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ABSTRACT

The pervasive use of the Web has connected billions of people all around the globe

and enabled them to obtain information at their fingertips. This results in tremen-

dous amounts of user-generated data which makes users traceable and vulnerable to

privacy leakage attacks. In general, there are two types of privacy leakage attacks for

user-generated data, i.e., identity disclosure and private-attribute disclosure attacks.

These attacks put users at potential risks ranging from persecution by governments

to targeted frauds. Therefore, it is necessary for users to be able to safeguard their

privacy without leaving their unnecessary traces of online activities. However, privacy

protection comes at the cost of utility loss defined as the loss in quality of person-

alized services users receive. The reason is that this information of traces is crucial

for online vendors to provide personalized services and a lack of it would result in

deteriorating utility. This leads to a dilemma of privacy and utility.

Protecting users’ privacy while preserving utility for user-generated data is a chal-

lenging task. The reason is that users generate different types of data such as Web

browsing histories, user-item interactions, and textual information. This data is het-

erogeneous, unstructured, noisy, and inherently different from relational and tabular

data and thus requires quantifying users’ privacy and utility in each context sep-

arately. In this dissertation, I investigate four aspects of protecting user privacy

for user-generated data. First, a novel adversarial technique is introduced to assay

privacy risks in heterogeneous user-generated data. Second, a novel framework is pro-

posed to boost users’ privacy while retaining high utility for Web browsing histories.

Third, a privacy-aware recommendation system is developed to protect privacy w.r.t.

the rich user-item interaction data by recommending relevant and privacy-preserving

items. Fourth, a privacy-preserving framework for text representation learning is pre-

sented to safeguard user-generated textual data as it can reveal private information.
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Chapter 1

INTRODUCTION

The explosive Web growth in the last decade has drastically changed the way

billions of people all around the globe conduct numerous activities such as surfing

the web, creating online profiles in social media platforms, interacting with other

people, and sharing posts and various personal information in a rich environment.

This results in tremendous amounts of user-generated data. The massive amounts of

user information and the availability of up-to-date data makes the Web a place for

organizations to collect and aggregate this information either for legitimate purposes

or nefarious goals (Bonneau et al., 2009). On one hand, the user-generated data

provides opportunities for researchers and business partners to study and understand

individuals at unprecedented scales (Backstrom et al., 2007; Beigi et al., 2018; Beigi,

2018) and therefore provide personalized services for each online user.

On the other hand, the resultant rich user-generated data contains individuals’

sensitive and private information, leading to privacy leakage and traceability of online

users (Ji et al., 2016a; Narayanan and Shmatikov, 2009; Beigi, 2018; Beigi and Liu,

2019). For example, users may share their vacation plans publicly on Twitter without

knowing that this information could be used by adversaries for break-ins and thefts

in the future (Zhang et al., 2018; Mao et al., 2011). Publishing complete and intact

user data could even result in inferring sensitive information that users do not wish

to disclose such as location (Li et al., 2012; Mahmud et al., 2014) and age (Wang

et al., 2016).

Internet Service Providers (ISPs) such as AT&T and Verizon also have full access

to their users’ web browsing histories. ISPs can infer different types of personal in-
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formation such as users’ political views, sexual orientations and financial information

based on the sites they visit. Besides that, a recent study shows the fingerprintability

of user’s web browsing history (Su et al., 2017). Another example is users’ textual

data such as reviews, tweets, search queries and posts. User-generated textual data

also contains sufficient information that allows people in the textual database to be

re-identified Zhang et al. (2018) and leaks their private-attribute. One example is

AOL search data leak Barbaro et al. (2006) in which users were re-identified accord-

ing to their textual search queries. Moreover, if malicious attackers have access to the

system’s output and unrestricted auxiliary information about their target users, they

are able to extract users’ entire user-item interactions history and therefore infer their

identity and private-attribute information Ramakrishnan et al. (2001); Machanava-

jjhala et al. (2011); Calandrino et al. (2011); McSherry and Mironov (2009). These

identity exposures may result in harms ranging from persecution by governments to

targeted frauds (Christin et al., 2010).

Privacy issues could be prominent when the data is published by a data publisher

or a service provider. In general, privacy leakage attacks for user-generated data

could be categorized into two types: identity disclosure and private-attribute disclo-

sure attacks (Duncan and Lambert, 1986; Lambert, 1993; Li et al., 2007). Identity

disclosure occurs when the adversary maps a targeted individual to an instance in

a released dataset. Private-attribute disclosure happens when the adversary could

infer new private-attribute information regarding a targeted individual based on the

released data. These user privacy issues mandate data publishers to protect users’

privacy by sanitizing user-generated data before it is published publicly and leverage

privacy-aware personalized services and frameworks as well.

The Goal of privacy protection and data anonymization techniques is to remove or

perturb data to prevent adversaries from inferring sensitive information while ensuring
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the utility of the published data. One straightforward anonymization technique is to

remove “Personally Identifiable Information” (a.k.a. PII) such as names, user ID,

age and location information. This solution has been shown to be far from sufficient

in preserving privacy (Backstrom et al., 2007; Narayanan and Shmatikov, 2008). An

example of this insufficient approach is the anonymized dataset published for the

Netflix prize challenge. As a part of the Netflix prize contest, Netflix publicly released

a dataset containing movie ratings of 500,000 subscribers. The data was supposed to

be anonymized with all PII removed from it, however, users’ records were mapped to

their corresponding profiles on IMDB (Narayanan and Shmatikov, 2008). The results

of this attack show that the structure of the data carries enough information for a

potential breach of privacy to re-identiy anonymized users.

Privacy protection comes at the cost of utility loss where utility is defined as the

quality of personalized service users receive. User-generated data is critical for online

vendors to profile users’ preferences from their online activities to predict their future

needs. The utility of this data therefore affects the quality of the provided online

personalized services and user’s satisfaction from them. This leads to a dilemma of

privacy and utility and highlights the need to address the trade-off between them.

1.1 Research Challenges

Protecting user privacy and preserving utility for user-generated data is far more

challenging than structured one as it is heterogeneous, highly unstructured, noisy

and inherently different from relational and tabular data. In this dissertation, we

investigate if user privacy can be protected for user-generated data considering the

aforementioned dilemma. In particular, we study this problem from different aspects

including (1) protecting user privacy in heterogeneous social media data, (2) pro-

tecting user privacy in Web browsing history data, (3) protecting user privacy in
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user-item interactions data, and (4) protecting user privacy in textual data. To pro-

tect user privacy and address the dilemma between privacy and utility, we are faced

with several challenges:

• User-generated social media data is heterogeneous and the existing anonymiza-

tion techniques often make a specific assumption regarding the way this data is

anonymized. In particular, these works assume that it’s enough to anonymize

each aspect of heterogeneous data (e.g., structure, textual, and location infor-

mation) independently. However, sensitive information could be still leaked

from the anonymized data, but we lack conclusive evidence. How can we assay

privacy level of anonymized social media data? Is the data considered as private

if just one of its two aspects is anonymized? Is it sufficient to independently

anonymize all aspects of social media data?

• Users leave traces of Web browsing histories when they are surfing online. This

Web browsing history information is rich in content and fingerprintable and thus

needs privacy protection. Intuitively, the more dummy links we add to a web

browsing history, the more privacy we can preserve. An extreme case is when the

added links completely change a user’s browsing history to perfectly obfuscate

the user’s fingerprints. However, such approach largely disturbs user profiles

and thus results in utility loss–the maximum utility can only be achieved at

the complete sacrifice of privacy. How can we design an effective web browsing

history anonymizer that tackles the privacy and utility trade-off? How privacy

and utility should be quantified in the context of web browsing histories? How

many links and what links should be added to a user’s browsing history to boost

user privacy while retaining high utility?

• Users make interactions with various entities through recommenders such as
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leaving online reviews and rating products. Little has been done to protect

users against private-attribute inference attacks through leaked users’ interac-

tions history in recommendation systems (Jia and NZhenqiang, 2018; Weinsberg

et al., 2012). These works focus on anonymizing user-item data before publish-

ing and address the utility loss by minimizing the amount of changes made to

the data (Jia and NZhenqiang, 2018; Weinsberg et al., 2012). However, in the

context of recommendation, the utility loss due to this approach can lead to

degraded recommendation results. Moreover, just sharing perfectly obfuscated

user-item data with a recommendation system does not necessarily prevent the

adversary from inferring users’ private information in future when they receive

and accept new recommendations (e.g., when purchasing new products). How

can we develop a personalized privacy-aware recommendation system to guard

user-item interaction data against private-attribute inference attacks? How can

we ensure that the user’s private attributes are effectively obscured after receiv-

ing personalized recommendation in future?

• Textual information is one of the most significant portions of data that users

generate online. This data not only can reveal the identity of the user but also

may contain individual’s private-attribute information. Traditional privacy pre-

serving techniques are inefficient for user-generated textual data because this

data is highly unstructured, noisy and unlike traditional documental content,

consists of large numbers of short and informal posts (Fung et al., 2010). More-

over, these works do not explicitly include utility into the design objective of

the privacy preserving model. How should textual information be perturbed

to prevent the adversary from text reconstruction and users’ re-identification?

How should textual data be protected against private-attribute leakage? How
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can we ensure that the semantic meaning of the text is preserved with respect

to a given task?

1.2 Contributions

In this dissertation, we investigate the problem of protecting user privacy and

addressing the dilemma between privacy and utility. The contributions of this disser-

tation are summarized as follows:

• Studying novel problem of protecting users’ privacy while preserving the utility

for different types of user-generated data from different aspects using social

media data and mining;

• Protecting user privacy in heterogeneous social media data with an adversar-

ial approach by proposing a novel de-anonymization attack applicable which

assesses the privacy level of anonymized heterogeneous social media data;

• Protecting user privacy in Web browsing history data by proposing an efficient

web browsing history anonymization framework with measures for quantifying

the trade-off between user privacy and the quality of online services;

• Protecting user privacy in user-item interaction data by proposing a privacy-

aware recommendation system which guards against the inference of private-

attribute information while maintaining the user utility;

• Protecting user privacy in textual data by proposing a text representation learn-

ing framework that generates a text representation such that it is differentially

private and does not contain users’ private-attribute information while retaining

the utility for a given task;
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• Conducting experiments on real-world datasets to verify and demonstrate the

effectiveness of the above proposed frameworks.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we in-

troduce some basic privacy concepts and review related work in user-generated data

privacy preserving. In Chapter 3, we study the problem of identifying privacy risks

in heterogeneous social media data. We first introduce a new generation of adver-

sarial technique applicable to social media network data. Then, we propose a novel

de-anonymization technique Athd to assess the privacy level of anonymized hetero-

geneous data. We conduct experiments to evaluate Athd on two real world datasets.

In Chapter 4, we study the problem of mitigating the dilemma between privacy and

utility for web browsing history data. We first quantify the trade-off between user pri-

vacy and utility and then propose an efficient framework PBooster to address the

problem of anonymizing web browsing histories while retaining the utility. We con-

duct experiments and evaluate the proposed approach in terms of privacy and utility.

In Chapter 5, we address protecting user privacy problem for user-item interaction

data by proposing a privacy-aware recommendation system which protects users’ pri-

vacy even after they received recommendations. We first devise a mechanism Rap to

counter private-attribute inference attacks in the context of recommendation systems

using adversarial learning. Then, we detail the experimental results of RAP. In Chap-

ter 6, we investigate protecting user privacy for textual information with respect to

the different types of privacy leakage attacks. We first introduce a double privacy pre-

serving text representation learning framework, DPText. Then, we demonstrate the

effectiveness of DPText theoretically and empirically. We conclude the dissertation

and present broader impacts and promising research directions in Chapter 7.
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Chapter 2

PRELIMINARIES AND RELATED WORK

Explosive growth of the Web has drastically changed the way people conduct activities

and acquire information. It has not only raised security issues such as finding sybil

accounts Al-Qurishi et al. (2017), identifying extremist Alvari et al. (2019a, 2020) and

pathogenic social media accounts Alvari et al. (2019b, 2018); Alvari and Shakarian

(2019, 2018) and detecting human trafficking Alvari et al. (2017, 2016b), but also has

raised privacy issues such as leakage of users’ identities (Narayanan and Shmatikov,

2009; Beigi et al., 2019d) and private-attribute information Beigi et al. (2018); Beigi

and Liu (2018a); Beigi et al. (2019d). Identifying and mitigating user privacy issues

has been studied from different perspectives on the Web and social media (for a

comprehensive survey refer to (Beigi and Liu, 2018a, 2020)). Our work is related to

a number of research which we discuss below.

First we introduce two different types of users’ privacy disclosure. Then, we briefly

review traditional privacy preserving techniques such as k-anonymity, l-diversity, t-

closeness, and differential privacy. Next, we overview the privacy risks from different

aspects and categorize the related work into five groups, 1) social graphs and privacy,

2) web search and privacy, 3) private-attribute information and privacy, 4) recom-

mendation systems and privacy, and 5) textual data and privacy.

2.1 Types of Privacy Leakage

Privacy preserving techniques were first introduced for tabular and micro data.

With the emergence of social media, the issue of online user privacy was raised. Re-

searchers then focus on studying privacy leakage issues as well as anonymization and
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privacy preserving techniques specialized for social media data. There are two types

of information disclosure in the literature: identity disclosure and private-attribute

disclosure attacks (Duncan and Lambert, 1986; Lambert, 1993; Li et al., 2007). We

can formally define these attacks as:

Definition 2.1.1. Identity Disclosure Attack. Assume D is a snapshot of user-

generated data in social media platforms. D can include different types of data, i.e.,

a social graph G = (V,E) where V is the set of users and E demonstrates the social

relations between them, users’ behavioral information A (e.g., reviews, item ratings,

etc.), and attribute information B. Given D = (G,A,B), the identity disclosure

attack is to re-identify all users in the list of target users Vt by mapping them to their

known identities. For each v ∈ Vt, we have the information of her social friends and

behavior.

Definition 2.1.2. Private-Attribute Disclosure Attack. Private attribute in-

formation contains those attributes that users do not wish to disclose such as political

view, occupation, marital status, medical condition, location, age, and gender. As-

sume D is a snapshot of user-generated data in social media platforms. D can include

different types of data, i.e., a social graph G = (V,E) where V is the set of users and

E demonstrates the social relations between them, users’ behavioral information A

(e.g., reviews, item ratings, etc.), and attribute information B. Given D = (G,A,B),

the private-attribute disclosure attack is used to infer the private-attributes av for all

v ∈ Vt where Vt is a list of targeted users. For each v ∈ Vt, we have the information

of her social friends and behavior.

Network graph de-anonymization and author identification are examples of iden-

tity disclosure attacks that exists in social media. Examples of private-attribute

disclosure attack include inferring users’ private-attribute through different types of
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user-generated data such as users’ textual information, items rating behaviors, and

social graphs.

Before we discuss privacy leakage in social media, we first overview the tradi-

tional privacy models for structured data. Traditional privacy models such as k-

anonymity (Sweeney, 2002), l-diversity (Machanavajjhala et al., 2006), t-closeness (Li

et al., 2007) and differential privacy (Dwork, 2008) are defined over structured databases

and cannot be directly applied to unstructured user generated data in social media

platforms. The reason is that quasi-identifiers and sensitive attributes are not clear

in the context of social media data. These techniques are further adopted for social

media data which we will discuss more next.

2.2 k-Anonymity, l-Diversity and t-Closeness

k-anonymity was one of the first techniques introduced for protecting data pri-

vacy (Sweeney, 2002). The aim of k-anonymity is to anonymize each instance in the

dataset so that it is indistinguishable from at least k− 1 other instances with respect

to certain identifying attributes. k-anonymity could be achieved through suppression

or generalization of the data instances. The goal here is to anonymize the data such

that k-anonymity is preserved for all instances in the dataset with a minimum num-

ber of generalizations and suppressions while maximizing the utility of the resultant

data. It has been shown that this problem is NP-hard (Aggarwal et al., 2005). k-

anonymity was initially defined for tabular data, but then researchers start to adopt

it for solving privacy issues in social media data. In social media related problems,

k-anonymity ensures that users cannot be identified and there are k − 1 other users

with the same set of features which makes these k users indistinguishable. These

features may include users’ attributes and structural properties.

Although k-anonymity is among the first techniques proposed for protecting the

10



privacy of datasets, it is still vulnerable against specific types of privacy leakage.

Machanacajjhala et al. (Machanavajjhala et al., 2006) introduces two simple attacks

which defeats k-anonymity. The first attack is homogeneity attack in which the

adversary can infer an instance’s (in this case, a users in social media) sensitive at-

tributes when sensitive values in an equivalence class lack diversity. In the second

attack the adversary can infer an instance’s sensitive attributes when he has access to

background knowledge even in the case that the data is k-anonymized. The second

attack is known as background knowledge attack. Variations of background knowl-

edge attacks are proposed and used for inferring social media users’ attributes. The

background knowledge could be users’ friends’ or behavioral information. We will dis-

cuss more about different types of the attribute inference attacks problem in Sections

6 and 7.

To protect data against homogeneity and background knowledge attacks, Machanaca-

jjhala et al. (Machanavajjhala et al., 2006) introduce the concept of l-diversity. It

ensures that the sensitive attribute values in each equivalence class are diverse. More

formally, a set of records in an equivalence is l-diverse if the class contains at least

l well represented values for the sensitive attributes. The dataset is then l-diverse

if every class is l-diverse. Two instantiations of the l-diversity concept are then in-

troduced, entropy l-diversity and recursive (c, l)-diversity. With entropy l-diversity,

each equivalence must not only have enough different sensitive values, but also each

sensitive value must be distributed evenly enough. More formally, the entropy of the

distribution of sensitive values in each equivalence class is at least log(l). For recursive

(c, l)-diversity, the most frequent value should appear frequent enough in the dataset.

Interested readers could refer to the work of (Machanavajjhala et al., 2006) for more

details.

After l-diversity, Li et al. (Li et al., 2007) studies the vulnerabilities of l-diversity
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and introduce a new privacy concept, t-closeness. They show that l-diversity cannot

protect the privacy of data when the distribution of sensitive attributes in the equiv-

alence class is different from the distribution in the whole dataset. If the distribution

of sensitive attributes is skewed, then l-diversity presents a serious privacy risk. This

attack is known as the skewness attack. l-diversity is also vulnerable against similarity

attacks. This attack can happen when the sensitive attributes in an equivalence class

are distinct but semantically similar (Li et al., 2007). Li et al. (Li et al., 2007) thus

introduce a new privacy concept t-closeness which ensures that the distribution of a

sensitive attribute in any equivalence class is close to the distribution in the overall

table. More formally speaking, an equivalence class satisfies t-closeness if the distance

between the distribution of a sensitive attribute in this class and the distribution in

the whole dataset is no more than a certain threshold. The whole dataset is said

to have t-closeness if all equivalence classes have t-closeness. It’s valuable to men-

tion that t-closeness protects the data against attribute disclosure but not identity

disclosure.

k-anonymity, l-diversity and t-closeness are further adopted for unstructured social

media data. Table.2.1 summarizes different approaches that leverage adopted versions

of these techniques for privacy problems in social media. For a thorough discussion

on these works, interested readers can refer to (Beigi and Liu, 2018a, 2020).

2.3 Differential Privacy

Differential privacy is a powerful technique which protects a user’s privacy during

statistical query over a database by minimizing the chance of privacy leakage while

maximizing the accuracy of queries (Dwork, 2008). Differential privacy provides a

strong privacy guarantee and has been leveraged for many privacy preserving appli-

cation such as graph data (Xiao et al., 2014), textual information (Zhang et al., 2018),
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Table 2.1: Application of k-Anonymity, l-Diversity and t-Closeness Techniques in

User Privacy in Social Media.

Technique Type of Information Paper

k-degree anonymity graph structure (Liu and Terzi, 2008)

k-neighborhood anonymity graph structure (Zhou and Pei, 2008)

k-automorphism graph structure (Zou et al., 2009)

k-isomorphic graph structure (Cheng et al., 2010)

k-anonymity graph structure and at-

tribute information

(Yuan et al., 2010)

(θ, k)-matching anonymity graph structure and at-

tribute information

(Andreou et al., 2017)

(k, d)-anonimity graph structure and at-

tribute information

(Backes et al., 2016)

l-diversity attribute information (Machanavajjhala

et al., 2006)

t-closeness attribute information (Li et al., 2007)

location data (Wang et al., 2017) and recommendation systems (Meng et al., 2018).

The intuition behind differential privacy is that the risk of user’s privacy leakage

should not increase as a result of participating in a database (Dwork, 2008). Differ-

ential privacy guarantees that existence of an instance in the database does not pose

a threat to its privacy as the statistical information of data would not change sig-

nificantly in comparison to the case that the instance is absent (Dwork, 2008). This

makes it harder for the adversary to re-identify an instance and infer whether the

instance is in the database or not or decides which record is associated with it (Kifer

and Machanavajjhala, 2011). Differential privacy can be formally defined:
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Definition 2.3.1. ε - Differential Privacy. Given a query function A(.), a mech-

anism K(.) with an output range R satisfies ε-differential privacy for all datasets D1

and D2 differing in at most one element iff:

Pr[K(A(D1)) = r ∈ R]

Pr[K(A(D2)) = r ∈ R]
≤ eε (2.1)

where r is some point in the output range R.

Here ε is called privacy budget and it can be also shown that Eq. 2.1 is equivalent

to |log
(Pr[K(A(D1))=r∈R]
Pr[K(A(D2))=r∈R]

)
| ≤ ε for some point r in the output range. Note that larger

values of ε (e.g., 10) results in larger privacy loss while smaller values (e.g., ε ≤ 0.1)

indicate the opposite. For example, a small ε means that the output probabilities

of D1 and D2 at r are very similar to each other which demonstrates more privacy.

According to Dwork et al. (Dwork et al., 2014), an uncertainty should be introduced

in the output of a function (i.e., algorithm) to be able to hide the participation of

an individual in the database. This is quantified by sensitivity, which is the amount

of the change in the output of query function A made by a single data point in the

worst case:

Definition 2.3.2. L1-sensitivity. The L1-sensitivity of a vector-valued function A

is the maximum change in the L1 norm of the value of the function A when one input

changes. More formally, the L1-sensitivity ∆(A) if A is defined as (Dwork et al.,

2014):

∆(A) = max
X ,X ′

|X−X ′|=1

‖A(X )−A(X ′)‖1 (2.2)

where X and X ′ are two datasets differ in one entry.

Note that the differential privacy is just a condition on a mechanism which re-

leases the dataset. The mechanism which achieves ε-differential privacy is called
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sanitization. Laplacian mechanism is one popular sanitization technique which gives

differential privacy for rela valued queries by adding a Laplacian noise (Dwork, 2008).

Assume that A(D) is the real value resposne to a certain function (algorithm) A.

Then, a random noise Y(D) is generated from Laplacian distribution and added to

A(D) as:

K(A(D) = A(D) + Y(D) (2.3)

The Laplacian distribution has zero mean and a scale parameter ∆(A)ε. The

density function of the Laplacian noise will be computed as:

p(x) =
ε

2∆(A)
e−

|x|ε
∆(A) (2.4)

Note that higher sensitivity ∆(A) of the query function A) with fixed ε, implies

more Laplacian noise added to A)(D).

There also exists a relaxed version of ε-differential privacy, known as (ε, δ)-differential

privacy which was developed to deal with very unlikely outputs of K(.) (Dwork et al.,

2006; Dwork, 2008). It could be defined as:

Definition 2.3.3. (ε, δ)-differential privacy. Given a query function A(.), a

mechanism K(.) with an output range R satisfies (ε, δ)-differential privacy for all

datasets D1 and D2 differing in at most one element iff:

Pr[K(A(D1)) = r ∈ R] ≤ eε × Pr[K(A(D2)) = r ∈ R] + δ (2.5)

Table.2.2 summarizes different works that utilize differential privacy in social me-

dia data. For a thorough discussion on these works, interested readers can refer

to (Beigi and Liu, 2018a, 2020).

2.4 Social Graphs and Privacy

A large amount of data generated by users in social media platforms has graph

structure. Friendship and following/followee relations, mobility traces (e.g. WiFi
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Table 2.2: Application of Differential Privacy Technique in User Privacy in Social

Media.

Type of Information Paper

graph structure (Sala et al., 2011; Proserpio et al., 2014; Xiao

et al., 2014; Wang and Wu, 2013; Liu et al.,

2016)

recommender systems (McSherry and Mironov, 2009; Machanavajjhala

et al., 2011; Zhu et al., 2013; Jorgensen and Yu,

2014; Shen and Jin, 2014; Hua et al., 2015; Guer-

raoui et al., 2015; Zhu and Sun, 2016; Meng

et al., 2018)

textual data (Zhang et al., 2018)

contacts, Instant Message contacts) and spatio-temporal data (latitude, longitude,

timestamps) all could be modeled as graphs. This mandates paying attention to

privacy issues of graph data. We will first overview graph de-anonymization works

and then survey the proposed solutions for anonymizing graph data.

Graph De-anonymization. De-anonymization approaches on social networks

aim to re-identify the anonymous user data by using previously collected background

information. Existing de-anonymization methods can be categorized into i) seed-based

and ii) seed-free, according to whether pre-annotated seed users exist or not. Seed-

based de-anonymization attack on social network was proposed to use only structural

information and propagates node mappings based on seed user pairs (Narayanan and

Shmatikov, 2009). Later, Narayanan et al. (Narayanan et al., 2011) employed a sim-

plified attack using less heuristics rules for link prediction problem. Nilizadeh et al.

further proposed a community-enhanced de-anonymization scheme. Community de-
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tection has been extensively studied in the literature of social network analysis Alvari

et al. (2016a, 2014a, 2013); Yang and Leskovec (2013) and has been used in variety of

tasks such as trust prediction Beigi et al. (2014) and guild membership prediction Al-

vari et al. (2014b); Hajibagheri et al. (2018). This work first de-anonymizes data in

community-level and then de-anonymizes the users within the communities (Nilizadeh

et al., 2014). Yartseva et al. proposed a percolation-based de-anonymization method

using neighborhood overlap information (Yartseva and Grossglauser, 2013). Seed-

free approaches assume there is no seed users available. Pedarsani et al. presented a

Bayesian model to iteratively perform a maximum weighted bipartite graph matching

starting from the nodes with the highest degree (Pedarsani et al., 2013). Moreover,

Ji et al. proposed to use optimization based methods to minimize the edge difference

between anonymized network and background information (Ji et al., 2014). Recently,

another group of works have focused on exploiting additional sources of information

such as profile information (Fu et al., 2015) and users attributes (Qian et al., 2016) for

social graph de-anonymization. Fu et al. proposed to use structural and descriptive

information to de-anonymize users without seed nodes (Fu et al., 2015). A thorough

survey on graph data anonymization and de-anonymization is presented in (Ji et al.,

2016b). Note that de-anonymization methods are similar to those of user identity

linkage across social network when only network information is available (Shu et al.,

2017). In addition to the different goals of these two research direction, the main dif-

ference is that the given graph structured is not anonymized in case of user identity

linkage problem. This makes the de-anonymization much more challenging.

Graph Anonymization. Social networks contain private profile information and

sensitive social relationships which provide opportunities for researchers to study and

understand individuals at unprecedented scales (Beigi et al., 2016b,c, 2019b,e). How-

ever, this information may leak users’ privacy (Backstrom et al., 2007). Anonymiza-
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tion methods serve as an important role to maintain data utility as well as pro-

tecting privacy (Wu et al., 2010). Existing social network anonymization methods

can be categorized mainly into three categories: k-anonymity, edge randomization,

clustering-based generalization and differential privacy. The aim of k-anonymity

methods is to anonymize each node so that it is indistinguishable from at least k− 1

other nodes (Sweeney, 2002). Liu et al. proposed to achieve k-degree anonymiza-

tion (Liu and Terzi, 2008) through edge addition/deletion strategies (Liu and Terzi,

2008). Zhou et al. further considered the assumption that the adversary knows sub-

graph constructed by the immediate neighbors of a target node, and aims to achieve

k-neighborhood anonymity (Zhou and Pei, 2008). Edge randomization algorithms

for social networks usually utilize edge-based randomization strategies to anonymize

data, such as random adding/deleting and random switching (Ying and Wu, 2009).

Clustering-based anonymization methods group nodes and edges, and only reveal the

density and size so that individual attributes are protected (Tassa and Cohen, 2013).

Another work seeks to generate an anonymized graph which guarantees differential

privacy (Sala et al., 2011).

2.5 Web Search amd Privacy

Web search has become a regular activity where a user composes a query formed

by one or more keywords and sends it to the search engine. The engine returns

a list of web pages according to the user query. These search queries are a rich

source of information for user profiling. Jones et. al. (Jones et al., 2007) studies

the potential vulnerabilities of the search engine query logs for the first time. This

work first proposes an attack which infer a user’s private attributes (e.g., age, gender

and location) from her query logs using classification approaches. The next proposed

attack is trace attack which maps a particular search trace to an actual user profile
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by exploiting the inferred private-attribute information in the previous step. The last

proposed attack is person attack which is given a user identity and the goal is to

identify the search query log stream. Privacy preserving web search approaches focus

on anonymizing users search queries.

One group of works focused on the protection of post-hoc logs (Korolova et al.,

2009; Cooper, 2008; Gotz et al., 2012; Zhang et al., 2016). The work of (Korolova

et al., 2009) releases a private query click graph which nodes correspond to either

queries and URLs and edges represent the number of users who click on the URL given

the search query. This graph is used in many applications such as spelling corrections,

query classification and keyword generation (Baeza-Yates and Tiberi, 2007; Craswell

and Szummer, 2007). This work ensures (ε, δ)-differential privacy (Dwork et al., 2006)

over released query click graph. It adds Laplacian noise to query counts and number

of users who clicked on a link. After adding noise to queries counts, only those with

a value greater than a threshold are released. The work of Zhang et al. (Zhang

et al., 2016) makes a significant improvement over (Korolova et al., 2009) in which

their approach provides an (ε)-differential privacy by expanding the query set using

an external stochastic query pool. This potential set could be simulated using high

frequency n-grams in general English (Davies, 2011).

Another group of approaches including client-side ones focuses on search query

obfuscation (Ye et al., 2009; Balsa et al., 2012; Gervais et al., 2014; Howe and Nis-

senbaum, 2009). These approaches are user-centric and automatically generate fake

search queries on behalf of user. For example, TrackmeNot (TMN) (Howe and Nis-

senbaum, 2009) is implemented as a Web browser add-on and forges search queries. It

has an initial seed of query terms which is collected from a set of RSS feeds from pop-

ular websites and recently searched popular query terms. Then, TMN sends keywords

selected uniformly as search queries from the prepared set. Peddinti et al. (Peddinti
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and Saxena, 2010) show that query obfuscation can be broken by an adversarial search

engine.

2.6 Private-Attribute Information and Privacy

A user’s private-attribute information contains those attributes that users may not

wish to disclose such as political view, occupation, medical condition, age, gender,

and location. To address the privacy of users, social networks usually offer the option

for users to limit the access to their private-attributes, i.e. they are only visible

to friends or friends of friends. A user could also create a profile without explicitly

disclosing any private-attribute information. However, there exists one privacy attack

which focuses on inferring users’ private attribute information from their publicly

avialble information. This attack is known as private-attribute inference attack. The

attacker could be any party who is interested in this information such as social network

service providers, cyber criminals, data brokers, and advertisers. Data brokers benefit

from selling individuals’ information to other parties such as banks, advertisers, and

insurance companies 1 . Social network providers and advertisers leverage users’

attribute information to provide more targeted services and advertisements. Cyber

criminals exploit attribute information to perform targeted social engineering, spear

phishing 2 and backup authentication attacks (Gupta et al., 2013). This attribute

information could be also used for linking users across multiple sites (Goga et al.,

2013) and records (e.g., vote registration records) (Sweeney, 2002; Minkus et al.,

2015). Private-attribute inference attacks could be categorized into three groups, 1)

friend based, 2) behavior based, and 3) friend and behavior based.

First group of these attacks, i.e., friend based, uses the homophily theory (McPher-

1https://bit.ly/1AwePQE

2http://www.microsoft.com/protect/yourself/phishing/spear.mspx
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son et al., 2001) and assumes that two friends are more probable to share similar

attributes rather than two strangers. This group of attacks leverages a target user’s

friends’ information (He et al., 2006; Lindamood et al., 2009; Gong et al., 2014) and

community membership information (Zheleva and Getoor, 2009; Mislove et al., 2010)

to infer target’s private attributes. Another set of works in this category focuses on

predicting both network structure and missing users’ private attributes (Yin et al.,

2010a,b; Gong et al., 2014). The reason for simultaneously solving these two problems

is that users with similar attributes tend to link to one another and individuals who

are friends are likely to adopt similar attributes.

Second group of these attacks, i.e., behavior based, are those works which leverage

users’ behavioral information to infer their private attribute information. Weinsberg

et al. (Weinsberg et al., 2012) infers users’ attributes (i.e., gender) according to their

movie-rating behavior by exploiting different classifiers such as logistic regression,

SVM and Näıve Bayes. Kosinski et al. (Kosinski et al., 2013) leverage Facebook

likes information into a logistic regression classifier to infer various attributes for each

user. Another work (Chaabane et al., 2012) seeks to infer users attributes based on

the different types of musics they like. This approach first learns semantic interest

topics for each user by using an ontologized version of Wikipeda related to each music

and exploiting topic modeling techniques (i.e. Latent Dirichlet Allocation, LDA (Blei

et al., 2003)). Then, a user is predicted to have similar attributes as those who like

similar types of musics as the user. Luo et al. (Luo et al., 2014) combines graph-

based semi-supervised learning with non-parametric regression and uses it to learn a

classifier for inferring the household structure based on the users’ log of watched TV

programs (Luo et al., 2014). Another work (Bhagat et al., 2014) proposes an active

learning based attack which infers users’ attributes via interactive questions.

The third group of works exploits both friend and behavioral information (Gong
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and Liu, 2016, 2018; Jia et al., 2017). Gong et al. (Gong and Liu, 2016, 2018) make

a social-behavior-attribute network in which all users’ behavioral and friendship in-

formation is integrated in a unified framework. Nodes of this graph are either users,

behaviors or attributes and edges represents the relationship between these attributes.

Private attributes are then inferred through a vote distribution attack model. An-

other work (Jia et al., 2017) incorporates structural and behavioral information from

users who do not have the attribute in the training process, i.e. negative training

samples. Then it learns the prior probability of each user having a specified attribute

by incorporating the user’s behavior information. Next, it models the joint probabil-

ity of users as a pairwise Markov Random Field according to their social relationships

and uses the final model to infer posterior probability of attributes for each target

user.

Little work focuses on protecting users against private-attribute inference at-

tacks (Weinsberg et al., 2012; Jia and NZhenqiang, 2018). In (Weinsberg et al.,

2012), a predefined number of dummy items is added to each user’s profile which are

negatively correlated with his actual attributes before publishing anonymized user-

item ratings data. Ratings are also added for each dummy item based on either the

average item rating or the rating predicted using recommendation approaches such as

matrix factorization. In a recent paper (Jia and NZhenqiang, 2018), after a value is

sampled for the given private attribute w.r.t. a certain probability distribution which

is different from the user’s actual attribute, the minimum noise is found and added

to the user-item data via adapting evasion attacks such that the malicious attacker

predicts the sampled attribute value as the user’s private attributes.
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2.7 Recommendation Systems and Privacy

Existing privacy preserving works in recommendation systems focus on protecting

users against re-identification attacks in which an adversary tries to infer a targeted

user’s actual ratings and investigate if the target is in the database. They could be

categorized into differential privacy based (McSherry and Mironov, 2009; Machanava-

jjhala et al., 2011; Jorgensen and Yu, 2014; Hua et al., 2015; Zhu and Sun, 2016; Meng

et al., 2018) and perturbation based (Rebollo-Monedero et al., 2011; Polat and Du,

2003; Luo and Chen, 2014) approaches. Some methods utilize differential privacy

strategy (Dwork, 2008) to modify the answers of the recommendation algorithm so

the the presence of a user’s data (either a single user-item rating or entire user’s his-

tory) is masked by increasing the chance that two arbitrary records have close prob-

abilities to generate the same noisy data. McSherry et al. (McSherry and Mironov,

2009) utilize differential privacy to construct private covariance matrices to be further

used by recommender. Another work (Jorgensen and Yu, 2014) clusters users w.r.t.

the social relations and generates differentially private average of users’ preferences

in each cluster. Hua et al. (Hua et al., 2015) propose a private matrix factorization

which adds noise to item vectors to make them differentially private. Similarly, (Meng

et al., 2018) proposes another differentially private matrix factorization which only

perturbs users’ sensitive ratings. Bassily et al. (Bassily and Smith, 2015) modify

user-item ratings data to satisfy differential privacy and then share it with recom-

mender. Another work (Zhu and Sun, 2016) makes items list differentially private

and then sends it to recommender. Perturbation based techniques obfuscate user’s

interactions history by adding fake items and ratings to it. Rebollo et al. (Rebollo-

Monedero et al., 2011) propose an information theoretic based privacy metric and

then find the obfuscation rate for generating forged user profiles so that the privacy
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risk is minimized. Similarly, (Parra-Arnau et al., 2014) proposes to add or remove

items and ratings from user profiles minimize privacy risk. Polat et al. (Polat and

Du, 2003) use a randomized perturbation technique (Agrawal and Srikant, 2000) by

sharing disguised z-score for items a given user have rated. In another work (Luo and

Chen, 2014), similar users are grouped to each other. Aggregated ratings of the users

within the same group is then used to estimate a group preference vector. Similar

to (Polat and Du, 2003), randomness is then added to the preference vector to be

shared with the recommender.

2.8 Textual Data and Privacy

People have the right to have anonymous free speech over different topics such

as Politics (Narayanan et al., 2012). However, an author’s identity can be unmasked

by adversaries through providing her real name or IP address to a service provider.

However, authors can use tools such as Tor to protect their identity at the network

level (Dingledine et al., 2004). Manually generated content will always reflect some

characteristics of the person who authored it. For example, some anonymous online

author is prone to several specific spelling errors or has other recognizable idiosyn-

crasies (Narayanan et al., 2012). These characteristics could be enough to figure out

whether authors of two pieces of content are same or not. Therefore, with material

authored by the true identity of the author, the adversary can discover the identity

of a content posted online by the same author anonymously.

Identifying the author of a text according to her writing style, a.k.a stylometry,

has been studied a long time ago (Mendenhall, 1887; Mosteller and Wallace, 1964;

Stamatatos, 2009). With the adverse of machine learning techniques, researches start

to extract textual features and discriminate between 100–300 authors (Abbasi and

Chen, 2008). The application of author identification includes identifying authors
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of terroristic threats and harassing messages (Chaski, 2005), detecting fraud (Afroz

et al., 2012), and extracting author’s demographic information (Koppel et al., 2009).

Privacy implications of stylometry have been studied recently. For example, Rao

et al. (Rao et al., 2000) investigate whether people who are posting under different

pseudonyms to USENET newsgroup can be linked based on their writing style. They

use a dataset of 117 people having 185 different pseudonyms and exploit function

words and Principal Component Analysis (PCA) to perform matching between news-

groups posting and email domains. Another work from Koppel et al. (Koppel et al.,

2006, 2011), studies author identification at the scale of over 10,000 blog authors.

They use 4-grams of characters which is a context specific feature. The problem with

this work is that it is not clear whether their approach is solving author recogni-

tion or context recognition. In another work, Koppel et al. (Koppel et al., 2009) use

both content-based and stylistic features to identify 10,000 authors in the blog cor-

pus dataset. There are also several works on identifying authors of academic papers

under blind review based on the citations of the paper (Bradley et al., 2008; Hill and

Provost, 2003) or other sources from unblind texts of potential authors (Nanavati

et al., 2011).

Narayanan et al. (Narayanan et al., 2012) propose another author identification

attack which exploits 1,188 real-valued features from each post, such as frequency

of characters, capitalization of words, syntactic structure (extracted by Stanford

Parser (Klein and Manning, 2003), e.g. noun phrases containing a personal pro-

noun, noun phrases containing a singular proper noun), and distribution of word

length. These features capture the writing style of the author regardless of the topic

at hand and can re-identify large number of authors. However this approach will

not work when authors anonymize their writing style. Almishari et al. (Almishari

and Tsudik, 2012) proposed a new linkage attack which investigates the linkability
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of prolific reviews that users post on social media platforms. More specifically, given

a subset of information on reviews made by an anonymous user, this approach seeks

to map it to a known identified record. This approach first extracts four types of

tokens, unigrams, digrams, ratings and category of reviewed entity. Then, it uses

Naive bayes and Kullback-Leibler divergence models to re-identify the anonymized

information. This approach could be also used for identity disclosure attack across

multiple platforms using people’s posts and reviews.

Few works consider addressing privacy issues of user-generated textual data (Hakkini-

Tur et al., 2006; Anandan et al., 2012; Bowers et al., 2015; Mack et al., 2015; Zhang

et al., 2018; Li et al., 2018). The work of (Hakkini-Tur et al., 2006) introduces possible

privacy threats of document repositories, 1) name entity recognition, and 2) author

identification. It then introduces the concept of k-author anonymity to address the

latter issue. However, this work failed to provide technical solutions to address the

privacy challenges. Another work from Anandan et al. (Anandan et al., 2012) studies

removing PII from text. It first introduces t-Plausibility notion and then propose in-

formation theoretic based algorithms which select and generalize sensitive keywords

to satisfy t-Plausibility. Its drawback is that it does not address textual representation

re-identification and removal of hidden private information.

Bowers et al. (Bowers et al., 2015) propose an anonymization approach which uses

iterative language translation (ILT) to conceal one’s writing style. This approach first

translates English text into another foreign language (e.g., Spanish, Chinese, etc.) and

then turns it back to English again for three iterations. Another work from Nathan

et al. (Mack et al., 2015) evaluates Bowers’s work by introducing a feature selection

approach, namely Generative and Evolutionary Feature Selection (GEFES) over the

set of predefined features which mask out non-salient previously extracted features.

Both (Bowers et al., 2015) and (Mack et al., 2015) are tested over a set of blog posts
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by users and the results show the efficiency of ILT-based anonymization.

The work of (Zhang et al., 2018) first introduces a verified version of differential

privacy specified for textual data, namely, ε-Text Indistinguishability to overcome

the curse of dimensionality problem when original differential privacy is deployed

on high-dimensional textual data. It then proposes a framework which perturbs

user-keyword matrix by adding Laplacian noise to satisfy ε-Text Indistinguishability.

Another work (Li et al., 2018) uses the idea of adversarial learning to generate text

representation. Their framework consists of a generator which generates representa-

tion w.r.t. given task and a discriminator which ensures the representation does not

contain private information.
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Chapter 3

PROTECTING USER PRIVACY IN HETEROGENEOUS SOCIAL MEDIA DATA

Existing anonymization techniques often make a specific assumption regarding the

way social media data is anonymized. In particular, these works assume that it’s

enough to anonymize each aspect of heterogeneous social media data (e.g., structure,

textual, and location information) independently. At the first glance, this assumption

makes sense as anonymization takes time and effort. Moreover, users privacy is pro-

tected while the data utility is preserved at the highest possible level. For example,

lets consider the simplest case study in which published data includes only two aspects

such as (i) structural (e.g., friendship, follower/followee links) and (ii) textual (e.g.,

posts) information. We will then have options as shown in Table 3.1 to anonymize

the data: no anonymization for either aspect, anonymization for one aspect, and

anonymization for both. To ensure anonymization efficiency, as each aspect can be of

different data types, a common practice is to anonymize each aspect independently.

With two aspects as shown in Table 3.1, case 4 is the backbone of the anonymization

techniques for publishing data which is clearly the strongest protection of privacy.

Privacy advocates have argued that sensitive information could be still leaked

from the dataset anonymized considering each of these cases, but we lack conclusive

evidence. It is unclear how the latent relation between different aspects of the data

could be captured, whether the sensitive information with the scale of millions of

users could be still leaked and what the success rate of such an attack could be. In

particular, in this research, we are interested to study these issues by answering the

following research questions:
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Table 3.1: Four Different Cases for Social Media Data Anonymization. Each Check

Mark Corresponds to the Aspect of Data Being Anonymized.

Case 1 Case 2 Case 3 Case 4

Structural Anonymization 7 7 X X

Textual Anonymization 7 X 7 X

• (RQ1): Is the data private if just one of its two aspects is anonymized?

• (RQ2): Is case 4, the strongest among four cases, sufficient for anonymizing social

media data?

Following the work of (Narayanan and Shmatikov, 2009), we seek to answer these

questions by taking an adversary approach to assay the privacy level of anonymized

social media data. However, existing de-anonymization attacks require a list of tar-

get users. A target user is an individual v with the known identity in social media

network T which will be mapped to a user in the given anonymized dataset. These

techniques also require background knowledge Bv for each targeted user v before ini-

tiating the attack. These methods require time and effort to find a proper set of

target users and gather their knowledge which may not be realistic in practice. To

address these challenges, we first introduce a new generation of adversarial attacks

specialized for social media data which does not require collecting information before

initiating the attack. Furthermore, to assess different ways of the social media dataset

anonymization and answer the aforementioned questions, we propose a novel Adver-

sarial Technique for Heterogeneous Data, namely, Athd (Beigi et al., 2018) which

utilizes the latent relationship between different aspects of data. This new approach

particularly well suits for social media data in which it is concerned with assessing

the strengths of anonymizing different aspects of data. Our contributions could be
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summarized as follows:

• We introduce a new generation of adversarial attacks applicable to social media

network data.

• We propose a novel de-anonymization technique Athd to assess the privacy level

of anonymized heterogeneous social media data.

• We implement and evaluate Athd on two real world datasets to study the strengths

of anonymization techniques in context of heterogeneous social media data. Our re-

sults demonstrates hidden relations between different aspects of the heterogeneous

data make data anonymization techniques inefficient.

3.1 Data Preprocessing and Anonymization

In this section, we review the technical preliminaries of protecting user privacy

in social media data, i.e. data anonymization, which is required for the rest of this

discussion. Without loss of generality, in this chapter, we assume that the published

social media data consists of two aspects, namely, structure and textual informa-

tion. More formally, we model the social network data as D = (V , E ,P) where

V = {i |i is a node} is the set of nodes or users, E = {ei ,j |i , j ∈ V∧ there is a link

from user i to user j} is the set of links between any two nodes in V (e.g., friend

and follower/followee relations), and P = {Pi |i ∈ V} is the set of all posts (textual

information) associated with users in V . Pi = {pi
1 , p

i
2 , ..., p

i
mi
} denotes posts by user i

where mi is the number of posts for user i. Note that links in social networks could be

either directed (e.g., follower/followee relation in Twitter) or indirected (e.g., friend

relation in Facebook). We focus on directed graphs, although it is straightforward to

apply the settings on undirected graphs as well. In order to preserve users’ privacy,

data publisher should anonymize the social media data D using privacy preservation
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techniques. Next, we will discuss techniques deployed to secure structural and textual

information.

3.1.1 Structural Information Anonymization

To anonymize structural information, we first remove users’ personally identi-

fiable information (PII) such as user’s name and ID. Techniques such as k-degree

anonymity (Liu and Terzi, 2008), sparsification, perturbation and switching (Ji et al.,

2015) are used for adding or removing nodes and links. The aim of k-anonymity meth-

ods is to anonymize each node so that it is indistinguishable from at least k− 1 other

nodes (Sweeney, 2002). Liu et al. proposed to achieve k-degree anonymization (Liu

and Terzi, 2008) through edge addition/deletion strategies (Liu and Terzi, 2008).

Sparsification technique randomly removes a set of p|E| edges (p is the anonymiz-

tion coefficient) while switching methods switches p|E|
2

pairs of edges. Perturbation

approach first removes a set of p|E| edges and then add same amount of edges ran-

domly (Ji et al., 2015).

3.1.2 Textual Information Anonymization

In this work, we anonymize the textual information using ε-differential privacy (Dwork,

2008) by first converting each user’s post into a numerical vector using tokenizing and

calculating Term Frequency Inverse Document Frequency (TF-IDF) scores and then

adding Laplacian noise to the text vector. Details are discussed next.

Text Processing. To anonymize user i ’s posts, we first remove user’s PII such as

user ID (including mentioning and retweeting), name and link information from her

texts. Then, we follow a standard process to convert each of user’s posts to a numerical

vector. To do so, we first consider posts by all users in the dataset and perform some

pre-processing including stop word removal. The unigram model is then deployed
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to construct the word feature space W . Finally, we use Term Frequency Inverse

Document Frequency (TF-IDF) as a feature weight to derive the vector xil for each

post pi
l of user i . TF-IDF score for each word t is calculated as:

xil (t) = f il (t) ∗ log
M

nt
(3.1)

where, f il (t) is the number of times word t appeared in the post pi
l , M is the total

number of posts in the data and nt is the number of posts that the word t was used

in them. We can represent pi
l with the corresponding vector xil. All users’ posts can

be then denoted by the post-word matrix X ∈ RM×|W| where |W| denotes the size

of the word space. Relations between users and posts can be also represented via a

user-post matrix W ∈ RN×M where N is the number of users and Wij = 1 if post j

was posted by user i and Wij = 0 otherwise. Next, we will discuss how we leverage

differential privacy technique to anonymize the textual information.

Anonymizing Textual Information with Differential Privacy. We use differen-

tial privacy technique discussed in Section 2.3 to anonymize the textual information.

Differential privacy aims at maximizing privacy of users when a statistical query is

submitted over a database and an answer is retrieved. We use Laplacian mechanism

in order to satisfy differential privacy for real valued queries by adding a Laplacian

noise (Dwork, 2008). Assume that A(D) is the real value response to a certain query

A. Then, a random noise Y(D) is generated from Laplacian distribution and added

to A(D) as:

K (A (D)) = A (D) + Y (D) (3.2)

In order to anonymize the post-word matrix X in a way that ε-differential privacy

is preserved, we need to apply the discussed mechanism K(.) on the original matrix

X and transform it into a new one X ′ = K(X). Instead of transforming the entire

matrix X at once, we can transform each individual row of the matrix by adding
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a Laplacian noise to Xi to create a new row X′i. Considering the identity query

function AI(·) where AI(D) = D, the sensitivity of AI(·) can be defined as follows:

∆(AI) = max‖Xi −Xj‖1 (3.3)

where Xi and Xj are any two random row vectors from X. Following the equation 3.2,

a Laplacian noise will be added to each vector Xi:

K(AI(Xi)) = Xi +
[
Yi1, ...Yi|W|

]
, i = 1, ..., n (3.4)

Similarly, Yij’s are drawn i.i.d. from Laplacian distribution with zero mean and

∆(AI)/ε scale parameter. After anonymizing the textual information, the anonymized

post-word X and user-post W matrices will be published. The information regrading

the word feature space W will be released by the data publisher as well.

3.2 Social Media Adversarial Attack

De-anonymization techniques have been proposed in the literature as a counterpart

to data anonymization research direction (Yartseva and Grossglauser, 2013; Pedarsani

et al., 2013; Ji et al., 2016a; Fu et al., 2015; Qian et al., 2016). De-anonymization works

further help improve anonymization techniques and reduce privacy breach by probing

the potential drawbacks of anonymization techniques. Figure 3.1(a) depicts how these

de-anonymization approaches work. These works assume that the adversary has been

given a list of target users to de-anonymize requiring adversarial to collect background

knowledge about target users before initiating the attack (Abawajy et al., 2016).

Narayanan et.al. (Narayanan and Shmatikov, 2009) discuss different ways of col-

lecting background knowledge such as crawling data via social media networks API.

Since these methods require time and effort to gather knowledge, it may not be re-

alistic in practice for two reasons: (1) the number of target users can be very large,
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(a) Traditional De-anonymization. (b) Proposed Social Media Adversarial At-

tack

Figure 3.1: Traditional De-anonymization vs. Proposed Social Media Adversarial

Attack.

thinking about the number of users in Twitter; and (2) most of the online social

media APIs have rate limits on the number of request a user can make through their

APIs in a specific time window. Also, these APIs can only provide a random small

portion of available data for each search query. This makes it infeasible to collect the

background information for a significant number of users in T in order to find the one-

to-one mapping between users in D and T . Therefore, the above target-user-based

approach cannot be applied to social media users when no list of target user is given.

To address these shortcomings, we introduce a new generation of adversarial attacks

(Figure 3.1(b)) specialized for social media network data. This approach does not

require the attacker to gather background knowledge B before starting the attack. In

fact, users registered in social media which are available via online APIs are the ad-

versaries’ only source of information. The adversary can send queries to these APIs,

anytime during the adversarial process. It is formally defined bellow: Next, we will

accordingly discuss the details of our proposed de-anonymization approach, Athd,

which does not require collecting target users and their background information and

is proposed to further evaluate heterogeneous social media anonymization.

34



3.3 Adversarial Technique for Heterogeneous Data

Our proposed de-anonymization technique, adversarial technique for heteroge-

neous data (Athd), uses different aspects of data, i.e., graph structure and users’

textual information to identify the real identity of users in the anonymized dataset

D = (V , E ,X,W,W). We posit that this attack could be applied on various aspects

of data and is not limited to only two data aspects or structural and textual infor-

mation. The main idea behind de-anonymization is to find the most similar user in

social media T to the user u in the anonymized dataset. Here, we follow the same ap-

proach as the existing works, meanwhile our goal is to design a new framework which

exploits the hidden relations between different aspects of the data, to eventually map

the users to their real profile in T .

Our proposed de-anonymization consists of three main steps. Given the anonymized

dataset D, we first extract the most revealing information for u. Second, we search

those information in search engine of the targeted social media T . This search re-

turns a list of people whose posts include the inquired query. We save all the returned

candidates as a candidate set. Third, we identify the profile from the candidate set

most similar to the user u . The details of each of three steps are discussed next.

3.3.1 Step 1: Extracting the Most Revealing Information

The first step includes extracting the most revealing information for user u via

social media API. In this work, we rather use textual information since it is not

straightforward to look up information related to links. We are thus interested in

extracting the most revealing textual information of user u. We assign a score sl to

each post l of u, {l ∈ {1, ...,M}|Wul = 1} to measure how unique each post l is.

Each post l has been vectorized using tf-idf approach and is represented in l-th row

35



of the post-word matrix X. Given the vector representation Xl of post l, the score sl

is calculated as,

sl =

∑W
t=1 Xl(t)

|W|
(3.5)

The higher this score is, the more unique and thus the more revealing post l would be.

Based on this, we rank user u’s posts and select the top-k posts as the most revealing

information.

3.3.2 Step 2: Finding a Set of Candidates

The goal of this step is to find a set of candidates for each user u, given the top-k

most revealing posts. To do so, for each nominated post l from step 1, we select set

of words S whose tf-idf scores are greater than the average of the tf-idf scores for

the words in the post l, S l = {t|Xl(t) > sl}. This approach helps to not to select

useless words which have non-zero tf-idf values only due to data distortion during the

anonymization process. Therefore, the words with higher chances of being posted in

a real text are selected. This step results in a set of queries Qu = {q(1)
u , q

(2)
u , ..., q

(k)
u }.

We construct the query q
(i)
u from set S i, i ∈ {1, ..., k} as q

(i)
u = {word ∈ S i}. Each

of q
(i)
u ∈ Qu is queried through the T ’s search engine. Result includes a set of users

who have published posts including keywords in q
(i)
u .

Integrating results from all queries in Qu, we have a set of candidate users for

user u which is denoted by C = {c1, c2, ..., c|C|}. Combining steps 1 and 2, we first

find posts which are the most revealing for user u and then for each selected post we

select the words that are more likely to be used by the same user. The result will be

a set of candidates for u.
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3.3.3 Step 3: Matching-Up Candidates to Target

In the last step, we find the most similar candidate to user u. We shall define a

metric which measures the similarity between each user u and ith candidate ci ∈ C.

Previous works (Narayanan and Shmatikov, 2009; Ji et al., 2016b,a; Qian et al., 2016;

Nilizadeh et al., 2014) have solely leveraged the structural properties to find the

similarity between a target user v and users in an anonymized dataset. However,

given the properly anonymized network, the attacker is not be able to accurately find

the similarity between users by just incorporating structural properties. We use other

aspects of the data (even if they are anonymized) along with structural properties

to reveal interesting information that could be leveraged for inferring the similarity.

Location, textual and profile information are good examples of such social media data

aspects. We consider textual information as the second aspect of the data. We stress

that out proposed approach is not limited to textual and structural information and

could be generalized to any data type. We also assume that the adversary is not

aware of details of deployed anonymization techniques. Next, we define two sets of

features to calculate the similarity between u and her i-th candidate ci.

Structural Features. It has been also shown that users can be uniquely identi-

fied using their neighbors degree distributions (Hay et al., 2007). Following previous

works (Sharad, 2016), we thus leverage degree distribitons of u’s neighbors N (u) (i.e.

all followers and followees of u) in order to represent her structural features. Note

that properties such as betweenness, closeness, and eigenvector centrality cannot be

considered as u’s structural features since it requires having access to the complete

network of users in T which is not feasible in practice. We quantify degree distribu-

tions by categorizing them into b bins with size of δ in a way that each bin contains

the number of neighbors that have the degree in assigned range of that bin. For
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directed graphs, neighbors of each user can be divided into two groups of follower and

followee and final feature set is computed by concatenating result of each group.

Textual Features. Remind that for user u, the attacker is given a set of mu

textual vectors as well as word space features W . For each candidate ci, we collect

a set of θ recent posts by sending requests to the T API. The collected posts are

then concatenated in one unified document. Next, ci’s PII will be removed from the

document and the corresponding text vector is then created given the word space

W following the similar approach disccused for text processing. Textual features for

users u and ci are thus represented by a set mu = {t1, t2, ...tmu} and a textual vector

tci , respectively.

Calculating Users Similarity. Given two groups of structural and textual

features, similarity between u and ci is computed as the linear combination of their

textual and structural similarities,

Sim (u, ci) = αSimstruct (u, ci) + (1− α)Simtext (u, ci) (3.6)

where α controls the contribution of structural similarity. We further define Simstruct(u, ci)

as the cosine similarity between the two structural vectors computed as Simstruct (u, ci) =

cos (su, sci). Textual similarity between u and ci is also computed as the average of

cosine similarity between ∀tj ∈ mu and tci ,

Simtext(u, ci) =

∑|mu|
j=1 cos (tj, tci)

mu

(3.7)

Improving Similarity Measure. Merely checking the structural and textual

similarity between the two users’ features may lead to biased and not accurate results.

Moreover, the attacker needs a more powerful similarity metric which could reduce the

effect of anonymization. To handle this issue, we follow a fundamental well-defined

problem in the field of image processing (Buades et al., 2005), image denoising. Non-

local mean filters are a traditional way to remove noise from image data (Buades
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et al., 2005). This approach replaces a pixel’s value with the weighted average of all

other pixels around it. The amount of weighting for neighboring pixels is based on

the degree of similarity between a small patch centered on that pixel and a small

patch centered on the pixel being denoised (Buades et al., 2005). Inspired by the idea

behind non-local mean filters (Buades et al., 2005), we use the feature values of other

users similar to user u in order to reduce effect of anonymization. To apply this idea,

we first need to find similar users to u– here is where the concept of homophily comes

in handy. Homophily is one of the most important social correlation theories which

is also observed in social media and explains the tendency of individuals to associate

and create relationship with similar ones (McPherson et al., 2001; Crandall et al.,

2008).

Following the similar idea to non-local means filtering, we leverage homophily and

consider user u’s neighbor set N (u) as set of similar users to her. Utilizing homophily

also helps in capturing the hidden relations between different aspects of the data. We

thus calculate the similarity between N (u) and neighbors set N (ci) for candidate ci.

We first quantify the degree distributions for all users in both neighbors set N (u)

and N (ci) as discussed earlier for strucural features. The structural similarity of

neighbors are then calculated based on the cosine similarity between sN (u) and sN (ci).

Following the procedure introduced for extracting textual features, we collect and

concatenate θ recent posts for all neighbors in N (ci). Textual similarity between

N (u) and N (ci) is then computed by taking average over the cosine similarities

between textual vector of each user in N (u) and the textual vector of tN (ci). The

total similarity between neighbors will be then calculated as follows,

Sim (N (u),N (ci)) = αSimstruct (N (u),N (ci)) + (1− α)Simtext (N (u),N (ci))

(3.8)

This metric quantifies the fitness of N (u) and N (ci) as the similarity scores of
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their structural and textual properties. It reduces the effect of data anonymization

and also aligns well with the assumption that if u and ci correspond to the same

identity, their neighbors N (u) and N (ci) should also match (Fu et al., 2015). Finally,

the total similarity between u and ci can be computed as the combination of their

individual similarity and the fitness of their neighbors:

Simtotal(u, ci) = βSim (u, ci) + (1− β)Sim (N (u),N (ci)) (3.9)

We empirically find that random selection of ci’s neighbors with the size λ works

well in our problem and we are not required to collect all neighbors information

from T ’s API. This will make the de-anonymization approach more efficient. Note

that many noise removal approaches have been designed for specific kinds of noise

(e.g., Guassian noise) which could be used to remove the noise from the data and

particularly the vector of textual information. However, using certain noise removal

approaches may not always have positive effects. In fact, it can lead to a wrong

estimation of users’ properties when the attacker does not have any prior knowledge

of the deployed anonymized technique.

The proposed Athd approach is shown in Algorithm 1. The input to the algo-

rithm is the anonymized dataset and the output is the top-h mapped profile accounts

in T . Lines 2–5, correspond to the first step of Athd. The set of candidate set (step

2) is then found through lines 6–9. The similarity between u and each of the selected

candidates is calculated in lines 10–12. Finally, top-h candidates with the maximum

similarity to u will be returned. This re-identification procedure is then run over all

users in the anonymized dataset. Note Athd is independent of deployed anonymiza-

tion techniques either for the textual or structural information. In the next section

we will discuss how our proposed de-anonymization could be generalized to the social

media data with any type of components.
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Algorithm 1 Adversarial Technique for Heterogeneous Data

Input: user u, Anonymized Data D= {V , E , W, X, W}, k, λ, θ, h, α, β

Output: Top-h mapped accounts in targeted social network T

1: Initialize the candidate set C = φ.

2: for each anonymized text vector of post l for u do

3: Calculate score sl according to Eq.3.5.

4: end for

5: Select top-k posts with the highest score sl as the most revealing information.

6: for For each text vector l in top-d posts do

7: Select words with tf-idf scores Xl(t) > sl to create search query q
(l)
u .

8: Search query q
(l)
u in T search engine and add results to C.

9: end for

10: for each candidate ci in C do

11: Calculate similarity between u and ci according to Eq.3.9.

12: end for

13: Return the top-h candidates with maximum similarity

3.3.4 Generalizability of Athd

Our framework can be generalized through abstraction to different social media

data, assuming that our anonymized data consists of two different aspects, A1 and

A2 and the attacker is willing to initiate an attack by mapping u to a real profile in

the targeted social media T . As discussed before, the first step is to extract the most

revealing information from A1 for user u by using the same concept as tf-idf scores.

The second step includes selecting a set of candidate profiles for u by searching for

the extracted information from the previous step through T ’s search engine. Finally,

the similarity between u and her candidates are calculated using the combination of
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features of existing data components, A1 and A2. Features of the most similar users

to u (e.g., neighbors) are also incorporated as well to reduce the anonymization effect

while capturing the hidden relation between different aspects of the data.

3.4 Experiments

In this section, we seek to answer the introduced research questions, but we first

need to evaluate the efficiency of proposed adversarial technique Athd. We begin

this section by introducing the dataset and anonymization techniques we used. Then,

we compare the results of Athd against the state-of-the-art de-anonymization bench-

marks to evaluate its effectiveness. Next, we use Athd to assess the anonymization

power of each of the four cases to answer the research questions:

• (RQ1): Is the data private if just one of its two aspects is anonymized?

• (RQ2): Is case 4, the strongest among four cases, sufficient for anonymizing social

media data?

3.4.1 Datasets

We use two different datasets from two large social media websites, Twitter and

Foursquare. Twitter is a prevalent and well-known microblogging social media allows

millions of active users interacting with each other via short posts, called tweet.

Foursquare is a location based social media in which users share their location with

friends. Users can also leave tips about different places. We collect the Twitter dataset

using Twitter API using the snowball sampling technique as follows. We begin with a

random initial seed of users and for each user u in the seed, we obtain a random subset

of size 100 of her posted tweets as well as a subset of size 500 of her follower/followee

information. We repeat the same process for each u’s followers/followees. This way
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Table 3.2: Statistics of the Crawled Datasets.

(a) Twitter

# of Users # of Edges Avg. Clustering Coefficient

6,789 244,480 0.219

Density # of Tweets # of Unigrams

0.005 478,129 208,483

(b) Foursquare

# of Users # of Edges Avg. Clustering Coefficient

22,332 229,234 0.295

Density # of Tips # of Unigrams

0.0005 124,744 103,264

we build our final dataset which consists of the users in the initial seed and their 2-

hops connections. We follow the same procedure to collect the data from Foursquare

API by considering a random initial seed of users. We collect each user friends as well

as her tips on different locations. We build the final dataset by repeating this process

for 2-hops connections. Note that in both datasets, we only keep the information of

users who have posted at least one tweet or tip.

Next, we will apply various anonymization techniques on the obtained dataset–

this is described in the next section. Also, we utilize the Twitter’s advanced search

engine 1 and Foursquare search 2 during the de-anonymization process for Twitter

and Foursquare data, respectively. It would be also worthwhile to add that we already

have the ground truth for the re-identification, since the real profiles of the crawled

1https://twitter.com/search-advanced?lang=en

2https://foursquare.com/explore?
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users are known to us beforehand. Table 3.2 summarizes the statistics of our datasets.

3.4.2 Anonymization Approaches

We use different anonymization techniques to evaluate the introduced different

anonymization cases in Table. 3.1. Following previous work (Fu et al., 2015), we

choose different algorithms for structural information anonymization as follows:

• Naive Anonymization. This approach only masks users’ identifiers (PII), and

does not change the graph structure. This is the simplest approach and thus we

would expect the highest vulnerability and hence best de-anonymization result.

• Sparsification. This work randomly eliminates p|E| edges where p is the anonymiz-

tion coefficient.

• k-deg(add) (Liu and Terzi, 2008). This anonymization method ensures that k-

degree anonymity is preserved by only adding edges.

• k-degree(add & del) (Liu and Terzi, 2008). This method ensures that k-degree

anonymity is preserved by performing simultaneous add/removal of the edges.

• Switching. This method selects two random edges (i1, j1) and (i2, j2) from the

original graph such that {(i1, j2) /∈ E∧(i2, j1) /∈ E}. Then, it switches pairs of edges,

i.e. remove edges (i1, j1) and (i2, j2) and add new edges (i1, j2) and (i2, j1) instead.

This step is repeated p|E|
2

times which results in p|E| edge removals/additions.

• Perturbation. This method is also known as unintended anonymziation and has

two main steps. It first removes p|E| edges in a same way as sparsification method

does. Then, it adds random false edges until the number of edges in the anonymized

graph is the same as the original one.
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Furthermore, the Textual information is anonymized using the techniques dis-

cussed earlier in Section 3.1.2 as follows:

• Naive Anonymization. This approach first removes users’ identifiers and links

from the tweets and then vectorize it.

• Diff Privacy. This method takes the output of the naive anonymization technique

and then ensures differential privacy by adding Laplacian noise to the generated

text vector.

3.4.3 Experimental Settings

We evaluate de-anonymization approaches by a metric called success rate X = nc
N

,

where nc is the total number of users that have been successfully re-identified and N

is the total number of users in the anonymized dataset!(Narayanan and Shmatikov,

2009). Larger values of this measure correspond to higher privacy breach.

Following the previous works (Fu et al., 2015; Qian et al., 2016), we set k = 10

for k-degree anonymity and p = 0.1 for sparsification, purturbation and switching

methods. The ε for differential privacy technique is set as ε = 0.01. We also set the

parameters of Athd as follows: {k = 10, α = 0.5, β = 0.7, λ = 20, θ = 50, b = 7, δ =

50}. The values of δ and b for quantifying degree distributions are chosen such that it

can accommodate higher degrees variation. Empirical results showed that the choice

of δ and b does not have a huge impact on the final results. We also set the number

of returned profiles as h = 1. Clearly, increasing the value of h will increase the

de-anonymization success rate. To answer the research questions, we make 12 copies

of the original data and sanitize each copy with a different combination of structural

and textual anonymization techniques discussed earlier. For evaluation, we define two

different variants of our proposed approach, Athd, as follows:
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• Athd-Simple: This uses Eq.3.6 and Eq.3.7 to calculate similarity.

• Athd-Improved: This variant uses Eq.3.9 to improve similarity measure by incor-

porating features from neighbors to reduce the anonymization effect.

3.4.4 Performance Comparison

To evaluate the effectiveness of Athd, we benchmark its two variants, Athd-

Simple and Athd-Improved, against the following two baselines.

• Narayanan et. al. (Narayanan and Shmatikov, 2009): It computes the similarity

between an unmapped user u and a candidate ci, by using the number of neighbors

of u that have been mapped to neighbors of ci.

• ADA (Ji et al., 2016a): This method considers a combination of structural, relative

distance and inheritance similarity. We only use degree centrality for measuring

structural similarity as we do not have access to the global structure of ci in T .

In general, these baselines are seed-based approaches, meaning that they map a

known target user v in T to a user in the anonymized data by utilizing a small set

of initially mapped seed users and then propagating the mappings through the whole

data. These works also need a previously collected background knowledge B. We

need to use same settings to make a fair comparison between the baselines and our

proposed framework. To do so, we first make an initial seed set of the size ν = 20,

by mapping a set of random users in the anonymized dataset to their real identities

for each of Twitter and Foursquare data. Then, we repeat the same 3-step procedure

as in the Athd for the baselines, except that we the similarity metric in the last

step is replaced with those of the baselines. Performance comparison results for both

datasets are demonstrated in Table 3.3 with the following observations:
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Table 3.3: Comparison of the De-anonymization Success Rates for Various

Anonymization Techniques. Higher Values Imply Higher Privacy Breach. Numbers

in Parentheses Demonstrate the Corresponding Case Number in Table 3.1.

(a) Twitter

Athd-Improved Athd-Simple ADA Narayanan et. al.
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Naive 0.943(1) 0.802(2) 0.820(1) 0.695(2) 0.672(1) 0.551(2) 0.507(1) 0.410(2)

Sparsification 0.808(3) 0.699(4) 0.732(3) 0.621(4) 0.609(3) 0.511(4) 0.431(3) 0.343(4)

k-deg(add) 0.789(3) 0.681(4) 0.690(3) 0.612(4) 0.589(3) 0.498(4) 0.397(3) 0.313(4)

k-deg(add & del) 0.758(3) 0.653(4) 0.689(3) 0.582(4) 0.580(3) 0.472(4) 0.381(3) 0.299(4)

Switching 0.691(3) 0.581(4) 0.601(3) 0.518(4) 0.497(3) 0.401(4) 0.352(3) 0.261(4)

Perturbation 0.650(3) 0.568(4) 0.536(3) 0.424(4) 0.432(3) 0.361(4) 0.298(3) 0.201(4)

(b) Foursquare

Athd-Improved Athd-Simple ADA Narayanan et. al.
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Naive 0.800(1) 0.679(2) 0.710(1) 0.598(2) 0.569(1) 0.482(2) 0.440(1) 0.375(2)

Sparsification 0.723(3) 0.629(4) 0.640(3) 0.549(4) 0.511(3) 0.453(4) 0.396(3) 0.302(4)

k-deg(add) 0.694(3) 0.599(4) 0.611(3) 0.528(4) 0.513(3) 0.415(4) 0.348(3) 0.274(4)

k-deg(add & del) 0.661(3) 0.573(4) 0.591(3) 0.498(4) 0.486(3) 0.394(4) 0.302(3) 0.263(4)

Switching 0.613(3) 0.543(4) 0.551(3) 0.461(4) 0.430(3) 0.352(4) 0.298(3) 0.212(4)

Perturbation 0.564(3) 0.493(4) 0.451(3) 0.367(4) 0.340(3) 0.283(4) 0.230(3) 0.187(4)
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• Narayanan et. al. is the least effective de-anonymization on both datasets. The

reason is because its utilized similarity metric relies on the set of previously mapped

neighbors and ignores the available structural and textual information provided in

the data.

• ADA approach is more powerful than Narayanan et. al. since it incorporates

structural properties of the data.

• Anonymized data is more vulnerable to Athd-Simple compared to ADA and

Narayanan et. al. This is because both structural and textual information are

incorporated in the similarity metric used in Athd-Simple. This confirms that in-

tegrating different components of data plays an important role in de-anonymization

for heterogeneous social media data.

• Athd-Improved technique achieves the best results for both Twitter and Foursquare

datasets. This demonstrates the effectiveness of utilizing homophily and the fea-

tures of neighbors for more effective de-anonymization.

To recap, the above observations confirm the efficiency of our proposed approach

Athd.

3.4.5 Assessing Effectiveness of Anonymization

Having discussed the efficiency of the proposed Athd de-anonymization approach,

we now seek the answer to the last two questions. The performance results w.r.t. the

four anonymization cases are demonstrated in Table 3.3. The numbers in parentheses

demonstrate the corresponding case number defined earlier in the introduction. We

make the following observations for both datasets:

• Publishing the data with no anonymization for either aspect (i.e., case 1) resulted in
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a large information breach in both Athd-Simple and Athd-Improved approaches

which suggests the least amount of protection as expected.

• In general, anonymizing either aspect of the data (i.e., cases 2 and 3) protects users

privacy more than case 1.

• Case 4 is the strongest protection among the four cases. Accordingly, the answer

to the second question is no.

• Although case 4 provides the strongest protection, Athd-Improved was able to re-

identify at least 56% of the users in the anonymized dataset, which is a significant

number in the field of privacy. This shows that case 4 is far from sufficient for data

anonymization.

• Sparsification is the most vulnerable anonymization approach against both Athd-

Simple and Athd-Improved techniques as it makes the least amount of changes to

the link information.

• Although the switching and perturbation methods both add and deletes the same

number of edges, switching is more vulnerable to the de-anonymization since it

preserves the node degrees.

• Despite the fact that k-degree anonymity based approaches guarantee the user

re-identification probability to be at most 1
k
, but they fail because of using extra

textual information.

According to these observations, the answers to the introduced research questions

are no. These results further indicate that despite anonymization of all aspects of

data is essential, but it is not sufficient to anonymize each aspect independently

from others. This is because an adversary could easily breach privacy no matter
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what anonymization algorithm has been used. Consequently, serious privacy breach

could happen when the published data is heterogeneous. This necessitates taking

into account the latent relations in different portions of the social media data for

anonymization.

3.5 Conclusion

In this chapter, we study a new problem of user data privacy for social media via

an adversarial approach. Our work differs from the existing works due to unique prop-

erties of social media data: a social media site has an inordinate number of users and

the site only allows for a limited number of data queries. Since anonymization takes

time and requires dedicated efforts, anonymization efficiency should be maximized.

Thus, we evaluate the strengths of anonymization techniques in the context of social

media data and verify if it is sufficient. We propose Athd, a novel adversarial tech-

nique by exploiting heterogeneous characteristics of social media data. Our results

illustrate that anonymizing even all aspects of data is not sufficient for protecting

user privacy due to hidden relations between different aspects of the heterogeneous

data.
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Chapter 4

PROTECTING USER PRIVACY IN WEB BROWSING HISTORY DATA

The results of our study in the previous chapter 3 highlights the dilemma between

protecting user privacy and preserving utility. One type of user-generated data is the

web browsing traces individuals leave online. The web browsing history is the list of

web pages a user has visited in past browsing sessions and includes the name of the

web pages as well as their corresponding URLs. Online users usually expect a secure

environment when surfing the Web wherein their personally identifiable information

(a.k.a. PII) could be kept hidden from prying eyes. However, the web browsing his-

tory log is stored by the web browser on the device’s local hard drive. In addition

to the web browser, users’ browsing histories are recorded via third-party trackers

embedded on the web pages to help improve online advertising and web surfing expe-

rience. Moreover, Internet Service Providers (ISPs) such as AT&T and Verizon, have

full access to individuals’ web browsing histories. ISPs can infer different types of

personal information such as users’ political views, sexual orientations and financial

information based on the sites they visit. Some countries have policies for protecting

individuals’ privacy. For example, European Union (EU) has regulated a new data

protection and privacy policy for all individuals within the European Union and the

European Economic Area (a.k.a. General Data Protection Regulation (GDPR)). 1

United States government also had Federal Communications Commission’s (FCC)

landmark Internet privacy protections for users such that ISPs could have been pun-

ished by the Federal Trade Commission (FTC) for violating their customers’ privacy.

However, not all countries have such policies. FCC’s Internet privacy protection has

1https://bit.ly/1lmrNJz
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been also removed in late March of 2017. This new legislation allows ISPs to monitor,

collect, share and sell their customer’s behavior online such as detailed Web browsing

histories without their consent and any anonymization. 2

Assuming that ISPs and online trackers make browsing history data pseudony-

mous before sharing, a recent study has shown the fingerprintability of such data by

introducing an attack which maps a given browsing history to a social media profile

such as Twitter, Facebook, or Reddit accounts (Su et al., 2017). Although linking

browsing history to social media profiles may not always lead to figuring out one’s

real identity, it is a stepping stone for attackers to infer real identities. This identity

exposure may result in harms ranging from persecution by governments to targeted

frauds (Christin et al., 2010; Beigi et al., 2018).

The onus is now on the users to protect their browsing history from any kind of ad-

versaries like ISPs and online trackers. There are approaches to help users shield their

web browsing history such as browser add-ons or extensions (e.g., ‘Ghostery’, ‘Privacy

Badger’ and ‘HTTPS everywhere’), Virtual Private Networks (VPN) services, Tor,

and HTTPS. However, none of the above solutions can prevent ISPs from collecting

users’ web browsing history and protect users’ identities when such information is re-

vealed because de-anonymization attacks will still work (Su et al., 2017). Moreover,

using these solutions could result in a severe decrease in the quality of online personal-

ization services due to the lack of customer’s information. This information is critical

for online vendors to profile users’ preferences from their online activities to predict

their future needs. So users face a dilemma between user privacy and service satis-

faction. Hereafter, we refer to a user’s satisfaction of online personalization services,

as online service utility, or simply, utility. The aforementioned challenges highlight

the need to have a web browsing history anonymizer framework, which can help users

2http://wapo.st/2mvYKGa
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strike a good balance between their privacy and utility. Traditional privacy preserv-

ing web search techniques such as (Yang et al., 2016; Zhang et al., 2016; Zhu et al.,

2010) are designed for different purposes and are thus ineffective in accomplishing our

goals.

Intuitively, the more links we add to a web browsing history, the more privacy

we can preserve. An extreme case is when the added links completely change a

user’s browsing history to perfectly obfuscate the user’s fingerprints. Some existing

methods include ISPPolluter, 3 Noiszy, 4 and RuinMyHistory 5 which pollute a web

browsing history by adding links randomly. However, such methods largely disturb

user profiles and thus results in the loss of utility of online services. Similarly, the

maximum service utility can only be achieved at the complete sacrifice of user privacy.

It is challenging to design an effective browsing history anonymizer that retains high

utility. In this chapter, we aim to study the following problem: how many links and

what links should be added to a user’s browsing history to boost user privacy while

retaining high utility.

Note that links cannot be removed from the browsing history as all of user’s

activities have been already recorded by ISPs. The research requires quantifying

the privacy of users and the utility of their services. We address these challenges

within a novel framework, called PBooster (Beigi et al., 2019a). This framework

exploits publicly available information in social media networks as an auxiliary source

of information to help anonymizing web browsing history while preserving utility. Our

contributions can be summarized as follows.

• We address the problem of anonymizing web browsing histories while retaining high

3https://github.com/essandess/isp-data-pollution

4https://noiszy.com/

5https://github.com/FascinatedBox/RuinMyHistory
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service utility. We show that this problem cannot be solved in polynomial time.

• We propose an efficient framework, PBooster, with measures for quantifying the

trade-off between user privacy and the quality of online services.

• We conduct experiments and evaluate the proposed approach in terms of privacy

and utility. Results demonstrate the efficiency of PBooster in terms of privacy-

utility trade-off.

4.1 Threat Model and Problem Statement

Before discussing the details of the proposed solution, we first formally define

browsing history, then review the web browsing history de-anonymization and finally

introduce the problem of web browsing history anonymization. For each user, web

browsing history is defined as the list of web pages a user has visited in his past

browsing sessions and includes the corresponding URLs of the visited web pages.

This log is recorded by the browser, third-party trackers and ISPs. In addition to

his browsing history, other private data components such as cache, cookies and saved

passwords are also saved during a browsing session which are sometimes referred

to under the browsing history umbrella. However, in this work, we separate these

pieces of information from web browsing history. Given a user u, we assume his web

browsing history Hu is generated by a sequence of n links Hu = {l1, ...ln} where li

corresponds to the i-th URL visited by the user u.

4.1.1 Threat Model

De-anonymizing browsing histories is a type of linkage attack which is introduced

by Su et al. (Su et al., 2017). This de-anonymization attack links web browsing

histories to social media profiles. The main idea behind this threat model is that
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people tend to click on the links in their social media feed. These links are mainly

provided by the set of user’s friends. Since each user has a distinctive set of friends

on social media and he is more likely to click on a link posted by any of his friends

rather than a random user, these distinctive web browsing patterns remain in his

browsing history. Assuming that the attacker knows which links in the history have

resulted from clicks on social media feeds, a maximum likelihood based framework

is developed as a de-anonymization attack which identifies the feed in the system

that has more probably generated the browsing history. This attack can be formally

defined as:

Problem 1. Given user u’s web browsing history Hu = {l1, ...ln} which is consisted

of n links, map u to a social media profile whose feed has most probably generated the

browsing history (Su et al., 2017).

Let’s assume that each user u has a personalized set of recommender links. For

example, this recommendation set could be a set of links appeared in the user’s

social media Feed (e.g., Twitter) which includes links posted by the user’s friends on

the network. Su et. al. (Su et al., 2017) assume that each user visits links in his

recommendation set. Given a browsing history Hu, the attacker finds the most likely

recommendation set that corresponds to the given user u: the recommendation set

which contains many of the URLs in the browsing history and is not too big. This

de-identifies the browsing history. For the detailed proof and implementation of this

attack please refer to (Su et al., 2017). Twitter is selected as a mapping platform for

evaluation of this attack. This work shows that users’ activities in social media can

be used to re-identify them. We next introduce the problem of web browsing history

anonymization.
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4.1.2 Problem Statement

In this work, we define a privacy preserving framework which protects user’s pri-

vacy by combating the de-anonymizing web browsing history threat model we dis-

cussed in Section 4.1.1. In addition, utility here is also defined as user’s satisfaction of

online personalized services. This could also be measured by comparing the quality of

manipulated web browsing history after anonymization with the original one. Given

user u’s browsing history Hu, the goal is to anonymize u’s browsing history by adding

new links to Hu in an efficient manner, such that both the user’s privacy and utility

are preserved, i.e., web browsing history is robust against de-identification attack and

maintains its utility.

We first need to convert links to a structured dataset. One straightforward solution

is to leverage the content of each web page and then map it to a category or a topic

selected from a predefined set. This way, each user will be represented by a set of

categories extracted from all of the web pages he has visited. One typical way for

extracting topics is to manually define them (e.g., sports, fashion, knowledge, etc.)

and then map each web page to the corresponding category. This method requires

a set of keywords related to each topic and then inferring the web page’s topic by

calculating the similarity of its textual content to the given keywords. This solution is

not feasible in practice since it needs frequent updates of keywords for each category

due to the fast growth of the Internet. Moreover, this only provides a coarse-grained

categorization of web pages’ contents. In order to have a finer level of granularity

we follow the same approach as in (Phuong et al., 2014) and adopt Latent Dirichlet

Allocation (LDA) topic modeling technique (Blei et al., 2003). We use the following

procedure to assign topics for each web page:

1. We retrieve a set of web pages to construct a corpus and then use LDA to learn

56



topic structures from the corpus.

2. For each web page, the learned topic model in the previous step is used to infer the

topic proportion and topic assignment based on the textual content of the page.

3. The topic with highest probability from the topic distribution is selected as the

representative topic of the page.

We use T = {t1, ..., tm} to denote the set of learned topics. Then each link in the

browsing history Hu is mapped to a topic in the topic set, tl ∈ T . Matrix Tu ∈ Rn×m

is then used to represent the link-topic relationship for all the links in Hu where

Tu
ij = 1 indicates that i-th link of user u is correlated to the topic tj. The problem

of anonymizing browsing history of user u is then formally defined as:

Problem 2. Given user u’s browsing history Hu, and link-topic matrix Tu, we seek

to learn an anonymizer f to create a manipulated browsing history H̃u by adding

links to Hu to preserve the privacy of user u while keeping the utility of H̃u for future

applications.

f : {Hu,Tu} → {H̃u} (4.1)

We stress that links cannot be removed from the browsing history as all of user’s

activities have been already recorded by ISPs.

4.2 A Framework for Privacy Boosting

The goal of the web browsing history anonymizer is to manipulate the user’s

browsing history by adding links in a way that: 1) user privacy is preserved even

when the adversary publishes the data with the weakest level of anonymization (i.e.,

just removing PIIs) and 2) browsing history still demonstrates user’s preferences so

that the quality of personalized online services is preserved.
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An immediate solution that may come to mind is to add links from popular web

sites. This approach cannot preserve privacy as the adversary can easily remove

popular links from the history and then deploy the attack. Another solution could

be adding links from the browsing history of users who are very similar to u, i.e., his

friends in social media. This approach can preserve the utility of browsing history

but fail to make the user robust to the adversary attack. This is also observed in (Su

et al., 2017) where it was shown that the more a user’s history contains links from his

friends’ browsing activities in social media, the more fingerprints he leaves behind. All

these emphasize the need for an effective solution which can handle the utility-privacy

trade-off.

In this section we will discuss how our proposed algorithm PBooster, can handle

utility-privacy trade-off. To better guide the PBooster and to assess the quality of

the altered history, we need measures for quantifying the effect of adding links on user

privacy and utility. We first present these measures and then detail the PBooster.

4.2.1 Measuring User Privacy

The best case for user privacy is when a user’s visited links (i.e., interests) are

distributed uniformly over different topics. This improves the user privacy by increas-

ing ambiguity of his interests distribution. This makes it harder for the adversary

to infer the real characteristic of the user’s preferences and then re-identify him by

mapping his anonymized information to a real profile. Entropy is a metric which

measures the degree of ambiguity. We leverage the entropy of the user’s browsing

history distribution over a set of predefined topics as a measure of privacy.

We first introduce the topic-frequency vector cu ∈ Rm×1 as 〈cu1, cu2, ..., cum〉 for

each user u, where cuj is the number of links in u’s history related to the topic tj.

Note that
∑m

j=1 cuj = |Hu| where |.| denotes the size of a set. The topic probability
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distribution for each user can be then defined as pu = J(cu) = 〈pu1, pu2, ..., pum〉 where

J is the normalization function of input vector cu where puj =
cuj
|Hu| and

∑m
j=1 puj = 1.

The privacy of user u, which is the degree of ambiguity of his browsing history, can

be captured by the entropy of the topic probability distribution pu. This measures

the spread of the user’s interests across different topics. Given topic probability

distribution, privacy is measured as:

Privacy(pu) = −
m∑
j=1

puj log puj (4.2)

The higher this metric is, the greater the user privacy. The optimal value of this mea-

sure is thus achieved when the user’s browsing links topics are distributed uniformly

across the set of topics.

4.2.2 Measuring Utility Loss

Utility or quality of online services is a measurement of a user’s satisfaction from

the online personalized services he receives based on his online activities. This mea-

surement should be able to estimate the loss of quality of services after manipulating

the user’s browsing history by the PBooster. We quantify utility loss as the differ-

ence between a user’s topic distribution before and after browsing history manipula-

tion. Finding the difference between topic distributions has been exploited in other

applications such as recommender systems (Li et al., 2011). We use the same notion

used in (Li et al., 2011) and quantify the utility loss between pu and p̂u as:

utility loss(pu, p̂u) = 0.5× (1− sim(pu, p̂u)) (4.3)

where p̂u denotes the new topic probability after manipulating history. One typical

choice for the sim is cosine similarity (Li et al., 2011):

sim(pu, p̂u) =
pu.p̂u
‖pu‖.‖p̂u‖

(4.4)
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Since sim ∈ [−1, 1], the output of utilityloss function will be in [0, 1]. According to

this measure, the minimum value for utility loss is when pu = p̂u and the maximum

is reached when p̂u does not have any non-zero value in common with pu.

4.2.3 PBooster Algorithm

We have discussed so far how to quantify a user’s utility and privacy according to

his browsing history. The goal is now to find a set of new links A to add to the brows-

ing history such that, 1) privacy(p̂u) is as large as possible, and 2) utilityloss(pu, p̂u)

is as small as possible. However, as we discussed earlier, the optimal value for privacy

is reached when the user’s interests are spread uniformly across different topics, while

the utility loss is minimized when no changes have been done to the topic distribution

pu. This raises a trade-off issue between user’s privacy and utility loss. Simply put,

maximizing privacy results in the loss of utility and vice versa. In order to optimize

the trade-off between utility loss and privacy for each user u, we define a new scalar

objective function:

G(J(cu), J(ĉu), λ) = λ ∗ privacy(J(ĉu))− utilityloss(J(cu), J(ĉu)) (4.5)

where ĉu is the topic-frequency vector after manipulating browsing history and λ

controls the contribution of privacy in G. We aim to find a set of links A by solving

the following optimization problem:

A∗ = argmax
A

G(J(cu), J(ĉu), λ) (4.6)

where ĉu could be made from H̃u = Hu ∪ A. Topic distribution p̂u is constructed

from ĉu accordingly. It’s notable to say that the value of λ has impact on the inferred

set of links A∗ in a sense that larger values of λ will lead to a browsing history H̃u

with higher privacy while lower λ values result in lower utility loss.
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It is worthwhile to mention that the search space for this problem (Eq.4.6) is

exponential to N (O(m × 2N)), where N is the maximum of the number of links

w.r.t. a topic. Considering this fact, it can be expensive and even infeasible to search

for the optimal solution. We thus decide to approach this problem in an alternative

way. We divide the optimization problem in Eq.4.6 into two subproblems :

1. Topic Selection: Selecting a subset of topics and calculating the number of links

which should be added to each topic in order to maximize the function G as follows:

a∗ = argmax
a

G(J(cu), J(ĉu), λ) (4.7)

where a = 〈a1, .., am〉 ∈ Rm×1 such that each non-zero element ai indicates the

number of to-be added new links which are related to the topic ti. Zero value

means that none of the new links are associated with the topic ti. Consequently,

ĉu is defined as ĉu = 〈cu1 + a1, .., cum + am〉.

This step indicates the number of links which should be added to each topic to

maximize G.

2. Link Selection: Selecting a proper set of links which corresponds to the identified

topics and their numbers found in the previous step.

To recap, the PBooster algorithm anonymizes a user’s browsing history by first

selecting a subset of topics with the proper number of links for each topic (topic

selection phase) and then finding corresponding links for each of them (link selection

phase). Next, we will discuss the possible solutions for each step.

Topic Selection

One brute-force solution to the optimization problem in Eq.4.7, is to evaluate all

possible combinations of a set of topics with different sizes to find the best a∗. The
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exponential computational complexity of this algorithm makes it unacceptable and

even impractical when quick results are required. We thus need a more efficient

solution.

According to a recent study (Guerraoui et al., 2017), having more information

in the browsing history will not necessarily increase either the utility or the privacy.

In other words, with large information available on user’s preferences, observing a

new link would have little to no impact on enhancing utility and privacy of the user.

Simply put, adding more data to the history, could make the user less secured, with

no specific improvement observed in the utility. The submodularity concept formally

captures this intuition. A real valued function f is submodular if for a finite set E

and two of its subsets X , Y where X ⊆ Y ⊆ E , and e ∈ E\Y , the following property

holds:

f(X ∪ {e})− f(X ) ≥ f(Y ∪ {e})− f(Y) (4.8)

This means that adding one element {e} to the set X increases f more than adding

{e} to the set Y which is superset of X (Nemhauser et al., 1978). This intuitive

diminishing return property exists in different areas such as social media networks

and recommender systems. Recall from Eq. 4.5 that the function G is consisted of

two components, namely privacy and utility loss. Given λ ∈ [0, 1] and topic-frequency

vector cu, we can rewrite the optimization problem in Eq.4.7 as:

argmax
a

− λ(
∑
j

p̂uj logp̂uj)− 0.5× (1−
∑

j puj p̂uj√∑
j p

2
uj

√∑
j p̂

2
uj

)

subject to − ĉuj ≤ −cuj , ĉuj ∈ N0

(4.9)

where p̂uj =
ĉuj

|H̃u|
is the topic probability distribution after applying PBooster.

Privacy is calculated using the entropy function which is submodular in the set of

random variables (Krause et al., 2008). The defined utility loss is also naturally
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submodular (Li et al., 2011). Since nonnegative linear combinations of submodular

functions are submodular as well, the objective function G is submodular. G is also

non-monotone and thus the problem in Eq.4.9 is equal to maximizing a non-monotone

nonnegative submodular function. This problem has been shown to be NP-hard (Feige

et al., 2011) and there is no optimal solution for it in an efficient amount of time.

However, the problem of maximizing non-monotone non-negative submodular

function has been solved earlier (Feige et al., 2011). A greedy local search algorithm,

LS, has been introduced for solving this problem which was proved to guarantee a

near-optimal solution. The greedy LS achieved a value of at least 1
3

of the optimal

solution (Feige et al., 2011). Formally speaking, if we assume solution aG is provided

by the greedy LS algorithm, and ĉG = cu+aG, and the optimal solution is aOPT, and

OPT(cu) = cu + aOPT, the following theorem holds:

Theorem 1. If G(., .) is a nonnegative non-monotone submodular function, the set

of topics aG found by the greedy algorithm has the following lower bound (Feige et al.,

2011):

G(J(cu), J(ĉu), λ) ≥ (
1

3
− ε

n
)G(J(cu), J(OPT(cu)), λ) (4.10)

Here, ε > 0 is a small number. Local search algorithm iteratively adds an element

to the final set or removes one from it to increase the value of G until no further

improvement can be achieved. Algorithm 2 shows the topic selection algorithm which

deploys the greedy local search. Elements of a = 〈a1, .., am〉 will be increased or

decreased iteratively to increase value of G until it cannot be improved anymore.

We emphasize that according to (Feige et al., 2011), there is no efficient algorithm

which could select the best set of links to maximize aggregation of both privacy and

utility in polynomial time. Following the Theorem 1, the proposed greedy algorithm

can select a set with a lower bound of 1
3

of the optimal solution, providing the maxi-
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Algorithm 2 Greedy Local Search for Topic Selection

Input: topic-frequency vector cu, λ, ε

Output: a = 〈a1, a2, ..., am〉

1: Initialize a = 〈0, 0, ..., 0〉, ĉu = cu + a and val←− 0

2: while there is increase in in value of G(J(cu), J(ĉu), λ) do

3: Select tj, j ∈ {1, ...,m} such that by updating aj ←− aj + 1 and ĉu = cu + a,

then G(J(cu), J(ĉu), λ) is maximazed

4: Update val←− G(J(cu), J(ĉu), λ)

5: if ∃ tj such that updating aj ←− aj + 1 and ĉu = cu + a results in

G(J(cu), J(ĉu), λ) > (1 + ε
n2 ). val then

6: Update aj ←− aj + 1 , val←− G(J(cu), J(ĉu), λ)

7: Repeat from step 5

8: end if

9: if ∃ tj such that aj ≥ 1 and updating aj ←− aj − 1 and ĉu = cu + a results

in G(J(cu), J(ĉu), λ) > (1 + ε
n2 ). val then

10: Update aj ←− aj − 1 , val←− G(J(cu), J(ĉu), λ)

11: Repeat from step 5

12: end if

13: end while

mum user privacy and utility in polynomial time.

Link Selection

Previously, we discussed the solution for selecting a subset of topics and the proper

number of links for each topic to preserve user privacy while keeping the new topic

distribution as close as possible to the original one. The second step in PBooster

is to select links which correspond to the selected set of topics. Let us assume that
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user u has at least one active 6 account on a social media site and PBooster has

access to the list of user’s friends Fu 6= ∅.

Algorithm 3 Link Selection

Input: Fu, q, a = 〈a1, a2, ..., am〉

Output: Set of links A

1: A = ∅

2: for each update ω in a do

3: Let tj be the corresponding topic of update ω

4: Select a user v randomly such that v /∈ Fu

5: Simulate a browsing historyH′v for v with the size of q. Make cv and link-topic

matrix Tu from H′v

6: if cvj = 0 then : Go to line 4 and repeat, else

7: Select a non-zero row r randomly from Tv[:, j]

8: Select corresponling link l to row r

9: A = A ∪ {l}

10: end if

11: end for

We propose the following solution for the link selection problem. For each single

update ω in the vector a, we randomly select a user v with a public social media

profile from outside of the list of u’s friends, v /∈ Fu. We then simulate v’s browsing

history H′v, with the size of |H′v| = q. The detail of this simulation is discussed in

the next section. Link-topic relation matrix Tv will be constructed from the history

H′v. If there is no link in H′v which corresponds to the topic of ω, then the process

will be repeated for another random user, otherwise, a random related link will be

6Here, user activity does not refer to posting contents. In this work, we assume a user as active
if he visits his feed and have non-empty list of friends.
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chosen. The pseudocode of this algorithm is shown in Algorithm 3.

To recap, PBooster uses the greedy local search algorithm for submodular max-

imization to first find the topics which need to be updated and then infer the number

of links which should be added to those topics in a way that user privacy and utility

is maximized.

4.3 Experimental Evaluation

In this section we conduct experiments to evaluate the effectiveness of PBooster

in terms of both privacy and utility. In particular, we seek to answer the following

questions: (1) how successful is the proposed defense in protecting users’ privacy?

(2) how does PBooster affect the quality of online services? (3) how successful is

PBooster in handling privacy-utility trade-off?

4.3.1 Dataset

Su et al. (Su et al., 2017) evaluate their de-anonymization strategy by examining

it on a set of synthetically generated histories as well as real, user-contributed web

browsing histories. Synthetic history is generated for a set of users based on their

activities in social media. These users are selected semi-randomly from social media

real-time streaming API– the more active a user is, the more likely he is to be chosen.

The histories are simulated in a way that mimic users’ real online behaviors–they

mostly click on links posted to their news feed, and sometimes click on links posted by

their friends-of-friends (Su et al., 2017). These friends-of-friends links may be clicked

due to the organic exploration behavior of people or the Social media’s algorithmic

recommendation system that tries to get users visit their friends-of-friends links (Su

et al., 2016). Their results on real user generated browsing history is consistent with

the results of synthetic histories. This confirms the procedure of simulating synthetic
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browsing history as well as the efficiency of the generated data (Su et al., 2017).

Similar to Su et al (Su et al., 2017), we examine the performance of PBooster

on a set of synthetically generated browsing history. We follow the same procedure

as in (Su et al., 2017) to simulate the browsing history dataset. To generate the syn-

thetic history for each user u, friend’s links and friends-of-friends’ links are generated

accordingly (Su et al., 2017). Friends’ links are generated by pulling links from a ran-

domly selected friend of u. Friends-of-friends’ links are also generated by first picking

one of u’s friends, say v, uniformly at random, and then pulling a link from one of v’s

friends. Following (Su et al., 2017), we select Twitter as the source of users’ activities

to simulate data because of two reasons. First, many users activities on Twitter are

public, and second Twitter has real-time API which helps avoid the need for large-

scale web crawling. We select a total number of 1200 users and following (Su et al.,

2017), we generate histories of various sizes including {30, 50, 100} for each user. For

each history, 16% of links are from friends-of-friends and the rest are from friends.

Note that we only select links that are related to web pages in English to make the

textual analysis easier.

4.3.2 Experiment Setting

To simulate the real-world browsing situation, we divide the browsing history

into |H
u|
h

batches of links with size of h. These batches will be added to the history

incrementally and PBooster will anonymize the updated history after taking each

batch. We set the values h = 25, q = 20 (used in link selection algorithm) and trade-

off coefficient λ = {0, 0.1, 0.5, 1, 10, 20, 50, 70, 100}. We use LDA topic modeling from

Python package gensim (Rehurek and Sojka, 2010) and set the number of topics

m = 20 and LDA parameters α = 0.05, β = 0.05. We compare PBooster with the

following baselines:
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• Random: Assuming x new links are added by PBooster, this approach selects

x links randomly from the browsing history of users who are not from u’s friends.

Note that this method does not consider the topics of the links. We compare our

model against this method to investigate whether the topics of the chosen links will

have effect on the privacy of the users, or in other words, how well topic selection

technique in Algorithm 2 performs?

• JustFriends: This approach is quite similar to PBooster except that in the

link selection phase, it adds links from a user’s friends’ simulated browsing history.

We use this method to see how well our link selection technique in Algorithm 3

performs.

• ISPPolluter 7 : The goal of this method is to eliminate the mutual information

between actual browsing history and the manipulated one. According to (Ye et al.,

2009) mutual information vanishes if:

nNoise ≥ (nCalls − 1)× nPossibleCall (4.11)

where nPossibleCall is the number of domains that a user might visit per day, and

nCalls is the number of visited domains. For instance, if a user visits 100 domains

and requests 200 calls per day, then ISPPolluter adds 20,000 links randomly to

the history. We choose this method to see if eliminating mutual information can

preserve privacy in practice.

4.3.3 Privacy Analysis

To answer the first question, we first compare each user’s privacy before and after

anonymization for browsing histories with size 100 (|Hu| = 100). Fig. 4.1 depicts

7https://github.com/essandess/isp-data-pollution
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Figure 4.1: Privacy Distributions Before and After Running Anonymization Tech-

niques.

box plots of the distributions of users’ privacy measured using Eq.4.2. The privacy-

utility trade-off coefficient λ is also fixed to λ = 10. Results demonstrate how privacy

increases after deploying PBooster in comparison to JustFriends approach and

original history. This shows that adding links from friends cannot make significant

change in privacy. This is because of Homophily effect (McPherson et al., 2001). The

Random technique leads to the most uniform topics distribution and thus highest

privacy among others.

We now evaluate the efficiency of PBooster against the de-anonymization attack

introduced in (Su et al., 2017). We measure the attack success rate by the metric

X% = nc
N
× 100 where nc is the total number of users that have been successfully

mapped to their Twitter accounts, and N indicates the total number of users in the

dataset. We consider the attack as successful if the user is among the top 10 results

returned by the attack. Lower values of this measure translates to the higher privacy

and stronger defense. We evaluate all methods on histories with different sizes. The

results for browsing histories with different λ are demonstrated in Fig. 4.2. Note

due to the lack of space, we have removed the similar trend that we observed for
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(a) Browsing History of Size 50 (b) Browsing History of Size 100

Figure 4.2: Attack Success Rate for Different Sizes of History.

|Hu| = 30. We observe the following:

• ISPPolluter does not work properly in practice and is not robust to the attack

which leverages traces of users’ activities in social media. This confirms the idea

of selecting links from non-friend users which inhibits the adversary to find the

targeted user.

• Random is more robust to the attack than PBooster and JustFriends. This

demonstrates that adding random links from non-friends could perform better in

terms of privacy.

• JustFriends decreases the privacy in comparison to the original history. This

aligns well with the observations of (Su et al., 2017) suggesting that adding links

from friends can even decrease the privacy.

• Attack success rate decreases to 15% after applying PBooster. We conclude that

the generated history from PBooster is more robust to the attacks in comparison

to original history and those generated from JustFriends and ISPPOlluter.

This confirms the effectiveness of PBooster for preserving privacy.
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• PBooster performs better when |Hu| = 100. This means larger history can help

PBooster to model user’s interests better and manipulate the history accordingly.

• PBooster is much more robust than JustFriends. This clearly shows the effi-

ciency of the link selection approach.

• In PBooster,the attack success rate first decreases with the increase of λ and

then it gets almost stable (for λ ≥ 10). This makes the selection of λ easier and

suggests that the privacy will not increase significantly after some point, confirming

that adding more links does not always necessarily lead to more privacy.

• By deploying PBooster, the attack success rate decreases even when λ slightly

changes from 0 to 0.1, which confirms the effectiveness of PBooster in anonymiz-

ing browsing histories.

Table 4.1: Attack Success Rate after Applying PBooster for Different Values of

h with λ = 10.

h = 5 h = 15 h = 25 h = 50 h = 100

X 27.83 19.58 15.13 7.83 5.33

To study the effect of h (size of batches of links in browsing history), we repeat

the attack with different values of h for |Hu| = 100 with λ = 10 which was empirically

found to work well in our problem. Results are demonstrated in Table 4.1 suggesting

that increasing h can help to model users’ preferences more accurately and PBooster

can further decrease the traceability of users by making the profiles more ambiguous.

Although this increases the privacy, it increases the anonymization waiting time which

could result in sudden publishing of history without proper anonymization.
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4.3.4 Utility Analysis

To answer the second question, we investigate the utility of the manipulated

histories to estimate the change in quality of services. We evaluate the utility of

manipulated history via a well-known machine learning task, i.e., clustering. Prior

works (Ungar and Foster, 1998; Sarwar et al., 2002) have indicated the benefits of

applying clustering in personalization which can help to offer similar services to same

cluster of people.

We use k-means to cluster users into k = 5 groups based on their topic prefer-

ences distribution p̂u. We evaluate the utility of browsing histories according to the

quality of generated clusters via Silhouette coefficient. Silhouette coefficient ranges

from [−1, 1], where a higher value indicates better clusters while a negative value

indicate that a sample has been assigned to the wrong cluster. Values near zero in-

dicate overlapping clusters (i.e., all users are similar to each other). The results are

demonstrated in Fig.4.3. The same trend was observed for |Hu| = 30 but we remove

it due to space limitations. We make the following observations:

• Clusters by ISPPolluter has the lowest Silhouette coefficient close to 0 (i.e.,

clusters are almost overlapping). This shows that adding a large number of ran-

dom links results in making all users similar to each other and thus severe utility

degradation.

• The quality of clusters formed by Random decreases by increasing λ. This confirms

that adding links randomly decreases the utility of browsing history and thus shows

the importance of the topic and link selection phases.

• JustFriends can even increase the utility of the manipulated browsing history.

This is not surprising and the reason is that friends have more similar tastes to each
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(a) Browsing History of Size 50 (b) Browsing History of Size 100

Figure 4.3: Silhouette Coefficient After k-means with k = 5 for Different Sizes of

History.

other than random people (Homophily effect (McPherson et al., 2001)). Therefore,

adding links from a friends’ history will not change the preferences distributions

significantly. Utility also improves slightly with increase in value of λ.

• Generated history by PBooster has better quality when |Hu| = 100 in compar-

ison to |Hu| = 50. This shows that PBooster works better when more user’s

information is fed to it.

• The quality of clusters by PBooster decreases with increase in value of λ. The

change is even sensible when λ ≥ 20.

• The quality of data generated by PBooster is comparable to the original data

when λ ≤ 10. Moreover, PBooster reaches the optimal point in privacy-utility

trade-off by fixing λ = 10.

We repeat k-means with different values of h for |Hu| = 100 with λ = 10. Results

are demonstrated in Table 4.2 and suggest that increasing h will lead to more accurate

representation of users and thus improvement in the utility of data. However, as
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Table 4.2: Silhouette Coefficient after Applying PBooster for Different Values of

h with λ = 10.

h = 5 h = 15 h = 25 h = 50 h = 100

S 0.477 0.5699 0.694 0.731 0.762

discussed earlier, the main drawback with increasing value of h is increasing the risk

of sudden history publishing without proper anonymization.

4.3.5 Privacy-Utility Trade-off

To answer the third question, we plot the privacy and utility gain values for each

user after applying different approaches over histories with size 100. We measure

the privacy by Eq.4.2 and utility gain as 1 − utilityloss using the Eq.4.3. Different

colors and markers represent different approaches. Each marker represents a user,

with measures over his manipulated history with h = 25 and λ = 10.

• The original history gains the utility of 1 and the privacy to some extent. Random

reaches the highest privacy but loses utility. JustFriends results in higher data

utility gain in comparison to other methods but reaches a lower level of privacy.

The result of PBooster varies for different users, achieving different levels of

privacy and utility according to their original browsing behavior, whereas all users

gain similar level of privacy by Random.

• Users achieve higher privacy with PBooster than the original data comparing

with other approaches. The achieved utility by PBooster is more than the utility

by Random but less than the utility by JustFriends. The reason lies at the

intrinsic trade-off between utility and privacy–higher privacy results in less utility.

We compare the privacy and utility of browsing history manipulated by different
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Figure 4.4: Privacy vs Utility Gain for Different Approaches.

techniques demonstrated in Fig.4.2 and Fig.4.3:

• JustFriends achieves the highest utility among all approaches while it is the

most vulnerable method. Random approach is the most robust technique against

de-anonymization attack, however has the most utility lost. PBooster provides

high privacy but can sacrifice utility for high values of λ (λ ≥ 20).

• PBooster is the most efficient approach in terms of both privacy and utility. Set-

ting λ = 10, it returns the highest possible privacy while maintaining comparable

utility with the original data.

4.4 Conclusion

The need arises for users to protect their sensitive information such as browsing

history from potential adversaries. Some users resort to Tor, VPN and HTTPS to

remove their traces from browsing history to assure their privacy. However, these

solutions may hinder personalized online services by degrading the utility of browsing

history. In this chapter, we first quantify the trade-off between user privacy and

utility and then propose an efficient framework PBooster to address the problem
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of anonymizing web browsing histories while retaining the utility. Our experiments

demonstrate the efficiency of the proposed model by increasing the user privacy and

preserving utility of browsing history for future applications.
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Chapter 5

PROTECTING USER PRIVACY IN USER-ITEM INTERACTIONS DATA

Individuals in social media interact with various entities on a daily basis. Examples

of these interactions are buying different products from Websites such as Amazon,

making connection with different people on social media platforms, and purchasing a

service. All of these interactions result in user-generated user-item interaction data.

With the growth of the Web, information has increased at an unprecedented scale and

therefore users face information overload problem. Recommendation systems seeks to

address this challenge by suggesting relevant and reliable information that is potential

of interests to online users. Therefore, recommendation systems play an important

role in helping users quickly find relevant information that is buried in a large amount

of irrelevant information (Koren, 2009; Beigi and Liu, 2018b; Alvari, 2017). These

recommendation systems build profiles that represent user’s interests (Konstan and

Riedl, 2012) based on user-generated user-item interaction data and then recommend

relevant items to the users based on the constructed profiles (Rashid et al., 2002).

Despite the effectiveness of recommendation systems, they can be sources of user

privacy breach. Existing work has shown that if malicious attackers have access

to the system’s output and unrestricted auxiliary information about their targets,

they are able to extract their entire user-item interactions history (Ramakrishnan

et al., 2001; Machanavajjhala et al., 2011; Calandrino et al., 2011; McSherry and

Mironov, 2009). One main reason is that recommendation systems’ outputs (i.e.,

product recommendation) are partially derived from other users’ choices (i.e., user-

item interactions history). Thus, privacy concerns arise.

One of privacy issues is the re-identification attack where a malicious adversary
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attempts to infer user’s actual ratings by seeking if a target user is in the database.

Prior research on privacy preserving recommendation systems has extensively ad-

dressed this type of privacy breach. Common techniques include (1) modifying the

output of the recommendation system algorithm so that the absence or presence

of a single rating or an entire user data is masked (i.e., differential privacy based

techniques) (McSherry and Mironov, 2009; Machanavajjhala et al., 2011; Hua et al.,

2015; Zhu and Sun, 2016); and (2) coarsening the user’s interactions history by adding

dummy items and ratings such that the adversary cannot deduce the user’s actual rat-

ings and preferences (i.e., perturbation based techniques) (Rebollo-Monedero et al.,

2011; Polat and Du, 2003; Luo and Chen, 2014).

Another privacy issue is the disclosure of user private-attribute information through

leaked users’ interactions history (Weinsberg et al., 2012). Private attribute informa-

tion contains those attributes that users do not wish to disclose such as age, gender,

occupation and location. This type of privacy breach is known as the private-attribute

inference attack in which the adversary’s goal is to infer private attributes of target

users given their interactions history. Little has been done to protect users against

this attack of private-attribute inference (Jia and NZhenqiang, 2018; Weinsberg et al.,

2012) with focus on anonymizing user-item data before publishing it. Data obfusca-

tion comes at the cost of utility loss where utility is defined as the quality of service

users receive. The existing work addresses the utility loss by minimizing the amount

of changes made to the data (Jia and NZhenqiang, 2018; Weinsberg et al., 2012).

However, in the context of recommendation, the utility loss due to this approach can

lead to degraded recommendation results. Moreover, just sharing perfectly obfus-

cated user-item data with a recommendation system does not necessarily prevent the

adversary from inferring users’ private information in future when they receive and

accept new recommendations (e.g., when purchasing new products).
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This research aims to devise a mechanism to counter private-attribute inference

attacks in the context of recommendation systems. We propose a privacy-aware

Recommender with Attribute Protection, namely Rap (Beigi et al., 2020), which

offers relevant products in a way that makes any inference of user’s private attributes

difficult from his interactions history and recommendations. The proposed model

seeks to concurrently prevent the leakage of users’ private attribute information while

retaining high utility for users.

Recommendation while countering private-attribute inference attack can be nat-

urally formulated as a problem of adversarial learning (Goodfellow et al., 2014). In

our proposed Rap, there are two components: a Bayesian personalized ranking rec-

ommender and a private-attribute inference attacker (illustrated in Figure 5.1). The

private-attribute inference attacker seeks to accurately infer users’ private attribute

information. The attacker aims to iteratively adapt its model with respect to the

existing recommender. The recommender extracts latent representations of users

and items for personalized recommendation, and simultaneously utilizes the private-

attribute inference attacker to regularize the recommendation process by incorporat-

ing necessary constraints to fool the attacker. Therefore, Rap optimizes a composition

of two conflicting objectives, modeled as a min-max game between recommender and

attacker components. Its objective is to recommend relevant, ranked items to users

such that a potential adversary cannot infer their private attribute information.

In essence, we investigate the following research issues: (1) whether we can de-

velop a personalized privacy-aware recommendation system to guard against private-

attribute inference attacks; and (2) how we can ensure that the user’s private at-

tributes are effectively obscured after receiving personalized recommendation.

Our research on these issues results in a novel framework Rap with the following

main contributions:
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• To the best of our knowledge, this is the first effort in proposing a recommendation

system with guarding against the inference of private attribute information while

maintaining the user utility.

• The proposed Rap model uses an attacker component that regularizes the recom-

mendation process to protect users against private-attribute inference attack.

• The proposed Rap model is a general framework for recommendation systems.

Both of the integrated Bayesian personalized recommender and the private-attribute

attacker can be easily replaced by different models designed for specific tasks.

• We conduct experiments on real-world data to demonstrate the effectiveness of

Rap. Our empirical results show that Rap preserves user utility and privacy. The

results demonstrates that Rap outperforms the state-of-the-art related work and

enables an adjustable balance between private-attribute protection and personal-

ized recommendation.

5.1 Problem Statement

Before formally defining our problem, we first describe the notations used in

this chapter. Let I = {i1, i2, ..., iM} denotes the whole set of items, and U =

{u1, u2, ..., uN} denotes the whole set of users. Moreover, Ih represents the set of

items rated by user h, and Rh is set of items recommended to h. P = {p1, p2, ..., pT}

denotes a set of T private attributes (e.g., age, gender, etc.). R also represents user-

item rating matrix.

The goal of recommendation systems is to recommend products to people that

would be interesting for them. However, we want to protect people’s privacy against

a malicious adversary who attempts to infer their private attribute information ac-

cording to the user’s list of items information. Items list Sh for each user h is union
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Figure 5.1: The Architecture of Recommendation with Protection (Rap) with two

Components: a Bayesian Personalized Recommender and a Private-Attribute Infer-

ence Attacker.

of his previously rated and newly recommended items, i.e., Sh = {Ih ∪ Rh}. In

particular, the malicious attacker has a framework which takes a target user’s inter-

actions and infers the user’s private attribute. In this chapter, we study the following

problem:

Problem 3. Given a set of users U , set of items I, user-item rating matrix R, set of

sensitive attributes P, we aim to learn a function f that can recommend interesting

and relevant products Rh to each user uh such that, 1) the adversary cannot infer the

targeted user’s private attribute information P from the user’s list of items informa-

tion, Sh = {Ih ∪ Rh} and 2) the set of recommended items Rh is interesting for the

user. The problem can be formally defined as:
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Rh = f(Ih,R,P) (5.1)

Note that in this work, the goal is to protect users against a malicious adversary

who have access to the users’ items list, but not against the recommender itself which

we assume is trusted.

5.2 Recommendation with Attribute Protection (RAP)

Our proposed recommendation framework, Rap, aims to concurrently recommend

interesting items to users and protect them against private attribute leakage. The

entire model is illustrated in Figure. 5.1. This framework consists of two major

components, 1) a Bayesian personalized recommender, and 2) a private-attribute in-

ference attacker. The personalized ranking recommender DR aims to extract users’

actual preferences and recommend relevant items to them. The private-attribute

inference attacker DP seeks to develop a model which can deduce users’ private in-

formation w.r.t. the existing recommendation system. Recommendation component

then utilizes DP to guide the recommendation process by ensuring that the union of

previously rated and newly recommended items does not leak user’s attributes and

further fools the adversary in DP . Inspired by adversarial machine learning, we model

this objective as a min-max game between two components, i.e. attacker DP seeks to

maximize its gain and recommender DR aims to minimize both its recommendation

loss and attacker DP ’s gain. The final output of Rap for each user, is a list of top-K

items which are interesting yet safe for them.

5.2.1 Bayesian Personalized Recommendation

In this section, we propose a new Bayesian personalized recommendation model.

The proposed model structure is shown in Fig. 5.2. This model first extracts users and
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Figure 5.2: Overview of the Bayesian Personalized Recommendation Component.

items latent embeddings and then utilizes learning to rank approach to recommend

items to users.

Learning to rank methods have been introduced to optimize recommendation

systems toward personalized ranking. Inspired by recent success of Bayesian Per-

sonalized Ranking (BPR) (Rendle et al., 2009) in image and friend recommendation

systems (Niu et al., 2018; Ding et al., 2017), we choose BPR aver other approaches.

The idea behind BPR is that observed user-item interactions should be ranked higher

than unobserved ones. Learning from implicit feedback, BPR goal is to maximize the

margin between an observed user-item interaction and its unobserved counterparts.

In particular, BPR behavior could be interpreted as a classifier in which given a pos-

itive triplet instance of user h and items j and k, (h, j, k), it determines whether the

user-item interaction (h, j) should have a higher rank score than (h, k).

This recomemndation component has three inputs, the user h and items j and

k. We denote the user and items indices by a tuple of vectors (uh, ij, ik) which are

one-hot encodings of users and items. Since there are N users and M items, the

dimensions of uh, ij, and ik are M , N and N , respectively. Following the input layer,

each input layer is fully connected to the corresponding embedding layer to learn the
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latent representation of the users and items, qh ∈ Rd, pj ∈ Rd, where d is the number

of dimensions. Note that the embedding dimensions for both users and items are the

same. This can be formally defined as:

qh = Whuh, pj = Wjij, pk = Wkik (5.2)

where Wh, Wj and Wk are embedding matrices for users and items. In the next

layer, user and item embedding vectors are passed to the hidden layers Hh, Hj, and

Hk for further calculations. For example, the hidden layer produces Hh for user h as:

Hh = ReLU(wqh + bH) (5.3)

where ReLU is simply defined as ReLU(x) = max(0, x) and w and bH are the weights

and bias for units, respectively.

Using Hh, Hj, and Hk, the next layer produces the user’s preference ŷhj, ŷhk

toward items j and k, respectively. For example:

ŷhj = ReLU(wo[Hh;Hj] + bo) (5.4)

where bo is the bias parameter in the output layer. The activation function is RelU

function and [.; .] represents concatenation. Note that due to the model simplicity, all

users share the same latent representation learning parameters {w, bH} and {wo, bo}

in the hidden layer and output layer, respectively.

We use BPR to learn how to rank in the problem of recommendation. The final

objective function is to minimize the following loss function w.r.t. θR:

LDR =
1

N

N∑
h=1

∑
(h,j,k)∈Dh

− lnσ((ŷhj(θR)− ŷhk(θR)).g(h, j, k)) + λθR‖θR‖2 (5.5)

where, g(h, j, k) is the ground truth value for our model training:

g(h, j, k) =


1, if user uh prefers item ij over item ik

−1, otherwise

(5.6)
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where set Dh = {(h, j, k)|j ∈ Ih and k ∈ I/ Ih} also denotes the training pairwise

instances in which I and Ih represent the whole set of items and the set of items rated

by user u, respectively. Moreover, yhj is the actual rating that user h gives to item

j. θR is also defined as θR = {WU ,WI , w, bH , wo, bo} such that WU = {W1, ...,WN}

andWI = {W1, ...,WM} represent the set of embedding matrices for N users and M

items, respectively. The new proposed model considers the recommendation problem

as a binary classification problem to ensure that the pairwise preference relations

hold.

After training the recommendation model, given a user h, for every item j that

the user has not rated, i.e., j ∈ {I/ Ih}, his preference score ŷhj is predicted by the

recommender. In order to calculate the preference score ŷhj, we pass the tuple (h, j, j)

to the recommender, and get ŷhj and ŷ′hj as the model’s output. The final preference

score of user h toward item j is calculated as ŷhj = 0.5(ŷhj + ŷ′hj). All of the unrated

items will be then sorted based on their preference scores descendingly and the top-K

items are then returned as the recommendation Rh to the user.

5.2.2 Training an Attacker against Inferring Private Attribute Information

The goal of our model is to recommend ranked items to users such that any poten-

tial adversary cannot infer users’ private attribute information such as age, gender and

occupation. However, a challenge is that the recommendation system does not know

the malicious attacker’s model. To address this challenge, we add a private-attribute

inference attacker DP component to our model which seeks to learn a classifier that

can accurately identify the private information of users from their previous interac-

tions. Then, we leverage this component to regularize the recommendation process

by incorporating necessary constraints in order to fool the adversary DP and further

avoid the leakage of private attributes after recommendation. This part is discussed
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Figure 5.3: Overview of the Private-Attribute Inference Attacker Component for

one Attribute.

in details in Section. 5.2.3.

The goal of the private-attribute attacker is now to predict target user h’s private

attribute information by leveraging the information of his latent representation as well

as the the latent representation of his items list. The user h’s items list Sh = {Ih∪Rh}

includes both items Ih that user has rated previously and new recommended items

Rh. Given T private attributes (e.g., age, gender), the set of {θP t}Tt=1 represents all

the parameters included in the private-attribute inference attacker component DP .

The output of the private attribute attacker component for user h w.r.t. t-th private

attribute is the probability that user h has t-th attribute. We use ph,t to represent

the actual value for user h’s t-th private attribute. The structure of private attribute

inference attacker is represented in Fig.5.3. The input to this model for each user

h is the latent embedding representations of each item pj in his items list pj ∈ Sh,

j = 1, 2, ..., |Sh| and h’s latent embedding representation qh. Given the input, the

items embeddings are passed to a single-layer recurrent neural network (RNN) and

the output of RNN (z|Sh|) is then concatenated with user’s embedding. The last layer

86



produces the predicted t-th sensitive attribute for user h, p̂h,t, which is calculated as:

p̂h,t = softmax(wt[z|Sh|; qh] + bt) (5.7)

where [.; .] represents concatenation. Also, wt and bt are the weights and bias for

units, respectively and are shared among all users due to the model simplicity. We

then minimize the private-attribute inference attacker component loss function LDtP
for all private attributes by seeking the optimal parameters {θtP}Tt=1. The objective

function for all users can be formally written as follows:

LDP =
1

N

N∑
h=1

[
1

T

T∑
t=1

LDtP (p̂h,t, ph,t)

]
(5.8)

where LDtP denotes the cross entropy loss for t-th private attribute.

5.2.3 Adversarial Learning for Recommendation with Private-Attribute Protection

Thus far, we have discussed how we 1) learn users and items representations to

recommend ranked items to each user based on his personalized preferences; and 2)

train an attacker which can accurately infer a target user’s private attribute informa-

tion given a list of his rated items and received recommendations. We stress that the

adversary always has the upper hand and adapts his private-attribute inference attack

in order to minimize his inference loss w.r.t. the existing recommendation system.

The final objective is thus to recommend relevant ranked items to users such that a

potential adversary cannot infer their private attribute information. To achieve two

goals together, we design an optimization problem to minimize the recommendation

loss of our model and maximize the inference loss of a determined attacker who adap-

tively minimizes his loss. Inspired by the idea of adversarial learning, we model this

optimization as a min-max game between two components, Bayesian personalized

recommender and private-attribute attacker.
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In our proposed model, the adversary tries to adapt itself and gets the maxi-

mum gain, while the recommendation system seeks to recommend ranked items to

users. The recommended items not only align well with the users’ preferences, but

also minimize the adversary’s gain. We reformulate the objective function of the

recommendation system as minimizing attacker’s gain and recommendation loss si-

multaneously. We formalize the new objective function as follows:

min
θR

(
LDR

private-attribute attacker︷ ︸︸ ︷
−α max

{θtP }
T
t=1

LDP
)

︸ ︷︷ ︸
privacy-aware recommendation system

(5.9)

The inner part learns the most determined adversary which adaptively minimizes

its loss regarding private-attribute inference given the users and items information.

The outer part seeks to both minimize the recommendation loss and fool the given

adversary. The parameter α controls the contribution of the private-attribute infer-

ence attacker in the learning process. Objective function in Eq. 5.9 can be written as

follows:

min
θR

max
{θtP }

T
t=1

(
1

N

N∑
h=1

[ ∑
(h,j,k)∈Dh

− lnσ((ŷhj(θR)− ŷhk(θR)).g(h, j, k)) (5.10)

− α
[

1

T

T∑
t=1

LDtP (p̂h,t, ph,t)

]]
+ λΩ(θ)

)

where θ = {θR, {θtP}Tt=1} is the set of all parameters to be learned, Ω(θ) is the L2

norm regularizer on the parameters, and λ is a scalar to control the contribution of

the regularization Ω(θ).

5.2.4 Optimization Algorithm

The optimization process is illustrated in Algorithm 4. First, we create a mini-

batch sample Ub of b users from the training data and serve their private attribute
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Algorithm 4 The Learning Process of Rap Model

Input: Items set I, training user data U , training user-item matrix data R, batch

size b, θR, {θtP}Tt=1, α, λ and K.

Output: Trained recommendation with protection Rap.

1: repeat

2: Create a mini-batch Ub of b users with their private-attribute and item-rating

information from U

3: Train the recommendation with attribute protection via Eq. 10 w.r.t. θR

4: For each user h in Ub, calculate the top-K recommended items Rh

5: Train the private-attribute inference attacker DP (i.e., {θtP}Tt=1) via Eq. 5.8

given the users’ information including their list of items information, i.e., Sh =

{Ih ∪Rh}

6: until Convergence

and item-rating information to the model. Next, we train the Bayesian personalized

recommender DR according to the Eq. 10 w.r.t. θR in Line 3. Then, for each user

h in Ub we calculate the top-K recommended items Rh and accordingly make his

list of items information, Sh. The private-attribute inference attacker component is

then trained according to the users and item embeddings information using Eq. 5.8 in

Line 5. After training Rap, for each user h, a list of top-K items Rh will be returned

as recommendation.

5.3 Experiments

In this section we conduct experiments to evaluate the efficiency of the proposed

framework in terms of both privacy and quality of the recommendation. Specifically,

we aim to answer the following questions:
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• Q1 - Privacy : How does Rap perform in preventing leakage of users’ private

information?

• Q2 - Utility : How does Rap perform in recommending relevant items to users?

• Q3 - Utility-Privacy Relation: Does the improvement in privacy result in sacrificing

the utility of recommendation system?

To answer the first question (Q1), we consider different private information, such

as age, gender, and occupation. Then, we evaluate the effectiveness of Rap in pre-

venting leakage of users’ private information given union of users’ previously rated

and newly recommended items. Addressing leakage of private attribute information

may result in recommendation performance deterioration. Therefore, to answer the

second question (Q2), we examine the performance of Rap in terms of the quality

of the recommendation. Finally, to answer the third question (Q3), we investigate

the loss in recommendation performance when enhancing privacy of users. Next, we

discuss the dataset, experimental setup and results.

5.3.1 Data

We use publicly available data MovieLens (Harper and Konstan, 2016). Movie-

Lens is collected by the GroupLens Research Project at the University of Min-

nesota (Harper and Konstan, 2016). This dataset includes 100, 000 ratings by 943

users on 1,682 movies. Each user has rated at least 20 movies and the rating scores

are between 1 and 5. In the collected dataset, each user is associated with three

private attributes, gender (male/female), age, and occupation. For this chapter, we

follow the setting of (Hovy and Søgaard, 2015) and categorize age attribute into three

groups, over-45, under-35, and between 35 and 45. In total, 21 possible occupations

have been considered for this data. The average number of rated items for each user
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is 129.

5.3.2 Experimental Setting

Here, we first explain how we design experiments to evaluate utility and privacy.

Then, we discuss evaluation metrics and baselines.

Implementation Details: The parameters for recommendation and attacker com-

ponents are determined through grid search. For the Bayesian personalized ranking

recommendation component, we set the dimension of first layer as d = 70. Accord-

ingly, size of user and item embedding vectors is d = 70. The dimension of hidden

layer is also set as 20. For the private-attribute inference attacker component, we

use single layer RNN with the dimension of input layer set as d = 70. User and

item embeddings are then passed from recommendation component to the attacker

component. The dimension of hidden layer is set as 100. The parameters α and λ

are also determined through cross-validation, α = 1 and λ = 0.01.

We initialize the weight matrices in both components with random values uni-

formly distributed in [0, 1]. The error gradient is back propagated from output to

input and parameters in each layer are updated. The optimization algorithm used

for gradient update is Adam’s algorithm (Kingma and Ba, 2014). The loss generally

converges after 20 epochs. The batch size we use in experiments is b = 32.

Recommendation Evaluation: We evaluate the performance of recommendation

by examining the quality of recommended items for all users. We follow the setting

of (Jia and NZhenqiang, 2018) to set-up the experimental settings. To do so, we split

the data for train and test as follows. For each user h in the data, we randomly select

l rated items for test set and the remaining nh − l items for training set, where nh

is the number of rated items for user h. We set the item rating for those in the test

set as zero. We vary the value of l as {35, 40, 45}. Then, the top-K items are then
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returned to each user as the recommendation. Note that we assume Rap has access

to the users’ private attribute information during the training process.

Private-Attribute Evaluation: We evaluate privacy of users in terms of their

robustness against the malicious attribute inference attacks in which the adversary’s

goal is to infer users’ private attributes. In particular, the malicious attacker learns

a multi-class classifier which takes a target user h list of items information, i.e. Sh =

{Ih ∪ Rh}, where Ih is set of h’s rated items and Rh is set of items recommended

to h. The adversary then infers the user’s private attributes, i.e., gender, age, and

occupation.

We use a Neural Network (NN) model as the adversary’s classifier. Note that

Rap is not aware of the adversary’s model. In this attack, the adversary deploys a

feed-forward network with a single hidden layer to perform the attack. The input

to this model is one-hot encoding of each user, Sh = {Ih ∪ Rh}. Since there are

M items in the dataset, the dimension of input vector is M . The input layer is

then fully connected to the hidden layer with dimension of hidden state set as 100

and a softmax layer used as the output layer. The dimension of the hidden layer

is determined through grid search. We note that Gong et al. (NZhenqiang and Liu,

2016) also proposed an attribute inference attack which leverages both social friends

and rating behavior. However, their attack is not applicable to our problem as we

focus on leveraging only user-item rating information.

We follow the setting of (Jia and NZhenqiang, 2018) to set-up the experimental

settings. We split the data to train and test sets by sampling 80% of the users in

the dataset uniformly at random as the training set and use the remaining users as

testing set. We assume that the users in the training set has publicly disclosed their

private information while the users in the testing set keep those attribute information

private. Then, for each user in the test set, we randomly select l rated items and
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remove them from the user’s rating history by setting the their rating as zero. We

keep the user-item ratings for users in the training set intact (i.e., original user-item

ratings). Next, the trained Rap model is deployed on the users in the test set and

top-l recommended items Rh are added to the users’ previously rated items Ih, in

order to make Sh = {Ih ∪Rh}. We vary the value of l as {35, 40, 45}.

The adversary’s classifier is trained on the training set and evaluated on the users

in the test set. Note that we assume that the malicious attacker knows the original

intact user-item interactions for those users in the training set and seeks to predict

private attribute information of the users in the test set, given their Sh. We evaluate

a malicious attack for each private attribute.

Evaluation Metrics: We use the following metrics for evaluating Rap performance

w.r.t. malicious private-attribute inference (i.e., privacy) and product recommenda-

tion (i.e., utility):

• Private-Attribute Evaluation: We report micro-AUC (Fawcett, 2006) of the

adversary’s classifier. The reason is that the distribution of data for different private

attribute values is imbalance, and thus micro-AUC (Fawcett, 2006) gives a more

accurate assessment of attribute inference attack. Note that lower value of AUC

demonstrates that Rap provides higher privacy for users in terms of obscuring their

private attribute information.

• Recommendation Evaluation: We use standard metrics that are widely used

in other related works (Ziegler et al., 2005), i.e., P@K and R@K. P@K: P@K

represents the ratio of test cases which has been successfully recommended in a

top-K position in a ranking list to value of K. For each user, we measure P@K as:

P@K =
|{test items} ∩ {top-K returned items}|

K
(5.11)

R@K: R@K defines the ratio of top-K recommended items which are in the test
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set to the number of items to be recommended in the test. For each user in the

data, we measure R@K as follows:

R@K =
|{test items} ∩ {top-K returned items}|

|{test items}|
(5.12)

We then report the average of R@K and P@K for all users in the dataset and set

the number of returned items as K = 35.

Baseline Methods: We compare Rap in terms of both recommendation (utility)

and preserving private attributes (privacy) with the following baselines:

• Original: This baseline is a variant of Rap which recommends items for each

user without incorporating the private-attribute inference attacker component, i.e.,

α = 0.

• LDP-SH (Bassily and Smith, 2015): This method is based on ε-differential privacy

to protect privacy of an individual user’s data record, i.e. user-item ratings. It adds

noise to the user’s ratings such that two arbitrary users’ records have close prob-

abilities to generate the same noisy data. This method requires categorical data

which for our case, each user-item rating can be viewed as categorical data taking

values {0, 0.2, 0.4, 0.6, 0.8, 1}. We compare our model against this method to 1) in-

vestigate the effect of differential privacy on preventing leakage of private attribute

information; and 2) examine the utility loss in recommendation system comparing

to our model. Note that this method does not consider quality of recommendation

service in practice.

• BlurMe (Weinsberg et al., 2012): This method perturbs user-item rating matrix

before sending to recommendation system. In particular, for each user, it adds

new items to the user’s ratings Ih that are negatively correlated with the user’s

actual private attribute value and then adds the average rating score to those
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items. Note that BlurMe needs to be deployed for each attribute separately. We

use this method to see whether or not coarsening user data before sharing it with

recommender can prevent leakage of users’ private information when they receive

new recommendations in future.

To have a fair comparison between our proposed model Rap and two baselines

BlurMe and LDP-SH, we anonymze the user-item rating data according to these

models. Then, we use the noisy manipulated data to train the recommendation

model. We use matrix factorization model as the recommendation framework for

both baselines. The procedure discussed in Section 5.3.2 is then used to evaluate the

final results.

5.3.3 Privacy Analysis (Q1)

The experimental results against the introduced malicious private-attribute in-

ference attack (Section 5.3.2) for different methods are demonstrated in Table. 5.1.

We observe that increasing the number of test items (l) results in decrease of AUC

score for all frameworks. This is because for each target user h in the test set, l

recommended items Rh have been added to user’s item list Sh. Therefore, increase

of l can decrease the malicious attacker’s chance for correctly inferring users’ private

attribute information.

Moreover, Rap has significantly lower AUC score in comparison to Original for

all three private attributes and thus outperforms Original in terms of obscuring

users’ private attribute information. Rap also has significantly better performance in

hiding private information in comparison to LDB-SH. The reason is that LDB-SH

aims to achieve a privacy goal that is different from preventing leakage of private

information. This confirms that although adding noise and satisfying ε-differential

privacy can indirectly benefit private attribute leakage, it does not directly target this
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problem. These results show the importance of private-attribute inference attacker

component in obfuscating private information. We also observe that Rap hides more

private information rather than BlurMe (lower AUC score). This demonstrates that

providing obfuscated user-item rating data to the recommendation system, does not

necessarily guarantee preventing future private attribute leakage when user receives

(and accordingly buy) more recommended products. Moreover, BlurMe needs to

be deployed for each private attribute separately while Rap considers three private

attributes all together.

Table 5.1: Attribute Inference AUC Score for Different Private Attributes. Lower

AUC Score Values Indicate Higher Privacy.

Model
# test items (l)

35 40 45

Gen Age Occ Gen Age Occ Gen Age Occ

Original 0.7662 0.7050 0.8332 0.7662 0.7050 0.8332 0.7662 0.7050 0.8332

LDP-SH 0.6587 0.6875 0.8076 0.6440 0.6777 0.7954 0.6398 0.6732 0.7817

BlurMe 0.6266 0.6177 0.7614 0.6013 0.5949 0.7589 0.5884 0.5901 0.7522

Rap 0.6039 0.5397 0.7319 0.5714 0.5270 0.7315 0.5278 0.5262 0.7312

These results confirm the efficiency of Rap in obscuring users’ private attribute

information and demonstrate that despite the fact that Rap is not aware of the

adversary’s inference model, it is prepared against the malicious attacker.

5.3.4 Utility Analysis (Q2)

The results for recommendation task for different methods and different number

of test items (l) are shown in Table. 5.2. We observe that increasing the number of
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Table 5.2: P@K and R@K Scores for Evaluating Recommendation Systems. Higher

P@K and R@K Score Values Show the Higher Quality of Recommendation System

(i.e., Utility)

Model
# test items (l)

35 40 45

P@K R@K P@K R@K P@K R@K

Original 0.156 0.156 0.151 0.172 0.145 0.187

LDP-SH 0.071 0.071 0.062 0.078 0.055 0.081

BlurMe 0.118 0.118 0.109 0.134 0.0997 0.150

Rap 0.152 0.152 0.147 0.168 0.142 0.183

test items (l) results in increasing R@K and decreasing P@K for all methods. Note

that the higher the P@K and R@K score values are, the higher recommendation

quality is.

Another observation is that LDP-SH has the worst performance amongst all

methods, i.e., lowest P@K and R@K scores. This is because of the way LDP-SH

adds noise to the user data without considering the quality of recommendation service

in practice which can result in degraded recommendation results. BlurMe has also

lower performance than Rap as it neglects quality of recommendation results. These

results confirm the effectiveness of Bayesian personalized recommendation component

which helps Rap to take the utility into consideration in practice. Moreover, quality

of recommendation results for Rap method is comparable to the Original approach.

This means that Rap can accurately capture users’ actual preferences and interests

(i.e., high utility).

The results confirm the effectiveness of Rap in understanding users’ actual pref-
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erences and recommending ranked relevant products that are interesting yet safe

products to users.

5.3.5 Utility-Privacy Relation (Q3)

To understand the relation between utility and privacy, we compare the malicious

private-attribute inference attack AUC score and recommendation performance for all

methods, based on the results in Tables 5.1 and 5.2. We observe that LDP-SH has the

worst results in terms of both preserving privacy and recommendation performance.

Another observation is that BlurMe improves privacy compared to the Original

method, but it loses utility in terms of recommendation system performance. This is

in contrast with the results of Rap, which has outperformed BlurMe and LDP-SH

in terms of recommendation and has comparable results with Original. Rap has

also achieved the lowest AUC score and therefore highest privacy among all other

methods.

Comparing Rap with other methods confirms that approaching utility loss by

minimizing the amount of data changes results in loss of quality of recommendation

system in practice. This is reflected as degraded recommendation results for baseline

approaches. Moreover, these results confirm the effectiveness of Bayesian personalized

recommendation component in our proposed model Rap, which helps us to consider

quality of recommendation in practice. Results also demonstrate the complemen-

tary roles of both recommendation and private attribute components which guide

each other through both privacy and utility issues. This results in a privacy-aware

recommendation system which is prepared for private attribute inference attack and

understands users’ actual preferences as well.
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Table 5.3: Impact of Different Private-Attribute Attacker Components on Rap for

Private-Attribute Inference Attack. Lower AUC Indicates Higher Privacy.

Model
# test items (l)

35 40 45

Gen Age Occ Gen Age Occ Gen Age Occ

Rap 0.6039 0.5397 0.7319 0.5714 0.5270 0.7315 0.5278 0.5262 0.7312

RapAge 0.6450 0.5948 0.7528 0.5489 0.5938 0.7522 0.5475 0.5909 0.7497

RapGen 0.5332 0.6789 0.7558 0.5298 0.6614 0.7556 0.5211 0.6415 0.7555

RapOcc 0.6571 0.6949 0.7468 0.6485 0.6871 0.7466 0.6454 0.6853 0.7438

5.3.6 Impact of Different Components

Here, we investigate the impact of different private attribute components on ob-

scuring users’ private information. We define three variants of our proposed frame-

work, i.e., RapAge, RapGen, and RapOcc. In each of these variants, the model is

trained with the corresponding private-attribute inference attacker component, e.g.

RapAge is trained solely with age inference attacker component and does not uti-

lize any other private-attribute attackers during training phase. Results for attribute

inference attack and recommendation tasks are shown in Table 5.3 and Table 5.4, re-

spectively. We observe that for gender attribute, RapGen has the best performance

in terms of obscuring gender attribute comparing to the other approaches (i.e., lowest

AUC score). This is in contrast to quality of RapGen performance for recommen-

dation task which is lower than original proposed model Rap. For other private

attributes, Rap still outperforms RapOcc and RapAge in terms of obscuring age

and occupation attributes. Moreover, results show that using one private-attribute at-

tacker compromises the effectiveness model for obfuscating other private attributes.
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Table 5.4: Impact of Different Private-Attribute Attacker Components on Rap

for Recommendation Task. Higher P@K and R@K Values Show Higher Quality of

Recommendations.

Model
# test items (l)

35 40 45

P@K R@K P@K R@K P@K R@K

Rap 0.152 0.152 0.147 0.142 0.183

RapAge 0.150 0.150 0.146 0.167 0.141 0.182

RapGen 0.151 0.151 0.145 0.166 0.141 0.181

RapOcc 0.147 0.147 0.141 0.161 0.135 0.174

For the recommendation task, we surprisingly observe that using solely one of the

private-attribute attackers in training process can result in performance reduction in

comparison to Rap in terms of P@K and R@K. This means that focusing merely

on obscuring one private attribute can result in more recommendation performance

degradation.

5.3.7 Probing Further

Rap has one important parameter α which controls the contribution from private-

attribute attacker component. In this section, we probe further to investigate the

effect of this parameter by varying it as {0.25, 0.5, 0.75, 1}. For this experiment, we

set the number of test items l = 35. We also set the number of top-K returned items

as K = 35 for calculating P@K. Note that P@K and R@K are equal in this scenario

as K = l = 35. Results are shown in the Fig. 5.4.

Although α controls the contribution of private-attribute inference attacker com-
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(a) Attribute Age (b) Attribute Gender

(c) Attribute Occupation (d) Recommendation

Figure 5.4: Performance Results for Private-Attribute Inference Attack and Rec-

ommendation Task for Different Values of α

ponent, we surprisingly observe that with the increase of α, the AUC score for at-

tribute inference attack decreases at first up to the point that α = 0.5 and then it

increases. This means that private information were obscured more accurately at the

beginning with the increase of α and less later. Moreover, with the increase of α, the

performance of recommendation task decreases, i.e., lower P@K. This shows that

increasing the contribution of private-attribute attacker component leads to decrease

in the quality of recommendation framework. Another observation is that setting

α = 0.25 leads to improvement in hiding private attribute information in comparison

to the results of using Original (or when α = 0). This result shows the importance

of the Rap’s private-attribute attacker component in preserving privacy of users.

Another observation is that after α = 0.5, continuously increasing α increases the

AUC for malicious private-attribute inference attack, i.e., degrades the performance

of hiding private information. The reason is that the model could overfit by increas-
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ing the value of α and therefore leads to an inaccurate estimation in terms of privacy

protection.

5.4 Conclusion

In this chapter, we propose an adversarial learning-based recommendation with

attribute protection model, Rap, which guards users against private-attribute infer-

ence attack while maintaining utility. Rap recommends interesting yet safe prod-

ucts to users such that a malicious attacker cannot infer their private attribute from

users’ interactions history and recommendations. Rap has two main components,

Bayesian personalized recommender, and private-attribute inference attacker. Our

empirical results show the effectiveness of Rap in both protecting users against ma-

licious private-attribute inference attacks and preserving quality of recommendation

results. Rap also consistently achieves better performance compared to the state-of-

the-art related work.
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Chapter 6

PROTECTING USER PRIVACY IN TEXTUAL DATA

Textual information is one of the most significant portions of data that users gen-

erate by participating in different online activities. On one hand, textual data consists

of abundant information about users’ behavior which is critical for understanding in-

dividuals by profiling them at unprecedented scales. It has also been used in many

tasks such as sentiment analysis (Zafarani et al., 2014; Beigi et al., 2016a), part-of-

speech tagging (Hovy et al., 2015) and information extraction and retrieval (Zafarani

et al., 2014). On the other hand, the textual data itself contains sufficient information

that allows people in the textual database to be re-identified (Zhang et al., 2018) and

leaks their private attribute information (Mukherjee and Liu, 2010; Beretta et al.,

2015; Volkova et al., 2015). Thus, ”you are what you write“ as the saying goes. Take

the following tweet as an example:

Dr.appt Tuesday morning was told I need to lose 30 pounds by X-Mas, have high

cholesterol, and high blood pressure. Today starting counting calories #myfit-

nesspal and juicing for dinner 1

This user may not be aware that the sensitive medical condition information can

be easily inferred from this post– exposing symptoms of Diabetes. Users’ sensitive

and private information that they do not wish to disclose such as vacation plans,

medical conditions, age and location can be thus easily inferred from text (Beretta

et al., 2015; Hovy et al., 2015). Private attribute information are usually implicitly

hidden in the textual information. Take the following reviews from TrustPilot product

review website as examples:

1The tweet is real, however, we altered it to preserve the privacy of the user.
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Review 1: It was recently my daughter’s birthday and after speaking with her

and getting the usual ” I don’t want or need anything Dad ”, I decided to send her a

vase full of roses. Well..WOW !! , was she surprised and so delighted!

Review 2:I ordered heely’s for xmas and when they came they were too small so i

sent them back for an exchange ... I have actually recommended Rawk to one of the

mums at my childs swimming class and would recommend in the future. Rawk

your service is the best i have ever had before, keep up the good work.

The gender and age of the user who has written the first review could be easily

inferred from keywords such as daughter’s birthday, Dad– user is male and is over 45

years old. Second review also reveal the gender of the user which is probably female

as the user communicates with other mums. The review also indicates the user’s age

which is probably less than 40 since the user has young kids whom going to swimming

classes.

Another privacy issue arises when a malicious data consumer (or any potential

adversary) attempts to re-identify the identity of an individual in the database by

investigating whether a targeted user’s textual data is in the database or inferring

which record is associated with it. Therefore, publishing complete and intact users’

textual data risks exposing their privacy by allowing an adversary to figure out what

they are.

These users’ privacy concerns, therefore, mandate data publishers to protect pri-

vacy by anonymizing the data. The ultimate goal of an anonymization approach is to

preserve user privacy while ensuring the utility of the published data for future tasks.

One straightforward technique is to remove “Personally Identifiable Information”

(a.k.a. PII) such as names, age and location information. This solution has shown

to be insufficient to protect people’s privacy. The reason is that private attributes

are usually hidden in the textual information as we see in aforementioned reviews
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and tweet examples and it is challenging to find exact pieces of textual information

which implicitly reveal these sensitive information. Other examples of insufficiencies

are the anonymized dataset published for the Netflix prize challenge (Narayanan and

Shmatikov, 2008) and the AOL search data leak (Barbaro et al., 2006) in which users

were re-identified according to their reviews and search queries, respectively. Various

protection techniques for structured data have been developed over the years such as

k-anonymity (Sweeney, 2002) and differential privacy (Dwork, 2008). However, tra-

ditional privacy preserving techniques are inefficient for user-generated textual data

because this data is highly unstructured, noisy and unlike traditional documental

content, consists of large numbers of short and informal posts (Fung et al., 2010).

Moreover, these works may impose a significant utility loss for protecting textual

data as they may not explicitly include utility into the design objective of the privacy

preserving model. It is thus challenging to design effective anonymization techniques

for user-generated textual data.

To address the aforementioned challenges, we propose a double privacy preserv-

ing text representation learning framework, called DPText (Beigi et al., 2019c,d).

The proposed framework seeks to learn a privacy preserved text representation so

that 1) a potential adversary cannot infer whether or not a target text representation

is in the dataset, 2) the adversary cannot deduce users’ private attribute from the

learned representation, and 3) the semantic meaning of the original textual informa-

tion is still preserved in the learned representation. Our double privacy preserving

framework protects individuals’ privacy against identity re-identification and leakage

of private information. Inspired by the recent success in adversarial learning (Good-

fellow et al., 2014), we build DPText through an integrated process which consists

of an auto-encoder, a differential-privacy-based noise adder and two discriminator-

learning components (illustrated in Figure 6.1). We deploy a document auto-encoder
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to extract latent representation of the original text’s content. The noise adder then

adds noise to the text representation by adopting a Laplacian mechanism in order to

guarantee differential privacy. Although guaranteeing differential privacy minimizes

the chances of revealing whether or not a target text representation is in the database,

it cannot prevent the adversary from learning user’s private information. Moreover,

adding too much noise can destroy the semantic meaning of the textual information.

To infer the amount of added noise w.r.t. these constraints, we utilize two discrimina-

tors that regularize the noise adding process by incorporating necessary constraints.

First, we incorporate a semantic discriminator to ensure that the semantic meaning

of the perturbed text representation is preserved w.r.t. the given task (e.g., classi-

fication). Second, we introduce a private attribute discriminator to ensure that the

perturbed representation does not contain private attributes.

Figure 6.1: The Framework of DPText Architecture. Red Dashed Line Shows

the Privacy Barrier and Everything to the Left of it (i.e., the Original Data and

Intermediate Results) are Kept Private.

In essence, we investigate the following challenges: 1) How should textual repre-

sentation be perturbed to ensure that differential privacy is preserved?, 2) How could
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we control the amount of the added noise so that the semantic meaning of the text

is preserved with respect to the given task? and 3) How could we handle the amount

of the added noise so that the user’s private attributes are obscured? Our solution to

these challenges results in a novel framework DPText. Our main contributions are

summarized as:

• We study the problem of text annonymization by learning a differentially private

representation that prevents text reconstruction and re-identification by minimizing

the chance of attacker to infer whether target text representation is in the database;

• We provide a principled way to learn a textual representation that does not contain

users’ private attribute information while retaining the utility for a given task; and

• We theoretically show that the learned representation is differentially private which

confirms DPText minimizes the re-identification chance. We also conduct exper-

iments on real-world datasets to demonstrate the effectiveness of DPText in two

important natural language processing tasks, i.e., sentiment prediction and part-

of-speech (POS) tagging. Our empirical results show that DPText is able to keep

the semantic meaning while obscuring private attribute information.

6.1 Problem Statement

Let X = {x1, ..., xN} denotes a set of N documents and P = {p1, ..., pT} denotes a

set of T private and sensitive attributes. Each document xi is composed of a sequence

of words, i.e., xi = {x1
i , ..., x

m
i }. We denote zi ∈ Rd×1 as the latent representation

of the original document xi. We would like to use xi in the given task T (e.g.,

classification). However, we want to preserve users’ privacy by preventing a potential

adversary from inferring whether a target text representation is in the dataset or

which record is associated with it or being able to learn the target users’ private
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attribute information. Thus, in this chapter, we study the following problem:

Problem 4. Given a set of documents X , set of sensitive attributes P, and given

task T , learn a function f that can generate and release a manipulated latent rep-

resentation z̃i, for each document xi so that, 1) the adversary cannot re-identify a

targeted text representation and infer whether or not this latent representation is in

the database, 2) the adversary cannot infer the targeted user’s private attributes P

from the generated representation z̃i, and 3) the generated representation z̃i is good

for the given task T , i.e., z̃i = f(xi,P , T ).

Note that in our work, the goal is to achieve a protection against possible attacks

of malicious data consumers who have access to the released textual information, but

not against the system (i.e., text representation learner) which we assume is trusted.

6.2 The Proposed Framework

Here, we discuss the details of double privacy preserving text representation learn-

ing framework. We illustrate the entire model in Figure 6.1. This framework consists

of four major components: 1) an auto-encoder for text representation, 2) differential-

privacy-based noise adder, 3) a semantic meaning discriminator, and 4) a private

attribute discriminator. The auto-encoder A aims to learn the content representation

of a document by minimizing the reconstruction error. Then, the differential-privacy-

based noise adder adds a random noise, i.e., Laplacian noise, to the original text

representation w.r.t. a given privacy budget to further satisfy the differential privacy

guarantee. Since adding noise neither preserves semantic meaning nor necessarily

prevents leakage of private attributes, semantic meaning and private attributes dis-

criminators are utilized to infer the amount of the added noise. The semantic meaning

discriminator DS ensures that the added noise does not destroy the semantic meaning
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w.r.t. a given task. The private attribute discriminator DP also guides the amount of

added noise by ensuring that the manipulated representation does not include users’

private information. Note that we assume that the framework is trusted and therefore

everything to the left of the privacy barrier (the red dashed line in Figure 6.1) includ-

ing the original textual information and intermediate results, are kept private. The

final learned representation which is to the right of the privacy barrier is released to

the public. The final output 1) is differentially private, 2) obscures private attribute

information, and 3) preserves semantic meaning.

6.2.1 Extracting Textual Representation

Here, we demonstrate how to extract the content representation for a given doc-

ument. Let x = {x1, ..., xm} be a textual document with m words. Auto-encoder has

been widely utilized for text generation and has shown to be effective recently (Bow-

man et al., 2015; Cho et al., 2014). We therefore use an auto-encoder A to extract

content representation z from document x. Let EA : X → Z be an encoder that can

infer the content representation z for a given document x, and DA : Z → X be a

decoder that reconstruct the document from its learned representation.

Recurrent neural networks (RNN) has been shown to be effective for summarizing

and learning semantic of unstructured noisy short texts (Cho et al., 2014; Shang et al.,

2015). In this work, we apply RNN as the encoder to learn the latent representation

of texts. RNN can learn a probability distribution over a sequence by being trained

to predict the next symbol in a sequence. The RNN consists of a hidden state S and

an optional output which operates on a word sequence x = {x1, ..., xm}. At each time

step t, the hidden state st of RNN is updated by,

st = fenc(st−1, x
t) (6.1)
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After reading the end of the given document, we use the last hidden state of the

RNN as the representation vector z ∈ Rd×1 of the document x. We employ the gated

recurrent unit (GRU) as the cell type to build the RNN, which is designed in a manner

to have a more persisted memory (Cho et al., 2014). Let θe denotes the parameters

for the encoder EA. Then we will have:

z = EA(x, θe) (6.2)

Decoder x̂ = DA(z, θd) takes z as the input to start the generation process and

θd denotes the parameters for the decoder DA. We use another RNN to build the

decoder DA to generate the output word sequence x̂ = {x̂1, .., x̂m}. At each time step

t, the hidden state of the decoder is computed as:

st = fdec(st−1, x̂
t) (6.3)

where s0 = z. The word at step t is predicted using a softmax classifier:

x̂t = softmax(W(S)st) (6.4)

where softmax(.) is a softmax activation function, W(S) ∈ R|V|×(d+k) with d+k as the

dimension of the hidden state in each layer, and x̂t ∈ R|V| is a probability distribution

over the vocabulary. Here V denotes a fixed vocabulary set with size |V| = K. We

define x̂t,j as the probability of choosing j-th word vj ∈ V as:

x̂t,j = p(x̂t = vj|x̂t−1, x̂t−2, ..., x̂1) (6.5)

We can thus define the probability of generating an output sequence x̂ = {x̂1, .., x̂m}

given the input document x as:

p(x̂|x, θd) =
t=m∏
t=1

p(x̂tx̂t−1, x̂t−2, ..., x̂1, z, θd) (6.6)
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The two components of the proposed auto-encoder are jointly trained to minimize

the negative conditional log-likelihood for all documents. The loss function is defined

as:

Lauto = −
m∑
i=1

log p(x̂i|xi, θd, θe) (6.7)

where θe and θd are the set of model parameters for the encoder and decoder, re-

spectively. We use the trained auto-encoder EA to obtain the content representation

z ∈ Rd×1 according to Eq. 6.2 where d is the size of textual representation.

6.2.2 Preventing Text Re-identification and Reconstruction by Adding Noise

Textual information is rich in content and publishing this data without proper

anonymization lead to privacy breach and revealing the identity of an individual.

This can let the adversary infer if a targeted user’s latent textual representation

is in the database or which record is associated with it. Moreover, publishing a

document’s latent representation could result in leakage of the original text. In fact,

recent advancement in adversarial machine learning shows that it is possible to recover

the input textual information from its latent representation (Hitaj et al., 2017). In

this case, if an adversary has preliminary knowledge of the training model, they can

readily reverse engineer the input, for example, by a GAN attack algorithm (Hitaj

et al., 2017). It is thus essential to protect the textual information before publishing

it.

Differential privacy is a powerful technique for preserving privacy of users’ data

included in a database and provides a privacy guarantee. Our method is inspired by

Chaudhuri et al. (Chaudhuri et al., 2011), where the differential privacy is achieved

through adding a random noise, i.e., Laplacian noise, to the output of an algorithm

A. This mechanism is known as output perturbation and it has been proved that un-

der certain conditions this output perturbation mechanism will guarantee differential
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privacy (Chaudhuri et al., 2011).

The main idea of the output perturbation mechanism is to add noise to the output

of an algorithm to preserve its privacy. In our problem, the output is the original

document latent representation z. The benefit of adding noise to this latent repre-

sentation is two fold. First, it minimizes the chance of the re-identification of learned

text representation by preventing the adversary to infer whether or not a target rep-

resentation is in the database, and second, it makes it difficult for the adversary to

recover the raw textual data. The goal here is thus to add noise to the output such

that the differential privacy condition is satisfied. Laplacian mechanism is a popu-

lar way to add noise to preserve differential privacy. In particular, with Laplacian

mechanism, we perturb the output z by adding Laplacian noise to it as follows:

z̃(i) = z(i) + s(i), s(i) ∼ Lap(b), b =
∆

ε
, i = 1, .., d (6.8)

where ε is the privacy budget, ∆ is the L1-sensitivity of the latent representation z,

d the dimension of z, s the noise vector, s(i) and z(i) are the i-th element for vectors

s and z, respectively. ∆ = 2d (see details in Section 6.3). Note that each element of

the noise vector is drawn from Laplacian distribution.

6.2.3 Preserving Semantic Meaning

Perturbing the latent representation of the given text by adding noise to it (Eq. 6.8)

prevents the adversary from re-constructing the text from its latent representation

and guarantees differential privacy. However, this approach may destroy the semantic

meaning of the text data. Semantic meaning is task-dependant, e.g., classification is

one of the common tasks. In the case of sentiment analysis, sentiment is of semantic

meaning in the given text and sentiment prediction is a classification task. In order

to preserve the semantic meaning of the textual representation, we need to add an
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optimal amount of noise to the text latent representation which does not destroy the

semantic meaning of the text data while ensuring data privacy. We approach this

challenge by learning the amount of the added noise with the privacy budget ε in

terms of training a classifier:

ŷ = softmax(z̃; θDS) (6.9)

where θDS are the weights associated with the softmax function and ŷ represents the

inferred label for the classification.

To preserve the semantic meaning of the text representation, we seek a noisy latent

representation which retains high utility and accordingly contains enough information

for a downstream task, e.g., classification. We define a semantic discriminator DS

that aims to assign a correct class label to the perturbed representation, whose loss

function is minimized as follows,

min
θDS ,ε
L(ŷ, y) = min

θDS ,ε

C∑
i=1

−y(i) log ŷ(i) (6.10)

where C is the number of classes, and L denotes the cross entropy loss function. The

one-hot encoding of the ground truth label for the classification task is also denoted

by y and y(i) represents the i-th element of y, i.e., the ground truth label for i-th

class.

To learn the value of the privacy budget ε, we employ the commonly used repa-

rameterization trick (Kingma and Welling, 2013). Instead of directly sampling noise

s(i) from Laplacian distribution (i.e., Eq. 6.8), this trick first samples a value r from

a uniform distribution, i.e. r ∼ [0, 1], and then rewrites the amount of added noise

s(i) as follows:

s(i) = −∆

ε
× sgn(r) ln(1− 2|r|), i = 1, 2, .., d (6.11)

This is equivalent to sampling noise s from Lap(∆
ε
). The advantage of doing so is

that the parameter ε is now explicitly involved in the representation of the added
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noise, s, which makes it possible to use back-propagation to find the optimal value

of ε. Large privacy budget ε could result in large privacy bounds. Hence, we add a

constraint, ε < c1 where c1 is a predefined constraint.

Another challenge here is that, ŷ is inferred from z̃ after introducing noise to

the original latent representation z. The noise is also sampled from the Laplacian

distribution which results in large variance in the training process. To solve this

issue and make the model more robust, we sample K copies of noise for each given

document. In other words, we can rewrite Eq. 6.10 as follows:

min
θDS ,ε
LDS(ŷ, y) = min

θDS ,ε

1

K

K∑
k=1

L(ŷk, y) =

min
θDS ,ε

1

K

K∑
k=1

C∑
i=1

−y(i) log ŷk(i) s.t. ε ≤ c1 (6.12)

where the goal is to minimize loss function LDS w.r.t. the parameters {θDS , ε}, and

ŷk = softmax(z̃k; θDS). Note that z̃k = z + sk in which sk is the k-th sample of the

noise calculated with Eq. 6.11.

6.2.4 Protecting Private Information

We discuss how adding noise to the latent representation of the text can prevent

adversary from learning the input textual information and guarantee differential pri-

vacy. Another important aspect of learning privacy preserving text representation is

to ensure that sensitive and private information of the users such as age, gender, and

location is not captured in the latent representation.

An adversary cannot design a private attribute inference attack better than what

it has already anticipated. In this spirit, we leverage the idea of adversarial learning.

In particular, we seek to train a private attribute discriminator DP that can accu-

rately identify the private information from the given representation, while learning

a representation that can fool the discriminator and minimize leakage of private at-
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tribute w.r.t. the determined adversary, which results in a representation that does

not contain sensitive information. Assume that there are T private attributes (e.g.,

age, gender, location). Let pt represents the ground truth (i.e., correct label) for the

t-th sensitive attribute and θDtP demonstrates the parameters of discriminator model

DP for the t-th sensitive attribute. The adversarial learning can be formally written

as:

min
{θ
Dt
P
}Tt=1

max
ε
LDP = min

{θ
Dt
P
}Tt=1

max
ε

1

K.T

T∑
t=1

K∑
k=1

LDtP (p̂kt , pt), s.t. ε ≤ c1 (6.13)

where LDtP denotes the cross entropy loss function and p̂kt = softmax(z̃k, θDtP ) is the

predicted t-th sensitive attribute using the k-th sample. The outer minimization finds

the strongest private attribute inference attack and the inner maximization seeks to

fool the discriminator by obscuring private information.

6.2.5 DPText - Learning the Text Representation

In the previous sections, we discuss how we can (1) add noise to prevent the

adversary from reconstructing the original text from the latent representation and

minimize the chance of privacy breach by satisfying differential privacy (Eq. 6.8),

(2) control the amount of the added noise to preserve the semantic meaning of the

textual information for a given task (Eq. 6.12), and (3) control the amount of the

added noise so that user’s private information is masked (Eq. 6.13). Inspired by the

idea of adversarial learning, we achieve all three by modeling the objective function

as a minmax game among the two introduced discriminators as follows:

min
θDS ,ε

max
{θ
Dt
P
}Tt=1

LDS − αLDP =

min
θDS ,ε

max
{θ
Dt
P
}Tt=1

1

K

K∑
k=1

[
L(ŷk, y)− α 1

T

T∑
t=1

LDtP (p̂kt , pt)

]
, s.t. ε ≤ c1 (6.14)
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where α controls the contribution of the private attribute discriminator in the learning

process. This objective function seeks to minimize privacy leakage w.r.t. the attack,

minimize loss in the semantic meaning of the textual representation, and protect

private information. With N documents, Eq. 6.14 is written as follows:

min
θDS ,ε

max
{θ
Dt
P
}Tt=1

1

N

N∑
n=1

[
1

K

K∑
k=1

[
L(ŷkn, yn)− α 1

T

T∑
t=1

LDtP (p̂kn,t, pn,t)

]]
+ λΩ(θ),

s.t. ε ≤ c1 (6.15)

where θ = {θDS , ε, {θDtP }
T
t=1} is the set of all parameters to be learned, Ω(θ) is the

regularizer on the parameters such as Frobenious norm and λ is a scalar to control

the amount of contribution of the regularization Ω(θ).

The aim of this objective function is to perturb the original text representation by

adding a proper amount of noise to it in order to prevent an adversary from inferring

existence of the target textual representation in the database, reconstructing the user’s

original text and learning user’s sensitive information from the latent representation,

while preserving the semantic meaning of the perturbed representation for a given

specific task. We stress that the resultant text representation satisfies ε̃-differential

privacy, where ε̃ ≤ c1 is the optimal learned privacy budget. This is further discussed

in Section. 6.3.

6.2.6 Optimization Algorithm

The optimization process is illustrated in Algorithm 5. First, we compute the

latent representation of all documents Z = {zi, ..., zN} in Line 1. We then sample

a mini-batch of b samples from the training data. Next, we train the semantic dis-

criminator DS in Line 5 and private attribute discriminator using Eq. 6.13 in Line 6.

Recall that we have a constraint on the variable ε, i.e., ε < c1. To satisfy this con-

straint, we use the idea of the projected gradient descent (Boyd and Vandenberghe,
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Algorithm 5 The Learning Process of DPText Model

Input: Training data X , θDS , ε, {θDtP }
T
t=1, batch size b, c1 and α.

Output: The privacy preserving learned text representation z̃

1: Pre-train the document auto-encoder EA to obtain the content representations

according to Eq. 6.2 as z = EA(x, θe)

2: repeat

3: Sample a mini-batch of b samples {xi}bi=1 from X

4: Add noise s to initial document representation zi, and get the new document

representation z̃i, i = 1, 2, ..., b

5: Train semantic discriminator DS by gradient descent via Eq. 6.12

6: Train the private attribute discriminator DP via Eq. 6.13.

7: until Convergence

2004) wherein the gradient descent is performed one step, i.e. ε − γ × ε where γ is

the learning rate. Then, the parameter ε is projected back to the constraint. This

means that if ε > c1, then we set ε = c1, otherwise, keep the value of ε. The final

noisy representation z̃ can be then calculated for each given document according to

the value of optimal learned privacy budget ε̃ ≤ c1 using Eq. 6.8.

6.3 Theoretical Analysis

Here, we show that the learned text representation using DPText is ε̃-differential

privacy where ε̃ ≤ c1 is the learned optimal privacy budget. In particular, we prove the

privacy guarantee for the final noisy latent representation z̃ for each given document.

The theoretical findings confirm the fact that DPText minimizes the chance of

revealing existence of textual representations in the database.

Theorem 2. Let ε̃ ≤ c1 be the optimal value learned for the privacy budget variable

117



ε w.r.t the semantic meaning and private attribute discriminators. Let zi represents

the original latent representation for document xi, i = 1, ..., N inferred using Eq. 6.2

and. Moreover, let ∆ denotes the L1-sensitivity of the textual latent representation

extractor function discussed in Section. 6.2.1. If each element si(l), l = 1, ..., d in

noise vector si is selected randomly from Lap(∆
ε̃
) (∆ = 2d), the final noisy latent

representation z̃i = zi + si satisfies ε̃-differential privacy.

Proof. First we bound the change of z when one data point in the database changes.

This gives the L1-sensitivity of the textual latent representation extractor function

discussed in Section. 6.2.1.

Recall the way z is calculated using Eq. 6.2. Function tanh is used in GRU to

build the RNN which is used in Section. 6.2.1 to find the latent representation of a

given document. The output of tanh function is within range [−1, 1]. This indicates

that value of each element z(l), l = 1, ..., d in the latent representation vector z is

within range [−1, 1]. If one data point changes (i.e., removed from the database), the

maximum change in value of each element z(l) is 2. Since the dimension of z is d, the

maximum change in the L1 norm of z happens when all of its elements, z(l), have the

maximum change. According to Definition. 2.2, the L1-sensitivity of z is ∆ = 2× d.

Now, assume that ε̃ ≤ c1 is the optimal value for the learned privacy budget.

Then each element in s (i.e., s(l), l = 1, 2, ...d) is distributed as Lap(∆
ε̃
) based on

Eq. 6.8 which is equal to randomly picking each s(l) from the Lap(∆
ε̃
) distribution,

whose probability density function is Pr(s(l)) = ε̃
2∆
e−

ε̃|s(l)|
∆ .

Let D1 and D2 be any two datasets only differ in the value of one record. Without

loss of generality we assume that the representation of the last document is changed

from zn to z′n. Since the L1-sensitivity of z is ∆ = 2d, then ‖zn − z′n‖1 ≤ ∆. Then
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we have:

Pr[zn + sn = r|D1]

Pr[z′n + s′n = r|D2]
=

∏
l∈{1,2,...,d} Pr(r − zn(l))∏
l∈{1,2,...,d} Pr(r − z′n(l))

=

∏
l∈{1,2,...,d} Pr(sn(l))∏
l∈{1,2,...,d} Pr(s

′
n(l))

= e−
ε̃
∑
l|sn(l)|
∆ /e−

ε̃
∑
l|s
′
n(l)|

∆

= e
ε̃
∑
l(|s
′
n(l)|−|sn(l)|)

∆ ≤ e
ε̃
∑
l|s
′
n(l)−sn(l)|

∆ = e
ε̃‖s′n−sn‖1

∆ (6.16)

where sn and s′n are the corresponding noise vectors with respect to the learned ε̃

when the input are D1 and D2, respectively. The first inequality also follows from the

triangle inequality, i.e. |a|− |b| ≤ |a− b|. The last equality follows from the definition

of L1-norm.

Since we have sn = r − zn and s′n = r − z′n, we can write:

‖s′n − sn‖1 = ‖(r − z′n)− (r − zn)‖1 = ‖z′n − zn‖1 ≤ ∆ (6.17)

This follows from the definition of L1-sensitivity. We rewrite Eq. 6.16:

Pr[zn + sn = r|D1]

Pr[z′n + s′n = r|D2]
≤ e

ε̃‖s′n−sn‖1
∆ ≤ e

ε̃∆
∆ = eε̃ (6.18)

So, the theorem follows and the final noisy latent representation is ε̃-differentially

private.

6.4 Experiments

In this section, we conduct experiments on real-world data to demonstrate the

effectiveness of DPText in terms of preserving both privacy of users and utility

of the resultant representation for a given task. Specifically, we aim to answer the

following questions:

• Q1 - Utility : Does the learned text representation preserve the semantic meaning

of the original text for a given task?
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• Q2 - Privacy : Does the learned text representation obscure users’ private informa-

tion?

• Q3 - Utility-Privacy Relation: Does the improvement in privacy of learned text

representation result in sacrificing the utility?

To answer the first question (Q1), we report experimental results for DPText w.r.t.

two well known text-related tasks, i.e., sentiment analysis and part-of-speech (POS)

tagging. Sentiment analysis and POS tagging have many applications in Web and

user-behavioral modeling (Zafarani et al., 2014; Hovy and Søgaard, 2015; Jørgensen

et al., 2016). A recent research has shown how linguistic features such as sentiment

are highly correlated with users demographic information (Hovy et al., 2015; Pot-

thast et al., 2017). Another group of research shows the effectiveness of POS tags

in predicting users’ age and gender information (Nguyen et al., 2011; Mukherjee and

Liu, 2010). This makes users vulnerable against inference of their private informa-

tion. Therefore, to answer the second question (Q2), we consider different private

information, i.e., age, location, and gender, and report results for private attribute

prediction task. To answer the third question (Q3), we investigate the utility loss

against privacy improvement of the learned text representation. Next, we discuss

each task and the experimental settings.

6.4.1 Task 1: Sentiment Analysis

Sentiment analysis is one of the important language processing applications(Zafarani

et al., 2014). Next, we describe the used dataset and model.

Data

We use a dataset from TrustPilot 2 from Hovy et al. (Hovy et al., 2015). On

2http://trustpilot.com
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their website, users can write reviews and leave a one to five star rating. Users can

also provide some demographic information. In the collected dataset, each review is

associated with three attributes, gender (male/female), age, and location (Denmark,

France, United Kingdom, and United States). We follow the same approach as in (Li

et al., 2018) and discard all non-English reviews based on LANGID.PY 3 (Lui

and Baldwin, 2012), and only keep reviews classified as English with a confidence

greater than 0.9. We follow the setting of (Hovy and Søgaard, 2015) and categorize

age attribute into three groups, over-45, under-35, and between 35 and 45. We follow

the setting of (Lui and Baldwin, 2012) and subsample 10k reviews for each location

to balance the five locations. We consider each review’s rating score as the target

sentiment class.

Model and Parameter Settings

For the document auto-encoder A, we use single-layer RNN with GRU cell of in-

put/hidden dimension with d=64. For semantic and private attribute discriminators,

we use feed-forward networks with single hidden layer with the dimension of hidden

state set as 200, and a sigmoid output layer, which is determined through grid search.

The parameters α and λ are determined through cross-validation, and are set as α = 1

and λ = 0.01. The upper-bound constraint c1 for the value of parameter ε is also set

as c1 = 0.1 to ensure the ε-differential privacy, ε = 0.1 for the learned representation.

6.4.2 Task 2: Part-of-speech (POS) Tagging

POS tagging is another language processing application which is framed as a

sequence tagging problem (Hovy et al., 2015).

Data

For this task we use a manually POS tagged version of TrustPilot dataset in

3https://github.com/saffsd/langid.py
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English. This data is obtained from Hovey et al. (Hovy and Søgaard, 2015) and

consists of 600 sentences, each tagged with POS information based on the Google

Universal POS tagset (Petrov et al., 2012) and also labeled with both gender and

age of the users. The gender attribute is categorized into male and female, and age

attribute is categorized into two groups over-45, under-35. We follow the setting

of (Li et al., 2018) and use Web English Tree-bank (WebEng) (Bies et al., 2012) as

a pre-training tagging model because of the small quantity of text available for this

task. WebEng is similar to TrustPilot datasets w.r.t. the domain as both contains

unedited user generated textual data.

Model and Parameter Settings

Similar to the sentiment analysis task, we use single-layer RNN with GRU cell

of input/hidden dimension with d=64 for document auto-encoder A. For semantic

discriminator (i.e., POS tag predictor), we use bi-directional LSTM:

hi = LSTM(xi,hi−1; θh), h′i = LSTM(xi,h
′
i+1; θ′h)

yi = Categorical(φ([hi; h
′
i]); θ0) (6.19)

where [.; .] denotes vectors concatenation, xi, i = 1, 2, ..N the input sequence, hi, the

i-th hidden state and h0 and h′N+1 are the terminal hidden states set to zero, and φ

a linear transformation. The dimension of the hidden layer is set as 200.

For the private attribute discriminator, we use feed-forward networks with single

hidden layer with the dimension of hidden state set as 200, and a sigmoid output

layer (determined via grid search). For hyperparameters, we set values of α and λ as

α = 1 and λ = 0.01 which are determined through cross-validation. The upper-bound

constraint for the value of ε is also set as c1 = 0.1.
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6.4.3 Experimental Design

We perform 10-fold cross validation for both POS tagging and sentiment analysis

tasks. We follow state-of-the-art research and report accuracy score to evaluate the

utility of the generated data for the given POS tagging (Brants, 2000; Hovy and

Søgaard, 2015) or sentiment analysis task (dos Santos and Gatti, 2014). In particular,

for the sentiment prediction task, we report accuracy for correctly predicting rating

of reviews. We also report tagging accuracy for sentences for the POS tagging task.

To examine the text representation in terms of obscuring private attributes, we report

test performance in terms of F1 score for predicting private attributes. Note that the

private attributes for sentiment task include age, gender and location while private

attributes for tagging task only include gender and age.

We compare DPText in both tasks with the following baselines:

• Original: This is a variant of DPText and publishes the original representation

z without adding noise or utilizing DS and DP discriminators.

• DifPriv: This baseline adds Laplacian noise to the original representation z ac-

cording to Eq. 6.8 (i.e., Lap(∆
ε
), ε = 0.1, ∆ = 2d) without utilizing DS and DP

discriminators. Note that this method makes the final representation ε-differentially

private. We compare our model against this method to investigate the effectiveness

of semantic and private attribute discriminators.

• ADV-ALL (Li et al., 2018): This method utilizes the idea of adversarial learning

and has two components, generator, discriminator. It generates a text representa-

tion that has high quality for the given task but has poor quality for inference of

private attributes.

In both tasks, semantic discriminator DS is trained on the train data and applied
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to test data for predicting sentiment and POS tags. Similarly, we can apply private

attribute discriminator DP where it plays the role of an adversary trying to infer

the private attributes of the user based on the latent textual representation. Private

attribute discriminator DP is also trained on the train data and applied to test data

for evaluation. Higher accuracy score for semantic discriminator DS indicates that

representation has high utility for the given task, while lower F1 score for private

attribute discriminator DP demonstrates that the textual representation has higher

privacy for individuals due to obscuring their private information.

6.4.4 Performance Comparison

For evaluating the quality of the learned text representation, we answer questions

Q1, Q2 and Q3 for two different natural language processing tasks, i.e., sentiment

prediction and POS tagging. The experimental results for different methods are

demonstrated in Table 6.1.

Utility (Q1). The results of sentiment prediction for DPText is comparable to

the Original approach. This means that the representation by DPText preserves

the semantic meaning of the textual representation according to the given task (i.e.,

high utility). DifPriv performs significantly better than DPText and the reason is

that DPText applies noise at least as strong as DifPriv (or even more). Therefore,

adding more noise results in bigger utility loss. We also observe that DPText has

better performance in terms of predicting sentiment in comparison to ADV-ALL.

The accuracy of POS tagging task is higher when DPText is utilized rather

than when Original is used. This is because POS tagging results are biased toward

gender, age and location (Hovy and Søgaard, 2015; Jørgensen et al., 2016). In other

words, this information affects the performance of tagging task. Removing private

information from the latent representation results in removing this type of bias for
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Table 6.1: Accuracy Score for Two Different Natural Language Processing Tasks,

i.e., Sentiment Prediction and POS Tagging. F1 Score is Used to Evaluate Private

Attribute Prediction task. Higher Accuracy Values Show Higher Utility, While Lower

F1 Score Values Indicate Higher Privacy.

(a) Sentiment Prediction Task

Model
Sentiment Private Attribute (F1)

(Acc) Age Loc Gen

Original 0.7493 0.3449 0.1539 0.5301

DifPriv 0.7397 0.3177 0.1411 0.5118

ADV-ALL 0.7165 0.3076 0.1080 0.4716

DPText 0.7318 0.1994 0.0581 0.3911

(b) POS Tagging Task

Model
POS Tagging Private Attribute (F1)

(Acc) Age Gen

Original 0.8913 0.4018 0.5627

DifPriv 0.8982 0.3911 0.5417

ADV-ALL 0.8901 0.3514 0.5008

DPText 0.9257 0.2218 0.3865

tagging task. Therefore, the learned representation is more robust and results in a

more accurate tagging. DPText also has better performance than DifPriv due to

removal of private information and thus bias. Besides, results demonstrate that DP-

Text outperforms ADV-ALL. These results indicate the effectiveness of DPText

in preserving semantic meaning of the learned text representation.
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Privacy (Q2). In the sentiment prediction task, DPText has significantly lower

F1 score in comparison to Original and thus outperforms Original in terms of

obscuring private information. DPText has significantly better performance in hid-

ing private information than DifPriv. This indicates that solely adding noise and

satisfying ε-differential privacy does not protect textual information against leakage

of private attributes. This further demonstrates the importance of private attribute

discriminator DP in obscuring users’ private information. We also observe that the

learned textual representation via DPText hides more private information than

ADV-ALL (lower F1 score). These results indicate that DPText can successfully

obscure private information.

In the POS tagging task, F1 scores of DPText are significantly lower than Orig-

inal approach. These results demonstrate the effectiveness of DPText in obscuring

users’ private attribute. Similarly, comparing F1 scores of DPText and DifPriv

shows that DPText contains less private attribute information. This confirms the

incapability of DifPriv in obscuring users’ private information, and clearly shows

the effectiveness of private attribute discriminator DP . Moreover, DPText outper-

forms ADV-ALL method in terms of hiding user’s age and gender information. It

confirms that the learned textual latent representation by DPText preserves privacy

by eliminating their sensitive information w.r.t. POS tagging task, i.e., high privacy.

Utility-Privacy Relation (Q3). For the sentiment prediction task, DPText

has achieved the highest accuracy and thus reached the highest utility in comparison

to other methods. It also has comparable utility results to Original. However,

Original utility is preserved at the expense of significant privacy loss. Moreover, al-

though DifPriv satisfies differential privacy and its performance is comparable with

DPText in sentiment prediction task, it performs poorly in obscuring private infor-

mation. DifPriv may provide weaker privacy guaranty comparing with DPText
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Table 6.2: Impact of Different Private Attribute Discriminators on DPText for

Sentiment Prediction and POS Tagging Tasks. Higher Accuracy Values Show Higher

Utility, While Lower F1 Score Values Indicate Higher Privacy.

(a) Sentiment Prediction Task

Model
Sentiment Private Attribute (F1)

(Acc) Age Loc Gen

DPText 0.7318 0.1994 0.0581 0.3911

DPTextAge 0.7573 0.2248 0.1012 0.3982

DPTextLoc 0.7360 0.2861 0.0731 0.4100

DPTextGen 0.7347 0.2997 0.0623 0.4053

(b) POS Tagging Task

Model
POS Tagging Private Attribute (F1)

(Acc) Age Gen

DPText 0.9257 0.2218 0.3865

DPTextAge 0.9218 0.2111 0.4179

DPTextGen 0.9361 0.2412 0.3916

since learned ε in DPText can be smaller than ε = 0.1 in DifPriv. In contrast,

DPText has significantly better (best) results in terms of privacy compared to the

other approaches and also achieves the least utility loss in comparison to ADV-ALL.

For the POS tagging task, the resultant representation from DPText achieves the

highest utility and privacy amongst all approaches. This shows the effectiveness of

DPText in preserving semantic meaning and obscuring private information for more

accurate tagging.
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The results for two natural language processing tasks indicate that DPText

learns a textual representation that (1) does not contain private information, and (2)

preserves the semantic meaning of the representation for the given task.

6.4.5 Impact of Different Components

In this subsection, we investigate the impact of different private attribute dis-

criminators on obscuring users’ private information. To achieve this goal, we define

three variants of the proposed framework, i.e., DPText{Age/Gen/Loc}. In each

of these variants, the model is trained with discriminator of just one of the private

attributes. For example, DPTextAge is trained solely with age discriminator and

does not use any other private attribute discriminators during training phase. The

performance comparison is shown in Table 6.2.

In sentiment prediction task, we observe that using solely one of the private at-

tribute discriminators can result in a representation which performs better in terms

of sentiment prediction, in comparison to DPText in which we use all three private

attributes discriminators (i.e., higher utility). However, these variants perform poorly

in terms of obscuring private attributes in comparison to the original DPText model.

These results indicate that although using one discriminator in the training process

can help in preserving more semantic, it can compromise the effectiveness of learned

representation in obscuring attributes.

In the POS tagging task, results show that DPText achieves the best perfor-

mance in tagging task (i.e., higher utility) in comparison to other methods that solely

use one of the private attribute discriminators. The reason is that presence of age and

gender related information in the text can negatively affect the tagging performance

due to existing bias (Hovy and Søgaard, 2015; Jørgensen et al., 2016). DPText is

thus more effective in removing this bias and leads to more accurate tagging in com-
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parison to DPTextAge and DPTextGen. Similar to sentiment prediction task,

we observe that DPTextGen with only gender attribute discriminator is less effec-

tive than DPText in terms of hiding private attributes information. DPTextAge

however, has the best results in terms of obscuring age attribute information.

6.4.6 Parameter Analysis

DPText has one important parameter α which controls the contribution from

private attribute discriminator DP . We investigate the effect of this parameter by

varying it as {0.125, 0.25, 0.5, 1, 2, 4, 8, 16}. Original-{Age/Gen/Loc} shows the

results for the corresponding task when the original text representation has been

utilized. Results are shown in the Fig. 6.2.(a-b) and Fig. 6.2.(c-d) for sentiment

prediction and POS tagging, respectively.

Although α controls the contribution of private attribute discriminator, we sur-

prisingly observe that in both sentiment prediction and POS tagging task with the

increase of α, the F1 scores for prediction of different private attributes decrease at

first up to the point that α = 1 and then it increases. This means that the private

attributes were obscured more accurately at the beginning with the increase of α and

less later. Moreover, with the increase of α, the accuracy of sentiment prediction task

decreases. This shows that increasing the contribution of private attribute discrimi-

nator lead to decrease in the utility of resultant text representation. In case of POS

tagging, the accuracy first increases and then decreases after α = 1. This shows that

removing the age and gender attributes related information results in removing the

bias from learned text representation and improve the tagging task. However, after

α = 1 the utility of resultant representation decreases. Those patterns are useful for

selecting the value of parameter α in practice.

Moreover, in both tasks, setting α = 0.125 results in an improvement in terms
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(a) Private Attribute Prediction w.r.t.

Sentiment Task (F1)

(b) Sentiment Prediction (Acc)

(c) Private Attribute Prediction w.r.t.

POS Tagging (F1)

(d) POS Tagging Prediction (Acc)

Figure 6.2: Performance Results for Private Attribute and Sentiment Prediction

Tasks for Different Values of α

of the amount of hidden private information in comparison to the results of using

Original representation. This observation supports the importance of the private

attribute discriminator. Another observation is that, after α = 1, continuously in-

creasing α degrades the performance of hiding private attributes (i.e., increasing F1

scores) in both sentiment prediction and POS tagging tasks. This is because the

model could overfit by increasing α which lead to an inaccurate learned text rep-

resentation in terms of preserving private attributes and semantic meaning of the

text.
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6.5 Generating Privacy Protected Text

Textual data is a very important source of users’ privacy breach. In this work we

propose a double privacy preserving text representation learning framework which ex-

tracts a privacy preserved latent vector representation from the given original textual

document. We may sometimes need interpretable results and textual information for

different applications. One important future direction is to generate privacy preserved

text such as sentences and paragraphs rather than latent representation which is not

interpretable. This is a very challenging task as removing personally identifiable in-

formation is not sufficient for protecting privacy of users. The reason is that private

and sensitive information are not explicitly available in the textual information and

are usually implicitly inferred from the given text. This makes existing solutions such

as name entity recognition to be impractical. However, it is still important to publish

interpretable privacy protected textual information.

One solution is to generate privacy preserved textual data rather than sharing

intact original textual data or privacy preserved text representation. In order to do

that, one can replace the semantic meaning discriminator component in DPText

with a text generator component which gets the original document and seeks to

generate a new text which has similar semantic to the original document. Similar to

DPText, private-attribute discriminator can ensure that the newly generated textual

information does not contain any private-attribute information. The final generated

text will not contain the user’s private attributes while it has same semantic as the

original document. In future, we will investigate to extend DPText to generate

privacy preserving text which is critical for having interpretable results.
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6.6 Conclusion

In this chapter, we propose a double privacy preserving text representation learn-

ing framework, DPText, which learns a text representation that (1) is differentially

private and protects users against identity disclosure attack, (2) guards users against

private-attribute inference attack, and (3) retains utility of the textual information

for a given task. DPText is adversarial learning-based and has four main compo-

nents, 1) an auto-encoder, 2) differential-privacy-based noise adder, 3) a semantic

meaning discriminator, and 4) a private-attribute discriminator. Our theoretical and

empirical results shows the effectiveness of DPText in minimizing chances of learned

textual representation re-identification, obscuring private-attribute information and

preserving semantic meaning of the text.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Summary

The pervasive use of the Web has connected billions of people all around the globe

and enabled them to obtain information at their fingertips. This results in tremen-

dous amounts of user-generated data. This user-generated data is rich in content

and contains sensitive information about users which risks exposing individuals’ pri-

vacy and makes users traceable. Such rich data makes users vulnerable against two

general types of attacks, identity disclosure and private-attribute information disclo-

sure. People’s privacy leakage leads to potential risks ranging from persecution by

government to targeted frauds. Therefore, it is necessary to protect users’ privacy

without leaving their unnecessary traces of online activities. Preserving privacy of

user-generated data is more challenging than structured one as it is heterogeneous,

highly unstructured, and inherently different from relational and tabular data. More-

over, these information is crucial for online vendors to provide personalized services

for users. However, protecting privacy comes at the cost of sacrificing utility of the

user-generated data. Lack of users’ information quality would result in low quality

personalized services such as low quality search results and recommendations. This

leads to a dilemma of privacy and utility.

In this dissertation, we investigate if users’ privacy could be protected with respect

to different types of attacks considering the aforementioned dilemma between privacy

and utility. We study protecting user privacy problem from different aspects for

different types of user-generated data. We propose four innovative research tasks - (1)
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protecting user privacy in heterogeneous social media data, (2) protecting user privacy

in Web browsing history data, (3) protecting user privacy in user-item interactions

data, and (4) protecting user privacy in textual data

For protecting user privacy in heterogeneous social media data, we follow an ad-

versarial approach and introduce a new identity disclosure attack specialized for het-

erogeneous social media data, namely Athd. Using this attack, we evaluate the

strengths of anonymization techniques in the context of heterogeneous social me-

dia data with multiple aspects and verify if it is sufficient. Our results illustrate

that anonymizing even all aspects of data is not sufficient for protecting user privacy

against identity disclosure attacks due to hidden relations between different aspects

of the heterogeneous data.

For protecting user privacy in Web browsing history data, we propose an efficient

framework PBooster which protects users against identity disclosure attacks. The

proposed solution takes advantage of user behavioral patterns from social media to

infer what and how much additional data (in this case URLs) is required to improve

user privacy while keeping the utility of the resultant data for future tasks. In partic-

ular, we first introduce two metrics to quantify privacy and utility and the trade-off

between user privacy and utility. Then, we leverage these metrics in the proposed

PBooster framework to address the problem of anonymizing web browsing histo-

ries while retaining the utility. This framework first calculates how many links should

be added to each user’s browsing history. Then, it finds proper corresponding links

according to a non-friend user’s browsing behavior on social media platform. Our ex-

periments demonstrate the efficiency of the proposed model by increasing user privacy

and preserving utility of browsing history for future applications.

For protecting user privacy in user-item interactions data, we propose an ad-

versarial learning-based recommendation with attribute protection model, RAP.
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RAP guards users against private-attribute inference attack while maintaining utility.

RAP recommends interesting yet safe products to users such that a malicious attacker

cannot infer their private attribute from users’ interactions history and recommen-

dations. RAP has two main components, Bayesian personalized recommender, and

private-attribute inference attacker. Our empirical results show the effectiveness of

RAP in both protecting users against malicious private-attribute inference attacks

and preserving quality of recommendation results.

For protecting user privacy in textual information, we propose a double privacy

preserving text representation learning framework, DPText, which protect users’

privacy against both identity disclosure and private-attribute inference attacks. DP-

Text learns a text representation that (1) is differentially private and protects users

against identity disclosure attack, (2) guards users against private-attribute inference

attack, and (3) retains utility of the textual information for a given task. DPText

is adversarial learning-based and has four main components, 1) an auto-encoder, 2)

differential-privacy-based noise adder, 3) a semantic meaning discriminator, and 4)

a private-attribute discriminator. Our theoretical and empirical results show the

effectiveness of DPText in minimizing chances of learned textual representation re-

identification, obscuring private-attribute information and preserving semantic mean-

ing of the text.

Table 7.1 represents a summary of the existing state-of-the-art work and novel

research problems we study in this dissertation with respect to the types of the privacy

leakage attacks and different types of user-generated data.

7.2 Future Work

In this dissertation, we study the research problem of protecting user privacy with

social media data and mining for different types of user-generated data. We show its
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Table 7.1: An Overview of Privacy Attacks w.r.t. the Type of User-Generated Data.

Attacks

Data Type Heterogeneous Web Browsing

History

User-Item In-

teractions

Textual

Identity Disclosure X X Previous

work

X

Private-Attribute

Inference

Previous

work

Future oppor-

tunity

X X

potential and significance, but only touch upon the tip of the iceberg of this fertile

research area. Table 7.1 represents a summary of existing state-of-the-art work and

novel research problems we study in this dissertation. There are many extensions and

work that are worth further explorations. Below we present some promising research

directions:

• Anonymization of Heterogeneous Social Media Data: User-generated

social media data is heterogeneous and consists of different aspects. Existing

research illustrates the vulnerability of each aspect against identity and private-

attribute disclosure attacks. Existing anonymization techniques also assume

that it is enough to anonymize each aspect of heterogeneous social media data

independently. In our previous study, we evaluate this assumption showing

that it is not correct in practice due to the hidden relations between different

aspects of the heterogeneous data. In future, we will examine how different

combinations of heterogeneous data (e.g., a combination of location and textual

information) are vulnerable to de-anonymization attacks. Another research

direction is to improve anonymization techniques to preserve privacy of users by

considering hidden relations between different components of the heterogenous

user-generated data.
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• Web Browsing History Data and Private-Attribute Inference Attacks:

Web browsing history data contains users’ traces and private information. In our

previous study, we propose a web browsing history anonymization framework

which protects users against identity disclosure attacks while preserving the

utility of web browsing history data for future personalized services. To the best

of our knowledge, no research has been done on identifying potential privacy

risks of web browsing history data against private-attribute disclosure attack.

In future, we will examine vulnerabilities of such data. Moreover, we plan

to investigate possible solutions for protecting users’ privacy against private-

attribute inference attack and web browsing history data anonymization.

• Generating Privacy Protected Text: Textual data is rich in content and is

a very important source of information for adversaries and could be exploited

in privacy breach attacks. It is thus important to properly anonymize such

data. Few works focus on generating privacy preserving textual embeddings

which protect users against different types of privacy attacks while retaining

textual data utility for future tasks (Mosallanezhad et al., 2019; Beigi et al.,

2020, 2019c). We may need interpretable results and textual information for

some tasks. We will investigate to generate privacy preserving text (e.g., sen-

tences, paragraphs) rather than latent representation which is critical for having

interpretable results.

• Privacy of Spatiotemporal User-generated Data: Most of the online plat-

forms support space-time indexed data which allows users to create a large

volume of time-stamped, geo-located data. Such spatiotemporal data has an

immense value for understanding users behavior better. Research has shown

vulnerability of such data for breaching privacy of users due to intertwined re-
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lation between time and geo-located data Jurgens et al. (2015); Beigi and Liu

(2018a). This information may be used to infer users’ location as well as their

preferences and interests in case of recommendation systems. One future re-

search direction could be investigating the role of spatiotemporal information

in privacy of online users. Hence, we will investigate how to build anonymization

frameworks for protecting users spatiotemporal information.

• Adaptive Privacy Protection Techniques: Attackers always seek to accu-

rately infer users’ identities and private-attribute information. Therefore, they

can have the opportunity to iteratively adapt their attack model with respect

to the existing defenses and privacy protection techniques. Privacy preserving

techniques thus need to be updated accordingly considering the strength and

knowledge of the malicious adversary. In our previous study, we show how

adversarial learning could be leveraged to update the privacy protection frame-

works by minimizing the attacker’s gain. In particular, we study this problem

from two different aspects, i.e., user-item interaction data and textual data.

In this dissertation, we assume that the environment setting is static. In fu-

ture, we will study adaptive privacy protection techniques in dynamic settings

in which both attacker and defender can update their models over time with

respect to each other. Techniques such as reinforcement learning (Sutton and

Barto, 2018) could be also used for developing dynamic defense in which the

agent observes the environment and updates its strategy gradually w.r.t. the

conditions overtime.

• Privacy-Preserving Training of Machine Learning Models: In this dis-

sertation, we study identifying and mitigating privacy risks originating from

different types of online user-generated data. User-generated data is rich in con-
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tent and therefore used for training various machine learning models in many

applications. Recent research demonstrates leakage of machine learning algo-

rithms about individuals whose data is used as a part of the training set for

these models (Nasr et al., 2018; Shokri et al., 2017). This shows not only the

user-generated data can leak sensitive and private information about individu-

als on its own but also machine learning models are vulnerable against privacy

leakage attacks when trained on such data. The crucial question to ask is: How

privacy could be protected for those users whose information have been used

for the training process while maintaining the accuracy of the machine learning

algorithm? In future, we will answer this question by investigating solutions to

protect users against private-attribute and identity disclosure privacy attacks

in various machine learning algorithms.
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