
Automatic Programming Code Explanation Generation with

Structured Translation Models

by

Yihan Lu

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved February 2020 by the

Graduate Supervisory Committee:

I-Han Hsiao, Chair

Kurt VanLehn

Hanghang Tong

Yezhou Yang

Thomas Price

ARIZONA STATE UNIVERSITY

May 2020

 i

ABSTRACT

Learning programming involves a variety of complex cognitive activities, from

abstract knowledge construction to structural operations, which include program design,

modifying, debugging, and documenting tasks. In this work, the objective was to explore

and investigate the barriers and obstacles that programming novice learners encountered

and how the learners overcome them. Several lab and classroom studies were designed

and conducted, the results showed that novice students had different behavior patterns

compared to experienced learners, which indicates obstacles encountered. The studies

also proved that proper assistance could help novices find helpful materials to read.

However, novices still suffered from the lack of background knowledge and the limited

cognitive load while learning, which resulted in challenges in understanding

programming related materials, especially code examples. Therefore, I further proposed

to use the natural language generator (NLG) to generate code explanations for

educational purposes. The natural language generator is designed based on Long Short-

Term Memory (LSTM), a deep-learning translation model. To establish the model, a data

set was collected from Amazon Mechanical Turks (AMT) recording explanations from

human experts for programming code lines.

To evaluate the model, a pilot study was conducted and proved that the readability

of the machine generated (MG) explanation was compatible with human explanations,

while its accuracy is still not ideal, especially for complicated code lines. Furthermore, a

code-example based learning platform was developed to utilize the explanation

generating model in programming teaching. To examine the effect of code example

explanations on different learners, two lab-class experiments were conducted separately

 ii

in a programming novices’ class and an advanced students’ class. The experiment result

indicated that when learning programming concepts, the MG code explanations

significantly improved the learning Predictability for novices compared to control group,

and the explanations also extended the novices’ learning time by generating more

material to read, which potentially lead to a better learning gain. Besides, a completed

correlation model was constructed according to the experiment result to illustrate the

connections between different factors and the learning effect.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... iv

LIST OF FIGURES .. v

CHAPTER

1 INTRODUCTION .. 1

Motivation .. 1

Research Questions .. 3

Contribution .. 6

2 RELATED WORK ... 9

Programming Learning .. 9

Natural Language Processing (NLP) ... 15

Deep Learning in NLP ... 20

3 METHODOLOGY IN OBSTACLE IDENTIFICATION 24

Discussion Forum Learning Behavior Analysis .. 24

Information Seeking Behavior Analysis .. 25

Information Seeking System Design ... 27

Human Language-Programming Code Connection 29

4 METHODOLOGY IN PROGRAMMING CODE EXPLANATION 30

Crowdsourcing ... 30

Pilot Study .. 33

5 LAB EXPERIMENT DESIGN ... 39

Implementation ... 39

 iv

 CHAPTER Page

Workflow .. 43

Evaluation ... 46

6 EXPERIMENT RESULT ... 52

Research Questions .. 52

Analysis Methods & Results Summary ... 52

Learning Effects on Novices .. 55

Learning Effect on Experienced Students ... 70

Hypotheses Results .. 79

Impact Comparison .. 80

7 DISCUSSION & CONCLUSIONS .. 88

Summary Discussion .. 88

Contributions .. 89

Limitations .. 93

Future Work .. 94

 REFERENCES .. 95

 v

LIST OF TABLES

Table Page

1. Comparison of Human and LSTM Model in Readability and Accuracy 37

2. Student Grouping with Different Example Explanation and Test Question Sets . 48

3. Data Feature Definition .. 53

4. Subject Group Definition .. 54

5. Novice Class Example Learning Time Spend, Learning Gain, and Predictability

 .. 60

6. Two-way ANOVA Test Result in Novice Class Experiment 61

7. Two-way ANOVA Test Result in Advanced Class Experiment 73

8. Advanced Class Example Learning Time Spend, Learning Gain, and Predictability

 .. 74

9. Comparison Summary Between Novice Class and Advanced Class 84

 vi

LIST OF FIGURES

Figure Page

1. A Generic NL System ... 18

2. Left: A Chain-structured LSTM Network. Right: A Tree-structured LSTM Network

with Arbitrary Branching Factor .. 22

3. Node Structure of LSTM and an Example Node Structure with Three Children 23

4. Typical User Timelines in Each Behavior Cluster ... 25

5. Information Seeking Behavior Modeling for Novice and Advanced Students ... 26

6. PiSA System Interface Example ... 28

7. Amazon Mechanical Turks - Task Structure .. 31

8. A HIT Example for the First Two Lines in a Code .. 32

9. Neural Machine Translation - Example of a Deep Recurrent Architecture 34

10. Example of Token Masking Match .. 34

11. Pilot Study Result of Readability and Accuracy .. 36

12. Interface of Lab Study Task System ... 42

13. Workflow of Pre-test ... 45

14. Workflow of Regular Lab Study .. 47

15. Novice Class Programming Background Distribution 56

16. Novice Class Self-evaluation in JavaScript .. 57

17. Novice Class Distribution of Total Confidence in Pre-test 58

18. Novice Class Total Score Distribution ... 58

19. Explanation Average Rating Distribution .. 63

20. Student Average Rating Distribution .. 64

 vii

Figure Page

21. Novice Post-survey Result Distribution ... 66

22. Feature Connection Modeling for Novice Class .. 69

23. Feature Connection Modeling with and without Explanation Feature 70

24. Advanced Class Programming Background Distribution 71

25. Advanced Class Self-evaluation in Java ... 72

26. Advanced Class Pre-test Total Confidence and Score Distribution 72

27. Student Average Rating Distribution in Advanced Class 74

28. Advanced Class Post-Survey Result Distribution .. 76

29. Feature Connection Modeling for Advanced Class ... 79

30. Feature Connection Modeling with and without Explanation Feature 79

 1

CHAPTER 1

INTRODUCTION

Language is the foundation of human communications, the medium of knowledge

passing, and the precondition of civilization continuation. Although there are many

languages in the world, automatic translators with computer science techniques are

helping eliminate the barrier caused by different languages in the model society. With the

help of computer science, humans are getting easier to communicate with each other

around the world. But how about the communication between humans and computers? In

this thesis, I explored the gaps to learn communicating with computers, or programming.

I also built multiple assistants to help the learners.

Motivation

The computers are deeply involved in our modern life, they are “taught” to do

almost anything done by humans in the past. They learn quickly, accurately, and never

make mistakes, but the way they learn is not through human language. They learn

through machine language, or “programming”. To this degree, the translators between

humans and computers are called “programmers”.

There is no doubt that the explosion of information technology (IT) and its

corresponding industry has deeply changed the world and our life, and there is no clue

shows it will stop. Computers are learning to finish more jobs, so more teachers for

computers, or programmers, are required. There have been 18.2 million programmers

contributed to this industry, and the number is still growing. Even though the group of

programmers is huge, the urge of well-educated programmers is still extreme. A fact is

that programmer is believed to be one of the highest paid jobs in the market, while the

 2

supply of high-quality programmers’ human resource is still not fully satisfying IT

companies.

Potentially, one of the reasons for the shortage in programmer human resources is

the difficulties in programming education. Programmers must learn the language to

communicate with a computer, and this learning process takes a long period, and costs a

lot. Programming education is identical to traditional subjects in many degrees: the

education of programming is relatively late for most students compared to other basic

subjects (math, physics, etc.); it takes a large amount of cognitive load, and the effect of

learning deeply depends on computational thinking (Lahtinen, E., et al. 2005). These

factors lead to a fact that programming education is not friendly for novices.

Since computers are designed to automate jobs and improve efficiency, it is

natural for educators to utilize computers to automate the process of programming

education. Researchers have begun tackling the challenge in several ways, such as

intelligent tutor to basic programming problem solving(Reiser, B. et al. 1985), providing

recommendations of materials or examples to learn (Vesin, B. et al. 2012; De Oliveira,

M. G. et al. 2013), or drawing connections for collaboration among learners (Serrano-

Cámara, L. M. et al 2014). For most of the studies, their common premise is that humans

are the best teachers in programming, so when humans try to involve machines to

promote education, machines should learn from human teachers and try to teach as

human as close as possible. In this way, programming education systems are able to serve

a larger volume of learners, while the cost is reduced.

 3

Nonetheless, programming education involves a large volume of learning

materials, which are generated manually. It becomes a bottleneck that current supportive

mechanisms still rely on manually created materials, whose volume is limited for

extensive automatic education systems, and it is not guaranteed to solve all problems.

Potentially, if the computers can be trained to generate materials for learners based on

specific requirements, the benefits will be large.

To address this gap, this thesis presents a research for MG programming code

explanation. This approach utilizes deep learning models in natural language translation,

which has been improved for decades and relatively mature. The purpose of this research

is to broaden the range of learning material for novices and make it easier to learn from

code examples by generating explanations for any code example.

To evaluate the value of this model, a learning system was developed, and two

lab-class studies were conducted. The experiment results revealed the effect of example

explanations on programming novices compared to experienced students. Furthermore, a

model of factors affecting the learning gain from code examples was built.

Research Questions

This research attempts to research:

• What do novices need in programming learning?

• How to assist novices by explaining codes with machine generated

(MG) language?

 4

• How do programming learners benefit from machine generated (MG)

annotated examples in declarative and procedural knowledge learning?

To address this question, a set of questions are further raised.

 What are the obstacles for novices in programming learning? This research

question was partitioned into four in my research:

• How do programming learners browse and learn from online discussion forums?

• How do programming learners explore and search on online discussion forums?

• How do novices seek information on search engines?

• How to better explain materials to learners?

To tackle the obstacles for novices in programming learning, I set a series of

studies to analyze the learning behavior of novices. The learner behavior analysis

included the browsing behavior on discussion forum and the searching behavior on

search engine. The searching behavior was further decomposed into query forming

behavior and result browsing behavior to deepen the understanding of their obstacles.

These studies identified a set of obstacles and requirements for programming novices and

proposed corresponding potential assistance for future studies. Among the obstacles

identified, the difficulty in understanding example code was one of the biggest according

to the analysis result and student feedback. To solve this problem, natural language

explanation of codes was proposed.

How to generate natural language explanations for programming code with deep

learning methods? There have been a series of studies (Brusilovsky & Weber, 1996;

 5

Brusilovsky, 1992; Burow & Weber, 1996; Faries & Reiser, 1988; Guzdial, 1995;

Hohmann, Guzdial & Soloway, 1992; Linn, 1992a; Linn, 1992b; Redmiles, 1993) proved

the value of examples in learning. However, studies (Lu, Y., Hsiao, I-H.& Li, Q. 2016;

Lu, Y., Hsiao, I-H. 2017.) have shown that novices still have problems in understanding

code examples, which indicates the requirement of code explanation. To research this

problem, generating explanations with machine learning models is one of the ways to free

the limitation of content volume. In this line of research, multiple models were built and

compared to determine the most practical method of code explanation generation. Then

the model will be evaluated in explanation readability and accuracy and compared with

human explanation in experiments. The expected result of the experiments is that human

explanation outperforms the MG content, but the MG content still helps novices in some

level. I hypothesize that the deep learning models could generate code explanations as

translations, and the quality of generated explanation is compatible with human

explanation in a degree.

How do learners benefit from machine generated (MG) code explanations in

declarative and procedural knowledge learning? To evaluate the potential learning effect

of code explanations in education, the cognitive process should be investigated when a

learner benefits from code explanations. Since the effect of code examples and

explanations has been proved and evaluated in previous studies (Malan, K., & Halland,

K. 2004, October; Burow, R., & Weber, G. 1996), in this research I will examine the

effect of MG code explanations in learning. Besides learning performance, I am also

curious about the detailed impact of MG content, such as its readability, explanation

accuracy, and attractiveness compared to human explanation. Experiments will be

 6

conducted to evaluate the MG contents entail to examine the impact compared to human

content. I hypothesize that the learners could benefit from MG code examples by

deepening their understanding of the code examples while drawing the connection

between explanations and codes, and with a reliable quality, MG explanations can impact

learners in the same way as human explanations.

Contribution

By investigating these research problems and its associated challenges, this

research made the following main contributions:

• Identify the obstacles for novice learners in programming.

Programming education is believed to be one of the fields unfriendly for

beginners. As a result, studies have been established to identify the obstacles for

novices, and methods were proposed to assist them. In my research, I conducted a

series of studies focusing on the information seeking behavior of novices, and

proposed systems to assist novice in self-learning with search engines.

Furthermore, although the value of example has been proved in studies (Atkinson,

R. K., et al. 2000; Brusilovsky, P. 2001; Chi, M. T. et al. 1989), we still identified

the obstacle of learners in understanding code examples. Deep-learning-based

code explainer was proposed correspondingly.

• Utilized a deep-learning-based model to generate natural language

explanations for code lines for the purpose of education. Education based code

explanation is currently a blank field, while researches have highlighted that the

explanation of code is as important as the code itself in learning (Nasehi, S. M. et

 7

al. 2012). A well selected and explained code example will stimulate learners to

seek further information and think more. Although the model proposed in this

dissertation still has space to improve, it will fill in the blank in programming

education and become a potential tool for other programming learning platforms.

This model will also play the role of a baseline for future research to reference.

Besides the model, the data collected from crowd source is also valuable for

future studies for model training and validating.

• Evaluate the effect of code explanation in learning from code

examples over a long period of time in real communities. After building up the

model, a series of experiments were established to evaluate the performance in

real learning scenarios. In this dissertation, experiments were designed and

established focusing on both novices and experienced learners to monitor their

learning effect and real task performance. Potential long-term mechanisms can be

conducted in the future to monitor their learning achievements and the change of

learning customs.

Overall, the goal of these contributions is to be the first step in the creation of

code learner assistants. Such systems aim to help learners search, learn, and practice

programming. Deep learning models in the natural language have a potential to play the

critical role in content recommending, information retrieving, content explaining and

reasoning.

In the remainder of this thesis, I discuss related work in the domains of

programming learning and code analysis, concluding with a description of the existing

work at their intersection. I follow that with a brief discussion of my previous work in the

 8

area. Furthermore, I discuss my research approach: system development, microtask

workflows, content modelling, experiment designing, and user modeling. I conclude with

a description of my plans for evaluating the effectiveness of this system. This thesis then

concludes with a description of the expected timeline, risks, and an overall conclusion.

 9

CHAPTER 2

RELATED WORK

Programming learning

Code analysis

Cheang, B., et al (2003) proposed to evaluate programming assignment from three

perspectives: correctness, efficiency, and maintainability. According to these criteria, the

research team built up a system to evaluate programming code automatically by

examining executing results and measuring time and memory cost. The researchers also

analyzed the similarity of submissions in lexical level to detect cheater, which is another

degree of code analysis. This system is proved to be useful in real course situations, and

even helped detect plagiarism. However, it could not evaluate programming code in the

degree of maintainability, and it does not provide further hints to learners.

Helmick, M. T. (2007) proposed an auto grader based on the interface and

reflection concept in Java. He configured a JUnit test class to use multiple

implementations that can be enabled for classes containing all tests. By defining a set of

tests, this grader can examine the results of code in standard format. The system also

utilized Programming Mistake Detector (PMD) to analyze the coding style and quality in

detail level, which is an improvement. The code style analyzer automatically detects

unused variables or functions, redundant implementation, and empty blocks, which

reflects the quality of code besides the execution result. However, this study did not

investigate the code logic, and programming related feedback or hint cannot be provided.

 10

Besides grading, an alternative in code analysis is to provide hints to help students

move forward. Zimmerman and Rupakheti (2015) used a pq-Gram tree edit distance

algorithm to match a student’s program to its closest part in a set of solutions. By

identifying the set of insertions, deletions and changes from given code to solution, this

method provides hints for novices to correct their code. Rivers and Koedinger (2015)

used tree edit distances to compute similarities between syntax trees of Python programs

to identify adjacent states. Gross and colleagues (2015) similarly applied edit distances

on syntax trees to infer clusters of computer programs and select the most similar sample

solution for feedback.

To provide more for open-ended programming assignments, Price, T. W., et al

(2016) provided next-step hint to students by analyzing the Abstract Syntax Tree (AST)

of student’s code with Contextual Tree Decomposition (CTD) algorithm. In this system

each student’s state is represented with AST, and contextual interaction networks (CINs)

are built to “learn” from previous student submissions and generate hints for new

students based on their learning. According to CTD algorithm, the current student’s code

will be compiled into AST, and matched to its closest previous success submission

according to its CIN. Then, the route path from the current code to the successful

submission will be calculated to generate the next step hint. According to the experiment,

this work is proved to be significant in improving the quality of final solutions and

reducing the likelihood of undoing assignment objectives.

Intelligent tutor is another promising direction in providing educational assistance

in programming, especially with the help of code analysis. Paaßen, B., et al (2016)

 11

utilized code analysis in syntax level, memory level and execution trace level to classify

coding strategies, detect errors, locate errors, and finally provide hints in intelligent

tutoring system. This work is unique since it analyzed programming code in different

levels, which enabled them to provide accurate help in code correction.

Piech and colleagues (2015) propose a neural network-based approach to infer a

vectorial representation of programs instead of AST, such that standard machine learning

methods can be applied in the resulting Euclidean space. Like Paaßen, B.’s approach,

Piech and colleagues intend to represent a program function with a direct mapping

between input and output of program segments.

Recommendation in education

The educational recommender systems have many similarities compared to

traditional recommenders. Both systems use user/learner history as the indicator of

recommendation; both systems mainly use collaborative recommender and content-based

recommender as fundamental methods. However, education recommender systems have

unique challenges different from traditional recommenders.

There are two main unique challenges in educational recommender systems:

In the educational recommendation system, the learners are expected to take part

in a continuous process of learning, usually long (days, months, even years). During this

learning process, intelligent tutoring (Butz, C. J., Hua, S., & Maguire, R. B. 2006) can be

applied, proper tasks/materials can be recommended, and even personalized learning

route can be arranged (Labutov, I., & Studer, C. 2016). As a result, the user stickiness is

critical to help learners finish the whole process of learn.On the other hand, recommender

 12

systems of Amazon, movies, or books are designed for one-time purchase, their purpose

is to maximize the probability for the current visitor to give an order, which is a single,

quick decision (Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. 2004).

Although there are some recommendation system features involving the visitor’s

purchase history, its weight is still not as large as in the educational recommender system.

The other challenge for the education recommender system is the requirement of

learning effect. The educational recommendation system does not only attract learners to

choose information and material to learn, but also need to improve the learning effect.

Compared to Amazon, movies, and books recommendation, the effect of learning is more

important than the learner’s interest. As a result, the cognitive load (Sweller, J. 1988),

emotional status (Pekrun, R., 2011), and knowledge transfer mode are considered

important after a learner receives recommendations.

Learning from examples

It has often been claimed that humans use solutions to previous problems to solve

new problems or planning tasks. As a result, the power of examples in learning has been

tackled and proved in many studies, especially for programming (Bartha, S., & Cheney,

J. 2019; Brusilovsky & Weber, 1996; Brusilovsky, 1992; Burow & Weber, 1996; Chozas,

A. C., Memeti, S., & Pllana, S. 2017; Faries & Reiser, 1988; Guzdial, 1995; Hohmann,

Guzdial & Soloway, 1992; Linn, 1992a; Linn, 1992b; Redmiles, 1993). In most of the

works, the only function of example-based programming systems was to help the student

find a relevant example by having the student pick a static program example from a large

list or search for an example using keywords.

 13

In a system designed by Redmiles (1993) explanations for an example were

"hardwired" into the system's code by the author himself. This method focused on the

knowledge-based interface, and proved that the subjects using “EXPLAINER” performed

the programming task more directly, and they performed it with less inter-subject

variability, while subjects using the online documentation tool proceeded in a trial-and-

error fashion and exhibited great inter-subject variability. This result indicated that the

explainer tool is becoming increasingly important in the software field.

ELMPE (Burow & Weber, 1996) applied an Artificial Intelligence approach to

provide learning assistance according to the learner’s behavior history. This work proved

that debugging and helping facilities specifically designed for beginners are integrated

into the programming environment.

Brusilovsky, P. proposed an online programming learning platform named

WebEx (2001), which enabled teachers to use example-based programming approach

with heterogeneous classes. The idea of WebEx was to provide self-explaining examples

instead of bare code. According to Brusilovsky, P., the explanations served at least two

different purposes: First, it explains the student the meaning of each program line and its

role in the overall solution of a programming problem; Second, it comments on a

particular way of using language constructs in every line of code thus bridging the gap

between student general knowledge about programming language constructs and

practical skills of their use for solving programming problems.

My work is unique in several fields compared to these related works. First, I

designed a completed model generating explanations of code, which broadened the

 14

application of explained example in programming learning; Second, I developed a

learning system with the help of code examples to teach novices programming concepts;

Finally, I conducted an experiment to fully reveal the cognitive process of learners when

learning from examples.

Programming novice education

Novices and experts have differences in learning patterns from the perspective of

both behavior and cognitive (Wiedenbeck, S. 1985; Weiser, M., & Shertz, J. 1983). In

other words, the learning patterns shift when a novice transfers to an export. In education,

it is a common method to improve the learning effect by providing hints to lead novices

“learn as an export”.

In these related works (Denny, P. et al. 2014; Pettit, R. S. et al. 2017; Becker,

Brett A. 2016), the researchers tried to compare the number of “failed submissions”

between experiment and control group, in which the expectation is that the error

explanations could reduce the number of failures. However, the experiment results did

not meet the expectation well.

Among the related works, Denny, P. et al. (2014) conducted enhanced feedback to

help students solve syntax errors in their code. As a result, they claimed that the enhanced

feedback did not reduce the number of non-compiling submission. Pettit, R. S. et al.

(2017) generated C++ enhanced error messages by analyzing the submissions, then

generated enhanced interpretation of errors and hints for current students according to

code similarity. In their result report, there was no significant difference in submissions

failed to compile after enhanced messages were introduced. Similar results were also

 15

reported by Becker, Brett A. (2016), who generated enhanced error message of Java for

novice students. In my previous work, I provided searching hints to novices to reduce

their “try and failure” iterations in search. Like code compiling studies, it is also a

conclusion of our previous studies (Lu, Y. & Hsiao, I-H. 2017) that novices could receive

little benefit in reducing the number of iterations of their “trial and failure” in searching.

This result does not mean that explaining errors has no meaning. On the contrary,

it could help a lot, but not reflected in the number of failed submissions. Pea, R. D.

pointed out that debugging errors is a “constructive and plannable activity” that

applicable to any problem-solving, learners are not supposed to be error-free, but learn

from errors instead (Pea, R. D., & Kurland, D. M. 1984). The lesson I learned from these

studies is that I should indeed enhance the activity of “learning from errors” and conduct

environments that can help learners focus on errors, understand more about errors, and be

more motivated to solve the errors.

In our study, one step forward could be explaining not only correct code, but also

code with bugs or errors. Learners can use our tool to explain their own code, identify

what is not expected, and try to fix it by themselves.

Natural language processing (NLP)

Natural language processing (NLP) is a subfield of computer science, information

engineering, and artificial intelligence concerned with the interactions between computers

and human (natural) languages, especially how to program computers to process and

analyze large amounts of natural language data.

 16

Challenges in natural language processing frequently involve speech recognition, natural

language understanding, and natural language generation.

NL Understanding

As a tool connecting computers and humans, NLP techniques must understand

human language first. In traditional NL systems, the understanding of NL is refined into

multiple levels including syntax, semantics, context, and reasoning (Bates, M. 1995).

The syntax analysis is relatively mature in NLP. Besides checking the input

format, syntactic analysis has two uses: one is to simplify the process of subsequent

components as they try to extract meaning from the input; the second use of syntactic

analysis is to help detect new or unusual meanings (Bates, M. 1995). By applying NL

templates with tokens and formulas, terms in NL are replaced by class expression so that

the semantics can be inferred in different logic representations (McAllester, D. A., &

Givan, R. 1992).

The semantics component in NL understanding aims to infer the “meaning” of the

language input. Three representation logics of meaning are widely used in semantic

analysis: propositional logic (most frame-based semantic representations are equivalent

to this, since they do not allow quantification); First- Order Predicate Logic (FOPL,

which does allow quantifiers); and various representations that can handle expressions

not representable in FOPL (McAllester, D. A., & Givan, R. 1992). However, the

semantic meaning is still greatly influenced by the context in which the words are used

and by the purpose the words are intended to achieve context, so context analysis is

necessary to capture the logic in language.

 17

Language context analysis is the least well understood and most difficult aspects

of NLP (McAllester, D. A., & Givan, R. 1992). Unlike context in speech, which is quite

localized in time, NL context is all pervasive and extremely powerful; it can reach back

(or forward) hundreds of words; it considers wide range of contents around the target text

to understand elliptical sentence fragments, dropped articles, false starts, misspellings,

and other forms of nonstandard language. In practice, there is usually a parameter

limiting the range of context considered.

Reasoning is the final purpose of NL understanding. It involves deep logic of

knowledge collecting, inferring, and querying from representations of previous

knowledge collections. The deducting of semantics is investigated with negative polarity,

concord marking (Dowty, D. 1994, November), and concept net (Liu, H., & Singh, P.

2004, September) for decades. In this study, the reasoning level is not reached, instead a

semi-translation model will be conducted without semantic reasoning.

NL generation

The goal of the NL system is to interact with humans in NL, so there must be an

interface to interact with humans with natural language. The generation of natural

language is as critical as understanding natural language to this degree. However, in some

cases the expected output is not easy for machines to generate. For example, taking the

input “How to calculate Fibonacci sequence with recursion”, should that be interpreted as

a request to list the codes solving the problem, or should the effect merely to change the

discourse state so that subsequent queries will take into account the intended itinerary

("Why the recursion function parameter is coded in this way?"), or should it cause the

 18

system to plan and produce a response to clarify the user's goals ("Do you want to see all

the codes?")?

Is the decision to treat the input as a command, or merely as information to the

system, really part of the "NL understanding" process, or part of the backend process that

takes place after understanding, and is independent of it? The same questions can be

asked about the response planner and response generator components in Figure. 1. Is it a

part of the NL processing (a part that just is not used when the input comes from text

instead of an interactive user) or is it part of the post-NLP system? Computational

linguists do not agree on where to draw these boundaries or on how to represent the

information that passes between them (Bates, M. 1995).

Figure 1. A Generic NL System. (Bates, M. 1995)

Reiter E. (1994) surveyed a set of NL generation systems to investigate psycho-

linguistically plausible and consensus NL generation architecture. He analyzed and

compared NL systems in architecture, content determination, sentence planning, surface

generation, and morphology and formatting. Then he reached a controversial conclusion

 19

that although it is believed that a certain linguistic phenomena is best handled by a certain

architecture, the next evolutionary process in NL is not about “proper” handling of

specific cases, but more related to non-deterministic human-like language generator.

Code explanation with NLP

In programming, NLP technology has also been considered as a tool to explain

machine language.

Wong, E. et al. (2015) proposed “CloCom” to generate code comments by

detecting existing code with comments that are similar to the current Java code. They

obtain the Abstract Syntax Tree (AST) of the Java source code with Eclipse AST-Parser,

then calculate the similarity between pairs of codes. By extracting and selecting

comments from similar codes and ranking them by similarity and comment quality,

CloCom generates at most two comments for each code input. This study involved term

similarity and filtering, which are basic NLP techniques, so improvement space is created

by utilizing more intelligent algorithms.

Hu, X. et al (2018) chose a different approach to generate code comments. They

utilized AST and structure-based traversal (SBT) to transform programming code into

sequential structured language and build up deep learning models with RNN and LSTM

to process the programming and translate it into natural language. By evaluating the

result with BLEU-4 (Papineni, K. et al. 2002, July), the research team claims to have a

better performance compared to their baseline. In this work, the model is designed to

generate comments for completed methods for industrial purposes, so they used existing

 20

code comments as training data. On the other hand, our study focused on education

purpose, so industrial comments are not proper in general cases, and explanation for

single lines is more agile and helpful in our scenario. Also, Hu, X. and his team utilize

LSTM, which is a sequence-based model, by transforming the tree-structured code into a

sequence, while I try to build the model with tree-structure, which is a novel and valuable

attempt.

Deep learning in NLP

Deep learning, or deep neural network, has been used in NLP for decades in

different tasks including part-of-speech (POS) tagging, chunking, named entity

recognition, semantic role labeling, language models, and semantically related words, etc.

(Collobert, R., & Weston, J. 2008, July). In this work, I focused on the existing

translation models, and utilized them for new purposes. Among all translation deep

learning models, long short-term memory is widely used and performs well.

Long short-term memory (LSTM)

First proposed in 1997, LSTM is a model based on RNN, an extension of

conventional feedforward neural network. Specifically, LSTM cells are capable of

modeling long-range dependencies, which other traditional RNNs fail to do given the

vanishing gradient issue (Hochreiter and Schmidhuber, 1997). The LSTM architecture

addresses this problem of learning long-term dependencies by introducing a memory cell

that can preserve state over long periods of time. Each LSTM cell consists of an input

gate i, an output gate o, and a forget gate f, to control the flow of information.

 21

Studies have been established for different purposes in NLP utilizing LSTM.

Zhou et al. (2016) indicates the benefit of using such networks to incorporate contextual

information in the classification process. Tai et al. (2015) further implemented a tree-

structured LSTM to improve its reasoning ability, which lead to better sentiment

classification and semantic relatedness

Meanwhile, sequence-to-sequence (seq2seq) models (Sutskever et al., 2014, Cho

et al., 2014) have enjoyed great success in a variety of tasks such as machine translation,

speech recognition, and text summarization. Neural Machine Translation (NMT) was the

very first testbed for seq2seq models with wild success utilizing LSTM. This model is

based on RNN Encoder–Decoder, which takes input into encoder, captures the deep logic

as a “thought” vector, then exports into another language with decoder.

In this thesis, LSTM is involved to build up a translation model, which takes

programming language as input, and output human language, English, in our case.

Besides the sequence base LSTM, the tree-structured LSTM was also proposed by

Tai, K. S. (2015). The difference between sequence-based model and tree structure-based

model is illustrated in Figure 2.

To conquer the limitation of the LSTM architecture that they only allow for

strictly sequential information propagation, the N-ary Tree-LSTM is chosen to connect

the tree structures. The variants allow for richer network topologies where each LSTM

unit is able to incorporate information from multiple child units. As in standard LSTM

units, each Tree-LSTM unit (indexed by j) contains input and output gates ij and oj, a

memory cell cj and hidden state hj. The difference between the standard LSTM unit and

 22

Tree-LSTM units is that gating vectors and memory cell updates are dependent on the

states of possibly many child units. Additionally, instead of a single forget gate, the Tree-

LSTM unit contains one forget gate fjk for each child k. This allows the Tree-LSTM unit

to selectively incorporate information from each child. For example, a Tree-LSTM model

can learn to emphasize semantic heads in a semantic relatedness task, or it can learn to

preserve the representation of sentiment-rich children for sentiment classification. As

with the standard LSTM, each Tree-LSTM unit takes an input vector xj . In our

applications, each xj is a vector representation of a word in a sentence. The input word at

each node depends on the tree structure used for the network. For instance, in a Tree-

LSTM over a dependency tree, each node in the tree takes the vector corresponding to the

head word as input, whereas in a Tree-LSTM over a constituency tree, the leaf nodes take

the corresponding word vectors as input (Tai, K. S. et al. 2015).

Figure 2. Left: A Chain-structured LSTM Network. Right: A Tree-structured

LSTM Network with Arbitrary Branching Factor (Tai, K. S. et al. 2015).

Furthermore, Shido, Y. et al. (2019) proposed Multi-way Tree-structured LSTM,

which is an extension of tree-structured LSTM to handle a tree containing a node having

an arbitrary number of ordered children to interpret programming code AST. The method

 23

was to adopt bidirectional LSTMs on each gate to encode the information on forward

children to backward children and vice versa (Figure. 3). Shido, Y, et al also conducted

an experiment to compare the Multi-way tree-structured LSTM with sequence LSTM and

other tree-structured models with a data set of 243183 samples for training, 29155 for

validation, and 33010 for testing. In the experiment, comments were utilized as

explanation of codes and matched with corresponding code. The result shows the Multi-

way tree-structured LSTM outperforms other models in BLEU-1 to BLEU-4 and other

metrics.

Figure 3. Node Structure of LSTM (Left) and an Example Node Structure with

Three Children in Multi-way LSTM (Right) (Shido, Y. et al. 2019)

In this thesis, I refer to the Multi-way tree-structured LSTM and train it with

human explanations intended to teach novices about programming.

 24

CHAPTER 3

METHODOLOGY IN OBSTACLE IDENTIFICATION

To identify the obstacles for novices in learning and solve them, this research

followed a thread of problem identifying and solving.

Discussion forum learning behavior analysis

The beginning of this programming education research was the discussion forum

learning analysis (Lu, Y., Hsiao, I-H.& Li, Q. 2016). I design engines to capture

programming learners’ activities on StackOverflow site, such as problem verbalization in

queries, query revision and other information seeking processes. Then I collect a semester

long of informal programming learning activities from a programming discussion forum.

After serial data analysis and K-mean clustering, the patterns in students’ behavior were

revealed that the students are clustered into four groups (Figure 4). In the figures, the x

axis is the index of each operation, and the y axis is the time cost on each operation.

 (a) Hyper-user (b) Selecter

 25

 (c) Impatient-reader (d) Passive-user

Figure 4. Typical User Timelines in Each Behavior Cluster

In this research, the result showed that many programming novices spend a lot of

time browsing search results and reading, and there are usually multiple iterations of “try

and failure” in query searching. All the study results shed light on programming learners

seeking for learning resources from extensive online discussion forums. I anticipate this

work serves as guidelines for educational technologists to design better effective tools to

facilitate learning via programming information seeking process.

Information seeking behavior analysis

Following this clue, I continue to investigate the information seeking behavior of

programming learners (Lu, Y. & Hsiao, I-H. 2017). In the next study, I studied how

programming novices explore and search on online discussion forums. The method was

to collect novices' intentions and search logs. I model their information seeking activities

by using Hidden Markov Model and mining the post of their readings (Figure 5).

 26

a. HMM for Advanced Student Browsing Behavior

b. HMM for Novice Student Browsing Behavior

Figure 5. Information Seeking Behavior Modeling for Novice and Advanced

Students

The results indicated that novices had significant different behavior patterns

compared to experienced learners. Different from searching, novices do more skimming,

while experienced learners read contents more carefully. Analysis also reflected that if

 27

novices can read as well as advanced students, they can learn as much as advanced

students according to the results of learning evaluation. This fact suggested that novices

indeed require specific assistance in generating search queries and filtering helpful

information among the search results.

Information seeking system design

In the next research, I design PiSA (Personalized Information Seeking Assistant)

(Lu, Y. & Hsiao, I-H. 2017), a programming related search platform, to facilitate learners

look for programming related information (Figure 6).

a. PiSA Search Page with Query Term Recommendation Considering User History

and Social Features

 28

b. PiSA Browse Page with Searching Results Summary

Figure 6. PiSA System Interface Example

This platform is designed visually to combine social features, user history, and to

personalize query recommendation and conclude frequent words in search results to help

learners filter results and refine their queries. However, the limitation of this work is

obvious that in most cases, learners prefer to use general search engine rather than

specific tool designed for learning programming due to their inertia in custom and the

design detail issues in learning tools according to their feedback.

As a result, to provide further assistance to learners, I move on to a public search

engine, Google, to analyze the novices’ searching behavior and identify their common

obstacles. In this study, I conducted a lab study to investigate students' programming

information seeking behavior via Google search engine, in which students were given a

programming task with limited time, and they were also required to report their online

 29

search process including search query and web pages browsed. I analyze the web pages

they browsed, model student's behavior, and cluster them into groups with different

search tactics. The results show that the web pages they browsed during the task

consisted of either conceptual knowledge or coding technical content. The students who

performed better would browse more about conceptual knowledge. Students who set

more and smaller units of sub-goals outperformed the students with fewer and larger sub-

goals. In this study, I also observed that learners have obstacles after retrieving valuable

material, because of the lack of prior knowledge to understand the material.

Human Language-Programming Code Connection

To address the new obstacle identified, I turned to material interpretation analysis

(Lu, Y., & Hsiao, I. H. 2018, July). To explain materials for learners, I investigated

semantics in programming. In the first study in this field, I utilized deep learning models

to build up connections between descriptive language and programming concepts. By

analyzing existing codes and descriptive comments, I was able to predict concepts

involved given descriptive language with a neural network model.

To further assist novice learners, I finally reached the current study. I build up

another model to interpret not only human language materials, but also programming

codes. The whole process includes data collection from crowd source, build up model,

pilot study evaluation, and long-term lab study evaluation.

 30

CHAPTER 4

METHODOLOGY IN PROGRAMMING CODE EXPLANATION

Crowdsourcing

Amazon Mechanical Turks (AMT) is a crowdsourcing website for businesses

(known as Requesters) to hire remotely located "crowd workers" to perform discrete on-

demand tasks that computers are currently unable to do. It is operated under Amazon

Web Services and is owned by Amazon. This platform is easy to use, script driven, and

safe for both requester and workers. In this work, I utilize AMT to collect human code

explanations. In AMT, the data collection has two phases: qualification phase and HIT

phase.

Qualification

In this work, crowd source is utilized to collect true human explanations for code

line, which will be used as ground truth in neural network training. To this degree, the

quality of the explanation is critical, code experts are expected as the data source. For this

purpose, a qualification is conducted for the Turks on the platform.

There are two purposes to establish the qualification. First, the Turks with little

programming knowledge must be excluded, since the content collected are assumed to be

experts explaining code for novices. Second, the programming knowledge level is also

critical in model training. There is a potential in the future that the model could positively

learn from dynamic content input with a weight representing the quality of the content,

and the knowledge level of the provider is a good representation.

 31

The qualification is designed as a survey with 20 questions, in which each

question is multiple choice. The topic of questions covers programming related

knowledge from basic to advance to differentiate the Turks in different levels. Turks must

achieve at least 60% of the questions to pass the qualification and participate in the data

collection phase.

Data Collection Design

In data collection, Turks are expected to read a complete java code, and explain

the code line by line. To organize the tasks, AMT partitions the tasks in HIT level and

assignment level, Figure 7 is an example. In this example, each java code is the original

data awaiting human reply. The first step is to process the original data into a HIT, which

is formatted with basic descriptions, highlights of what to answer, how to answer, and

even good examples and bad examples. After formatting a HIT, it is published to the

qualified Turks with a limited number of assignments, 3 in the example. After 3 Turks

take all the assignments, this HIT is closed.

Figure 7. Amazon Mechanical Turks - Task Structure

 32

In the code explanation collection, the original code data set is a collection

including code example in programming textbooks and practical open Java projects on

GitHub. Before posting, the codes are filtered by their degree of completion and length.

Only the codes with complete logic (different from codes like “hello world”) and a

medium length (10 to 20 lines) are left for AMT. An example of HIT to explain the first

two lines in a code is shown in Figure 8. In real HITs, Turks will explain every line in a

code.

Figure 8. A HIT Example for the First Two Lines in a Code

After filtering, each code is processed by a modified compiler to remove

comments and standardized format. Then a script is executed to format each code into a

HIT, where each code line is required to be explained as a short-answer question. The

 33

HITs are designed to have a one-week lifespan, which means after a week, even though

the three assignments are not all finished, the HIT will still be closed.

After 6 weeks of data collection, more than 450 Turks participated in the data

collection, over 800 assignments are finished on ATM platform, and 8569 lines of code

are explained.

Pilot study

The main contribution of this work is based on the code explanation deep learning

models. After data collection, the translation model will be trained and evaluated in pilot

study.

Model Training

In this work, a Neural Machine Translation (NMT) model is trained in iterations.

In each iteration it first took training data to form the model, then validated it for the next

iteration. The Figure 9 is an example of NMT translation on GitHub. To train the NMT

model, both the code data and the explanation data collected are pre-processed to extract

their vocabulary. Then the whole data is split into training, validating, and testing data

set.

 34

Figure 9. Neural Machine Translation - Example of a Deep Recurrent Architecture

In this work, one more step is required since the variable names are more variance

in programming language, which should not be considered as part of vocabulary. To

correctly tackle this set of terms, a tokenizing process is applied before the training. This

tokenizing process is close to compiler tokenizing, in which an internal vocabulary is

maintained to filter “unknown” term. These unknown terms are masked with specific

token, and matched to the explanation terms, or translation.

Figure 10. Example of Token Masking Match

 35

Furthermore, considering the structure of human language sentence is in a tree

structure, which is agreed by programming code line, a translator would perform better if

it can translate a tree structure into another. With this assumption, the tree-structured

LSTM is employed as an advanced model (Tai, K. S. et al. 2015).

Since tree-structured LSTM has been compared with sequence LSTM in many

previous studies (Shido, Y. et al. 2019; Tai, K. S. et al. 2015), we will only focus on the

impact of tree-structured LSTM in example learning.

Study Design

After model training, the code lines in test data set is taken as the input to the

model, and MG explanations are collected to compare with human explanations.

In the experiment, 6 complete codes with 103 lines in total were randomly

sampled in the test data set, and 4 programming experts participated in the study. Among

the 103 sample lines, 50 of them were randomly selected and explained by humans, and

the other 53 were explained by tree-structured LSTM. The pilots did not know the source

of each explanation. The pilots were required to evaluate each explanation in two

perspectives: whether it is readable (Y=readable; N=unreadable) and the level of

accuracy (1 to 5, 1=totally inaccurate; 5=totally accurate).

Study results

In Figure 11, the results of pilot study are illustrated.

In the left figure, the readability was a binary evaluation for the pilots as “Y” or

“N” to judge whether they can understand an explanation. After taking “Y” as score 1

 36

and “N” as score 0, the average of all pilots is taken as the evaluation of different

explanation sources. The result shows that most of the explanations are readable, in other

words, they can understand the explanations. Meanwhile, the tree-structured model

outperforms sequential model, and both outperforms the human baseline. The average

Cohen’s kappa among each pair of the 4 pilots is 0.37. This result shows that MG

explanations can compete with humans in readability to some degree.

In the right figure, the comment accuracy is calculated similarly as readability.

The average Cohen’s kappa among all pairs of the 4 pilots is 0.27, which is not strong

considering there are 4 pilots selecting from 5 options for each code line. On the other

hand, the distribution of results shows that human explanations as a relatively better

performance since the accuracy are skewed to the right. Compared to humans, machine

explanations have a distribution of two peaks, which indicates there is a certain part of

code lines not well explained by model.

Figure 11. Pilot Study Result of Readability and Accuracy

 37

Table 1

Comparison of Human and LSTM Model in Readability and Accuracy.

Readability (0 to 1) Accuracy (1 to 5)

LSTM 0.92 +- 0.20 2.82 +- 1.48

Human 0.98 +- 0.07 4.62 +- 0.57

The examples of different explanations given by human and machine are as

follows:

• Example of both human and machine success to explain

Code: public class Stopwatch{

Human explanation: Create a class with class name as Stopwatch

Model explanation: Declare a public class

• Example of both human and machine fail to explain

Code: for (int i = numbers.size()-1; i > = 0; i--)

result.println(numbers.get(i));

Human explanation: Usies the PrintWriter to print out each number from last to

first to the result.dat file.

 38

Reason of failure: too much information, not necessary for novices, lack of further

explanation

Model explanation: add the listener to the question

Reason for failure: irrelevant terms involved.

• Example of machine outperforms human

Code: while (in.hasNext()) {

Human explanation: while statement executes the code in the while block unless

it returns a boolean value true to the expression in.hasNext()

Reason for failure: too complicated for novices, logic of boolean value returning

is wrong.

Model explanation: while loop for all in the input

• Example of human outperforms machine

Code: Rectangle box = new Rectangle (5 , 10 , 20 ,

30) ;

Human explanation: Constructs a rectangle and saves it in a variable

Model explanation: Constructs a NoSuchMethodException and saves it in a

variable

Reason for failure: irrelevant term “NoSuchMethodException ” involved.

 39

In these examples, Human explanations are labeled inaccurate mostly because

they are not clear or too complicated illustrating complex concepts, while model

explanations fail because they involved irrelevant terms.

 40

CHAPTER 5

LAB EXPERIMENT DESIGN

The result of pilot study indicates that the MG code explanations are compatible

in quality, which has answered the first part in the research questions. However, it is still

important to measure the effect of MG explanations in learning and compare with human

explanation in impact to answer the second research question. I planned to investigate the

effect by conducting a lab study, which measures the value of MG content in educating

novices in real classroom for a long-time period.

Implementation

At the beginning of the whole lab study, there was a background survey together

with a pre-test given to examine the background knowledge of the learners, which helped

to measure the improvement of students during the study. In the pre-test, programming

related questions involving all concepts they would learn in the following two months

was tested. For each concept, learners were given specific multiple-choice questions to

test the level of their knowledge and followed by another question asking their

confidence level from 1 (lowest confidence) to 5 (highest confidence).

In the lab study, there were a set of sessions for the students:

In the first session, the students were given a general introduction about the lab,

including the purpose of the lab, the sessions they would experience, and the time setup

for each session. The introduction also interpreted the meaning of the time bar at the top

of the page to help them manage their time.

 41

In the next session the students reviewed the programming related concepts they

have learned in class, in which users can browse the concept definitions, usages, and

precautions. The purpose of this view was to have students remind the knowledge they

have just learned in class and unify the knowledge baseline before the students start the

learning process. In the middle of the description, there can be images or charts

embedded to better introduce the concept.

After reviewing, the students were given four coding related multiple-choice

questions in the third session to examine their level of understanding. This session was

treated as the pre-activity test since it is before the example learning. If they did not

choose the correct answer, hints would be provided, and the correct answer would be

highlighted. The purpose of this session was to examine the level of students’ knowledge

about the concept before reading all example codes with explanations.

In the fourth session, five different code examples were provided to the students

to learn. For each line of the code examples, the students in experiment group were

required to provide an explanation rate from 1 to 5 to evaluate its helpfulness. In order to

evaluate the effect of the proposed tree-structured LSTM model, there was no

explanation for the students in control group.

 The interface design for the task system is shown in Figure 12.

After example learning, the students will have another session of coding related

multiple-choice question as the post-test.

 42

(a) The Lab Introduction Session Page.

(b) The Concept Review Session Page.

 43

(c) The Question Session Page for Pre-test and Post-test.

(d) The Example Learning & Explanation Rating Session Page.

Figure 12. Interface of Lab Study Task System.

 44

Through the whole process on this website, the students’ mouse clicks, scroll, and

hover will be all logged together with the timestamp and user identity for further analysis.

To prove the usability of the system and interface, there have been three ASU101

classes that took part in the system evaluation. Over 50 students have taken the pre-

survey, knowledge background pre-test, and experienced the lab study system to learn

“for loop” in Java. The pre-survey result shows that the students’ background is

uniformly distributed from no background to more than 1-year experience. Additionally,

the pre-test with confidence supported this conclusion. During the system evaluation, all

students went through all the sessions of the system without problem.

There will be a formal lab class conducted in the course CPI101, which has 90

students registered in total. By tracking the performance of students and the ratings of

code explanations, there will be a detailed, multidimensional understanding of the effect

of MG content in programming education.

Workflow

The completed process of the lab study has two main phases: pre-test phase and

task phase. Each phase has a detailed workflow.

In the pre-test phase, there are three main stages. In the first stage, the whole lab

study will be introduced to the students. The introduction will include the purpose,

process, what they are expected to do, and how they will benefit from the study.

After confirming the introduction, the students will come to the second stage, in

which they will answer a set of questions to self-evaluate their programming background,

 45

including their programming year-age, most experienced language, and level of

understanding in some specific programming concepts.

Then, the students will start the last stage to test their mastery of knowledge in

detail. In this stage, concepts that the students will learn during the semester will be

involved in multiple choice questions to examine the students’ level of understanding.

Each concept will have two multiple choice questions, which are differentiated by

difficulty to examine the students’ knowledge in detail. After each multiple-choice

question, there will be an additional question asking about their confidence rating from 1

to 5. This design helps to remove the bias caused by the students who have not learned

the concepts and randomly answer the questions.

The whole pre-test will take an hour in total, in which the introduction stage will

take 5 minutes, the background self-evaluation will take 10 minutes, and the knowledge

test will take the rest 45 minutes.

Figure 13. Workflow of Pre-test

The regular lab study will be held in two single classes. During a lab study, each

student will be randomly assigned a source of code explanation selected from human

content, sequential model generated content, tree-structured model generated content, or

 46

no explanation. The workflow of each regular lab study will have another three main

stages.

In the first stage, the students will go through a brief review of the concepts they

have just learned in the last class. The review will not cover too much detail, but just

illustrate definitions and suitable scenarios for the concept.

Then, a set of task questions will be given to the students to examine their concept

knowledge at this point. The questions are multiple choices to fill code line into a

complete code block. This test result will be considered as the baseline before learning

from code examples and explanations.

In the next stage, the student will be required to carefully read and learn from

three code examples closely related to the concept reviewed. Concurrently, they will read

the code explanations for each line, try to draw the connection between codes and

explanations, then evaluate the explanation by giving a rate from 1 to 5. After reading

and evaluating all contents in the second stage, the students are expected to have a better

understanding about the concept.

In the final stage, the students will be tested with programming related tasks. In

this experiment, the tasks are two multiple choice questions about filtering blanks in

programming codes, but different from the questions tested before example learning. If

the students successfully answer the two questions, the study will end. Otherwise, if they

make another wrong choice, there will be hints given to them and have them try again

until they reach the correct choice. The task stage is designed in this way since it is

 47

critical to measure the mastery level of knowledge for students to prove the lift in their

learning, while the number of attempts they consume is a reasonable metric.

Figure 14. Workflow of Regular Lab Study

At the end of the long-term lab study, the students will be surveyed about their

experience in the lab study. They will give feedback regarding the interface design,

content arrangement, and learning experience. The students will also be asked about their

experience about the code explanation, and further suggestions for learning assistance.

Evaluation

To evaluate the whole model and prove the value of MG code explanation, the

learning effect from code examples with explanations were analyzed from two

perspectives. The first analysis was focus on the task performance comparison to

examine the final learning effect. The second analysis was turn to the ratings given to the

explanations to measure the effects of three content sources on students with different

knowledge backgrounds.

 48

Task Performance Analysis

In the first analysis, the learning effect of the students was evaluated by

comparing their task performance before the example learning and their first attempt after

the example learning. In this way, with a relatively large sample pool, the statistical

difference between these two performances were reflect the learning effect difference

among human code explanation, sequential model, and tree-structured model.

In this analysis, three questions were investigated:

• How does the explanation content affect the task performance?

• How does the knowledge background affect the task performance?

• How does the background knowledge impact the students’ learning effect

in class (before example learning)?

To address the first question, students were grouped into Four according to the

explanation content and the test questions they encounter. The explanation content groups

are named T (Tree-structured LSTM model generated content), and N (no explanation).

Besides, there were two sets of questions for students to take before and after the example

learning. The students were take the question sets in random order to remove the bias

caused by the question difficulty, which further split the groups into four (Table. 2).

 49

Table 2

Student Grouping with Different Example Explanation Content and Test Question Sets.

Tree-structured model

explanation

No

explanation

Question set 1 as pre-test, 2 as

post-test

T1 N1

Question set 2 as pre-test, 1 as

post-test

T2 N2

By comparing the task performance enhancement among the four groups, the

effect difference can be revealed. Assuming the number of correct first attempts of a

student is C, the number before example learning is CBefore, the number after example

learning is CAfter, and the difference between the two numbers is D = CAfter - CBefore. The

comparison were performed by an one-way ANOVA test with hypothesis as follows:

Hypothesis 1:

Hypothesis A: average DT > average DN; Hypothesis null : average DT ≦ average

DN

In this hypothesis, the groups with model explanation are estimated to perform

better than non-explanation group, which was verify the conclusion of our previous work

that the novices have a requirement of example explanation (Lu, Y. & Hsiao, I-H. 2017),

and the tree-structured LSTM model can assist novices in a level.

 50

The next two questions are exploratory questions, which could impact the

strategies we may apply on students with different knowledge backgrounds. First, the

students were grouped into H (higher experienced students) and L (lower experienced

students) according to their background survey and pretest. The analysis method in these

two questions are also ANOVA tests with the following hypothesis:

Hypothesis 2:

Hypothesis A: average DH > average DL; Hypothesis null : average DH ≦ average

DL

Hypothesis 3:

Hypothesis A: pre-test CH > pre-test CL; Hypothesis null : pre-test CH ≦ pre-test CL

Explanation Rating Analysis

The collection of ratings of explanations is also a critical information reflected

from the students. In the rating analysis, this data was matched with the learning effect to

calculate the correlation and validate that the quality of explanations is relevant to the

learning effect. Also, the ratings were matched with the students’ pre-test result and task

performance before example learning to investigate the potential bias of the rating caused

by the knowledge level of students.

In other words, the questions to investigate in this analysis are:

• What is the connection between the students’ rating and their task

performance improvement after example learning?

 51

• Whether a well knowledgeable student understand explanations better and

give higher ratings than a student with less background knowledge?

In this analysis, the second question is essentially aiming to remove a potential

bias in the first question, so the first question is the core of the analysis. To reveal the

connection between explanation ratings and source of content, a Pearson’s r analysis was

be conducted to capture the significance of the correlation between students’ ratings and

their submission correctness. The expected result is to confirm the significant rating

difference aligned to the performance difference in the last analysis. Let the average

ratings of a student i is Ri, and the task performance difference after example learning is

Di. The hypothesis is as follows:

Hypothesis 4:

Hypothesis A: the correlation between normalized set R and D is higher than 0.2;

Hypothesis null: the correlation is 0.

Similar method was be used on the second question to examine the bias of ratings

brought by the students’ background knowledge. The expected result is to see no

significant rating difference between students with different background knowledge. If

the code examples are properly chosen, which means they are neither too hard nor too

simple, the result of this analysis had a higher chance to be as expected. Let the pre-test

performance of a student i is Pi, the hypothesis is as follows:

 52

Hypothesis 5:

Hypothesis A: the correlation between normalized set P and D is higher than 0.2;

Hypothesis null: the correlation is 0.

 53

CHAPTER 6

EXPERIMENT RESULT

Research Questions

To answer research question #1 “How to explain code for novices with MG

language?”, I designed a deep learning-based code explanation generator and developed a

system to evaluate the generator by helping learners review programming concepts and

deepen their understanding with code examples. Furthermore, to evaluate the impact of

code explanation, the system serves pre and post learning tests to the users to measure the

improvement during example learning.

The research question #2 “How do learners benefit from MG code explanations

when learning concepts and algorithms?” was answered by establishing experiments on

two classes of students: one formed by novices and the other had more experience. By

comparing the impact of MG code explanation on the two classes, the mechanism of how

novices’ benefit is revealed. Moreover, the impact was analyzed from different

perspectives including the test performance improvement after learning from example,

the efficiency of time spent in example learning, and the relation between students’ rating

of explanations and their performance.

Analysis Methods & Results Summary

In the experiment, the performance score of students was evaluated by the

correctness of their test answers, each correct answer earned 1 point. Since there were 4

questions in the pre-activity and 4 in the post-activity test, the total score of a student

ranged from 0 to 8, and the improvement could range from -4 to 4.

 54

To analyze the experiment result, a set of features and learning analytics were

extracted from the experiment log including the students’ total performance score (Perf),

their normalized performance improvement after example learning as learning gain (LG),

their performance in the background knowledge pre-test (Pre), the time they spent on

example learning (Time), whether they were provided the code explanations (Explain),

and their total ratings on the explanations (Rate). The following table summarizes the

experiment log analytics and definitions.

Additionally, the learning gain (LG) was ranged from -4 to 4, since in the worst

case, a student could get full score 4 in the pre-activity test, and get 0 in the post-activity

test, then the LG would be -4; while in the best case, a student could get 0 score before

learning, and 4 after, then the LG would be 4.

Table 3

Data Feature Definitions

Feature Definition

Perf The total score of a student in the lab class (0 to 8).

LG The learning gain is the normalized improvement of a student’s score after

example learn (-4 to 4)

Pre The pre-knowledge score of a student (0 to 150)

Time The time spend of a student in the example learning phase

 55

Explain Whether a student was provided code explanation in examples

Rate The total rating given to the explanations from a student

Table 4

Subject Group Definition

Group Definition

Experiment group (E) Code examples with MG explanations.

Control group (C) Code examples without explanations.

According to the result of analysis, the value of MG code explanation is reflected

by improving the Predictability of learning for novices. The Predictability here means

that with more time spent in learning from example by a student, how much better he/she

can expect in test performance. The analysis result indicates that with the help of code

explanations, students can indeed achieve a more predictable and positive improvement

by putting more time in learning, while this fact is not shown when explanations are not

provided.

However, results also reveal that the value of MG explanations is not reflected

directly by improving the students’ test performances. Moreover, students’ subjective

ratings on the explanations do not indicate their achievement. These facts suggest that

educators should be cautious about how to use the MG annotations, and the subjective

ratings from students are not fully reliable compared to their performance in tests.

 56

Additionally, the MG annotations can play the role attracting students to spend more time

in learning while maintaining their attention.

Learning Effects on Novices

Student Background

To evaluate the impact of MG code explanations in programming examples, an

experiment was conducted. The experiment was established in an introductory web-

programming class. There were 53 students who took part in the experiment.

 At the beginning of the semester, the students were asked to complete a pre-

survey and a pretest about their knowledge background. According to the survey,

students’ backgrounds were evenly distributed into three major groups: 1) students with

zero or less than a month programming experiences; 2) students with less than a year

programming experiences; and 3) students with more than a year experience. According

to the background distribution, group 3 (students with more than a year experiences) may

seem to potentially result in a ceiling effect. Note that such effects should be minimized

by controlling the concepts involved in the experiment were fundamental and essential

knowledge to the programming language instead of language specifics.

Figure 15. Novice Class Programming Background Distribution

 57

Besides general programming experience, we also asked students rate their web

development experience specifically, their HTML and JavaScript coding experience. The

results showed that students reported relatively low web programming experience. Most

of them rate themselves between 1 and 3 out of 5. It indicated their self-reported novice

skills in JavaScript.

Figure 16. Novice Class Self-evaluation in JavaScript

Besides the subjective self-evaluation survey, a pre-test was administered to

investigate students’ pre-knowledge of the domain. To avoid the impact when a student

does not understand a concept and randomly guess as the answer, the students are

required to provide their confidence besides the answer for each question.

The distribution of the average confidence for each student is supported by the

survey result, in which most of the students had an average confidence of 3 or less.

 58

Figure 17. Novice Class Distribution of Total Confidence in Pre-test

To involve both the students’ answer quality and their confidence, the score for

each question is calculated as the product of the correctness of an answer and the

student’s confidence level. Both factors are normalized between 0 and 5. In the final total

score distribution, most of the students achieved less than 20% of the total score (30 out

of 150), which supports that this class is feasible to conduct experiments for novices.

Figure 18. Novice Class Total Score Distribution

Classroom Experiment Setup

The experiment was established as a lab class, which is designed to help students

learn JavaScript from examples. The concept “for loop” was chosen as the topic in the lab

class, since it was introduced a week before the lab class.

 59

At the beginning of the lab class, students were required to land on the experiment

and enter their identity. Before the formal experiment, they were given a brief

introduction about the purpose of the experiment and what they can expect from it. In

phase 1 of the experiment, the students went through a material helping review the

concept, which set them to the same baseline. Then in phase 2, the students took a pre-

activity test before example learning by answering 4 multiple choice questions. For each

question, after they made a choice and submit, there would be a hint pop out and the

correct answer would be highlighted. Then in phase 3, the students were given 5 code

examples to learn. In this phase, the students were randomly split into control group

(group C) and experiment group (group E). In group C, the students were only provided

the example code and the execution result; in group E, besides the example code, the

students were also provided code explanations generated by machine. The group E

students are required to read and rate the helpfulness for each explanation from 1 to 5.

After the example learning, in phase 4 the students took a post-activity test by answering

another 4 multiple choice questions, which has the same setup as pre-activity test.

After the experiment process, a post-survey was given to the students to collect

their feedback, and suggestions for the system and example learning experience.

Result analysis

Explanation helps students improve learning predictability.

When investigating the difference between group E and group C, one of the major

findings is the impact of code explanation on learning predictability. Predictability is

defined as the correlation between learning gain represented by the test performance

 60

improvement after example learning (pre & post test score difference) and time spent in

example learning (Time).

Note that the learning predictability was adopted as the learning metric instead of

using the raw value of time spent in example learning, the reasons are illustrated as

followed: Since the students in group E had an additional task that they need to rate the

quality of explanations, they spend more time and there is no value to compare the time

spent on example learning between group E and C. However, the correlation between

learning time (Time) and learning gain (LG), namely predictability, can reflect the value

of explanations and remove the bias caused by time spent difference. Thus, a higher

correlation between LG and Time indicates that a student’s learning gain is more

predictable to have a positive correlation with given his/her learning time. This

predictability is important since it indicates a more stable and positive effect in learning.

In group E (N=38), the correlation (Learning Predictability) between Time

(mean=408.4, sd=150.9) and LG (mean=0.29, sd=1.56) is 0.17. Meanwhile, in group C

(N=37) the correlation between Time (mean=271.2, sd=118.0) and LG

(mean=10.1%0.03, sd=19.1%1.22) is only -0.07. The positive correlation between Time

and LG indicates the more time a student spent on example learning and resulted in

higher learning gain was achieved.

 61

Table 5

Novice Class Example Learning Time Spend, Learning Gain, and Predictability

Time spent(s) Learning Gain

Performance

improvement

Correlation

(Predictability)

Experiment Group (N=38) 408.4 ± 150.9 0.29 ± 1.56 0.46 (p = 0.01)

Control Group (N=37) 271.2 ± 118.0 0.03 ± 1.19 0.02 (p = 0.89)

According to this result, in group E the time spent on example learning has a

positive effect on task performance improvement, while such effect was not observed in

the control group. In other words, with code explanations, students are more likely to

achieve better performance after spending more time in learning from examples.

Potential bias may still be involved in this conclusion since the students in group

E are designed to spend more time on example learning. The performance improvement

may not be caused only by the explanation content, but also possibly brought by the

extra time spent in code reading. However, this possibility does not deny the value of the

code explanation because one of the benefits of code explanation is leading students to

spend more time and stimulate them to have a deeper understanding in programming. As

a result, the value of MG code explanation can be reflected by the predictability on

novices.

 62

Impact of explanation on task performance.

It is intuitive to examine the value of code explanation in learning by comparing

the learning gain (LG) between the experimental group (E) and control group (C). To

capture the LG difference, a two-way ANOVA test is conducted to measure the effect of

code explanation and learning time on learning gain, and the result is as follows.

Table 6

Two-way ANOVA Test Result in Novice Class Experiment

Source SS DF MS F p-unc np2

0 group 1.171 1 1.171 2.342 0.265573 0. 539

1 time 2.503 48.0 0.052 0.104 0.999590 0.715

2 group * time 102.969 48.0 2.145 4.290 0.207018 0.990

3 Residual 1.000 2.0 0.500 NaN NaN NaN

Although the mean LG of group E (mean = 0.29) is higher than group C (mean =

0.03), the p-value between the two groups is 0.266, which indicates that the difference is

not significant. With an effect size 0.5 and a sample size larger than 42 (N=53), this result

means a student is not guaranteed to perform significantly better when given explanations

when learning from code example. In conclusion, the explanation does not lead to better

learning effect in code examples without considering other factors such as knowledge

background, time spent, and confidence in learning.

 63

Background knowledge matters a lot in learning.

 In education, there is a common sense that the background knowledge is an

important factor in learning. Students with better experience can usually learn faster and

better. This fact is also reflected in this experiment.

To tackle the connection between pre-knowledge (Pre) and task performance, I

involved both total performance (Perf) and learning gain in performance improvement

after example learning (LG). The correlation between Perf and Pre is 0.46, which is a

strong indicator that better pre-knowledge leads to better total performance. On the other

hand, the correlation between Pre and LG is 0.1. The correlation is positive but close to 0,

which is reasonable because students who already performed well in pre-activity tasks

would have little space to improve in the post-activity tasks. However, the correlation is

still positive, so strong background knowledge indeed impacts learning impact in a

degree.

Another potential impact of pre-knowledge is on the predictability. To investigate

the impact, all students are evenly split into two groups according to their pre-knowledge

score. The correlation between time spent in example learning (Time) and task

performance improvement after example learning (Imp) in higher-knowledge group is

0.22, which the correlation in lower-knowledge group is 0.01. This result indicates that

students who have both better pre-knowledge and more time spent in learning could

achieve considerable improvement, while spending more time could not help a lot for

students without necessary pre-knowledge.

 64

Explanation ratings are not reflecting the effect.

Besides the task performance, another valuable information collected from the

students is their rate on the explanations in group E. The average rate for each code line

explanation fits in a skewed normal distribution (mean = 4.34, sd = 0.27) as shown in

Figure. The rating is much higher compared to the results in pilot study. This result is not

expected, it indicates further problems.

Figure 19. Explanation Average Rating Distribution

The reason for the higher rates is revealed when the average rate for each student

is analyzed. The distribution of student rating means is not normal, instead there is a

certain part of students rate all explanations as 5. This part of students made a huge

impact on the average ratings.

 65

Figure 20. Student Average Rating Distribution

To further understand the behavior of these students, I analyzed the connection

between their Imp, knowledge background, and rate. The correlation between knowledge

background and ratings is 0.06, which suggests non-correlation, while the correlation

between LG and rate is -0.17. This negative correlation indicates that when students do

not have a good understanding of the code example, they would rate higher. This finding

is unexpected but reasonable since the readability of MG explanations are as good as

human explanations according to pilot study. This finding also suggests to us that in

novice educating, the subjective ratings from novices are not fully reliable.

Students feedback

Although the LG difference between group E and C is not significant, the students

expressed their interest in learning from examples and explanations in their post-survey

and feedback. In general, the feedback is positive in the post survey. Students reported

 66

positive ratings toward the interface usability (mean), concept understanding after

learning, and the help from code examples.

Figure 21. Novice Post-survey Result Distribution

In the detailed feedback, students also expressed their positive feelings on the

code examples, explanations, and even time limitations in tasks. On the other hand, some

students provided valuable suggestions. Some specific valuable feedback is list below:

Positive feedbacks.

“I feel like the examples were really helpful.”

“This instructive program has given me more in-depth explanations of certain

keywords and functions than in class.”

 67

“I really liked this. Because I come from a no-coding background, the

explanations were super helpful! I would love to see this again.”

In general, the feedback from students is positive. Many students claimed that this

learning system with code examples and explanations helpful. The positive effect was

also reflected in their post-survey rating questions that these students gave relatively

higher ratings to the interface, concept learning, and effect of examples.

Better explanation is expected.

“Need to put more detail into explanations, still a little vague”,

“The examples need to have more information on how they specifically work with

quotes or words because we do not understand what they mean.”

On the other hand, some students expected to have explanations with higher

quality and more details. In the LSTM model training, there is a trade-off between the

richness of information and the accuracy.

When training the translation model, the frequency of each word in the

vocabulary of training dataset is important. The low frequency words in the vocabulary

could bring accuracy problems since there are not enough samples for the model to learn

the correct usage of these words. As a result, to avoid involving wrong words in

explanation generation impacting the accuracy, it is necessary to filter low frequency

words under a threshold.

However, if the threshold is too high, and too many words are filtered, the

explanation generated will only include high frequency words, which are usually vague

 68

and could not provide much specific information. As a result, there is a trade-off between

the richness of explanation and the accuracy with the model.

Considering the scenario of programming novice learning, erronic words in

explanation could potentially lead to misunderstanding and further increase the cognitive

load in understanding, which is more harmful compared to the lack of deeper

information. So, in this experiment, more words are filtered in purpose.

Compilable platform expected.

“I would like it if there was a ‘try your own’ code section where there would be

pre-written code that you could modify and "play" with to get a better understanding of

how each concept works”

Some students even suggested providing them an embedded compiler to try out

the code examples, and even test their own code modification on the example. This is a

valuable suggestion, which gives the explanation generator an even wider dimension to

impact the novices in learning. If there can be an online code example learning platform

with a compiler and an automatic explanation generator, students could understand the

knowledge better by modifying the examples in different parts and remove any confusion

by reading the explanations to their own code generated dynamically.

Learning model construction

The connections among factors in the experiment are addressed in Figure 22. As

shown, the two dependent variables are task total score performance (Perf) and the

performance improvement after example learning (Imp), and the four independent

 69

variables are pre-knowledge (Pre), whether provided example explanation (Exp), time

spent in example learning (Time), and their ratings given to the explanations (Rate).

These variables are not completely independent. The time spent is impacted by

whether explanations are provided, since the students in the experiment group are

supposed to spend more time on explanation reading and rating. Also, the level of pre-

knowledge has the potential to impact the time spent and ratings in example learning. So,

the correlations between pairs of independent variables are also calculated.

As shown in the figure, the total score is highly correlated to the pre-knowledge

level of students, but the pre-knowledge has limited impact on the improvement of

performance. On the other hand, pre-knowledge has little connection with time spent and

ratings in example learning.

Figure 22. Feature Connection Modeling for Novice Class.

 70

To tackle the impact of code explanation, the students in group E and C were

separated when calculating the correlation between Imp, pre-knowledge and time spent.

The result showed that when explanations are provided, both pre-knowledge and time

spent has a positive effect on Imp, while in the control group the connections are weak.

Figure 23. Feature Connection Modeling with and without Explanation Feature.

Learning Effect on Experienced Students

To answer the research question “How do programming learners benefit from MG

annotated examples in declarative and procedural knowledge learning?”, in this section

the impact of MG code on advanced students is investigated and analyzed. To tackle the

impact, another experiment was conducted in a class teaching advanced knowledge in

Java programming, in which students had at least one semester experience of

programming learning.

 71

Student Background

The general knowledge background of the students is shown in Figure 24. 46.3%

of the students had experience for more than a year; 28.3% students had experience more

than a semester and less than a year; another 18.5% students had experience more than a

month.

This result reflected the fact that the prerequisite of the course only accepted

students who had passed the first course in programming, and this class was indeed

experienced.

Figure 24. Advanced Class Programming Background Distribution

 72

Figure 25. Advanced Class Self-evaluation in Java

The experience advantage was also supported by the student’s self-rate on their

background in Java language. In this class, the majority (78.0%) of students rate their

experience as medium or higher.

Figure 26. Advanced Class Pre-test Total Confidence and Score Distribution

 73

The knowledge background advantage was fully validated in the pre-test result,

where the student’s total score fits in skewed normal distribution, and the mean value of

total score is higher than 50% of full score.

Result analysis

In this experiment, the students were provided knowledge review of the concept

“Big O notation”, and code examples in Java were provided to further deepen the

understanding of the concept. An analysis is applied on the result of this experiment close

to the novice class to tackle the impacts on advanced students.

The two-way ANOVA analysis on the LG in the advanced class experiment

shows that the LG gained from explanation is not significant (p = 0.518).

Table 7

Two-way ANOVA Test Result in Advanced Class Experiment

Source SS DF MS F p-unc np2

0 group 6.038 5 1.208 0.604 0.518446 0.602

1 time 5.123 73 0.070 0.035 0.999992 0.562

2 group * time 1307.532 365 3.582 1.791 0.425580 0.997

3 Residual 4.000 2.0 2.000 NaN NaN NaN

 74

Table 8

Advanced Class Example Learning Time Spend, Learning Gain, and Predictability

Time spent Learning Gain Predictability

Experiment Group (N=46) 362.4 ± 167.2 -0.17 ± 1.80 -0.10 (p = 0.50)

Control Group (N=57) 210.5 ± 128.3 0.13 ± 2.00 -0.01 (p = 0.96)

Learning time is not correlated to learning gain.

When examining the correlation between task performance improvement (Imp)

and the time spent on examples in the experiment group (E) and control group (C), both

correlations were negative and close to zero (E_cor = -0.10, C_cor = -0.01). This result

indicated that for both groups, learning time is not correlated to learning gain. For

advanced students, providing code explanations did not lead to a higher correlation

between learning time spent and learning gain, or the learning gain is not reflected in

reading.

This result supported that the predictability impact for novices was not relevant to

the increased time spent.

Lower ratings for explanations.

Since the learning time spent is not reflected in the learning gain, the rating of

explanations in the advanced class was analyzed to tackle their reading. Figure 27 shows

the distribution of average ratings for each student. Besides the peak close to 4.0, there is

 75

another peak at 2.5. This result suggested that there is a set of students who feel not

satisfied with the explanations in general.

Figure 27. Student Average Rating Distribution in Advanced Class

Considering the topic of the lab class “big O notation” and the background

knowledge of students, the peak of lower rate is reasonable due to the importance of

deeper logic in the examples, which is not fully reflected in explanations. Although

machines cannot explain logical concepts directly, it still has potential in removing

obstacles in fundamental syntax, so learners can focus on the logics in codes.

Feedbacks are more positive than novices.

Compared to the novice class, the feedback ratings are even higher. This results

indicated that the advanced students had less problem in understanding the interface

(mean 4.29, STD 1.06), and had better background knowledge to achieve help from

examples (mean 3.76, STD 1.16), and understand the concept better (mean 3.71, STD

1.23).

 76

Figure 28. Advanced Class Post-Survey Result Distribution

The reason for this positive feedback is possibly because the advanced students

had better experience in understanding coding related websites, some even had better

experience in learning from resources online.

Moreover, advanced students also provided fluent suggestions.

Feedback and suggestions

Positive feedbacks

“It was a good system”

“it was intuitive”

“Great idea! It feels simple and easy to learn.”

 77

“Really loved the in-class activity because it engaged me and forced me to learn

the concept. I hope the professor does more in-class activities that we work on our

laptop!”

“I think it's a good tool to use for learning how to read code and learn from the

examples.”

The majority feedback is positive in ratings, and this fact is also reflected in

textual feedback. Samples are shown above. The students expressed their interest in this

innovative system and expected more learning experience in this system. Besides the help

of the system, some students also highlighted the fact that having them spend time in

class to focus on learning concepts was helpful.

More explanations are expected to clarify logics in code

Besides positive feedback, suggestions were also collected:

“You could use the specific parts of the code where n is used in the explanation

because I still am slightly unsure where to look for each n/m. Also I didn't understand

how O(log(n)) works or how to know why it is that as well as n^2 vs 2^n. More examples

of those complex ones would help”

In this feedback, the student expected to have more mathematical explanations

besides the syntax, and more complex examples are also expected to extend their

understanding in big O notation. This suggestion is reasonable since the concept big O

notation is partially a mathematical concept instead of syntax concept. Also, there are

many examples of problems and algorithms involving larger time complexity, which are

worthy to show as advanced materials.

 78

“Make more of the explanations have to do with the concept at hand, not just

helping with understanding code.”

This feedback complained that the explanations only focused on syntax instead of

the concept logics. However, due to the limitation of the current model, the explanations

generated could not accurately capture logic connections among a whole block of code.

As a result, the explanation generating model works well on syntaxial concept explaining,

but does not work ideally on logic related concepts such as big O notation.

“I wish the written explanations given with each example would be more

comprehensive.”

In these suggestions, the students expected to have explanations with more details

related to the “big O notation” concept. This feedback was exactly expected since the

MG explanations are at syntax level, while the topic “big O notation” is a logic level

concept. This fact indicated that one of the limitations of my model is it only focused

generating syntax level explanation, so it does not well meet the requirement of the

advanced students who are learning concepts involving complicated logics.

Learning model construction

Similar to the first study, there is a learning model constructed based on the data

analysis on features including the two dependent variables: task total score performance

(Perf) and the learning gain after example learning (LG); and the four independent

variables: pre-knowledge (Pre), whether provided example explanation (Exp), time spent

in example learning (Time), and their ratings given to the explanations (Rate). The

connection analysis is shown in Figure 29.

 79

Figure 29. Feature Connection Modeling for Advanced Class

Moreover, the effect of MG explanation has little impact on LG compared to the

novice class.

Figure 30. Feature Connection Modeling with and without Explanation Feature.

Hypotheses Results

The experiment clearly revealed the result of hypotheses.

The hypothesis 1 compares the learning gain between the experimental group and

control group. As revealed in the experiment result, for both novice class (p-value = 0.31)

 80

and advanced class (p-value = 0.76), the hypothesis A are rejected. In other words, the

improvement of learning effect brought by code explanation in a single lab class is not

significant.

The hypothesis 2 and 3 compares the pretest performance and learning gain

between novices and advanced students. The experiment result shows that the pretest

performance (p < 0.001) difference between novices and advanced students is significant,

while since these two classes took different materials to learn different concepts, their

learning gain cannot be compared directly.

The hypothesis 4 & 5 are related to factors potentially affecting learning gain

other than the code explanations. In the experiment result, the correlations between

ratings and learning gain are not significant for both novices (cor = -0.16, p = 0.41) and

advanced students (cor = 0.03, p = 0.84), and the connections between pretest

performance and learning gain are also not significant for novices (cor = 0.07, p = 0.61)

and advanced students (cor = 0.09, p = 0.43). In conclusion, both hypotheses are rejected.

Impact Comparison

In this section, I will discuss the difference between the experiment results in the

two classes. The experiment on novice class is named Study I, and the advanced class

experiment is Study II. The comparison will be conducted from perspective including the

students’ pre-knowledge, the learning gain effect, the predictability in learning, the

ratings of explanations, and their subjective feedback in post-survey.

The two studies were conducted in one two classes with pre-knowledge

differences, in which the Study I was conducted on the class formed by novices; the

 81

Study II was conducted on advanced students. There was a pre-knowledge survey and

test established in both classes at the beginning of the semester to verify their background

knowledge level difference.

To control the variables, the studies for these two classes are conducted with the

same system and procedure. However, considering the different contents taught in both

classes, the topics involved in the two studies are different: in Study I, the novices

learned “for loop” from code examples; while in Study II, the advanced students learned

“big O notation”.

The procedure of both studies started from an introduction phase, in which they

are informed about the purpose of the study, the process of the study, and what they can

expect from the experiment. Then in the second phase, the topic concept of the

experiment was introduced in text for students. The purpose of this phase was to have

students review it and reach the same knowledge baseline. In the third phase, the students

were given a pre-activity test to record their level of understanding of the topic concept

according to their performance on a set of coding related multiple-choice questions. Then

in the fourth phase, the students were required to further learn the topic concept referring

to a set of code examples and execute results. In this phase, the students were randomly

split into the experiment group (group E) and the control group (group C). In the

experiment group, the students were provided not only code examples, but also line-wise

explanations. Moreover, they were required to read the explanations carefully and give

rate for each explanation. Meanwhile, for the students in group C, the code examples

 82

were provided without any explanations. In the last phase, the students were given a post-

activity test to record their understanding of the concept after learning from examples.

After the experiment process, both classes were given a post-survey to collect

their feedback and comments about the experiment system and content provided.

Pre-knowledge Difference

The pre-knowledge difference in programming between the two classes in the two

studies is critical since they should be able to represent different groups of learners.

According to the pre-survey and pre-knowledge test, in Study I class, 30% of

students had zero experience in programming; 67.3% of students achieved less than 20%

points in pre-test; in Study II, 74.6% of students had more than a semester; 56.9%

students achieved more than 50% points in pre-test.

This result validated that most students in Study I are novices, while students in

Study II are more advanced.

Learning Gain Comparison

In both studies, the learning gain was compared between the control group (group

C) and experimental group (group E). In study I, the difference between group C (10.1%

+- 19.1%) and group E (20.4% +- 25.2%) is larger than the study II (group C 17.2% +-

27.0% and group E 22.3% +- 29.5%). This result indicates that the MG syntaxial

explanations are more suitable for novices when learning syntax concepts, while provides

less help for advanced students learning concepts more related to complicated logics.

 83

Predictability Comparison

The predictability of a student is defined as the correlation between time spent in

learning and learning gain after learning. With this definition, a student with good

learning predictability will achieve better learning gain if he/she spent more time.

In study I, the overall predictability for group E is 0.17, while group E is -0.07.

This difference indicates that students benefited from the MG explanations by achieving

a better predictability, and passively spend more time in reading the explanations.

However, in study II, the difference between group E (-0.01) and group C (-0.16)

is less obvious, and both are negative. This result suggests that for advanced students, the

MG explanations do not affect in the same way as novices. A different model should be

built to assist this community.

Explanation Ratings

In experimental groups, the students were not only provided code explanations,

but also required to rate each of them. By calculating the average rating for each code

line explanation, the subjective evaluation of the contents generated can be achieved.

Meanwhile, by calculating the average rating given by each student, the connection

between student’s rating and his/her learning gain is also revealed.

According to the ratings collected, both studies received unexpectedly high

ratings compared to the accuracy ratings in pilot study, and the study I is higher than

study II. This result suggests that there is a trend that the learners would over evaluate

materials compared to experts, especially novices.

 84

This conclusion is supported when analyzing the average rating for each student.

The correlation between ratings and learning gain is negative for study I -0.16.

Furthermore, by filtering the students rating all explanations 5, the correlation between

ratings and learning gain became higher for both studies.

Subjective Feedback

In both studies, students were required to finish a post-survey after experiencing

the learning system. In the post-survey, students were asked to rate their experience (1 to

5) about the system interface design, concept understanding, and example helpfulness,

and further suggestions about the system. Both studies received positive ratings. In study

II, more complaints were received that the explanations were not reflecting the deeper

logic related to the concept “big O notation”, which supported the findings about the

limitation of MG explanations for advanced students.

In the result analysis, the result comparison is shown in Table 9.

Table 9

Comparison Summary Between Novice Class and Advanced Class

Study I (Novice

Programming

Learners)

Study II (Advanced

Programming

Learners)

Comparison

discussion

Pre-

knowledge

30% of students had

zero experience in

programming; 67.3%

of students achieved

74.6% of students

had more than a

semester; 56.9%

students achieved

The majority of

students in Study I are

novices, while

 85

less than 20% points

in pre-test.

more than 50%

points in pre-test.

students in Study II

are more advanced.

Learning

gain

After example

learning, students with

explanations obtained

(20.4% +- 25.2%)

more questions on

average correct;

Without explanations,

students gained 10.1%

+- 19.1%. No

significant difference

was found.

Average

improvement for

students with

explanation was

22.3% +- 29.5%;

The students without

explanations

achieved 17.2% +-

27.0%. No

significance was

found

In both studies, the

groups provided

explanations obtained

more improvement

after learning.

However, this

difference is not

significant.

Predictability Correlation between

time spent in learning

and performance

improvement after

learning is 0.17 for

students with

explanations; The

Both groups had a

negative correlation.

Students with

explanations are -

0.01 and the others

got -0.16.

For novices, with the

help of code

explanation, they can

learn better by

spending more time in

example learning,

while for novices

 86

other students got -

0.07.

without explanations

or advanced

Explanation

ratings

The average rating for

explanations in the

study was 4.34 +-

0.27, while the

accuracy rating in

pilot study was 2.82 +-

1.48.

The average rating

in this study (3.93 +-

0.25) was higher

than pilot study.

Besides unexpected

high ratings, a set of

students rated low.

In novices’ class,

students rate every

explanation high

performed worse than

average. While in

advanced class, some

students are not

satisfied.

Subjective

Feedback

The feedback

collected is positive in

general. Students

requested for better

explanations and

higher-level functions

in the system.

The feedback is even

more positive.

Students claimed

that high level logic

is not captured.

The feedback in both

classes is generally

positive. However,

the novice class

expected to further

learn from examples

by running them,

while advanced

students expected the

explanations to be

 87

logic related, instead

of syntax related.

The impact of MG code on advanced students was not observable in learning gain

and learning predictability. A possible reason was that for advanced students, the “Big O

notation” was a logical concept instead of syntax concept, so the logic meaning of the

code examples was more important than their syntax meaning. To this degree, the effect

of code explanation was limited even though the students in group E still need to spend

more time in explanation rating.

 88

CHAPTER 7

DISCUSSION & CONCLUSIONS

Summary Discussion

Obstacles Identified

The series of studies of mine (Lu, Y., Hsiao, I-H. 2015; Lu, Y., Hsiao, I-H.& Li,

Q. 2016; Lu, Y., Hsiao, I-H. 2017) have revealed that the programming novices have

obstacles in learning when they are learning with materials retrieved by themselves.

To assist novices, I have established studies to record and analyze the behavior of

learners when they are learning from materials online and implemented learning

platforms to help students form search queries, filter search results, and understand

coding requirements. However, one of the biggest obstacles remains that they have

problems in understanding online materials, especially code examples. To overcome this

obstacle, I utilized deep-learning models for the machine generated (MG) code example

explanations.

MG Explanations are Readable

With the help of Amazon Mechanical Turks (AMT), I collected human

explanations for almost 10K lines of codes. With the data collected as training data, a

deep-learning translation model was trained to generate syntax level code explanations.

In the pilot study validating the quality of MG explanations, the quality of MG code

explanations was proved to be compatible with humans in readability, while the accuracy

of explanations was not ideal, especially for concepts involving further contexts and

deeper logics. This result indicated that the MG explanations are feasible to help novices

 89

with syntax problems, but its effect on advanced students may be limited due to the

inaccuracy.

MG Explanations Helps Novices

According to the two lab-class experiments, the novices received help from MG

code explanation by improving their predictability, which means by spending more time,

the novices provided code explanations will achieve more stable learning gain and it is

positive. The improvement is potentially brought in multiple potential ways including

content reminding, focus keeping, and more time spending. However, the novice control

group and all advanced students did not have significant coefficients between learning

gain and time spend. This result illustrated the function boundary of the current

explaining model and highlighted the unique requirements of novices.

New Model Required for Advanced Students

The advanced students have expectations on code explanations to illustrate deeper

logics in code, which is difficult for the current machine model to fulfill. This fact

indicates future works to develop more applicable models that have higher accuracy of

MG explanations and involve more code contexts to cover more complicated concepts

and deeper logics.

Contributions

In this study, the following contributions are made:

• Identify the obstacles for novice learners in programming.

• Utilized deep-learning-based model to generate natural language

explanations for code lines for the purpose of education.

 90

• The effect of MG code explanation in learning was evaluated in

classes of students with different knowledge backgrounds.

After years of study, I have identified multiple requirements and obstacles for

novices in learning programming. To fulfill their requirements and help the novices learn

programming, I utilized the example learning theory in programming, which has been

studied for decades (Brusilovsky & Weber, 1996; Brusilovsky, 1992; Burow & Weber,

1996; Faries & Reiser, 1988; Guzdial, 1995; Hohmann, Guzdial & Soloway, 1992; Linn,

1992a; Linn, 1992b; Redmiles, 1993), extended it with machine generated (MG) code

explanation to further help novices understand examples. The model performance could

be taken as a baseline for future studies. In this work, I also investigated the potential and

effects of MG code explanations in programming education. Based on this background,

my research questions for this study is raised as:

RQ1: What do novices need in programming learning?

RQ2: How to explain code for novices with machine generated (MG)

language?

RQ3: How do programming learners benefit from machine generated (MG)

annotated examples in declarative and procedural knowledge learning?

To answer these research questions, I designed a system helping novices learning

programming syntax concepts by providing explained code examples. To achieve better

feasibility, the system is designed to automatically generate code explanations utilizing

tree-structured LSTM translation model to translate programming code into descriptive

English.

 91

To start the model training, labeled data is required as the training data. In this

research, a set of Java code was collected from textbooks and GitHub projects as the code

examples, and the codes were posted on the Amazon Mechanical Turks (AMT) platform

to collect human explanations. In order to guarantee the quality of explanations collected,

a set of programming questions were given to turkers as qualifiers on AMT to qualify

code experts. During the explanation collection, each Java code was assigned to three

turkers to maintain the diversity of human explanations.

To evaluate this translation model, a pilot study was conducted. In the

experiment, 6 complete codes with 103 lines in total were randomly sampled in the test

data set, and 4 programming experts participated in the study. Among the 103 sample

lines, 50 of them were randomly selected and explained by humans, and the other 53

were explained by tree-structured LSTM. The pilots did not know the source of each

explanation. The pilots were required to evaluate each explanation in two perspectives:

whether it is readable (Y=readable; N=unreadable) and the level of accuracy (1 to 5,

1=totally inaccurate; 5=totally accurate). In the evaluation result, MG explanations were

compatible with human explanations in readability, while the accuracy is not as good as

human’s, especially for codes with complicated logics. However, the model worked well

generating simple syntaxial explanations. This result indicates that programming novices

can potentially benefit from the system by achieving syntaxial explanations of codes.

To further prove the effect of the system in learning, and clarify its boundary or

limitations, two studies were established in real programming classes. The study I was

established in a programming novice class teaching JavaScript, and the study II was

 92

conducted in a class of relatively advanced students learning Java. Both experiments

were conducted with the same online learning system, in which the students experienced

5 phases: In phase 1 of the experiment, the students went through a material helping

review the concept, which set them to the same baseline. Then in phase 2, the students

took a pre-activity test before example learning by answering 4 multiple choice

questions. For each question, after they made a choice and submit, there would be a hint

pop out and the correct answer will be highlighted. Then in phase 3, the students were

given 5 code examples to learn. In this phase, the students were randomly split into

control group (group C) and experiment group (group E). In group C, the students were

only provided the example code and the execution result; in group E, besides the example

code, the students were also provided code explanations generated by machine. The

group E students are required to read and rate the helpfulness for each explanation from 1

to 5. After the example learning, in phase 4 the students took a post-activity test by

answering another 4 multiple choice questions, which has exactly the same setup as pre-

activity test. Considering the learning progress of both classes in the semester, the

concept introduced in the novice class was “for loop”, and the concept topic for advanced

students was “big O notation”.

In the analysis result, for novices the learning gain difference between group E

and group C were not significant. However, the predictability difference between the

group E and group C for both studies are large. This result indicates that with code

explanations, students are more likely to achieve better performance after spending more

time in learning from examples. Besides the value of the model and system, the limitation

of MG code explanation is also investigated in the experiments. In study II, the effect of

 93

MG explanation on predictability has disappeared on the advanced students, which

indicates that the syntaxial explanations are not suitable for advanced students who are

learning concepts with complicated logics.

Limitations

The experiment results revealed a set of limitations.

The accuracy of the model is not ideal enough for complicated code explanation

generation. Since the explaining model is based on LSTM translation models, the training

dataset has a huge impact on the translation quality. In the model training process, the

“understanding” of a code term is strongly impacted by the frequency of the term.

However, the frequency of terms is not uniform. There is always a long tail of low

frequency terms. When training the model, there is a lack of information input related to

these low frequency terms, which lead to misunderstandings and inaccuracy.

Besides the long-tail problem, the explaining model also has problems in

capturing the larger scale context and deeper logic. Different from natural language,

programming language is structured more densely, which means context from further is

more involved. This difference brings a difficulty to the model training, because the

human language translation model does not consider long-distance context, which is

another limitation of my work.

Besides the model developing, the experiment also has limitations. The essential

value of the code explanations is not fully revealed in the experiment. The first reason is

that the lab-class is not a long-term experiment, which could not fully capture the

 94

learning effects brought by the explanations, and the result is heavily noised by factors

including students’ pre-knowledge and class-learning effect.; The second reason is that

the experiment was designed to evaluate the learning gain brought by example code

explanation, while the model does not only explain examples, but can also explain the

student’s own code and illustrate the unexpected parts, which is another potential of the

model.

Future Work

Due to the limitations discussed above, there are a lot of promising future works

in this study. In the translation model design, more context can be involved to provide

explanations for codes with complicated logics; In the model training process, more data

is required since the performance of the model still has large space to improve; In the

experiments, long term studies could evaluate the model and system in a more

comprehensive perspective, and capture more clues proving the learning effects caused

by MG code explanations. Moreover, long term studies also help collect fluence details

of the learning process of different students, which further help to build up a more

complete model describing how novice learn programming from code and its

explanations.

Besides the system of example learning with code explanation, another promising

work is the self-explaining system, which could illustrate the bugs or unexpected parts in

the students’ own code. This system requires a larger data set for training, which includes

codes with bugs or errors, and explained correspondingly.

 95

REFERENCES

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from

examples: Instructional principles from the worked examples research. Review of

educational research, 70(2), 181-214.

Bartha, S., & Cheney, J. (2019). Towards meta-interpretive learning of programming

language semantics. arXiv preprint arXiv:1907.08834.

Bates, M. (1995). Models of natural language understanding. Proceedings of the

National Academy of Sciences, 92(22), 9977-9982.

Becker, Brett A. "An effective approach to enhancing compiler error messages."

Proceedings of the 47th ACM Technical Symposium on Computing Science Education.

ACM, 2016.

Brusilovsky, P. (2001, October). WebEx: Learning from Examples in a Programming

Course. In WebNet (Vol. 1, pp. 124-129).

Brusilovsky, P. and Weber, G. (1996) Collaborative example selection in an intelligent

example-based programming environment. In: D. C. Edelson and E. A. Domeshek

(eds.) Proceedings of International Conference on Learning Sciences, ICLS'96,

Evanston, IL, USA, AACE, pp. 357-362,

http://www.contrib.andrew.cmu.edu/~plb/papers/icls96.html.

Brusilovsky, P. L. (1992) Intelligent Tutor, Environment and Manual for Introductory

Programming. Educational and Training Technology International 29 (1), 26-34.

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice programming

students studying high level and low feedback concepts. In Proceedings ascilite

Singapore (No. 99–107).

Burow, R., & Weber, G. (1996, June). Example explanation in learning environments.

In International Conference on Intelligent Tutoring Systems (pp. 457-465). Springer,

Berlin, Heidelberg.

Chang, K. E., Chiao, B. C., Chen, S. W., & Hsiao, R. S. (2000). A programming

learning system for beginners-a completion strategy approach. IEEE Transactions on

Education, 43(2), 211-220.

Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-

explanations: How students study and use examples in learning to solve problems.

Cognitive science, 13(2), 145-182.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

& Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078.

 96

Chozas, A. C., Memeti, S., & Pllana, S. (2017). Using cognitive computing for learning

parallel programming: An IBM watson solution. arXiv preprint arXiv:1704.01513.

C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and L. Guibas.

Learning program embeddings to propagate feedback on student code. In Proceedings of

the 32nd International Conference on Machine Learning, International Conference on

Machine Learning, pages 1093–1102, 2015

Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of the 25th

international conference on Machine learning (pp. 160-167). ACM.

De Oliveira, M. G., Ciarelli, P. M., & Oliveira, E. (2013). Recommendation of

programming activities by multi-label classification for a formative assessment of

students. Expert Systems with Applications, 40(16), 6641-6651.

Denny, P., Luxton-Reilly, A., & Carpenter, D. (2014). Enhancing Syntax Error

Messages Appears Ineffectual. In Proceedings of the ACM Conference on Innovation

and Technology in Computer Science Education (pp. 273–278).

http://doi.org/10.1145/2591708.2591748

Dowty, D. (1994, November). The role of negative polarity and concord marking in

natural language reasoning. In Semantics and Linguistic Theory (Vol. 4, pp. 114-144).

Faries, J. M. and Reiser, B. J. (1988) Access and use of previous solutions in a problem

solving situation. In: Proceedings of Tenth Annual Conference of the Cognitive Science

Society, Montreal, 1988, Lawrence Erlbaum Associates, pp. 433-439.

Guzdial, M. (1995) Software-realized scaffolding to facilitate programming for science

learning. Interactive Learning Environments 4 (1), 1-44.

Hohmann, L., Guzdial, M., and Soloway, E. (1992) SODA: a computer-aided design

environment for the doing and learning of software design. In: I. Tomek (ed.)

Proceedings of 4th International Conference, ICCAL'92, Berlin, Wolfville, Canada,

June 17-20, 1992, Springer-Verlag, pp. 307-318.

Linn, M. C. (1992a) Can experts' explanations help students develop program design

skills. Int. J. Man-Machine Studies, International Journal on the Man-Machine Studies

36, 511-551.

Linn, M. C. (1992b) How can hypermedia tools help teach programming. Learn. Instr.,

Learning and Instruction 2, 119-139.

Redmiles, D. F. (1993) Reducing the variability of programmers' performance through

explained examples. In: Proceedings of INTERCHI'93, New York, Amsterdam, 24-29

April 1993, ACM, pp. 67-73.

 97

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating

collaborative filtering recommender systems. ACM Transactions on Information

Systems (TOIS), 22(1), 5-53.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2018, May). Deep code comment generation.

In Proceedings of the 26th Conference on Program Comprehension (pp. 200-210).

ACM.

Hulme, C., Maughan, S., & Brown, G. D. (1991). Memory for familiar and unfamiliar

words: Evidence for a long-term memory contribution to short-term memory span.

Journal of memory and language, 30(6), 685-701.

John R Anderson, C Franklin Boyle, Albert T Corbett, and Matthew W Lewis. 1990.

Cognitive modeling and intelligent tutoring. Artificial intelligence 42, 1 (1990), 7–49.

Labutov, I., & Studer, C. (2016). Calibrated Self-Assessment. International Educational

Data Mining Society.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of

novice programmers. Acm Sigcse Bulletin, 37(3), 14-18.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274.

Lin, Y. C., Hong, Z. W., Liao, Y. H., Shih, M. L., Liu, M. Y., & Sun, M. (2017). Tactics

of adversarial attack on deep reinforcement learning agents. arXiv preprint

arXiv:1703.06748.

Liu, H., & Singh, P. (2004, September). Commonsense reasoning in and over natural

language. In International Conference on Knowledge-Based and Intelligent Information

and Engineering Systems (pp. 293-306). Springer, Berlin, Heidelberg.

Lu, Y. & Hsiao, I-H. (2016) Seeking Programming-related Information from Large

Scaled Discussion Forums, Help or Harm? The 9th International Conference on

Educational Data Mining, Raleigh, NC, USA

Lu, Y. & Hsiao, I-H. (2017) Personalized Information Seeking Assistant (PiSA): From

Programming Information Seeking to Learning, Information Retrieval Journal

Lu, Y. & Hsiao, I-H. (2017) Toward understanding novices' search process in

programming problem solving, Frontiers in Education Conference 2017

 98

Lu, Y., & Hsiao, I. H. (2018, July). Modeling Semantics between Programming Codes

and Annotations. In Proceedings of the 29th on Hypertext and Social Media (pp. 101-

105). ACM.

Lu, Y., Hsiao, I-H.& Li, Q. (2016) Exploring Online Programming-related Information

Seeking Behaviors via Discussion Forums, 16th IEEE International Conference on

Advanced Learning Technologies, July 25-28, 2016, Austin, Texas, USA

Malan, K., & Halland, K. (2004, October). Examples that can do harm in learning

programming. In Companion to the 19th annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications (pp. 83-87). ACM.

McAllester, D. A., & Givan, R. (1992). Natural language syntax and first-order

inference. Artificial Intelligence, 56(1), 1-20.

Montague, R. (1970) Synthese 22, 68-94.

Nasehi, S. M., Sillito, J., Maurer, F., & Burns, C. (2012, September). What makes a

good code example?: A study of programming Q&A in StackOverflow. In 2012 28th

IEEE International Conference on Software Maintenance (ICSM)(pp. 25-34). IEEE.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for

automatic evaluation of machine translation. In Proceedings of the 40th annual meeting

on association for computational linguistics (pp. 311-318). Association for

Computational Linguistics.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer

programming. New ideas in psychology, 2(2), 137-168.

Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring

emotions in students’ learning and performance: The Achievement Emotions

Questionnaire (AEQ). Contemporary educational psychology, 36(1), 36-48.

Pettit, R. S., Homer, J., & Gee, R. (2017). Do Enhanced Compiler Error Messages Help

Students?, 465–470. http://doi.org/10.1145/3017680.3017768

Price, T. W., Dong, Y., & Barnes, T. (2016). Generating Data-Driven Hints for Open-

Ended Programming. International Educational Data Mining Society.

Reiser, B. J., Anderson, J. R., & Farrell, R. G. (1985, August). Dynamic Student

Modelling in an Intelligent Tutor for LISP Programming. In IJCAI (Vol. 85, pp. 8-14).

 99

Reiter, E. (1994, June). Has a consensus NL generation architecture appeared, and is it

psycholinguistically plausible? In Proceedings of the Seventh International Workshop

on Natural Language Generation (pp. 163-170). Association for Computational

Linguistics.

Serrano-Cámara, L. M., Paredes-Velasco, M., Alcover, C. M., & Velazquez-Iturbide, J.

Á. (2014). An evaluation of students’ motivation in computer-supported collaborative

learning of programming concepts. Computers in Human Behavior, 31, 499-508.

Shido, Y., Kobayashi, Y., Yamamoto, A., Miyamoto, A., & Matsumura, T. (2019).

Automatic Source Code Summarization with Extended Tree-LSTM. arXiv preprint

arXiv:1906.08094.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with

neural networks. In Advances in neural information processing systems (pp. 3104-

3112).

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.

Cognitive science, 12(2), 257-285.

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations

from tree-structured long short-term memory networks. arXiv preprint

arXiv:1503.00075.

Vesin, B., Ivanović, M., KlašNja-MilićEvić, A., & Budimac, Z. (2012). Protus 2.0:

Ontology-based semantic recommendation in programming tutoring system. Expert

Systems with Applications, 39(15), 12229-12246.

Weiser, M., & Shertz, J. (1983). Programming problem representation in novice and

expert programmers. International Journal of Man-Machine Studies, 19(4), 391-398.

Wen, T. H., Gasic, M., Mrksic, N., Su, P. H., Vandyke, D., & Young, S. (2015).

Semantically conditioned lstm-based natural language generation for spoken dialogue

systems. arXiv preprint arXiv:1508.01745.

Wiedenbeck, S. (1985). Novice/expert differences in programming skills. International

Journal of Man-Machine Studies, 23(4), 383-390.

Wong, E., Liu, T., & Tan, L. (2015, March). Clocom: Mining existing source code for

automatic comment generation. In 2015 IEEE 22nd International Conference on

Software Analysis, Evolution, and Reengineering (SANER) (pp. 380-389). IEEE.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning

based natural language processing. ieee Computational intelligenCe magazine, 13(3),

55-75.

