs,θ) =
m∑
i=1

wiCs(θ, ci) where

Cs(θ, ci) =



Γs11(ci) Γs12(ci) 0 0 0 0

Γs12(ci) Γs22(ci) 0 0 0 0

0 0 Γs33(ci) Γs34(ci) 0 0

0 0 Γs34(ci) Γs44(ci) 0 0

0 0 0 0 Γs55(ci) 0

0 0 0 0 0 Γs66(ci)


(3.7)

=



1

2

ci(1− eci )

2(1 + eci )
0 0 0 0

ci(1− eci )

2(1 + eci )

c2i

2
0 0 0 0

0 0
1

2

ci(e
ci − 1)

2(1 + eci )
0 0

0 0
ci(e

ci − 1)

2(1 + eci )

c2i

2
0 0

0 0 0 0
eci

(1 + eci )2
0

0 0 0 0 0 c2i
eci

(1 + eci )2


. (3.8)

We note that the sum of Γs34 and Γs12 in Cs(θ, ci) is: Γs34 + Γs12 =
ci(e

ci − 1)

2(1 + eci)
+

ci(1− eci)
2(1 + eci)

= 0; these two Γsij functions are linearly dependent. We thus select ei-

ther one of them into the set {Ψ1, · · · ,Ψk−1}. To apply the complete class approach

described in Chapter 2, we will partition Cs(θ, ci), possibly after simultaneously per-

muting some rows and columns of it, as:
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 Cs11(θ, ci) Cs12(θ, ci)

Cs12(θ, ci) Cs22(θ, ci)

 . (3.9)

The selection of the Cs22 matrix needed in the procedure is done by permuting the

rows and columns of Cs so that Γs44 and Γs66 can be in the lower-right 2-by-2 sub-

matrix. In particular, Cs22 = diag(Γs44,Γs66). We then have the following result:

Lemma 3.2.3. Under a simple mixed responses model, {Ψ0,Ψ1 = Γs34,Ψ2 = Γs55}

and {Ψ0,Ψ1 = Γs34,Ψ2 = Γs55,Ψ
q
3} form Chebyshev systems for any non-zero vector

q on any closed interval in [0,∞), where Ψ0 = 1 and Ψq
3 = qTdiag(Γs44,Γs66)q.

Proof. If we take into consideration the set of Ψ functions above and using the defi-

nition in (2.6) for fl,l’s, then, f1,1 =
c+ sinh(c)

1 + cosh(c)
> 0 ∀c > 0, and by Proposition 1 in

the Appendix, we have f2,2 =
e5c − 4ce3c − ec

(1 + ec)2(e2c + 2cec − 1)2
> 0 ∀c > 0. We then use the

principle minor test to check if the diagonal matrix f3,3 is a positive definite matrix.

By Proposition 2 in the Appendix, the (1,1) element of f3,3 is

16(cosh(c) + 1)(sinh2(c)− c2)

(2c− sinh(2c))2 [2ccosh(c)+cosh(c) sinh(c)−c−2sinh(c)] > 0 ∀c > 0,

and by Proposition 3 in the Appendix, the (2,2) element of f3,3 is

16cosh2(
c

2
)(c+ sinh(c))

(2c− sinh(2c))2
[c2 − 2sinh2(c) +

csinh(2c)

2
] > 0 ∀c > 0. Therefore, F (c) >

0 for c ∈ (0,∞). Then the conclusion of the Ψ sets forming Chebyshev systems

follows directly from the proof of Theorem 2 in Yang and Stufken (2012).

The following theorem allows us to form a small complete class for symmetric

designs.

Theorem 3.2.4. Under a simple mixed responses model, a complete class for sym-

metric designs in the induced design space [−D,D] can be formed by all the symmetric

designs of at most 4 support points including −D and D.
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Proof. Lemma 3.2.3 and Lemma 2.3.1 assert that for any set S+ = {(ci, wi/2) :

0 ≤ ci ≤ D,wi > 0, i = 1, · · · , N,
N∑
i=1

wi/2 = 0.5}, where N ≥ 2, there exists a

dominating set S+∗ = {(c∗, w∗/2), (D, 0.5 − w∗/2), 0 ≤ ci ≤ D,w∗ > 0} so that
2∑
i=1

w∗i
2

Ψt(c
∗
i ) =

N∑
i=1

wi
2

Ψt(ci), t = 0, 1, 2, and
2∑
i=1

w∗i
2

Ψq
3(c∗i ) >

N∑
i=1

wi
2

Ψq
3(ci) for every

non-zero vector q. For c < 0, we have Ψt(−c) = Ψt(c), t = 0, 1, 2, and Ψq
3(−c) = Ψq

3(c)

for every non-zero vector q. Thus,
2∑
i=1

w∗i
2

Ψt(−c∗i ) =
N∑
i=1

wi
2

Ψt(−ci), t = 0, 1, 2, and

2∑
i=1

w∗i
2

Ψq
3(−c∗i ) >

N∑
i=1

wi
2

Ψq
3(−ci). These in turn give that:

2∑
i=1

w∗iCs11(θ, c∗i ) =
N∑
i=1

wiCs11(θ, ci),

2∑
i=1

w∗iCs12(θ, c∗i ) =
N∑
i=1

wiCs12(θ, ci), and

2∑
i=1

w∗iCs22(θ, c∗i ) >
N∑
i=1

wiCs22(θ, ci).

Furthermore, since the matrix B(θ) in (3.4) does not depend on the design, the

conclusion M(ξ∗s ,θ) ≥ M(ξs,θ) follows, where ξs = {(±ci, wi/2), 0 ≤ ci ≤ D,wi >

0,
m∑
i=1

wi/2 = 0.5, i = 1, · · · ,m} with some m ≥ 2, and ξ∗s = {(±D, 0.5− w∗/2),

(±c∗, w∗/2), 0 ≤ c∗ ≤ D,w∗ > 0}.

Based on Theorem 3.2.4, we can obtain a locally D-optimal design for the induced

design space [−D,D] by searching among the class of designs of the form: {(±D, 0.5−

w∗/2), (±c∗, w∗/2), 0 ≤ c∗ ≤ D,w∗ > 0}.

3.3 Numerical Results

The optimization problem can be attacked in several ways; either analytically

by mathematical derivations or numerically by effective computer algorithms. How-

ever, in most cases the functionality of analytical approaches can guide the numerical

techniques in finding optimal designs in a more efficient way or vice versa. The com-

plete class approach is helpful in narrowing the search of optimal designs to a small

class of designs. But, to identify the optimal design under a specific criterion, we
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still need an efficient optimization algorithm. In literature, there are different types

of algorithms that can be considered to find approximate optimal designs reliably

and quickly for different study objectives. A brief overview of several algorithms

that have been developed to obtain optimal designs is discussed later in Chapter 5.

Recently, Kim and Kao (2019) used the fmincon solver in MATLAB to search for

D- and A-optimal designs for simple mixed responses model. Thus, we adopt the

fmincon solver to search within the complete class for locally optimal designs. The

fmincon solver is a constrained nonlinear multivariable function optimizer provided

in MATLAB that finds the minimum of a problem specified by linear and nonlinear

constraints. There are five different algorithms that fmincon solver can be operated

with. These algorithms include the sequential quadratic programming (SQP), SQP-

legacy, interior-point algorithm (IPA), trust-region-reflective method (TRRM), and

active-set algorithm. Following the recommendation of Kim (2017), both SQP al-

gorithm and IPA can be used due to their comparable speed and accuracy for the

simple mixed responses model. Here, the SQP algorithm was primarily used. Our

optimization problem for the simple mixed responses model deals with smooth objec-

tive function that has some linear inequality constraint in regards to the approximate

design setting and design space restriction. In general, constrained nonlinear opti-

mization problems can be formulated as follows:

minimize
ξ={(ci,wi),i=1,··· ,m}

Φp{M(ξ)}

subject to
∑

wi = 1, wi ≥ 0, and D1 ≤ ci ≤ D2 (i = 1, ...,m).

We focused on the D-optimality criterion of the form ΦD = log |M−1(ξ,θ)|. Since

we decomposed the information matrix as in (3.4), then the D-optimality criterion

can be written as ΦD = −2log |B(θ)|− log |C̃(ξ,θ)| where the search can be done for

the induced design points ci, and the corresponding xi can be determined through the

equation ci = α2+β2xi. Hence, the problem can be reduced to minimize−log |C̃(ξ,θ)|
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since the matrix B(θ) does not depend on ci. The GET is then used to verify that

the obtained design is optimal. Based on the GET for D-optimality in (2.12), the

plot of dD(x, ξ) = tr{C̃−1(ξ,θ)C̃(ξx,θ)} can be used to verify the optimality of the

design over the induced design space.

By using the symmetric complete class results in Theorem 3.2.4, the proposed

structure of the symmetric locally D-optimal design for the simple mixed responses

model in (3.1) with the induced symmetric design space [−D,D] is given as ξ∗s=

{(−D, (1 − w∗)/2), (−c∗, w∗/2), (c∗, w∗/2), (D, (1 − w∗)/2)}. This further simplifies

the search, since we only need to find one support point c∗ and one weight w∗, which

in return decreases the search time for the optimal symmetric design. Thus, the

initial design point is set to ξ0 = (−c, c, (1 − w)/2, w/2, w/2, (1 − w)/2), where the

initial values of c and w are chosen randomly, 0 ≤ c < D, and 0 ≤ w ≤ 0.5. We

compare the time that the fmincon solver takes to find an optimal design over the

4-point symmetric designs, ξ∗s , and that over all the 4-point designs.

The optimal design results obtained by fmincon solver were presented in Table

3.1, where the CPU times (in milli-seconds) are displayed. The search was executed

using a Dell Desktop that has a 3.4 GMz Intel Core i7 with 32G RAM.

To study the effect of the design space on the number of support points we grad-

ually increased the design space to range from [-1,1] to [-100,100]. As shown in Table

3.1, the number of symmetric support points ranged from two to four support points

depending on the size of the symmetric induced design space. For the obtained opti-

mal designs with two support points, the two points are exactly the two end points of

the induced design space as for the design space [-0.5,0.5], [-1, 1], and [-1.5,1.5]. For

a 3-point design, zero is one of the support points as for the induced design spaces

[-2,2], [-2.5,2.5], and [-2.7,2.7]. Here, the weights of the 3-support points are not all

equal, and only the weights of the end points are the same. As the induced design
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Table 3.1: Locally D-optimal Designs for Symmetric Induced Design Space for c

Design space Optimized design Number of points OF CPUa(ms) CPUb(ms)

-0.5 0.5 -0.5 0.5 2 9.952 42 22

0.5 0.5

-1 1 -1 1 2 6.506 41 21

0.5 0.5

-1.5 1.5 -1.5 1.5 2 5.179 41 21

0.5 0.5

-2 2 -2 0 2 3 4.779 52 40

0.431 0.138 0.431

-2.5 2.5 -2.5 0 2.5 3 4.491 48 35

0.347 0.306 0.347

-2.7 2.7 -2.7 0 2.7 3 4.381 52 37

0.327 0.346 0.327

-3 3 -3 -0.3016 0.3016 3 4 4.225 50 38

0.3 0.2 0.2 0.3

-4 4 -4 -0.923 0.923 4 4 3.699 51 36

0.218 0.282 0.282 0.218

-5 5 -5 -1.1067 1.1067 5 4 3.143 51 33

0.1846 0.3154 0.3154 0.1846

-10 10 -10 -1.3218 1.3218 10 4 0.6419 54 30

0.1628 0.3372 0.3372 0.1628

-20 20 -20 -1.4113 1.4113 20 4 -2.23 74 41

0.165 0.335 0.335 0.165

-30 30 -30 -1.45 1.45 30 4 -3.901 86 49

0.1662 0.3338 0.3338 0.1662

-40 40 -40 -1.4716 1.4716 40 4 -5.079 100 50

0.1664 0.3336 0.3336 0.1664

-50 50 -50 -1.485 1.485 50 4 -5.988 99 51

0.1665 0.3335 0.3335 0.1665

-60 60 -60 -1.4943 1.4943 60 4 -6.729 112 52

0.1666 0.3334 0.3334 0.1666

-80 80 -80 -1.5063 1.5063 80 4 -7.895 138 58

0.16663 0.3337 0.3337 0.16663

-100 100 -100 -1.5133 1.5133 100 4 -8.797 145 71

0.1667 0.3333 0.3333 0.1667

a Time consumed by fmincon to search for the two inner points and three weights within a class of four support points

b Time consumed by fmincon to search for only one design point and one weight
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space gets larger, the obtained optimal designs has 4-support points, where the outer

points are the two ends of the induced design space and the inner two points are

symmetric about zero. The weights of the paired points are the same, while they

might differ across pairs. In Table 3.1, the 4-support points have emerged when the

design induced space is [-3,3] and larger. We can also observe from Table 3.1 that

the speed gain is more prominent to search over the symmetric complete class of at

most 4-point designs in comparison to searching over the space of 4-point designs.

For example, when the induced design space is [-3,3], the CPU time it took for finding

the optimal designs over the space of 4-point designs is 50 milliseconds compared to

38 milliseconds for searching over the ξ∗s of Ξs. And it took 145 milliseconds to search

for ξ∗ in comparison to 71 milliseconds search for ξ∗s for the induced design space

[-100,100]. We include the value of the objective function ‘OF’ , i.e. −log |C̃(ξ∗,θ)|,

for the obtained optimal design. As can be seen from the table, the objective function

decreases as the symmetric induced design space gets wider. We observe that as the

symmetric induced design space gets wider more weights are placed on the two inner

support points until a ratio of about 1:2:2:1 is achieved where the weights become

stable.

All the obtained designs found in Table 3.1 have been verified by GET where the

plots of the sensitivity function dD(c, ξ) curve are bounded above by the reference line

which is equal to 6 with equality at the support points of the design. As an example,

we draw the plots of the functions, dD(c, ξ), in Figure 3.1 for three different designs:

2-, 3-, and 4-points design. They are the designs that we obtained for the induced

design spaces [-0.5,0.5], [-2,2], and [-10,10], respectively. This indicates that the three

designs are D-optimal.
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Figure 3.1: Locally D-optimal Design Verification for Three Different Symmetric Designs

design for [-0.5,0.5] design for [-2,2] design for [-10,10]

3.4 Discussion

In this chapter, we built on the complete class results established by Kim and

Kao (2019) for the simple mixed responses model. For D-optimality, it is easily

seen, as in Lemma 3.2.2, that the symmetric design is as good as any other de-

sign. If our interest is in finding optimal designs among the symmetric designs for

the simple mixed responses model with a symmetric induced design region, Theorem

3.2.4 assures that we can find such an optimal design among those with at most 4

symmetric support points, including the two endpoints of the design region. Fur-

ther, the D-optimal design found within this complete class will be optimal among

all (symmetric and non-symmetric) designs. Based on this, our result facilitates

the search for D-optimal designs over symmetric induced design regions. For exam-

ple, the D-optimal designs that have 2-support points in the induced design region

[−D,D] have the form of {(−D, 0.5), (D, 0.5)}. Meanwhile, D-optimal designs that

have 3-support points can take the form {(−D, 0.5−w∗/2), (0, w∗), (D, 0.5−w∗/2)}.

Finally, the 4-support points D-optimal designs will have the form {(−D, 0.5 −

w∗/2), (−c∗, w∗/2), (c∗, w∗/2), (D, 0.5− w∗/2)}.

In regard to the computational search, we showed the advantage in speed for

searching for the symmetric locally D-optimal designs using the symmetric complete
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class and the off-the-shelf computational tool of the fmincon solver in MATLAB.

The simple mixed responses model can be extended by including group effects.

The complexity in constructing the optimal designs in this case will be in the selection

of the number of support points corresponding to each group. Thus, the focus will

be on identifying a complete class of locally optimal designs for the extended model

to estimate the model parameters. This optimal problem will be studied in the next

chapter.
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Chapter 4

MIXED RESPONSES MODELS WITH GROUP EFFECT AND ONE

COVARIATE

In many experiments, when using a mixed responses model, the subject’s re-

sponses may depend on some qualitative explanatory variables such as gender, age

group, race, and so on. The search for optimal designs becomes a complicated task

for models that include these factor effects. Here, we consider some mixed responses

models with group effects and one continuous covariate. The focus is on identifying

a complete class of locally optimal designs for estimating the model parameters. The

group effects are considered in several experimental studies, which allow for the het-

erogeneity among units. They are formed by the different level combinations of factor

effects included in the model.

There are numerous contributions to studying experimental designs for GLMs that

involve factor effects. For example, Yang, Mandal, and Majumdar (2012) investigated

the locally D-optimal designs for factorial experiments with only two qualitative fac-

tors that are assumed to have two-factor levels. The response variable is binary and

is modeled by a GLM with logit, probit, log-log, and complementary log-log links.

Yang, Mandal, and Majumdar (2016) generalized their previous results by focusing

on k two-level factors with a binary response. They proposed lift-one algorithm

and exchange algorithm to find good designs and compared their performance with

commonly used algorithms. Their work was further extended by Yang and Mandal

(2015) to include factors with multi-levels and allow the response to follow a single

parameter exponential family. They also modified the lift-one algorithm and the

exchange algorithm, so that these algorithms could be applied to their work. The
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research works mentioned above contain factorial effects with no continuous covariate

in the model.

On the other hand, Tan (2015) and Wang (2018) studied optimal designs for

some GLMs that have both factorial effects and one covariate. Tan (2015) used the

orthogonal array technique to construct locally D-optimal designs that have a small

number of support points. Wang (2018) expanded the work of Tan (2015) by allowing

the factorial effects to include more flexible interactions of certain orders. He used the

concept of strength t+ orthogonal array introduced by Hedayat (1989) to find locally

D-optimal designs with a reduced number of support points. Both works were built

upon previous work on a similar study by Stufken and Yang (2012a). In particular,

Stufken and his coauthor considered finding locally optimal designs for GLM with

group effects and one covariate.

Introducing factors in the mixed responses model is required in many cases since

the responses may be affected by other factors besides the continuous covariate. For

example, in dose-finding experiments where both toxicity and efficacy are measured,

some factors besides dose such as age, gender, or size of the tumor may have a great

impact on patient’s responses. The idea of including factor effects in the mixed re-

sponses model involving both toxicity and efficacy responses was discussed by Lei,

Yuan, and Yin (2011). They included the patient’s prognoses as covariates in their

Bayesian adaptive randomization procedure, which allows for different response rates

for the heterogeneity of patients. Zhang and Hu (2009) explained how the covariance

information could influence the responses in clinical trial experiments which lead them

to propose an efficient Covariate-Adjusted Response-Adaptive (CARA) designs. Fol-

lowing this line of research, we are concerned with optimal design problems for mixed

response models with group effects and a continuous covariate.
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4.1 Models With no Common Parameters Across Subject Groups

Now let us describe the mixed responses model with group effects in a more

general form. With the same notation as in the simple mixed responses model x

is the continuous independent variables, y is the continuous response variable, and

z ∈ {0, 1} is the binary response variable. In addition to these terms, we assume

that the response variables are influenced by L qualitative factors. Let s = s1s2 · · · sL

be the total number of groups formed by the L qualitative factors, where sl is the

number of levels of the lth factor, and (y(l, x), z(l, x)) denotes the response vector

of a subject in the lth group having continuous explanatory variables x. With (l, x)

∈ Ω, where Ω =
s⋃
l=1

{l} × χl and χl ⊂ R, we consider the following model:

y(l, x)|z(l, x) = z ∼ N(µy|z(l, x), σ2
z), with µy|z(l, x) = fTzl(x)βzl, z = 0, 1,

and

Prob(z(l, x) = 1) = P(fT2l(x)β2l) ≡ p(l, x),

(4.1)

where frl(x) is a vector of some given functions of x and βrl ∈ Rprl is an unknown parameter

vector consisting of prl unknown coefficients, r = 0, 1, 2, l = 1, · · · , s. The terms µy|z(l, x)

and σ2
z denote the mean and the variance of the conditional distribution of y(l, x) given

z(l, x) = z, respectively. As before, P(·) is some differentiable cumulative distribution

function.

Consequently, the joint probability function for (y(l, x), z(l, x)) = (y, z) can be obtained

by direct factorization f(y, z) = f(z)f(y|z) as:

f(y, z) = [p(l, x)]z[1− p(l, x)]1−z[f(y|z = 1)]z[f(y|z = 0)]1−z. (4.2)
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Then, the log-likelihood function is

log[f(y, z)] = zlog[p(l, x)] + (1− z)log[1− p(l, x)]

+ z

[
[y − µy|1(l, x)]2

−2σ2
1

]
+ (1− z)

[
[y − µy|0(l, x)]2

−2σ2
0

]

− z

2
log[σ2

1]− 1− z
2

log[σ2
0]− 1

2
log[2π].

(4.3)

As noted previously, we assume that the bivariate responses (y, z) of the same observational

unit might be correlated, but are independent between different units. We let the parameter

vector of interest be θ = (θT0 ,θ
T
1 ,θ

T
2 )T , where θr = (βT

r1, · · · ,βTrs)T r = 0, 1, 2. We

also write µy|z(l, x) = gTz (l, x)θz, z = 0, 1, and p(l, x) = P [gT2 (l, x)θ2], where gTr (l, x) =

(0Tpr,1 , · · · ,0
T
pr,l−1

,fTrl(x),0Tpr,l+1
, · · · ,0Tpr,s). If prl = pr, then gr(l, x) = el ⊗ frl(x) for all

l = 1, · · · , s, where ⊗ is the Kronecker product, and el = (0, · · · , 0, 1, 0, · · · , 0)T ∈ Rs with

the lth element as 1 and the other elements as 0.

For simplicity, we also write cl = gT2 (l, x)θ2, and for θ, the (individual) information

matrix at (l, x) can be calculated from the log-likelihood function as:

I(l, x) =

2⊕
r=0

Γr(cl)gr(l, x)gTr (l, x), (4.4)

where

Γ0(cl) =
1− P(cl)

σ2
0

,Γ1(cl) =
P(cl)

σ2
1

, and Γ2(cl) =
[P′(cl)]

2

P(cl)(1− P(cl))
. (4.5)

Here, ⊕ is the direct sum operator, and P′(cl) is the first derivative of P(cl) with respect to cl.

Note that if prl = pr, then gr(l, x)gTr (l, x) = (eTl ⊗fTrl(x))T (eTl ⊗fTrl(x))=ele
T
l ⊗frl(x)fTrl(x),

where ele
T
l = diag(el) ∈ Rs×s, the diagonal matrix whose diagonal elements are as el.

In what follows, we focus on the case where prl = pr, for all l = 1, · · · , s. It should be

straightforward to extend our results to cases where not all prl’s are equal. Our focus is on

a continuous design problem for finding an ‘optimal’ continuous design measure ξ on Ω that

allows a precise statistical inference about θ. In particular, ξ can be viewed as a probability

measure, and for given explanatory variables (l, x = xlj), we write ξ(l, xlj) = wl,j ∈ [0, 1]

as the proportion of times (l, xlj) occurs in the experiment. Specifically, (l, xlj) ∈ Ω, j =
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1, · · ·ml, l = 1, · · · , s, and ml is the total number of distinct values of x in group l. Then

the continuous design with group effects can be expressed as follows:

ξ =

 (1, x1,1) · · · (1, x1,m1) · · · (s, xs,1) · · · (s, xs,ms)

w1,1 · · · w1,m1 · · · ws,1 · · · ws,ms

,
where the value of wl,j is the weight for the corresponding design point (l, xlj). Clearly,

we may write wl,j = wlwj|l, where wl is the (marginal) proportion of the total number of

observations that are assigned to the lth group, and wj|l is the (conditional) proportion

of the number of observations having continuous covariates xlj within the given group l.

Specifically, wl =
ml∑
j=1

wl,j and wj|l = wl,j/wl. In the continuous designs framework, we allow

wl,j to be any real number between 0 and 1,
s∑
l=1

ml∑
j=1

wl,j = 1. This is mainly for mathematical

simplicity, and in cases where we have a total of N subjects, we will need Nwl,j to be an

integer, and it is not uncommon to consider the rounding methods after obtaining optimal

wl,j ’s under certain optimality criterion.

We now are ready to write down the information matrix of the parameter vector θ as:

M(ξ) =

s∑
l=1

ml∑
j=1

wl,jI(l, xlj)

=
s∑
l=1

wl

[
ele

T
l ⊗

2⊕
r=0

ml∑
j=1

wj|lΓr(clj)frl(xlj)f
T
rl(xlj)

]

=

s⊕
l=1

wl

[
2⊕
r=0

ml∑
j=1

wj|lΓr(clj)frl(xlj)f
T
rl(xlj)

]
≡

s⊕
l=1

[wlMl(τl)].

(4.6)

Here, Ml(τl) =
2⊕
r=0

ml∑
j=1

wj|lΓr(clj)frl(xlj)f
T
rl(xlj) is the information matrix for (βT0l,β

T
1l,β

T
2l)

T

when we treat the lth group as the only group in the experiment, and τl(xlj) is the cor-

responding conditional design measure for that group with τl(xlj) = wj|l; we also set

clj = gT2 (l, xlj)θ2 = fT2l(xlj)β2l. Note that the optimal designs are effected by the val-

ues of θ2 and σ2
z as shown from the structure of the information matrix, although the whole

parameter vector θ is of interest.
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In general, for arbitrary prl’s, we still have M(ξ) =
s⊕
l=1

[wlMl(τl)]. Consequently, the

information matrix, M(ξ), is nonsingular if and only if (a) wl > 0, and (b) the pl × pl

matrix Ml(τl) is nonsingular for all l = 1, · · · , s, where pl =
2∑
r=0

prl. The nonsingularity

of M(ξ) will ensure the estimability of θ, and when M−1(ξ) exists it is proportional to

the asymptotic variance-covariance matrix of the likelihood estimate of θ (under certain

regularity conditions). We would like to find a design ξ that yields the most precise estimate

of θ through optimizing a specific optimality criterion such as the A, D, E, and Φp criteria

of Kiefer. However, a major challenge for finding such an optimal design is again that the

information matrix M(ξ) depends on the unknown parameters (through clj). In this work,

we place our focus on finding locally optimal design ξ∗ (Chernoff, 1953).

Since commonly used optimality criteria are functions of the eigenvalues of the informa-

tion matrix, we would only focus on such functions in this work. The eigenvalues of M(ξ)

have the form of wlλi[Ml(τl)], where λi[M ] is the ith eigenvalue of M ; i = 1, · · · , pl, l =

1, · · · , s. For convenience, we write the eigenvalues of M(ξ) as λl,i[M(ξ)] = wlλi[Ml(τl)],

and when M(ξ) is nonsingular, we have λl,i[M
−1(ξ)] = λi[M

−1
l (τl)]/wl. For designs allow-

ing estimable θ, we write the Φq-optimality criterion as:

s∑
l=1

pl∑
i=1

λl,i[M
−1(ξ)]q =

s∑
l=1

w−ql

pl∑
i=1

λi[M
−1
l (τl)]

q, for q ∈ (0,∞). (4.7)

We note that the set of the Φq-criteria is essentially that of the Φp-criteria of Kiefer

(1974); when q = 1, the criterion is reduced to the so-called A-optimality criterion. We also

followed Kiefer (1974) to include the two (limiting) cases, namely Φ0[M(ξ)] =
s∑
l=1

pl∑
i=1

log λl,i[M
−1(ξ)], i.e. the D-criterion, and Φ∞[M(ξ)] = maxλl,i[M

−1(ξ)], i.e. the E-

criterion. For these criteria, it can be easily seen that, among the designs ξ having the same

marginal weights wl’s, design ξ∗ is Φq-optimal if and only if its corresponding τ∗l minimizes

Φq[Ml(τl)] for all l = 1, · · · , s. This result is a direct consequence of the result found in

Section 7 of Schwabe (2012) and it is summarized below.
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Lemma 4.1.1. Under a mixed responses model in (4.1), for the designs ξ with given

marginal weights wl, then the design ξ∗ is Φq-optimal if and only if its corresponding design

measure τl minimizes Φq[Ml(τl)] for all l = 1, · · · , s.

Lemma 4.1.1 can be applied to the case where we have no control on the proportion

of the marginal weights, but can only select the weights and the values of the continuous

explanatory variable in each group. To illustrate Lemma 4.1.1, we consider the following

example.

Example 4.1.1. Suppose the mixed responses model in (4.1) has a covariate, such as dose,

and the range of the covariate is [0,10], and in addition to the covariate the responses depend

on another factor such as gender where we have two groups s = 2 (male and female). It

is given that, among the experimental subjects, 60% of the patients are male and 40% are

female. Suppose that the (4.1) has two parameters, namely scale and location, in each group;

i.e., θ2 = (βT
21 = (0.4, 0.7),βT

22 = (0.8, 0.6))T , and σ2
0 = σ2

1 = 1. Based on Lemma 4.1.1, we

can search for the conditional measures, τl, for the given marginal weights w1 = 0.6, and

w2 = 0.4. With a computer search, the conditional D-optimal measures τl are given as:

τ1 =

 (1, x1,1 = 0) (1, x1,2 = 3.164) (1, x1,3 = 10)

w1|1 = 0.4408 w2|1 = 0.4003 w3|1 = 0.1589

, and

τ2 =

 (2, x2,1 = 0) (2, x2,2 = 3.637) (2, x2,3 = 10)

w1|2 = 0.4541 w2|2 = 0.3818 w3|2 = 0.1641

.
The marginal weights wl,j can be obtained based on the conditional measures as follows:

w1,1 = w1 ∗ τ1(0) = 0.6 ∗ 0.4408 = 0.26448 w2,1 = w2 ∗ τ2(0) = 0.4 ∗ 0.4541 = 0.18164

w1,2 = w1 ∗ τ1(3.164) = 0.6 ∗ 0.4003 = 0.24018 w2,2 = w2 ∗ τ2(3.637) = 0.4 ∗ 0.3818 = 0.15272

w1,3 = w1 ∗ τ1(10) = 0.6 ∗ 0.1589 = 0.09534 w2,3 = w2 ∗ τ2(10) = 0.4 ∗ 0.1641 = 0.06564

Thus, the ΦD-optimal design can be expressed as follows:

ξ∗ =

 (1, x1,1 = 0) (1, 3.1642) (1, x1,3 = 10) (2, x2,1 = 0) (2, 3.6372) (2, x2,3 = 10)

w1,1 = 0.26448 0.24018 w1,3 = 0.09534 w2,1 = 0.18164 0.15272 w2,3 = 0.06564

.
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On the other hand, if the conditional measures τ̂l are given, then the marginal weights

wl for each group l can be obtained by the following Lemma 4.1.2, where the proof can be

found in the Appendix.

Lemma 4.1.2. Under a mixed responses model in (4.1), for the designs ξ with given con-

ditional measures τ̂l, then the design ξ∗ is Φq-optimal if its marginal weights wl are given

as:

wl =

{ pl∑
i=1

λi[M
−1
l (τ̂l)]

q
}1/(q+1)

s∑
l=1

{ pl∑
i=1

λi[M
−1
l (τ̂l)]q

}1/(q+1)
, 0 < q <∞. (4.8)

We also note that for the limiting cases of D- and E-optimality, we have:

wl = pl/
s∑
l=1

pl, q −→ 0; (4.9)

wl =
λmax[M−1

l (τ̂l)]
s∑
l=1

λmax[M−1
l (τ̂l)]

, q −→∞. (4.10)

Now we illustrate the use of Lemma (4.1.2) in the next example.

Example 4.1.2. With the same scenario as Example (4.1.1), assume now that the re-

searchers have conditional measures τ̂l that they would like to use. They are A-optimal

designs listed below.

τ̂1 =

 (1, x1,1 = 0) (1, x1,2 = 3.4467) (1, x1,3 = 10)

w1|1 = 0.6189 w2|1 = 0.3682 w3|1 = 0.0129

, and

τ̂2 =

 (2, x2,1 = 0) (2, x2,2 = 3.9888) (2, x2,3 = 10)

w1|2 = 0.6269 w2|2 = 0.3612 w3|2 = 0.0119

.
By equation (4.8) with q = 1, the calculated values of w1 = 0.4891 and w2 = 0.5109 are

used to compute each wl,j , and the resulting design is
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ξ∗ =

 (1, 0) (1, 3.4467) (1, 10) (2, 0) (2, 3.9888) (2, 10)

w1,1 = 0.3027 0.1801 w1,3 = 0.0063 w2,1 = 0.3203 0.1845 w2,3 = 0.0061

.

It is noteworthy that the given τ̂l’s are A-optimal, and the resulting ξ∗ can be shown

to be A-optimal. In fact, the same statement is true for any Φq-criterion, and we have the

following general result.

Corollary 4.1.3. Under a mixed responses model in (4.1), the design ξ is Φq-optimal if the

conditional measure τl minimize Φq[Ml(τl)] for all l = 1, · · · , s, and the marginal weights

wl satisfy equation (4.8) for q ∈ (0,∞), (4.9) for q −→ 0, and (4.10) for q −→∞.

Recall that the information matrix M(ξ) for model (4.6) is a block diagonal matrix with

the information matrices Ml(τl) of the groups as diagonal blocks. Based on Corollary 4.1.3,

the determination of the optimal deign ξ∗ simplifies to find an optimal conditional measure

τ∗l for each group individually. Then, aggregate these conditional measures together after

adjusting the weights using the same method as in Example 4.1.2. We also note that while

the results in this section are presented for one continuous covariate, they can be easily

extended when there are two or more continuous covariates.

4.2 Complete Class Results for Mixed Responses Model With Groups and Multiple

Slopes Effects

We now consider the following specific joint model for the responses (y(l, x), z(l, x))

ylj |zlj = z ∼ N(fTl (xlj)βzl = αzl + βzlxlj , σ
2
z), for z = 0, 1,

and

Prob(zlj = 1) = P(fTl (xlj)β2l = α2l + β2lxlj).

(4.11)

Here, fl(xlj) = (1, xlj)
T , and βrl = (αrl, βrl)

T ; r = 0, 1, 2. The unknown parameters in the

proceeding models are σ2
z , and θr where θr = (βT

r1, · · · ,βTrs)T which is a vector of size 2s.

Our goal is to determine a sharp upper bound on the number of support points in each

46



group for (locally) optimal designs. As in the previous section, to ease the employment

of the information matrix we work with the induced design points clj = fl(xlj)
Tβ2l. In

this case, the design can be expressed as ξ = {w1τ1, · · · , wsτs} where τl = {(clj , wj|l), l =

1, ...., s, j = 1, ....,ml} for clj ∈ [Dl1, Dl2]. We then have a matrix B−1
1l =

(
1 0

α2l β2l

)
,

so that B−1
1l × fl(xlj) = fl(clj). Thus, with this representation under model (4.11), the

information matrix in equation (4.6) can be expressed as:

M(ξ,θ) =
s⊕
l=1

wlBl(θ)
[ 2⊕
r=0

ml∑
j=1

wj|lΓr(clj)fl(clj)f
T
l (clj)

]
BT
l (θ)

≡
s⊕
l=1

Bl(θ)
[ ml∑
j=1

wlwj|lCl(θ, clj)
]
BT
l (θ),

(4.12)

where

Cl(θ, clj) =

2⊕
r=0

Γr(clj)fl(clj)f
T
l (clj), (4.13)

Bl(θ) = diag(σ0
−1B1l, σ1

−1B1l, B1l) is a nonsingular matrix with size 6-by-6, and

Γ0(clj) =
1

1 + eclj
,Γ1(clj) =

eclj

1 + eclj
, and Γ2(clj) =

eclj

(1 + eclj )2
. (4.14)

By decomposing the information matrix to this form, we can direct our attention to the

matrix Cl(θ, clj), since Bl(θ) depends only on the parameters and is not affected by the

selected design.

As mentioned before, our interest is to find sharper upper bounds on the number of

support points for the locally optimal design for model (4.1) by borrowing the complete

class approach. Our model is an extension of the simple mixed responses model used by

Kim and Kao (2019), where they made a contribution by finding a complete class for locally

optimal designs that are formed by designs of at most four support points, including the

end points of the design region. This result, is extended in the next theorem where we

include some groups in the model.

Theorem 4.2.1. For model (4.11), there exists a complete class of optimal designs ξ∗ =

{w1τ
∗
1 , · · · , wsτ∗s } for estimating θ formed by conditional measures τ∗l = {(c∗lj , w∗j|l),

l = 1, ...., s, j = 1, ...., 4}, including the endpoints Dl1 and Dl2.
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Proof. The complete class result obtained from Theorem 3.2.1 implies that
m∗∑
j=1

w∗jC(θ, c∗j ) ≥
m∑
j=1

wjC(θ, cj), where (c∗j , w
∗
j ) and (cj , wj) are the pairs of the support points and corre-

sponding weights, m∗ ≤ 4, and m ≥ 4 are the number of support points of ξ∗ and ξ,

respectively. We note that the above inequality will still hold when
∑
w∗j =

∑
wj 6= 1,

which can be observed from Lemma 2.3.1. Since all the groups within the total infor-

mation matrix given in (4.13) have the same form as the C matrix of the simple mixed

responses model in (3.5), we can therefore conclude that for any conditional measure

τl = {(clj , wj|l), l = 1, ...., s, j = 1, ....,ml} for group l, there exists a conditional mea-

sure τ∗l = {(c∗lj , w∗j|l), l = 1, ...., s, j = 1, · · · , 4} with
∑
wlw

∗
j|l =

∑
wlwj|l, m

∗
l ≤ 4, and two

of the c∗lj points are the endpoints of the design space of that group so that

ml∑
j=1

wj|lCl(θ, clj) ≤
m∗l∑
j=1

w∗j|lCl(θ, c
∗
lj). (4.15)

This implies that

Bl(θ)
[ ml∑
j=1

wlwj|lCl(θ, clj)
]
BT
l (θ) ≤ Bl(θ)

[ m∗l∑
j=1

wlw
∗
j|lCl(θ, c

∗
lj)
]
BT
l (θ), (4.16)

which in turn leads to the conclusion.

In fact, with Corollary 4.1.3, it should be easy to see that a complete class for the

optimal designs ξ∗ can be formed by combining s complete classes for the conditional design

τl, l = 1, · · · , s. This holds true even when the s complete classes are not all the same (e.g.,

in cases with different models for different subject groups). The previous theorem is a

special case of this slightly more general result. We also note that Theorem 4.2.1 is helpful

in narrowing the search of locally optimal designs for mixed responses models with group

effects to a small class of designs. Moreover, the complete class results generalize the results

on the simple mixed responses model which can be considered as a special case with s = 1.

Furthermore, for group l with symmetric induced design range, it is possible to restrict the

search to a complete class of symmetric designs under the D-optimality based on Corollary

48



4.1.3 and Lemma 3.2.2. We then can find the symmetric D-optimal conditional measure

τ∗sl = {(±c∗lj , w∗j|l/2), l = 1, ...., s, j = 1, · · · ,m∗l } by searching over the class of symmetric

designs of at most 4 support points for that group. We summarize this result in the next

Lemma.

Lemma 4.2.2. Consider the D-optimality criterion for the mixed responses model (4.11),

for the groups with symmetric induced design regions clj ∈ [−Dl, Dl], the corresponding

portions of the complete class in Theorem 4.2.1 can be replaced by the class of symmetric

designs with at most four support points including −Dl and Dl.

Proof. Suppose that group k in model (4.11) has a symmetric induced design region ckj ∈

[−Dk, Dk], from equation (4.12) the corresponding group information matrix is

M(τk,θ) = Bk(θ)
[ mk∑
j=1

wkwj|kCk(θ, ckj)
]
BT
k (θ), which its Ck(θ, ckj) matrix contains the

same Γ(·) functions as the C(θ, cj) matrix for the simple mixed responses model in (3.5).

Thus, the symmetric matrix Csk of the Ck matrix has the same form and the number

of Γ(·) functions as the symmetric matrix Cs for the simple mixed responses model in

(3.8). Based on Lemma (3.2.2) and Theorem (3.2.4), then it is implied that there exists

a symmetric D-optimal conditional measure in group k such as τ∗sk = {(±c∗kj , w∗j|k/2) :

0 ≤, c∗kj ≤ Dk, w
∗
k,j > 0, j = 1, · · · ,m∗k} where m∗k ≤ 2, that dominates the symmetric

conditional measure τsk = {(±ckj , wj|k/2) : 0 ≤, ckj ≤ Dk, wk,j > 0, j = 1, · · · ,mk} where

mk ≥ 2. Furthermore, the matrix Bk(θ) does not depend on the conditional design. Hence,

we conclude that M(τ∗sk,θ) ≥M(τsk,θ).

Moreover, the computation problem of finding the conditional locally D-optimal designs

for groups with symmetric induced design regions under model (4.11) can be obtained by

an explicit form presented in the next Lemma.
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Lemma 4.2.3. For the mixed responses model (4.11), the groups with symmetric in-

duced design regions clj ∈ [−Dl, Dl] have D-optimal conditional measures of the form

{(cl1 = −Dl, w1|l =
1− w∗l

2
), (cl2 = −c∗l , w2|l =

w∗l
2

), (cl3 = c∗l , w3|l =
w∗l
2

), (cl4 = Dl, w4|l =

1− w∗l
2

), 0 ≤ c∗l ≤ Dl, w
∗
l ≥ 0}. The support points c∗l and the weights w∗l maximize

the functions ∆(cl, wl) which are defined as (El −H2
l )2{[(1 − wl)Γ2(Dl) + wlΓ2(cl)][(1 −

wl)D
2
l Γ2(Dl) + wlc

2
l Γ2(cl)]}, where El = (1 − wl)D2

l + wlc
2
l , Hl = [(1 − wl)Dl(Γ1(Dl) −

Γ0(Dl)) + wlcl(Γ1(cl)− Γ0(cl))], and Γr is as defined in (4.14).

Proof. The proof can be found in the Appendix.

In most experiments, the used models are flexible when we allow the regression coeffi-

cients to have different values across groups as the model (4.11) considered here. However,

in other cases, it might be reasonable to allow some coefficients to share the same values

across groups. Thus, it is useful to introduce another model in the coming section that

assumes common parameters across groups.

4.3 Complete Class Results for Mixed Responses Model With Common Parameters

For simplicity, we focus on the mixed responses model that has the same form as (4.11)

but possesses a common slope for l different groups, the joint model for the responses

(y(l, x), z(l, x)) becomes

ylj |(zlj = z) ∼ N(hTz (l, xlj)θz, σ
2
z), for z = 0, 1

and

Prob (zlj = 1) = P (hT2 (l, xlj)θ2).

(4.17)

Here, θr = (αTr , βr)
T are (s+ 1)× 1 vectors, where αr = (αr1, · · · , αrs)T and αrl represents

the effect of the lth group in the sub-model r. We focus on the case when hr(l, xlj) =

h(l, xlj) = (eTl , xlj)
T . It should be straightforward to extend our results to cases where not

all hr(l, xlj)’s are equal. Then, the joint probability function of the responses (y, z) is:
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f(ylj , zlj) = [P(hT (l, xlj)θ2)]zlj [1− P(hT (l, xlj)θ2)]1−zlj

×
[

1

σ1
√

2π
exp

{
− (ylj − hT (l, xlj)θ1)2

2σ2
1

}]zlj [ 1

σ0
√

2π
exp

{
− (ylj − hT (l, xlj)θ0)2

2σ2
0

}]1−zlj

.

(4.18)

The information matrix for θ with a continuous design ξ = {(xlj , wl,j), l = 1, ...., s,

j = 1, ....,ml} can be written as:

M(ξ,θ) =

s∑
l=1

ml∑
j=1

wl,j

[ 2⊕
r=0

Γr(clj)h(l, xlj)h
T (l, xlj)

]
, (4.19)

where clj = hT (l, xlj)θ2 and Γr is defined in (4.5). The information matrix for this

model does not possess the nice property of being a block diagonal matrix with the groups

information matrices placed on its diagonal blocks. In order to investigate the existence of

the complete class in this scenario, we first decompose the information matrix as:

M(ξ,θ) =

s∑
l=1

B(θ)

ml∑
j=1

wl,j

[ 2⊕
r=0

Γr(clj)h(l, clj)h
T (l, clj)

]
BT (θ) (4.20)

Here, Γr is defined in (4.14), h(l, clj) = (eTl , clj)
T , and B(θ) = diag(σ0

−1B1, σ1
−1B1, B1)

where B−1
1 =

(
Is 0s×1

αT
2 β2

)
such that B−1

1 × h(l, xlj) = h(l, clj). With the dependency

of the matrix B(θ) only on the parameters, we can direct our attention to the matrix
2⊕
r=0

Γr(clj)h(l, clj)h
T (l, clj) and rewrite it in the form AlQl(θ, clj)A

T
l . Where Al =

diag(A1l, A1l, A1l),with A1l =

 el 0s×1

0 1

, and the symmetric matrix Ql(θ, clj) is given

as

Ql(θ, clj) =

2⊕
r=0

Γr(clj)Q1l(θ, clj), with Q1l(θ, clj) =

(
1 clj

clj c2lj

)
. (4.21)

Thus, the information matrix can be expressed in the following form:

M(ξ,θ) =
s∑
l=1

B(θ)Al

[ ml∑
j=1

wl,jQl(θ, clj)
]
AT
l B

T(θ). (4.22)

By doing so, we formed a matrix Ql with a fixed number of Γ functions no matter

how many groups we have in the model. With this factorization of the information

matrix we are ready to present the complete class result under model (4.17).
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Theorem 4.3.1. For mixed responses model (4.17), a complete class of locally opti-

mal designs can be formed by designs that contain at most 4s support points and 2s

of them are the endpoints of the design space in each group.

Proof. With the factorization of the group effects in the information matrix in (4.22),

the matrix Ql(θ, clj) has the same form and number of Γ functions of the C(cj)

matrix in (3.5) no matter how many groups we have in the model. Following the

same argument as in the proof for Theorem 4.2.1, then for any conditional measure

{(clj, wj|l), l = 1, ...., s, j = 1, ....,ml} for group l, there exists a conditional optimal

measure {(c∗lj, w∗j|l), l = 1, ...., s, j = 1, · · · , 4} with
∑
w∗l,j =

∑
wl,j and m∗l ≤ 4 where

two of the c∗lj points are the endpoints of the design space of that group so that

ml∑
j=1

wl,jQl(θ, clj) ≤
m∗l∑
j=1

w∗l,jQl(θ, c
∗
lj). (4.23)

This implies that

B(θ)Al

ml∑
j=1

[wl,jQl(θ, clj)]A
T
l B

T (θ) ≤ B(θ)Al

m∗l∑
j=1

[w∗l,jQl(θ, c
∗
lj)]A

T
l B

T (θ) (4.24)

which in turn leads to the conclusion.

4.4 Discussion

In this chapter, we extended the simple mixed responses model by introducing

the group effects in the model. In the first section, we present a general form of the

model, and in the second section, we impose some assumptions on the general form

where the model has only one covariate with no common regression coefficients across

groups. For simplicity, we will call this model as Model I. With this assumption, the

model information matrix has a nice structure with the information matrices for the

individual groups on its diagonal blocks. This allows the search for the locally optimal

design to be simplified to the (separate) search for the conditional optimal design for
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each group. Then the overall optimal design is constructed by pooling the conditional

optimal designs for the groups after adjusting their weights. This finding was stated

in Lemma 4.1.1, Lemma 4.1.2, and Corollary 4.1.3 that facilitate the search for the

locally optimal designs. Several examples were used to demonstrate this idea. Based

on these findings, we obtain a complete class for a specific model, and the results can

be easily extended to some other models.

We then considered a more restricted model than the Model I, namely a model

with some common regression coefficients. For convenience, we will call it Model II.

For such a model, the structure of the information matrix becomes more complicated,

and a complete class for a specific model of this type was stated in Theorem 4.3.1.

Although the theoretical results provide a guide for finding locally optimal de-

signs, but in order to identify the optimal design under a specific criterion, we still

need numerical approaches. Dealing with models as complicated as the mixed re-

sponses model with group effects will become a challenging task because the number

of support points in the optimal designs increases by at most four support points for

each additional group. This inspired us in the next chapter to search for algorithms

with the best reliable results.
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Chapter 5

SEARCH ALGORITHMS

The analytical results of the complete class found in Chapter 4 give a tremendous

reduction in the dimension of the problem of finding the optimal design for the mixed

responses model with group effects. However, to obtain the optimal design within the

complete class Ξ, we need efficient numerical techniques. Finding an algorithm that

is suitable for our problem can be a complicated mission since the dimensions of the

information matrix can quickly become very large. In this chapter, we will discuss

the process of finding some good search algorithms for our needs. These algorithms

are used to obtain A- and D-optimal designs whose optimality is then verified by the

GET. Finally, a discussion of the obtained results will follow.

5.1 Algorithmic Search

Finding an efficient algorithm for solving optimal design problems is a challenging

task, especially for the case with both quantitative covariates and qualitative factors.

The problem becomes even more challenging when the mixed responses model is

considered. This is mainly due to the complexity of the model structure, and an

increased number of parameters that gives an enlarged dimensions of the information

matrix. In the process of searching for such an algorithm, the two most important

features that attract researchers are the speed and reliability of the algorithm in

finding an optimal design. It also helps when the algorithm is easy to code, or there

exist user-friendly computer packages, which can be directly applied or easily modified

for different situations. A recent review of various algorithms for obtaining optimal

designs is made by Mandal et al. (2015).
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In general, algorithms can be categorized into two branches depending on their

nature, either deterministic algorithms or stochastic algorithms. Deterministic algo-

rithms obey precise steps with repetitive action, while stochastic algorithms follow

some random path in solving the problem (Yang, 2010a). Sometimes, a hybrid of the

two types of algorithms is utilized to solve some optimization problems.

Some very well-known classical algorithms for finding optimal approximate de-

signs include the Fedorov-Wynn Algorithm (FWA) (Fedorov, 1972; Wynn, 1972) and

the Multiplicative Algorithm (MA) developed by Silvey, Titterington, and Torsney

(1978). For the Fedorov-Wynn algorithm, the search of optimal designs begins with an

initial design which typically is a point in a probability simplex. Specifically, designs

considered in this algorithm are normally represented as a (long) vector of weights

for all the candidate design points over the (discretized) design space; the weights are

allowed to be zero, but they sum to one. In the improvement phase, the algorithm

continues to improve the design efficiency by moving the current design towards the

vertex, i.e., the design point, of the simplex that gives the greatest improvement (in a

small step) at each iteration. This procedure continues until the stopping requirement

is achieved. The FWA is known to have some numerical deficiencies (Wu, 1978), and

several modifications were later proposed by, e.g., Wu (1978) and Böhning (1986).

The MA also works with updating the weights of the design points. In contrast

to FWA, the weights of all points in the design region are updated at each iteration

via a multiplicative factor to relatively assign more weights to the design points that

give greater information gains. However, MA can be inefficient since it takes many

iterations before it reduces the weights of non-support points and eventually deletes

them.
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Yu (2011) came up with the idea of combining the two classical algorithms; vertex

directional method and the multiplicative algorithm in order to optimize the weights

and the support points, simultaneously. He also introduced the Nearest Neighbor

Exchange (NNE) algorithm that was implemented before applying the MA as a way

of speeding it up. The idea of the NNE algorithm is to decide upon the order of the

design points sets, then exchange positive weights between the design points and their

‘nearest neighbor’ adjacent points, where each exchange is supposed to improve the

design. The result of the sequential pairwise exchange between the ordered design

points discards the design points that are not support points but happen to be close

to the support points. The deletion process is done by setting the weights of these

points to zero. Yu (2011) called the proposed algorithm, the Cocktail Algorithm (CA)

for D-optimal designs. The cocktail algorithm is a combination of three algorithms in

succession: vertex directional method, nearest neighbor exchange, and multiplicative

algorithm. This combination of algorithms will have a great speed efficiency compared

with the performance of each algorithm separately. The main drawback of the CA is

its limitation to find D-optimal designs only.

More recently, an exceptional algorithm was proposed by Yang et al. (2013) called

the Optimal Weight Exchange Algorithm (OWEA) that aims to update the support

points and their corresponding weights in the same fashion as the FWA in conjunction

with the Newton optimization method. At each iteration, the support points are

updated by adding points to the current support points from a candidate set, and then

the weights are optimized using the Newton optimization method and the support

points with (nearly) zero weights are removed. The iteration continues until the

optimal design is obtained by satisfying the GET. The main reasons for the success

of this algorithm are its speed in finding the optimal design, its ability to accommodate

almost all members of the Φp family, and its capability to handle multi-stage designs.
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The strategy of the stochastic algorithms is based on a random search process.

The search for the optimal solution is done by exploring different areas of the solution

space based on some random mechanism, and then exploiting the identified regions

of interest. The advantages of such an algorithm are its speed in identifying solutions

that are optimal or near-optimal, it can be assumptions free, and its ability to handle

various forms of optimization prblems. However, many algorithms of this type are not

supported by strong theoretical evidence of convergence, which means that they may

not converge in some situations. But, almost all popularly used stochastic algorithms

are shown to provide very good results in practice, although one may need to consider

different algorithms for different problems.

Some stochastic algorithms that are used in the statistical literature to search for

optimal designs include: Genetic Algorithm (GA) (Holland, 1975), Simulated An-

nealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983), Ant Colony Optimization (ACO)

(Dorigo, 1992), Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995),

Differential Evolution (DE) (Storn & Price, 1997), and Imperialists Competitive Al-

gorithm (ICA) (Atashpaz-Gargari & Lucas, 2007). All these algorithms fall in the

category of nature-inspired algorithms.

One of the most popular nature-inspired metaheuristic optimization techniques

is PSO. More recently, PSO was used to search for optimal designs in several fields.

For example, Schorning, Dette, Kettelhake, Wong, and Bretz (2017) used PSO to

find the approximate optimal design for dose finding studies with bivariate responses.

Lukemire, Mandal, and Wong (2018) proposed a modified version of the PSO algo-

rithm where they call it the d-QPSO algorithm to obtain locally D-optimal designs

for models with mixed quantitative and qualitative factors and a binary response

by assuming that all the discrete factors have two levels. Qiu, Chen, Wang, and

Wong (2014) searched for optimal designs in nonlinear models and demonstrated by
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examples the success of the standard PSO in finding optimal designs in life science.

There also are some previous works that involve algorithmic search of optimal

designs. For example, Hu, Yang, and Stufken (2015) identified optimal designs for

several nonlinear models under general optimal criteria by deriving theoretical results

followed by using both Newton’s algorithm and OWEA. Stufken and Yang (2012a)

considered a basic algorithm based on a grid search to identify locally optimal design

for GLMs with group effects. Tan and Stufken (2016) searched for locally D-optimal

design using GLMs with factorial effects and one covariate by a modified OWEA to

handle the factor effects in the model. Kim and Kao (2019) employed the fmincon

solver in MATLAB to find the desired optimal designs for the simple mixed responses

model with one covariate.

For the simple mixed responses model, there are several algorithms that we can

consider in searching for locally optimal designs such as the PSO algorithm, the ICA,

the OWEA, and the fmincon solver in MATLAB. All of those algorithms that we tried

tend to provide satisfactory results for some simple cases. In our case, we observed

that the use of the fmincon solver was among the fastest methods, and it is very easy

to use without much programming effort. Thus, we select the fmincon solver to search

for the optimal designs for the simple mixed responses model adopted in Chapter 3.

Although the fmincon solver is fast and effective in finding optimal designs for

simple cases, we start to observe its failing to operate well when the design problem

becomes complex. We thus propose a simple idea on borrowing the strengths of dif-

ferent algorithms in finding optimal designs. Similarly to several other approaches,

the designs that we found can sometimes include clustered support points. Thus, we

also consider to cluster similar support points and remove the ones with very small

or zero weights for the obtained designs. We note that the number of support points

required for the optimal design problem should be determined in advance when ap-
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plying the fmincon solver. Therefore, applying the complete class results obtained

in Chapter 4 is needed. If such a result is unavailable, one may consider, e.g., the

‘complete class’ given by the Carathéodory theorem, or by simply trying different

number of support points. The optimality of the obtained design can be verified by

the GET. In theory, the optimal design ξ is verified when the directional derivative

φ(x, ξ) = 0 for all the support points of the optimal design. But in numerical compu-

tations, this verification is done with a choice of a small cut-off value, ε, which also

gives information on the efficiency of the attained design in comparison to the true

optimal design. The efficiency lower bound for the D- and A-optimal designs can be

found in equations (2.16) and (2.17), respectively. In this work, the relative efficiency

to be achieved is 99.99% for pragmatic reasons. A higher relative efficiency can be

considered. But, in our experience, the slightly improved design efficiency typically

requires much more computational resource without giving a significant difference in

the resulting designs.

5.2 Numerical Results for Mixed Responses Model With Groups and Multiple

Slopes Effects

For Model I, each subject group is allowed to have its own regression functions

for the means with no parameters in common. Based on Corollary 4.1.3, we can first

search for optimal conditional measure τ ∗l for each group separately, and we adopt the

fmincon solver in MATLAB for this. When needed, a parallel computing technique

can be considered at this stage. The fmincon solver requires initial values that can

effect the search for the optimal design. In this case we set the initial points for each

group to τ 0
l = {cl2, cl3, 0.25, 0.25, 0.25, 0.25}, where cl2 < cl3 are chosen randomly.

After the optimal conditional measure τl for each group l is validated by the GET,

then the marginal weights wl are computed by equation (4.8). The weights wj|l of the
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τ ∗l are adjusted to aggregate these optimal conditional measures to form the optimal

deign ξ∗ as shown in Example 4.1.2.

As claimed by Yang et al. (2013), the OWE algorithm was proven to defeat ex-

isting algorithms in speed by a large scale and in solving wider optimality problems.

Therefore, we also consider the OWE algorithm. Both algorithms are efficient in

identifying an optimal design for Model I. Thus, we compare the running time in

finding A- and D-optimal designs.

In order to compare the OWE algorithm with the fmincon solver in MATLAB, the

OWE algorithm code was transferred from SAS to MATLAB and we used a Desktop

computer that has a 3.4 GMz Intel Core i7 with 32G RAM for implementing both

algorithms. Similar to the fmincon solver, the OWE algorithm requires initial values.

We set the initial points for each group to τ 0
l = {Dl1, cl2, cl3, Dl2, 0.25, 0.25, 0.25, 0.25},

where cl2 and cl3 are chosen randomly, and clj ∈ [Dl1, Dl2]. The minimum efficiency

lower bound is also set to 99.99% to terminate the search.

Locally D-optimal designs

With the D-optimality criterion, we have ΦD = −log|
s⊕
l=1

Bl(θ)C̃l(ξ,θ)BT
l (θ)| =

−2
s∑
l=1

log |Bl(θ)|−
s∑
l=1

log |C̃l(ξ,θ)|, where C̃l(ξ,θ) =
ml∑
j=1

wlwj|lCl(θ, clj). This implies

that the matrix Bl(θ) does not have any effect on the optimization procedure as long

as they are the same across candidate designs. Thus, for the D-criterion we can only

concentrate on the minimization of −
s∑
l=1

log |C̃l(ξ,θ)|.

Table 5.1 reports the CPU time in seconds that the fmincon solver and the OWE

algorithm need for finding D-optimal designs for selected design spaces (for x). For the

OWE algorithm, we need to discretize the design space, and we consider two different

grid sizes, namely N = 5000 and N = 10000. We note that the fmincon function

works directly on the entire design space without discretization. We consider model

(4.11), and 4 scenarios for each of the design spaces. Scenario 1 has 4 groups with
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θ2 = (βT21 = (−2,−0.2),βT22 = (4,−0.8),βT23 = (3, 0.4), and βT24 = (−1, 0.6))T . Sce-

nario 2 has 6 groups with θ2 = (βT21 = (−1, 0.5),βT22 = (4, 0.4),βT23 = (2,−0.5),βT24 =

(3, 0.6),βT25 = (4.5, 0.8), and βT26 = (3.5, 0.4))T . Scenario 3 has 8 groups with θ2 =

(βT21 = (1.7, 0.4),βT22 = (0.6, 0.6),βT23 = (1.3, 0.8),βT24 = (0.6, 1),βT25 = (0.4, 1.2),βT26 =

(1.1, 1.4),βT27 = (0.8, 1.6), and βT28 = (0.7, 1.8))T . Scenario 4 contains 9 groups

with θ2 = (βT21 = (1.7, 0.2),βT22 = (0.6, 0.4),βT23 = (1.3, 0.6),βT24 = (0.6, 0.8),βT25 =

(0.4, 1),βT26 = (1.1, 1.2),βT27 = (0.8, 1.4),βT28 = (1.5, 1.6), and βT29 = (0.7, 1.8))T . We

also set σ2
0 = 1 and σ2

1 = 1 in all the 4 scenarios, although this does not have an effect

on the selection of D-optimal designs.

Table 5.1: Computation Time (in Seconds) for Locally D-optimal Designs for Model I

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Design fmin OWE OWE fmin OWE OWE fmin OWE OWE fmin OWE OWE

Space 5000 10000 5000 10000 5000 10000 5000 10000

[−25,−5] 0.42 0.81 1.55 0.45 1.48 2.40 0.62 1.49 2.71 0.82 1.78 2.88

[−20, 0] 0.33 1.22 2.48 0.42 2.17 3.34 0.48 2.19 3.44 0.51 2.25 3.66

[−15, 5] 0.35 1.43 2.41 0.42 2.37 3.87 0.49 4.09 7.32 0.57 4.44 7.75

[−10, 10] 0.31 1.51 2.82 0.47 2.64 4.36 0.49 4.13 8.28 0.59 4.45 9.09

[−5, 15] 0.25 1.22 2.63 0.46 1.59 2.94 0.47 3.79 7.08 0.55 4.24 7.51

[0, 20] 0.31 1.07 1.81 0.40 1.35 2.66 0.41 1.39 2.71 0.55 1.49 2.76

[5, 25] 0.37 0.71 1.27 0.45 1.09 2.04 0.74 1.59 2.49 0.87 1.62 2.75

In general, it can be seen from Table 5.1 that as the number of groups increases,

the computing time for both algorithms increases as well. In addition, the fmincon

solver is clearly faster than the OWE algorithm. We now discuss some of our obtained

designs using the following examples.

Example 5.2.1. Let us consider Scenario 1 with a design region [−5, 15] for the

continuous x. For this case, the corresponding induced design regions [Dl1, Dl2] for

the four groups are [−5,−1], [−8, 8], [1, 9], and [−4, 8], respectively. As shown in
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Table 5.2, the locally executed D-optimal design has 14 support points. When the

induced design region is all negative [−5,−1], as in group 1, or all positive [1, 9],

as in group 3, then we have 3 support points including the two endpoints of the

induced design region. For the other groups whose induced design range contains 0,

we have 4 support points including the two endpoints of the induced design region.

Furthermore, the conditional measure τ2 for the symmetric induced design region of

Group 2 is a 4-point symmetric design. We also note that the D-criterion value for

the design in Table 5.2 is ΦD(ξ∗) = log|M−1(ξ∗,θ)| = 34.62. The graph in Figure

5.1 verifies the optimality of the conditional measures obtained for each group. All

the sensitivity functions dD(x, ξ) are bounded above by the straight reference line of

y = 6, the number of parameters in the group, with equality obtained at the support

points.

Table 5.2: Locally D-optimal Designs for Model I Using Scenario 1, for xlj ∈ [−5, 15]

Group Induced design space Support points(xlj) Support points(clj) weights(wlj)

1 [-5,-1] (-5,6.557,15) (-1,-3.3114,-5) (0.1208,0.072,0.0572)

2 [-8,8] (-5,3.398,6.602,15) (8,1.2816,-1.2816,-8) (0.0408,0.0842,0.0842,0.0408)

3 [1,9] (-5,0.293,15) (1,3.1172,9) (0.11,0.1008,0.0392)

4 [-4,8] (-5,-0.222,3.546,15) (-4,-1.1332,1.1276,8) (0.0539,0.0575,0.0976,0.041)

Scenario1: θ2 = (βT
21 = (−2,−0.2),βT

22 = (4,−0.8),βT
23 = (3, 0.4), and βT

24 = (−1, 0.6))T

Example 5.2.2. For Scenario 2 with the design region [−20, 0] for x, the induced

design regions for the six groups are [−11,−1], [−4, 4],[12, 2], [−9, 3], [−11.5, 4.5], and

[−4.5, 3.5], respectively. As shown in Table 5.3, the locally D-optimal design has 22

support points. When the induced design region is all negative [−11,−1], as in Group

1, or all positive [2, 12], as in Group 3, we have 3 support points in that group including

the endpoints of the induced design region. For the other groups whose induced

design range contains 0 as in Groups 2, 4-6, we have 4 support points including the
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Figure 5.1: Locally D-optimal Design Verification for 4-Group Design for xlj ∈ [−5, 15]

two endpoints of the corresponding induced design region. The D-criterion value for

this design is ΦD(ξ∗) = log|M−1(ξ∗,θ)| = 70.7804. The verification of the optimality

of the obtained design is shown in Figure 5.2. The plots show that the conditional

measure for each group is D-optimal as claimed.

Table 5.3: Locally D-optimal Designs for Model I Using Scenario 2 for xlj ∈ [−20, 0]

Group Induced design space Support points(xlj) Support points(clj) Weights(wlj)

1 [-11,-1] (-20,-4.208,0) (-11,-3.104,-1) (0.264,0.0684,0.0719)

2 [-4,4] (-20,-12.308,-7.692,0) (-4,-0.9232,0.9232,4) (0.0364,0.047,0.047,0.0364)

3 [12,2] (-20,-4.048,0) (12,4.024,2) (0.0264,0.0673,0.073)

4 [-9,3] (-20,-6.658,-3.273,0) (-9,-0.9948,1.0362,3) (0.0273,0.0748,0.0139,0.0506)

5 [-11.5,4.5] (-20,-7.163,-4.158,0) (-11.5,-1.2304,1.1736,4.5) (0.0273,0.0647,0.0423,0.0324)

6 [-4.5,3.5] (-20,-10.976,-6.439,0) (-4.5,-0.8904,0.9244,3.5) (0.0331,0.057,0.0348,0.0417)

Scenario2: θ2 = (βT
21 = (−1, 0.5),βT

22 = (4, 0.4),βT
23 = (2,−0.5),βT

24 = (3, 0.6),βT
25 = (4.5, 0.8), and βT

26 = (3.5, 0.4))T

Lemma 4.2.3 is helpful in calculating the D-optimal symmetric designs. We use

two simple cases to illustrate the use of the lemma in the next example.

Example 5.2.3. Two cases of D-optimal symmetric designs are shown in Table 5.4,

where the first case is for a one group symmetric design s = 1, and the second case is
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Figure 5.2: Locally D-optimal Design Verification for 6-Group Design for xlj ∈ [−20, 0]

for a two group symmetric design s = 2. Based on Lemma 4.2.3, the values of c∗l and

w∗l that maximizes the function ∆(cl, wl) can be computed for each symmetric induced

design. For the first case with θT2 = (βT21 = (5, 2.5))T , the calculated values are

c∗1 = 1.3218 and w∗1 = 0.67439. In the second case with θ2 = (βT21 = (2.5,−0.5),βT22 =

(−5, 1))T the values for c∗l and w∗l for the first group are: c∗1 = 0.92305 and w∗1 =

0.56363, and for second group are: c∗2 = 1.2812 and w∗2 = 0.67393.

Table 5.4: Locally D-optimal Designs for c∗l , w
∗
l that Maximizes the Function ∆(cl, wl) in Lemma 4.2.3

Group Design region Induced design region Support points(xlj) Support points(clj) Weights(wlj)

(x) (cl)

1 [-6,2] [-10,10] (-6,-2.528,-1.471,2) (-10,-1.3218,1.3218,10) (0.1628,0.3372,0.3372,0.1628)

1 [-3,13] [-4,4] (-3,3.154,6.846,13) (4,0.923,-0.923,-4) (0.1091,0.1409,0.1409,0.1091)

2 [-8,8] (-3,3.719,6.281,13) (-8,-1.281,1.281,8) (0.0815,0.1685,0.1685,0.0815)

Locally A-optimal designs

If the interest is on determining A-optimal designs, then the value of the model

parameters is going to affect the solutions due to the form of A-optimal criterion.
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To show this, recall that the A-optimal criterion is ΦA = tr(M−1), then with the

decomposed information matrix in (4.12) the A-optimal criterion becomes ΦA =
s∑
l=1

tr(B−1
l (θ)BT

l
−1

(θ)C̃l
−1

(ξ,θ)). The matrix Bl(θ) is inseparable in the A-optimality

criterion. It also is noteworthy that both σ2
0 and σ2

1 play a role in the selection of the

locally A-optimal design.

Again, we compare the CPU time needed for obtaining optimal designs between

the fmincon solver and the OWE algorithm. As shown in Table 5.5 we used the same

previously considered scenarios with σ2
0 = σ2

1 = 1.

Table 5.5: Computation Time (in Second) for Locally A-optimal Designs for Model I

Scenario1 Scenario2 Scenario3 Scenario4

Design fmin OWE OWE fmin OWE OWE fmin OWE OWE fmin OWE OWE

Space 5000 10000 5000 10000 5000 10000 5000 10000

[−25,−5] 0.35 0.98 1.51 0.46 1.97 2.78 1.11 8.01 16.51 1.39 8.53 16.85

[−20, 0] 0.34 1.42 2.33 0.44 2.97 5.44 0.69 3.02 5.94 0.95 3.26 6.18

[−15, 5] 0.56 3.60 4.97 0.69 3.29 6.39 0.83 12.40 13.86 1.37 16.47 19.74

[−10, 10] 0.36 15.07 16.16 0.61 10.35 18.02 0.62 14.88 26.31 0.72 19.09 39.51

[−5, 15] 0.45 2.64 6.93 0.49 10.10 15.44 1.13 10.54 17.15 1.23 15.50 26.69

[0, 20] 0.31 1.13 2.25 0.38 1.44 3.18 0.77 2.85 5.91 0.93 3.38 5.98

[5, 25] 0.28 0.86 1.29 0.46 1.22 1.57 0.63 1.38 3.18 0.69 1.44 3.46

It can be seen from Table 5.5 that the fmincon solver is at least two times faster

than the OWE algorithms when the grid size is N = 5000, and at least three times

faster when the grid size is N = 10000 in all the scenarios.

Example 5.2.4. By considering model (4.11) and using Scenario 1 with design region

[−5, 15] for x. The corresponding induced design regions for c for the four groups are

[−5,−1], [−8, 8], [1, 9], and [−4, 8], respectively. As shown in Table 5.6, the locally

executed A-optimal design has 13 support points. The A-criterion value for this

design is ΦA = tr(M−1) = 445.4688. The optimality of the design is verified by the

65



Table 5.6: Locally A-optimal Designs for Model I Using Scenario 1, for xlj ∈ [−5, 15]

Group Induced design space Support points(xlj) Support points(clj) weights(wlj)

1 [-5,-1] (-5,1.547) (-1,-2.3094) (0.0376,0.1611)

2 [-8,8] (-5,2.2486,7.4573,15) (8,2.2011,-1.9658,-8) (0.0118,0.2305,0.0673,0.0192)

3 [1,9] (-5,0.2624,15) (1,3.105,9) (0.0256,0.2835,0.0008)

4 [-4,8] (-5,-0.4270,3.3684,15) (-4,-1.2562,1.021,8) (0.0055,0.1163,0.0371,0.0039)

Scenario1: θ2 = (βT
21 = (−2,−0.2),βT

22 = (4,−0.8),βT
23 = (3, 0.4), and βT

24 = (−1, 0.6))T

Figure 5.3: Locally A-optimal Design Verification for 4-Group Design for xlj ∈ [−5, 15]

GET as shown in Figure 5.3.

The effects of the variance on the A-optimal designs

Now let us examine the effects of the values of σ2
0 and σ2

1 on the optimal designs.

For demonstration purposes, we will consider Model I, and the design region for x is

[−6, 5]. We assume that the study contains s = 2 groups and the guessed values of the

parameters are set to θ2 = (βT21 = (4, 3),βT22 = (1, 2))T . The corresponding induced

design regions for c are [−14, 19] and [−11, 11] for groups 1 and 2, respectively. In

Tables 5.7 and Table 5.8 we consider all the combinations of the values of σ2
0 and σ2

1

among 0.1,0.5,1,10, and 100. Here, we divide the results into two tables for the ease

of presentation. Table 5.7 has the results for the group with the asymmetric induced

66



design region [−14, 19] while Table 5.8 is for the group with the symmetric induced

design region [−11, 11]. We report the support points and corresponding weights of

the obtained A-optimal designs in these two tables. We also include the ratio,R,

of the total weight of the outer-points to that of the two inner support points. We

discuss our finding based on the following three scenarios:

(i) σ2
1 is fixed but σ2

0 is increased. (ii) σ2
0 is fixed but σ2

1 is increased. (iii) σ2 = σ2
0 = σ2

1

and σ2 increases.

For the group with the asymmetric induced design region we have the following

observations for each scenario:

Under scenario (i): support points c11 and c14 have the same values of the endpoints

of the induced design region, and the inner support points c12 and c13 tend to move

towards the center of the design region. Regarding the corresponding weights, we get

w11 increases, w12 decreases and then increases, w13 and w14 decrease, and the weight

ratio R increases in value.

Under scenario (ii): support points c11 and c14 have the same values of the endpoints

of the induced design region, c12 gets closer to zero, and c13 moves away from zero.

Regarding the values of the corresponding weights, we find w11 and w12 decrease, w13

decreases and then increases, w14 increases, and the weight ratio R also increases in

value as well.

Under scenario (iii): support points c11 and c14 have the same values of the induced

design region, and c12 and c13 get closer to zero. Regarding the values of the corre-

sponding weights, we observe that w11 and w14 increase. However, w12 decreases and

then increases, w13 decreases, and the weight ratio R increases in value.

For the group with the symmetric induced design region, the obtained A-optimal

designs might not be symmetric designs; this is in contrast to the D-optimal designs

results. In addition, we have the following observations for each scenario:
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Table 5.7: Locally A-optimal Designs for Model I for c1j ∈ [−14, 19]

σ2
1 σ2

0 Group c11 c12 c13 c14 w11 w12 w13 w14 R

0.1 0.1 1 -14 -2.228 2.251 19 0.0076 0.2068 0.418 0.004 0.01857

0.1 0.5 1 -14 -2.189 2.212 19 0.0209 0.02042 0.4044 0.0038 0.04058

0.1 1 1 -14 -2.165 2.17 19 0.0298 0.2051 0.3913 0.0036 0.056

0.1 10 1 -14 -2.024 1.759 19 0.0712 0.2338 0.2943 0.0025 0.13956

0.1 100 1 -14 -1.658 1.087 19 0.1021 0.2885 0.1792 0.0011 0.22065

0.5 0.1 1 -14 -2.222 2.26 19 0.0074 0.2015 0.4124 0.0103 0.02883

0.5 0.5 1 -14 -2.18 2.221 19 0.0204 0.1992 0.3994 0.0098 0.05045

0.5 1 1 -14 -2.159 2.179 19 0.0291 0.2004 0.3868 0.0095 0.06574

0.5 10 1 -14 -2.018 1.765 19 0.0701 0.2304 0.2927 0.0068 0.14701

0.5 100 1 -14 -1.655 1.09 19 0.1015 0.2868 0.179 0.0033 0.22499

1 0.1 1 -14 -2.213 2.266 19 0.0072 0.1967 0.408 0.0147 0.03622

1 0.5 1 -14 -2.174 2.23 19 0.02 0.1948 0.3955 0.0142 0.05794

1 1 1 -14 -2.15 2.185 19 0.0285 0.1961 0.3833 0.0137 0.07283

1 10 1 -14 -2.009 1.771 19 0.0692 0.2274 0.2917 0.01 0.15257

1 100 1 -14 -1.649 1.093 19 0.101 0.2855 0.179 0.0049 0.22799

10 0.1 1 -14 -2.09 2.353 19 0.0055 0.1539 0.3788 0.0396 0.08466

10 0.5 1 -14 -2.051 2.314 19 0.0156 0.1543 0.3703 0.0385 0.101313

10 1 1 -14 -2.027 2.266 19 0.0226 0.1572 0.3618 0.0376 0.11599

10 10 1 -14 -1.898 1.834 19 0.0592 0.1978 0.2906 0.0299 0.18243

10 100 1 -14 -1.586 1.126 19 0.0951 0.2722 0.1829 0.0163 0.24478

100 0.1 1 -14 -1.568 2.605 19 0.0021 0.075 0.3537 0.0651 0.15675

100 0.5 1 -14 -1.532 2.563 19 0.0067 0.0768 0.3504 00645 0.16667

100 1 1 -14 -1.511 2.515 19 0.01 0.0796 0.347 0.064 0.17346

100 10 1 -14 -1.403 2.053 19 0.0315 0.117 0.3116 0.0591 0.21139

100 100 1 -14 -1.241 1.261 19 0.0704 0.2169 0.2162 0.0422 0.25999
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Table 5.8: Locally A-optimal Designs for Model I for c2j ∈ [−11, 11]

σ2
1 σ2

0 Group c21 c22 c23 c24 w21 w22 w23 w24 R

0.1 0.1 2 -11 -1.744 1.762 11 0.0035 0.1373 0.22 0.0028 0.01763

0.1 0.5 2 -11 -1.704 1.73 11 0.0109 0.1371 0.2162 0.0026 0.03821

0.1 1 2 -11 -1.686 1.688 11 0.0159 0.1392 0.2128 0.0024 0.05199

0.1 10 2 -11 -1.548 1.3 11 0.0391 0.1716 0.1864 0.0012 0.11257

0.1 100 2 -11 -1.206 0.786 11 0.0574 0.2384 0.1331 0.0003 0.15532

0.5 0.1 2 -11 -1.722 1.754 11 0.0033 0.1359 0.2203 0.0089 0.03425

0.5 0.5 2 -11 -1.686 1.722 11 0.0106 0.1357 0.2165 0.0084 0.05395

0.5 1 2 -11 -1.666 1.682 11 0.0154 0.1377 0.2131 0.008 0.0667

0.5 10 2 -11 -1.534 1.302 11 0.0383 0.1697 0.1869 0.005 0.12142

0.5 100 2 -11 -1.2 0.79 11 0.057 0.2371 0.1332 0.0021 0.1596

1 0.1 2 -11 -1.696 1.75 11 0.0032 0.1346 0.222 0.0133 0.04624

1 0.5 2 -11 -1.66 1.72 11 0.0102 0.1345 0.2183 0.0126 0.06463

1 1 2 -11 -1.642 1.68 11 0.0149 0.1364 0.215 0.012 0.07655

1 10 2 -11 -1.516 1.304 11 0.0376 0.1681 0.1882 0.0077 0.12714

1 100 2 -11 -1.194 0.794 11 0.0566 0.2361 0.1336 0.0034 0.16229

10 0.1 2 -11 -1.386 1.728 11 0.0019 0.125 0.257 0.0382 0.1049

10 0.5 2 -11 -1.362 1.704 11 0.0071 0.125 0.2524 0.0368 0.11632

10 1 2 -11 -1.35 1.672 11 0.0107 0.1265 0.2482 0.0354 0.12303

10 10 2 -11 -1.292 1.338 11 0.0302 0.1536 0.2135 0.0252 0.15091

10 100 2 -11 -1.104 0.822 11 0.0522 0.2263 0.1425 0.0125 0.17543

100 0.1 2 -11 -0.822 1.534 11 0.0005 0.0988 0.3397 0.0651 0.1496

100 0.5 2 -11 -0.814 1.526 11 0.0028 0.0987 0.3361 0.0641 0.15386

100 1 2 -11 -0.808 1.516 11 0.0044 0.099 0.3328 0.0632 0.15655

100 10 2 -11 -0.784 1.356 11 0.0152 0.111 0.3007 0.0539 0.16784

100 100 2 -11 -0.746 0.896 11 0.0363 0.1808 0.2036 0.0335 0.18158
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Under scenario (i): the outer support points c21 and c24 remain to be the endpoints

of the induced design region, and the inner two support points c22 and c23 get closer

to zero. We also observe that w21 increases, whereas w24 decreases, and R increases.

Under scenario (ii): the outer support points c21 and c24 are still the endpoints of the

induced design region, the smaller inner support points c22 gets closer to zero, but

the larger inner points c23 gets closer to zero for small σ2
1 and moves away from zero

for large σ2
1. The weights w21 decreases, but w24 increases, and R also increases.

Under scenario (iii): c21 and c24 remain the same, and c22 and c23 get closer to zero.

Regarding the values of the corresponding weights, we observe that both w21 and w24

increase, and the weight ratio R increases in value.

In summary, cl1 and cl4 in all the cases have the same values of the endpoints

of the induced design region. wl1 is directly proportional to σ2
0 and wl4 is inversely

proportional to σ2
0. Meanwhile, wl4 is directly proportional to σ2

1 and wl1 is inversely

proportional to σ2
1. Notice that σ2

0 = var(y|z = 0) goes with P(z = 0) = 1−P(z = 1),

where 1−P(z = 1) is maximum within the induced design region at its left endpoint.

This left endpoint is the support point cl1 with corresponding weight wl1. On the

other hand, 1−P(z = 1) is minimum within the induced design region at its right

endpoint, which is the support point cl4 with corresponding weight wl4. As previously

mentioned the value of the weight wl1 is directly proportional to σ2
0, while the value

of the weight wl4 is inversely proportional to σ2
0. This implies that more observations

are needed for the situation where the variance is larger.

Considering the case where σ2
0 = σ2

1 = σ2 and allowing σ2 to increase. We see that

more weights are assigned to the boundary points to account for the inflated variance

of the continuous response. These results coincide with the finding of Kim (2017)

when she tested the effects of the inflated variance of the linear models σ2 under the

simple mixed responses model on the locally A-optimal designs.

70



Figure 5.4 summarizes the trend of the obtained optimal designs according to the

values of σ2
0 and σ2

1 for the group with the asymmetric induced design region. We

set three intervals of σ2
0 and develop ten equally spaced values for each interval of σ2

0

while σ2
1 is fixed to one of the values among (0.1, 1, 10, 100). For each (σ2

0, σ
2
1), we

find the A-optimal design under Model I and verify it with the GET. The figures in

the first column (a), (d), and (g) show the variation of w11 with respect to σ2
0 at each

fixed σ2
1. The figures in the second column (b), (e), and (h) show the variation of w14

with respect to σ2
0 at each fixed σ2

1. The figures in the third column (c), (f), and (i)

show the variation of the ratio R with respect to σ2
0 at each fixed σ2

1.

Next, we will consider searching for the optimal designs under Model II as in

model (4.17). This model has a more complex information matrix than Model I.

Consequently, this requires an efficient strategy to search for the optimal designs.

In the next subsection, we will introduce a combined algorithm that is effective for

tackling this challenge.
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Figure 5.4: Locally A-optimal Designs by Varying σ2
0 for Fixed σ2

1

(a) w11 vs. σ2
0 ∈ [0.1, 1] for

fixed σ2
1 = [0.1, 1, 10, 100]

(b) w14 vs. σ2
0 ∈ [0.1, 1] for

fixed σ2
1 = [0.1, 1, 10, 100]

(c) R vs. σ2
0 ∈ [0.1, 1] for

fixed σ2
1 = [0.1, 1, 10, 100]

(d) w11 vs. σ2
0 ∈ [1, 10] for

fixed σ2
1 = [0.1, 1, 10, 100]

(e) w14 vs. σ2
0 ∈ [1, 10] for

fixed σ2
1 = [0.1, 1, 10, 100]

(f) R vs. σ2
0 ∈ [1, 10] for

fixed σ2
1 = [0.1, 1, 10, 100]

(g) w11 vs. σ2
0 ∈ [10, 100] for

fixed σ2
1 = [0.1, 1, 10, 100]

(h) w14 vs. σ2
0 ∈ [10, 100] for

fixed σ2
1 = [0.1, 1, 10, 100]

(i) R vs. σ2
0 ∈ [10, 100] for

fixed σ2
1 = [0.1, 1, 10, 100]
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5.3 Hybrid PSO-FM Algorithm

Although the fmincon solver gave promising optimal designs, it needs to be fed

with initial designs before it can search for the optimal design. The fmincon solver

has a deficiency of repition by using different initial starting points every time. We

observe that, some imprudently selected initials may cause the divergence of the

algorithm away from the optimal design or may require more time to converge. This

problem frequently emerged in searching for designs for model II with a large number

of groups for which we need to search for the optimal design by considering all the

groups simultaneously.

A possible remedy that we propose is to combine the fmincon solver with PSO to

unite the computational advantages of the two methods. This combination tends to

improve the search for optimal designs further. We call this combined computational

method the “Hybrid PSO-FM”. The PSO algorithm is a good candidate, since it is

easy to implement, has few tuning parameters, is fast in exploring the solution space,

and can handle complex problems. However, in our case of the mixed responses

model, the PSO alone tends to be slow in pinpointing the design that is optimal,

especially when the number of groups increases.

The idea of the PSO was inspired by animal behavior such as a flock of birds

for food hunting. Each member of the flock is considered as a particle that spreads

randomly with its own velocity in the search space in order to determine the food

location. At the same time, the flying birds exchange information constantly on food

tracking, and there is a tendency for the birds to go after the location that is closer to

food. The search for food is affected by both the individual experience of the particle

(bird) and the shared knowledge of the swarm (flock). At the beginning of the search,

the particles do not know the position they are aiming to reach, which is known as
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the global best position (Gpos). A number of particles, n, is initially created, and

these particles are candidate designs for the optimal design problem. The particle is

represented by a vector consisting of design points and weights. For our problem, the

complete class results obtained in Theorem 4.3.1 allow us to set the number of design

points in each group to four with two of them being the endpoints; for generating an

initial design for the PSO, the free design points and weights are randomly selected.

Then the fitness value of each particle is calculated by the objective function and

the algorithm also keeps track of the personal best position (Bpos) for each particle.

At each iteration, the location of the particle, its velocity, and its fitness value are

updated based on its present Bpos and Gpos determined by the whole flock. The two

equations that guide the movement of the ith particle in the PSO at each iteration

is given by:

zt+1
i = zti + vt+1

i , (5.1)

where the zti is the position of the particle i at iteration t, and the vt+1
i is the velocity

of the particle i at iteration t+ 1 that can be found by:

vt+1
i = δtv

t
i + ϕ1U1(0, 1)⊗ (Bposti − zti) + ϕ2U2(0, 1)⊗ (Gpost − zti). (5.2)

Here, Bposti is the personal best position that the ith particle possesses at iteration

t, Gpost is the global best position at the t iteration, Uj(0, 1) is a random vector

generated from uniform distribution j = 1, 2, and ⊗ is the Hadamard product. Any

particle that moves out of the design space will be dragged back to the specified

boundary. The constants ϕ1 and ϕ2 are the cognitive learning factor and the social

learning factor, respectively, to specify how each particle proceeds in the direction of

its own personal best position and on the way to the global best position. We allow

ϕ1 and ϕ2 to differ at each iteration following the recommendation of Ratnaweera,

Halgamuge, and Watson (2004) where ϕ1 decreases from 2.5 to 0.5 and ϕ2 increases
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from 0.5 to 2.5. δt is the inertia factor that symbolizes the impact of the prior velocity

and can be set to a constant value between [0, 1]. In our case, we follow Eberhart and

Shi (2000) who set it to be a decreasing linear function from 0.9 to 0.4.

The steps for the PSO algorithm can be summarized as follows:

i) Initialize the particle positions (z0
1 , · · · , z0

n) and the velocities (v0
1, · · · , v0

n).

ii) Compute the fitness values Φ(z0
1 , · · · , z0

n).

iii) Determine the global best position Gpos0.

iv) Calculate the velocities (vt+1
1 , · · · , vt+1

n ) using equation (5.2).

v) Update particle positions (zt+1
1 , · · · , zt+1

n ) using equation (5.1).

vi) Compute the fitness values Φ(zt+1
1 , · · · , zt+1

n ).

vii) Determine the personal best positionBpost+1
i and the global best positionGpost+1.

Steps (iv)-(vii) are repeated until the stopping rule, the maximum number of itera-

tions set by the user, is reached. The particle whose fitness value equals min Φ(Gpost+1)

is chosen as the output of the algorithm. The algorithms can itself be used to search

for optimal designs. However, we tend to observe that it can quickly reach a good

design, and can then take a long time to converge to the optimal solution. We thus

only implement this algorithm for a small number of iterations, use its output as

the initial designs for the fmincon solver, and let the fmincon solver finish the job

for identifying the optimal design. Finally, the obtained designs by the hybrid PSO-

FM algorithm are verified by GET. For Model II, we use the interior-point method

(IPM) in the fmincon solver instead of the SQP that is used in the simple mixed

responses model. Due to the complicated information matrix in model II, the IPM

has an advantage over the SQP in which that the Hessian matrix and the gradient

are computed once per optimization iteration rather than updated more than once at

each time the active set is modified during the inner iteration in the SQP. Therefore,

we can conclude that as the information matrix becomes more complicated with the
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presence of groups in the model the IPM can be more competitive than the SQP

algorithm.

The proposed hybrid PSO-FM algorithm can be described in steps as follows:

i) Start with the PSO algorithm to get the initial design.

ii) Feed the fmincon solver with the design obtained from PSO.

iii) Optimize the inner design points and weights for all the groups using fmincon.

iv) Check the optimality of the design reached using the GET.

v) If the selected design did not pass the GET repeat (i)-(iv).

vi) Cluster similar support points and remove design points with very small or zero

weights from the optimal design.

viii) Verify the optimal design by the GET plots.

In the case of the fmincon solver, steps (i) and (ii) above are replaced by selecting

random initial two points and weights for each group.

5.4 Numerical Results for Mixed Responses Model With Common Parameters

Now we study the performance of the proposed hybrid PSO-FM algorithm in

searching for locally A- and D-optimal designs for Model II in (4.17). When using

the hybrid PSO-FM algorithm, the two tuning parameters that need to be determined

are the number of particles (flock size) and the number of iterations for the PSO when

finding initial designs for the fmincon solver. Based on the recommendation of Qiu et

al. (2014) on minimal flock size and the number of iterations, in what they called the

“90% rule”, we set the flock size to 20 and the number of iterations to 100. In our

overall experience, a small flock size and number of iterations, around 20 and 100,

gives reasonable initial design points for the fmincon solver to employ. Increasing the

maximum number of iterations over 100 and flock size over 20 costs time which is not

worthwhile in our case since we only need reasonable initial design points.
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Again, we tried to use the OWE algorithm for the same tasks. Unfortunately,

the OWE algorithm did not work for all our cases. First, Newton’s method is used

in the OWE algorithm to update the weights, which requires the calculation of the

second derivatives of the Φp{M−1(ξ)} with respect to w. This can be computationally

cumbersome for some models, e.g. Model II case. Second, the information matrix may

be singular which causes Newton’s method to produce negative weights during the

iteration (Wong, Yin, & Zhou, 2018). Third, the algorithm has a high probability of

being stuck in an infinite loop. For example, when running the algorithm, the selected

design might not satisfy the efficiency lower bound. In this case, the algorithm adds

one new point x0 to the existing design that maximizes the sensitivity function. This

is followed by the calculation for all the weights for the new design with the new

point included. But Newton’s algorithm assigns a very small weight to the new point

which leads the algorithm to delete this point and, as a result, the same previous

design is obtained. This process continues by adding and deleting the same point x0

again and thus the algorithm will be stuck between two designs. To overcome this

obstacle, Newton’s method for updating the weights in the OWE algorithm can be

replaced by other methods such as the multiplicative algorithm (see also Tan, 2015).

The modification that needs to be done for the OWE algorithm to work for our case

is beyond the scope of this work.

In addition to the OWE algorithm, we also tried some other algorithms, such

as the d-QPSO of Lukemire et al. (2018), and the PSO alone (without the fmincon

solver). However, it does not seem straightforward to make these algorithms work effi-

ciently for our problems, and for several scenarios, no satisfactory results are achieved

by these algorithms after a long computing time. Thus, we choose to demonstrate

the performance of the hybrid PSO-FM algorithm by comparing it with the fmincon

solver alone (without the PSO) in order to examine the effect of the PSO-generated

77



initials in speeding up the fmincon solver search.

Locally D-optimal designs

We consider four scenarios using Model II for each of the design spaces. Scenario

1 has 6 groups with θ2 = (α21 = 1.7, α22 = 0.6, α23 = 0.4, α24 = 1.1, α25 = 0.8, α26 =

1.3, β2 = 1)T , Scenario 2 has 8 groups with θ2 = (α21 = 1.7, α22 = 0.6, α23 =

1.3, α24 = 0.2, α25 = 0.8, α26 = 1.7, α27 = 0.4, α28 = 0.7, β2 = 1)T , Scenario 3 has

9 groups with θ2 = (α21 = 1.7, α22 = 0.6, α23 = 1.3, α24 = 0.6, α25 = 0.4, α26 =

1.1, α27 = 0.8, α28 = 1.5, α29 = 0.7, β2 = 1)T , and Scenario 4 has 12 groups with

θ2 = (α21 = 1.7, α22 = 0.6, α23 = 1.3, α24 = 0.2, α25 = 0.8, α26 = 1.6, α27 = 0.4, α28 =

0.7, α29 = 0.3, α210 = −0.4, α211 = −0.3, α212 = −0.1, β2 = 1)T . In all the 4 scenarios,

we set σ2
0 = σ2

1 = 1.

Due to the randomness nature of both the fmincon solver and the PSO algorithm,

the computation time is checked five times for each design space under all scenarios

for both the hybrid PSO-FM algorithm and the fmincon solver. The minimum and

maximum computation times are recorded in Table 5.9. Note that we excluded the

recorded times for the fmincon solver when it gets stuck in a local minimum. This was

observed in cases where the model has a large number of groups. We can observe that

in all the cases the maximum computation time for the hybrid PSO-FM algorithm is

faster than the fmincon solver under all scenarios. The minimum computation time

using the fmincon solver might be faster than that of the hybrid PSO-FM algorithm.

This is more likely to occur for models with a small number of groups. It is possible

that the random initial points used by the fmincon solver were very close to the opti-

mal design. As the number of groups increases, the variation between the minimum

and maximum computation times increases using the fmincon solver. We can con-

clude that as the number of groups increases, the model becomes more dependable on

78



Table 5.9: Computation Time (in Second) for Locally D-optimal Designs for Model II

Algorithm Design Space(x) Scenario1 Scenario2 Scenario3 Scenario4

min max min max min max min max

PSO-FM [−25,−5] 12.12 15.84 13.61 17.21 17.05 25.77 26.6 34.99

fmincon 12.53 17.93 15.81 83.32 20.71 56.55 35.81 296.11

PSO-FM [−20, 0] 9.85 11.27 15.22 18.01 18.3 23.47 31.97 51.68

fmincon 8.02 37.38 21.49 82.81 22.42 60.36 58.12 261.62

PSO-FM [−15, 5] 10.34 11.91 16.59 20.9 20.73 24.97 50.15 68.17

fmincon 17.59 40.91 15.95 66.31 25.01 68.45 56.98 248.41

PSO-FM [−10, 10] 10.15 10.76 15.01 19.02 19.99 24.55 41.88 51.74

fmincon 12.64 22.99 17.12 70.64 28.61 82.15 46.61 135.27

PSO-FM [−5, 15] 12.47 18.07 18.94 22.21 24.18 27.41 58.84 86.68

fmincon 9.91 61.81 22.45 111.47 28.92 123.49 65.9 323.77

PSO-FM [0, 20] 13.31 17.57 18.32 23.63 23.19 35.54 47.77 91.66

fmincon 10.72 38.82 21.15 80.38 28.78 127.71 89.31 598.7

PSO-FM [5, 25] 9.74 14.74 16.13 18.4 19.91 25.95 42.69 58.05

fmincon 15.15 40.48 19.48 89.15 28.71 148.36 71.82 519.73

the initial points, and thus the hybrid PSO-FM algorithm becomes faster and more

stable than the fmincon solver.

The complete class found in theorem 4.3.1 on the maximum number of support

points for this model can be illustrated in the following examples.

Example 5.4.1. Let us consider Scenario 1 with design region [−5, 15] for the contin-

uous variable x. The corresponding induced design regions [Dl1, Dl2] for the six groups

are [−3.3, 16.7], [−4.4, 15.6], [−4.6, 15.4], [−3.9, 16.1], [−4.2, 15.8], and [−3.7, 16.3], re-

spectively. As it can be seen from Table 5.10, the locally D-optimal design has four

support points in each group including the endpoints of the design region. The D-

criterion value for this design is ΦD(ξ∗) = log|M−1(ξ∗,θ)| = 49.7098. The GET plot

conforms the D-optimality of the selected design shown in Figure 5.5.
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Table 5.10: Locally D-optimal Designs for Model II Using Scenario 1, for xlj ∈ [−5, 15]

Group Induced design space Support points(xlj) Support points(clj) weights(wlj)

1 [-3.3,16.7] (-5,-2.814,-1.050,15) (-3.3,-1.114,0.650,16.7) (0.012,0.053,0.086,0.017)

2 [-4.4,15.6] (-5,-1.2,-0.060,15) (-4.4,-0.6,0.54,15.6) (0.023,0.045,0.084,0.014)

3 [-4.6,15.4] (-5,-0.912,0.113,15) (-4.6,-0.512,0.513,15.4) (0.025,0.045,0.084,0.013)

4 [-3.9,16.1] (-5,-1.927,-0.502,15) (-3.9,-0.827,0.598,16.1) (0.019,0.048,0.085,0.015)

5 [-4.2,15.8] (-5,-1.49,-0.235,15) (-4.2,-0.690,0.565,15.8) (0.021,0.046,0.085,0.014)

6 [-3.7,16.3] (-5,-2.221,-0.683,15) (-3.7,-0.921,0.617,16.3) (0.017,0.049,0.085,0.016)

Scenario1: θ2 = (α21 = 1.7, α22 = 0.6, α23 = 0.4, α24 = 1.1, α25 = 0.8, α26 = 1.3, β2 = 1)T

Figure 5.5: Locally D-optimal Design Verification for 6-Group Design for xlj ∈ [−5, 15]

Example 5.4.2. Consider Scenario 3, and the design region for the continuous vari-

able x is [0, 20]. The locally D-optimal design found contains 23 support points, and

from Table 5.11 we observe that the number of support points ranged from 2 to 3

points in each group. When there are 2 support points in the group, the two endpoints

of the design region are included. The 3 support points appeared in groups 2,4,5,7,

and 9. The D-criterion value for this design is ΦD(ξ∗) = log|M−1(ξ∗,θ)| = 95.144,

and the confirmation of the executed D-optimal design is in Figure 5.6.
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Table 5.11: Locally D-optimal Designs for Model II Using Scenario 3 for xlj ∈ [0, 20]

Group Induced design space Support points(xlj) Support points(clj) weights(wlj)

1 [1.7,21.7] (0,20) (1.7,21.7) (0.098,0.006)

2 [0.6,20.6] (0,1.805,20) (0.6,2.405,20.6) (0.0833,0.0291,0.0044)

3 [1.3,21.3] (0,20) (1.3,21.3) (0.0976,0.0071)

4 [0.6,20.6] (0,1.805,20) (0.6,2.405,20.6) (0.0833,0.0291,0.0044)

5 [0.4,20.4] (0,2.006,20) (0.4,2.406,20.4) (0.0781,0.0492,0.0007)

6 [1.1,21.1] (0,20) (1.1,21.1) (0.0973,0.0077)

7 [0.8,20.8] (0,1.604,20) (0.8,2.404,20.8) (0.0925,0.008,0.0076)

8 [1.5,21.5] (0,20) (1.5,21.5) (0.0978,0.0065)

9 [0.7,20.7] (0,1.705,20) (0.7,2.405,20.7) (0.0873,0.0188,0.0061)

Scenario 4: θ2 = (α21 = 1.7, α22 = 0.6, α23 = 1.3, α24 = 0.6, α25 = 0.4, α26 = 1.1, α27 = 0.8, α28 = 1.5, α29 = 0.7, β2 = 1)T

Figure 5.6: Locally D-optimal Design Verification for 9-Group Design for xlj ∈ [0, 20]
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Locally A-optimal designs

As we discussed before, the A-optimal designs depend on the values of the unknown

parameters. For this case, we again study the effect of the variance of the continuous

response σ2
z , for z = 0, 1, on the selection of the A-optimal designs. At first we

will evaluate the performance of the hybrid PSO-FM algorithm by comparing the

CPU time in seconds between the fmincon solver and the hybrid PSO-FM algorithm

in searching for the locally A-optimal designs. The same four scenarios that were

used in the first search for locally D-optimal designs for Model II are used here. For

comparison purposes, we set σ2
0 = σ2

1 = 1. We then will vary the values of both

σ2
z ’s. As performed before in the D-optimality case, the minimum and maximum

Table 5.12: Computation Time (in Second) for Locally A-optimal Designs for Model II

Algorithm Design Space(x) Scenario1 Scenario2 Scenario3 Scenario4

min max min max min max min max

PSO-FM [−25,−5] 11.14 16.78 18.08 32.73 32.75 40.83 53.57 66.44

fmincon 11.20 72.46 24.15 77.56 44.79 236.05 132.87 207.14

PSO-FM [−20, 0] 11.55 14.64 15.84 25.39 32.01 36.57 38.26 61.41

fmincon 7.39 84.98 32.33 122.89 38.17 195.09 42.34 224.12

PSO-FM [−10, 10] 10.91 13.95 24.81 66.08 33.02 40.68 50.63 66.22

fmincon 14.67 64.77 30.63 146.76 45.35 217.61 93.28 511.15

PSO-FM [0, 20] 9.71 14.78 28.18 31.88 21.97 36.17 28.36 54.48

fmincon 9.34 43.06 60.61 200.19 88.62 241.42 109.22 521.1

PSO-FM [5, 25] 8.57 11.28 23.34 25.35 19.49 35.41 24.07 46.31

fmincon 8.11 41.51 20.65 72.01 22.75 130.11 48.27 179.11

computation times are selected for each design space under all scenarios from five

runs for the hybrid PSO-FM algorithm and from five runs for the fmincon solver as

well excluding the times that the fmincon solver gets stuck in a local minimum as

the number of groups increases in the model. These times are recorded in Table 5.12,
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where we observe the same results as in the case of D-optimality. We can conclude

that as the number of groups increases, the model becomes more dependable on the

initial points, and thus the hybrid PSO-FM algorithm becomes faster and more stable

than the fmincon solver.

For Model II we can find a locally A-optimal designs where some of its groups

requires only one support point, which is less than the minimal number of support

points needed for Model I. This can be seen in the next example.

Example 5.4.3. Consider model (4.17) and use Scenario 1 with a design region [5, 25]

for the continuous variable x. As shown in Table 5.13, the locally A-optimal design

found has eight support points where four of the groups (group 1, 4, 5, and 6) requires

only one support point in their conditional measures. The A-criterion value for this

design is ΦA = tr(M−1) = 392580. The design is verified by the GET as shown in

Figure 5.7.

Table 5.13: Locally A-optimal Designs for Model II Using Scenario 1, for xlj ∈ [5, 25]

Group Induced design space Support points(xlj) Support points(clj) weights(wlj)

1 [6.7,26.7] (5) (6.7) (0.0644)

2 [5.6,25.6] (5,7.29) (5.6,7.89) (0.0413,0.0384)

3 [5.4,25.4] (5,7.55) (5.4,7.95) (0.1691,0.5451)

4 [6.1,26.1] (5) (6.1) (0.0478)

5 [5.8,25.8] (5) (5.8) (0.0411)

6 [6.3,26.3] (5) (6.3) (0.0528)

Scenario1: θ2 = (α21 = 1.7, α22 = 0.6, α23 = 0.4, α24 = 1.1, α25 = 0.8, α26 = 1.3, β2 = 1)T

The effects of the variance on the A-optimal designs

Now we will look at the effects of the variance σ2
0 and σ2

1 on the selection of the A-

optimal designs. To study the variance effects on the optimal design, we use Model II

with two groups. The guessed values of the parameters are set to θ2 = (α21 = 4, α22 =

2, β2 = 2)T and the design region for x is [−6, 4]. Then, the corresponding induced
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Figure 5.7: Locally A-optimal Design Verification for 6-Group Design for xlj ∈ [−25,−5]

design region for c are [−8, 12] and [−10, 10] for group l, l = 1, 2, respectively. As in

Model I, we set the values of σ2
0 and σ2

1 in Table 5.14 and Table 5.15 to 0.1,0.5,1,10,

and 100 by fixing one of the variances and allowing the other one to vary. Table

5.14 has the results for the group with the asymmetric induced design region [−8, 12]

while Table 5.15 is for the group with the symmetric induced design region [−10, 10].

There, we report the support points and corresponding weights. We also include the

ratio, R, of the total weight of the outer-points to that of the two inner points.

We observe that the influence of the variance on the behavior of the support

points and weights under both models (Model I/Model II) is almost the same. The

optimal designs will tend to place a higher weight (and thus more observations) to

the situations where the variance is larger.

5.5 Discussion

In this chapter, we searched for computational methods (algorithms) that are

fast and efficient in providing A- and D-optimal designs. With the assistance of the

complete class results found for these models, we managed to adjust the fmincon solver

to work with models that have mixed responses. We considered the fmincon solver
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Table 5.14: Locally A-optimal Designs for Model II for c1j ∈ [−8, 12]

σ2
0 σ2

1 Group c11 c12 c13 c14 w11 w12 w13 w14 R

0.1 0.1 1 -8 -1.94 1.92 12 0.0002 0.0711 0.3583 0.0056 0.01351

0.1 0.5 1 -8 -1.92 1.94 12 0.0002 0.0674 0.3557 0.0177 0.04231

0.1 1 1 -8 -1.88 1.96 12 0.0002 0.0637 0.3535 0.0261 0.06304

0.1 10 1 -8 -1.6 2.08 12 0.0001 0.0399 0.3532 0.0698 0.17782

0.1 100 1 -8 -0.94 2.34 12 0 0.0156 0.3759 0.1043 0.26641

0.5 0.1 1 -8 -1.98 1.88 12 0.0003 0.0886 0.3533 0.0052 0.01245

0.5 0.5 1 -8 -1.96 1.9 12 0.0003 0.0846 0.3505 0.0167 0.03907

0.5 1 1 -8 -1.94 1.92 12 0.0002 0.0807 0.3485 0.0248 0.05825

0.5 10 1 -8 -1.68 2 12 0.0002 0.0533 0.347 0.0674 0.16887

0.5 100 1 -8 -1 2.28 12 0 0.0204 0.372 0.1033 0.26325

1 0.1 1 -8 -2.02 1.84 12 0.0004 0.1014 0.3427 0.0049 0.01193

1 0.5 1 -8 -2 1.84 12 0.0004 0.0973 0.3402 0.0157 0.0368

1 1 1 -8 -1.98 1.86 12 0.0002 0.0937 03385 0.0233 0.05437

1 10 1 -8 -1.74 1.94 12 0.0003 0.0648 0.3386 0.0654 0.16287

1 100 1 -8 -1.06 2.2 12 0 0.0257 0.3675 0.1023 0.26017

10 0.1 1 -8 -1.9 1.4 12 0.0155 0.1536 0.2526 0.0028 0.04505

10 0.5 1 -8 -1.88 1.4 12 0.0152 0.1507 0.2521 0.0107 0.0643

10 1 1 -8 -1.88 1.42 12 0.0151 0.1481 0.2521 0.0164 0.07871

10 10 1 -8 -1.68 1.46 12 0.0128 0.1232 0.2635 0.0501 0.16266

10 100 1 -8 -1.14 1.74 12 0.0053 0.0674 0.3188 0.0903 0.24754

100 0.1 1 -8 -1.56 0.88 12 0.0287 0.2103 0.1549 0.001 0.08133

100 0.5 1 -8 -1.54 0.9 12 0.0286 0.209 0.155 0.0049 0.09203

100 1 1 -8 -1.54 0.9 12 0.0284 0.2079 0.1552 0.0076 0.09915

100 10 1 -8 -1.44 0.9 12 0.027 0.1972 0.1609 0.0276 0.15247

100 100 1 -8 -1.06 1.08 12 0.0203 0.1574 0.2078 0.0607 0.2218
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Table 5.15: Locally A-optimal Designs for Model II for c2j ∈ [−10, 10]

σ2
0 σ2

1 Group c21 c22 c23 c24 w21 w22 w23 w24 R

0.1 0.1 2 -10 -1.88 1.9 10 0.00088 0.195 0.3574 0.0002 0.01629

0.1 0.5 2 -10 -1.86 1.92 10 0.0085 0.1927 0.3576 0.0002 0.01581

0.1 1 2 -10 -1.84 1.96 10 0.0081 0.188 0.3601 0.0002 0.01514

0.1 10 2 -10 -1.56 2.2 10 0.0051 0.1437 0.3874 0.0008 0.01111

0.1 100 2 -10 -0.92 2.54 10 0.0012 0.0746 0.4108 0.0175 0.03852

0.5 0.1 2 -10 -1.8 1.84 10 0.0314 0.1875 0.3335 0.0002 0.06065

0.5 0.5 2 -10 -1.78 1.86 10 0.0303 0.1827 0.3347 0.0002 0.05895

0.5 1 2 -10 -1.76 1.88 10 0.0293 0.1787 0.3376 0.0002 0.05714

0.5 10 2 -10 -1.48 2.14 10 0.0199 0.1405 0.3709 0.0008 0.04048

0.5 100 2 -10 -0.88 2.5 10 0.0063 0.0752 0.4053 0.0174 0.04932

1 0.1 2 -10 -1.74 1.76 10 0.0464 0.1866 0.3174 0.0002 0.09246

1 0.5 2 -10 -1.72 1.78 10 0.045 0.182 0.3191 0.0002 0.0902

1 1 2 -10 -1.7 1.82 10 0.0436 0.1783 0.3221 0.0002 0.08753

1 10 2 -10 -1.44 2.08 10 0.0306 0.1423 0.3577 0.0003 0.0618

1 100 2 -10 -0.84 2.44 10 0.0103 0.0769 0.3996 0.0178 0.05897

10 0.1 2 -10 -1.52 1.3 10 0.107 0.2266 0.2419 0.0002 0.22882

10 0.5 2 -10 -1.5 1.32 10 0.1051 0.2227 0.2433 0.0002 0.22597

10 1 2 -10 -1.48 1.34 10 0.103 0.2195 0.2455 0.0002 0.22194

10 10 2 -10 -1.28 1.56 10 0.0828 0.1892 0.2781 0.0003 0.17783

10 100 2 -10 -0.72 1.92 10 0.0395 0.1123 0.3457 0.0207 0.13144

100 0.1 2 -10 -1.1 0.74 10 0.1492 0.3023 0.1537 0.0002 0.32763

100 0.5 2 -10 -1.1 0.74 10 0.1481 0.3003 0.154 0.0002 0.32644

100 1 2 -10 -1.1 0.76 10 0.147 0.2988 0.1549 0.0002 0.32444

100 10 2 -10 -1 0.86 10 0.1352 0.2831 0.1687 0.0003 0.29991

100 100 2 -10 -0.62 1.06 10 0.0933 0..2204 0.2193 0.0209 0.25972
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to obtain optimal designs for Model I for which we can obtain an optimal design by

combining the optimal (conditional) designs for the individual groups. The fmincon

solver can easily handle the search of the optimal designs for this model. For cases

with a large number of groups, we may consider the parallel computing technique

to speed up the search of optimal designs. We have compared the performance of

the fmincon solver with the outstanding OWE algorithm. Our study shows that the

fmincon solver and the OWE algorithm can both identify optimal designs, although

the fmincon has some advantages in speed over the OWE algorithm. Consequently,

we conclude that even though the OWE algorithm was proven to outperform other

algorithms in design search problems for some types of models, a better alternative

method for our model, for which a complete class result is available, is by the use of

the off-the-shelf fmincon solver for its speed and its ease of use.

For a more complicated model as Model II, where we need to search for the entire

design at once, the hybrid PSO-FM algorithm was proposed. The hybrid PSO-FM

algorithm attempts to avoid a poorly selected initial for the fmincon solver. From

our numerical results, we observe that the proposed algorithm is especially useful in

the case where we have more than four groups in the model. For all the optimal

designs generated by the hybrid PSO-FM algorithm, the efficiency lower bound is

satisfied if Alb(ξA) > 0.9999 for A-optimality and Dlb(ξD) > 0.9999 for D-optimality.

For the D-optimal design, we can use a higher efficiency lower bound as 0.999999, and

the algorithm will still be able to find the optimal design that satisfies this bound

easily without much time compromises. But this does not apply for A-optimality

and we tend to need a much greater computational effort to find a design with an

efficiency higher than 99.99% in some cases. With the model that we consider, the

hybrid PSO-FM algorithm can handle a large number of groups (∼ 30), but as the

number of groups increases in the model, the cost in time increases as well. We also
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observed that the algorithm works faster using the D-optimality criterion than the

A-optimality criterion. Although the hybrid PSO-FM algorithm preformed well in

the cases we considered, but it still has some limitations such as there is a slight

chance for the algorithm to get stuck in a sub-optimal solution. In addition, there is

a variation in the running time of the same model due to the randomness (in PSO)

of the algorithm.
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Chapter 6

AN EXTINSION: QUADRATIC MIXED RESPONSES MODEL

The mixed responses models that we considered throughout this work include

two types of sub-models for different types of outcomes: the linear model for the

continuous response and a generalized linear model for the binary response. In the

case of the linear model, when there is a nonlinear relation between the predictor and

the response variables, higher order terms may be considered to capture the curvature

trend that is present in the nature of the experimental data. The same concept applies

in the case of the generalized linear model where higher order terms may be required

when modeling binary data.

Many optimality results under the GLMs focused on models with a single quadratic

covariate. Wu and Stufken (2014) obtained complete class results of optimal designs

for GLMs with a 2nd-order polynomial as the linear predictor. In the process of de-

riving an upper bound for the number of support points, they found that if the focus

is on the Φp-optimality criteria and the design region is unrestricted, then the optimal

designs can be restricted to the class of symmetric designs. With three parameters

and a single independent covariate in the model, they obtained a symmetric complete

class of 3- and 4-support points, depending on the parameter values. As discussed in

Hyun (2013), the probit model with a quadratic term provides a good fit in modeling

the dose response functions with a downturn in toxicology studies. He applied the

complete class approach to search for the A- and D-optimal designs for a quadratic

model with three parameters and revealed a complete class of 4-support points.

In the scope of mixed responses models, Biswas and López-Fidalgo (2013) worked

on a mixed responses model for dose-finding design problems in the treatment of
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breast cancer, where the toxicity is binary, and the efficacy is continuous. They

considered a type of quadratic mixed responses model with a single independent

covariate. The mixed quadratic model that they considered with a single independent

covariate includes two sub-models; a logistic model for the binary toxicity response

and a linear model for the continuous efficacy response where they placed a quadratic

term.

Kim (2017) considered a different form of a quadratic mixed responses model,

where she extended the simple mixed responses model by inserting a quadratic term

in the logistic sub-models only, leaving the linear sub-models unchanged. A sharp

bound on the number of support points was identified by forming the symmetric

complete class of 6-support points, including the boundaries of the design region

under the D-optimality. The mathematical programming (fmincon solver) was used

by Kim (2017) to search for the locally D-optimal designs.

Another interesting extension of our current results is thus to examine the case

where the linear sub-model involves a quadratic term while we set the GLM un-

changed with only the simple linear predictor. This is to consider the model studies

in Biswas and López-Fidalgo (2013). According to Biswas and López-Fidalgo (2013),

“The whole model considered is quite natural and widely used in many areas.” The

goal is to investigate the existence of the complete class in this scenario, which to

our knowledge has never been studied in the literature. We then compare our results

with those obtained by Biswas and López-Fidalgo (2013).

6.1 Statistical Model

As in the earlier chapters, the observable data is (xj, yj, zj), j = 1, . . . , N , where

xj, yj ∈ R and zj ∈ {0, 1}. The binary variable z is modeled by a logistic regression

90



model, and yj|zj is described by a normal regression model with a quadratic term.

Specifically, the model that we consider in this chapter is:

yj|zj ∼ N((fT1 (xj)θ1 = α1 + β11xj + β12x
2
j + γzj, σ

2), for zj = 0, 1,

and

P (zj = 1|x) = P(fT2 (xj)θ2 = α2 + β21xj) ≡ p(xj),

(6.1)

where f1(xj) = (1, xj, x
2
j , zj)

T and f2(xj) = (1, xj)
T . Here, γ represents the associa-

tion parameter of the conditional distribution for y given z, σ2 denotes the variance

of the conditional distribution for y given z, and P(·) is a cumulative distribution

function that follows a logistic model; following Biswas and López-Fidalgo (2013), we

set P(α2 + β21xj) =
1

1 + eα2+β21xj
. The unknown parameters are {θ1,θ2, σ

2}, where

θ1 = (α1, β11, β12, γ)T and θ2 = (α2, β21)T . For easy referral, we will call this model

the quadratic mixed responses model.

The joint probability function for (y, z) is computed by direct factorization as:

f(yj, zj) = f(zj)f(yj|zj)

= [p(xj)]
zj [1− p(xj)]1−zj

1√
2πσ2

exp
[
− (yj − fT1 (xj)θ1)2

2σ2

]
.

Let θ = (θT1 ,θ
T
2 )T be the parameter vector of interest, then the log-likelihood function

is:

logL(θ) =log
N∏
j=1

(f(yj , zj))

=

N∑
j=1

{
zj log[p(xj)] + (1− zj)log[1− p(xj)]−

(yi − f1(xj)
Tθ1)2

2σ2
− 1

2
log[2πσ2]

}
.

(6.2)
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From the likelihood function we can derive the information matrix as:

M(θ, xj) = −E



∂2logL

∂2α1

∂2logL

∂α1∂β11

∂2logL

∂α1∂β12

∂2logL

∂α1∂γ

∂2logL

∂α1∂α2

∂2logL

∂α1∂β21
∂2logL

∂β11∂α1

∂2logL

∂2β11

∂2logL

∂β11∂β12

∂2logL

∂β11∂γ

∂2logL

∂β11∂α2

∂2logL

∂β11∂β21
∂2logL

∂β12∂α1

∂2logL

∂β12∂β11

∂2logL

∂2β12

∂2logL

∂β12∂γ

∂2logL

∂β12∂α2

∂2logL

∂β12∂β21
∂2logL

∂γ∂α1

∂2logL

∂γ∂β11

∂2logL

∂γ∂β12

∂2logL

∂2γ

∂2logL

∂γ∂α2

∂2logL

∂γ∂β21
∂2logL

∂α2∂α1

∂2logL

∂α2∂β11

∂2logL

∂α2∂β12

∂2logL

∂α2∂γ

∂2logL

∂2α2

∂2logL

∂α2∂β21
∂2logL

∂β21∂α1

∂2logL

∂β21∂β11

∂2logL

∂β21∂β12

∂2logL

∂β21∂γ

∂2logL

∂β21∂α2

∂2logL

∂2β21



.

Let us denote cj = α2 + β21xj, then the (individual) information matrix at xj can

be calculated as:

M(θ, xj) =



1

σ2

xj

σ2

x2
j

σ2

1

σ2(1 + ecj )
0 0

xj

σ2

x2
j

σ2

x3
j

σ2

xj

σ2(1 + ecj )
0 0

x2
j

σ2

x3
j

σ2

x4
j

σ2

x2
j

σ2(1 + ecj )
0 0

1

σ2(1 + ecj )

xj

σ2(1 + ecj )

x2
j

σ2(1 + ecj )

1

σ2(1 + ecj )
0 0

0 0 0 0
ecj

(1 + ecj )2
xj

ecj

(1 + ecj )2

0 0 0 0 xj
ecj

(1 + ecj )2
x2
j

ecj

(1 + ecj )2



. (6.3)

The computed information matrix for θ under a continuous design ξ = {(xj, wj), j =

1, · · · ,m} can be represented as:

M(ξ,θ) =
m∑
j=1

wjM(θ, xj). (6.4)

Notice that the information matrix depends on the value of θ2 and σ2. The rep-

resentation for cj is helpful to decompose the information matrix as M(ξ,θ) =

B(θ)
m∑
j=1

wjC(θ, cj)B
T(θ),
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where C(θ, cj) =



Γ11 = 1 Γ12 = cj Γ13 = c2j Γ14 =
1

1 + e
cj

0 0

Γ21 = cj Γ22 = c2j Γ23 = c3j Γ24 =
cj

1 + e
cj

0 0

Γ31 = c2j Γ32 = c3j Γ33 = c4j Γ34 =
c2j

1 + e
cj

0 0

Γ41 =
1

1 + e
cj

Γ42 =
cj

1 + e
cj

Γ43 =
c2j

1 + e
cj

Γ44 =
1

1 + e
cj

0 0

0 0 0 0 Γ55 =
e
cj

(1 + e
cj )2

Γ56 = cj
e
cj

(1 + e
cj )2

0 0 0 0 Γ65 = cj
e
cj

(1 + e
cj )2

Γ66 = c2j
e
cj

(1 + e
cj )2



, (6.5)

and B(θ) = diag(
1

σ
B1, B2). Here, B1 =


1 0 0 0
−α2

β21

1

β21
0 0

α2
2

β2
21

−2α2

β2
21

1

β2
21

0

0 0 0 1

 and B2 =

(
1 0
−α2

β21

1

β21

)
.

6.2 Complete Class Results

In this section, we search for a complete class of locally optimal designs for the

quadratic mixed responses model. To do so, we apply Lemma 2.3.2 which requires

identifying the Chebyshev systems first. We note that if a Chebyshev system is found,

then it can be used to form other Chebyshev systems based on the next Lemma.

Lemma 6.2.1. Suppose that the set of functions {Ψ∗0, · · · ,Ψ∗k} forms a Chebyshev

system and there exists a matrix A such that A(Ψ∗0, · · · ,Ψ∗k)T = (Ψ0, · · · ,Ψk)
T with

det(A) > 0. Then, the set of functions {Ψ0, · · · ,Ψk} forms a Chebyshev system.

Proof. Let the matrix A contains the elements ai,j for i, j = 0, · · · , k, then we

have Ψi(c) =
∑

j ai,jΨ
∗
j(c) for D1 ≤ c0 < · · · < ck ≤ D2, and cj ∈ [D1, D2].

Since the set of functions {Ψ∗0, · · · ,Ψ∗k} forms a Chebyshev system, it follows that

det[(Ψ∗j(c))i,j=0,··· ,k] > 0. Thus, det[A(Ψ∗j(c))i,j=0,··· ,k] = det[A]det[(Ψ∗j(c))i,j=0,··· ,k] >

0. With det(A) > 0, then the conclusion of the set {Ψ0, · · · ,Ψk} forming a Chebyshev

system follows.

Lemma 6.2.2. The set of functions {Ψ∗0 = 1,Ψ∗1 =
e2cj

(1 + ecj)2
,Ψ∗2 =

ce2cj

(1 + ecj)2
,Ψ∗3 =
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c2e2cj

(1 + ecj)2
,Ψ∗4 =

−ecj
1 + ecj

,Ψ∗5 =
−cecj
1 + ecj

,Ψ∗6 =
−c2ecj

1 + ecj
,Ψ∗7 = c,Ψ∗8 = c2,Ψ∗9 = c3,

Ψ∗10 = c4} forms a Chebyshev system.

Proof. Using the definition for fl,l’s in (2.6), f1,1 =
2e2c

(1 + ec)3
, f2,2 = 1 +

ec

2
, f3,3 =

2 +
2ec

(2 + ec)2
, f4,4 = 2

2e−c + 1

(4 + ec)2
, f5,5 = 1 +

ec

4
, f6,6 = 2, f7,7 = 4e−c, f8,8 = 2,

f9,9 =
21

4
ec + 3(ec − 1)2. It is clear that fl,l > 0 ∀c ∈ R where l = 1, · · · , 9.

f10,10 = 4
321e2c − 26e3c + 16e4c − 26ec + 16

(4e2c − ec + 4)2
> 0 ∀c ∈ R by Proposition 4 found

in the Appendix. Thus, F (c) =
10∏
l=1

fl,l = 24[8 + 27
11− 4cosh(c)

(1 + cosh(c))(8cosh(c)− 1)
] > 0. Accord-

ing to Proposition 4 found in Yang and Stufken (2012), the conclusion of the Ψ sets

forming Chebyshev systems follows.

From the C matrix in (6.5), the number of independent Γij functions that is used

to form a Chebyshev systems are k = 10. We then have the following complete class

results:

Lemma 6.2.3. For a quadratic mixed responses model, where k = 10, {Ψ0,Ψ1 =

Γ12,Ψ2 = Γ13,Ψ3 = Γ14,Ψ4 = Γ24,Ψ5 = Γ34,Ψ6 = Γ55,Ψ7 = Γ56,Ψ8 = Γ66,Ψ9 = Γ23}

and {Ψ0,Ψ1 = Γ12,Ψ2 = Γ13,Ψ3 = Γ14,Ψ4 = Γ24,Ψ5 = Γ34,Ψ6 = Γ55,Ψ7 = Γ56,Ψ8 =

Γ66,Ψ9 = Γ23,Ψ10} form a Chebyshev system, where Ψ0 = Γ11 = 1 and Ψ10 = Γ33.

Proof. Note that: Ψ0 = Ψ∗0,Ψ1 = Ψ∗7,Ψ2 = Ψ∗8,Ψ3 = Ψ∗0 + Ψ∗4,Ψ4 = Ψ∗5 + Ψ∗7,Ψ5 =

Ψ∗6 + Ψ∗8,Ψ6 = −Ψ∗1 −Ψ∗4,Ψ7 = −Ψ∗2 −Ψ∗5,Ψ8 = −Ψ∗3 −Ψ∗6,Ψ9 = Ψ∗9, and Ψ10 = Ψ∗10.

Based on Lemma 6.2.1 and Lemma 6.2.2, the set of functions {Ψ0,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,

Ψ6,Ψ7,Ψ8,Ψ9,Ψ10} forms a Chebyshev system.

Theorem 6.2.4. Under a quadratic mixed responses model the designs with at most

six support points, including the two endpoints of the design region, form a complete

class.
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Proof. Based on Lemma 6.2.2 and Lemma 2.3.2 part(c), where k = 10 and n∗ =
k

2
= 5

implies that the designs with at most 6, n∗ + 1, support points, including both end-

points of the design region. Which implies that for any design ξ = {(cj, wj), j =

1, · · · ,m} with m ≥ 6, we can find a design ξ∗ = {(c∗j , w∗j ), j = 1, · · · , 6} so that
6∑
j=1

w∗jΨk(c
∗
j) =

N∑
j=1

wjΨk(cj), k = 0, · · · , 9 and
6∑
j=1

w∗jΨ10(c∗j) ≥
N∑
j=1

wjΨ10(cj) is satis-

fied. Then we conclude that M(ξ∗, θ) ≥M(ξ, θ) and identify the complete class.

6.3 Model With Group Effects

To make the quadratic mixed responses model in (6.1) more practical, we can

include additional qualitative factors for group effects. As in Chapter 4, the total

number of groups formed by the L qualitative factors is s = s1s2 · · · sL, where sl

is the number of levels of the lth factor and (ylj, zlj) denotes the response vector

of a subject in the lth group having continuous explanatory variables x. Then the

quadratic mixed responses model can be expressed as:

ylj |zlj ∼ N(fT1 (l, xlj)θ1 = α1l + β11xlj + β12x
2
lj + γzlj , σ

2), for, zlj = 0, 1,

and

P (zlj = 1|x) = P(fT2 (l, xlj)θ2 = α2l + β21xlj).

(6.6)

Here, fT1 (l, xlj) = (eTl , xlj , x
2
lj , zlj)

T , fT2 (l, xlj) = (eTl , xlj), θ1 = (α1l, β11, β12, γ)T , and

θ2 = (α2l, β21)T , where αrl = (αr1, · · · , αrs)T represents the effect of the lth group in the

sub-model r = 1, 2, and el = (0, · · · , 0, 1, 0, · · · , 0)T ∈ Rs with the lth group as 1 and the

other elements as 0.

The information matrix for θ under a continuous design ξ = {(xlj , wlj), j = 1, · · · ,ml} can

be represented as:
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M(ξ,θ) =

s∑
l=1

ml∑
j=1

wlj



ele
T
l

xlj

σ2
el

x2
lj

σ2
el

Γ1(clj)

σ2
el 0

xlj

σ2
eTl

x2
lj

σ2

x3
lj

σ2

xlj

σ2
Γ1(clj) 0

x2
lj

σ2
eTl

x3
lj

σ2

x4
lj

σ2

x2
lj

σ2
Γ1(clj) 0

Γ1(clj)

σ2
eTl xlj

Γ1(clj)

σ2

x2
lj

σ2
Γ1(clj)

Γ1(clj)

σ2
0

0 0 0 0 Γ2(clj)f2(xlj)f
T
2 (xlj)


. (6.7)

Here, clj = α2l + β21xlj , Γ1(clj) =
1

(1 + eclj )
, and Γ2(clj) =

eclj

(1 + eclj )2
.

The previously obtained complete class for the quadratic mixed responses model

can be extended to the current model group effects. Theorem 6.3.1 gives the result

for the complete class for the quadratic mixed responses model that includes group

effects.

Theorem 6.3.1. For mixed responses model (6.6), a complete class of locally optimal

designs can be formed by designs that contain at most six support points, including

the two endpoint of the design space in each group.

Proof. The same arguments used to proof Theorem 4.3.1 can be adopted in proofing

this result.

6.4 Numerical Results

The results of the complete class in the previous section has provided a great

reduction in the search for the optimal design under the quadratic mixed responses

model. This finding helps to limit the number of support points required for searching

for an optimal design. With the current quadratic mixed responses model, we did

face the same difficulties as in the case of the previously studied Model II. Thus, the

hybrid PSO-FM algorithm proposed and described in Chapter 5 is again used for

the search of the locally optimal design. For the fmincon solver the decision vector
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is set to ξ0 = {c2, c3, c4, c5, w1, w2, w3, w4, w5, w6}. The initial points ci, i = 2, · · · , 5,

are imported from the preceding PSO search. The fmincon solver may report an

optimal design that has design points with very small weights or design points that

are essentially the same. Thus, the design points with very small weights will be

discarded, and the design points that are similar will be combined. Lastly, the locally

optimal design obtained is verified by the general equivalence theorem.

We now search for the D-optimal designs by setting θ2 = (α2 = 2, β21 = 1)

and σ2 = 1. Our results are represented in Table 6.1, where we consider different

design spaces. As shown from the table, we obtain 4 and 5 support points designs for

different design spaces. When the induced design region is all negative [−24,−4], or

all positive [4, 24], we have 4 support points including the endpoints of the induced

design region. When the induced design region contains zero as [−17, 3], and [−3, 17],

we have 5 support points including the two endpoints of the corresponding induced

design region. We note when the induced design region is symmetric [−10, 10], the

optimal design is a 4 support pints symmetric design. All the designs obtained in the

table are verified by the GET.

Table 6.1: Locally D-optimal Designs Under Model (6.1) With Different Design Spaces

Design space Design space Support points(xj) Support points(cj) weights(wj)

(x) (c)

[-26,-6] [-24,-4] (-26,-16.232,-8.017,-6) (-24,-14.232,-6.017,-4) (0.1655,0.1437,0.2313,0.4595)

[-19,1] [-17,3] (-19,-10.613,-3.329,-0.841,1) (-17,-8.613,-1.329,1.159,3) (0.1636,0.066,0.3607,0.2003,0.2094)

[-12,8] [-10,10] (-12,-3.385,-0.615,8) (-10,-1.385,1.385,10) (0.1649,0.3351,0.3351,0.1649)

[-5,15] [-3,17] (-5,-3.159,-0.671,6.613,15) (-3,-1.159,1.329,8.613,17) (0.2094,0.2003,0.3607,0.066,0.1636)

[2,22] [4,24] (2,4.017,12.232,22) (4,6.017,14.232,24) (0.4595,0.2313,0.1437,0.1655)
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6.5 Case Study: Dose-Finding Experiment for Breast Cancer

In this section, we will compare our results with that of Biswas and López-Fidalgo

(2013) findings. The quadratic mixed responses model in (6.1) was considered in their

study to determine the dose, x, for a new drug called Ridaforolimus. Ridaforolimus is

a potent inhibitor of mammalian target of rapamycin known as mTOR, used to treat

patients with cancer. The efficacy which is the continuous response y in model (6.1)

is evaluated by the decrease in protein Ki67, and the toxicity is the binary response

z that determines the appearance of adverse effects in the model or not.

With milligram (mg) being the unit for measuring the amount of dose, the dose

under the experiment ranges from [0, 50]. Thus, a linear transformation was done

on the range of the dose to transform it to [0, 1]. The criterion used to search for

the optimal design is the D-optimality criterion with θ2 = (α2 = 7, β21 = −10) and

σ2 = 0.05.

Based on Theorem 6.2.4, we managed to identify the locally D-optimal design

within the complete class of designs which is reported in Table 6.2. The design

obtained by Biswas and López-Fidalgo (2013), is also presented there, and the two

designs appear to be the same. With this design, about 17.2% of patients will be

given the usual dose of dalotuzumab without any dose of the new drug. On the

other hand, around 39.7% of patients will be given 29.3934 (∼ 0.587868× 50) mg of

Ridaforolimus. About 14.4% of patients will be given 39.075 (∼ 0.781515 × 50) mg of

Ridaforolimus, and about 28.7% of patients will be given the maximum dose of 50 mg of

Ridaforolimus. The verification for our selected design can be found in Figure 6.1.

As mentioned in Biswas and López-Fidalgo (2013), when searching for the most ‘suc-

cessful’ dose for patients with cancer, the amount of doses subscribed for the patient usually

depends on other characteristics such as gender, age groups, or type of tumor and so on,

that account for the heterogeneity in the patient population. The successful dose is based
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Table 6.2: Locally D-optimal Designs Under Model (6.1) for xj ∈ [0, 1]

case Design for x ΦD = log|M−1(ξ)|

Biswas and López-Fidalgo (2013) 0 0.587868 0.781515 1

0.17174 0.396904 0.14462 0.286736

0 0.587868 0.781515 1 4.8752

Optimal design obtained 0.1717404 0.3969041 0.1446199 0.2867355

Figure 6.1: The Verification of Locally D-optimal Design for xj ∈ [0, 1]

on choosing the dose levels that provide the most effective combination of both efficacy and

toxicity. For illustration purposes, let us include the factor of gender (male or female) in

model (6.6). If we set θ2 = (α21 = 3, α22 = 1, β21 = −10, ), σ2 = 0.05, and x ∈ [0, 1], then

the locally D-optimal design selected is in Table 6.3, with ΦD(ξ∗) = log|M−1(ξ)| = 15.8356.

The result is justified by the GET and a plot of the verification is found in Figure 6.2.

Table 6.3: Locally D-optimal Designs Under Model (6.6) for xlj ∈ [0, 1]

Group Induced design space(cl) Support points(xlj) Support points(clj) weights(wlj)

1 [3,-7] (0,0.102,0.433,1) (3,1.98,-1.33,-7) (0.0347,0.1838,0.2039,0.1053)

2 [1,-9] (0,0.219,0.689,1) (1,-1.19,-5.89,-9) (0.1868,0.1307,0.0920,0.0629)

Here, we assumed that the gender factor is controllable by the experimenter, and the

optimal design obtained by the algorithm has marginal weights of around 47% for males
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Figure 6.2: The Verification of Locally D-optimal Design for xlj ∈ [0, 1]

and around 53% for female patients. However, if the experimenters have no control over

the marginal weights of the gender factor then Lemma 4.1.1 can be applied.

6.6 Discussion

In this chapter, we examine a practical quadratic mixed responses model that is useful in

the clinical trial experiments. The required number of support points based on the complete

class approach for this model was determined by at most 6-support points, including the

two boundary points of the design region. We then showed how we could extend the

quadratic mixed responses model to include the group effects. The proposed hybrid PSO-

FM algorithm was used to search for optimal designs.

As an application on our approach for finding the optimal designs, we provide a case

study about the dose-finding problem for a new drug Ridaforolimus that treats breast cancer

(Biswas & López-Fidalgo, 2013). Based on our complete class for this model, we obtain the

same D-optimal design as Biswas and López-Fidalgo (2013).
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Chapter 7

CONCLUDING REMARKS

In this dissertation, the focus was on the bivariate mixed responses data. While there has

been many models for the experiments that measure mixtures of discrete and continuous

responses, there is very little research on designing such experiments. To address this

scarcity, we provide some of our research results on identifying locally optimal designs for

some mixed responses models. We used the complete class approach that can restrict the

search for the optimal design to a small class which contains designs with a small number of

support points. The optimal design is selected based on minimizing the variance-covariance

matrix of the parameter estimates, and its optimality is verified by the GET.

In Chapter 3, we considered the simple mixed responses model, where we identified a

symmetric complete class. The complete class contained candidate symmetric designs with

at most four support points including the two endpoints. We showed how to determine

D-optimal designs within the class of symmetric designs where only one support point and

one weight are required to be determined. For implementation of our results, we considered

the constrained nonlinear algorithm, the fmincon solver in MATLAB, to search for the

D-optimal designs.

The mixed responses model with group effects was considered next and was covered in

Chapter 4 and Chapter 5. We studied the mixed responses model with group effects for two

different cases; the first case is the model that has no common parameters across subject

groups, and the second case is the model with a common parameter (i.e. the slope for x)

for all the groups. For the former Model I, we showed how the block diagonal structure

of its information matrix allows the search for the optimal design to be divided into the

search within each individual group. With this finding, the fmincon solver, and many other

algorithms were able to handle the search for the optimal designs.
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Unlike Model I, the information matrix for the latter Model II is rather complex, and the

search for the optimal design is rather involved. Thus, the hybrid optimization algorithm,

the PSO algorithm followed by the fmincon solver, was proposed to deal with these kinds of

models. The performance of the hybrid PSO-FM algorithm was shown to work well in all

the cases that we considered. The idea of combining two algorithms in this fashion was also

seen in complex situations such as in Gueorguieva et al. (2006) where a hybrid algorithm

was used to search for the D-optimal design under a multivariate response Pharmacokinetic

models.

Finally, we extended our results to a quadratic mixed responses model. The quadratic

model introduced here was used in breast cancer dose-finding experiments. We found a

complete class for the quadratic mixed responses model which was formed by designs with

at most six support points including the endpoints of the design region. Our approach also

allowed some factors such as age and sex to be included in the model.

The results we obtained in this research can serve as a guide for other similar mixed

responses models and their extensions. For future work, it would be interesting to investigate

the case where the mixed responses models with group effects contain only the main effects

and some interactions of certain order instead of the full factorial setting. Also, there is

still a lack of efficient, general, and consistent optimization algorithm that performs well for

high dimensional cases. Therefore, an important further research is to develop an algorithm

that is easy to adjust, efficient for different models, and can work for mixed responses and

mixed covariates design problems. An extension of our results to cases with two or more

continuous covariates is another challenging problem for future research.
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Proof of Lemma 3.2.2. Under a simple mixed response model in (3.1) with informa-

tion matrix defined as in (3.4), for any arbitrary design ξ = {(ci, wi),
m∑
i=1

wi = 1, i =

1, · · ·m} we can find a reflected design ξr = {(−ci, wi), i = 1, · · ·m}, and the sym-

metrized design is ξs =
1

2
(ξ+ ξr), which implies that M(ξs, θ) =

1

2
M(ξ, θ) +

1

2
M(ξr, θ)

and C̃(ξs, θ) =
1

2
C̃(ξ, θ) +

1

2
C̃(ξr, θ). Since ΦD is a convex function and both B and

C̃(ξ, θ) are nonsingular matrices, then

−log|M(ξs, θ)| ≤ −
1

2
log|M(ξ, θ)| − 1

2
log|M(ξr, θ)|

= −1

2
log|M(ξ, θ)| − 1

2
log|BGC̃(ξ, θ)GTBT|

= −1

2
log|M(ξ, θ)| − 1

2
(log|B|+ log|GC̃(ξ, θ)GT|+ log|BT|)

= −1

2
log|M(ξ, θ)| − 1

2
(log|B|+ log|C̃(ξ, θ)|+ log|BT|)

= −1

2
log|M(ξ, θ)| − 1

2
log|BC̃(ξ, θ)BT|

= −1

2
log|M(ξ, θ)| − 1

2
log|M(ξ, θ)| = −log|M(ξ, θ)|,

where G is an orthogonal matrix defined in(3.6). Thus, we can conclude that
ΦD(M(ξs, θ)) ≤ ΦD(M(ξ, θ)).

Proposition1: The function f(c) =
e5c − 4ce3c − ec

(ec + 1)2(e2c + 2cec − 1)2
> 0 for c ∈ (0,∞).

Proof. It is clear that
ec

(ec + 1)2(e2c + 2cec − 1)2
is positive for ∀c > 0. Let v(c) =

e4c− 4ce2c− 1, than the first derivative of v(c) is v
′
(c) = 4e2c(e2c− 2c− 1) = 4e2cu(c)

where, u(c) = e2c−2c−1. Clearly, 4e2c > 0 ∀c. u(c) has a root at c = 0, since u(0) = 0.
To show that u(c) > 0, suppose u(c) has two roots c1 and c2, thus u(c1) = u(c2) = 0.

From Rolle’s theorem, there exists a c3 ∈ (c1, c2) such that u
′
(c3) =

u(c2)− u(c1)

c2 − c1

= 0.

But, u
′
(c) = 2e2c−2 = 2(e2c−1) > 0 ∀c > 0. By contradiction, u(c) has only a unique

root at c = 0. Thus, v
′
(c) has only one root at c = 0. Also, for ∀c > 0 v

′
(c) is positive

since v
′
(1) = 129.72 > 0. Hence, v(c) is an increasing function for c > 0. Therefore,

we can conclude that f(c) > 0 ∀c > 0.
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Proposition2: The function f(c) =
16(cosh(c) + 1)(sinh2(c)− c2)

(2c− sinh(2c))
2 [2ccosh(c)+cosh(c) sinh(c)−

c− 2sinh(c)] > 0 for c ∈ (0,∞).

Proof. Clearly,
16(cosh(c) + 1)

(2c− sinh(2c))2
> 0 ∀c > 0. Also, sinh2(c)−c2 > 0, since sinh(c)+c >

0 ∀c > 0 and sinh(c) − c > 0 ∀c > 0. Let u(c) = 2ccosh(c) + cosh(c)sinh(c) − c −
2sinh(c), then u

′
(c) = 2sinh(c)[c + sinh(c)] = 2sinh(c)v(c). Clearly, 2sinh(c) > 0

∀c > 0. v(c) has a root at c = 0, since v(0) = 0. Suppose that v(c) has two roots c1

and c2, thus v(c1) = v(c2) = 0. From Rolle’s theorem, there exists a c3 ∈ (c1, c2) such

that v
′
(c3) =

v(c2)− v(c1)

c2 − c1

= 0. But v
′
(c) = cosh(c) + 1 > 0 ∀c. By contradiction,

v(c) has only a unique root at c = 0. Thus u
′
(c) has only one root at c = 0. Also,

for ∀c > 0, u
′
(c) is positive since u

′
(1) = 5.1126 > 0. Hence, v(c) is an increasing

function ∀c > 0. Therefore, the conclusion f(c) > 0 ∀c > 0 follows.

Proposition3: The function f(c)=
16cosh2(c/2)(c+ sinh(c))

(2c− sinh(2c))2

[
c2 − 2sinh2(c) +

csinh(2c)

2

]
>

0 for c ∈ (0,∞).

Proof. Clearly,
16cosh2(c/2)(c+ sinh(c))

(2c− sinh(2c))2
∀ c > 0. Let u(c) = c2 − 2sinh2(c) +

csinh(2c)

2
. Taking first, second, third, and fourth derivatives of u(c) yields: u

′
(c) = c−

3

2
sinh(2c)+2ccosh2(c), u

′′
(c) = 2csinh(2c)−4sinh2(c), u

′′′
(c) = 4ccosh(2c)−2sinh(2c),

and uiv(c) = 8c sinh(2c), respectively. It is clear that uiv(c) > 0 ∀c > 0. u
′′′

(c) has
a root at c = 0 since u

′′′
(0) = 0. Suppose that u

′′′
(c) has two roots c1 and c2, thus

u
′′′

(c1) = u
′′′

(c2) = 0. From Rolle’s theorem, there exists a c3 ∈ (c1, c2) such that

uiv(c3) =
u
′′′

(c2)− u′′′(c1)

c2 − c1

= 0. But, as shown above, uiv(c) > 0 ∀c > 0.Thus u
′′′

(c)

has only a unique root at c = 0. Also, for c > 0 u
′′′

(c) is positive since u
′′′

(1) = 7.795.
Hence u

′′′
(c) is increasing function ∀c > 0. Similarly, u

′′
(c) has a root at c = 0 since

u
′′
(0) = 0. Suppose u

′′
(c) has two roots c1 and c2, thus u

′′
(c1) = u

′′
(c2) = 0. From

Rolle’s theorem, there exists a c3 ∈ (c1, c2) such that u
′′′

(c3) =
u
′′
(c2)− u′′(c1)

c2 − c1

= 0.

However, u
′′′

(c) is proved to be positive and increasing ∀c > 0. Thus u
′′
(c) has

only a unique root at c = 0. Also, for c > 0, u
′′
(c) is positive since u

′′
(1) = 1.729.

Hence, u
′′
(c) is an increasing function ∀c > 0. Following the same procedure, u

′
(c)

has a root at c = 0 since u
′
(0) = 0. Suppose u

′
(c) has two roots c1 and c2, thus

u
′
(c1) = u

′
(c2) = 0. From Rolle’s theorem, there exists a c3 ∈ (c1, c2) such that

u
′′
(c3) =

u
′
(c2)− u′(c1)

c2 − c1

= 0. But u
′′
(c) is proved positive and increasing ∀c > 0.
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Thus u
′
(c) has only a unique root at c = 0. Also, ∀c > 0, u

′
(c) is positive since

u
′
(1) = 0.322. Hence, u

′
(c) is an increasing function ∀c > 0. Finally, u(c) has

a root at c = 0 since and u(0) = 0. Suppose u(c) has two roots c1 and c2, thus
u(c1) and u(c2) = 0. From Rolle’s theorem, there exists a c3 ∈ (c1, c2) such that

u
′
(c3) =

u(c2)− u(c1)

c2 − c1

= 0. But u
′
(c) is proved to be positive and increasing ∀c > 0.

Thus u(c) has only a unique root at c = 0. Also, u(c) is an increasing positive function
since u(2) = 4.982. Hence, u(c) is an increasing function ∀c > 0.
Therefore, we can conclude that f(c) > 0 ∀c > 0.

Proof of Lemma 4.1.2. By Equation (4.7),

let f(wl) =
s∑
l=1

w−ql

pl∑
i=1

λi[M
−1
l (τl)]

q, and g(wl) =
s∑
l=1

wl − 1.

Taking the partial derivatives with respect to wl for both f(wl) and g(wl), then

∂f

∂wl
= −q

s∑
l=1

w−q−1
l

pl∑
i=1

λi[M
−1
l (τl)]

q

= −q{w−q−1
1

∑
i

λi[M
−1
1 (τ1)]q + · · ·+ w−q−1

s

∑
i

λi[M
−1
s (τs)]

q},

∂(µ ∗ g)

∂wl
= µ, where µ is the Lagrange multiplier. Then set

∂f

∂wl
=
∂(µ ∗ g)

∂wl
, therefore w−q−1

1

∑
i

λi[M
−1
1 (τ1)]q = · · · = w−q−1

s

∑
i

λi[M
−1
s (τs)]

q.

For any wk,

(
w1

wk

)−q−1

=

∑
i

λi[M
−1
k (τk)]

q∑
i

λi[M
−1
1 (τ1)]q

,

then

wk = w1

{
∑
i

λi[M
−1
k (τk)]

q}1/q+1

{
∑
i

λi[M
−1
1 (τ1)]

q}1/q+1
. (A.1)

Since
s∑

k=1

wk = 1, then
s∑

k=1

w1

{
∑
i

λi[M
−1
k (τk)]

q}1/q+1

{
∑
i

λi[M
−1
1 (τ1)]q}1/q+1

 = 1,

by solving for w1 we get; w1 =

{
∑
i

λi[M
−1
1 (τ1)]q}1/q+1

s∑
k=1

{
∑
i

λi[M
−1
k (τk)]q}1/q+1

.

Substituting w1 into equation (A.1) we get
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wl =

{
pl∑
i=1

λi[M
−1
l (τl)]

q}1/(q+1)

s∑
l=1

{
pl∑
i=1

λi[M
−1
l (τl)]q}1/(q+1)

.

Proof of Lemma 4.2.3. Suppose that there exists an induced symmetric design region
for any number of groups in model (4.11). The information matrix in (4.12) can be
written as

M(ξ,θ) =
s⊕
l=1

Bl(θ)C̃l(ξ,θ)BT
l (θ),

where C̃l(ξ,θ) =

ml∑
j=1

wl,jCl(θ, clj) =
2⊕
r=0

C̃lr, C̃lr =
(

ηlr ηclr
ηclr ηc2lr

)
,

and ηlr =

ml∑
j=1

wl,jΓr(clj), ηclr =

ml∑
j=1

wl,jcljΓr(clj), ηc
2
lr =

ml∑
j=1

wl,jc
2
ljΓr(clj).

(A.2)
Based on Corollary 4.1.3 we can determine the optimal conditional measures sep-

arately, by working with the block information matrix that corresponded to the
group with the symmetric induced design region. Hence, The information matrix
for a conditional measure for group l is M(τl,θ) = Bl(θ)C̃(τl,θ)BT

l (θ). Therefore,

ΦD = det(M(τl,θ)) = |Bl(θ)||C̃(τl,θ)||BT
l (θ)|, note that the selection of the design

is not affected by the Bl matrix. Then,

|C̃(τl,θ)| = |C̃l0||C̃l1||C̃l2| =
2∏
r=0

|C̃lr|, where |C̃lr| = ηlr ∗ ηc2
lr − (ηclr)

2.

Using Hadamard Inequality, which states that the determinant of a matrix is less
than or equal to the products of its diagonal entries. Thus,
|C̃(τl,θ)| = |C̃l0||C̃l1||C̃l2| ≤ |C̃l0||C̃l1| ∗ ηl2 ∗ ηc2

l2

= [ηl0 ∗ ηc2
l0 − (ηcl0)2] ∗ [ηl1 ∗ ηc2

l1 − (ηcl1)2] ∗ ηl2 ∗ ηc2
l2.

Based on Theorem 3.2.4 where we showed that under a simple mixed response model,
the equality holds between any symmetric conditional measure τl and the optimal
symmetric conditional measure τ ∗l based on equations given in (2.8). With the as-
sumption that the lth group has a symmetric induced design range, thus the sym-
metric optimal conditional measure has the form {(−Dl, w1|l = wlD), (−cl, w2|l =
wlc), (cl, w3|l = wlc), (Dl, w4|l = wlD)}, with the weights wlD for the points ±Dl,
and wlc for the points ±cl. Using the fact that Γ0(clj) + Γ1(clj) = 1,Γ0(−clj) =
Γ1(clj),Γ1(−clj) = Γ0(clj), and Γ2(clj) is an even function, then the following can be
computed as:

113



|C̃l0| =[ηl0 ∗ ηc2
l0 − (ηcl0)2]

={wlD[Γ0(−Dl) + Γ0(Dl)] + wlc[Γ0(−cl) + Γ0(cl)]}×
{wlDD2

l [Γ0(−Dl) + Γ0(Dl)] + wlcc
2
l [Γ0(−cl) + Γ0(cl)]}−

{wlDDl[Γ0(Dl)− Γ0(−Dl)] + wlccl[Γ0(cl)− Γ0(−cl)]}2,
={wlD[Γ1(Dl) + Γ0(Dl)] + wlc[Γ1(cl) + Γ0(cl)]}×
{wlDD2

l [Γ1(Dl) + Γ0(Dl)] + wlcc
2
l [Γ1(cl) + Γ0(cl)]}−

{wlDDl[Γ0(Dl)− Γ1(Dl)] + wlccl[Γ0(cl)− Γ1(cl)]}2,
=[wlD + wlc][wlDD

2
l + wlcc

2
l ]− {wlDDl[Γ0(Dl)− Γ1(Dl)] + wlccl[Γ0(cl)− Γ1(cl)]}2,

=
1

2
[wlDD

2
l + wlcc

2
l ]− {wlDDl[Γ1(Dl)− Γ0(Dl)] + wlccl[Γ1(cl)− Γ0(cl)]}2.

Similarly, for |C̃l1| =
1

2
[wlDD

2
l +wlcc

2
l ]−{wlDDl[Γ1(Dl)−Γ0(Dl)] +wlccl[Γ1(cl)−Γ0(cl)]}2.

|C̃l2| ≤ηl2 ∗ ηc2
l2

={wlD[Γ2(−Dl) + Γ2(Dl)] + wlc[Γ2(−cl) + Γ2(cl)]}×
{wlDD2

l [Γ2(−Dl) + Γ2(Dl)] + wlcc
2
l [Γ2(−cl) + Γ2(cl)]},

=4[wlDΓ2(Dl) + wlcΓ2(cl)][wlDD
2
l Γ2(Dl) + wlcc

2
l Γ2(cl)].

Hence, the upper bound for |C̃(τl,θ)| is,

|C̃(τl,θ)| ≤4{1

2
[wlDD

2
l + wlcc

2
l ]− {wlDDl[Γ1(Dl)− Γ0(Dl)] + wlccl[Γ1(cl)− Γ0(cl)]}2}2×

{[wlDΓ2(Dl) + wlcΓ2(cl)][wlDD
2
l Γ2(Dl) + wlcc

2
l Γ2(cl)]}.

(A.3)
For an appropriate chosen points of cl and Dl, and for a symmetric conditional measure

of the form {(cl1 = −Dl, w1|l =
1− wl

2
), (cl2 = −cl, w2|l =

wl
2

), (cl3 = cl, w3|l =
wl
2

), (cl4 =

Dl, w4|l =
1− wl

2
)}, the determent of |C̃(τl,θ)| = |C̃l0||C̃l1||C̃l2| can be found by substitut-

ing the symmetric conditional measure for group l directly as follows:

|C̃(τl,θ)| =4{1

4
[(1− wl)D2

l + wlc
2
l ]−

1

4
{(1− wl)Dl[Γ1(Dl)− Γ0(Dl)] + wlcl[Γ1(cl)− Γ0(cl)]}2}×

{1

4
[(1− wl)D2

l + wlc
2
l ]−

1

4
{(1− wl)Dl[Γ1(Dl)− Γ0(Dl)] + wlcl[Γ1(cl)− Γ0(cl)]}2}×

{1

4
[(1− wl)Γ2(Dl) + wlΓ2(cl)][(1− wl)D2

l Γ2(Dl) + wlc
2
l Γ2(cl)]},

=
1

24
{[(1− wl)Γ2(Dl) + wlΓ2(cl)][(1− wl)D2

l Γ2(Dl) + wlc
2
l Γ2(cl)]}×

{[(1− wl)D2
l + wlc

2
l ]− [(1− wl)Dl(Γ1(cl)− Γ0(cl)) + wlcl(Γ1(cl)− Γ0(cl))]

2}2.
Thus,

|C̃(τl,θ)| =
(El −H2

l )2

24

{
[(1−wl)Γ2(Dl)+wlΓ2(cl)][(1−wl)D2

l Γ2(Dl)+wlc
2
l Γ2(cl)]

}
. (A.4)

Where El = (1−wl)D2
l +wlc

2
l , and Hl = (1−wl)Dl(Γ1(Dl)−Γ0(Dl))+wlcl(Γ1(cl)−Γ0(cl)).

Therefore, the proposed symmetric conditional measure for group l reached the upper bound
in equation (A.3).
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Proposition4: The function f(c) = 4
321e2c − 26e3c + 16e4c − 26ec + 16

(4e2c − ec + 4)2
> 0 ∀c ∈ R.

Proof. f
′
(c) =

144 sinh(c)[16 sinh2(c/2)− 119]

[16 sinh2(c/2) + 7]3
. The critical points of f(c), zeros of

f
′
(c), are -∞, 0, and ∞. f(−∞) = f(∞) = 4, which is a minimum points for f(c),

and f(0) = 24.5714, which is a maximum points for f(c), so, 4 < f(c) ≤ 24.5714.
Therefore, f(c) > 0 ∀c ∈ R.
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