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ABSTRACT

For the last 50 years, oscillator modeling in ranging systems has received considerable

attention. Many components in a navigation system, such as the master oscillator

driving the receiver system, as well the master oscillator in the transmitting system

contribute significantly to timing errors. Algorithms in the navigation processor must

be able to predict and compensate such errors to achieve a specified accuracy. While

much work has been done on the fundamentals of these problems, the thinking on said

problems has not progressed. On the hardware end, the designers of local oscillators

focus on synthesized frequency and loop noise bandwidth. This does nothing to

mitigate, or reduce frequency stability degradation in band. Similarly, there are not

systematic methods to accommodate phase and frequency anomalies such as clock

jumps. Phase locked loops are fundamentally control systems, and while control

theory has had significant advancement over the last 30 years, the design of time-

keeping sources has not advanced beyond classical control. On the software end,

single or two state oscillator models are typically embedded in a Kalman Filter to

alleviate time errors between the transmitter and receiver clock. Such models are

appropriate for short term time accuracy, but insufficient for long term time accuracy.

Additionally, flicker frequency noise may be present in oscillators, and it presents

mathematical modeling complications. This work proposes novel H∞ control methods

to address the shortcomings in the standard design of time-keeping phase locked loops.

Such methods allow the designer to address frequency stability degradation as well

as high phase/frequency dynamics. Additionally, finite-dimensional approximants of

flicker frequency noise that are more representative of the truth system than the

tradition Gauss Markov approach are derived. Last, to maintain timing accuracy in

a wide variety of operating environments, novel Banks of Adaptive Extended Kalman

Filters are used to address both stochastic and dynamic uncertainty.
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Chapter 1

INTRODUCTION

1.1 Introduction

With the advent of Global Navigation Satellite Systems (GNSS) [15], ranging

receivers have received considerable attention over the last 30 years. Such systems

allow for 24/7 full earth coverage, where a ground (or space) user can use a receiver

to determine their current position, velocity and time. Spacecraft based navigation

systems are fundamentally ranging systems - a system where the spacecrafts position,

velocity, time and a known (sometimes) repeating sequence is appended to a radio-

frequency (RF) signal. The ranging system searches the sky for such signals. Once

a signal is found, a local time-stamp is computed and compared against the time-tag

of the transmitted signal. This process is known as time of arrival (TOA) estimation.

If time offsets between the transmitter system and the receiver system didn’t exist,

visibility of just 3 satellites would be necessary to produce a position, velocity and

time (PVT) solution of the receiver system, using the distance formula. However,

time-offsets between the time-keeping systems of both the transmitting spacecraft and

receiver are always different, even if the atomic clocks or crystal oscillators driving

the systems are physically identical. This is due to many reasons: (1) oscillators and

atomic clocks are fundamentally driven by stochastic processes, even if environmental

conditions are identical as well, from a mathematical perspective, different process

and measurement noise seeding can create small differences, (2) environmental effects,

such as temperature and vibration and (3) physically different clocks, which have

varying degrees of accuracy. The presence of this time-offset makes it so that at least
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4 navigation satellites must be present to determine a PVT solution, mathematically,

this looks like

cρi =
√
(xi

Tx − xRx)2 + (yiTx − yRx)2 + (ziTx − zRx)2 +∆t, for i = 1, .., 4 (1.1)

Where c is the speed of light, and cρi is called the range, or pseudo-range, which

just means the true range with a time-offset. Uncompensated time-offsets in range

based navigation systems are catastrophic as a small time error leads a very large po-

sition error. For example, a nanosecond timing error leads to a 30 cm position error,

whereas as a millisecond timing errors leads to a 300 km range error. Thus, the mod-

eling and compensation of the atomic clocks and or oscillators noise characteristics is

paramount, especially in applications that require high accuracy.

It must be stated that GNSS constellations are not the only ranging systems

[34]. Ground based triangulation has been used for decades. One such example are

pseudolites - ground based transmitters that transmit a signal either identical or

similar in structure to that of the GNSS systems. The physics are fundamentally the

same, and can be visualized in figure 1.1 Moreover, many different systems use the

GNSS system for strictly time-keeping purposes. Gas stations, banks and registers

at many retail companies use GPS time for transactions. With 5G technology on

the horizon, GNSS “time-keeping” only receivers will become more prominent. Such

receivers will be at every 5G cell-phone tower, and will need to compute time based

off a ranging signal from a single satellite [7]. The GPS 1 PPS standard allows for

nanosecond timing accuracy [35].
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This thesis strives to provide systematic methods for modeling, simulating, and

estimating atomic clocks, crystal oscillators and all local oscillators relevant to pre-

cision time-keeping and ranging. In addition to this, novel Kalman Filter methods

are proposed which produce reliable estimates that are robust to environmental dif-

ferences.

TX Ranging Signal

∼ cos(2πFctTX + ϕTX(t))
RX Ranging Signal

∼ cos(2π(Fc + Fd)(tTX − TOA) + ϕTX(t)± 2πk) + n(t)

distance = c× TOA

TOAmeas ≈ TOA+ 1
2πFc

(ϕTX − ϕRX)

TX RX

Figure 1.1: Standard Ranging System: The transmitted signal is initially offset in

phase, and hence time because of the inherent noise characteristics of its Master

Oscillator, denoted ϕTX)(t). This problem is exacerbated at the receiver, and the

time error between the systems oscillators appears in the TOA estimate as ϕTX−ϕRX
2πFc

.
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1.2 Contributions

The work herein this thesis strives to provide a holistic solution to timing degra-

dation in ranging systems. In short, the novelty of this work is the following

• Systematic numerical procedures to generate realistic Oscillator noise

• Local Oscillators that minimize frequency stability degradation using the H∞

control methodology

• Phase Locked Tracking Loops that are robust to high dynamics such as phase

and frequency anomalies and clock jumps using the H∞ control methodology

• Self Tuning Extended Kalman Filters with multiple layers of adaption, that

allows for the maintenance of high accuracy in the presence of different noise

characteristics and clock dynamics

• Systematic strategies for approximating and compensating colored noise con-

stituents

this approach attacks timing and navigation accuracy from both a software and hard-

ware perspective, empowering practitioners with previously unestablished computa-

tionally efficient “knobs” to achieve many different specifications. As such, the num-

ber of iterations in the design of range based navigation systems is decreased.

1.3 Background

Modern Control Theory is almost entirely untouched in wireless communications

systems. While the work in this thesis focuses entirely on communications based

navigation, the general communications systems community could benefit from the

advances in control theory. Every communication system is driven by either an atomic

clock or a crystal oscillator. This can be visualized in figure 1.2.
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Master
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Sample
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Converter

A/D

Converter

LPF or

BPF

Doppler

and Phase

Estimation

Signal

Acquistion

Position,

V elocity, T ime

Estimation

Figure 1.2: Topology of A Typical Wireless Communications System: The received

signal is either bandpass or low-pass filtered. It then is downconverted to a lower

frequency signal. This downconverted signal is generated by a phase locked loop

driven by the Master Oscillator. Additionally, the master clock drives the sample

clock, which then drives the analog-to-digital converter (ADC). Once the signal is in

the digital domain, signal acquisition/detection algorithms are used to identify the

signal, and doppler/phase tracking loops are used to remove the residual carrier wave,

and potentially a pseudo-random code.

It must be noted that the sample clock, downconverter and tracking loops (doppler

and phase estimation block) are all fundamentally control systems. In the case of the

downconverter and sample clock, the Master Oscillator is converted to a typically

higher frequency via a phase-locked loop. The topology of a typical phase locked

loop is demonstrated in figure 1.3. From a control-systems perspective, the loop filter

is the controller, traditionally denoted in the controls literature as K.

5



While the system to be controlled, the plant, P , is a Voltage Controlled Oscillator

(VCO). In addition to inheriting all of the noise inherent to the reference frequency,

the VCO has it’s own noise constituents. These characteristics are typically that of

a “flicker plus floor” term. To be more rigorous, these terms are known as White

Frequency Noise (WPN), White Phase Noise (WPN), and Flicker Frequency Noise

(FFN). These constituents will be discussed more thoroughly in Chapters 3 and 4.

As such, the in-band noise of the system is strictly worse. The design standard

has been, historically, to design for loop noise bandwidth. The work in [13] has

provided formulas that allow for the achievement of a designer specified loop noise

bandwidth, when the Loop Filter architecture is that of a PI, PID, or double integrator

PI controller. Ad hoc methods are often used to add a notch filter in series with the

loop filter, to address spurious modes. Alternatively, synthesizer designers often use

classical control to design for bandwidth and phase margin. The limitation of both

approaches is that many more performance metrics are paramount to phase locked

loop performance and stability. There are many closed-loop transfer functions that

impact the bottom-line synthesized frequency. For example, the transfer function

from VCO input noise (qFFN input) to synthesized frequency, and its corresponding

frequency domain characteristics significantly impact the synthesized frequency - yet

nothing in the literature addresses this. This transfer function has a bandpass shape,

and if not addressed, can have very large amplification in the pass-band. If this

transfer function is addressed explicitly, it can attenuate FFN for all frequency. Since

the in-band noise of a frequency produced by a phase locked loop is always worse

than it’s reference frequency due to the VCO’s noise characteristics, it is desirable to

have a framework by which this degradation can be minimized, or traded-off against

other design metrics. The work in this thesis provides a framework to shape any

closed-loop transfer function using both the Generalized H∞ Method, and the fixed
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order H∞ method. This allows the designer to tradeoff between different closed loop

bandwidth, margins and filter properties. Since the loop filter order can be specified,

it can be implemented using op-amps and RLC circuit components.

In the digital domain, doppler and phase estimates are computed using Frequency

Locked Tracking Loops and Phase Locked Tracking loops. The purpose of such loops

is to determine the residual doppler frequency and phase offsets due to relative dy-

namics between the receiver and the transmitter. In such cases, the VCO is replaced

with a Numerically Controlled Oscillator (NCO). Once the tracking loop converges,

it allows for the residual carrier wave to be wiped off the signal, such that only the

transmitted data-bits or additional signal components are present. In high dynamics

scenarios, such as space-to-space communications or space-to-aircraft, Doppler and

phase-offset fluctuations are significant. If a frequency step (phase ramp) is present in

the received signal, classical control-theory, via the internal model principle dictates

that there must be a double integrator in the loop filter to track with zero steady-state

error. This is highest dynamic scenario addressed in the literature [Gardner] - with a

caveat that the bandwidth must be less than 25 Hz to maintain stability. However,

there are situations with even more exotic dynamics, such as frequency accelerations,

which lead to cubic phase dynamics. The literature does not currently address this

scenario. Similarly, clock jumps and other anomalies may create even higher dynam-

ics, which are also not addressed in the communications systems literature. The H∞

methodology also allows for these instances to be directly addressed.

The previously described ranging system components work to produce a crude

time-of-arrival, or ranging estimate. However, the in-band noise remains uncompen-

sated. The fundamental tool used to address the remaining in-band noise sources,

and produce a PVT solution is the Kalman Filter. Figure 1.4 shows a high-level block

diagram of this process.The standard approach to address time-offsets is to append
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Figure 1.3: Topology of A Typical Phase Locked Loop: A reference frequency comes

from the master oscillator, and goes into the closed loop system. This system is

inherently non-linear, as two sinusoids enter the system, the phase detector performs

a non-linear operation to compute the phase difference between the Voltage Controlled

Oscillator (VCO) and reference frequency. The VCO is driven to a multiple of the

frequency frequency, denoted by M .

one or two clock states - time offset and its derivative (can alternatively be interpreted

as phase drift and fractional frequency off-set)to a Kalman Filter, in addition to the

more deterministic ranging dynamics. Such an approach is valuable for short term

stability, or short term timing accuracy, but is insufficient for longer term stability.

The PVT solution from a Kalman Filter is only as good as its measurements, and

the models therein.

In this thesis the methods introduced in [5, 27, 25, 26] are combined to create an

adaptive filtering framework to compensate for colored noise.
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1.4 Organization

This thesis is organized as follows. Chapter 2 introduces a standard three-state

model of an atomic clock or a crystal oscillator. Additionally, the Allan Variance (AV)

characterization of oscillators is introduced and married with the state equations.

Oscillators have a colored noise component that is difficult to approximate and hence

model. As such Chapter 3 addresses the challenges and realizations associated with

modeling and filtering of colored noise present in oscillators. Chapter 4 discusses

a brief history of Kalman Filters, and marries existing techniques to create a new

methodology that is insensitive to modeling and noise uncertainty. Chapter 5 shows

how to integrate an oscillator model into a non-linear navigation filter. Monte Carlo

simulations are used to validate the proposed adaptive filters.Chapter 6 applies the

Generalized and Fixed Order H∞ methodologies to address the design of phase locked

loops. The previously described chapters are encapsulated in Chapter 7, which is the

conclusion.
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Figure 1.4: Topology of A Typical Communications Based Ranging System: Once the

signal is downconverted and digitized, and residual frequency abnormalities due to

relative dynamics are resolved, the measurements produced by the system - typically

range or time-of-arrival, are fed into a Kalman Filter, which provides a PVT solution.
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Chapter 2

OSCILLATOR MODELING

2.1 Standard Oscillator Model

Oscillator modeling has received considerable attention over the last 50 years

[37, 36, 9, 32, 14]. Either an atomic clock or crystal oscillator is used as a timing

reference. Pulses are measured and counted to create a precise time-keeping source.

The fundamental mathematical description of a timing reference has historically been

the following

V (t) = (Vo + ϵ(t)) sin (2πfot+ ϕ(t)) (2.1)

where Vo is the actual amplitude, ϵ(t) is additive noise on the amplitude, and fo is

the actual frequency. From this relation, several fundamental quantities are derived.

The first is the instantaneous phase (Φ(t))

Φ(t) = 2πfot+ ϕ(t) (2.2)

Frequency is the derivative of phase, hence the instantaneous frequency is

dΦ

dt
= 2πfo +

dϕ

dt
(2.3)

Now the accumulated timing error can be defined as ϕ(t)
2πfo

. Moreover, ϕ(t) can be

interpreted as time domain phase noise. In the case of ranging communications, fo

is typically the carrier frequency, Fc. In order to model, predict and estimate an

oscillators phase degradation, state space methods are used. The standard model is
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shown in block diagram form in figure 2.1. This is a 3-state model, which produces

a quadratic function in time. Tables 2.1 and 2.2 summarize the states and noise

constituents.

1
s

ḟo,N (0, qRRFN )

1
s

fo,N (0, qRWFN )

1
s

ϕo,N (0, qWFN ), f(N (0, qFFN ))

freq accl, ẋ3 x3, freq drift , ẋ2 x2, freq, ẋ1 phase, y = x1

Figure 2.1: Three State Oscillator Drift Model - a standard model to characterize

oscillator drift. The standard in GPS Kalman Filters is to use a lower order, two

state model, emphasizing short term stability [19]. This model includes a third state,

which can interpreted as frequency drift, and allows for the modeling of long term

errors as well as short term [8].

Similarly, this model [8] can be captured in a state-space equation form, upon dis-

cretization, as in equation 2.5
x1
k+1

x2
k+1

x3
k+1

 =


1 Ts

T 2
s

2

0 1 Ts

0 0 1



x1
k

x2
k

x3
k

+


1 0 0

0 1 0

0 0 1



uWFN + uFFN

uRWFN

uRRFN

 (2.4)

y =

[
1 0 0

]
x1
k+1

x2
k+1

x3
k+1

+ uWPN (2.5)

where the u’s represent time series datum for the noise constituents present in both the

process and the measurement. If the FFN term is included, the Kasdin Approximation

[20] is typically used to generate, and hence simulate colored noise. The problem with

such an approach is that it doesn’t have a straight forward state-space realization and

relies on batch process techniques. This allows for designers to accurately characterize

a clock, but not reduce it’s impact on timing degradation. Either vendor data on
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the Allan Variance [2], or experiments using special test equipment can be used to

generate Allan Variance data, which can then be used to compute the process noise

covariance matrix through an iterative simulation process, which has the following

form,

Qk(Ts) =


σ2
WFNTs +

1
3σ

2
RWFNT 3

s + 1
20σ

2
RRFNT 5

s
1
2T

2
s σ

2
RWFN + 1

8σ
2
RRFNT 4

s
1
6σ

2
RRFNT 3

s

1
2T

2
s σ

2
RWFN + 1

8σ
2
RRFNT 4

s σ2
RWFNTs +

1
3σ

2
RRFNT 3

s
1
2σ

2
RRFNT 2

s

1
6σ

2
RRFNT 3

s
1
2σ

2
RRFNT 2

s σ2
RRFNT 2

s


(2.6)

where it is against noted that the noise constituents are described in table 2.2.

Table 2.1: Three State Oscillator Model Description.

State Physical Meaning Unit

x1 Phase cycle

x2 Freq Hz

x3 Freq Drift Hz/s

Table 2.2: Three State Oscillator Model Noise Constituents.

Constituent Physical Meaning Unit

WFN White Frequency Noise Hz

WPN White Phase Noise Cycle

FFN Flicker Frequency Noise Hz/s

RWFN Random Walk Frequency Noise Hz/s

RRFN Random Run Frequency Noise Hz/s/s

The modeling of the FFN requires special attention and more discussion. Flicker

Frequency Noise (FFN) is fundamentally a medium to long term instability that is
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not physically understood, but consistently observed in clocks [30]. The FFN noise

constituent is characterized by colored noise with transfer function 1√
s

and power

≈ 1
|ω| . This noise source is often called pink noise, or 1

f
noise.The transfer function

is infinite dimensional, irrational, and thus must be approximated in order to be

simulated and incorporate in a state estimator, like a Kalman Filter [32]. Additionally,

this transfer function has singularities at ω = 0 (infared catastrophe) and ω = ∞

(ultraviolet catastrophe). The work in [32] has described these theoretical as nothing

more than “mental annoyances” - precision of instruments prevents the observation

ω = 0 and ω = ∞. So the behavior at singularities only matter if you want a model

accurate for infinite time. The most common state-space approximant is the Gauss-

Markov stochastic differential equation [32, 20, 9]. These issues will be discussed

further in Chapter 3. However, it’s worth stating that colored noise states are typically

not modeled in a Kalman Filter, and the consensus among academics is that including

such states in a Kalman Filter model doesn’t make a difference in timing/positioning

accuracy [32, 20].

2.2 Allan Variance

The initial characterization of oscillator instability posed serious mathematical

challenges as the flicker noise ( 1
f
) constituent has an unbounded variance/standard

deviation as a function of averaging time [2]. An atomic clock physicist named David

Allan discovered this problem [2], and came up with a weaker definition of variation,

that converges for noise processes with frequency spectrum slopes steeper than 1
f
.

This formula is known as the Allan Variance and is a specific case of the M -sample

variance, which is defined below 2.7 The M -sample Variance is defined as

σ2
y(M,Ts, τ) =

1

M − 1


M−1∑
k=0

(
x(kTs + τ)− x(kTs)

τ

)2

− 1

M

(
M−1∑
k=0

x(kTs + τ)− x(kTs)

τ

)2


(2.7)
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Table 2.3: M-Sample Variance Equations

Parameter Definition Unit

M Number of Frequency Samples used n/a

Ts Sampling Time (s)

τ frequency estimate averaging time (s)

x phase angle radians

E Expectation Operator n/a

The parameters in equation 2.7 are defined in table 2.3 . The Allan Variance is the

expected value of the M-sample variance in the case where Ts = τ and M = 2. As

previously stated, this metric converges for processes steeper than 1
f
. This quantity

can be seen in equation 2.8 and visualized in figure 2.2.

σ2
y(τ) = E

[
σ2
y(2, τ, τ)

]
(2.8)

= E

 1

2− 1


2−1∑
k=0

(
x(kτ + τ)− x(kτ)

τ

)2

− 1

2

(
2−1∑
k=0

x(kτ + τ)− x(kτ)

τ

)2



Power Law Theory [31] presents a convenient characterization relating Allan Vari-

ance with Single Side Band Power Spectral Density of the phase fluctuation, which

is shown in figure 2.3. The Power Law approach will not be used or implemented in

this work. In practice, power spectral density plots do not possess slopes identical to

power law theory, nor do the slopes necessarily occur in the proposed order shown

in figure 2.3. The same can be said of the Allan Variance. The consequence of this

is that the power law equations do not result in PSD/AV profiles that accurately

approximate physically observed PSD and the AV profiles simultaneously [23]. The
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Figure 2.2: Allan Variance Noise Contributors - RWFN and RRFN dominate

long term fluctuations, WPN/WFN dominate the short term, and FFN dominates

“medium-to-long-term” fluctuations

work in [23] has proposed a new power law theory that attempts to address its short-

comings. As such, models and processes will be used that accurately reflect the Allan

Variance profile of a clock. Moreover, the PSD measurement is typically made with

sampling (measurement) frequencies consistent with short term stability characteri-

zation. The Allan Variance is a long-term metric. The Allan Variance is the standard

for characterizing timing sources, and is now used in other applications that involve

quantifying systems driven by integrated white noise, such as inertial measuring units

[10].
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2.2.1 Other Variance Estimators

The Overlapping Allan Variance averages blocks of size n before processing. This

is the preferred Allan Variance by NIST, and as such will be the only Allan Variance

metric used in this thesis. The Overlapping Allan Variance is superior to the standard

Allan Variance because poses a significant improvement in resolution of frequency

readings.

σ2
y(no, N) =

1

2n2τ 2o (N − 2n)

N−2n−1∑
k=0

(x(kτ + 2n)− 2x(kτ + n) + x(kτ)) (2.9)

Another method for quantifying frequency stability is the Hadamard Variance [6].

The Hadamard Variance can be interpreted as a 3-sample variance.

σ2
H(τ) =

1

τ 2(N − 3)

k=1∑
N−3

(x(kτ + 3)− 3x(kτ + 2) + 3x(kτ + 1)− x(kτ)) (2.10)

Last, there is the Modified Allan [22] and Hadamard Variance. Both of these

methods are attractive because it allows for WPN and FPN to be distinguishable

from one another.
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2.3 Sigma Diffusion Parameter Identification

Due to the limitations of the previously discussed power-law theory, and also to

avoid brute force identification of clocks, an optimization based method was devel-

oped to determine the sigma diffusion parameters. Hence, the following constrained

normalized norm minimization problem is solved

min
σRRFN,RWFN,FFN,WPN,WFN>0

{∥∥∥∥σ2
y simulated(τ)− σ2

y target(τ)

σ2
y target(τ)

∥∥∥∥} (2.11)

Where

• σ2
RRFN,RWFN,FFN,WPN,WFN are the sigma diffusion parameters/variances

• σ2
y target(τ) is Allan Variance data provided by a clock vendor

• σ2
y simulated(τ) is simulated Overlapping Allan Variance data

• σ2
y simulated(τ) is obtained from simulated phase data using the three state clock

model in equation 2.4.

Both process and measurement noise seeds must be fixed when propagating simulated

noise within the optimizer, so that the stochastic differential equations, or, in opti-

mization terms, the objective function evaluations, are identical. This allows for the

simulation and filtering of realistic clock noise. The process of solving problem 2.11

can be observed in Algorithm 1. Note that this can be used not only for simulating

clock noise, but for tuning Kalman Filters that seek to estimate phase fluctuations.

Moreover, the result can be used to initialize non-linear and adaptive Kalman Filters.

This procedure was carried out with Stratum 3E High Stability Stability Oven Sta-

bilized Oscillator OH300 Series where Ts = 10ms and Fc = 40MHz, 100s of data,2

norm, Sequential Quadratic Program, 4 logical cores, 4 physical on a intel i7 4790 us-

ing Matlabs fmincon. The results can be seen in figure 2.4. Several other approaches

exist for determining sigma diffusion coefficients, and can be found in [8, 11, 37].
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Algorithm 1: Sigma Diffusion Parameter Identification Algorithm
Initialize σRRFN,RWFN,FFN,WPN,WFN through iterative procedures;

Call Matlabs fmincon using the Sequential Quadratic Program Solver ;

Initial states to 0, or to initial phase and frequency offsets if known ;

for For each function call do

Propogate the clock states ;

for For all time do


x1
k+1

x2
k+1

x3
k+1

 =


1 Ts

T2
s
2

0 1 Ts

0 0 1



x1
k

x2
k

x3
k

+


1 0 0

0 1 0

0 0 1



uWFN + uFFN

uRWFN

uRRFN

 (2.12)

y =
[
1 0 0

]
x1
k+1

x2
k+1

x3
k+1

+ uWPN (2.13)

Create the noise time series with the process noise covariance Qk (sigma parameters selected by

optimizer) ;

Qk(Ts) =


σ2
WFNTs + 1

3
σ2
RWFNT 3

s + 1
20

σ2
RRFNT 5

s
1
2
T 2
s σ

2
RWFN + 1

8
σ2
RRFNT 4

s
1
6
σ2
RRFNT 3

s

1
2
T 2
s σ

2
RWFN + 1

8
σ2
RRFNT 4

s σ2
RWFNTs + 1

3
σ2
RRFNT 3

s
1
2
σ2
RRFNT 2

s

1
6
σ2
RRFNT 3

s
1
2
σ2
RRFNT 2

s σ2
RRFNT 2

s


(2.14)

And the measurement noise covariance R = σ2
WPN ;

end

Compute the Overlapping Allan Variance of x;

σ2
y(no, N) =

1

2n2τ2o (N − 2n)

N−2n−1∑
k=0

(x1(kτ + 2n)− 2x1(kτ + n) + x1(kτ)) (2.15)

Compute the objective function value
∥∥∥σ2

y simulated(τ)−σ2
y target(τ)

∥∥∥∥∥∥σ2
y target(τ)

∥∥∥
end
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Chapter 3

COLORED NOISE MODELING

It’s standard to include the finite-dimensional states when modeling clock fluctu-

ations, as shown in Chapter 2. However, Flicker Frequency Noise (FFN) is present in

many oscillators. As previously mentioned, FFN has a transfer function of 1√
s
, which

cannot be realized identically by a rational finite-dimensional model. Such a transfer

function is infinite dimensional, unstable and irrational. To further complicate mat-

ters, the transfer function 1√
s
|s=jω has singularities at ω = 0 and ω = ∞, which cannot

be approximated [30, 20, 9, 32]. This seemingly creates challenges as it’s desirable

to include such states in a state-estimator such as a Kalman Filter. However, it is

possible to approximate 1√
s
|s=jω for ω in a compact sub-set of the frequency domain,

[ωb, ωh]. The FFN constituent can be interpreted as white frequency acceleration

entering a system described by 1√
s
. Figure 3.1 is an oscillator model that includes

the FFN constituent explicitly. This chapter presents several methods for obtaining

finite-dimensional state-space models which approximate the FFN constituent. A

strong approximant should both mimic the behavior of 1√
s

on compact sub-sets of the

frequency domain, as well as generate a profile similar, if not identical to the Allan

Variance profile of the oscillator of interest.
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Figure 3.1: True Master Oscillator Model

One interpretation of Flicker Frequency Noise is that of Fractional Brownian motion.

White noise can be interpreted as the derivative of Brownian motion [20]:

d

dt
x(t) = w(t) (3.1)

This expression can be extended to the fractional case:

dα

dtα
x(t) = w(t), α ∈ (0, 1) (3.2)

Taking Laplace transforms of both sides of equation 3.2 gives the transfer function
1√
s
.
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3.1 The Kasdin Approximation

The most computationally straight forward process for Flicker Frequency Noise

is the Kasdin Approximation [20]. Consider the following discrete time fractional

integrator in the z-domain:

H(z) =
1

(1− z−1)
α
2

, z > 1 (3.3)

Note that the singularities associated with Laplace domain equivalent transfer

function are removed by the condition that z > 1 and the Nyquist frequency of the

discretization. A power series expansion can be used to approximate 3.3:

H(z) = 1 +
α

2
z−1 +

α
2
(α
2
+ 1)

2!
z−2 + . . . (3.4)

Note that this expression corresponds to a sum of pulses. The pulse coefficients,

for an order k approximant, can be computed as

ho = 1 (3.5)

hk = (
α

2
+ k − 1)

hk−1

k
(3.6)

This is fundamentally a FIR filter (MA), that can be easily realized with a batch

inverse FFT. Similarly, an IIR (AR) realization is made by possible by the following

equations

H(z) =
1

1− α
2
z−1 −

α
2
(1−α

2
)

2!
z−2 + . . .

(3.7)

with coefficients ak,

ao = 1 (3.8)

ak = (k − 1− α

2
)
ak−1

k
(3.9)
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The benefit of the MA approach is that it consumes less memory, can be written in

state-space and doesn’t require the simulated sequence to be a strict power of 2.

3.2 Gauss Markov Approach

The most common approach is that of a stochastic differential equation described

by a first-order Gauss-Markov approach [32, 9]. One can arrive at the same stochas-

tic differential equation, by deterministically approximating 1√
s

by using a continued

fraction expansion in conjunction with the Pade table [32]. From a systems perspec-

tive, this approximation scheme can be interpreted as a family of low-pass filters in

a parallel architecture. This topology can be observed in figure 3.2. Similarly, this

system is realized in equation form



x1
k+1

x2
k+1

x3
k+1

x4
k+1

. . .

xn
k+1


=



1 Ts
T 2
s

2
1−e−p1Ts

p1
. . . 1−e−anTs

pn

0 1 Ts 0 . . . 0

0 0 1 0 . . . 0

0 0 0 e−p1Ts
. . . . . .

... ... ... 0
. . . ...

0 0 0 0 0 e−pnTs





x1
k

x2
k

x3
k

x4
k

. . .

xn
k


+



uWFN

uRWFN

uRRFN

u1
FFN

...

un
FFN


(3.10)

y =

[
1 0 0 . . . 0

]



x1
k+1

x2
k+1

x3
k+1

x4
k+1

...

xn
k+1


+ uWPN (3.11)

Where the u’s represent time series datum for the different noise constituents.

The process noise covariance matrix is populated by the following equations
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QA =


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20σ
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2
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s σ
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1
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2
RRFNT 3

s
1
2σ

2
RRFNT 2

s σ2
RRFNT 2

s


(3.12)

q11 = σ2
FFN

n∑
j=1

n∑
m=1

(
1

pmpj

)(
Ts− (1− e−pjTs)

pj
− (1− e−pmTs)

pm
+

1− e−(pm+pj)Ts

(pm + pj)

)
(3.13)

Qm
B = σ2

FFN

n∑
j=1

(
1− e−pmTs

pm
− 1− e−(pm+pj)Ts

(pm + pj)

)
(3.14)

Qm,j
D = σ2

FFN

1− e−(pj+pm)Ts

pj + pm
(3.15)

Thus, the process noise covariance matrix is

Q(Ts) =

QA QB

QT
B QD

 (3.16)

This approach is attractive for many reasons: explicit state-transition matrix,

measurement matrix, and process noise covariance, which can conveniently be placed

in a Kalman Filter model. However, it has many parameters: the 5 noise constituents,

pole locations in the low-pass filters, and order of approximation. Moreover, it does

not contain an integrator, which limits the fidelity of the approximation in the fre-

quency domain. Moreover, the driving noise source must be interpreted as a white

frequency drift, as opposed to a frequency acceleration. The designer or simulator

must juggle 5 + N parameters, where N is the order of the Gauss-Markov approxi-

mant. While not explored in this thesis, higher order Gauss-Markov schemes can be

used.
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Figure 3.2: Master Oscillator with GM FFN Approximant
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3.3 Oustaloup Approximation

An approximant that is a more explicit representation of 1√
s

is the Oustaloup

fractional order differentiation approach [24]. This presents advantages over the tra-

ditional Gauss-Markov framework. The Oustaloup approximation is described by the

following equations

sα ≈ K

k=N∏
k=−N

s+ ω
′

k

s+ ωk

= K

k=N∏
k=−N

(
1 +

ωk − ω
′

k

s+ ωk

)
(3.17)

Where

• w
′

k = ωb(
ωh

ωb
)
k+N+0.5(1−α)

2N+1

• wk = ωb(
ωh

ωb
)
k+N+0.5(1+α)

2N+1

• K = ωα
h

This infinite product approximates sα for ω ∈ (ωb, ωh). Thus, by realizing that
1√
s
= 1

s
s

1
2 , an approximation for 1√

s
can be constructed as

1√
s
=

1

s
s

1
2 =

1

s

(
K

k=N∏
k=−N

(
1 +

ωk − ω
′

k

s+ ωk

))
(3.18)

As demonstrated by equation 3.18, this approximation scheme is a series configura-

tion of low-pass filters, which can be seen in figure 3.3. The Oustaloup Approximation

method can combined with the standard finite dimensional clock states, and turned

into a stochastic differential equation, which can be expressed in discrete time as seen

in equation 3.19
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
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(3.19)

+


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0 σRWFN 0 0

0 0 σRRFN 0
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0 0 0 σFFN
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uFFN


(3.20)

The standard for discretizing higher order stochastic systems is to create a block

matrix populated by the F and G state matrices

M =

−F GGT

0 F T

Ts (3.21)

The matrix exponential of A is the following

B = expm(M) =

. . . ϕ−1
k Qk

0 ϕT
k

 (3.22)

Thus, Qk and ϕk can be computed for simulation and estimation purposes

xk+1 = ϕkxk + wk (3.23)

yk = x1
k (3.24)

where wk ∼ N (0, Qk). The advantages of this approach is that pole locations are

given and it contains an integrator inherent to the process.
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Additionally, it is explicitly related to equation 3.2 and hence is better equipped to be

an approximate of Fractional Brownian motion. Moreover, the designer only needs to

decide the order of approximation and the compact sub-set of the frequency domain

where the expression is valid. The selection of ωb and ωl can be based on the precision

of the measurement instrument. A disadvantage of the approach is that the order

of approximation grows as 2N + 1 × 2N + 1. The 5 noise constituents still must be

determined. The parameters used in this thesis are defined in table 3.1. Figures 3.4

and 3.4 demonstrate accurate approximation at crossover, and that the estimation

error Bode plot, as expected, converges to a bowl shape, because of the singularities

at ω = 0 and ω = ∞.

Table 3.1: Oustaloup Approximation Parameters

Parameter Value

ωb 1e-7

ωh 100

b 10

d 9

α 1
2

N 10
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Figure 3.4: Bode Magnitude Plot for 1√
s

and Oustaloup Approximants of increasing

order. It appears that all approximants for N > 1 are accurate at crossover. Note

that 1√
s

crosses over at -10dB per decade.
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Figure 3.5: Bode Magnitude Plot of the error between 1√
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and Oustaloup Approxi-

mants of increasing order. Note that the approximation error transfer function con-

verges to a bowl shape because of the singularities at ω = 0 and ω = ∞.
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3.4 Colored Noise Linear Filtering For Time Keeping

It has been suggested in the literature that FFN states do not lead to a notable

increase in timing accuracy. In order to gain insight into whether or not FFN states

should be included in a Kalman Filter model, a numerical experiment was conducted.

The experiment assumes that the phase of a Master Oscillator can be measured

directly, which is not realistic, but is an academic exercise that can serve as a crude

lower bound in timing accuracy. The phase measurement is fed into a Kalman Filter,

and the noise constituents are estimated, and issued as corrections to the Master

Oscillator. This is shown in figure 3.6. The standard Iterative Kalman Filter [18]

was used, as can be seen in algorithm 2. Since the state estimates x̂k are Ts seconds

ahead of the measurement, they are issued as corrections to the Master Oscillator.

Master

Oscillator

Phase

Measurement

Kalman

Filter

ϕ(t)

cos(2πFt+ ϕ(t))

f̂(t), ̂̇f, ̂̈f
f̂FFN

Figure 3.6: Block Diagram Representation of a Kalman Filter issuing corrections

to a Master Oscillator. This is an ideal situation for illustrative purposes. The

phase measurement allows for the Kalman Filter to measure the phase of the Master

Oscillator directly. The Kalman Filter estimates the noise constituents, and issues

corrections.
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Algorithm 2: Iterative Kalman Filter Update
Initialize P0 = AϵIAT +Qo and xo =

−→
0 ;

for all k (time) do

x̂−
k = Ax̂+

k−1 ;

P−
k = AP+

k−1A
T +Qk ;

ỹk = zk − h(x−
k ) ;

Sk = HkP
−
k HT

k +Rk ;

Kk = PkH
T
k S−1

k ;

x̂+
k = x̂−

k +Kkỹ;

P+
k = (I −KkHk)P

−
k ;

end

It was found that there exists scenarios where including FFN states in a Kalman

Filter leads to an order of magnitude improvement in timing accuracy. The param-

eters that dictate whether or not such an improvement will occur are the sampling

time, and the ratio between σFFN and σRWFN , or the ratio between σFFN and σRWFN .

The three scenarios are the following

• (I) There is so much flicker noise relative to random walk and random run

that including colored noise states in a Kalman Filter will lead to an order of

magnitude increase in timing, and hence ranging accuracy, which can be seen

in figures 3.7 and 3.8

• (II) There is a decent amount of flicker noise, but also a decent amount of

random walk/random run - the consequence of this is that including colored

noise states in the Kalman Filter lead to an order of magnitude increase in

timing accuracy over a period of hours, but don’t make a difference in a long

term average sense. May be useful when you need high accuracy immediately,

which can be seen in figures 3.9 and 3.10
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• (III) The RRFN and RWFN dominate such that modeling FFN states in the

Kalman Filter leads to no improvement, which can be seen in figures 3.11 and

3.12

The σ diffusion coefficients used in these numerical experiments can be found in

table 3.2

Table 3.2: 3+2N+2 State Oscillator Model Noise Constituents.

Constituent Case I Case II Case III

WFN 2.6e-4 Hz 2.6e-4 Hz 2.6e-4 Hz

WPN 0.02 Cycle 0.02 Cycle 0.02 Cycle

FFN 9e-4 Hz/s 9e-4 Hz/s 9e-4 Hz/s

RWFN 1e-14 Hz/s 1e-13 Hz/s 1e-11 Hz/s

RRFN 1e-15 Hz/s/s 1e-14 Hz/s/s 1e-12 Hz/s/s

These σ diffusion coefficients were nominally found using algorithm 1, and the Al-

lan Variance data comes from the Stratum 3E High Stability Stability Oven Stablized

Oscillator OH300 Series. The sampling time is Ts = 10 ms and the carrier frequency,

Fc is 40 MHz.

3.4.1 Determining Order of Approximation

A critical question when dealing with infinite-dimensional systems, such as the

Flicker Frequency noise constituent, is what the order of the approximation scheme

needs to be. Figures 3.13, 3.14, 3.15 and 3.16 demonstrate that at most N = 2

is necessary to get roughly an order of magnitude increase in timing accuracy in a

Kalman Filter. This corresponds to a 3 + 2(1) + 2 = 7 order Kalman Filter model.

However, it’s possible that N = 1 is enough, which corresponds to a 3 + 2(2) + 2 = 9
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Figure 3.7: Allan Variance Plot of the Nominal Master Clock, the Master Clock with

corrections from the finite-dimensional clock model in the Kalman Filter, and the

master Clock with corrections from the Kalman Filter including FFN states. Here

the order of the Kalman Filter is the same as that of the generating Master Clock

model, N = 10. It’s seen that the corrected clocks have significantly better frequency

stability than the nominal clock over a day.

order Kalman Filter model. It’s worth noting that an exceptional amount of Flicker

Frequency noise is present in the examples shown in figures 3.15 and 3.16. This

example, while perhaps not realistic, was selected as it serves as a worst scenario. If

more Flicker Frequency noise is present, it stands to reason that a higher order model

may be necessary, as a wider array of averaging times are effected.
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Figure 3.8: Accumulated Timing Error of the the Master Clock with corrections from

the finite-dimensional clock model in the Kalman Filter, and the master Clock with

corrections from the Kalman Filter including FFN states. Here the order of the

Kalman Filter is the same as that of the generating Master Clock model, N = 10.

It’s seen that the Kalman Filter that includes colored noise states has an order of

magnitude improvement in mean accumulated timing error over a day.
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Figure 3.9: Allan Variance Plot of the Nominal Master Clock, the Master Clock with

corrections from the finite-dimensional clock model in the Kalman Filter, and the

master Clock with corrections from the Kalman Filter including FFN states. Here

the order of the Kalman Filter is the same as that of the generating Master Clock

model, N = 10. It’s seen that the clock containing colored noise corrections has

significantly better frequency stability than the clock without for roughly 2.5 hours,

but over a day the average is roughly the same.
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Figure 3.10: Accumulated Timing Error of the the Master Clock with corrections

from the finite-dimensional clock model in the Kalman Filter, and the master Clock

with corrections from the Kalman Filter including FFN states. Here the order of the

Kalman Filter is the same as that of the generating Master Clock model, N = 10.

It’s seen that the clock containing colored noise corrections has significantly better

average accumulated timing error over the clock without for roughly 2.5 hours, but

over a day the average is roughly the same.
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Figure 3.11: Allan Variance Plot of the Nominal Master Clock, the Master Clock

with corrections from the finite-dimensional clock model in the Kalman Filter, and

the master Clock with corrections from the Kalman Filter including FFN states. Here

the order of the Kalman Filter is the same as that of the generating Master Clock

model, N = 10. It’s seen that including colored noise states in the Kalman Filter

makers no difference in frequency stability. The reason is because the long term

stability terms, RRFN and RWFN dominate early on.
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Figure 3.12: Accumulated Timing Error of the the Master Clock with corrections

from the finite-dimensional clock model in the Kalman Filter, and the master Clock

with corrections from the Kalman Filter including FFN states. Here the order of the

Kalman Filter is the same as that of the generating Master Clock model, N = 10.

It’s seen that including colored noise states in the Kalman Filter makers no difference

in average accumulated timing error. The reason is because the long term stability

terms, RRFN and RWFN dominate early on.
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Figure 3.13: Order of Approximation Experiment. From a computational perspective,

it’s beneficial to have as low-order a model of colored noise states as possible, while

still maintaining accuracy. It’s seen that that for N>1 there are diminshing returns

in frequency stability improvement, so N = 2 allows for the realization of the desired

tradeoff.
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Figure 3.14: Average Accumulated Timing Error of Corrected Clocks. Order of Ap-

proximation Experiment. From a computational perspective, it’s beneficial to have

as low-order a model of colored noise states as possible, while still maintaining accu-

racy. It’s seen that that for N>2 there are diminshing returns in average accumulated

timing error, so N = 2 allows for the realization of the desired tradeoff.
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Figure 3.15: Order of Approximation Experiment. From a computational perspective,

it’s beneficial to have as low-order a model of colored noise states as possible, while

still maintaining accuracy. It’s seen that that for N ≥ 1 there are diminshing returns

in frequency stability improvement, so N = 1 allows for the realization of the desired

tradeoff.
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Figure 3.16: Average Accumulated Timing Error of Corrected Clocks. Order of Ap-

proximation Experiment. From a computational perspective, it’s beneficial to have

as low-order a model of colored noise states as possible, while still maintaining accu-

racy. It’s seen that that for N>1 there are diminshing returns in average accumulated

timing error, so N = 1 allows for the realization of the desired tradeoff.
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Figure 3.17: Order of Approximation Experiment. From a computational perspective,

it’s beneficial to have as low-order a model of colored noise states as possible, while

still maintaining accuracy. It’s seen that that for N ≥ 1 there are diminshing returns

in frequency stability improvement, so N = 2 allows for the realization of the desired

tradeoff.
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Figure 3.18: Average Accumulated Timing Error of Corrected Clocks. Order of Ap-

proximation Experiment. From a computational perspective, it’s beneficial to have

as low-order a model of colored noise states as possible, while still maintaining accu-

racy. It’s seen that that for N>1 there are diminishing returns in average accumulated

timing error, so N = 2 allows for the realization of the desired tradeoff.
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Chapter 4

KALMAN FILTER ARCHITECTURES FOR TIMING ERROR

COMPENSATION

To estimate the navigation relevant quantities - effectively range and ranging error

constituents, several Kalman Filter approaches are proposed and compared [17, 18].

It is well known that the Kalman Filter is the optimal state estimator with respect

to the expectation of the estimation error in the presence of white Gaussian noise

[18]. The Extended Kalman (EKF) expands on the Kalman Filter and extends the

ideas to non-linear systems using Taylor Series arguments. While Extended Kalman

Filters are widely used in many navigation applications, it is not without its technical

pitfalls - dependence on the state trajectory being close to the point of linearization,

and the impact of non-linearities on noise characteristics. The Unscented Kalman

Filter (UKF) softens the assumptions of the EKF by way of the Unscented Trans-

form. The Unscented Transform allows for the underlying Gaussian distribution of

the measurement to be preserved when passing through a non-linear function [17].

All Kalman Filters have something in common - dependence upon how well the model

for the process dynamics and measurement model as well as their noise covariance

matrices (Q,R) effectively capture physical reality. Thus, Adaptive Kalman Filtering

has been an active field of study in the control and estimation community for over

40 years. The two prevailing schools of thought in adaptive estimation are Multiple

Model Adaptive Estimation (MMAE) [5] and Innovations Based Adaptive Estimation

(IAE) [25, 26]. In the MMAE framework, a topology composed of a bank of Kalman

Filters is used - each with their own (Q,R, P ) - process, measurement and estima-

tion error covariance matrices, respectively. Knowledge of the underlying probability
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distribution of the measurement and state is used to determine which filter produces

the “best” estimate. The Innovations Based Adaptive Filtering framework uses the

Kalman Filter residuals to compute the pair (Q,R) on the fly.

In this section, these approaches are compared and systematic approaches are pro-

posed to decrease the number of iterations in the filter design process. Moreover, a

novel algorithm is presented which marries the MMAE and IAE approach, as well as

modifications to the measurement noise covariance matrix to ensure a more stable

estimate. This algorithm allows for a more robust adaptive law as it addresses the

weaknesses of both methods. The IAE approach relies on an initial triplet (Q,R, P ),

and if the initial guess is too far off, estimates will not be accurate, and filter diver-

gence is possible. Combining the two methods allows for the MMAE framework to

find which Innovations based Adaptive Extended Kalman Filter produces the “best”

estimate. In this section, the following nomenclature will be used

• (Qact, Ract) - the actual process and measurement noise covariance

• (Q̃, R̃) - the adaptively estimated process and measurement noise covariance

matrix

• (Q0, R0) - initial guess for process and measurement noise covariance matrix

4.1 Innovations Based Adaptive Extended Kalman Filter

The IAE approach was first proposed in [25, 26] and naturally extends to the

EKF [27]. The utility of this approach is that it changes the filter design problem

from selecting an appropriate pair (Q,R) for all time and conditions, to selecting

an appropriate initial (Q0, R0) such that over time the estimated covariance matrix

(Q̃, R̃) converges, in some sense, to (Qact, Ract), while also achieving accurate esti-

mates. Many iterations of this framework have been proposed over the years. One
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approach suggests a forgetting factor on (Q̃, R̃) [1]. Some studies suggest using the

measurement pre-fit residual innovation [1], while other propose the measurement

post-fit residual [27]. The standard has been to update (Q̃, R̃) every update instant.

The approach adopted herein is shown explicitly in Algorithm 3. The novelty of this

approach is to only update the estimates of (Q̃, R̃) periodically. This is implemented

using a design parameter T adapt
s , the adaptation update rate - a parameter character-

izing how often (Q̃, R̃) should be estimated. Larger values of T adapt
s translate to longer

averaging times in the calculation of C̃k. Numerical studies have demonstrated that

averaging times longer than a few samples translate to more informed calculations of

(Q̃, R̃), and hence better estimates. Similarly, it has been observed that averaging

times of a single sample, or just a few samples translates to inaccurate estimates,

before the filter finally converges. Averaging times that are very long makes it so pre-

viously unseen dynamics and noise statistics will be uncompensated a larger amount

of time. Thus, engineering judgment must be exercised when using this framework.

4.2 Multiple Model Adaptive Estimation

The Multiple Model Adaptive Estimation frame was originally applied to Kalman

Filters and Extended Kalman Filters by Athans in [5]. In equation form, the algorithm

can be seen in algorithm 4, or in block diagram form in figure 4.1.

4.3 A Bank of Adaptive Kalman Filters: MMAE Plus Innovations Based Adaptive

Extended Kalman Filter

As the previous approach is still sensitive to an initial estimate, (Q0, R0). The

use of a Filter Bank makes the filter less sensitive to initial guesses, provided at least

one element of the bank contains initial covariance matrices “close” the distribution

underlying the process and measurement. Here, “close” means that an initial pair
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Algorithm 3: Innovations Based Adaptive Extended Kalman Filters
Initialize (P0,j = σP

j I,Q0,j = σQ
j I, R0,j = σR

j I) and m0 = 0, where I is an identity matrix of appropriate

dimension;

Correct initial (Q,R) using the standard IAE with the first few measurements, leave initial P as is;

Select the Adaptation update rate Tadapt
s - how frequently the pair (Qk, Rk) are updated;

for all k (time) do

x̂−
k = Ax̂+

k−1 ;

P−
k = AP+

k−1A
T +Qk ;

ỹk = zk − h(x−
k ) ;

Sk = HkP
−
k HT

k +Rk ;

Kk = PkH
T
k S−1

k ;

x̂k = x̂−
k +Kkỹ;

P+
k = (I −KkHk)P

−
k ;

˜
yprodk = ỹkỹ

T
k + ỹprodk−1 ;

m = m+ 1 ;

if mod

(
m,

Tadapt
s
Ts

)
= 0 then

C̃k =
ỹ
prod
k
m

;

Q̃k = KkC̃kK
T
k ;

R̃k = C̃k +HkP
+
k HT

k ;

Qk+1 = Q̃k,j ;

Rk+1 = R̃k,j ;

m = 0;

end

end

(Q0, R0) results in an estimated pair (Qk, Rk) such that N (0, Q̃) ≈ N (0, Qact) and

N (0, R̃) ≈ N (0, Ract). Moreover, the use of the IAE approach for each filter allows

for each filter to estimate a more informed (Q,R). The approach adopted herein is

shown explicitly in Algorithm 5. The novelty of this approach is that it transforms

the filter design problem from one of populating two symmetric positive semi-definite

matrices, to selecting the initial posterior probability distribution of the filter banks

state estimates, and the size of the filter bank.
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Algorithm 4: A Bank of Kalman Filters
Initialize (P0,j = σP

j I,Q0,j = σQ
j I, R0,j = σR

j I) and m0 = 0 for each j, where I is an identity matrix of

appropriate dimension;

Initialize posterior probabilities of estimates of each filter bank - if nothing is known about the

distribution, then select pnorm
0,j = 1

j
;

Correct (Q0,j , R0,j) using the standard IAE approach with the first measurement, leave P0,j as is;

Select the Adaptation update rate Tadapt
s - how frequently the pair (Qk,j , Rk,j) are updated;

for all k (time) do

for every filter and, hence initial guess j do

x̂−
k,j = Ax̂+

k−1,j ;

P−
k,j = AP+

k−1,jA
T +Qk,j ;

ỹk,j = zk,j − h(x−
k,j) ;

Sk,j = Hk,jP
−
k,jH

T
k,j +Rk,j ;

Kk,j = Pk,jH
T
k,jS

−1
k,j ;

x̂+
k,j = x̂−

k,j +Kk,j ỹk,j ;

βk,j = 1

(2π)
n
2 detSk,j

;

pk,j = βk,je
− 1

2
ỹT
k,jS

−1
k,j

ỹk,j ;

P+
k = (I −KkHk)P

−
k ;

˜
yprodk,j = ỹk,j ỹ

T
k,j + ỹprodk−1,j ;

mj = mj−1 + 1 ;

pnet
k,j = pnet

k,j−1 + pk,jp
norm
k,j−1︸ ︷︷ ︸

Sum of the Weights

;

end

for every j do

pnorm
k,j =

pk,jp
norm
k,j−1

pnet
k,j︸ ︷︷ ︸

Posterior Probability

;

x̂+
k,j = x̂+

k,j−1 + pnorm
k,j x̂+

k,j︸ ︷︷ ︸
Filter Bank Solution

;

end

pnet
k,j = 0 ;

end
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Based
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Innovations

Based

Adaptive

KF j
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m
es

(x̂0,1, P0,1, Q0,1, R0,1)

pnetk,j = pnetk−1,j + pnormk−1,j pk,j

pnormk,j = pk,j p
norm
k,j /pnetk,j

x̂k+1|k+1,j = x̂k−1|k−1,j + pnormk,j x̂k+1|k+1,j

Filter Bank Solution

(̂
x
k+1|k+1,1 , p

k,1 , p netk,1
)

( x̂k+
1|k

+1
,j
, pk

,j
, p
ne
t

k,
j

)
”Best” estimate

(x̂0,2, P0,2, Q0,2, R0,2)

(x̂0,j, P0,j, Q0,j, R0,j)

Figure 4.1: Block Diagram Representation of Bank Of Kalman Filters
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Algorithm 5: A Bank of Innovations Based Adaptive Extended Kalman

Filters
Initialize (P0,j = σP

j I,Q0,j = σQ
j I, R0,j = σR

j I) and m0 = 0 for each j, where I is an identity matrix ;

Initialize posterior probabilities of each filter- if nothing is known about the distribution, then pnorm
0,j = 1

j
;

Select the Adaptation update rate Tadapt
s - how frequently the pair (Qk,j , Rk,j) are updated;

for all k (time) do

for every filter and, hence initial guess j do

x̂−
k,j = Ax̂+

k−1,j ;

P−
k,j = AP+

k−1,jA
T +Qk,j ;

ỹk,j = zk,j − h(x−
k,j) ;

Sk,j = Hk,jP
−
k,jH

T
k,j +Rk,j ;

Kk,j = Pk,jH
T
k,jS

−1
k,j ;

x̂+
k,j = x̂−

k,j +Kk,j ỹk,j ;

βk,j = 1

(2π)
n
2 detSk,j

;

pk,j = βk,je
− 1

2
ỹT
k,jS

−1
k,j

ỹk,j ;

P+
k = (I −KkHk)P

−
k ;

˜
yprodk,j = ỹk,j ỹ

T
k,j + ỹprodk−1,j ;

mj = mj−1 + 1 ;

pnet
k,j = pnet

k,j−1 + pk,jp
norm
k,j−1︸ ︷︷ ︸

Sum of the Weights

;

end

for every j do

pnorm
k,j =

pk,jp
norm
k,j−1

pnet
k,j︸ ︷︷ ︸

Posterior Probability

;

x̂+
k,j = x̂+

k,j−1 + pnorm
k,j x̂+

k,j︸ ︷︷ ︸
Filter Bank Solution

;

end

if mod

(
mj ,

Tadapt
s
Ts

)
= 0 then

C̃k,j =
ỹ
prod
k,j

mj
;

Q̃k,j = Kk,jC̃k,jK
T
k,j ;

R̃k,j = C̃k,j +Hk,jP
+
k,jH

T
k,j ;

Qk+1,j = Q̃k,j ;

Rk+1,j = R̃k,j ;

mj = 0;

end

pnet
k,j = 0 ;

end
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Ak = ∂f(x,u)
∂x

|x̂k,uk
; Ck = ∂h(x,u)

∂x
|x̂k

Linearize

x̂k+1|k+1 = x̂k+1|k +Kk(yk − h(x̂k+1|k))

Pk+1|k+1 = Pk+1|k −Kk CkPk+1|k

ỹk+1 = (yk − h(x̂k+1|k))(yk − h(x̂k+1|k))
T + ỹ

k

m = m+ 1

Corrections and Innovations Predict and Estimate

Sk = CkPk+1|kC
T
k +R

Kk = Pk+1|kC
T
k

(
CkPk+1|kC

T
k +R

)−1

Kalman Gain

x̂k+1|k = x̂k|k + Tsf(x̂k|k, uk)

Pk+1|k = Pk|k + Ts

(
AkPk|k + Pk|kA

T
k

)
+Q

Innovations Based

Adaptive Estimation

C̃k+1 =
ỹk+1

m

Q̃k+1 = KkC̃k+1K
T
k

R̃k+1 = C̃k+1 + CkPk+1|k+1C
T
k

m = 0

mod(m,Tadapt) = 0?

No;

do nothing

Y es;

Pass ỹk+1 , Kk, Pk+1|k+1 R̃
k
+
1

Q̃
k
+
1

Filter Bank Weight Calculation

βk =
1√

2π det(CkPk+1|kC
T
k +R)

pk = βke
− 1

2((yk−h(x̂k+1|k))
TSk(yk−h(x̂k+1|k)))

Report to F ilter Bank Framework

(x̂o, Po, Qo, Ro)

Figure 4.2: Block Diagram Representation of Each member of the Bank of Kalman

Filters
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Chapter 5

THE HYPER-PRECISE POSITIONING AND COMMUNICATIONS TIMING

PROTOCOL

The Hyper-Precise Positioning and Communications Project [16] is a ground based

4 antenna communications ranging system that achieves distributed coherence for a

network of users through novel system architecture and estimation algorithms. The

timing protocol for a single antenna within the network can be seen in figure 5.2 and

the geometry can be observed in figure 5.1.

From figure 5.2, a state space model can be derived as in equation 5.2, which is a

6-state model, linear in the state transition, and non-linear in the measurement:



τ

τ̇

τ̈

T

Ṫ

T̈



(n−1)

=



1 LA
1
2
L2
A 0 0 0

0 1 LA 0 0 0

0 0 1 0 0 0

0 0 0 1 LA
1
2
L2
A

0 0 0 0 1 LA

0 0 0 0 0 1



(n−1) 

τ

τ̇

τ̈

T

Ṫ

T̈



(n−3)

(5.1)

t(n−1)
B,Rx

t
(n)
A,Rx

 =

t(n−1)
A,Tx

t
(n)
B,Tx

+

 τ (n−1) − T (n−1)

τ (n−1)+lAτ̇ (n−1)+ 1
2
l2Aτ̈ (n−1)+

T (n−1)+lAṪ (n−1)+ 1
2
l2AT̈ (n−1)


=

t(n−1)
A,Tx

t
(n)
B,Tx

+ hA

 τ (n−1), τ̇ (n−1)

T (n−1), Ṫ (n−1)

 (5.2)

Where Ln
A is the measurement update time, and lnA is the frame length. The physical

description of the states can be found in table 5.2. A more thorough exploration of
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Figure 5.1: Ranging Diagram for the HPPC System.

such a system lies outside the scope of this thesis, but can be found in [16]. The pri-

mary purpose of this chapter is to determine: (1) how and if the benefits of including

colored noise states in a simple Linear Kalman Filter in Chapter 3 carry over to a

non-linear problem, (2) if adaptive architectures such as Innovations Based Adaptive

Estimation and Multiple Model Adaptive Estimation are used, what are the benefits,

if any and (3) how to embed colored noise states into a non-linear navigation filtering

problem. Since the Extended Kalman Filter is the workhorse of navigation algo-

rithms, such a topology will be used in conjunction with IAE, MMAE and combined

IAE/MMAE methods.
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seen in 5.2, the frame length, which is a non-linear function of the states, can be

crudely calculated as

l
(n−1)
A = t̃

(n)
A,Tx − t

(n−1)
A,Tx (5.3)

where the timestamps are (equation 5.4)

t̃
(n)
A,Tx = t

(n)
B,Tx + T (n−1) + Ṫ (n−1)l

(n−1)
A +

1

2
T̈ (n−1)(l

(n−1)
A )2 (5.4)

which then reduces to a quadratic equation in l
(n−1)
A

1

2
T̈ (n−1)l

(n−1)
A

2 + (Ṫ (n−1) − 1)l
(n−1)
A + (T (n−1) + tnB,Tx − t

(n−1)
A,Tx ) = 0 (5.5)

which then provides an explicit non-linear relation between l
(n−1)
A and the states. This

model and derivations were originally carried out in [33]. There is a direct relation-

ship between the states (T, Ṫ , T̈ ) and (x1, x2, x3) from Chapter 2, as defined in table

2.1. These relationships can be seen in table 5.1. Expressions for the measurement

Jacobian matrix can be found in [33]. These expressions can be used in an Extended

or Unscented Kalman Filter framework, and will be in the subsequent sections. Note

that in all examples in this section, the dynamics are linear, but the measurement

is non-linear. The subsequent sections contain the following information (1) How to

include a standard state-space oscillator model into the HPPC framework, (2) ap-

pending colored noise states to the HPPC framework, not including time of arrival

estimates, with (adaptive) filtering results, (3) applying MMAE and IAE methods

to the nominal HPPC model and (4) appending colored noise state to the HPPC

framework, including time of arrival estimates.
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Table 5.1: Relationship between HPPC Timing Protocol Model and Standard Clock

Model.

HPPC State Physical Meaning Unit Standard Clock State

T Timing Drift s x1/(2πFc)

Ṫ Time Drift Derivative s/s x2/Fc

T̈ Time Drift Acceleration s/s2 x3/(TsFc)

Table 5.2: HPPC Timing Protocol For a Single Antenna State Space Model Descrip-

tion.

State Physical Meaning Unit

τ Time of Arrival (range) s

τ̇ Time of Arrival Derivative (range rate) s/s

τ̈ Time of Arrival Acceleration s/s2

T Timing Drift s

Ṫ Time Drift Derivative s/s

T̈ Time Drift Acceleration s/s2
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L
(n−1)
A

l
(n−3)
A = f(T, Ṫ , T̈ ) l

(n−1)
A = f(T, Ṫ , T̈ )

t
(n−3)
A,Tx

t
(n−3)
B,Rx t

(n−3)
B,Tx

t̃
(n−2)
A,Tx t

(n−2)
A,Rx t

(n−1)
A,Tx

t̃
(n)
A,Tx t

(n)
A,Rx

t
(n−1)
B,Rx t

(n)
B,TxT (n−1)T (n−3)

A

B

Figure 5.2: Non-linear Timing Protocol Used in Measurement Model For HPPC

system.
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5.1 Incorporating Oscillator Models Into the Timing Protocol

This section takes the models in Chapters 2 and 3, in equations 2.5, 3.7,3.10 and 3.21

and uses them to generate realistic timing drift. The example in Chapter 3, where an

ideal phase measurement is available is not realistic, as a reference oscillator is always

necessary to directly measure the phase of an oscillator. In the HPPC navigation sys-

tem, all transmitters and receivers have the same oscillator, nominally a Stratum 3E

High Stability Stability Oven Stabilized Oscillator OH300 Series. While each trans-

mitter and receiver have the same oscillator physically, environmental differences such

as temperature, dynamics and vibration create differences in noise profiles. Addition-

ally, as has been demonstrated in the previous chapters, oscillators are fundamentally

stochastic processes, so even if all external circumstances were equal, the stochastic

nature of these systems does not allow for the guarantee that all clocks across the

network will produce identical phase measurements, or time-stamps. We analyze a

single receiver antenna. There are two clocks in this scenario, the transmit clock, and

the receive clock. The transmit clock will be referred to as “Clock A” and the receive

clock will be referred to as “Clock B”. The procedure in algorithm 6 describes how

to achieve realistic time-series datum which represents timing offsets between clocks.

5.2 Appending Colored Noise States to an HPPC Like Time-Keeping Adaptive

Kalman Filter

In this section, Flicker Frequency Noise (FFN) states are added to the HPPC timing

protocol shown in figure 5.2, with time of arrival states (τ ,τ̇ ,τ̈) omitted. This allows

for a more straight forward investigation of how colored states improve estimation

accuracy, if at all, when embedded into a non-linear navigation filter. The non-linear

measurement becomes 5.13
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t(n−1)
B,Rx

t
(n)
A,Rx

 =

t(n−1)
A,Tx

t
(n)
B,Tx

+

 −T (n−1)

T (n−1)+lAṪ (n−1)+ 1
2
l2AT̈ (n−1)+

[F4,7,F4,8,F4,9,F4,10,F4,11,F4,12][ṪFFN,i,ṪFFN,6]
T


=

t(n−1)
A,Tx

t
(n)
B,Tx

+ hA

(
T (n−1), Ṫ (n−1), T̈ (n−1), ṪFFN,i, ṪFFN,6

)
(5.13)

Note that the source of the non-linearity is lA, which is found by solving the following

equation

(
1

2
T̈ (n−1))(l

(n−1)
A )2 + (Ṫ (n−1) − 1)l

(n−1)
A + (T (n−1) + tnB,Tx − t

(n−1)
A,Tx )

+ [F4,7, F4,8, F4,9, F4,10, F4,11, F4,12][ṪFFN,i, ṪFFN,6]
T = 0 (5.14)

lA = f(T, Ṫ , T̈ , ṪFFN,i, ṪFFN,6) (5.15)

Where i = 1, .., 5. The linear state dynamics are now:



T

Ṫ

T̈

ṪFFN,1

ṪFFN,2

ṪFFN,3

ṪFFN,4

ṪFFN,5

ṪFFN,6



(n−1)

=



1 LA
1
2L

2
A F4,7 F4,8 F4,9 F4,10 F4,11 F4,12

0 1 LA 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 F7,7 F7,8 F7,9 F7,10 F7,11 F7,12

0 0 0 0 F8,8 F8,9 F8,10 F8,11 F8,12

0 0 0 0 0 F9,9 F9,10 F9,11 F9,12

0 0 0 0 0 0 F10,10 F10,11 F10,12

0 0 0 0 0 0 0 F11,11 F11,12

0 0 0 0 0 0 0 0 1



(n−1) 

T

Ṫ

T̈

ṪFFN,1

ṪFFN,2

ṪFFN,3

ṪFFN,4

ṪFFN,5

ṪFFN,6



(n−3)

(5.16)
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Since closed form solutions to 5.20 are not available, numerical perturbation methods

are used to compute the partial derivatives of lA to populate the Jacobian measure-

ment matrix. In order to gain insight into the effect of both adaptive filtering, and

the inclusion of colored noise states in the model, a Monte Carlo simulation was con-

ducted. The results can be seen in Appendix B, sections 1 and 2. Four scenarios are

investigated

• Case (I): Clock States only - Only the standard 3 clock states (T ,Ṫ ,T̈ ) are

included in the Kalman Filter Model, no adaptive filtering

• Case (II): Clock States with FFN -The standard 3 clock states as well as the

FFN states are included in the Kalman Filter Model

(T, Ṫ , T̈ , ṪFFN,1, ṪFFN,2, ṪFFN,3, ṪFFN,4, ṪFFN,5, ṪFFN,6)

with no adaptive filtering

• Case (III): Clock States only with IAE - Only the standard 3 clock states

(T ,Ṫ ,T̈ ) are included in the Kalman Filter Model, and the IAE algorithm in

algorithm 3 is used

• Case (IV): Clock States with FFN and IAE -The standard 3 clock states as well

as the FFN states are included in the Kalman Filter Model

(T, Ṫ , T̈ , ṪFFN,1, ṪFFN,2, ṪFFN,3, ṪFFN,4, ṪFFN,5, ṪFFN,6)

and the IAE algorithm in algorithm 3 is used

The parameters in table 5.3 were used as well as the initial covariance matrices shown

in equation 5.19. Exactly 83 simulations were iterated with the parameters defined

in tables 5.3 and 5.4. The results are the following
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• Result (I): In order of increasing estimation accuracy, Case I < Case II < Case

III < Case IV

• Result (II): Case III is almost always an order of magnitude increase over Case

I

• Result (III): An unusual result is that is that Case III is always more accurate

than Case II, results I and II lead to the conclusion that adaptively estimat-

ing the process noise covariance matrix using IAE, even if colored noise states

are included, is the most influential design artifact in this framework. This

might occur because Q(1, 1) includes a significant FFN term - an observation

which comes from the Gauss Markov approach process noise covariance matrix

(equation 3.16). While the process noise covariance matrix used to simulate

noise comes from equation 3.22, closed form expressions for this matrix are not

readily available because of computational complexity.

• Result (IV): Case IV is nearly always 5 times more accurate than Cases I and

II, frequently an order of magnitude more accurate, aside from 2 examples, out

of 83.

• Result (V): Case II is only a 100 picoseconds, or at best a 500 picoseconds more

accurate than Case I

• Result (VI): Case IV is frequently 2 times more accurate than Case III, always

5 times more accurate when the initial fractional frequency offset (Ṫ ) is greater

than 1e-8 s/s.
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Table 5.3: Simulated Noise Parameters.

Constituent Value

WFN 2.6153e-04 Hz

WPN 0.0048 Cycle

FFN 0.0012 Hz/s

RWFN 4.7735e-07 Hz/s

RRFN 2.6153e-09 Hz/s/s

Table 5.4: Simulated Noise Parameters.

Parameter Value

measurement seed A random integer ∈ [0, 100]

measurement seed B random integer ∈ [0, 100]

process seed A random integer ∈ [0, 100]

process seed B random integer ∈ [0, 100]

fractional frequency A random integer ∈ [1, 50] times 1e-12

fractional frequency B random integer ∈ [0, 50] times 1e-12

time offset random integer ∈ [0, 1000] times 1e-11 s

fractional frequency offset random value in [1e-8 1e-11]s/s

Qo = diag([1e− 9LA, 1e− 3LA, 1e− 30LA11×6]) (5.17)

Po = Qo (5.18)

Ro = diag([1e− 11, 1e− 11]) (5.19)
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Algorithm 6: HPPC System Colored Noise Simulation Procedure
(I) Select Initial Time and Frequency Offsets for Clock B and Clock B ;

(II) Select different measurement and process noise seeding for Clock A and Clock B;

(III) for For each Clock A, and B, Do do

Propogate the clock states ;

for For all time do


x1
k+1

x2
k+1

x3
k+1

 =


1 Ts

T2
s
2

0 1 Ts

0 0 1



x1
k

x2
k

x3
k

+


1 0 0

0 1 0

0 0 1



uWFN + uFFN

uRWFN

uRRFN

 (5.6)

y =
[
1 0 0

]
x1
k+1

x2
k+1

x3
k+1

+ uWPN (5.7)

Create the noise time series with the process noise covariance Qk (sigma parameters selected by

optimizer) ;

Qk(Ts) =


σ2
WFNTs + 1

3
σ2
RWFNT 3

s + 1
20

σ2
RRFNT 5

s
1
2
T 2
s σ

2
RWFN + 1

8
σ2
RRFNT 4

s
1
6
σ2
RRFNT 3

s

1
2
T 2
s σ

2
RWFN + 1

8
σ2
RRFNT 4

s σ2
RWFNTs + 1

3
σ2
RRFNT 3

s
1
2
σ2
RRFNT 2

s

1
6
σ2
RRFNT 3

s
1
2
σ2
RRFNT 2

s σ2
RRFNT 2

s


(5.8)

And the measurement noise covariance R = σ2
WPN ;

Add colored noise states if required using a Kasdin, Gauss-Markov, or Oustaloup approach ;

end

;

(IV) Take the simulated phase x1, for each clock, and convert to fractional frequency drift (Ṫ ): ;

ṪclockA =
fo
clockA

Fc
+

[x1,clockA
2:end − x1,clockA

1:end−1 ]

Ts2πFc
(5.9)

ṪclockB =
fo
clockB

Fc
+

[x1,clockB
2:end − x1,clockB

1:end−1 ]

Ts2πFc
(5.10)

Then, the total time-offset derivative between Clocks A and B is ;

Ṫ = ṪclockA − ṪclockB (5.11)

(V) Then, the net time-offset is propagated in time by ;

Tn+1 = Tn + ṪnLn
A (5.12)

end
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5.3 A Bank of Adaptive Extended Kalman Filters Applied to the HPPC

Framework

In this section algorithm 5 is applied to the non-linear timing protocol model. A sim-

ple sinusoid is use to model τ . The process described in algorithm 6 is used to model T

and Ṫ . A bank of 50 Extended Kalman Filters is used. The initial triplet (Po, Qo, Ro)

are selected as random positive definite diagonal matrices. State estimates are all

initialized to 0. A Monte Carlo simulation was conducted with difference time and

fractional frequency offsets. The worst case timing error across all simulations is

roughly 80ps over a 10 second simulation. For the initial simulation the Kasdin and

Oustaloup methods were used to generate colored noise. Future work will include the

Oustaloup method and Gauss-Markov, as well as including colored noise states in the

Bank of Adaptive Extended Kalman Filters. This numerical experiment demonstrates

the reliability of method. Figures 5.3,5.4 ,5.5 and 5.6 represent standard behavior ob-

served in the Monte Carlo simulation. Appendix B contains a large array of different

results. All results assume that the initial posterior probability distribution of each

bank is equally likely.
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Figure 5.3: State Estimates for HPPC Timing Protocol Adaptive Extended Kalman

Filter using the Kasdin Method For Noise Generation.
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stituent Using the Kasdin Method Ror Noise Generation.
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Figure 5.5: State Estimates For HPPC Timing Protocol Adaptive Extended Kalman

Filter Using The Oustaloup Method For Noise Generation.
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Figure 5.6: Posterior Probability of State Estimates from each Filter Bank Con-

stituent using the Oustaloup Method for noise generation.
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5.4 Appending Colored Noise States to HPPC Time-Keeping Adaptive Kalman

Filter

As it was demonstrated in figure 3.14 that only at most 6 states are needed for

a notable estimation accuracy increase, 6 states are appended to the F matrix in

equation 5.2, and can be seen in equation 5.49 as well as table 5.5. All other entries

are 0. The addition of new states also changes equation 5.5 from a quadratic, to

one that doesn’t have a closed form solution, which is shown in equation 5.20. The

specific entries in the F matrix are defined in equation 5.49.

(
1

2
T̈ (n−1))(l

(n−1)
A )2 + (Ṫ (n−1) − 1)l

(n−1)
A + (T (n−1) + tnB,Tx − t

(n−1)
A,Tx )

+ [F4,7, F4,8, F4,9, F4,10, F4,11, F4,12][ṪFFN,i, ṪFFN,6]
T = 0 (5.20)

the state update becomes 5.21


τ

τ̇

τ̈

T

Ṫ

T̈

ṪFFN,1

ṪFFN,2

ṪFFN,3

ṪFFN,4

ṪFFN,5

ṪFFN,6



(n−1)

=



1 LA
1
2
L2

A 0 0 0 0 0 0 0 0 0

0 1 LA 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 LA
1
2
L2

A F4,7 F4,8 F4,9 F4,10 F4,11 F4,12

0 0 0 0 1 LA 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 F7,7 F7,8 F7,9 F7,10 F7,11 F7,12

0 0 0 0 0 0 0 F8,8 F8,9 F8,10 F8,11 F8,12

0 0 0 0 0 0 0 0 F9,9 F9,10 F9,11 F9,12

0 0 0 0 0 0 0 0 0 F10,10 F10,11 F10,12

0 0 0 0 0 0 0 0 0 0 F11,11 F11,12

0 0 0 0 0 0 0 0 0 0 0 1



(n−1) 

τ

τ̇

τ̈

T

Ṫ

T̈

ṪFFN,1

ṪFFN,2

ṪFFN,3

ṪFFN,4

ṪFFN,5

ṪFFN,6



(n−3)

(5.21)

The non-linear measurement becomes 5.23, where t = lA, and

lA = f(τ, τ̇ , τ̈ , T, Ṫ , T̈ , ṪFFN,1, ṪFFN,2, ṪFFN,3, ṪFFN,4, ṪFFN,5, ṪFFN,6) (5.22)
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t(n−1)
B,Rx

t
(n)
A,Rx

 =

t(n−1)
A,Tx

t
(n)
B,Tx

+

 τ (n−1) − T (n−1)

τ (n−1)+lAτ̇ (n−1)+ 1
2
l2Aτ̈ (n−1)+

T (n−1)+lAṪ (n−1)+ 1
2
l2AT̈ (n−1)+

[F4,7,F4,8,F4,9,F4,10,F4,11,F4,12][ṪFFN,i,T̈FFN,6]
T


=

t(n−1)
A,Tx

t
(n)
B,Tx

+ hA

 τ (n−1), τ̇ (n−1), τ̈ (n−1)

T (n−1), Ṫ (n−1), T̈ (n−1), ṪFFN,i, ṪFFN,6

 (5.23)

Since closed form solutions to 5.20 are not available, numerical perturbation methods

are used to compute the partial derivatives of lA to populate the Jacobian measure-

ment matrix.

Table 5.5: HPPC Timing Protocol For a Single Antenna State Space Model Descrip-

tion.

State Physical Meaning Unit

τ Time of Arrival (range) s

τ̇ Time of Arrival Derivative (range rate) s/s

τ̈ Time of Arrival Acceleration s/s2

T Timing Drift s

Ṫ Time Drift Derivative s/s

T̈ Time Drift Acceleration s/s2

ṪFFN,1 Flicker Time Drift 1 s/s

ṪFFN,2 Flicker Time Drift 2 s/s

ṪFFN,3 Flicker Time Drift 3 s/s

ṪFFN,4 Flicker Time Drift 4 s/s

ṪFFN,5 Flicker Time Drift 5 s/s

T̈FFN,6 Flicker Time Drift Acceleration s/s2
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F4,7 = 4466835.921 − 4466835.921 e
−0.000002238721139 t (5.24)

F4,8 = 62878.62811 e
−0.000002238721139 t

+ 8912.509405 − 71791.13752 e
−0.0001412537545 t (5.25)

F4,9 = 109.6925132 e
−0.000002238721139 t

+ 17.78279432 − 1138.062739 e
−0.008912509381 t

+ 1010.587432 e
−0.0001412537545 t

F4,10 = 0.2184295207 e
−0.000002238721139 t

+ 0.03548133101 + 16.02024902 e
−0.008912509381 t

− 18.03714165 e
−0.5623413252 t

+ 1.762981776 e
−0.0001412537545 t (5.26)

F1,11 = 0.0004358104849 e
−0.000002238721139 t

+ 0.00007079454808 − 0.2858694459 e
−35.48133892 t

+ 0.02794751468 e
−0.008912509381 t

+ 0.2539047197 e
−0.5623413252 t

+ 0.003510606433 e
−0.0001412537545 t (5.27)

F1,12 = −869.5549834 e
−0.000002238721139 t

+ 996.5583627 − 0.2498806149 e
−35.48133892 t − 13.97899013 e

−0.008912509381 t

− 1.762932169 e
−0.5623413252 t

+ 0.0003162278708 t − 111.0115763 e
−0.0001412537545 t (5.28)

F7,7 = e
−0.000002238721139 t (5.29)

F7,8 = −0.02815354279 e
−0.00007174623782 t

sinh (0.00006950751668 t) (5.30)

F7,9 = −0.00002455709483 e
−0.000002238721139 t − 0.0001981554931 e

−0.0001412537545 t
+ 0.0002227125879 e

−0.008912509381 t

(5.31)

F7,10 = −0.00000004890027708 e
−0.000002238721139 t − 0.0000003456846104 e

−0.0001412537545 t

− 0.000003135074188 e
−0.008912509381 t

+ 0.000003529659075 e
−0.5623413252 t (5.32)

F7,11 = 0.00000005594130190 e
−35.48133892 t − 9.756582145 × 10

−11
e
−0.000002238721139 t

− 0.0000000006883579940 e
−0.0001412537545 t

− 0.000000005469174153 e
−0.008912509381 t − 0.00000004968620393 e

−0.5623413252 t (5.33)

F7,12 = 0.00000004889870925 e
−35.48133892 t

+ 0.0001946691675 e
−0.000002238721139 t

+ 0.00002176709643 e
−0.0001412537545 t

+ 0.000002735611111 e
−0.008912509381 t

+ 0.0000003449853443 e
−0.5623413252 t − 0.0002195657591 (5.34)

F8,8 = e
−0.0001412537545 t (5.35)

F8,9 = −0.02815354281 e
−0.004526881568 t

sinh (0.004385627813 t) (5.36)

F8,10 = −0.00002455709489 e
−0.0001412537545 t

+ 0.0002227125880 e
−0.5623413252 t − 0.0001981554931 e

−0.008912509381 t (5.37)

F8,11 = −0.00000004890027648 e
−0.0001412537545 t − 0.000003135074190 e

−0.5623413252 t
+ 0.000003529659077 e

−35.48133892 t

− 0.0000003456846108 e
−0.008912509381 t (5.38)

F8,12 = 0.001546313233 e
−0.0001412537545 t

+ 0.00002176770529 e
−0.5623413252 t

+ 0.000003085301326 e
−35.48133892 t

+ 0.0001729070366 e
−0.008912509381 t − 0.001744073277 (5.39)

F9,9 = e
−0.008912509381 t (5.40)

F9,10 = −0.02815354280 e
−0.2856269173 t

sinh (0.2767144079 t) (5.41)

F9,11 = 0.0002227125880 e
−35.48133892 t − 0.00002455709485 e

−0.008912509381 t − 0.0001981554931 e
−0.5623413252 t (5.42)

F9,12 = 0.0001946747343 e
−35.48133892 t

+ 0.01228314567 e
−0.008912509381 t

+ 0.001375849535 e
−0.5623413252 t − 0.01385366994

(5.43)

F10,10 = e
−0.5623413252 t (5.44)

F10,11 = −0.02815354281 e
−18.02184012 t

sinh (17.45949880 t) (5.45)

F10,12 = 0.01230461088 e
−35.48133892 t − 0.1100436095 + 0.09773899861 e

−0.5623413252 t (5.46)

F11,11 = e
−35.48133892 t (5.47)

F11,12 = −0.8741074589 + 0.8741074589 e
−35.48133892 t (5.48)

F12,12 = 1 (5.49)
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Chapter 6

MODERN CONTROL THEORY IN PHASE LOCKED LOOP DESIGN

Phase Locked Loops are a critical tool in communications systems in general, but

especially in ranging systems [13, 19]. Within a ranging system, such as a ranging

receiver, there are many different phase locked loops. On the analog end, there are

frequency synthesizes, that typically produce a sample clock, and the downconverting

wave. Such systems can be observed in figure

Phase

Detect

Reference

Frequency Loop

F ilter
V CO

1√
s

N (0, qWFN)

N (0, qWPN)

Synthesized

Frequency

N (0, qFFN)

1
M

phase

error

driving

frequency

Figure 6.1: Topology of a Standard Phase Locked Loop.

Where M is the divider gain, the phase detector is a non-linear phase detection

operation, the loop filter is typically a PI, or a PID controller. If spurs are a concern,

a notch filter may be appended to a PI or a PID controller. The Voltage Controlled

Oscillator (VCO) is represented by the expression Kosc

s
- an integrator and a gain. The

noise sources that drive the VCO are typically a combination of a flicker and floor

term. This means, that the noise within the in-band, or the loop-noise bandwidth
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of the transfer function from reference frequency to synthesized frequency, is strictly

worse from a combination of the VCO’s noise constituents, and the divider leading

to amplification of the in-band noise. For downconverter and sample clock design,

designers typically strive to achieve a target phase margin and bandwidth. However,

there are many different closed loop transfer function that contribute to the quality

of the synthesizes frequency, such as the FFN and WFN plant input disturbances.

Hence, it is desirable to shape the closed loop transfer function to minimize frequency

stability degradation imposed by the VCO’s inherent noise characteristics. Nothing

in the literature currently addresses this. Classical control is the standard for the

design of analog phase locked loops.

Additionally, tracking loops are typically used to deal with Doppler and phase dy-

namics in a signal demodulation process. In this case M = 1, as these loops strive

to track the phase and or frequency of the received, downconverted and digitized

signal. For the design, again classical control, or the work in [13] is used. However,

for high dynamics, or loop-shaping procedures, these methods are lacking. In this

section, novel H∞ control methods will be used to design Phase Locked Loops for

high dynamics and minimizing frequency stability degradation.

6.1 H∞ Control Preliminaries

First, an H∞ space is the following

H∞ – Algebra of Stable Systems.

∥G∥H∞
def
= sup

Re s>0
σ̄max[G(s)] = ess sup σ̄max[G(jω)]

(i.e. peak value on magnitude response, or peak singular value in the multivariable

case)
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where σ̄() represents the maximum singular value. Similarly, the topology of H∞

spaces are defined by the norm

Induced L2 Norm. (System Gain)

∥T∥L2→L2 = sup
x∈L2

x ̸=0

∥Tx∥L2

∥x∥L2

= ∥T∥H∞ (6.1)

and stability criterion Stability.

∃γ ∈ [0,∞) s.t. ∥Tx∥L2 ≤ γ ∥x∥L2 (6.2)

6.2 Generalized H∞ Control Design Framework

The Generalized H∞ problem was introduced in [29] and [28]. The novelty of the

approach is that it allows for the designer to shape closed loop transfer functions at

the plant input and the plant output. In addition to this, the method can be applied

to linear infinite-dimensional plants. The problem can be described as the following:

Given: Possibly infinite-dimensional plant, P ∈ H∞. Stable finite-dimensional

weightings, W1 −W6 ∈ RH∞.

µ̃n(γ)
def
= inf

Kn stabilizing

C(Twz(Kn))<γ

max


∥∥∥∥∥∥∥∥∥∥


W1

W2Kn

W3PKn

 [I − PKn]
−1

∥∥∥∥∥∥∥∥∥∥
H∞

,

∥∥∥∥∥∥∥∥∥∥


W4

W5P

W6KnP

 [I −KnP ]−1

∥∥∥∥∥∥∥∥∥∥
H∞

 < γ


W1 −W6,W

−1
2 ,∈ RH∞

3) Compute near-optimal Kn such that

|µ̃n(γ)− µn(γ)| ≤ ϵ.
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While such an approach is typically used for multivariable plants, it is also useful

when the closed loop transfer function Tdi→synthfreq = P ([I −KnP ]−1) is of interest

in the design of the sample clock phase locked loop, because it allows the designer to

minimize frequency stability degradation caused by the VCO’s inherent noise charac-

teristics. Since phase locked loops are fundamentally single-input-single-output, it’s

given that ([I −KnP ]−1) = [I − PKn]
−1, which means that many of the expressions

in 6.3 are the same. With this in mind, we modify the objective function to be the

following:

µ̃n(γ)
def
= inf

Kn stabilizing

C(Twz(Kn))<γ

max


∥∥∥∥∥∥∥∥∥∥


W1

W2Kn

W3PKn

 [I − PKn]
−1

∥∥∥∥∥∥∥∥∥∥
H∞

,

∥∥[W5P ] [I −KnP ]−1
∥∥
H∞

)
< γ

}
W1 −W3,W4,W

−1
2 ,∈ RH∞

Equation 6.3 can be visualized for the phase locked loop design problem by the block

diagram in figure 6.2:

The closed loop transfer functions associated with 6.2

Treferencefrequency→synthfrequency = PK[1 + PK]−1 (6.3)

Treferencefrequency→phaseerror = [1 + PK]−1 (6.4)

Treferencefrequency→drivingfrequency = K[1 + PK]−1 (6.5)

TV COinputdisturbance→drivingfrequency = P [1 + PK]−1 (6.6)

these closed loop transfer functions should be shaped with weights W1,W2,W3,W5

such that
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Figure 6.2: H∞ Framework Applied to Phase Locked Loop Design

• Treferencefrequency→phaseerror should be small at low frequencies for good low fre-

quency master oscillator command following and disturbance attenuation

• Treferencefrequency→synthfrequency should be small at high frequencies for good high

frequency master oscillator noise attenuation

• Treferencefrequency→synthfrequency should be not too large at low frequencies, in

order for the closed loop system to be robust multiplicative modeling errors at

the plant input and output

• TV COinputdisturbance→drivingfrequency should be small for all frequency for VCO in-

put disturbance attenuation
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Moreover, the system H∞ norm is an indicator of closed-loop robustness. Let S =

Treferencefrequency→phaseerror and T = Treferencefrequency→synthfrequency be system sen-

sitivity and complementary sensitivity functions, respectively. There is a straight

forward relationship between gain and phase margins and closed loop H∞ norms [21]

GM ≥ 1 +
1

∥T∥H∞
(6.7)

GM ≥ 1 +
1

1− 1
∥S∥H∞

(6.8)

gm ≤ 1− 1

∥S∥H∞ + 1
(6.9)

gm ≤ 1− 1

∥T∥H∞
(6.10)

PM ≥ arcsin

(
1

2 ∥T∥H∞

)
(6.11)

PM ≥ arcsin

(
1

2 ∥S∥H∞

)
(6.12)

and hence

GM > max

{
∥S∥H∞

∥S∥H∞ − 1
,
∥T∥H∞ + 1

∥T∥H∞

}
(6.13)

gm < min

{
∥S∥H∞

∥S∥H∞ + 1
,
∥T∥H∞ − 1

∥T∥H∞

}
(6.14)

|PM | > 2max

{
arcsin

(
1

2 ∥T∥H∞

)
, arcsin

(
1

2 ∥S∥H∞

)}
(6.15)

∥Treferencefrequency→phaseerror∥H∞ > max

{
GM

GM − 1
,

gm

1− gm
,

1

2 sin PM
2

}
(6.16)

∥Treferencefrequency→synthfrequency∥H∞ > max

{
1

GM − 1
,

1

1− gm
,

1

2 sin PM
2

}
(6.17)

which implies that if ∥S∥H∞ and ∥T∥H∞ are small, gain and phase margins will be

large.
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6.3 Fixed Order H∞ Control

While H∞ methods makes loopshaping significantly more straight forward, it has

practical issues. The order of the resulting controller is, at a minimum, the size

of the design plant, plus the size of the weighting function matrices. This results

in a controller that is not easy to implement, and in some cases, impossible to im-

plement. This issue motivated the development of a Matlab based tool known as

HINFSTRUCT [12, 4, 3]. That is, to solve the Weighted H∞ control problem subject

to the constraint that the resulting controller is that of a fixed order topology. The

most commonly used compensators in practice are PI and PID controllers. Both of

which are easily realizes in operational amplifiers on the hardware end, provided the

bandwidth is small enough. Moreover, PI and PID controllers are easy to implement

on an embedded processor.

µ̃(γ)
def
= inf

K fixedorder

poles(Twz)<λ

max


∥∥∥∥∥∥∥∥∥∥


W1

W2K

W3PK

 [I − PK]−1

∥∥∥∥∥∥∥∥∥∥
H∞

,

∥∥[W5P ] [I −KP ]−1
∥∥
H∞

)
< γ

}
Note that this is a non-differentiable cost function, which does not allow for the

guarantee of convergence to a global minima [12, 4, 3]. However, many papers have

demonstrated that the tool practical solutions with the desired loopshape [12, 4, 3].

Similarly, this problem can be visualized by the block diagram shown in figure 6.3.
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Figure 6.3: Fixed Order H∞ Design Framework Applied to Phase Locked Loops
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6.4 Designing Fixed Order Compensators for Phase and Frequency Dynamics

Since the plant, a VCO contains an integrator, only standard PI controller, with

approximation roll-off terms needs to be used to track phase and frequency dynamics.

KPI(s) =
kp(s+

ki
kp
)

s

(
a1

s+ a2

)(
b1

s+ b2

)(
c1

s+ c2

)
(6.18)

This is a fixed order H∞ problem as seen in equation 6.19

µ̃(γ)
def
= inf

kp,ki,a1,a2,b1,b2,c1,c2
poles(Twz)<λ

max


∥∥∥∥∥∥∥∥∥∥


W1

W2K

W3PK

 [I − PK]−1

∥∥∥∥∥∥∥∥∥∥
H∞

,

∥∥[W5P ] [I −KP ]−1
∥∥
H∞

)
< γ

}
such a controller, can track phase steps and frequency impulses with zero steady

state error. Moreover, since the plant, a voltage or numerically controlled oscillator

contains an integrator as well, the feedback system can additionally track frequency

steps, which result in a phase ramp. In order to compensate even higher dynamics,

such as frequency ramps, or frequency accelerations, the following topology is also

explored

KPI2(s) =
kp(s

2 + ki
kp
s+ ki2

kp
)

s2

(
a1

s+ a2

)(
b1

s+ b2

)(
c1

s+ c2

)
(6.19)

This can be viewed as a fixed-order H∞ problem as seen in equation 6.20

µ̃(γ)
def
= inf

kp,ki,ki2,a1,a2,b1,b2,c1,c2
poles(Twz)<λ

max


∥∥∥∥∥∥∥∥∥∥


W1

W2K

W3PK

 [I − PK]−1

∥∥∥∥∥∥∥∥∥∥
H∞

,

∥∥[W5P ] [I −KP ]−1
∥∥
H∞

)
< γ

}
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Table 6.1: HINFSTRUCT Optimization Options.

Parameter Value

Max Iterations 100000

Target µ 1

max {poles(Twz)} -0.1

physical+logical CPU cores 4+4

random starts 5

objective function tolerance 1e-20

The parameters used in the Matlab solver, HINFSTRUCT, can be seen in table 6.1.

Note that the closed loop pole specification dictates that the poles of the weighting

functions should be smaller than −0.1, or the optimizer can run into issues, as the

weights appear to be unstable The weights used are the following

W1(s) =
0.56234(s+ 17.78)

(s+ 0.5)
(6.20)

W2(s) =
31623(s+ 10)

(s+ 3.162e6)
(6.21)

W3(s) =
31623(s+ 5.623)

(s+ 3.162e05)
(6.22)

W5(s) =
1

db2mag(5)
(6.23)

The achieved closed loop properties can be seen in 6.2. , with gains as seen in table

6.3. The double integrator design results are summarized in tables 6.4 and 6.5. The

simulated clock model stochastic parameters are shown in table 6.6 with the dynamic

(deterministic) scenarios shown in table 6.7. The closed loop frequency responses

can be seen figures 6.4 and the time responses in figures 6.10 to 6.13. The frequency

response, time responses and closed-loop margins combine to show that both closed-

loop systems achieve approximately the same performance and robustness margins.
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The key difference is the double integrator PI controller can track higher dynamics

with 0 steady state error than the single PI controller. To summarize, this section has

provided a systematic strategy, motivated by modern control theory, which allows for

the design and management of many different closed loop properties, as well as the

ability to follow commands that are highly dynamic.

Table 6.2: Single Integrator PI Controller Design Specs.

Parameter Value

GM 2.65e5

gm 0.005

PM 86.43 degrees

DM 0.151 seconds

ωGM 3.56 kHz

ωgm 0.002 Hz

ωPM 1.6 Hz

max {poles(Twz)} -0.1
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Table 6.3: Single Integrator PI Controller Gains From HINFSTRUCT.

Parameter Value

kp 4.266306068432225e+06

ki 4.223284559870226e+05

a1 6.201564333818265e+04

a2 3.608695937441208e+07

b1 7.325286467647968e+03

b2 1.891909378446152e+02

c1 45.640877186868032

c2 2.053431677428632e+07
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Table 6.4: Single Integrator PI Controller Design Specs.

Parameter Value

GM 2.65e+05

gm 0.005

PM 85.88 degrees

DM 0.151 seconds

ωGM 3.56 kHz

ωgm 0.02 Hz

ωPM 1.58 Hz

max {poles(Twz)} -0.1

Table 6.5: Double Integrator PI Controller Gains From HINFSTRUCT.

Parameter Value

kp 1.654894611166640e+05

ki 3.259891031845763e+04

ki2 1.621633308664711e+03

a1 5.405913891053951e+05

a2 1.904123754732969e+02

b1 7.280182570597557e+02

b2 3.533631082601804e+07

c1 1.168092551085963e+03

c2 1.786456241031897e+07
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Table 6.6: Simulated Clock Noise Parameters.

Constituent Value

WFN 2.6153e-04 Hz

WPN 0.0048 Cycle

FFN 0.0012 Hz/s

RWFN 0 Hz/s

RRFN 0 Hz/s/s

Table 6.7: Simulated Clock Dynamics.

Moderate Dynamics

Case Magnitude Event Time

Frequency Step 1e-7 Hz 100 seconds

Phase Step 2.513274122871835 Cycle 0 seconds

High Dynamics

Case Magnitude Event Time

Frequency Step 1e-7 Hz 100 seconds

Phase Step 2.513274122871835 Cycle 0 seconds

Frequency Velocity Step 1e-8 Hz/s 500 seconds
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Figure 6.4: Open Loop Transfer Function Frequency Response L = PK. Both con-

trollers crossover at roughly 1.5Hz. As expected, the PI controller with 2 integrators

has more integral action which is observed at low frequencies. For ω > 0.01, open-loop

responses are identical.
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Figure 6.5: Controller Frequency Response. Similar behavior as observed in the open-

loop gain L = PK, the double integrator PI has more integral action, and controllers

are identical for ω > 0.01.
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Figure 6.6: Sensitivity Frequency Response given by Treferencefrequency→phaseerror =

[1 + PK]−1 = Se. A reasonable way to quantify the sensitivity function bandwidth

is when it reaches -20dB. By this metric and about increasing frequency, the closed

loop performance is the same for both compensators. Since the double integrator PI

controller attenuates greater at low frequencies, the closed loop system will have better

command following, dynamic response and smaller phase error variance. Moreover,

the peak of this response being less than 0dB implies that gain and phase margins

will be desirable.
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Figure 6.7: Complementary Sensitivity Frequency Response given by

Treferencefrequency→synthfrequency = PK[1 + PK]−1 = Te. Both controllers achieve the

same frequency response. The -20 dB frequency of roughly 100 rad/s implies that

reference frequency noise above 100rad/s will be attenuated. The peak of 0 dB

implies desirable gain and phase margins.
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Figure 6.8: Input Disturbance Sensitivity Frequency Response given by

TV COinputdisturbance→drivingfrequency = P [1 +PK]−1 = PSe. It’s desired that this closed

loop filter attenuates for all frequency, and that is achieved, with a peak of -6dB.

Additionally, this filter attenuates more than -20 dB everywhere, aside from a band

in [3, 400]rad/s. It should be noted that putting a weight on this transfer function is

the entire reason the standard H∞ mixed sensitivity objective couldn’t be used. The

additional weight of W5 allows to shape this closed loop transfer function so that it

attenuates for all frequency.
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Figure 6.9: Control Action Frequency Response given by

Treferencefrequency→drivingfrequency = K[1 + PK]−1 = KSe. This response is typ-

ically called the control action. It often has a band-pass shape, and having a small

peak is desirable. A large peak can result in pass-band amplification of the reference

signal that results in unacceptably large control signals, which can cause saturation,

and/or hurt linearity assumptions, knocking the controller and system away from

the linear operating point.
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Figure 6.10: Received Phase Signal Entering Tracking Loop. Reference phases were

used rather than reference frequencies to allow for linear simulations. Reference fre-

quencies require a non-linear operation to convert frequency to phase. It is common-

place to use linear thinking to design controllers for phase locked loops and tracking

loops. Each scenario, both moderate and high dynamics were designed to use the

highest dynamics possible with respect to the controller, such that the closed loop

system could achieve steady state error, with only residual tracking variance remain-

ing. Thus, phase and frequency steps (phase ramps) were used for the single integrator

PI controller scenario. Since another integrator is present in the VCO (the plant), the

closed loop system can track phase and frequency steps. Similarly, a frequency ramp

(phase quadratic) was also injected into the double integrator PI controller driven

closed loop system.
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Figure 6.11: Synthesized Phase Time Response. It’s observed that each controller is

able to track the associated dynamics with 0 steady state error.
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Figure 6.12: Phase Error Time Response. It’s observed that each controller is able to

track the associated dynamics with 0 steady state error and absolute tracking error

on the order of 0.5e-3 cycles (2 picoseconds when converted to time).
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Figure 6.13: Control Signal Time Response. The control signal quickly hits 1 Hz to

compensate for dynamics, then decays to a small number, indicative of the tracking

variance.
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6.5 Higher Order Problems: H∞ Model Matching Problem

Another approach to solve the fixed order H∞ problem is to solve a model matching

problem. A strategy for this approach would work is the following

• 1.) Select weights W1−W3, W5 and solve problem 6.3, which is the Generalized

H∞ problem, resulting in a high order controller, KH∞

• 2.) Select a Fixed Order Controller that is suitable for implementation in your

application, Kf ixed

• 3.) Minimize the difference between the target closed loop transfer functions

obtained in problem 6.3 and the fixed order closed loop transfer functions,

subject to Kfixed

Here are some scenarios where such an approach will be valuable

• Case I: Notch filters must be present in K to deal with spurious oscillator modes

• Case II: FFN dynamics are significant enough to be included in the design

process

• Case III: Very demanding attenuation specs in TV COinputdisturbance→drivingfrequency =

P [1 + PK]−1 = PSe must be achieved, perhaps where a notch filter is also

present in K

In Case II, the problem is an infinite dimensional control problem. The approximate-

then-design approach is a natural way to solve this problem, as it is consistent with

standard engineering practice. The key difficulty in this problem is adequately mod-

eling 1√
s
. This approach is used by solving a sequence of control problems such as

that of figure 6.3, about increasing order of approximation (n). For each problem in
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the sequence, you will get a controller Kn. Once the order of approximation (n) nec-

essary for the application is determined, then the resulting controller can be plugged

into the problem defined in figure 6.14, then a resulting fixed order controller Kfixed

can be found. This can be visualized in block diagram form in figure 6.14.
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Figure 6.14: H∞ Model Matching Problem
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

In conclusion, the work in this writeup has presented the standard methods for

modeling oscillators and atomic clocks. An overview of the standard methods for

modeling and filtering colored noise was presented, as well as the development of a

new method with takes the Oustaloup fractional calculus approximation technique

and converts it into a stochastic differential equation. It’s shown that 6 states are

needed when using this model to estimate colored noise associated with oscillators.

The question of when and if colored noise needs to be modeled is addressed. It’s

shown that when an oscillators phase is measured directly, and if the FFN constituent

is significant, order of magnitude increases in timing accuracy can achieved after

Kalman Filter corrections are applied. Additionally, it is shown how to integrate the

Oustaloup model into a realistic, non-linear navigation filter in the HPPC framework.

It’s observed that adaptive filtering techniques (IAE), can be used to compensate

timing degradation caused by FFN, even if colored noise states are not embedded in

the EKF. However, if the FFN states, and the IAE method is used, it’s possible to see

an order of magnitude increase in estimation accuracy. Thus, for high precision, high

reliability navigation systems with oscillators that exhibit a FFN constituent, it may

be necessary to both model the FFN states, and use the IAE method for adaptive

process and measurement noise covariance estimation. A systematic approach for

generating realistic time-offsets is proposed and applied the HPPC navigation system.

In order to achieve even more robustness to the stochastic inherent to oscillator timing
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degradation, novel banks of adaptive Extended Kalman Filters are used to estimate

time-offsets in the HPPC navigation system non-linear timing protocol. Last, novel

H∞ methods are proposed to shape the closed loop transfer functions of phase locked

loops in sample clocks, and tracking loops in demodulators, to combat high dynamic

scenarios (such as ranging or clock dynamics) not currently addressed in the literature.

7.2 Future Work

The HPPC system continues to be an ongoing research project. The work herein

serves as a theoretically and numerically sound starting point for design of control

and estimation algorithms, that can later be further developed and implemented on

hardware.

• Numerical Results for appending colored noise states to adaptive filter bank

framework in the HPPC system.

• Extending the filter results to all four antennas, current work focusing on the

architecture for a single antenna.

• Extending the filter results to a network of HPPC users.

• Exploring other filter methods such as UKF, MHE and Particle Filters for the

HPPC system. The last 20 years has seen a renaissance in alternatives to

Kalman Filters and Extended Kalman Filters. These alternative optimal es-

timators posses theoretical benefits for non-linear systems with non-Gaussian

noise. As all navigation filtering problems are inherently non-linear, such esti-

mators may provide better performance and robustness to the EKF.

• Using a rigorous formulation to show in what sense the Oustaloup approximates

converge to 1√
s

in the frequency domain.
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• Implementing the proposed filters on an embedded processor and testing it on

a rotor aircraft.
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APPENDIX A

LIST OF ACRONYMS
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AV Allan Variance
BPF Band Pass Filter
H∞ H-Infinity Space
RH∞ Real Rational in H-Infinity
IAE Innovations Based Adaptive Estimation
KF Kalman Filter
EKF Extended Kalman Filter
FFN Flicker Frequency Noise
FLL Frequency Locked Loop
LPF Low Pass Filter
MMAE Multiple Model Adaptive Estimation
NCO Numerically Controlled Oscillator
P Estimation Error Covariance Matrix
PD Phase Detector
PLL Phase Locked Loop
PI Proportional Integral Controller
PID Proportional Integral Differential Controller
Q Process Noise Covariance Matrix
R Measurement Noise Covariance Matrix
RWFN Random Walk Frequency Noise
RWFN Random Run Frequency Noise
WFN White Frequency Noise
WPN White Phase Noise
UKF Unscented Kalman Filter
VCO Voltage Controlled Oscillator
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RAW DATA
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B.1 Monte Carlo Results for HPPC Filter with Oscillator States only - Small Time
and Frequency Offset (I)

This batch of simulations are described by tables B.1 and B.2 and equations B.3.

Table B.1: Simulated Noise Parameters.
Constituent Value
WFN 2.6153e-04 Hz
WPN 0.0048 Cycle
FFN 0.0012 Hz/s
RWFN 4.7735e-07 Hz/s
RRFN 2.6153e-09 Hz/s/s

Table B.2: Simulated Noise Parameters.
Parameter Value
measurement seed A random integer ∈ [0, 100]
measurement seed B random integer ∈ [0, 100]
process seed A random integer ∈ [0, 100]
process seed B random integer ∈ [0, 100]
fractional frequency A random integer ∈ [1, 50] times 1e-12
fractional frequency B random integer ∈ [0, 50] times 1e-12
time offset random integer ∈ [0, 1000] times 1e-11 s
fractional frequency offset random value in [1e-8 1e-11]s/s

Qo = diag([1e− 9LA, 1e− 3LA, 1e− 30LA11×6]) (B.1)
Po = Qo (B.2)
Ro = diag([1e− 11, 1e− 11]) (B.3)

Exactly 83 simulations were iterated with the parameters defined in tables 5.3 and
5.4. Additionally, Tadapt = 0.5seconds, Ts = 10ms, with convergence after roughly 10
seconds.
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Figure B.1: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.2: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.3: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.4: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.5: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.6: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.7: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.

119



0 500 1000
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0 10-6

Truth
Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0 10-9

Truth
Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 10-10

Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10-9

Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

Figure B.8: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.9: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.10: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.11: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.12: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.13: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.14: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.15: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.16: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.17: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.18: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.19: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.20: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.21: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.22: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.

134



0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10-7

Truth
Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
-1.5

-1

-0.5

0

0.5

1

1.5 10-9

Truth
Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 10-10

Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 10-9

Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

Figure B.23: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.24: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.25: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.26: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.27: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.28: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.29: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.30: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.31: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.

143



0 500 1000
-1.5

-1

-0.5

0

0.5

1 10-8

Truth
Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5 10-9

Truth
Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
0

1

2

3

4

5

6 10-10

Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

0 500 1000
0

0.5

1

1.5

2

2.5 10-9

Clock States only
Clock States with FFN
Clock States only with IAE
Clock States with FFN and IAE

Figure B.32: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.33: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.34: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.35: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.36: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.37: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.38: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.39: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.40: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.41: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.42: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.43: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.44: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.45: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.46: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.47: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.48: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.49: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.50: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.51: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.52: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.53: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.54: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.55: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.56: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.57: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.58: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.59: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.60: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.61: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.62: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.63: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.64: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.65: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.66: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.67: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.68: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.69: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.70: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.71: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.72: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.73: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.74: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.75: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.76: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.77: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.78: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.79: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.80: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.81: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.82: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.83: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.84: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter With Only Oscillator States.
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Figure B.85: Oscillator States Only In Non-Linear HPPC.
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For completeness, 3 additional 10000 second simulations were ran just to see if long
term noise constituents would change the results.
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Figure B.86: Oscillator States Only In Non-Linear HPPC - Long Term Simulation.
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Figure B.87: Oscillator States Only In Non-Linear HPPC - Long Term Simulation.
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B.2 Monte Carlo Analysis of Bank of IAE Extended Kalman Filter Applied to
HPPC System Using Kasdin Noise

The first numerical experiment demonstrating the performance of the Bank of
Adaptive Extended Kalman Filters. Colored noise states are used in the simulated
noise measurements, but none of the Extended Kalman Filters in the filter bank con-
tain colored noise states. The Kasdin Method is used to generate colored noise. The
σ diffusion coefficients used in this experiment are shown in table B.3. Additionally
Fc = 40 MHz and Ts = 10ms. All other simulations parameters are listed on the
plots. Additionally, Tadapt = 0.5seconds, with convergence after 10 seconds.

Table B.3: Simulated Noise Paramters.
Constituent Value
WFN 2.6153e-04 Hz
WPN 0.0048 Cycle
FFN 0.0012 Hz/s
RWFN 0 Hz/s
RRFN 0 Hz/s/s

var(τ)k
= [(1e− 5)11×8, (1e− 6)11×8, (1e− 7)11×8, (1e− 8)11×8

, (1e− 9)11×8, (1e− 10)11×10] (B.4)

var(T )k
= 1e− 16[(1e− 5)11×8, (1e− 6)11×8, (1e− 7)11×8, (1e− 8)11×8

, (1e− 9)11×8, (1e− 10)11×10] (B.5)

var(tA,Rx)k
= [(1e− 5)11×8, (1e− 6)11×8, (1e− 7)11×8, (1e− 8)11×8

, (1e− 9)11×8, (1e− 10)11×8, (1e− 11)11×8, (1e− 12)11×8]

(B.6)

var(tB,Rx)k = var(tA,Rx) (B.7)

Where 11×n is a vector of length n, composed of all 1’s. Then, each initial covariance
matrix is computed for each filter bank entry, for all k

Qo = diag([var(τ)kLA, var(τ)kLA, var(τ)kLA, var(T )k[LALALA]]) (B.8)
Po = Qo (B.9)
Ro = diag([var(tA,Rx)k, var(tB,Rx)k]) (B.10)
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Figure B.88: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.89: Posterior Probability of State Estimates From Each Filter Bank Con-
stituent Using Kasdin Approximants.
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Figure B.90: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.91: Posterior Probability of State Estimates From Each Filter Bank Con-
stituent Using Kasdin Approximants.
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Figure B.92: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.

205



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IAE EKF1
IAE EKF2
IAE EKF3
IAE EKF4
IAE EKF5
IAE EKF6
IAE EKF7
IAE EKF8
IAE EKF9
IAE EKF10
IAE EKF11
IAE EKF12
IAE EKF13
IAE EKF14
IAE EKF15
IAE EKF16
IAE EKF17
IAE EKF18
IAE EKF19
IAE EKF20
IAE EKF21
IAE EKF22
IAE EKF23
IAE EKF24
IAE EKF25
IAE EKF26
IAE EKF27
IAE EKF28
IAE EKF29
IAE EKF30
IAE EKF31
IAE EKF32
IAE EKF33
IAE EKF34
IAE EKF35
IAE EKF36
IAE EKF37
IAE EKF38
IAE EKF39
IAE EKF40
IAE EKF41
IAE EKF42
IAE EKF43
IAE EKF44
IAE EKF45
IAE EKF46
IAE EKF47
IAE EKF48

Figure B.93: Posterior Probability of State Estimates From Each Filter Bank Con-
stituent Using Kasdin Approximants.
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Figure B.94: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.95: Posterior Probability of State Estimates From Each Filter Bank Con-
stituent Using Kasdin Approximants.
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Figure B.96: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.97: Posterior Probability of State Estimates From Each Filter Bank Con-
stituent Using Kasdin Approximants.
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Figure B.98: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.99: Posterior Probability of State Estimates From Each Filter Bank Con-
stituent Using Kasdin Approximants.
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Figure B.100: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.101: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.102: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.103: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.104: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.105: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.106: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.107: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.108: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.109: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.110: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.111: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.112: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.113: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.114: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.115: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.116: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.117: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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Figure B.118: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Kasdin Approximants.
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Figure B.119: Posterior Probability of State Estimates From Each Filter Bank
Constituent Using Kasdin Approximants.
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B.3 Monte Carlo Analysis of Bank of IAE Extended Kalman Filter Applied to
HPPC System Using Oustaloup Noise

The σ diffusion coefficients used in this experiment are the same as the previous
section, shown in table B.3. The only difference is that Oustaloup approximants are
used as in equation 3.19 instead of the Kasdin Method.
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Figure B.120: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.121: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.122: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.123: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.124: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.125: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.126: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.127: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.128: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.129: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.130: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.131: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.132: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.

246



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
IAE EKF1
IAE EKF2
IAE EKF3
IAE EKF4
IAE EKF5
IAE EKF6
IAE EKF7
IAE EKF8
IAE EKF9
IAE EKF10
IAE EKF11
IAE EKF12
IAE EKF13
IAE EKF14
IAE EKF15
IAE EKF16
IAE EKF17
IAE EKF18
IAE EKF19
IAE EKF20
IAE EKF21
IAE EKF22
IAE EKF23
IAE EKF24
IAE EKF25
IAE EKF26
IAE EKF27
IAE EKF28
IAE EKF29
IAE EKF30
IAE EKF31
IAE EKF32
IAE EKF33
IAE EKF34
IAE EKF35
IAE EKF36
IAE EKF37
IAE EKF38
IAE EKF39
IAE EKF40
IAE EKF41
IAE EKF42
IAE EKF43
IAE EKF44
IAE EKF45
IAE EKF46
IAE EKF47
IAE EKF48

Figure B.133: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.134: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.135: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.136: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.137: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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B.4 Monte Carlo Results for HPPC Filter with Oscillator States only - Longer
Simulations

The σ diffusion coefficients used in this experiment are the same as the previous
section, shown in table B.3. The only difference is that the simulations are ran for 5
minutes instead of 10 seconds.

var(τ)k
= [(1e− 5)11×8, (1e− 6)11×8, (1e− 7)11×8, (1e− 8)11×8, (1e− 9)11×8

, (1e− 10)11×10] (B.11)

var(T )k
= 1e− 16[(1e− 5)11×8, (1e− 6)11×8, (1e− 7)11×8, (1e− 8)11×8, (1e− 9)11×8

, (1e− 10)11×10] (B.12)

var(tA,Rx)k
= [(1e− 5)11×8, (1e− 6)11×8, (1e− 7)11×8, (1e− 8)11×8, (1e− 9)11×8

, (1e− 10)11×8, (1e− 11)11×8, (1e− 12)11×8] (B.13)

var(tB,Rx)k = var(tA,Rx) (B.14)

Where 11×n is a vector of length n, composed of all 1’s. Where 11×n is a vector of
length n, composed of all 1’s. Then, each initial covariance matrix is computed for
each filter bank entry, for all k

Qo = diag([var(τ)kLA, var(τ)kLA, var(τ)kLA, var(T )k[LA1e6LA1e2LA]]) (B.15)
Po = Qo (B.16)
Ro = diag([var(tA,Rx)k, var(tB,Rx)k]) (B.17)
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Figure B.138: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.139: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.140: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.141: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.142: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.143: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.144: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.145: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.146: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.147: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.148: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.149: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.150: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.151: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.152: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.153: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.154: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.155: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.156: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.157: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.158: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.159: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.160: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.161: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.162: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.163: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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Figure B.164: State Estimates For HPPC Timing Protocol Adaptive Extended
Kalman Filter Using Oustaloup Approximants.
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Figure B.165: Posterior Probability Of State Estimates From Each Filter Bank
Constituent Using Oustaloup Approximants.
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