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ABSTRACT

The recent proliferation of online platforms has not only revolutionized the way peo-

ple communicate and acquire information but has also led to propagation of malicious

information (e.g., online human trafficking, spread of misinformation, etc.). Propa-

gation of such information occurs at unprecedented scale that could ultimately pose

imminent societal-significant threats to the public. To better understand the behavior

and impact of the malicious actors and counter their activity, social media authorities

need to deploy certain capabilities to reduce their threats. Due to the large volume

of this data and limited manpower, the burden usually falls to automatic approaches

to identify these malicious activities. However, this is a subtle task facing online

platforms due to several challenges: (1) malicious users have strong incentives to dis-

guise themselves as normal users (e.g., intentional misspellings, camouflaging, etc.),

(2) malicious users are high likely to be key users in making harmful messages go

viral and thus need to be detected at their early life span to stop their threats from

reaching a vast audience, and (3) available data for training automatic approaches for

detecting malicious users, are usually either highly imbalanced (i.e., higher number

of normal users than malicious users) or comprise insufficient labeled data.

To address the above mentioned challenges, in this dissertation I investigate the

propagation of online malicious information from two broad perspectives: (1) con-

tent posted by users and (2) information cascades formed by resharing mechanisms

in social media. More specifically, first, non-parametric and semi-supervised learning

algorithms are introduced to discern potential patterns of human trafficking activities

that are of high interest to law enforcement. Second, a time-decay causality-based

framework is introduced for early detection of “Pathogenic Social Media (PSM)”

accounts (e.g., terrorist supporters). Third, due to the lack of sufficient annotated

data for training PSM detection approaches, a semi-supervised causal framework is
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proposed that utilizes causal-related attributes from unlabeled instances to compen-

sate for the lack of enough labeled data. Fourth, a feature-driven approach for PSM

detection is introduced that leverages different sets of attributes from users’ causal

activities, account-level and content-related information as well as those from URLs

shared by users.
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Chapter 1

INTRODUCTION

Recent years have witnessed an exponential growth of online platforms such as online

social networks (OSNs), microblogging websites and other Web platforms. Nowadays,

these platforms play a major role in online communication and information sharing

as they have become massive-scale and real-time communication tools. This leads

to huge user-generated data produced on a daily basis and in different forms, that

are rich sources of information and can be used in different tasks from marketing

to research. On the negative side, online platforms have become widespread tools

exploited by various malicious actors who can orchestrate large-scale and societal-

significant threats to public, ranging from online human trafficking Alvari et al. (2017)

to misinformation spread Shao et al. (2017).

To better understand the behavior and impact of the malicious actors and counter

their activity, social media and other online platforms’ authorities need to deploy

certain capabilities to reduce their threats. Due to the large volume of information

published online and because of the limited manpower, the burden usually falls to

algorithms that are designed to automatically identifying these bad actors. However,

this is a subtle task facing online platforms due to several challenges: (1) malicious

users have strong incentives to disguise themselves as normal users (e.g., intentional

misspellings, camouflaging, etc.), (2) malicious users are high likely to be key users

in making harmful messages go viral and thus need to be detected at their early life

span to stop their threats from reaching a vast audience, and (3) available data for

training automatic approaches for detecting malicious users, are usually either highly

imbalanced (i.e., higher number of normal users than malicious users) or comprise

1



insufficient labeled data.

In this dissertation, we address the aforementioned challenges by investigating

the propagation of online malicious information from two broad aspects: (1) content

posted by users and (2) information cascades formed by resharing mechanisms in so-

cial media. In particular, for the former, the problem of online human trafficking and

potential countermeasures to combat them are studied. We present non-parametric

and semi-supervised learning algorithms for detecting online human trafficking. For

the latter, we study and understand “Pathogenic Social Media” (PSM) accounts who

are likely to be key users in making malicious campaigns. Various machine learning-

based algorithms are then presented to detect PSM accounts. In the followings, we

first briefly explain each problem separately and then present research challenges. We

conclude this chapter by providing the major contributions of this dissertation.

According to the United Nation uno (2011), human trafficking is defined as the

modern slavery or the trade of humans mostly for the purpose of sexual exploitation

and forced labor, via different improper ways including force, fraud and deception.

The United States’ Trafficking Victim Protection Act of 2000 tvp (2000) was the

first U.S. legislation passed against human trafficking. Human trafficking has ever

since received increased national and societal concern HTr (2015) but still demands

persistent fight from all over the globe. Before the Internet, human traffickers were

under risks of being arrested by law enforcement while advertising their victims on

streets Desplaces (2012). However, move to the Internet has made it easier and less

dangerous for sex sellers Nicholas D. (2012) as they no longer needed to advertise on

the streets. There are numerous websites such as Backpage that host and provide

sexual services under categories of escort, adult entertainment, massage services, etc.,

and help sex sellers and buyers maintain their anonymity.

Despite the above mentioned challenges facing law enforcement and presented by
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the Internet, on the positive side, it has provided readily and publicly available rich

source of information which could be gleaned from online sex advertisements for fight-

ing this crime Kennedy (2012). However, we lack the ground truth and obtaining the

labels through hand-labeling is expensive even for a small subset of data. To overcome

the issue of lacking ground truth, in Chapter 3 we rely on law enforcement experts

for hand-labeling a small set of data. We then utilize the labeled and unlabeled data

crawled from the adult entertainment section of the website Backpage and propose

a non-parametric learner and a semi-supervised Laplacian SVM framework to detect

escort advertisements of high interest to law enforcement. Here, we only focus on the

textual content posted by users on Backpage and leave investigating other forms of

user-generated data to the next chapters.

On the other hand, resharing mechanisms on social media such as retweeting in

Twitter allow massive spread of harmful disinformation to viral proportions. Manip-

ulating public opinion and political events on the Web can be attributed to accounts

dedicated to spreading malicious information, referred to as “Pathogenic Social Me-

dia” (PSM) accounts (e.g., terrorist supporters, or fake news writers) Alvari et al.

(2018). PSMs are users who seek to promote or degrade certain ideas by utilizing

large online communities of supporters to reach their goals. Identifying PSMs has ap-

plications including countering terrorism Khader (2016); Klausen et al. (2016), fake

news detection Gupta et al. (2014, 2013) and water armies detection Chen et al.

(2011).

Identifying PSMs in social media is crucial as they are likely to be key users

to malicious campaigns Varol et al. (2017b). This is a challenging task for several

reasons. First, these platforms are primarily based on reports they receive from their

own users 1 to manually shut down PSMs. This straightforward solution is not

1https://bit.ly/2Dq5i4M
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necessarily a timely approach since despite efforts to suspend these accounts, many

of them simply return to social media with different accounts which makes their

manual suspension a non-trivial task. Second, available data for training automatic

PSM detection approaches is often imbalanced and social network structure, which

is at the core of many techniques Weng et al. (2014); Kempe et al. (2003); Zhang

et al. (2013), is not readily available. Third, PSMs often seek to utilize and cultivate

large number of online communities of passive supporters to spread as much harmful

information as they can while disguising themselves as normal users. To address the

aforementioned challenges, we propose several methods and algorithms to detect PSM

accounts in their early life span.

1.1 Research Challenges

This dissertation addresses the following challenges facing online platforms in

identifying malicious actors:

• Malicious users have strong incentives to disguise themselves as normal users

(e.g., intentional misspellings Alvari et al. (2016b), camouflaging Hooi et al.

(2016)). This makes the task of malicious users identification a daunting task.

Later in Chapter 3, we observe that human traffickers would deploy techniques

to generate diverse information to make their posts look more complicated

and ensure their anonymity. We utilize Kolmogorov complexity Li and Vitányi

(2008) from complexity theory to approximate the complexity of an advertise-

ment content on Backpage.

• Malicious users are high likely to be key users in making harmful messages go

“viral”– where “viral” is defined as an order-of-magnitude increase. Mechanisms

are thus required to stop their threats from reaching vast audience early enough
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to stop formation of malicious campaigns Alvari et al. (2018). Accordingly, in

Chapter 4, causal inference is tailored to identify PSMs since they are key users

in making a harmful message viral. We propose time-decay causal metrics to

distinguish PSMs from normal users within a short time around their activity.

Our metrics alone can achieve high classification performance in identification

of PSMs soon after they perform actions.

• Malicious users often seek to utilize and cultivate large number of online com-

munities of passive supporters to spread as much harmful information. Conse-

quently, in Chapter 4, we investigate whether or not causality scores of PSM

users within same communities are higher than those across different commu-

nities? We propose a causal community detection-based classification method

(C2dc), that takes causality attribute vectors of users and the community struc-

ture of their action log.

• Available data for training automatic approaches for detecting malicious users,

are usually either highly imbalanced (i.e., higher number of normal users than

malicious users) or comprise insufficient labeled data Alvari et al. (2017, 2018).

To overcome the issue of lack of enough annotated data, we present several

semi-supervised based approaches for detecting human trafficking Alvari et al.

(2016b, 2017) in Chapter 3 and PSMs Alvari et al. (2019b) in Chapter 5.

• Despite malicious users’ incentives to disguise themselves as normal users, they

still behave significantly different than normal users on many levels Xia et al.

(2019). In Chapter 6, we take a closer look at the differences between malicious

and normal behavior in terms of their posted URLs. We then leverage several

characteristics of URLs as source-level information as well as other attributes

from causal, profile and content-related information as input attributes to a
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supervised setting for detecting PSMs.

1.2 Contributions

Overall, this dissertation makes the following major contributions:

• We use the user-generated content posted on Backpage and present a semi-

supervised Laplacian SVM to identify human trafficking-related posts that are

of high interest to law enforcement. We trained our model on both of the labeled

and unlabeled data from the website Backpage and sent back the identified

human trafficking related advertisements to an expert from law enforcement for

further verification. We finally validated our approach on a small subset of the

unlabeled data (i.e. unseen data) with further verification of the expert.

• We leverage the rich information from cascade structure embedded in users’ re-

sharing interactions on Twitter and present time-decay causal metrics for early

identification of PSMs, based on the Suppes’ probabilistic causal theorem Sup-

pes (1970). We further investigate the role of community structure in early

detection of PSMs by demonstrating that users within a community establish

stronger causal relationships compared to the rest. To account for this, we pro-

pose a causal community detection-based classification. We conduct a suit of

experiments on a real-world dataset from Twitter. Our metrics reached F1-score

of 0.6 in identifying PSMs, half way their activity, and identified 71% of PSMs

based on first 10 days of their activity, via supervised settings. The community

detection approach achieved precision of 0.84 based on first 10 days of users

activity; the misclassified accounts were identified based on their activity of 10

more days.

• We frame the problem of detecting PSM accounts in the presence of far less
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number of labeled instances than unlabeled data, as an optimization problem

and present a Laplacian semi-supervised causal inference SemiPsm for solving

it. The unlabeled data are utilized via manifold regularization. Manifold regu-

larization used in the resultant optimization formulation is built upon causality-

based features created on a notion of Suppes’ theory. We conduct a suite of

experiments using different supervised and semi-supervised methods. Empiri-

cal experiments on a real-world ISIS-related dataset from Twitter suggests the

effectiveness of the proposed semi-supervised causal inference over the existing

methods.

• We study differences between malicious and normal behavior in terms of the

URLs and platforms referenced. We then incorporate characteristics of URLs

and their associated referenced Websites, as source-level attributes in a feature-

driven approach for detecting PSMs in social media. More specifically, we assess

the extent to which causal-level, account-level, source-level and content-level

attributes contribute to identification of PSM accounts. Our causal and profile-

related attributes investigate signals in causal users along with their profile

information. For the source-level attributes, we explore different characteristics

in URLs content that users share (e.g., underlying themes, complexity of text,

etc.). For the content-level attributes, we examine attributes from tweets posted

by users. We conduct a suite of experiments on three real-world Twitter datasets

from different countries, using several classifiers. Using all of the attributes,

we achieve average F1 scores of 0.81, 0.76 and 0.74 for Sweden, Latvia and

UK datasets, respectively. Our observations suggest the effectiveness of the

proposed method in identifying PSM accounts in real-world Twitter data.
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1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a review

of the literature for identifying human trafficking and PSM accounts. In Chapter 3,

we present semi-supervised methods and algorithms for identifying online human

trafficking. Chapter 4 will detail our probabilistic causality-based methods for early

identification of PSM accounts. Chapter 5 will present semi-supervised causal-based

learning algorithms for detecting PSMs that uses far less number of labeled data

than unlabeled examples for training. In Chapter 6, we take one more step further

and present a hybrid feature-driven approach that using as little as four groups of

attributes on causal, profile, source and content levels, outperforms baselines in de-

tecting PSM accounts in Twitter data. Finally, Chapter 7 concludes the dissertation

by presenting future directions for the algorithms proposed throughout the disserta-

tion.

8



Chapter 2

RELATED WORK

This dissertation investigates the propagation of online malicious information from

two broad aspects: (1) content posted by users and (2) information cascades formed

by resharing mechanisms in social media. In particular, for the former, the problem of

online human trafficking and potential countermeasures to combat them are studied.

We present non-parametric Alvari et al. (2016b) and semi-supervised learning Alvari

et al. (2017) algorithms for detecting online human trafficking. For the latter, we

study and understand “Pathogenic Social Media” (PSM) accounts who are likely to

be key users in making malicious campaigns. Various machine learning-based algo-

rithms Alvari et al. (2018, 2019b, 2020) are then presented to detect PSM accounts.

Our works on human trafficking and PSM detection are related to several research

directions. Below, we discuss some of the state-of-the-art works in each category

while highlighting the differences.

2.1 Human Trafficking

Recently, several studies have examined the role of the Internet and related tech-

nology in facilitating human trafficking Hughes et al. (2005); Hughes (2002); Latonero

(2011). For example, the work of Hughes et al. (2005) studied how closely sex traf-

ficking is intertwined with new technologies. According to Hughes (2002), sexual

exploitation of women and children is a global human right crisis that is being esca-

lated by the use of new technologies. Researchers have studied relationships between

new technologies and human trafficking and advantages of the Internet for sex traf-

fickers. For instance, findings from a group of experts from the Council of Europe
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demonstrated that the Internet and sex industry are closely interlinked and volume

and content of the material on the Internet promoting human trafficking are unprece-

dented Latonero (2011).

One of the earliest works which leveraged data mining techniques for online hu-

man trafficking was Latonero (2011), wherein the authors conducted data analysis

on the adult section of the website Backpage.com. Their findings confirmed that fe-

male escort post frequency would increase in Dallas, Texas, leading up to the Super

Bowl 2011 event. In a similar attempt, other studies Roe--Sepowitz et al. (2015);

Miller et al. (2016) have investigated impact of large public events such as the Super

Bowl on sex trafficking by exploring advertisement volume, trends and movement

of advertisements along with the scope and volume of demand associated with such

events. The work of Roe--Sepowitz et al. (2015) for instance, concluded that large

events such as the Super Bowl which attract significant amount of concentration of

people in a relatively short period of time and in a confined urban area, could be a

desirable location for sex traffickers to bring their victims for commercial sexual ex-

ploitation. Similarly, the data-driven approach of Miller et al. (2016) showed that in

some but not all events, one can see a correlation between occurrence of the event and

statistically significant evidence of an influx of sex trafficking activity. Also, certain

studies Szekely et al. (2015) have tried to build large distributed systems to store and

process available online human trafficking data in order to perform entity resolution

and create ontological relations between entities.

Beyond these works, the work of Nagpal et al. (2015) studied the problem of iso-

lating sources of human trafficking from online advertisements with a pairwise entity

resolution approach. Specifically, they used phone number as a strong feature and

trained a classifier to predict if two ads are from the same source. This classifier

was then used to perform entity resolution using a heuristically learned value for the
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score of classifier. Another work of Kennedy (2012) used Backpage.com data and

extracted most likely human trafficking spatio-temporal patterns with the help of law

enforcement. Note that unlike our method, this work did not employ any machine

learning methodologies for automatically identifying human trafficking related adver-

tisements. The work of Dubrawski et al. (2015) also deployed machine learning for

the advertisement classification problem, by training a supervised learning classifier

on labeled data (based on phone numbers of known traffickers) provided by a victim

advocacy group. We note that while phone numbers can provide a very precise set

of positive labeled data, there are clearly many posts with previously unseen phone

numbers.

In contrast, we do not solely rely on phone numbers for labeling our data. Instead,

our expert analyze each post’s content to identify whether it is human trafficking

related or not. To do so, we first filter out most likely advertisements using several

feature groups and pass a small sample to the expert for hand-labeling. Then, we

train our semi-supervised learner on both of the labeled and unlabeled data which

in turn lets us evaluate our approach on new coming (unseen) data later. We note

that our semi-supervised approach can also be used as a complementary method to

procedures such as those described in Dubrawski et al. (2015) as we can significantly

expand the training set for use with supervised learning.

Finally, note that our semi-supervised approach Alvari et al. (2017) is different

from our non-parametric method Alvari et al. (2016b) and we list the key nuances

here:

• In Alvari et al. (2017) we experiment with a much larger dataset. To obtain

such dataset, we use the same raw data from Alvari et al. (2016b), but this time

with slight modifications of the thresholds that were used for filtering out less

likely human trafficking related advertisements.
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• As opposed to our previous research which deployed only one feature space, in

this work, two feature spaces that have complementary roles to each other are

used.

• In Alvari et al. (2017) we present a new framework based on the existing Lapla-

cian SVM Belkin et al. (2006), by adding a regularization term to the standard

optimization problem and solving the new optimization equation derived from

there. In contrast, Alvari et al. (2016b) utilized the off-the-shelf graph based

semi-supervised learner, LabelSpreading method Zhou et al. (2004b), without

any further manipulation of the original approach.

• Unlike Alvari et al. (2016b) in which we did not compare our method with other

approaches, Alvari et al. (2017) compares our proposed framework against other

semi-supervised and supervised learners. Also unlike our previous work in which

only one group of human trafficking related advertisements were passed to two

experts for validation, here in order to reduce the inconsistency, two control

groups of advertisements–those of interest to law enforcement and those of not–

are sent to only one expert for verification.

2.2 Pathogenic Social Media Accounts

The explosive growth of the Web has raised numerous security and privacy issues.

Mitigating these concerns has been studied from several aspects Beigi et al. (2018);

Alvari et al. (2016b); Cao et al. (2014); Beigi and Liu (2018a); Cui et al. (2013); Beigi

et al. (2014); Broniatowski et al. (2018); Beigi et al. (2019a); Alvari et al. (2019a);

Beigi et al. (2020, 2019c). Our work is related to a number of research directions.

Below, we will summarize some of the state-of-the-art methods in each category while

highlighting their differences with our work.
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Identifying PSM accounts. Compared to Shaabani et al. (2018) which uses causal

inference to detect PSM accounts, works of Alvari et al. (2018); Alvari and Shakarian

(2018) utilize time-decay causal inference (using sliding-time window) which allows

early detection of PSM. Furthermore, in contrast to Alvari et al. (2018) where a

causal community detection algorithm is proposed to leverage communities of PSM

accounts in order to achieve higher performance,the work of Alvari et al. (2019b)

proposes a semi-supervised causal inference algorithm that achieves reasonable per-

formance using much less labeled data by utilizing unlabeled data. Also, a recent

work of Shaabani et al. (2019) addresses the problem of detecting PSM accounts us-

ing a variety of supervised and semi-supervised algorithms using causality-based and

graph-based metrics as attributes.

Social Spam/Bot Detection. Recently, DARPA organized a Twitter bot challenge

to detect “influence bots” Subrahmanian et al. (2016). Among the participants, the

work of Cao et al. (2014), used similarity to cluster accounts and uncover groups of

malicious users. The work of Varol et al. (2017a) presented a supervised framework

for bot detection which uses more than thousands features. In a different attempt,

the work of Green and Spezzano (2017) studied the problem of spam detection in

Wikipedia using different spammers behavioral features. There also exist some stud-

ies in the literature that have addressed (1) differences between humans and bots Chu

et al. (2012), (2) different natures of bots Varol et al. (2017a) or (3) differences be-

tween bots and human trolls Broniatowski et al. (2018). For example the work of Chu

et al. (2012) conducted a series of measurements in order to distinguish humans from

bots and cyborgs, in term of tweeting behavior, content, and account properties. To

do so, they used more than 40 million tweets posted by over 500 K users. Then, they

performed analysis and find groups of features that are useful for classifying users

into human, bots and cyborgs. They concluded that entropy and certain account
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properties can be very helpful in differentiating between those accounts. In a differ-

ent attempt, some other studies have tried to differentiate between several natures of

bots. For instance, in the work of Varol et al. (2017a), authors performed clustering

analysis and revealed specific behavioral groups of accounts. Specifically, they iden-

tified different types of bots such as spammers, self promoters, and accounts that post

content from connected applications, using manual investigation of samples extracted

from clusters. Their cluster analysis emphasized that Twitter hosts a variety of users

with diverse behaviors; that is in some cases the boundary between human and bot

users is not sharp, i.e. some account exhibit characteristics of both.

Also, the work of Broniatowski et al. (2018), uses Twitter data to quantify the

impact of Russian trolls and bots on amplifying polarizing and anti-vaccine tweets.

They first used the Botometer API to assign bot probabilities to the users in the

dataset and divided the whole dataset into 3 categories: those with scores less than

20% (very likely to be human), between 20% and 80% (e.g., cyborgs with uncertain

provenance) and above 80% (high likely to be bots). Then, they posed two research

questions: (1) Are bots and trolls more likely to tweet about vaccines?, and (2) Are

bots and trolls more likely to tweet polarizing and anti-vaccine content? Their analysis

demonstrated that Twitter bots and trolls significantly impact on online discussion

about vaccination and this differs by account type. For example, Russian trolls and

bots post content about vaccination at higher rates compared to an average user. Also,

according to this study, troll accounts and content polluters (e.g., dissemination of

malware, unsolicited commercial content, etc.) post anti-vaccine tweets 75% more

than average users. In contrast, spambots which can be easily distinguished from

humans, are less likely to promote anti-vaccine messages. Their closing remarks

suggest strongly that distinguishing between malicious actors (bots, trolls, cyborgs,

and human users) is difficult and thus anti-vaccine messages may be disseminated at
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higher rates by a combination of these malicious actors.

In contrast to the above works, our proposed PSM detection methods Alvari

et al. (2018, 2019b) do not deploy any extra information (e.g., user-related attributes

or network-based features) other than users’ resharing actions (i.e., cascade with

timestamps). It is also worthwhile to note that most of the existing well-known bot

detection algorithms such as Botometer Davis et al. (2016) leverage over one thousand

features in order to detect high-likely bots.

Fake News Identification. A growing body of research is addressing the impact

of bots in manipulating political discussion, including the 2016 U.S. presidential elec-

tion Shao et al. (2017) and the 2017 French election Ferrara (2017). For example, Shao

et al. (2017) analyzes tweets following recent U.S. presidential election and found ev-

idences that bots played key roles in spreading fake news.

Identifying Instigators. Given a snapshot of the diffusion process at a given time,

these works aim to detect the source of the diffusion. For instance, Zhu and Ying

(2016) designed an approach for information source detection and in particular initia-

tor of a cascade. In contrast, we are focused on a set of users who might or might not

be initiators. Other similar works on finding most influential spreaders of information

such as Pei et al. (2014); Fu and Sun (2015) and outbreak prediction such as Cui

et al. (2013) also exist in the literature. For example, the work of Konishi et al.

(2016) performed classification to detect users who adopt popular items. In Zhu and

Ying (2016), authors designed an approach for information source detection and in

particular initiator of a cascade. Our proposed PSM detection methods Alvari et al.

(2018, 2019b) are different from these works since we leverage causality analysis to

detect causes of popularity of messages that go viral.

Extremism and Water Armies Detection. Several studies have focused on un-

derstanding extremism in social networks Benigni et al. (2017); Klausen et al. (2016);
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Scanlon and Gerber (2014, 2015); Alvari et al. (2019a). The work of Klausen et al.

(2016) uses Twitter and proposes an approach to predict new extremists, determine

if the newly created account belongs to a suspended extremist, and predict the ego-

network of the suspended extremist upon creating her new account. Authors in Be-

nigni et al. (2017) performed iterative vertex clustering and classification to identify

Islamic Jihadists on Twitter. The term “Internet water armies” refers to a special

group of online users who get paid for posting comments for some hidden purposes

such as influencing other users towards social events or business markets. Therefore,

they are also called “hidden paid posters”. The works of Chen et al. (2011, 2013);

Wang et al. (2014) use user behavioral and domain-specific attributes and designed

approaches to detect Internet water armies. The works of Chen et al. (2011); Wang

et al. (2014) also used user behavioral and domain-specific attributes to detect water

armies. Our proposed PSM detection methods Alvari et al. (2018, 2019b) also differ

from these works as we do not use any features such as network/user attributes.

Causal Reasoning. As opposed to Kleinberg and Mishra (2012); Stanton et al.

(2015); Kleinberg (2011) which deal with preconditions as single atomic propositions,

in this dissertation, we use rules with preconditions of more than one atomic propo-

sitions.

Point Processes. In Chapter 6 we use point processes to differentiate between ma-

licious and normal behaviors. When dealing with timestamped events in continuous

time such as the activity of users on social media, point process could be leveraged for

modeling such events. Point processes have been extensively used to model activities

in networks Xiao et al. (2017). Hawkes process is a special form of point processes

which models complicated event sequences with historical events influencing future

ones. Hawkes processes have been applied to a variety of problems including financial

analysis Bacry et al. (2016), seismic analysis Daley and Vere-Jones (2007) and social
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network modeling Zhou et al. (2013), community detection Tran et al. (2015), and

causal inference Xu et al. (2016).
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Chapter 3

SEMI-SUPERVISED LEARNING FOR DETECTING HUMAN TRAFFICKING

According to the United Nation uno (2011), human trafficking is defined as the mod-

ern slavery or the trade of humans mostly for the purpose of sexual exploitation and

forced labor, via different improper ways including force, fraud and deception. The

United States’ Trafficking Victim Protection Act of 2000 (TVPA 2000) tvp (2000)

was the first U.S. legislation passed against human trafficking. Human trafficking

has ever since received increased national and societal concern HTr (2015) but still

demands persistent fight against from all over the globe. No country is immune and

the problem is rapidly growing with little to no law enforcement addressing the issue.

This problem is amongst the challenging ones facing law enforcement as it is difficult

to identify victims and counter traffickers.

Before the advent of the Internet, human traffickers were under risks of being ar-

rested by law enforcement while advertising their victims on streets Desplaces (2012).

However, move to the Internet has made it easier and less dangerous for sex sell-

ers Nicholas D. (2012) as they no longer needed to advertise on the streets. There are

now a plethora of websites that host and provide sexual services under categories of

escort, adult entertainment, massage services, etc., which help sex sellers and buyers

maintain their anonymity. Although some services such as the Craiglist’s adult section

and myredbook.com were shut down recently, there are still many websites such as the

Backpage.com that provide such services and many new are frequently created. Traf-

fickers even use dating and social networking websites such as the Twitter, Facebook,

Instagram and Tinder to reach out to sex buyers and their followers. Although the

Internet has presented new trafficking related challenges for law enforcement, it has
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also provided readily and publicly available rich source of information which could

be gleaned from online sex advertisements for fighting this crime Kennedy (2012).

However, the problem is we lack the ground truth and obtaining the labels through

hand-labeling is indeed tedious and expensive even for a small subset of data– this is

the point where the semi-supervised setting comes in handy.

Despite considerable attention which has been devoted to studying supervised,

unsupervised and semi-supervised learning settings via different applications Mitchell

(2006); Beigi et al. (2016a); Backstrom and Leskovec (2011); Alvari et al. (2016a);

Beigi et al. (2016b); Mitchell et al. (1997); Beigi et al. (2014), semi-supervised learn-

ing, i.e., learning from labeled and unlabeled examples, is still one of the most in-

teresting yet challenging problems in the machine learning community Belkin et al.

(2006). The idea is simple though– we shall have an approach that makes a better

use of unlabeled data to boost performance. This is pretty close to the most natural

learning that occurs in the world. For the most part, we as humans are exposed only

to a small number of labeled instances; yet we successfully generalize well by effective

utilization of a large amount of unlabeled data. This motivates us to use unlabeled

samples to improve recognition performance while developing classifiers.

In this chapter, we present results from our works on detecting human traffick-

ing Alvari et al. (2016b, 2017). We use the data crawled from the adult entertain-

ment section of the website Backpage.com and extend the existing Laplacian SVM

framework Belkin et al. (2006) to detect escort advertisements of high interest to law

enforcement. Here, we merely focus on the online advertisements in the form of con-

tent posted by users, and leave investigating other forms of data to the subsequent

chapters. We thus highlight several contributions of the current research as follows.

1. Based on the literature, we created different groups of features that capture the

characteristics of potential human trafficking activities. The less likely human
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trafficking related posts were then filtered out using these features. We also

conducted a feature importance analysis to demonstrate how these features

contribute to the proposed learner.

2. We extended the Laplacian SVM Belkin et al. (2006) and proposed the semi-

supervised support vector machine learning algorithm, S3VM − R. In partic-

ular, we incorporated additional information of our feature space as a regu-

larization term into the standard optimization formulation with regard to the

Laplacian SVM. We also used geometry of the underlying data as an intrinsic

regularization term in Laplacian SVM.

3. We trained our model on both of the labeled and unlabeled data and sent back

the identified human trafficking related advertisements to an expert from law

enforcement for further verification. We then validated our approach on a small

subset of the unlabeled data (i.e. unseen data) with further verification of the

expert.

4. We performed comparisons between our approach and several semi-supervised

and supervised baselines on both of the labeled and unseen data (so-called blind

evaluation).

5. We demonstrated the effect of varying different hyperparameters used in our

learner on its performance.

3.1 Data Preparation

We collected about 20K publicly available listings from the U.S. posted on Back-

page.com in March, 2016. Each post includes a title, description, time stamp, poster’s

age, poster’s ID, location, image, and sometimes video and audio. The description
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usually lists the attributes of the individual(s) and contact phone numbers. In this

work, we only focus on the textual component of the data. This free-text data re-

quired significant cleaning due to a variety of issues common to textual analytics (i.e.

misspellings, format of phone numbers, etc.). We also acknowledge that the informa-

tion in data could be intentionally inaccurate, such as poster’s name, age and even

physical appearance (e.g. bra cup size, weight). Figure 3.1 shows an actual post from

Backpage.com. To illustrate geographic diversity of the listings, we use the Tableau 1

software to visualize choropleth map of phone frequency with respect to the different

states in Figure 3.2, wherein darker colors mean higher frequencies.

Figure 3.1: A Real Post from Backpage.com. To Ensure Anonymity, the Personal

Information has been Intentionally Obfuscated.

Next, we will explain most important characteristics of potential human trafficking

advertisements which are captured by our feature groups.

1https://www.tableau.com/
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Figure 3.2: Choropleth Map of Phone Frequency w.r.t the Different States. Darker

Colors Show Higher Frequencies.

Figure 3.3: An Evidence of Human Trafficking. The Boxes and Numbers in Red,

Indicate the Features and their Corresponding Group Numbers (See Also Table 3.1).
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3.1.1 Feature Engineering

Though many advertisements on Backpage.com are posted by posters selling their

own services without coercion and intervention of traffickers, some do exhibit many

common trafficking triggers. For example, in contrast to Figure 3.1, Figure 3.3 shows

an advertisement that could be an evidence of human trafficking. This advertisement

indicates several potential properties of human trafficking, including advertising for

multiple escorts with the first individual coming from Asia and very young. In what

follows, such common properties of human trafficking related advertisements are dis-

cussed in more detail.

Inspired by the literature, we define and extract 6 groups of features from ad-

vertisements (see Table 3.1). These features could be amongst the strong indicators

of human trafficking. Let us now briefly describe each group of features used in our

work. Note each feature listed here is ultimately treated as a binary variable.

Advertisement Language Pattern

The first group consists of different language related features. For the first and sec-

ond features, we identify posts which have third person language (more likely to be

written by someone other than the escort) and posts which contain first person plural

pronouns such as ‘we’ and ‘our’ (more likely to be an organization) Kennedy (2012).

To ensure their anonymity, traffickers would deploy techniques to generate diverse

information and hence make their posts look more complicated. They usually do this

to avoid being identified by either human analysts or automated programs. Thus,

to obtain the third feature we take an approach from complexity theory, namely

Kolmogorov complexity, which is defined as length of shortest program to reproduce

a string of characters on a universal machine such as the Turing Machine Li and
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Vitányi (2008). Since the Kolmogorov complexity is not computable, we approximate

the complexity of an advertisement content by first removing stop words and then

computing entropy of the content Li and Vitányi (2008). To illustrate this, let X

denote the content and xi be a given word in the content. We use the following

equation Shannon (2001) to calculate the entropy of the content and thus approximate

the Kolmogorov complexity of X:

K(X) ≈ −
n∑
i=1

P (xi) log2 P (xi) (3.1)

We expect higher values of the entropy correspond to human trafficking. Finally,

we discretize the result by using the threshold of 4 which was found empirically in

our experiments.

For the next features, we use word-level n-grams to find common language patterns

of advertisements. This particular choice is because of the fact that character-level

n-grams have already shown to be useful in detecting unwanted content for spam

detection Kanaris et al. (2006). We set n = 4 and use the range of (4,4) to compute

normalized n-grams (using TF-IDF) of each advertisement content. We ultimately

create a matrix whose rows and columns correspond to the advertisements contents

and their associated 4-grams, respectively. We rank all elements of this matrix in a

descending order and pick the top 3 ones. Finally for each advertisement content, 3

elements with the column numbers associated with the top elements are chosen. This

way, 3 more features will be added to our feature set. Overall, we have 6 features

related to the language of the advertisement.

Words and Phrases of Interest

Despite the fact that advertisements on Backpage.com do not directly mention sex

with children, customers who prefer children know to look for words and phrases such
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as “sweet, candy, fresh, new in town, new to the game” Hetter (2012); Lloyd (2012);

Dickinson Goodman and Holmes (2011). We thus investigate within the posts to see

if they contain such words as they could be highly related with human trafficking in

general.

Countries of Interest

We identify if the individual being escorted is coming from other countries such as

those in Southeast Asia (especially from China, Vietnam, Korea and Thailand, as we

observed in our data) HTr (2015).

Multiple Victims Advertised

Some advertisements advertise for multiple women at the same time. We consider

the presence of more than one victim as a potential evidence of organized human

trafficking Kennedy (2012).

Victim Weight

We take into account the weight of the individual being escorted as a feature (if it is

available). This information is particularly useful assuming that for the most part,

lower body weights (under 115 lbs) correlate with smaller and underage girls tvp

(2000); wei (2017) and thereby human trafficking.

Reference to Website or Spa Massage Therapy

The presence of a link in the advertisement either referencing to an outside website

(especially infamous ones) or spa massage therapy could be an indicator of more

elaborate organization Kennedy (2012). In particular, in case of spa therapy, we

observed many advertisements interrelated with advertising for young Asian girls and
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their erotic massage abilities. Therefore, the last group of features has two binary

features for presence of any website and spa.

Finally, in order to extract all of the above features, we first clean the original data

and conduct preprocessing. By applying these features, we draw a random sample of

3,543 instances out of our dataset for further analysis to see if they are evidences of

human trafficking– this is described in the next section.

3.1.2 Unsupervised Filtering

Having detailed our feature set, we now construct a feature vector for each in-

stance by creating a vector of 12 binary features that correspond to the important

characteristics of human trafficking. Hereafter, we refer to this feature space, as our

first feature space and denote it with F1. As mentioned earlier, we draw 3,543 in-

stances from our raw data by filtering out those that do not posses any of the binary

features. We will refer to this as our filtered dataset. For the sake of visualization, a

2-D projection (using the t-SNE transformation van der Maaten and Hinton (2008))

of the filtered dataset is depicted in Figure 3.4. The purpose of this figure is to

demonstrate how hard it is for basic clustering techniques such as the K-means, to

correctly assign labels to unlabeled instances using only few existing labeled ones.

Now, we shall define our second feature space, namely F2, which will be used

to compute geometry of the underlying data. Note that our proposed framework

will utilize both of the feature spaces in the form of regularization terms, to de-

tect advertisements of high interest to law enforcement. After conducting standard

preprocessing techniques on the filtered dataset, we build F2 by transforming the

filtered data into a 3,543×3,543 matrix of TF-IDF similarity features. Each entry

in this matrix simply shows the similarity between a pair of advertisements in our

filtered dataset.
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Figure 3.4: 2-D Projection of the Entire Set of the Filtered Data.

Note that since we lack the ground truth, we would rely on a human analyst

(expert) for labeling the listings as either ‘of interest’ or ‘of not interest’ to law

enforcement. In the next section, we select a smaller yet finer grain subset of this

data to be sent to the expert. This alleviates the burden of the tedious work of

hand-labeling.

3.1.3 Expert Assisted Labeling

We first obtain a sample of 200 listings from the filtered dataset. This set of

listings was labeled by our expert from law enforcement who is specialized in this type

of crime. From this subset, the law enforcement professional identified 70 instances

to be of interest to law enforcement and the rest to be not human trafficking related.

However, we are still left with a large amount of the unlabeled examples (3,343

instances) in our dataset. The ratio of the labeled to unlabeled instances in our

dataset is very small (about 0.06). The statistics of our dataset is summarized in

Table 6.6.
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3.2 A Non-Parametric Learning Approach

We use the Python package scikit-learn for training semi-supervised learner on the

filtered dataset. There are two label propagation semi-supervised (non-parametric)

based models in this package, namely, LabelPropagation and LabelSpreading Bengio

et al. (2006). These models rely on the geometry of the data induced by both labeled

and unlabeled instances as opposed to the supervised models which only use the

labeled data Bengio et al. (2006). This geometry is usually represented by a graph

G = (V,E), with the nodes V represent the training data and edges E represent the

similarity between them Bengio et al. (2006) in the form of weight matrix W. Given

the graph G, a basic approach for semi-supervised learning is through propagating

labels on the graph Bengio et al. (2006). Due to the higher performance achieved, we

chose to use LabelSpreading model.

3.2.1 Experiments

We conducted experiment with the two built-in kernels radial basis function (RBF)

and K-nearest neighbor (KNN) in label propagation models and report the results

in Table 3.3. Note that we only reported the precision when 119 negative samples

(labeled by either of the experts) were used in the learning process. We did so because

of the reasonable number of the positive labels assigned by either of the kernels in

presence of these negative instances (our experts had limited time to validate the

labels of the data).

As we see from this table, out of 849 unlabeled data, our learner with RBF and

KNN kernels assigned positive labels to the 145 and 188 instances, respectively. Next,

we pass the identified positive labels to the experts for further verification. Our

approach with RBF and KNN correctly identified 134 and 170 labels out of 145 and
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188 positive instances and achieved precision of 92.41% and 90.42%, respectively. We

further demonstrate the word clouds for the positive instances assigned by RBF and

KNN, in Figure 3.5 and Figure 3.6, respectively.

Figure 3.5: Word Cloud for the Positive Instances Assigned by RBF.

Figure 3.6: Word Cloud for the Positive Instances Assigned by KNN.

3.3 Semi-Supervised Learning Framework

Our framework is an extension to the existing Laplacian SVM Belkin et al. (2006).

In particular, we incorporated another regularization term into the standard Lapla-

cian SVM to leverage the additional information of our first feature space and then

solved the associated optimization problem. Consequently, similar notation is adopted

throughout the following section. Furthermore, we shall once again note that our cur-

29



rent research does not utilize any off-the-shelf graph based semi-supervised leaner in

contrast to our previous research Alvari et al. (2016b).

3.3.1 Technical Preliminaries

We assume a set of l labeled pairs {(xi, yi)}li=1 and an unlabeled set of u instances

{xl+i}ui=1, where xi ∈ Rn and yi ∈ {+1,−1}. Recall for the standard soft-margin

support vector machine, the following optimization problem is solved:

min
fθ∈Hk

γ||fθ||2k + Cl

l∑
i=1

H1(yifθ(xi)) (3.2)

In the above equation, fθ(·) is a decision function of the form fθ(·) = w.Φ(·) + b

where θ = (w, b) are the parameters of the model, and Φ(·) is the feature map which

is usually implemented using the kernel trick Cortes and Vapnik (1995). Also, the

function H1(·) = max(0, 1− ·) is the Hinge Loss function.

The classical Representer theorem Belkin et al. (2005) suggests that solution to

the optimization problem exists in a Hilbert space Hk and is of the following form:

f ∗θ (x) =
l∑

i=1

α∗iK(x, xi) (3.3)

where K is the l × l Gram matrix over labeled samples. Equivalently, the above

problem can be written as:

min
w,b,ε

1

2
||w||22 + Cl

l∑
i=1

εi (3.4)

s.t. yi(w.Φ(xi) + b) ≥ 1− εi, i = 1, ..., l

εi ≥ 0, i = 1, ..., l (3.5)
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We will use the above optimization equation as our basis to derive the formulations

for our proposed semi-supervised learner.

3.3.2 The Proposed Method

The basic assumption behind semi-supervised learning methods is to leverage

unlabeled instances in order to restructure hypotheses during the learning process.

In this work, exogenous information extracted from both of our feature spaces is

further exploited to make a better use of the unlabeled examples. To do so, we first

introduce matrix F in F1 and over both of the labeled and unlabeled samples with

Fij defined as follows:

Fij =
1

nf
(Φ(xi) ·Φ(xj)) (3.6)

where nf is the number of features in F1 (here, nf = 12). We force the instances

xi and xj in our dataset to have same label if they both possess same features. To

account for this, a regularization term is added to the standard equation and the

following optimization is solved:

min
fθ∈Hk

1

2

l∑
i=1

Fij||fθ(xi)− fθ(xj)||22 = fTθ LT fθ (3.7)

where f = [f(x1), ..., f(xl+u)]
T and L is the Laplacian matrix based on F given by

L = D− F, and Dii =
∑l+u

j=1 Fij. The intuition here is that any two instances which

are composed of same features are more likely to have same labels than others. Next,

by solving a similar optimization problem, we are able to capture data geometry in

F2 as fTθ L′T fθ (also referred to as the intrinsic smoothness penalty term Belkin et al.

(2006)). Here, L′ is the Laplacian of matrix A associated with the data adjacency

graph G in F2.
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We construct G with (l+u) nodes in F2, and by adding an edge between each pair

of nodes 〈i, j〉, if the edge weight Wij exceeds a given threshold. For computing the

edge weights, we use the heat kernel Grigor’yan (2006) as a function of the Euclidean

distance between two samples in F2, hence we set Wij = exp−||xi−xj ||
2/4t.

Following the notations used in Belkin et al. (2006) and by including our regular-

ization term as well as the intrinsic smoothness penalty term, we would extend the

standard equation by solving the following optimization:

min
fθ∈Hk

γ||fθ||2k + Cl

l∑
i=1

H1(yifθ(xi)) + Crf
T
θ Lfθ + Csf

T
θ L′fθ (3.8)

Note one typical value for the smoothness penalty coefficient Cs is γI
(l+u)2

, where

1
(l+u)2

is a natural scale factor for empirical estimate of the Laplace operator and γI

is a regularization term Belkin et al. (2006). Again, solution in Hk would be in the

following form:

f ∗θ (x) =
l+u∑
i=1

α∗iK(x, xi) (3.9)

Here K is the (l + u) × (l + u) Gram matrix over all samples. The equation 5.6

could be then written as follows:

min
α,b,ε

1

2
αTKα + Cl

l∑
i=1

εi +
Cr
2
αTKLKα +

γI
2(l + u)2

αTKL′Kα (3.10)

s.t. yi(
l+u∑
j=1

αjK(xi, xj) + b) ≥ 1− εi, i = 1, ..., l

εi ≥ 0, i = 1, ..., l (3.11)

With introduction of the Lagrangian multipliers β and γ, we write the Lagrangian

function of the above equation as follows:
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L(α, ε, b, β, γ) =
1

2
αTK(I + CrL+

γI
(l + u)2

L′)α + Cl

l∑
i=1

εi

−
l∑

i=1

βi(yi(
l+u∑
j=1

αjK(xi, xj) + b)− 1 + εi)−
l∑

i=1

γiεi (3.12)

Obtaining the dual representation, requires taking the following steps:

∂L

∂b
= 0→

l∑
i=1

βiyi = 0 (3.13)

∂L

∂εi
= 0→ Cl − βi − γi = 0→ 0 ≤ βi ≤ Cl (3.14)

With the above equations, we formulate the reduced Lagrangian as a function of

only α and β as follows:

LR(α, β) =
1

2
αTK(I + CrL+

γI
(l + u)2

L′)α

−
l∑

i=1

βi(yi(
l+u∑
j=1

αjK(xi, xj) + b)− 1 + εi)

(3.15)

This equation is further simplified as follows:

LR(α, β) =
1

2
αTK(I + CrL+

γI
(l + u)2

L′)α

−αTKJTYβ +
l∑

i=1

βi (3.16)

In the above equation, J = [I 0] is a l× (l+u) matrix, I is the l× l identity matrix

and Y is a diagonal matrix consisting of the labels of the labeled examples.
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In the followings, we first take the derivative of LR with respect to α and then set

∂LR(α,β)
∂α

= 0:

K(I + CrL+
γI

(l + u)2
L′)α−KJTYβ = 0 (3.17)

Accordingly, we obtain α∗ by solving the following equation:

α∗ = (I + CrL+
γI

(l + u)2
L′)−1JTYβ∗ (3.18)

Next, we obtain the dual problem in the form of a quadratic programming problem

by substituting α back in the reduced Lagrangian function:

β∗ = argmaxβ∈Rl −
1

2
βTQβ +

l∑
i=1

βi (3.19)

s.t.
l∑

i=1

βiyi = 0

0 ≤ βi ≤ Cl (3.20)

where β = [β1, ..., βl]
T ∈ Rl are the Lagrangian multipliers and Q is obtained as

follows:

Q = YJK(I + (CrL+
γI

(l + u)2
L′)K)−1JTY (3.21)

We summarize the proposed semi-supervised framework in Algorithm 1. Our

optimization problem is very similar to the standard optimization problem solved for

SVMs, hence we use a standard optimizer for SVMs to solve our problem.
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Algorithm 1 The Proposed Semi-Supervised Framework

Input: {(xi, yi)}li=1, {xl+i}ui=1, F1, F2, Cl, Cr, Cs.

Output: Estimated function fθ : Rn → R

1: Construct matrix F based on the features in F1

2: Compute the corresponding Laplacian matrix L.

3: Construct A according to the features in F2.

4: Compute the graph Laplacian matrix L′.

5: Construct the gram matrix over all examples using Kij = k(xi, xj) where k is a kernel

function.

6: Compute α∗ and β∗ using Eq. 3.18 and Eq. 5.7 and a standard QP solvers.

7: Compute function f∗θ (x) =
∑l+u

i=1 α
∗
iK(x, xi)

3.3.3 Experimental Study

In this section, we provide a comprehensive analysis of the proposed framework

by designing a series of experiments on the filtered dataset. First, we explain several

approaches used in this study. Next, various results are discussed: (1) comparisons

on the labeled data were made between our method and other approaches, (2) exper-

iments were performed on a fraction of the unlabeled data (i.e., unseen data), and

the results were further verified by our expert to see what fraction is of interest to

law enforcement, (3) blind evaluation was conducted to examine other approaches

on the unseen data, and finally, (4) experiments were designed to analyze effect of

varying different hyperparameters on our method as well as impact of different groups

of features in F1 on our approach. We present results for the following methods:

• Semi-Supervised: S3VM−R, Laplacian support vector machines Belkin et al.

(2006), graph inference based label spreading approach Zhou et al. (2004b) with

radial basis function (RBF) and K-nearest neighbors (KNN) kernels, and co-
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training learner Blum and Mitchell (1998) with two support vector machines

classifiers (SVM).

• Supervised: SVM, KNN, Gaussian näıve Bayes, logistic regression, adaboost

and random forest.

For the sake of fair comparison, all algorithms were implemented and run in

Python. More specifically, the Python package CVXOPT 2 was used to implement

S3VM − R and Laplacian support vector machines, and all other approaches were

implemented with the help of the Scikit-learn 3 package in Python. Note for those

methods that require special tuning of parameters, we performed grid search to choose

the best set of parameters. Before going any further, we first define main parameters

used in each method and then demonstrate their best values picked by our grid search.

The discussion on the effect of varying the hyperparameters on our learner is provided

in the section 3.3.3.

• S3VM − R: we set the penalty parameter as Cl = 0.6 and the regularization

parameters Cr = 0.2 and Cs = 0.2. Linear kernel was used in our approach.

• Laplacian SVM : we used linear kernel and set the parameters Cl = 0.6 and

Cs = 0.6.

• LabelSpreading (RBF): RBF Kernel was used and γ was set to the default value

of 20.

• LabelSpreading (KNN): KNN kernel was used and the number of neighbors was

set to 5.

2http://cvxopt.org/

3http://scikit-learn.org/stable/
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• Co-training (SVM): we followed the algorithm introduced in Blum and Mitchell

(1998) and used two SVM as our classifiers. For both SVMs we set the tolerance

for stopping criteria to 0.001 and the penalty parameter C = 1.

• SVM : tolerance for stopping criteria was set to the default value of 0.001.

Penalty parameter C was set to 1 and linear kernel was used.

• KNN : number of neighbors was set to 5.

• Gaussian NB : there were no specific parameter to tune.

• Logistic regression: we used the ‘l2’ penalty. We also set the parameter C = 1

(the inverse of regularization strength) and tolerance for stopping criteria to

0.01.

• Adaboost : number of estimators was set to 200 and we also set the learning rate

to 0.01.

• Random forest : we used 200 estimators and the ‘entropy’ criterion was used.

Classification Results

Here, we first evaluate the entire set of approaches on a small portion of the data for

which we already know the labels, i.e., the labeled examples. We note that expert-

generated judgmental labeling might be error-prone, though it is served as a surrogate

to the ground truth problem.

We used 10-fold cross-validation on the labeled data in the following way. We first

divided the set of the labeled samples into 10 different sets of approximately equal size.

Each time we held one set out for validation (by removing their labels and adding

them to the unlabeled samples) and used the remaining along with the unlabeled

samples for the training–this was performed for all approaches for the sake of fair
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comparison. Finally, we reported the average of 10 different runs, using different

combinations of the feature spaces and various evaluation metrics, including the area

under curve (AUC), accuracy, precision, recall and F1-score. In table 3.4, we reported

the average AUC and accuracy for each method and each feature space. On the other

hand, for precision, recall and F1-score, we reported separate results for each feature

space, in tables 3.5-3.7, respectively. Note, each of these tables includes separate

scores for the positive and negative classes. In general, we observed the followings:

• Overall, our approach achieved highest performance on F1 (tables 3.4 and 3.5)

and {F1,F2} (table 3.7), in terms of all metrics. However it did not perform

well using solely F2 (table 3.6), i.e. when Cr = 0. This clearly demonstrates

the importance of using Cr over Cs.

• When the feature space used is F2, Co-training (SVM) is the best method. Next

best methods are supervised learners KNN and Gaussian NB. Three remarks can

be made here. First, our approach could not always defeat supervised learners

as it is seen from tables 3.4 and 3.6. This is not surprising and in fact lies at the

inherent difference between semi-supervised and supervised methods– unlabeled

examples could make the trained model susceptible to error propagation and

thus wrong estimation. Second, as it is seen in tables 3.5-3.7, achieving very

high recall on the negative examples and low score on the positive ones shall

not be treated as a potent property, otherwise a trivial classifier which always

assigns negative labels to all samples would be the best learner. Third, using Cr

always improves the performance over Cs. One point that needs to be clarified

is, our ultimate goal is not to achieve high performance on the labeled data,

but rather to detect the suspicious (unlabeled) advertisements which could be

human trafficking related– this will be explained in more details in 3.3.3.
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• Compared to the other semi-supervised approaches, our approach either achieved

higher or comparable AUC scores. The reason we performed exactly the same

as the Laplacian SVM, is because by setting Cr = 0, the two approaches are

inherently the same.

• For the Laplacian SVM to be able to run on F1, the Laplacian L′ has to be

constructed using F1 while inherently is supposed to be made using F2. This

is because Cr is essentially associated with F1, and Cs corresponds to L′ and

correspondingly F2. The same holds for {F1,F2}, where we need to construct

a new feature space by concatenating F1 and F2 as the Laplacian SVM does

not inherently use F1 at all. The new feature space is then used to construct

the Laplacian L′.

• Since our approach inherently incorporates both of the Laplacian matrices cor-

responding to the two feature spaces F1 and F2, all other baselines were also

run using the concatenation of these two feature spaces for the sake of fair com-

parison. Unlike our approach which used the wise combination of F1 and F2,

other methods do not gain high AUC by simply combining the feature spaces.

Blind Evaluation

For the next set of experiments, we first run our method on the entire filtered dataset

and without cross-validation. Recall from the previous sections that this is to make

a better use of the unlabeled examples. Then the following control experiment was

conducted. Our learner was tested on the whole set of the unlabeled examples. Out

of 3,343 instances, our approach identified two sets of positive and negative instances.

The positive set contained 394 advertisements which were likely to be of interest to

law enforcement, whereas the negative set included the remaining 2,962 unlabeled
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advertisements of probably less interest to law enforcement. Next, to precisely de-

termine the correctly identified fractions of these two sets, we randomly picked two

subsets (control groups) of 100 examples from each set for further validation by our

expert.

We passed these two control groups to our expert for further verification. The

expert-validated results demonstrated that all of the examples in the positive group

were of interest to law enforcement, while only two examples from the negative group

were not correctly classified as of not being of any interest to law enforcement. Thus,

both results support the effectiveness of our framework in identifying highly human

trafficking advertisements. Using the same two control groups and AUC metric, we

now perform so-called blind evaluation (see table 3.8) of other baselines. Note, we

call this blind since actual labels are not provided and the expert-generated labels

might convey uninformative information. In general, supervised methods failed to

achieve good results in the blind evaluation compared to most of the semi-supervised

methods.

Hyperparameter Sensitivity

Here, we discuss how altering the hyperparameters Cl, Cr and Cs may affect the

performance of S3VM − R. We start off by fixing the value of Cl to 0.6, which was

empirically found to work well in our experiments. Also, recall from the previous

sections that one typical choice for Cs is γI
(l+u)2

Belkin et al. (2006). Here, we set

Cs = 0.2 and varied the values of Cr as {0, 0.0002, 0.0006, 0.2, 1.0} and plotted the

results in Figure 3.7. We used the same 10-fold cross-validation setting from the

previous section.

We made the following observation. With the slight increase of Cr, the perfor-

mance of our approach increased, peaked and then stabilized, i.e., further increase
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of Cr did not change the performance. This suggests significance of deploying the

additional information from our first feature space F1, over F2 and its corresponding

smoothness penalty parameter Cs which is used by S3VM − R and the standard

Laplacian SVM.

Next, to see the impact of Cl on the performance, we set Cr = 0.2 and varied Cl

as {0.2, 0.4, 0.6, 0.8, 1.0}. The results are depicted in Figure 3.7. We note that setting

Cl = 0 is meaningless and thus we do not have any performance corresponding to

that– otherwise each βi in Eq. 5.7 would be zero. In general, the performance was not

particular sensitive to this parameter– varying by 0.2 for values of 0.4 and greater.

Figure 3.7: Effect of Varying Different Parameters on the Performance.

Finally, having fixed Cl = 0.6 and Cr = 0.2, we also tried other values for Cs

including
∑l+u

i,j=1Wij suggested by Belkin et al. (2006) and depicted the results in

Figure 3.7. The results suggest that our approach is less sensitive to this parameter

compared to Cr and Cl.

Significance of Features

To examine how much discriminative our feature groups in F1 are, we further con-

ducted an analysis using the labeled examples and the standard feature selection

measure χ2 to find the top features– only half of the features with scores greater than

a given threshold (0.5) were selected (see table 3.9 for the complete set of features

and their corresponding χ2 scores).
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From this list, we noticed that ‘countries of interest’ and ‘reference to spa massage

therapy’ were the most discriminative feature groups, while ‘advertisement language

pattern’ group (with 3 important features) appeared to be the most dominant feature

group.

Figure 3.8 compares the top features against the less important subset of the

features (denoted by F∗1 ) in the filtered dataset, in terms of frequency values. Note

for clarity, we have removed from this figure, the features with frequency less than 20.

According to this figure, our most discriminative features are not necessarily those

that appear more often.

Figure 3.8: Frequency of Each Feature in F1 in the Filtered Dataset. Features are

Grouped into the Two Groups, Most Important (F∗1 ) and Less Important Features

(F∗1 ), According to χ2.

To further investigate the importance of each of the top features, we performed

classification using the labeled examples and the previous setting, on basis of these two

subsets of the features and their combination, i.e., F∗1 , F∗1 and F1. The classification

results are shown in Table 3.10. We made the following observations:
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• Considering only the feature space F1, our approach achieved higher perfor-

mance compared to all other baselines by either using the whole feature space

or the most discriminative features F∗1 .

• Deploying only the features from F∗1 , we were able to achieve comparable results

as if we used the whole feature space F1.

3.4 Conclusion

Readily available online data from escort advertisements could be leveraged in

favor of fight against human trafficking. In this study, having focused on textual

information from the available data crawled from Backpage.com, we identified if an

escort advertisement can be reflective of human trafficking activities. In particular,

we first proposed an unsupervised filtering approach to filter out the data which are

more likely involved in human trafficking. We then proposed a non-parametric learner

and a semi-supervised framework, and trained them on a small portion of the data

which was hand-labeled by a human trafficking expert. We used the trained models to

identify labels of unseen data. Results suggest our methods are effective at identifying

potential human trafficking related advertisements.
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Table 3.2: Description of the Dataset.

Name Value

Raw 20,822

Filtered 3,543

Unlabeled 3,343

Labeled Positive Negative

70 130

Table 3.3: Validated Results on Unlabeled Data for both Kernels.

Name Value

Positive Negative Positive Precision

Kernel (Learner) (Learner) (Experts) (Positive)

RBF (Union) 145 704 134 92.41%

RBF (Intersection) 848 1 - -

KNN (Union) 188 661 170 90.42%

KNN (Intersection) 849 0 - -
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Table 3.4: AUC and Accuracy Results with 10-Fold Cross-Validation on the Labeled

Data. The Best Performance is in Bold.

Learner AUC Accuracy

F1 F2 {F1,F2} F1 F2 {F1,F2}

S3VM −R 0.91 0.9 0.96 0.91 0.9 0.97

Laplacian SVM 0.9 0.9 0.9 0.91 0.9 0.92

LabelSpreading (RBF) 0.78 0.87 0.84 0.8 0.85 0.86

LabelSpreading (KNN) 0.68 0.80 0.74 0.71 0.8 0.8

Co-Training (SVM) 0.82 0.94 0.92 0.85 0.94 0.93

SVM 0.82 0.9 0.91 0.85 0.92 0.93

KNN 0.76 0.91 0.81 0.79 0.92 0.84

Gaussian NB 0.78 0.91 0.9 0.82 0.9 0.9

Logistic Regression 0.82 0.89 0.88 0.85 0.92 0.92

AdaBoost 0.82 0.85 0.85 0.85 0.88 0.88

Random Forest 0.81 0.89 0.89 0.83 0.91 0.92
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Table 3.5: Precision, Recall and F1-Score for the Positive and Negative Classes using

F1. Experiments were Run using 10-Fold Cross-Validation on the Labeled Data. The

Best Performance is in Bold.

Learner Precision Recall F1-score

classp classn classp classn classp classn

S3VM −R 0.91 0.92 0.91 0.93 0.91 0.92

Laplacian SVM 0.86 0.89 0.88 0.9 0.87 0.89

LabelSpreading (RBF) 0.76 0.78 0.77 0.73 0.76 0.75

LabelSpreading (KNN) 0.65 0.7 0.71 0.68 0.68 0.69

Co-Training (SVM) 0.81 0.84 0.71 0.92 0.76 0.88

SVM 0.86 0.83 0.68 0.91 0.76 0.87

KNN 0.72 0.8 0.63 0.88 0.67 0.84

Gaussian NB 0.79 0.81 0.72 0.85 0.75 0.83

Logistic Regression 0.81 0.85 0.71 0.93 0.76 0.89

AdaBoost 0.86 0.83 0.68 0.95 0.76 0.89

Random Forest 0.77 0.85 0.73 0.89 0.75 0.87
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Table 3.6: Precision, Recall and F1-Score for the Positive and Negative Classes using

F2. Experiments were Run using 10-Fold Cross-Validation on the Labeled Data. The

Best Performance is in Bold.

Learner Precision Recall F1-score

classp classn classp classn classp classn

S3VM −R 0.91 0.91 0.91 0.91 0.91 0.91

Laplacian SVM 0.9 0.9 0.9 0.9 0.9 0.9

LabelSpreading (RBF) 0.8 0.86 0.82 0.83 0.81 0.84

LabelSpreading (KNN) 0.7 0.75 0.73 0.78 0.71 0.76

Co-Training (SVM) 0.96 0.91 0.91 0.97 0.93 0.94

SVM 0.93 0.91 0.84 0.97 0.88 0.94

KNN 0.87 0.92 0.88 0.94 0.87 0.93

Gaussian NB 0.78 0.96 0.94 0.87 0.85 0.91

Logistic Regression 0.98 0.89 0.81 0.98 0.89 0.93

AdaBoost 0.88 0.88 0.75 0.95 0.81 0.91

Random Forest 0.93 0.89 0.81 0.97 0.87 0.93
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Table 3.7: Precision, Recall and F1-Score for the Positive and Negative Classes using

{F1,F2}. Experiments were Run using 10-Fold Cross-Validation on the Labeled Data.

The Best Performance is in Bold.

Learner Precision Recall F1-score

classp classn classp classn classp classn

S3VM −R 0.97 0.97 0.95 0.98 0.96 0.97

Laplacian SVM 0.96 0.94 0.91 0.96 0.93 0.95

LabelSpreading (RBF) 0.83 0.86 0.82 0.84 0.82 0.85

LabelSpreading (KNN) 0.71 0.74 0.75 0.78 0.73 0.76

Co-Training (SVM) 0.92 0.9 0.9 0.94 0.91 0.92

SVM 0.96 0.92 0.84 0.97 0.9 0.94

KNN 0.84 0.83 0.67 0.95 0.75 0.89

Gaussian NB 0.77 0.96 0.94 0.87 0.85 0.91

Logistic Regression 0.95 0.9 0.79 0.97 0.86 0.93

AdaBoost 0.88 0.88 0.75 0.95 0.81 0.91

Random Forest 0.93 0.9 0.82 0.97 0.87 0.93
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Table 3.8: Blind Evaluation of the Baselines on the Two Control Groups. The Best

Performance is in Bold.

Learner AUC

F1 F2 {F1,F2}

Laplacian SVM 0.9 0.92 0.93

LabelSpreading (RBF) 0.75 0.85 0.87

LabelSpreading (KNN) 0.7 0.82 0.79

Co-Training (SVM) 0.8 0.9 0.91

SVM 0.8 0.65 0.69

KNN 0.74 0.62 0.77

Gaussian NB 0.77 0.51 0.52

Logistic Regression 0.76 0.62 0.75

AdaBoost 0.77 0.74 0.74

Random Forest 0.8 0.8 0.8

50



Table 3.9: Significance of the Features in F1. The Check-marked Features Show the

Top Features.

No. Feature Group χ2 Selected

1

Advertisement Language Pattern

- Third person language 8.4 X

- First person plural pronouns 9.5 X

- Kolmogorov complexity 0.7 X

- n-grams (1) 0.4

- n-grams (2) 0.0

- n-grams (3) 0.4

2 Words and Phrases of Interest 0.0

3 Countries of Interest 59.3 X

4 Multiple Victims Advertised 14.1 X

5 Victim Weight 0.2

6
Reference to Website or Spa Massage Therapy

- Reference to website 0.1

- Reference to Spa Massage Therapy 33.5 X

Table 3.10: Classification Results (AUC) using 10-Fold Cross-Validation and Dif-

ferent Subsets of the Features on the Labeled Data.

Name Value

F∗1 F∗1 F1

S3VM −R 0.82 0.87 0.91
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Chapter 4

EARLY IDENTIFICATION OF PATHOGENIC SOCIAL MEDIA ACCOUNTS

The unregulated nature and rapid growth of the Web have raised numerous challenges,

including hate speech Badjatiya et al. (2017), human trafficking Alvari et al. (2017)

and disinformation spread Shaabani et al. (2018) which ultimately pose threats to

users privacy Beigi et al. (2018); Beigi and Liu (2018a). Take disinformation spread as

an example where “Pathogenic Social Media” (PSM) accounts (e.g., terrorist support-

ers, or fake news writers) Shaabani et al. (2018) seek to promote or degrade certain

ideas by utilizing large online communities of supporters to reach their goals. Identi-

fying PSMs has applications including countering terrorism Khader (2016); Klausen

et al. (2016), fake news detection Gupta et al. (2014, 2013) and water armies detec-

tion Chen et al. (2011).

Early detection of PSMs in social media is crucial as they are likely to be key

users to malicious campaigns Varol et al. (2017b). This is a challenging task for three

reasons. First, these platforms are primarily based on reports they receive from their

own users 1 to manually shut down PSMs which is not a timely approach. Despite

efforts to suspend these accounts, many of them simply return to social media with

different accounts. Second, the available data is often imbalanced and social network

structure, which is at the core of many techniques Weng et al. (2014); Kempe et al.

(2003); Beigi and Liu (2018b); Zhang et al. (2013); Beigi et al. (2019b); Sarkar et al.

(2019); Alvari et al. (2016a), is not readily available. Third, PSMs often seek to utilize

and cultivate large number of online communities of passive supporters to spread as

much harmful information as they can.

1https://bit.ly/2Dq5i4M
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In this chapter, causal inference is tailored to identify PSMs since they are key

users in making a harmful message “viral”– where “viral” is defined as an order-of-

magnitude increase. We propose time-decay causal metrics to distinguish PSMs from

normal users within a short time around their activity. Our metrics alone can achieve

high classification performance in identification of PSMs soon after they perform

actions. Next, we pose the following research question: Are causality scores of users

within a community higher than those across different communities? We propose a

causal community detection-based classification method (C2dc), that takes causality

of users and the community structure of their action log.

Contributions. We make the following major contributions:

• We enrich the causal inference framework of Kleinberg and Mishra (2012) and

present time-decay extensions of the causal metrics in Shaabani et al. (2018) for

early identification of PSMs.

• We investigate the role of community structure in early detection of PSMs, by

demonstrating that users within a community establish stronger causal rela-

tionships compared to the rest.

• We conduct a suit of experiments on a dataset from Twitter. Our metrics

reached F1-score of 0.6 in identifying PSMs, half way their activity, and identi-

fied 71% of PSMs based on first 10 days of their activity, via supervised settings.

The community detection approach achieved precision of 0.84 based on first 10

days of users activity; the misclassified accounts were identified based on their

activity of 10 more days.
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4.1 Technical Preliminaries

Following the convention of Goyal et al. (2010), we assume an action log A

of the form Actions(User,Action,Time), which contains tuples (u, au, tu) indicating

that user u has performed action au at time tu. For ease of exposition, we slightly

abuse the notation and use the tuple (u,m, t) to indicate that user u has posted

(tweeted/retweeted) message m at time t. For a given message m we define a cascade

of actions as Am = {(u,m′, t) ∈ A|m′ = m}.

User u is said to be an m-participant if there exists tu such that (u,m, tu) ∈ A.

For users who have adopted a message in the early stage of its life span, we define

key users as follows.

Definition 1 (Key Users). Given message m, m-participant u and cascade Am,

we say user u is a key user iff user u precedes at least φ fraction of other m-participants

where φ ∈ (0, 1). In other words, |Am| × φ ≤ |{j|∃t′ : (j,m, t′) ∈ A ∧ t < t′}|, where

|.| is the cardinality of a set.

Next, we define viral messages as follows.

Definition 2 (Viral Messages). Given a threshold θ, we say a message m ∈M

is viral iff |Am| ≥ θ. We denote a set of all viral messages by Mvir.

The prior probability of a message going viral is ρ = |Mvir|/|M|. The probability

of a message going viral given key user u has participated in, is computed as follows:

ρu =
|{m|m ∈Mvir ∧ u is a key user}|
|{m|m ∈M ∧ u is a key user}|

(4.1)

The probability that key users i and j tweet/retweet message m chronologically

and make it viral, is computed as:

pi,j =
|{m ∈Mvir|∃t, t′ : t < t′ ∧ (i,m, t), (j,m, t′) ∈ A}|
|{m ∈M|∃t, t′ : t < t′ ∧ (i,m, t), (j,m, t′) ∈ A}|

(4.2)
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Figure 4.1: From Left to Right: Log-Log Distribution of Cascades vs. Cascade

Size. Cumulative Distribution of Duration of Cascades. Number of Inactive Users in

Different Subsets of the Training Set. Total Inactive Users in each Cascade.

To examine how causal user i was in helping a message m going viral, we shall

explore what will happen if we exclude user i from m. We define the probability that

only key user j has made a message m viral, i.e. user i has not posted m or does not

precede j as:

p¬i,j =
|{m ∈Mvir|∃t′ : (j,m, t′) ∈ A ∧ @t : t < t′, (i,m, t) ∈ A}|
|{m ∈M|∃t′ : (j,m, t′) ∈ A ∧ @t : t < t′, (i,m, t) ∈ A}|

(4.3)

Next, we adopt the notion of Prima Facie causes Suppes (1970):

Definition 3 (Prima Facie Causal Users). A user u is said to be Prima Facie

causal user for cascade Am iff: (1) user u is a key user of m, (2) m ∈Mvir, and (3)

ρu > ρ.

We borrow the concept of related users from a rule-based system Stanton et al.

(2015) which was an extension to the causal inference framework in Kleinberg and

Mishra (2012). We say users i and j are m-related if (1) both are Prima Facie

causal for m, and (2) i precedes j. We then define a set of user i’s related users as

R(i) = {j|j 6= i and i, j are m-related}.
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4.1.1 Dataset

We collect a dataset (Table 6.6) of 53M ISIS related tweets/retweets in Arabic,

from Feb 22, 2016 to May 27, 2016. The dataset has different fields including user

ID, retweet ID, hashtags, content, posting time. The tweets were collected using 290

different hashtags such as #Terrorism and #StateOfTheIslamicCaliphate. We use a

subset of this dataset which contains 35K cascades of different sizes and durations.

There are ∼2.8M tweets/retweets associated with the cascades. After pre-processing

and removing duplicate users from cascades, cascades sizes (i.e. number of associated

postings) vary between 20 to 9,571 and take from 10 seconds to 95 days to finish.

The log-log distribution of cascades vs. cascade size and the cumulative distribution

of duration of cascades are depicted in Figure 4.1.

Based on the content of tweets in our dataset, PSMs are terrorism-supporting

accounts who have participated in viral cascades. We chose to use θ = 100 and

take ∼6K viral cascades with at least 100 tweets/retweets. We demonstrate number

of PSMs that have been suspended by the Twitter over time and total number of

suspended users in each cascade, in Figure 4.1. We experiment the effectiveness of

our proposed approach on subsets of the training set with different sizes. Note we use

no more than 50% of original dataset to ensure our approach is able to identify PSMs

early enough. The dataset does not have any underlying network. We only focus on

the non-textual information in the form of an action log. We set φ = 0.5 to select key

users and after the data collection, we check through Twitter API whether they have

been suspended (PSM) or they are active (normal) Thomas et al. (2011). According

to Table 6.6, 11% of the users in our dataset are PSM and others are normal.
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Table 4.1: Description of the Dataset.

Name Value

# of Cascades 35K

# of Viral Cascades 6,602

# of Tweets/Retweets 2,808,878

# of Users Suspended Active

64,484 536,609

4.1.2 Causal Measures

Causal inference framework was first introduced in Kleinberg and Mishra (2012).

Later, Shaabani et al. (2018) adopted the framework and extended it to suite the

problem of identifying PSMs. They extend the Kleinberg-Mishra causality (εK&M)

to a series of causal metrics. To recap, we briefly explain them in the following

discussion. Before going any further, εK&M is computed as follows:

εK&M (i) =

∑
j∈R(i)(pi,j − p¬i,j)

|R(i)|
(4.4)

This metric measures how causal user i is, by taking the average of pi,j − p¬i,j

over R(i). The intuition here is user i is more likely to be cause of message m

to become viral than user j, if pi,j − p¬i,j > 0. The work of Shaabani et al. (2018)

devised a suit of the variants, namely relative likelihood causality (εrel), neighborhood-

based causality (εnb) and its weighted version (εwnb). Note that none of these metrics

were originally introduced for early identification of PSMs. Therefore, we shall make

slight modifications to their notations to adjust our temporal formulations, using

calligraphic uppercase letters. We define EK&M over a given time interval I as follows:
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EIK&M (i) =

∑
j∈R(i)(Pi,j − P¬i,j)

|R(i)|
(4.5)

where R(i), Pi,j, and P¬i,j are now defined over I. Authors in Shaabani et al. (2018)

mention that this metric cannot spot all PSMs. They define another metric, relative

likelihood causality Erel, which works by assessing relative difference between Pi,j,

and P¬i,j. We use its temporal version over I, EIrel(i) = S(i,j)
|R(i)| .

where S(i, j) is defined as follows and α is infinitesimal:

S(i, j) =


Pi,j

P¬i,j+α
− 1, Pi,j > P¬i,j

1− P¬i,j
Pi,j , Pi,j ≤ P¬i,j

(4.6)

Two other neighborhood-based metrics were also defined in Shaabani et al. (2018),

whose temporal variants are computed over I as EInb(j) =
∑
i∈Q(j) EIK&M (i)

|Q(j)| , where

Q(j) = {i|j ∈ R(i)} is the set of all users that user j belongs to their related

users sets. Similarly, the second metric is a weighted version of the above metric

and is called weighted neighborhood-based causality and is calculated as EIwnb(j) =∑
i∈Q(j) wi×EIK&M (i)∑

i∈Q(j) wi
. This is to capture different impacts that users in Q(j) have on user

j. We apply a threshold-based selection approach that selects PSMs from normal

users, based on a given threshold. Following Shaabani et al. (2018), we use a thresh-

old of 0.7 for all metrics except EIrel for which we used a threshold of 7 (Table 4.2).

4.2 The Proposed Framework

4.2.1 Leveraging Temporal Aspects of Causality

Previous causal metrics do not take into account time-decay effect. They assume

a steady trend for computing causality scores. This is an unrealistic assumption, as

causality of users may change over time. We introduce a generic decay-based metric.
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Table 4.2: F1-Score Results for PSM Accounts using Causal Metrics Shaabani et al.

(2018).

Metric F1-score

10% 20% 30% 40% 50%

EIK&M 0.41 0.42 0.45 0.46 0.49

EIrel 0.3 0.31 0.33 0.35 0.37

EInb 0.49 0.51 0.52 0.54 0.55

EIwnb 0.51 0.52 0.55 0.56 0.59

Figure 4.2: An Illustration of How Decay-based Causality Works. To Compute

ξIk(i) over I = [t0, t], We Use a Sliding Window ∆ = [t′ − δ, t′] and Take the Average

Between the Resultant Causality Scores e−σ(t−t′) × E∆
k (i).

Our metric assigns different weights to different time points of a given time interval,

inversely proportional to their distance from t (i.e., smaller distance is associated with

higher weight). Specifically, it performs the following: it (1) breaks down the given

time interval into shorter time periods using a sliding time window, (2) deploys an

exponential decay function of the form f(x) = e−αx to account for the time-decay

effect, and (3) takes average of the causality values computed over each sliding time

window. Formally, ξIk is defined as follows, where k ∈ {K&M, rel, nb, wnb}:

ξIk(i) =
1

|T |
∑
t′∈T

e−σ(t−t′) × E∆
k (i) (4.7)
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Table 4.3: F1-Score Results for PSM Accounts using each Decay-based Metric with

and without Communities.

Metric F1-score (without/with communities)

10% 20% 30% 40% 50%

ξIK&M 0.44/0.49 0.46/0.51 0.47/0.52 0.5/0.54 0.53/0.57

ξIrel 0.36/0.4 0.38/0.43 0.39/0.46 0.41/0.49 0.42/0.5

ξInb 0.52/0.56 0.53/0.57 0.54/0.58 0.56/0.6 0.59/0.61

ξIwnb 0.54/0.57 0.55/0.58 0.57/0.6 0.58/0.62 0.6/0.63

where σ is a scaling parameter of the exponential decay function, T = {t′|t′ = t0 +

j × δ, j ∈ N∧ t′ ≤ t− δ} is a sequence of sliding-time windows, and δ is a small fixed

amount of time, which is used as the length of each sliding-time window ∆ = [t′−δ, t′]

(Figure 4.2). To apply the threshold-based approach, we once again use a threshold

of 0.7 for all metrics except ξIrel for which we used a threshold of 7 (Table 4.3).

Early Detection of PSMs. Given action log A, and user u where ∃t s.t.

(u,m, t) ∈ A, our goal is to determine if u’s account shall be suspended given its

causality vector xu ∈ Rd (here, d = 4) computed using any of the causality metrics

over [t− δ, t+ δ].

4.2.2 Leveraging Community Structure Aspects of Causality

To answer the research question posed earlier, since network structure is not avail-

able, we need to build a graph G = (V,E) from A by connecting any pairs of users

who have posted same message chronologically. In this graph, V is a set of vertices

(i.e. users) and E is a set of directed edges between users. For the sake of sim-

plicity and without loss of generality, we make the edges of this graph undirected.

Next, we leverage the Louvain algorithm Blondel et al. (2008) to find the partitions
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Figure 4.3: From Left to Right: Distributions of Active and Inactive Users using

Communities and ξIk when k ∈ {K&M, rel, nb, wnb}.

C = {C1, C2, ..., Ck} of k communities over G. Among a myriad of the community

detection algorithms Alvari et al. (2016a); Lancichinetti et al. (2011); Alvari et al.

(2011), we chose Louvain due to its fast runtime and scalability– we leave exam-

ining other community detection algorithms to future work. Next, we perform the

two-sample t-test H0 : va ≥ vb, H1 : va < vb. The null hypothesis is: users in a given

community establish weak causal relations with each other as opposed to the other

users in other communities. We construct two vectors va and vb as follows. We create

va by computing Euclidean distances between causality vectors (xi,xj) correspond-

ing to each pair of users (ui, uj) who are from same community Cl ∈ C. Therefore,

va contains exactly 1
2

∑|C|
l=1 |Cl|.(|Cl| − 1) elements. We construct vb of size

∑|C|
l=1 |Cl|

by computing Euclidean distance between each user ui in community Cl ∈ C, and

a random user uk chosen from the rest of the communities, i.e., C \ Cl. The null

hypothesis is rejected at significance level α = 0.01 with the p-value of 4.945e-17.

We conclude that users in same communities are more likely to establish stronger

causal relationships with each other than the rest of the communities. The answer

to the question is thus positive. For brevity, we only reported results for 10% of the

training set, while making similar arguments for other percentages is straightforward.

Figure 4.3 shows box plots of the distributions of users using the decay-based metrics

and the communities and same set of thresholds as before. We observe a clear dis-
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tinction between active/suspended accounts, using the community structure. Results

in Table 4.3 show improvements over previous ones.

Algorithm 2 Causal Community Detection-based Classification Algorithm

(C2dc)

Input: Training samples {x1, ...,xN} , tests {x′1, ...,x′n}, G, k

Output: Predicted labels {y′1, ..., y′n}

1: C← Louvain(G)

2: for each x′i do

3: Cl ← C ′ ∈ C s.t. x′i ∈ C ′

4: D← {}

5: for each xj ∈ Cl do

6: dij ← ||x′i − xj ||2

7: D← D ∪ {dij}

8: end for

9: K← Knn(D, k)

10: y′i ← Dominant-Label(K)

11: end for

First step of the proposed algorithm (Algorithm 3) involves finding the communi-

ties. In the second step, each unlabeled user is classified based on the available labels

of her nearby peers in the same community. We use the K-Nearest Neighbors

(Knn) algorithm to compute her k nearest neighbors in the same community, based

on Euclidean distances between their causality vectors. We label her based on the

majority class of her k nearest neighbors in the community. The merit of using com-

munity structure over merely using Knn is, communities can give finer-grained and

more accurate sets of neighbors sharing similar causality scores.
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4.3 Experiments

We use different subsets of size x% of the entire time-line (from Feb 22, 2016 to

May 27, 2016) of the action log A, by varying x as {10, 20, 30, 40, 50}. For each subset

and user i in the subset, we compute feature vector xi ∈ R4 of the corresponding

causality scores. The feature vectors are then fed into supervised classifiers and the

community detection-based algorithm. For the sake of fair comparison, we perform

this for both causal and decay-based metrics. For both metrics, we empirically found

that ρ = 0.1 and α = 0.001 work well. For the decay-based causality metric we

shall also assume a sliding window of size of 5 days (i.e. δ = 5) and set σ = 0.001

which were found to work well in our experiments. Note we only present results

for PSMs. Among many other supervised classifiers such as AdaBoost , Logistic

Regression and Support Vector Machines (Svm), Random Forest (RF)

with 200 estimators and ‘entropy’ criterion, achieved the best performance. Therefore,

for brevity we only report results when RF is used as the classifier.

We present results for the proposed community detection-based framework and

causal and decay-based metrics. For computing k nearest neighbors, we set k = 10

as it was found to work well for our problem. By reporting the results of Knn

trained on the decay-based causality features, we stress that using Knn alone does

not yield a good performance. For the sake of fair comparison, all approaches were

implemented and run in Python 2.7x, using the scikit-learn package. For any approach

that requires special tuning of parameters, we conducted grid search to choose the

best set of parameters.
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4.3.1 Baseline Methods

Causal Shaabani et al. (2018)

We compare our metrics against the ones in Shaabani et al. (2018) via supervised and

community detection settings.

SentiMetrix-Dbscan Subrahmanian et al. (2016)

This was the winner of the DARPA challenge. It uses several features such as tweet

syntax (e.g., average number of hashtags, average number of links), tweet semantics

(e.g., LDA topics), and user behavior (e.g., tweet frequency). We perform 10-fold

cross validation and use a held-out test set for evaluation. This baseline uses a

seed set of 100 active and 100 inactive accounts, and then use Dbscan clustering

algorithm to find the associated clusters. Available labels are propagated to nearby

unlabeled users in each cluster based on the Euclidean distance metric, and labels of

the remaining accounts are predicted using Svm.

SentiMetrix-RF Subrahmanian et al. (2016)

This is a variant of Subrahmanian et al. (2016) where we excluded the Dbscan part

and instead trained RF classifier using only the above features to evaluate the feature

set.

4.3.2 Identification of PSM Accounts

For each subset a separate 10-fold cross validation was performed (Figure 4.4).

We observe the following:

• Community detection achieves the best performance using several metrics. This
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Figure 4.4: Precision, Recall, F1-Score and AUC Results for each Classifier. Ex-

periments were Run using 10-Fold Cross-Validation.

aligns well with the t-test results discussed earlier: taking into account commu-

nity structure of PSMs can boost the performance.

• Causal and decay-based metrics mostly achieve higher performance than other

approaches via both settings.

• Decay-based metrics are effective at identifying PSMs at different intervals via

both settings. This lies at the inherent difference between decay-based and

causal metrics– our metrics take into account time-decay effect.

• Although both variants of SentiMetrix-Dbscan use many features, they

were unable to defeat our approach.

4.3.3 Timeliness of PSM Accounts Identification

For each approach, we would like to see how many of PSMs who were active in the

first 10 days of the dataset, are correctly classified (i.e., true positives) as time goes

by. Also, we need to keep track of false positives to ensure given approach does not

merely label each instance as positive– otherwise a trivial approach that always label

each instance as PSM would achieve highest performance. We are also interested to

figure how many days need to pass to find these accounts. We train each classifier

using 50% of the first portion of the dataset, and use a held-out set of the rest for
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evaluation. Next, we pass along the misclassified PSMs to the next portions to see

how many of them are captured over time. We repeat the process until reaching 50%

of the dataset– each time we increase the training set by adding new instances of the

current portion.

There are 14,841 users in the first subset from which 3,358 users are PSMs. Ta-

ble 4.4 shows the number of users from the first portion that (1) are correctly clas-

sified as PSM (out of 3,358), (2) are incorrectly classified as PSM (out of 29,617),

over time. Community detection approaches were able to detect all PSMs who were

active in the first 10 days of our dataset, no later than a month from their first activ-

ity. Decay-C2dc, identified all of these PSMs in about 20 days since the first time

they posted a message. Also, both causal and decay-based metrics when fed to RF

classifier, identified all of the PSMs in the first period. SentiMetrix-Dbscan and

SentiMetrix-RF failed to detect all PSMs from the first portion, even after passing

50 days since their first activity. Furthermore, these two baselines generated much

higher rates of false positives compared to the rest. The observations we make here

are in line with the previous ones: the proposed community detection-based framework

is more effective and efficient than the rivals.

4.4 Conclusion

We enriched the existing causal inference framework to suite the problem of early

identification of PSMs. We proposed time-decay causal metrics which reached F1-

score of 0.6 and via supervised learning identified 71% of the PSMs from the first

10 days of the dataset. We proposed a causal community detection-based classifi-

cation algorithm, by leveraging community structure of PSMs and their causality.

We achieved the precision of 0.84 for detecting PSMs within 10 days around their

activity; the misclassified accounts were then detected 10 days later. Our future plan

66



T
a
b

le
4
.4

:
T

ru
e/

F
al

se
P

os
it

iv
es

fo
r

P
S
M

A
cc

ou
n
ts

.
N

u
m

b
er

s
ar

e
ou

t
of

3,
35

8/
29

,6
17

P
S
M

/N
or

m
al

A
cc

ou
n
ts

fr
om

th
e

F
ir

st
P

er
io

d
.

L
as

t
C

ol
u
m

n
S
h
ow

s
th

e
N

u
m

b
er

of
P

S
M

A
cc

ou
n
ts

F
ro

m
th

e
F

ir
st

P
er

io
d

w
h
ic

h
w

er
e

n
ot

C
au

gh
t.

L
e
a
rn

e
r

T
ru

e
P

o
si

ti
v
e
s/

F
a
ls

e
P

o
si

ti
v
e
s

R
e
m

a
in

in
g

02
/2

2-
03

/0
2

03
/0

2-
03

/1
2

03
/1

2-
03

/2
2

03
/2

2-
03

/3
1

03
/3

1-
04

/0
9

D
e
c
a
y
-C

2
d
c

3
,0

72
/1

31
28

6/
0

0/
0

0/
0

0/
0

0

C
a
u
sa

l
-C

2
d
c

3
,0

65
/1

56
18

8/
20

10
5/

0
0/

0
0/

0
0

D
e
c
a
y
-K

n
n

2
,1

98
/4

59
42

7/
23

4
31

5/
78

10
9/

19
96

/0
21

3

D
e
c
a
y
-R

F
2
,4

72
/3

07
64

3/
26

3
14

3/
12

1
72

/6
8

28
/0

0

C
a
u
sa

l
-R

F
2
,3

98
/4

41
61

9/
31

5
22

1/
16

9
89

/7
0

51
/0

0

S
e
n
t
iM

e
t
r
ix
-R

F
2
,5

41
/4

43
15

4/
0

93
/0

25
/0

14
/0

53
1

S
e
n
t
iM

e
t
r
ix
-D

b
sc

a
n

2
,1

57
/2

,0
75

55
1/

5,
33

2
27

1/
20

9
92

/1
18

72
/6

96
21

5

67



includes exploring other community detection algorithms and other forms of causal

metrics.
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Chapter 5

SEMI-SUPERVISED CAUSAL INFERENCE FOR DETECTING PATHOGENIC

USERS IN SOCIAL MEDIA

Over the past years, social media play major role in massive dissemination of misin-

formation online. Political events and public opinion on the Web and social networks

have been allegedly manipulated by different forms of accounts including real users

and automated software (a.k.a social bots or sybil accounts). Pathogenic Social Me-

dia (PSM) accounts are among those that are responsible for such a massive spread

of disinformation online and swaying normal users’ opinion Alvari et al. (2018); Shaa-

bani et al. (2019). These accounts (1) are usually owned by either normal users or

automated bots, (2) seek to promote or degrade certain ideas; and (3) can appear in

many forms such as terrorist supporters (e.g., ISIS supporters), water armies or fake

news writers. Understanding the behavior of PSMs will allow social media to take

countermeasures against their propaganda at the early stage and reduce their threat

to the public.

The problem of identification of PSMs has long been addressed in the past by the

research community mostly in the form of bot detection. Several approaches especially

supervised learning methods have been proposed in the literature and they have

shown promising results Kudugunta and Ferrara (2018). However, for the most part,

these approaches are often based on labeled data and exhaustive feature engineering.

Examples of such feature groups include but are not limited to content, sentiment

of posts, profile information and network features. These approaches are thus very

expensive as they require significant amount of efforts to design features and annotate

large labeled datasets. In contrast, unlabeled data is ubiquitous and cheap to collect
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thanks to the massive user-generated data produced on a daily basis. Thus, in this

work we set out to examine if unlabeled instances can be utilized to compensate for

the lack of enough labeled data.

In this chapter, semi-supervised causal inference is tailored to detect PSMs who are

promoters of misinformation online. We cast the problem of identifying PSMs as an

optimization problem and propose a semi-supervised causal learning framework which

utilizes unlabeled examples through manifold regularization Belkin et al. (2006). In

particular, we incorporate causality-based features extracted from users’ activity log

(i.e., cascades of retweets) as regularization terms into the optimization problem. In

this work, causal inference is leveraged in an effort to capture whether or not PSMs

exert causal influences while making a message viral. Our causality-based features

are built upon Suppes’ theory of probabilistic causation Suppes (1970) whose central

concept is prima facie causes : an event to be recognized as a cause, must occur before

the effect and must lead to an increase of the likelihood of observing the effect. While

there exists a prolific literature on causality and their great impact in the computer-

science community (see Pearl (2009) for instance), we build our foundation on Suppes’

theory as it is computationally less complex.

Key idea and highlights. To summarize, this chapter makes the following main

contributions:

• We frame the problem of detecting PSM accounts as an optimization problem

and present a Laplacian semi-supervised causal inference SemiPsm for solving

it. The unlabeled data are utilized via manifold regularization.

• Manifold regularization used in the resultant optimization formulation is built

upon causality-based features created on a notion of Suppes’ theory of proba-

bilistic causation.
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• We conduct a suite of experiments using different supervised and semi-supervised

methods. Empirical experiments on a real-world ISIS-related dataset from Twit-

ter suggests the effectiveness of the proposed semi-supervised causal inference

over the existing methods.

5.1 The Proposed Method

We leverage the time-decay causal inference introduced in Chapter 4 built on

Suppes’ theory, to compute causality-based features for users. Then, we detail the

proposed semi-supervised causal inference, namely SemiPsm for detecting PSM ac-

counts.

5.1.1 Causality-based Attributes

The time-decay causal metrics Alvari et al. (2018) will be fed as features to the

semi-supervised framework– this will be described in the next section. The final set

of features is in the following generic form ξIk where k ∈ {K&M, rel, nb, wnb}:

ξIk(i) =
1

|T |
∑
t′∈T

e−σ(t−t′) × E∆
k (i) (5.1)

Here, σ is a scaling parameter of the exponential decay function, T = {t′|t′ =

t0 + j × δ, j ∈ N ∧ t′ ≤ t − δ} is a sequence of sliding-time windows, and δ is a

small fixed amount of time, which is used as the length of each sliding-time window

∆ = [t′ − δ, t′].

In essence, this metric assigns different weights to different time points of a given

time interval, inversely proportional to their distance from t (i.e., smaller distance is

associated with higher weight). Specifically, it performs the following: it (1) breaks

down the given time interval into shorter time periods using a sliding time window,

(2) deploys an exponential decay function of the form f(x) = e−αx to account for the
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time-decay effect, and (3) takes average of the causality values computed over each

sliding time window Alvari et al. (2018).

5.1.2 Semi-Supervised Causal Inference

Having defined the causality-based features, we now proceed to present the pro-

posed semi-supervised Laplacian SVM framework, SemiPsm. For the rest of the

discussion, we shall assume a set of l labeled pairs {(xi, yi)}li=1 and an unlabeled set

of u instances {xl+i}ui=1, where xi ∈ Rn denotes the causality vector ξIk(i) of user i

and yi ∈ {+1,−1} (PSM or not).

Recall for the standard soft-margin support vector machines, the following opti-

mization problem is solved:

min
fθ∈Hk

γ||fθ||2k + Cl

l∑
i=1

H1(yifθ(xi)) (5.2)

In the above equation, fθ(·) is a decision function of the form fθ(·) = w.Φ(·) + b

where θ = (w, b) are the parameters of the model, and Φ(·) is the feature map which

is usually implemented using the kernel trick Cortes and Vapnik (1995). Also, the

function H1(·) = max(0, 1− ·) is the Hinge Loss function. The classical Representer

theorem Belkin et al. (2005) suggests that solution to the optimization problem exists

in a Hilbert space Hk and is of the form f ∗θ (x) =
∑l

i=1 α
∗
iK(x, xi). Here, K is the l× l

Gram matrix over labeled samples. Equivalently, the above problem can be written

as:

min
w,b,ε

1

2
||w||22 + Cl

l∑
i=1

εi (5.3)

s.t. yi(w.Φ(xi) + b) ≥ 1− εi, i = 1, ..., l

εi ≥ 0, i = 1, ..., l (5.4)
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Next, we will use the above optimization equation as our basis to derive the

formulations for our proposed semi-supervised learner.

The basic assumption behind semi-supervised learning methods is to leverage un-

labeled instances in order to restructure hypotheses during the learning process Alvari

et al. (2017). Here, exogenous information extracted from causality-based features

of users is exploited to make a better use of the unlabeled examples. To do so,

we first introduce matrix F over both of the labeled and unlabeled samples with

Fij = ||Φ(xi) − Φ(xj)||2 in ||.||2 norm. This way, we force instances xi and xj in

our dataset to be relatively ‘close’ to each other Beigi and Liu (2018b), i.e., having a

same label, if their corresponding causal-based feature vectors are close. To account

for this, a regularization term is added to the standard equation and the following

optimization is solved:

min
fθ∈Hk

1

2

l∑
i=1

Fij||fθ(xi)− fθ(xj)||22 = fTθ LT fθ (5.5)

where f = [f(x1), ..., f(xl+u)]
T and L is the Laplacian matrix based on F given by

L = D − F, and Dii =
∑l+u

j=1 Fij. The intuition here is that causal pairs are more

likely to have same labels than others.

Following the notations used in Chapter 3, and by including our regularization

term, we would extend the standard equation by solving the following optimization:

min
fθ∈Hk

γ||fθ||2k + Cl

l∑
i=1

H1(yifθ(xi)) + Crf
T
θ Lfθ (5.6)

Where solution in Hk is in the following form f ∗θ (x) =
∑l+u

i=1 α
∗
iK(x, xi). Here K

is the (l + u)× (l + u) Gram matrix over all samples.

Next, we follow the procedure explained in Chapter 3 to obtain the dual problem

in the form of a quadratic programming problem:
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β∗ = argmaxβ∈Rl −
1

2
βTQβ +

l∑
i=1

βi (5.7)

s.t.

l∑
i=1

βiyi = 0

0 ≤ βi ≤ Cl (5.8)

where β = [β1, ..., βl]
T ∈ Rl are the Lagrangian multipliers and Q is obtained as

follows:

Q = YJK(I + (CrL)K)−1JTY (5.9)

We summarize the proposed semi-supervised framework in Algorithm 1. Our

optimization problem is very similar to the standard optimization problem solved for

SVMs, hence we use a standard optimizer for SVMs to solve our problem.

Algorithm 3 Semi-Supervised Causal Inference for PSM detection

(SemiPsm)

Input: {(xi, yi)}li=1, {xl+i}ui=1, Cl, Cr.

Output: Estimated function fθ : Rn → R

1: Construct matrix F based on the causality-based features

2: Compute the corresponding Laplacian matrix L.

3: Construct the Gram matrix over all examples using Kij = k(xi, xj) where k is a kernel

function.

4: Compute α∗ and β∗ using Eq. 3.18 and Eq. 5.7 and a standard QP solvers.

5: Compute function f∗θ (x) =
∑l+u

i=1 α
∗
iK(x, xi)

74



Table 5.1: Description of the Dataset.

Name Value

# of Cascades 35 K

# of Viral Cascades 6,602

# of Tweets/Retweets 10,823,168

# of Users PSM Normal

19,859 65,417

5.1.3 Computational Complexity

Here, we will explain the scalability of the algorithm in terms of big-O notation

for both constituents of the proposed framework separately. For the first part of the

approach, given a set of A cascades, and average number of avg(τ) users’ actions

(i.e., timestamps) in each cascade where τ ∈ A, the complexity of computing causal-

ity scores is O(|A|.(avg(τ))2) (note on average there are (avg(τ))2 pairs of users in

each cascade). For the second part, i.e., learning the semi-supervised algorithm, the

most time-consuming part is calculating the inverse of a dense Gram matrix which

leads to O((l + u)3) complexity, where l and u are number of labeled and unlabeled

instances Belkin et al. (2006).

5.2 Experiments

In this section we conduct experiments on the Twitter ISIS-related dataset de-

scribed in Chapter 4 and present results for several supervised and semi-supervised

approaches. We first explain the dataset and provide some data analysis. Then, we

will present the baseline methods. Finally, results and discussion are provided.
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Baseline Methods

We compare the proposed method SemiPsm against the following baseline methods.

Note for all methods, we only report results when their best settings are used.

• LabelSpreading (RBF Kernel) Zhou et al. (2004a). This is a graph

inference-based label spreading approach with radial basis function (RBF) ker-

nel.

• LabelSpreading (KNN Kernel) Zhou et al. (2004a). Similar to the pre-

vious approach with K-nearest neighbor (KNN) kernel.

• LSTM Kudugunta and Ferrara (2018). The word-level LSTM approach

here is similar to the deep neural network models used for sequential word

predictions. We adapt the neural network to a sequence classification problem

where the inputs are the vector of words in each tweet and the output is the

predicted label of the tweet. We first use the word2vec Mikolov et al. (2013)

embedding pre-trained from a set of tweets similar to the data representation

in our Twitter dataset.

• Account-Level (RF Classifier) Kudugunta and Ferrara (2018) This

approach uses the following features of the user profiles: Statuses Count, Fol-

lowers Count, Friends Count, Favorites Count, Listed Count, Default Profile,

Geo Enables, Profile Uses Background Image, Verified, Protected. We chose

this method over Botometer Varol et al. (2017a) as it achieved comparable

results with far less number of features (Varol et al. (2017a) uses over 1,500

features)(see also Ferrara et al. (2016)). According to Kudugunta and Ferrara

(2018), we report the best results when Random Forest (RF) is used.

• Tweet-Level (RF Classifier) Kudugunta and Ferrara (2018). Similar
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to the previous baseline, this method uses only a handful of features extracted

from tweets: retweet count, reply count, favorite count, number of hashtags,

number of URLs, number of mentions. Likewise, we use RF as the classification

algorithm.

• SentiMetrix Subrahmanian et al. (2016). This approach was proposed

by the top-ranked team in the DARPA Twitter Bot Challenge. We consider

all features that we could extract from our dataset. Our features include tweet

syntax (average number of hashtags, average number of user mentions, average

number of links, average number of special characters), tweet semantics (LDA

topics), and user behaviour (tweet spread, tweet frequency, tweet repeats). The

proposed approach starts with a small seed set and propagates the labels. Since

we have enough labeled data for the training part, we use Random Forest as

the learning approach.

• C2DC Alvari et al. (2018). This approach uses time-decay causal community

detection-based classification to detect PSM accounts Alvari et al. (2018). For

community detection, this approach uses Louvain algorithm.

Results and Discussion

All experiments were implemented in Python 2.7x and run on a machine equipped

with an Intel(R) Xeon(R) CPU of 3.50 GHz with 200 GB of RAM running Linux.

The proposed approach was implemented using CVXOPT package. Furthermore,

we split the whole dataset into 50% training and 50% test sets for all experiments.

We report results in terms of F1-score in tables 5.2 and 5.3. For any approach

that requires special tuning of parameters, we conducted grid search to choose the

best set of parameters. Specifically, for the proposed approach, we set the penalty
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Table 5.2: F1-Score Results of Various Methods on the Labeled Data. For Semi-

Supervised Learners, the Size of the Unlabeled Data is Fixed to 10% of the Training

Set. The Best Performance is in Bold.

Learner F1-score

SemiPSM (Causal Features) 0.94

SemiPSM (Account-Level Features) 0.89

SemiPSM (Tweet-Level Features) 0.88

LabelSpreading (KNN/Causal Features) 0.89

LabelSpreading (RBF/Causal Features) 0.88

Account-Level (RF Classifier) 0.88

Tweet-Level (RF Classifier) 0.82

SentiMetrix 0.54

LSTM 0.41

C2DC 0.4

parameter as Cl = 0.6 and the regularization parameter Cr = 0.2, and used linear

kernel. For LabelSpreading (Rbf), the default vale of γ = 20 was used and for

LabelSpreading (Knn), number of neighbors was set to 5. Also, for random forest

we used 200 estimators and the ‘entropy’ criterion was used. For computing k nearest

neighbors in C2dc, we set k = 10.

Furthermore for LSTM, we preprocessed the individual tweets in line with the

steps mentioned in Soliman et al. (2017). Since the content of the tweets are in

Arabic, we replaced special characters that were present in the text with their Arabic

counterparts if they were present. We used word vectors of dimensions 100 and

deployed the skip-gram technique for obtaining the word vectors where the input

is the target word, while the outputs are the words surrounding the target words.
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Table 5.3: F1-Score Results of the Semi-Supervised Approaches when Causality-

based Features are Used. Results are Reported on Different Portions of the Unlabeled

Data. The Best Performance is in Bold.

Percentage of Unlabeled Data

10% 20% 30% 40% 50%

SemiPsm 0.94 0.93 0.91 0.9 0.88

LabelSpreading (Knn) 0.89 0.88 0.87 0.85 0.81

LabelSpreading (Rbf) 0.88 0.86 0.85 0.82 0.80

To model the tweet content in a manner that uses it to predict whether an account

is PSM or not, we used Long Short Term Memory (LSTM) models Hochreiter and

Schmidhuber (1997). For the LSTM architecture, we used the first 20 words in the

tokenized Arabic text of each tweet and use padding in situations where the number

of tokens in a tweet are less than 20. We used 30 units in the LSTM architecture

(many to one). The output of the LSTM layer was fed to a dense layer of 32 units

with ReLU activations. We added dropout regularization following this layer to avoid

overfitting and the output was then fed to a dense layer which outputs the category

of the tweets.

We depict in Table 5.2 classification performance of all approaches on the la-

beled data. For the proposed framework SemiPsm, we examine three sets of fea-

tures (1) causality-based features, (2) account-level features Kudugunta and Ferrara

(2018); and (3) tweet-level features Kudugunta and Ferrara (2018). For the graph

inference-based semi-supervised algorithms, i.e., LabelSpreading (Rbf) and La-

belSpreading (Knn), we only report results where causality-based features are

used as they achieved best performance with them. As it is observed from the ta-
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ble, the best results in terms of F1-score belong to SemiPsm where causality-based

features are used. The runner-up is SemiPsm with account-level features and the

next best approach is SemiPsm where tweet-level features are deployed. This clearly

demonstrates the significance of using manifold regularization in the Laplacian semi-

supervised framework over using other semi-supervised methods, LabelSpreading

(Rbf) and LabelSpreading (Knn).

We further note that the supervised classifier Random Forest using both of the

account-level and tweet-level features and the whole labeled dataset achieve worse or

comparable results to the semi-supervised learners. The fact that obtaining several

tweet and account-level features is not trivial and do not necessarily lead to the best

classification performance, motivates us to use semi-supervised algorithms which use

less number of labeled examples, and yet achieve competing performance. We also

obtain an F1-score of 0.41 when LSTM is used– the poor performance of the this

neural network model can be attributed to the raw Arabic text content. It suggests

that the Arabic tokens as a representation might not be very informative about the

category of accounts it has been generated from and some kind of weighting might

be necessary before the LSTM module is used.

Also, Table 5.3 shows the classification performance of the semi-supervised ap-

proaches with causality-based features. The results are achieved using different por-

tions of the unlabeled data, i.e., {10%, 20%, 30%, 40%, 50%} of the training set. As

it is seen in the table, SemiPsm achieves the best performance on different portions

of the unlabeled data compared to the other semi-supervised learners, while perfor-

mances of all approaches deteriorate with increasing the percentage of the unlabeled

data. Furthermore, SemiPsm still outperforms all other supervised methods as well

as Lstm and C2dc when up to 50% of the data has been made unlabeled.

Observations. Overall, this work makes the following observations:
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• Among the semi-supervised learners used in this study, SemiPsm achieves the

best classification performance suggesting the significance of using unlabeled

instances in the form of manifold regularization. Manifold regularization is

shown effective in boosting the classification performance, with three different

sets of features confirming this.

• Causality-based features achieve the best performance via both Laplacian and

graph inference-based semi-supervised settings. This lies at the inherent prop-

erty of the causality-based features– they are designed to show whether or not

user i exerts a causal influence on j. This is effective in capturing PSMs as they

are key users in making a message viral.

• Compared to the supervised methods Account-Level (Rf) and Tweet-

Level (Rf), semi-supervised learners achieve either comparable or best results,

suggesting promising results with less number of labeled examples.

• Among the supervised methods Account-Level (Rf) and Tweet-Level

(Rf), the former achieves higher F1-score indicating that account-level fea-

tures are more useful in boosting the performance, although they are harder to

obtain Kudugunta and Ferrara (2018).

• Semi-supervised learners achieve best or comparable results with supervised

learners, even with up to 50% of the data made unlabeled. This clearly shows

the superiority of using unlabeled examples over labeled ones.

5.3 Conclusion

We presented a semi-supervised Laplacian SVM to detect PSM users in social

media who are promoters of misinformation spread. We cast the problem of identi-
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fying PSMs as an optimization problem and introduced a Laplacian semi-supervised

SVM via utilizing unlabeled examples through manifold regularization. We examined

different sets of features extracted from users activity log (in the form of cascades of

retweets) as regularization terms: (1) causality-based features; and (2) LSTM-based

features. Our causality-based features were built upon Suppes’ theory of probabilistic

causation. The LSTM-based features were extracted via LSTM which has shown

promising results for different tasks in the literature.
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Chapter 6

FEATURE-DRIVEN APPROACH TO DETECT PATHOGENIC SOCIAL MEDIA

ACCOUNTS

Following the PSM detection works presented in Chapters 4 and 5, here, we first set

out to understand differences between Pathogenic Social Media (PSM) accounts and

normal users in terms of URLs they share online. We then incorporate various charac-

teristics of URLs shared online (e.g., URL address, content of the associated website,

etc.) Baly et al. (2018); Phuong et al. (2014); Entman (1993); Morstatter et al. (2018);

Kincaid et al. (1975) as source-level attributes into a holistic feature-driven approach

that uses supervised setting for identifying PSM users– this is discussed in the second

part of this chapter.

6.1 Hawkes Process for Understanding Differences Between Pathogenic Social

Media Accounts and Normal Users

In this section, we aim to understand PSM accounts by (1) analyzing their behav-

ior in terms of their posted URLs, and (2) estimate their influence by conducting ex-

periments on a real-world dataset from Twitter. We deploy a mathematical technique

known as “Hawkes process” Hawkes (1971) to quantify the impact of PSMs on nor-

mal users and the greater Web, by looking at their posted URLs on Twitter. Hawkes

processes are special forms of point processes and have shown promising results in

many problems that require modeling complicated event sequences where historical

events have impact on future ones, including financial analysis Bacry et al. (2016),

seismic analysis Daley and Vere-Jones (2007) and social network modeling Zhou et al.

(2013) to name a few. This study uses an ISIS-related dataset from Twitter Alvari
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et al. (2018). The dataset contains an action log of users in the form of cascades of

retweets. In this work, we consider URLs posted by two groups of users: (1) PSM

accounts and (2) normal users. The URLs can belong to any platform including

the major social media (e.g., Facebook.com), mainstream news (e.g., nytimes.com)

and alternative news outlets (e.g., rt.com). For each group of users, we fit a multi-

dimensional Hawkes processes model wherein each process correspond to a platform

referenced in at least one tweet. Furthermore, every process can influence all the

others including itself, which allows estimating the strength of connections between

each of the social media platforms and news sources, in terms of how likely an event

(i.e., the posted URL) can cause subsequent events in each of the groups. In other

words, in this study we are interested to investigate if a given URL u1 has influence

on another URL u2 (i.e., u1 → u2) and thus can trigger subsequent events.

Main Findings. This work makes the following main observations:

• Among all platforms studied here, URLs shared from Facebook.com and al-

ternative news media contributed the most to the dissemination of malicious

information from PSM accounts. Simply put, they had the largest impact on

making a message viral and causing the subsequent events.

• Posts that were tweeted by the PSM accounts and contained URLs from Face-

book.com, demonstrated more influence on the subsequent retweets containing

URLs from Youtube.com, in contrary to the other way around. This means that

ultimately tweets with URLs from Facebook will high likely end up inducing

more external impulse on YouTube than YouTube might have on Facebook.

• URLs posted by the normal users have nearly the same impact on the subsequent

events regardless of the social media or news outlet used. This basically means

that normal users do not often prefer specific social media or news sources over
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the others.

6.1.1 Dataset

We collect a dataset of 2.8M ISIS related tweets/retweets in Arabic between Febru-

ary 22, 2016 and May 27, 2016. The dataset contains different fields including user

ID, retweet ID, hashtags, content, posting time. The dataset also contains user profile

information including name, number of followers/followees, description, location, etc.

The tweets were collected using different ISIS-related hashtags such as #stateoftheis-

lamiccaliphate. In this dataset, about 600K tweets have at least one URL (i.e., event)

referencing one of the social media platforms or news outlets. There are about 1.4M

of paired URLs which we denote by u1 → u2 and indicates a retweet (with the URL

u2) of the original tweet (with the URL u1).

In this study, we are interested in investigating the impact of the URL u1 on u2.

Accordingly, the dataset contains 35K cascades (i.e., sequences of events) of different

sizes and duration, some of which contain paired URLs in the aforementioned form.

The statistics of the dataset are presented in Table 6.6. For labeling, we check

through Twitter API to examine whether the users have been suspended (labeled as

PSM) or they are still active (labeled as normal) Thomas et al. (2011). According to

Table 6.6, 11% of the users in our dataset are PSMs and others are normal.

Social Media Platforms and News Outlets

Twitter deploys a URL shortener technique to leave more space for content and

protect users from malicious sites 1 . To obtain the original URLs, we use a URL

unshortening tool 2 to obtain the original links contained in the tweets in our dataset.

1https://help.twitter.com/en/using-twitter/url-shortener

2https://github.com/skevas/unshorten
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Table 6.1: Description of the Dataset.

Name Value

# of Cascades 35K

# of Tweets/Retweets 2.8M

PSM Normal

# of Users 64,484 536,609

# of Single URLs 104,948 536,046

# of Paired URLs 200,892 1,123,434

We consider a number of major and well-known social media platforms includ-

ing Twitter, Facebook, Instagram, Google and Youtube. About the dichotomy of

mainstream and alternative media, it is notable to mention that most criteria for

determining whether a news source counts as either of them, are based on a number

of factors including but not limited to the content and whether or not it is corporate

owned 3 . However, a key difference between these two sources of media comes from

the fact that all of mainstream media is profit-oriented, in contrast to the alterna-

tive media. We further note that for the most part, mainstream media is considered

as a more credible source than alternative media, although the reputation has been

recently tainted by the fake news.

In this work, following the commonsense, we consider popular news outlets such

as The New York Times, and The Wall Street Journal as mainstream and less popular

ones as alternatives. In Table 6.2, we summarize the total number of paired URLs

(i.e, u1 → u2) in which the original URL (i.e., u1) corresponds to each social media

platform with at least one event in our dataset. We also summarize in Table 6.3,

the total number of paired URLs whose original URL belongs to the mainstream

3https://smallbusiness.chron.com/mainstream-vs-alternative-media-21113.html
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Table 6.2: Social Media Platform’s Total Number of Paired URLs of the Form

u1 → u2 with at least One Event in the Dataset for the PSM and Normal Users.

Platform PSM Normal

Twitter 139,940 918,803

Facebook 878 4,017

Instagram 0 2,857

Google 163 132

Youtube 24,724 72,890

Table 6.3: News Sources’ Total Paired URLs (u1 → u2) with at least One Event in

the Dataset for the PSM and Normal Users.

News Source PSM Normal

Mainstream 0 286

Alternatives 35,187 124,449

and alternative news sources. In Table 6.4, we see the break down of number of

paired URLs for the PSM and normal users. We further demonstrate in Table 6.5

some examples of the mainstream and alternative news URLs occurrence used in this

work.

Temporal Analysis

Here, we present the differences between the PSM accounts in our dataset with their

counterparts, normal users through temporal analysis of their posted URLs.

In Figure 6.1, we depict the daily occurrence of the paired URLs over the span of

43 days for both PSM and normal users. Recall from the previous section that our

dataset has a larger number of normal users and higher number of the posted URLs
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Table 6.5: Examples of Mainstream and Alternative News.

Mainstream Alternatives

https://www.nytimes.com https://www.rt.com

https://www.reuters.com https://www.arabi21.com

https://www.wsj.com https://www.7adramout.net

https://www.nbcnews.com https://www.addiyar.com

https://www.ft.com https://zamnpress.com

Figure 6.1: Number of Paired URLs Posted by the PSM and Normal users in our

Dataset. Note that Number of Normal Users in our Dataset is Higher than the PSM

Accounts.

compared to the PSM accounts. Therefore, it is reasonable to observe more activity

from normal users than PSMs. For both groups of users, we observe a similar trend in

occurrence of spikes and their durations. As it is seen, distinguishing between PSMs

and normal users merely based on the occurrence of URLs and their patterns is not

reliable. Therefore, we set out to conduct experiments using a more sophisticated

statistical technique known as “Hawkes Process” in the next section.
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6.1.2 Framework

In the previous section, we presented our data analysis to demonstrate differences

between PSM accounts and normal users in terms of URLs they usually post on

Twitter. We now set out to assess their impact via a well-known mathematical

technique called “Hawkes process”.

Hawkes Processes

In many scenarios, one needs to deal with timestamped events such as the activity

of users on a social network recorded in continuous time. An important task then

is to estimate the influence of the nodes based on their timestamp patterns Gomez-

Rodriguez et al. (2013). Point process is a principled framework for modeling such

event data, where the dynamic of the point process can be captured by its conditional

intensity function as follows:

λ(t) = lim
∆t→0

E(N(t+ ∆t)−N(t)|Ht)

∆t
=

E(dN(t)|Ht)

dt
(6.1)

where E(dN(t)|Ht) is the expectation of the number of events happend in the interval

(t, t+ dt] given the historical observations Ht and N(t) records the number of events

before time t. Point process can be equivalently represented as a counting process

N = {N(t)|t ∈ [0, T ]} over the time interval [0, T ].

The Hawkes process framework Hawkes (1971) has been used in many problems

that require modeling complicated event sequences where historical events have im-

pact on future ones. Examples include but are not limited to financial analysis Bacry

et al. (2016), seismic analysis Daley and Vere-Jones (2007) and social network mod-

eling Zhou et al. (2013). One-dimensional Hawkes process is a point process Nt with

the following particular form of intensity function:
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λ(t) = µ+ a

∫ t

−∞
g(t− s)dNs = µ+ a

∑
i:ti<t

g(t− ti) (6.2)

where µ > 0 is the exogenous base intensity (i.e., background rate of events), ti are

the time of events in the point process before time t, and g(t) is the decay kernel.

In this work, we use exponential kernel of the form g(t) = we−wt, but adapting to

the other positive forms is straightforward. The second part of the above formulation

captures the self-exciting nature of the point processes– the occurrence of events in

the past has a positive impact on the future ones. Given a sequence of events {ti}ni=1

observed in [0, T ] and generated from the above intensity function, the log-likelihood

function can be obtained as follows Zhou et al. (2013):

L = log

∏n
i=1 λ(ti)

exp
∫ T

0
λ(t)dt

=
n∑
i=1

log λ(ti)−
∫ T

0

λ(t)dt (6.3)

Here, we focus on multi-dimensional Hawkes processes which is defined by a U -

dimensional point process Nu
t , u = 1, . . . , U . In other words, we have U Hawkes

processes coupled with each other– each Hawkes process correspond to one of the

platforms and the influence between them is modeled using the mutually-exciting

property of the multi-dimensional Hawkes processes. We formally define the following

formulation to model the influence of different events on each other:

λu(t) = µu +
∑
i:ti<t

auuig(t− ti) (6.4)

where µu ≥ 0 is the base intensity for the u-th Hawkes process. The coefficient

auui ≥ 0 captures the mutually-exciting property between the u-th and ui-th pro-

cesses. Larger value of auui shows that events in the ui-th dimension are more likely

to trigger an event in u-th dimension in future. More intuitively, an event on one

point process can cause an impulse response on other processes, which increases the

91



Figure 6.2: Illustration of the Hawkes Process. Events Induce Impulse on Other

Processes and Cause Child Events. Background Event in e0 Induces Impulse on

Responses on Processes e1 and e2.

probability of an event occurring above the processes’ background rates. We reiterate

that in this study each URL is attributed to an event, i.e., if the URL u1 triggers the

URL u2 (i.e., u1 → u2), then au2u1 ≥ 0

In Figure 6.2, we depict a multivariate example of three different streams of events,

e0, e1 and e2. As illustrated, e0 is caused by the background rate λ(t)0 and has an

influence on itself and e1. On the other hand, e1 is caused by λ(t)1 and has an

influence on e2. Simply put, a background event in e0 induces impulse on responses

on processes e1 and e2. Accordingly, the caused child event in e1 leads to another

child event in e2.

We consider an infectivity matrix A = [auui ] ∈ RU×U which collects the self-

triggering coefficients between Hawkes processes and measures the influence across

events of different types Luo et al. (2015). Here, U = 7 is the number of processes

(i.e., platforms) in our work. Each entry in this matrix indicates the strength of

influence each platform has on other platforms. Our ultimate goal in this study is to

estimate the infectivity matrix as it reflects the estimated influence of each platform

on others. Next, we will provide the methodology that we follow to estimate the

influence of the URLs on each other.
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Methodology

We aim to assess the influence of the PSM accounts in our dataset via their posted

URLs. We consider the URLs posted by two groups of users: (1) PSM accounts and

(2) normal users. For both groups, we fit a Hawkes model with K = 7 point processes

each for the seven categories of social media and news outlets discussed earlier. In

each of the Hawkes models, every process is able to influence all the others including

itself, which allows us to estimate the strength of connections between each of the

seven categories for both groups of users, in terms of how likely an event (i.e., the

posted URL) can cause subsequent events in each of the groups.

We use the Adm4 algorithm presented by Zhou et al. (2013) and follow the

methodology presented by Zannettou et al. (2017) for fitting the Haweks processes

for both PSM and normal users. Adm4 Zhou et al. (2013) is an efficient optimization

that estimates the parameters A and µ by maximizing the regularized log-likelihood

L(A,µ):

min
A≥0,µ≥0

−L(A,µ) + λ1||A||∗ + λ2||A||1 (6.5)

where L(A,µ) can be obtained by substituting λu(t) from Equation 6.4 into Equa-

tion 6.3. Also, ||A||∗ is the nuclear norm of matrix A, and is defined as the sum of

its singular value.

We consider two different sets of URLs posted by the PSM accounts and normal

users by selecting URLs that have at least one event in Twitter (i.e., posted by a

user). For each group, we construct a matrix W ∈ NT×U with U = 7, whose entries

are sequences of events (i.e., posted URLs) observed during a time period T . We note

that each sequence of events is of the form S = {(ti, ui)}nii=1 where ni is the number

of the events occurring at the ui-th dimension (i.e., URLs posted containing one of
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the 7 platforms).

6.1.3 Experimental Results

Here, we conduct experiments to gauge the effectiveness of Hawkes process for

moderling influence of PSMs.

Settings

In this work, we adopt the Adm4 algorithm Zhou et al. (2013) which implements

parametric inference for Hawkes processes with an exponential kernel and a mix of

Lasso and nuclear regularization. We initialize infectivity matrix A, base intensities

µ and decays β ∈ R randomly.

We further set the number of nodes U = 7 to reflect the 7 platforms used in

this study. Level of penalization is set to C = 1000, and the ratio of Lasso-Nuclear

regularization mixing parameter is set to 0.5. Finally, maximum number of iterations

for solving the optimization is set to 50 and the tolerance of solving algorithm is set

to 1e− 5.

Results

We estimate infectivity matrix for both PSM and normal users by fitting the Hawkes

model described earlier. In our study, this matrix characterizes the strength of the

connections between the platforms and news sources. More specifically, each weight

value represents the connection strength from one platform to another. In other

words, each entry in this matrix can be interpreted as the expected number of sub-

sequent events that will occur on the second group after each event on the first Zan-

nettou et al. (2017). In Figure 6.3, we depict the estimated weights for all paired

URLs for both PSM and normal users. Looking at the weights in both of the plots,
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we realize that greater weights belong to processes that have impact on Twitter, i.e.

“→ Twitter”. This implies that both of the groups in our Twitter dataset often post

URLs that ultimately have greater impact on Twitter.

Overall, we observe the followings:

• URLs referencing all platforms and posted by the PSMs and regular users,

mostly trigger URLs that contain the Twitter domain.

• Among all platforms studied here, URLs shared from Facebook.com and al-

ternative news media contributed the most to the dissemination of malicious

information from PSM accounts. In other words, they had largest impact on

making a message viral and causing the subsequent events.

• Posts that were tweeted by the PSM accounts and contained URLs from Face-

book.com, demonstrated more influence on the subsequent retweets containing

URLs from Youtube.com, in contrary to the other way around. This means

that ultimately tweets with URLs from Facebook will likely end up inducing

external impulse on Youtube.com. In contrast, URLs posted by the normal

users have nearly the same impact on the subsequent events regardless of the

social media or news outlet used.

The above mentioned observations demonstrate the effectiveness of leveraging

Hawkes process to quantify the impact of URLs posted by PSMs and regular users on

the dissemination of content on Twitter. The observations we make here show that

PSM accounts and regular users behave differently in terms of the URLs they post on

Twitter, in that they have different tastes while disseminating URL links. Accordingly

their impact on the subsequent events significantly differ from each other. Next, we

leverage various characteristics of URLs shared by users into a holistic feature-driven

approach for detecting PSM accounts.
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Figure 6.3: From Left to Right: Estimated Infectivty Matrices for all Paired URLs

for PSMs and Normal Users. Among all URLs, those Shared from Facebook.com

and Alternative News Media had the Largest Impact on Dissemination of Malicious

Messages.

6.2 Feature-Driven Approach for Detecting PSM Accounts

Recent years have witnessed a surge of manipulation of public opinion and politi-

cal events by different media outlets and malicious social media actors referred to as

“Pathogenic Social Media” (PSM) accounts Alvari et al. (2018). The manipulation

of opinion can take many forms from fake news Shao et al. (2017) to more subtle ones

such as reinforcing specific aspects of text over others Baron (2006). It has been ob-

served that media aggressively exert bias in the way they report the news to sway their

reader’s knowledge. On the other hand, PSM accounts are responsible for “agenda

setting” and massive spread of misinformation Alvari et al. (2019b). Understanding

misinformation from account-level perspective is thus a pressing problem.

Present Work. In this work, we aim to present an automatic feature-driven

approach for detecting PSM accounts in social media. Inspired by the literature, we

set out to assess PSMs from four broad perspectives: (1) causal and profile-related in-

formation, (2) source-related information (e.g., information linked via URLs) and (3)

content-related information (e.g., tweets characteristics). For the causal and profile-
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related information, we investigate malicious signals using 1) causality analysis (i.e.,

if user is frequently a cause of viral cascades) Alvari et al. (2018) and 2) profile char-

acteristics (e.g., number of followers, etc.) Kudugunta and Ferrara (2018) aspects of

view. For the source-related information, we explore various properties that charac-

terize the type of information being linked to URLs (e.g., URL address, content of

the associated website, etc.) Baly et al. (2018); Phuong et al. (2014); Entman (1993);

Morstatter et al. (2018); Kincaid et al. (1975). Finally, for the content-related infor-

mation, we examine attributes from tweets (e.g., number of hashtags, certain hash-

tags, etc.) posted by users Kudugunta and Ferrara (2018). This work describes the

results of research conducted by Arizona State University’s Global Security Initiative

and Center for Strategic Communication. Research support funding was provided by

the US State Department Global Engagement Center.

Our corpus comprises three different real-world Twitter datasets, from Sweden,

Latvia and United Kingdom (UK). These countries were selected to cover a range

of population size and political history (former Soviet republic, neutral, founding

member of NATO). In this study, we pose the following research questions and seek

answers for them:

RQ1: Does incorporating information from user activities and profile characteristics

help in identifying PSM accounts in social media?

RQ2: What attributes could be exploited from URLs shared by users to determine

whether or not they are PSMs?

RQ3: Could deploying tweet-level information enhance the performance of the PSM

detection approach?

To answer RQ1, we first investigate different profile characteristics that could

indicate suspicious behavior. Next, We also examine whether or not users who make
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inauthentic information go viral, are more likely to be among PSM users. By exploring

RQ2, we figure out which characteristics of URLs and their associated websites are

useful in detecting PSM users in social media. By investigating RQ3, we aim to

examine if adding a few content-related information on tweet-level could come in

handy while identifying PSMs. Our answers to the above questions lead to a feature-

driven approach that uses as little as three groups of user, source and content-related

attributes to detect PSM accounts.

Key Ideas and Highlights. To summarize, this work makes the following main

contributions:

• We present a feature-driven approach for detecting PSM accounts in social me-

dia. More specifically, we assess maliciousness from causal and profile-level,

source-level and content-level aspects. Our casaul and profile-related informa-

tion include signals in causal users (i.e., if user is frequently a cause of vi-

ral cascades) along with their profile characteristics (e.g., number of followers,

etc.). For the source-related information, we explore different characteristics in

URLs that users share and their associated websites (e.g., underlying themes,

complexity of content, etc.). For the content-related information, we examine

attributes from tweets (e.g., number of hashtags, certain hashtags, etc.) posted

by users.

• We conduct a suite of experiments on three real-world Twitter datasets from dif-

ferent countries, using several classifiers. Using all of the attributes, we achieve

average F1 scores of 0.81, 0.76 and 0.74 for Sweden, Latvian and U.K. datasets,

respectively. Our observations suggest the effectiveness of the proposed method

in identifying PSM accounts who are more likely to manipulate public opinion

in social media.
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Figure 6.4: From Left to Right: Frequency Plots of Cascade Size for Sweden, Latvia

and UK datasets.

6.3 Experimental Data

We collect three real-world Twitter datasets with different number of users and

tweets/retweets from three countries, Sweden, Latvia and United Kingdom (UK).

These countries were selected to cover a range of population size and political history

(former Soviet republic, neutral, founding member of NATO). Description of the

data is demonstrated in the Table 6.6. We use subsets of datasets from Nov 2017 to

Nov 2018. Each dataset has different fields including user ID, retweet ID, hashtags,

content, posting time as well as user profile information such as Twitter handles,

number of followers/followees, description, location, protected, verified, etc. The

tweets were collected using a predefined set of keywords and hashtags, and if they

were geo-tagged in the country or user profile includes the country. We use subsets

of the datasets with different number of cascades of different sizes and duration.

In our datasets, users may or may not have participated in viral cascades. We

chose to use threshold θ = 20 and take different number of viral cascades for each

dataset with at least 20 tweets/retweets. We depict frequency plots of different cas-

cade size for all datasets in Figure 6.4. For brevity, we only depict cascades size

greater than 100 tweets/retweets.
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Table 6.6: Description of the Datasets Used in this Work.

Dataset # Tweets/Retweets # Labeled Users # Viral Cascades # URLs

Suspended Active

Sweden 780,250 16,010 48,030 12,174 160,702

Latvia 323,305 10,862 32,586 1,957 76,032

UK 254,915 4,553 13,659 21,429 41,332

Figure 6.5: The Proposed Framework for Identifying PSM Users. It Incorporates

Four Groups of Attributes Into a Classification Algorithm.

6.4 Identifying PSM Users

In this work, we take a machine learning approach (Figure 6.5) to answer the

research questions posed earlier in the Introduction. More specifically, we incorporate

different sets of malicious behavior indicators on causal-level, account-level, source-

level and content-level to detect PSM users. In what follows, we describe each group

of the attributes that will be ultimately utilized in a supervised setting to detect

PSMs in social media.
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6.4.1 Causal and Account-Level Attributes

We first set out to answer RQ1 and understand attributes on the causal and

account level that could be exploited in order to identify PSMs in social media.

Malicious Signals in Causal Users

Research has shown that user activity metrics are causally linked to viral cascades to

the extent that malicious users who make harmful messages go viral are those with

higher causality scores Alvari et al. (2018). Accordingly, we set out to investigate

if incorporating causality scores in the form of attributes in a machine learning ap-

proach, can help identify users with higher malicious behavior in social media. More

specifically, We leverage the causal inference introduced in Alvari et al. (2018) to

compute a vector of causality attributes for each user in our dataset. Later, these

causal-based attributes will be incorporated to our final vector of attributes that will

be fed into a classifier. The causal inference takes as input cascades of tweets/retweets

built from the dataset. We follow the convention of Goyal et al. (2010) and assume an

action log A of the form Actions(User,Action,Time), which contains tuples (i, ai, ti)

indicating that user i has performed action ai at time ti. For ease of exposition,

we slightly abuse the notation and use the tuple (i,m, t) to indicate that user i has

posted (tweeted/retweeted) message m at time t. For a given message m we define a

cascade of actions as Am = {(i,m′, t) ∈ A|m′ = m}. User i is called m-participant

if there exists ti such that (i,m, ti) ∈ A. Users who have adopted a message in the

early stage of its life span are called key users Alvari et al. (2018).

In this work we adopt the notion of prima facie causes which is at the core

of Suppes’ theory of probabilistic causation Suppes (1970) and utilize the causality

metrics that are built on this theory. According to this theory, a certain event to be
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recognized as a cause, must occur before the effect and must lead to an increase of

the likelihood of observing the effect. Accordingly, prima facie causal users for a given

viral cascade, are key users who help make the cascade go viral. Finally, according to

Alvari et al. (2018), we define 4 causal-based attributes for each user and add them

to the final representative feature vector for the given user.

Malicious Signals in Profile Characteristics

Having defined our causality-based attributes, we now describe our next set of user-

based features. Specifically, for each user, we collect account-level features and add

them to the final feature vector for that user. We follow the work of Kudugunta and

Ferrara (2018) and compute the following 10 features from users’ profiles: Statuses

Count, Followers Count, Friends Count, Favorites Count, Listed Count, Default Pro-

file, Geo Enables, Profile Uses Background Image, Verified, Protected. Prior research

has shown promising results using this small set of features Ferrara et al. (2016)

with far less number of features than the established bot detection approach, namely,

Botometer which uses over 1,500 features. Accordingly, we extend the final feature

vector representation of each user by adding these 10 features.

6.4.2 Source-Level Attributes

Here, we seek an answer to RQ2 and examine malicious behavior from the source-

level perspective. Previous research has demonstrated the differences between normal

and PSM users in terms of their shared URLs Alvari and Shakarian (2019) and their

impact on creating subsequent events in future. We thus follow the same procedure

described in the first part of this chapter and compute the infectivity matrices for the

Sweden, Latvia and UK datasets. The matrices are depicted in Fig 6.6. Similarly,

we observe clear distinctions between PSM and normal users’ behaviors in terms of
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Figure 6.6: (Top) From Left to Right: Estimated Infectivity Matrices for PSM Ac-

counts in Sweden, Latvia and UK Datasets. (Bottom) From Left to Right: Estimated

Infectivity Matrices for Normal Users in Sweden, Latvia and UK Datasets.

their shared URLs. Specifically, URLs shared by PSM accounts more likely trigger

subsequent events (i.e., future adoptions of URLs) when coming from alternative news

sources. This is in contrast to the URLs shared by normal users which either trigger

subsequent events on mainstream news outlets or social media platforms. Following

our observations, we now take URLs posted by users as source-related information

that could be used in our PSM user detection approach. Specifically, we set out to

understand several characteristics of each URL from two broad perspectives: (1) URL

address and (2) content collected from the website it has referenced.

URL Address

Far-right and pro-Russian URLs Here, we examine if the given URL refers to

any of the following far-right websites: https://voiceofeurope.com/, https://newsvoice.se/,

https://nyadagbladet.se/, https://www.friatider.se/ or the pro-russian website https://ok.ru/.

We further note that each user may have posted multiple URLs posted in our data.
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To account for that, we compute the average of these attribute values for each user.

Ultimately, this list leads to a vector of 5 values for each URL shared by each user in

our dataset. We leave examining other malicious websites to future work.

Domain Extensions Previous research on assessing news articles credibility sug-

gests looking at their URLs Baly et al. (2018) to examine if they contain features

such as whether a website contains the http or https prefixes, or .gov, .co and .com

domain extensions. Likewise, we investigate if the URLs in our dataset contain any

of these 5 features by counting the number of times each URL triggers one of these

attributes and taking the average if user has shared multiple of such URLs. This

additional attribute vector will be added to the final attribute vector for each user.

Referenced Website Content

Topics We further investigate whether or not incorporating the underlying topics

or themes learned from the text of the websites, could help us to build a more accurate

approach to identify malicious activity. More specifically, we first set out to extract

the content from each URL shared by users. To learn the topics, We follow the

procedure described in Phuong et al. (2014) and train Latent Drichlet Allocation

(LDA) Blei et al. (2003) on the crawled contents of the websites associated with each

URL in the training set. This way, we obtain a fine-grained categorization of the

URLs by identifying their most representative topics as opposed to a coarser-grained

approach that uses predefined categories (e.g., sports, etc.). Using LDA also allows

for uncovering the hidden thematic structure in the training data. Furthermore, we

rely on the document-topic distribution given by the LDA (here each document is seen

as a mixture of topics) to distinguish normal users from highly biased users. After

training LDA, We treat each new document and measure their association with each
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of the K topics discovered by LDA. We empirically found K = 25 to work well in our

dataset. Thus, each document is now treated as a vector of 25 probabilistic values

provided by LDA’s document-topic distribution- this feature space will be added to

the final set of the features built so far. Finally, note that for users with more than

one URL, we take the average of different probabilistic feature vectors.

Has Quote Social science research has shown that news agencies seek to make a

piece of information more noticeable, meaningful, and memorable to the audience Ent-

man (1993). This increases the chance of shifting believes and perceptions. One way

to increase salience of a piece of information is emphasizing it by selecting particular

facts, concepts and quotes that match the targeted goals Entman (1993); Scheufele

and Tewksbury (2006); DellaVigna and Kaplan (2007). We thus check the existence

of quotes within the referenced website content as an indicator of malicious behavior–

this results in a single binary feature. Each user may post more than one URL. To

account for this, We take the average values of this feature for each user. We observe

that the PSM users’ mean scores for this feature are 0.04 (Sweden), 0.05 (Latvia)

and 0.04 (UK). Normal users have mean scores of 0.05 (Sweden), 0.05 (Latvia), and

0.03 (UK). We also deploy two-tailed two-sample t-test with the null hypothesis that

value of this feature is not significantly different between normal and PSM accounts.

Table. 6.7 summarizes the p-values for this test with significance level α = 0.01. Re-

sults show that the null hypothesis could not be rejected. However, we still include

this feature to see whether or not it helps in identifying PSMs in practice.

Complexity Research has shown that complexity of the given text could be differ-

ent for malicious and normal users Morstatter et al. (2018). We thus use complexity

feature to see whether or not it aids the classifier in finding users who create and
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share malicious content. We follow the same approach as in Morstatter et al. (2018)

and approximate the complexity of reference website content as follows:

complexity =
number of unique part-of-speech tags

number of words in the text
(6.6)

The higher this score is, the more complex the given context is. Surprisingly,

our initial analysis show that mean of complexity score of website content by PSMs

are 0.53 (Sweden), 0.54 (Latvia) and 0.51 (UK) while mean of complexity score of

website contents shared by normal users are 0.46 (Sweden), 0.51 (Latvia), and 0.48

(UK). This shows contents shared by PSMs have higher complexity than those shared

by normal users. We also deploy one-tail two-sample t-test with the null hypothesis

that content of URLs shared by normal are more complex than those shared by PSMs.

Table. 6.7 summarizes the p-values showing that the null hypothesis was rejected at

significance level α = 0.01. This indicates that content of websites referenced by PSM

users are more complex than those shared by normal users.

Readability According to Horne and Adali (2017), readability of a given context

can affect engagement of the individuals with the given piece of information. There-

fore, readability of the referenced website content is another important feature which

could be useful in distinguishing PSMs and normal users. We hypothesize that PSM

users may share information with higher readability to increase the chance of transfer-

ring the concept and creating malicious content. We use Flesch-Kincaid reading-ease

test Kincaid et al. (1975) on the text of the provided URLs. The mean readability

scores are 61.16 (Sweden), 62.98 (Latvia), 59.08 (UK) for PSMs and 55.44 (Sweden),

56.79 (Latvia), 55.35 (UK) for other normal users. The higher the score is, the more

readable the text is. We also deploy one-tail two-sample t-test with the null hypothe-

sis that content of URLs shared by normal users are more readable than those shared
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Table 6.7: Results of p-Values at Significance Level α = 0.01. The Null Hypotheses

for Complexity and Readability Tests are Refuted.

Feature Sweden Latvia UK

Has Quote 0.29 0.36 0.32

Complexity 4.95e-50 3.23e-07 6.12e-08

Readability 5.56e-27 4.2e-03 1.9e-14

by PSMs. Table. 6.7 summarizes the p-values indicating that the null hypothesis was

rejected at significance level α = 0.01.

These results show that the content of URLs shared by PSM accounts are more

complex yet more readable than those shared by normal users. Therefore, these two

features, complexity and readability, could be a good indicator to distinguish between

normal and PSMs.

Unigrams/Bigrams We use TF-IDF weighting for extracted word-level unigrams

and bigrams. This feature gives us both importance of a term in the given context

(i.e., term frequency) and term’s importance considering the whole corpus. We remove

stop words and select top 20 frequent unigrams/bigrams as the final set of features

for this group. Using TF-IDF weighting helps to identify piece of information that is

focusing on aspects not emphasized by others. For brevity, we only demonstrate top

bigrams in Table 6.8.

Domain Expertise The presence of signal words (e.g., specific frames or keywords)

could be indicator of existence of malicious behavior in the text. In this work, we

hired human coders and trained them based on our codebook 4 in order to provide

4A codebook is survey research approach to provide a guide for framing categories and coding
responses to the the categories definitions.

107



Table 6.8: Top Selected Bigrams for each Country.

Data Bigrams

Sweden asylum seeker, birthright citizenship, court justice, European commis-

sion, European Union (EU), European parliament, kill people, migrant

caravan, national security, Russian military, school shooting, sexually

assault, united nations, white supremacist, police officer

Latvia Baltic exchange, Baltic security, battlefield revolution, cyber security,

depository Estonia, Estonia Latvia, European parliament, European

commission, European Union (EU), human rights, Latvian government,

nasdaq Baltic, national security, Saeima election, Vladimir Putin

UK court appeal, cosmic diplomacy, defence police, depression anxiety,

diplomacy ambiguity, European Union (EU), human rights, Jewish com-

munity, police officer, police federation, political party, rebel medium,

sexually liberate, support group, would attacker

signal words that can help identify suspicious behavior. We use the following framing

categories: Anti-immigrant, Crime rampant, Government, Anti-EU/NATO, Russia-

ally, Crimea, Discrimination, Fascism. For each country and each category, we have

a list of corresponding keywords. We have illustrated examples of the keywords used

in this study in Table 6.9.

6.4.3 Content-Level Attributes

In this section, we aim to understand RQ3 by incorporating a few more attributes

from the content-level information that could be used to enhance the performance of

the PSM user detection. For the content-level information, we only rely on the tweets

posted by each user in our dataset.
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Table 6.9: Examples of the Keywords Used in this Study.

Data Keywords

Sweden no-go zones, violence overwhelmed, police negligence, Nato obsolete, bi-

lateral cooperation, blighted areas, increase reported rapes, close police

station, EU hypocrisy, anti-immigrant, fatal shootings, badly Sweden,

Nato airstrikes

Latvia Brussels silent, norms international law, bureaucrats, lack trust EU,

based universal principles, Russia borders, anti Nato, purely political,

European bureaucrats, silence Brussels Washington, rampant, harsh

statements concerning, values Brussels silent

UK Brexit, Theresa May, stop Brexit, hard Brexit, post Brexit, leave, refer-

endum, Brexitshambles

Malicious Signals in Tweet-Level Information

We use the following 6 attributes extracted from each tweet Kudugunta and Ferrara

(2018): retweet count, reply count, favorite count, number of hashtags, number of

URLs, number of mentions. If the user has tweeted more than once, we take the

average of these features.

Malicious Signals in Suspicious Hashtags

We further investigate if the given tweet aims to push propaganda using any of the

following suspicious hashtags identified by our human coders. For Sweden, we use

#Swedistan, #Swexit, #sd (far right group), #SoldiersofOdin, #NOGOZones. For

Latvia, we use #RussiaCountryFake, #BrexitChaos, #BrexitVote, #Soviet, #Rus-

siaAttacksUkraine. For UK, we use #StopBrexit, #BrexitBetrayal, #StopBrexit-

SaveBritain, #StandUp4Brexit, #LeaveEU. Similar to the previous attributes, for
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the users who have posted more than one tweet with these hashtags, we compute the

average of the corresponding values. We leave examining other suspicious hashtags

to future work.

6.4.4 Feature-Driven Approach

Having described the attributes (Table 6.10) used in this work, we now feed them

into a supervised classification algorithm to detect PSM users (Figure 6.5). In more

details, we feed the profile information and tweets into the different components of

the proposed approach. For the causal and account-related information, we require

both of the profile characteristics and tweets. We need tweets to build viral cascades

and finally compute causality scores for different users. Each cascade contains tuples

(i,m, t) indicating that user i has posted (tweeted/retweeted) the corresponding mes-

sage m at time t. Given the cascades, causality features are computed for each user

i based on her activity log in our dataset. For the source-level information, we only

need to extract URLs from tweets. These URLs are either directly used to compute

attributes or to collect the content from the websites to which they have referenced.

For the content-related information, we only need tweets in order to compute the

content-level attributes. Finally, for each user, we fuse all attributes into a feature

vector representation and feed them into a classifier.

6.5 Experiments

In this section, we conduct experiments on three real-world Twitter datasets to

gauge the effectiveness of the proposed approach. In particular, we compare the

results of several classifiers and baseline methods. Note for all methods, we only

report results when their best settings are used.

• Ensemble Classifiers
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Table 6.10: Different Groups of Features Used in this Work.

Feature Definition # Feat.

C
a
u

sa
l

Time-Decay Attributes computed using causality based metrics 4

A
c
c
o
u

n
t

Profile-based Statuses Count, Followers Count, Friends Count, Fa-

vorites Count, Listed Count, Default Profile, Geo En-

ables, Profile Uses Background Image, Verified, Pro-

tected

10

S
o
u

rc
e

Websites Presence of far-right and pro-Russian websites 5

Domains Existence of http or https prefixes, or .gov, .co and

.com domain extensions

5

Topics Features computed by comparing the listing against

the learned topic distribution

25

Has Quote Single binary feature that shows whether the content

of shared URLs contains quote or not.

1

Complexity Complexity of content of shared URLs by users. 1

Readability Readability of content of shared URLs by users. 1

Unigram TF-IDF scores of highly frequent word-level unigrams

extracted from content of URLs shared by users.

20

Bigram TF-IDF scores of highly frequent word-level bigrams

extracted from content of URLs shared by users.

20

Expertise Presence of signal keywords provided by our coders 8

C
o
n
te

n
t Tweet-based retweet count, reply count, favorite count, number of

hashtags, number of URLs, number of mentions

6

Hashtags Presence of suspicious hashtags 5
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– Gradient Boosting Decision Tree (GBDT) We train a Gradient Boost-

ing Decision Tree classifier using the described features. We set the number

of estimators as 200. Learning rate was set to the default value of 0.1.

– Random Forest (RF) We train a Random Forest classifier using the

features described. We use 200 estimators and entropy as the criterion.

– AdaBoost We train an AdaBoost classifier using the described features.

The number of estimators was set to 200 and we also set the learning rate

to 0.01.

• Discriminative Classifiers

– Logistic Regression (LR) We train a Logistic Regression using l2 penalty.

We also set the parameter C = 1 (the inverse of regularization strength)

and tolerance for stopping criteria to 0.01.

– Decision Tree (DT) We train a Decision Tree classifier using the features.

We did not tune any specific parameter.

– Support Vector Machines (SVM) We use a linear SVM using the at-

tributes described in the previous section. We set the tolerance for stopping

criteria to 0.001 and the penalty parameter C = 1.

• Generative Classifiers

– Naive Bayes (NB) We train a Multinomial Naive Bayes which has shown

promising results for text classification problems Manning et al. (2008). We

did not tune any specific parameter for this classifier

• Baselines
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– Long Short-Term Memory (LSTM) Kudugunta and Ferrara (2018)

The word-level LSTM approach here is similar to the deep neural network

models used for sequential word predictions. We adapt the neural network

to a sequence classification problem where the inputs are the vector of

words in each tweet and the output is the predicted label of the tweet. We

first use the word2vec Mikolov et al. (2013) embeddings which are trained

jointly with the classification model. We use a single LSTM layer of 50

units on the textual content, followed by the loss layer which computes the

cross entropy loss used to optimize the model.N

– Account-Level (AL) + Random Forest Kudugunta and Ferrara

(2018) This approach uses the following features of the user profiles: Sta-

tuses Count, Followers Count, Friends Count, Favorites Count, Listed

Count, Default Profile, Geo Enables, Profile Uses Background Image, Ver-

ified, Protected. We chose this method over Botometer Varol et al. (2017a)

as it achieved comparable results with far less number of features (Varol

et al. (2017a) uses over 1,500 features)(see also Ferrara et al. (2016)). Ac-

cording to Kudugunta and Ferrara (2018), we report the best results when

Random Forest (RF) is used.

– Tweet-Level (TL) + Random Forest Kudugunta and Ferrara

(2018). Similar to the previous baseline, this method uses only a hand-

ful of features extracted from tweets: retweet count, reply count, favorite

count, number of hashtags, number of URLs, number of mentions. Like-

wise, we use RF as the classification algorithm.
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Table 6.11: Performance Comparison on Different Datasets using all Features.

Classifier Sweden Latvia UK

F1-macro F1-score F1-macro F1-score F1-macro F1-score

GBDT 0.80 0.81 0.76 0.76 0.73 0.74

RF 0.79 0.79 0.75 0.75 0.70 0.71

AdaBoost 0.78 0.79 0.73 0.74 0.69 0.70

LR 0.75 0.75 0.74 0.74 0.71 0.72

DT 0.69 0.69 0.71 0.71 0.69 0.69

SVM 0.73 0.74 0.73 0.70 0.72 0.70

NB 0.71 0.71 0.65 0.67 0.66 0.67

LSTM 0.60 0.62 0.58 0.65 0.36 0.43

AL (RF) 0.64 0.64 0.63 0.64 0.64 0.65

TL (RF) 0.50 0.51 0.50 0.51 0.49 0.50

6.5.1 Results and Discussion

All experiments were implemented in Python 2.7x and run on a machine equipped

with an Intel(R) Xeon(R) CPU of 3.50 GHz with 200 GB of RAM running Linux. We

use tenfold cross-validation follows. We first divide the entire set of training instances

into 10 different sets of equal sizes. Each time, we hold one set out for validation.

This procedure is performed for all approaches and all datasets for the sake of fair

comparison. Finally, we report the average of 10 different runs, using F1-macro and

F1-score (only for PSM users) evaluation metrics and all features in Table 6.11.
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Performance Evaluation

For any approach that requires special tuning of parameters, we conducted grid search

to choose the best set of parameters. Also, for LSTM, we preprocess the individual

tweets in line with the steps mentioned in Soliman et al. (2017). We use word vectors

of dimensions 100 and deploy the skip-gram technique for obtaining the word vectors

where the input is the target word, while the outputs are the words surrounding the

target words. To model the tweet content in a manner that uses it to predict whether

an account is biased or not, we used LSTM models Hochreiter and Schmidhuber

(1997). For the LSTM architecture, we use the first 20 words in the tokenized text of

each tweet and use padding in situations where the number of tokens in a tweet are

less than 20. We use 30 units in the LSTM architecture (many to one). The output

of the LSTM layer is fed to a dense layer of 32 units with ReLU activations. We add

dropout regularization following this layer to avoid overfitting and the output is then

fed to a dense layer which outputs the category of the tweets.

Observations. Overall, we make the following observations:

• In general, results from different classifiers compared to the baselines demon-

strate the effectiveness of the described attributes in identifying PSM users in

social media. Thus, the answers to the research questions RQ1–RQ3 are all

positive, i.e., we could exploit attributes from user activities and profile char-

acteristics, source and content-related information for identifying PSM users in

social media. More specifically, for RQ1, we investigate different profile char-

acteristics that could indicate suspicious behavior. We also examine whether

or not users who make inauthentic information go viral, are more likely to be

among PSM users. By answering RQ2, we figure out which characteristics of

URLs and their associated websites are useful in detecting PSM users in so-
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cial media. By investigating RQ3, we examine if adding a few content-related

information on tweet-level could come in handy while identifying PSMs. Our

answers to the above questions lead to a feature-driven approach that uses as

little as three groups of user, source and content-related attributes to detect

PSM accounts.

• Ensemble classifiers using the described features, outperform all other classifiers

and baselines. Amongst the ensemble classifiers, Gradient Boosting Decision

Trees classifier achieves the best results in terms of both F1-macro and F1-

score metrics.

• Amongst the discriminative classifiers, linear Support Vector Machines classifier

marginally beats Logistic Regression. Decision Tree classifier achieves the worst

results in this category.

• Overall, Decision Tree and Naive Bayes classifiers achieve the worst performance

among all classifiers.

• For LSTM, we achieve slightly poor performance than the logistic regression

classifier. One reason behind the poor performance of the classifier is the lack

of trained word embeddings suited to our dataset. Also, the poor performance

might suggest that the sequential nature of the texts might not be very helpful

for the task of PSM users detection.

• Overall, results on Sweden data demonstrate better performances achieved using

the attributes. One reason behind this might be the size of data and higher

number of PSMs in Sweden data compared to others. This could also indicate

that PSMs in Latvia and UK data are more sophisticated.
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Feature Importance Analysis

We further conduct feature import analysis to investigate what feature group con-

tributes the most to the performance of the proposed approach. More specifically, we

use GBDT and perform different 10-fold cross validations using each feature group.

We report the F1-score results in Table 6.12. According to our observations, we con-

clude that the most significant and less significant feature groups are source-related

and content-related attributes, respectively. We also perform feature ablation test by

taking out a single feature group at a time from the rest. We observe that eliminat-

ing content-related attributes has the least impact on the performance, while taking

out source-related attributes deteriorates the performance drastically. One final note

though is, despite the effectiveness of the attributes from the user-level information,

they may not be always available or we may not always know the suspicious sources

beforehand for the task at hand. This further demonstrates the effectiveness of the

causal-related features extracted from users’ activities for identifying PSM users and

thus confirms the observations in Chapters 4 and 5.

6.6 Conclusion

In the first part of this chapter, we provided analyses on a real-world ISIS TWit-

ter data to demonstrate differences between PSM accounts and normal users. In

particular, we leverage a statistical technique known as Hawkes Process for model-

ing the differences between users while disseminating content on the Web. We use

URLs posted by two groups of users, PSMs and normal users, on major social me-

dia and mainstream and alternative news outlets. Overall, our findings indicate that

the URLs posted by the PSM accounts have the largest impact if contained either

Facebook.com or alternative news media. In contrast, their counterparts, i.e., normal
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Table 6.12: Feature Importance on Different Datasets.

Feature Sweden Latvia UK

Causal 0.64 0.62 0.61

Account 0.62 0.61 0.59

Content 0.45 0.43 0.40

Source 0.73 0.70 0.68

All \ Source 0.71 0.65 0.63

All \ Causal 0.73 0.67 0.62

All \ Account 0.76 0.70 0.69

All \ Content 0.79 0.73 0.72

All 0.81 0.76 0.74

users, often post URLs that have nearly the same impact on the Web, no matter

what social media or news outlet they use.

In the second part of this chapter, we present an automatic feature-driven ap-

proach for identifying PSM accounts in pro-Russian social media. In particular, we

assess the malicious behavior from four broad perspectives: (1) causal, (2) account,

(3) source and (4) content-related information. For the first two groups, we investi-

gate malicious signals using 1) causality analysis (i.e., if user is frequently a cause of

viral cascades) and 2) profile characteristics (e.g., number of followers, etc.) aspects

of view. For the source-related information, we explore various properties that char-

acterize the type of information being linked to URLs (e.g., URL address, content of

the associated website, etc.). Finally, for the content-related information, we examine

attributes from tweets (e.g., number of hashtags, certain hashtags, etc.).
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Summary

Online platforms such as online social networks, microblogging websites and other

Web platforms, have become widespread tools exploited by various malicious actors

that orchestrate large-scale and societal-significant threats ranging from online hu-

man trafficking to misinformation spread. To better understand the behavior and

impact of the malicious actors and counter their activity, we need certain capabilities

to reduce their threats. Due to the large volume of information published online

and because of the limited manpower, the burden usually falls to algorithms that

are designed to automatically identifying these bad actors. However, this is a subtle

task facing online platforms due to several challenges: (1) malicious users have strong

incentives to disguise themselves as normal users (e.g., intentional misspellings, cam-

ouflaging, etc.), (2) malicious users are high likely to be key users in making harmful

messages go viral and thus need to be detected at their early life span to stop their

threats from reaching a vast audience, and (3) available data for training automatic

approaches for detecting malicious users, are usually either highly imbalanced (i.e.,

higher number of normal users than malicious users) or comprise insufficient labeled

data. This dissertation investigates the propagation of online malicious information

from two broad perspectives: (1) content posted by malicious users and (2) mali-

cious information cascades formed by malicious users and by resharing mechanisms

in social media. For the former, the problem of online human trafficking and poten-

tial countermeasures to combat them are studied. We present non-parametric and
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semi-supervised learning algorithms for detecting online human trafficking. For the

latter, we study and understand “Pathogenic Social Media” (PSM) accounts who are

likely to be key users in making malicious campaigns. Various machine learning-based

algorithms are then presented to detect PSM accounts.

In sum, this dissertation makes the following contributions in identification of

human trafficking and PSM accounts as two forms of malicious activities:

• We use the user-generated content posted on Backpage and present semi-supervised

algorithms to identify high likely human trafficking-related posts. The models

were trained on both of the labeled and unlabeled data from Backpage and the

results were further verified by our law enforcement experts.

• We investigate the extent to which various forms of user-generated data could

contribute to identifying PSM accounts on Twitter. In particular, we examine

(1) resharing activities and user profile information (user-level), (2) URLs and

contents of their associated websites posted by users (source-level), and (3)

tweets’ textual characteristics (content-level). We present causality-based, semi-

supervised causality-based and feature-driven approaches for detecting PSM

accounts on Twitter.

– For causality-based algorithms, we leverage information from resharing

activities in the form of cascade structure on Twitter and present time-

decay causal metrics for early identification of PSMs, based on the Suppes’

probabilistic causal theorem Suppes (1970). We further investigate the role

of community structure in early detection of PSMs by demonstrating that

users within a community establish stronger causal relationships compared

to the rest.
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– For semi-supervised causality-based approaches, we frame the problem of

detecting PSM accounts with far less number of PSMs than the normal

users, as an optimization problem and present a Laplacian semi-supervised

causal inference SemiPsm for solving it. The unlabeled data are utilized

via manifold regularization. Manifold regularization used in the resultant

optimization formulation is built upon causality-based features created on

a notion of Suppes’ theory of probabilistic causation.

– For feature-driven approach, we further fuse different attributes of user

activities and profiles, source and content levels into one holistic approach.

More specifically, we assess the extent to which causal and account lev-

els, source-level and content-level attributes contribute to identification of

PSM accounts. Our causal and account attributes investigate signals in

causal users along with their profile information. For the source-level at-

tributes, we explore different characteristics in URLs content that users

share (e.g., underlying themes, complexity of text, etc.). For the content-

level attributes, we examine attributes from tweets posted by users. Our

observations suggest the effectiveness of the proposed method in identify-

ing PSM accounts in real-world Twitter data.

7.2 Future Work

This dissertation studies the propagation of malicious information online from

various perspectives, but only touch upon the tip of the iceberg of this fertile research

area. Below, we present some of promising research directions that require further

explorations:

• Detecting Human Trafficking: In this dissertation, we only leverage tex-

tual information (e.g., title, description, timestamp, poster’s age, etc.) from
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user-generated data on Backpage. In future, we plan to utilize other available

yet prominent forms of user data such as images and videos. Another potential

future direction is to leverage data from social media such as Instagram and

Twitter to present more sophisticated algorithms for detecting human traffick-

ing. This way, we could identify orchestrated human trafficking related crimes

and their associated rings. Furthermore, we plan to replicate the study by inte-

grating more interesting features especially those supported by the criminology

literature. Also, since hand-labeling unlabeled examples is expensive, an inter-

esting research direction would be to deploy active learning to enable iterative

supervised learning to actively query the user for labels. We also note that

real-world data is often more imbalanced compared to our data, and the reason

is that number of negative samples usually outweigh positive ones. We would

thus like to apply the proposed framework on a more realistic dataset which

contains much less suspicious posts than normal posts.

• Identifying Pathogenic Social Media Accounts: This dissertation utilizes

several aspects of user-generated data including causality-based attributes, pro-

file information and contents from URLs and tweets for detecting PSM accounts

in real-world related Twitter datasets. Although Chapter 4 presents causality-

based algorithms for early detection of PSM accounts, to support more real-

time detection criteria, we plan to incorporate time-related attributes such as

those extracted from point process, time-series and LSTM. Our future plans

also include investigating other forms of causality inferences such as Granger

causality Didelez (2008) and other regularization terms to seek if we can fur-

ther improve the classification performance. Another direction for future work

would be to present more accurate approaches to reduce false positives which
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have high costs for social media. Also we would like to present methods that

can distinguish between different types of PSMs.
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