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ABSTRACT

The mobile crowdsensing (MCS) applications leverage the user data to derive useful

information by data-driven evaluation of innovative user contexts and gathering of in-

formation at a high data rate. Such access to context-rich data can potentially enable

computationally intensive crowd-sourcing applications such as tracking a missing per-

son or capturing a highlight video of an event. Using snippets and pictures captured

from multiple mobile phone cameras with specific contexts can improve the data ac-

quired in such applications. These MCS applications require efficient processing and

analysis to generate results in real time. A human user, mobile device and their

interactions cause a change in context on the mobile device affecting the quality con-

textual data that is gathered. Usage of MCS data in real-time mobile applications is

challenging due to the complex inter-relationship between: a) availability of context,

context is available with the mobile phones and not with the cloud, b) cost of data

transfer to remote cloud servers, both in terms of communication time and energy,

and c) availability of local computational resources on the mobile phone, computation

may lead to rapid battery drain or increased response time. The resource-constrained

mobile devices need to offload some of their computation.

This thesis proposes ContextAiDe an end-end architecture for data-driven dis-

tributed applications aware of human mobile interactions using Edge computing.

Edge processing supports real-time applications by reducing communication costs.

The goal is to optimize the quality and the cost of acquiring the data using a) mod-

eling and prediction of mobile user contexts, b) efficient strategies of scheduling ap-

plication tasks on heterogeneous devices including multi-core devices such as GPU c)

power-aware scheduling of virtual machine (VM) applications in cloud infrastructure

e.g. elastic VMs. ContextAiDe middleware is integrated into the mobile applica-

tion via Android API. The evaluation consists of overheads and costs analysis in the
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scenario of “perpetrator tracking” application on the cloud, fog servers, and mobile

devices. LifeMap data sets containing actual sensor data traces from mobile devices

are used to simulate the application run for large scale evaluation.
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Chapter 1

INTRODUCTION

Mobile Crowd Sensing (MCS) applications use data from mobile users to realize a

common goal. These goals are attained by obtaining data from the user environment

and processing it in constraints of resources and real-time requirements.

Cloud offload allows the processing of mobile data for many applications. However,

the cloud solution may be unsuitable for offloading the MCS data because the mobility

of the devices can cause interruptions. Any change in the device context can cause an

interruption in the MCS task or acquire data that is not useful. Processing MCS data

in the cloud incurs a huge communication cost. Due to these reasons, applications

with real-time processing constraints are challenging.

Edge computing can facilitate real-time mobile applications that obtain data from

multiple mobile users. It can support real-time analytics required to achieve the goal

of the MCS application.

Collaborative MCS applications such as missing child Satyanarayanan (2010);

Khan et al. (2016); Shi and Jia (2017) use data from mobile users to create a loca-

tion trace of a missing child. Navigation apps use data from people who are driving

to generate navigation instructions for the user Herrera et al. (2010); Hull et al.

(2006). Some of the characteristics of these MCS applications are its location/con-

text awareness, geo-distributed nature, complex analytical processing, acquisition and

processing real-time data, and mobility considerations of edge participating devices.

Edge devices have a set of attributes known as context. The values of these

attributes can be associated with resources, sensors, user activity, or any system at-

tribute associated with the device or the user environment. Context value on the
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device determines its suitability to execute a specific MCS task. Context on the user

device may change suddenly due to personal use, mobility, exhaustion of resources, or

change in environmental conditions. Mobile devices can now evaluate novel contexts

such as mental state levels, blood pressure, heart rate levels, user activity, or loca-

tions. Multiple contexts can be combined to design interesting MCS applications. For

example, obtain the mental and drowsy state of drivers on a specific route or monitor

the heart rate of people who are exercising. Context-aware design of the distributed

system can enhance the MCS application for the experience of the users, quality of

data acquired, resource consumption on the volunteered edge devices, and efficient

execution in limited edge resources.

Challenge in executing MCS on edge devices is the uncertainty of context avail-

ability involved in mobile edge devices. Also, many MCS applications have complex

analytical processing that needs to complete before data can be useful in the applica-

tion. Processing this data on the edge device or fog enables to generate the required

results in real-time.

1.1 Motivation

The use of mobile devices and sensors has grown in recent years up to 50 million

devices as shown in Figure 1.1. The increase in IoT applications in various domains

has resulted in an unexpected explosion in data (see Figure 1.2). This data explosion

is projected to increase due to the high throughput and low latency of 5G technolo-

gies. This includes the data acquired in many real-time applications such as traffic

monitoring, search, and rescue, disaster monitoring, video surveillance. To obtain rel-

evant data, the strategy is to recruit a large number of users and then execute filter

and data analytics to extract it. Data is continuously acquired through various sen-

sors on users. The sensors collect user data that is needed in the MCS app but they

2



Figure 1.1: Trends in increasing IoT devices.

Figure 1.2: IoT data explosion.
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also allow evaluation of novel contexts. The advancement in the technology of mobile

enables it to support data transfer and analytics locally. Computation advancement

supports processing complex analytics by leveraging parallel computational resources

on many-core devices. Leading vendors such as Intel and NVidia introduce a multi-

core chipset that allows extensively parallel computation that can meet the real-time

needs of the application while another option is to utilize the cloud services to accom-

plish the analytic tasks. However, in case of complex analytics needed for real-time

MCS apps, some of the tasks are offloaded on to the nearby edge devices instead of

the cloud. Edge computing enables the idea of processing the data near the source

of data, thus allows real-time computing. Multi-Access Edge Computing or Mobile

Edge Computing (MEC) enables processing at the mobile carrier edge. MEC pro-

vides computation resources at the Base station of the carrier to process large mobile

data. Edge computing also avoids the unnecessary cost of data transfer, processing

the huge data in the cloud. A 2016 Wikibon project about windfarm monitoring

over 3 years incurs about 16% cost by reducing by 95% reduction in data using edge

processing Mike Wheatley (2016). The results of the Wikibon project show that

most of such monitoring projects will be executed using edge devices in the future.

This market is currently growing fast at the rate of 32% Kenneth research (2019).

1.2 Overview of Requirements and Challenges

Many MCS applications involve huge processing of data before it can be useful.

Several MCS applications that claim real-time operation as seen in Table 1.1. The

real-time traffic update application Hu et al. (2015) presents one spectrum of real-time

operation where the time constraints are relatively tolerant in the order of minutes.

On the other end of the spectrum are critical applications such as tracking a person

that needs the user data to be processed in order of a few seconds. Many of these

4



Table 1.1: Characteristics of MCS Applications.

Application Features

Application Name
Contextual

Requirements

Sensed Data Computational Re-

quirements

Real-time Con-

straints

Traffic Monitoring Hu

et al. (2015)

Location Accelerometer,

GPS

(≈30KBps)

Feature classification for

stops and driving pattern,

traffic forecasting

≈82s (minute)

Goh et al. (2012)

Event Summarization

Chen et al. (2016)

Location,

Orientation

Images, Videos

(≈MB)

Detect event highlights

triggered by increased

photo capture activity

Post event sum-

mary (≈ hours)

Group Event Bao and

Roy Choudhury (2010)

Location, Move-

ment, Audio

Images, Videos

(≈MB)

Event highlight identifi-

cation based on audio

changes

Post event sum-

mary (≈ hours)

Disaster Monitoring

Wu et al. (2016)

Location, Ac-

celerometer,

Gyroscope.

Images (≈MB) Maximum coverage anal-

ysis of destruction

Set by res-

cue personnel

(≈minutes)

Person tracking Shi

and Jia (2017), Con-

textAiDe

Location, Ori-

entation, Ac-

celerometer

Images (≈ few

MB)

Estimate next location of

person/perpetrator.

(≈few s)

applications involve sending huge data to a central entity like a cloud. A large number

of recruited devices create huge data transfer costs. Processing involves a projection

of path, statistics on speed and stops and usually can be completed within a few

minutes. Some applications like locating a missing child Khan et al. (2016) require

images and videos from a large number of users. They also involve complex processing

to detect and recognize the child to create a timeline for his movement. Analytics are

offloaded on the edge devices to locate the missing child. The last known location of

the missing child defines the search radius. A critical real-time application such as

tracking a perpetrator, on the other hand, involves huge media data to be continuously

processed as the perpetrator moves from one location to another. Recently, events

of the Boston bombing or 26/11 Mumbai shooting emphasize the active involvement

of mobile users that assisted in the capture of the perpetrator/s. The recruited
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devices need to be selected along the path of the perpetrator and hence have a specific

location. The set of user devices can be refined based on the results of the silhouette

identification. Thus a new search radius can potentially result in the tracking of the

perpetrator. Recently such a tracking application has been introduced by Shi et al.

Shi and Jia (2017). This paper discusses the details of computation and algorithm to

estimate the location of the user being tracked using MCS. Real-time execution needs

the recruitment of context-relevant devices and processing complex analytical tasks

on the edge devices during the execution of the MCS app. These sets of edge devices

are changing because of changing context due to the mobility of the user and personal

usage of devices. Some of the mobile user contexts such as location, connectivity are

dependent on the mobility of the user and display patterns Crane (2015). These

patterns can be learned and leveraged to select data acquisition devices or execute

the processing tasks. Thus an algorithm that uses proactive context information

for recruiting a mobile device improves the execution of MCS tasks with a better

completion rate and acquiring relevant data.

This thesis proposes an architecture for MCS application design that

enables optimized recruitment algorithm considering human interactions

on the edge devices.

1.3 Overview of Results and Contributions

The focus of the thesis is the execution of MCS applications on edge devices.

Research contributions are summarized towards achieving distributed execution of

MCS on the edge devices which address the real-time performance constraints. It

also focuses on acquiring context-relevant data from the user devices. Following are

the important contributions:
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1. Acquiring Contextual Data: Propose a model to define contexts and optimize

the selection of devices based on the availability of context.

2. Incorporate Human Mobile Interaction Models: Human behavior models have

to be learned over time to increase their accuracy. But the optimization ap-

proaches that incorporate validated models into offload decisions have to be

online. ContextAiDe uses stochastic optimization. Other operation parameters

considered are response time, mobile device energy consumption, and cost of

offload operation with the focus on improving the quality of acquired data.

3. Processing Efficiently on Edge Devices: MEC servers and many-core devices

execute the real-time analytics tasks. Real-time edge applications are executed

using energy-aware mapping schemes that enable energy savings and meet the

performance constraints of edge devices.

4. ContextAiDe Middleware: MCS middleware architecture is proposed in this

thesis. It enables the design of MCS application considering changing context

on the edge devices. It consists of APIs to include the common functionality

required in MCS and additionally provides customizable modules to monitor

and evaluate context, design optimization for user recruitment considering the

operational costs, context changes, limited resources, and strict real-time con-

straints.

1.4 Structure of Thesis

This section elaborates on the detailed structure of the remainder of the thesis

and overview of problems and solutions presented in the different chapters. Table 1.2,

summarizes the content of the thesis. Chapter 2 discusses important research work in

the domains of Edge and Mobile computing. It provides a comparison of ContextAiDe
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Table 1.2: Summary of research in design of ContextAiDe architecture.

Context Model

Problem The context on the device helps to recruit a device which match the requirement of MCS tasks.

Solution Chapter 3 provides definitions and metrics which help to meet the requirements of the MCS task Pore

et al. (2015, 2019).

Context Optimization

Problem Recruitment involves optimized selection of devices which match the requirement of MCS tasks.

Solution Chapter 4 addresses the optimal selection using context optimization. This helps to acquire relevant

data and process it efficiently on local or edge devices Pore et al. (2019).

Human Interaction Models

Problem Leveraging proactive context for scheduling MCS tasks using context prediction

Solution Chapter 5 provides a novel strategy to predict the mobile user contexts Pore et al. (2015). Different

time series models and machine learning models are use for prediction of various parameters Abbasi

et al. (2013b,a).

Many-core Devices

Problem Energy aware scheduling on Many-core devices

Solution Chapter 6 uses an interference model which enables energy aware scheduling of applications on

many-core devices Pore et al. (2013, 2014).

VM colocation

Problem Energy aware scheduling of colocated VMs

Solution Interference of VMs and contention of resources causes performance degradation. Chapter 6 proposes

an interference model for scheduling VMs in a data center Pore et al. (2012). Further, the interference

model is used to map the applications on servers in a data center environment.

Elastic VMs

Problem Scaling VMs based on VM workload in OpenStack

Solution In mobile edge computing, mobile application run on VMs in Cloud-Radio Access Network (CRAN).

These VMs exhibit workload patterns that repeat on daily and weekly basis. VM workloads models

are discussed in Chapter 5. The models are used to developed automated VM scaling algorithm

which scales up and down described in Chapter 7.

Evaluation of ContextAiDe

Problem Evaluation of ContextAiDe in user environment

Solution MCS application, such as perpetrator tracking are build using ContextAiDe API. Evaluation is

performed by executing the application on limited Android devices available in the iMPACT lab.

But large scale evaluation is performed using simulation of traces extracted from the LifeMap Data

Set Kotz et al. (2009). Evaluation set up and results are discussed in Chapter 8 and Pore et al.

(2019).
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architecture with other middleware architectures. Chapter 3 discusses the background

of MCS applications, and edge components. It further explains the system model and

provides the definitions and metrics, which are used to evaluate context matching of

a recruited device. Stochastic optimization is presented in Chapter 4. This chapter

presents the details and design of user recruitment and the ContextAiDe architecture

components. Standard definitions of through API enable the MCS tasks such as, de-

vice discovery, context monitoring and evaluation, optimization, task execution. Prior

information about the user context and device context helps to select the user devices

in ContextAiDe. Chapter 5 explains the details of human interaction models. These

models help to predict the context which is used in context optimized recruitment. It

is also necessary to execute the MCS tasks in real-time constraints. Some of the ana-

lytics and computational tasks are offloaded to cloud or edge data centers. Chapter 6

describes details of performance and energy-aware scheduling on many-core devices

and servers. Many MCS applications are executed in MEC. Chapter 7 discusses the

elastic VM management algorithm, which scales the VM according to user workload.

Chapter 8 shows the details of evaluation of ContextAiDe architecture. Conclusion

and future directions of this thesis are presented in Chapter 9.
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Chapter 2

RELATED WORKS

Edge computing enables the execution of MCS applications in a distributed environ-

ment in a way that addresses the real-time requirements of the application. In this

chapter, presents some of the prominent research works in the areas of MCS, fog

and edge computing, MCS middleware, and recent trends in context-aware mobile

computing.

2.1 Mobile Crowd Sensing

MCS acquires data from a large number of mobile users spread over a wide sensing

area. MCS can potentially enhance services in different application areas such as

safety and emergency Sun et al. (2011); Mokryn et al. (2012); Khan et al. (2016);

Simoens et al. (2013), traffic estimation Panichpapiboon and Leakkaw (2017) as well

as entertainment Toledano et al. (2013). Participatory sensing and opportunistic

sensing are two main types of MCS applications. Participatory sensing requires active

user involvement, such as Waze Hardawar (2012). Opportunistic sensing gathers

information from sensors and mobile devices without any user involvement Mokryn

et al. (2012). Recent works Meurisch et al. (2013); Xiang et al. (2017) discuss large-

scale monitoring of geographically distributed mobile devices. Challenge is to improve

the energy consumption of user devices by adopting techniques such as piggybacked

sensing Bradai et al. (2016) or sensing with context preference Capponi et al. (2017).

ContextAiDe objective is the immediate execution of tasks considering the real-time

requirements of MCS.
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2.2 Fog and Edge Computing

Fog computing is a solution for providing fast computation using edge devices. Fog

computing supports sense-process-actuate sequence or stream processing for enhanced

data analytics. Fog devices allow processing near the data source and hence avoid

unnecessary communication costs. It enables gathering intelligence in critical situa-

tions such as disaster monitoring Higashino et al. (2017). Different paradigms of edge

computing exist, such as Mobile Edge Computing (MEC) Tran et al. (2017); Sapienza

et al. (2016). In MEC, the operators of mobile companies host applications near the

end-users. There is a growth of smaller cloud units such as Micro-Clouds Wang et al.

(2017b), which are located near the end-user and share the computational tasks with

the edge devices. This research focuses on two aspects of fog and edge computing:

1.) Challenges associated with dynamically built peer-to-peer networks on edge; 2.)

Devise scheduling schemes for energy saving and fast execution on fog/edge devices

while running multiple server applications to support mobile apps.

2.3 MCS Middleware

The middleware for MCS enables easy development of MCS applications. It en-

ables easy integration of the generic functionalities, which are essential for most MCS

applications, thus shortening the development time. It also allows extending common

API and definitions to include App-specific functionalities. MCS Middleware have

been broadly classified based on size of MCS such as group Miluzzo et al. (2007), com-

munity Jayaraman et al. (2013) or urban Sherchan et al. (2012). Initial MCS versions

include POGO Brouwers and Langendoen (2012) and Medusa Ra et al. (2012), which

offload sensing tasks onto the user’s mobile devices. Medusa also provides an elaborate

service-based middleware with a language called Medscript with features such as task
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Table 2.1: MCS Middleware Features.

Research work User Local Context Uncertainty Anticipatory
RecruitmentAnalytics Availability Context

McSense Cardone et al. (2013) 3 3

Medusa Ra et al. (2012) 3

CAROMM Sherchan et al. (2012) 3

MOSDEN Jayaraman et al. (2013) 3 3

CARDAP Jayaraman et al. (2015) 3 3

SPACE-TA Wang et al. (2017a) 3 3

DSE Fiandrino et al. (2017) 3 3 3

A3Droid Baresi et al. (2016) 3 3 3

Re-OPSEC Bradai et al. (2016) 3 3 3

BLISS Han et al. (2016) 3 3 3

ContextAiDe 3 3 3 3 3

monitoring and execution management. HoneyBee adopts a load balancing method to

reduce the computational burden on a single device Fernando et al. (2012). MOSDEN

attempts to design middleware for opportunistic MCS, which includes data sensing,

collection, and storage as independent modules making it reusable for different sens-

ing applications. Additionally, they use plugin environments for application-specific

sensor requirements Jayaraman et al. (2013, 2015). CAROMM uses the contextual

information to extract relevant data from large-scale data acquired Sherchan et al.

(2012). A3Droid Baresi et al. (2016) proposes user management, data acquisition

strategies, failure recovery, and remote code execution platform. ContextAiDe uses

similar methods for execution and failure recovery, but context optimized user recruit-

ment is an important consideration in ContextAiDe. Table 2.1 presents a comparison

of recent middleware architectures with ContextAiDe.

User Recruitment: The user recruitment strategy addresses the goals of MCS,

such as real-time processing, energy-saving, improving the quality of data acquired,

or processing geographically distributed data. An important consideration in envi-

ronmental monitoring MCS is the space-time distributed acquisition strategy. A new
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DSE (Distance, Sociability, Energy) aware recruitment policy is proposed for dis-

tributed MCS with large time constraints Fiandrino et al. (2017). To obtain more

relevant data, Reddy et al. suggest a recruitment strategy that employs user activity

in addition to the location and time Reddy et al. (2010) or evaluate multiple contexts

on a device using CATA scheme Hassani et al. (2015). ContextAiDe proactively re-

cruits devices based on their expected contexts and iteratively revises selection with

changes in context on devices, and updated context requirement as the task execution

is in progress.

2.4 Context Awareness and Context Estimation

Sensor data acquired in MCS can be used to obtain valuable information or the

user with the help of contexts. Inclusion of innovative contexts, such as SafeDrive,

NeuroMovie Pore et al. (2015); Oskooyee et al. (2016, 2015) widens the scope of

context-aware computing . The authors propose methodologies to derive the phys-

iological state of the user from brain sensor data and use it tp develop interactive

MCS applications. Another such interesting application is creating video highlights

of group meetings, called Movi Bao and Roy Choudhury (2010). This automated ap-

plication annotated the interesting events using the context information of the people

in the group. Factors such as mobility, network connectivity, and personal usage can

dynamically change the context of the mobile device. Learning the patterns of mobil-

ity, and behavior can enhance the performance of mobile applications Garcia Lopez

et al. (2015). Some works have suggested the use of mobility models, which can

be used to estimate the context changes Banerjee and Gupta (2015); Lee and Shin

(2013). Oracon learns the context patterns online using several techniques, such as

semi Markov models and alignment of patterns, that are used to estimate the user

context da Rosa et al. (2016). Prediction of the user’s location is also performed

13



using Spatiotemporal HMM models Lv et al. (2017). Mobile usage is associated with

uncertainty caused due to mobility and device usage. Researchers consider the un-

certainty in mobile device contexts in some of the newer user recruitment strategies

Han et al. (2016). This strategy deals with limited incented budgets in the uncertain

mobile user environment. Using compressive sensing combined with intra-data cor-

relations, active and transfer learning methods to reduce the processing needs of the

edge devices is proposed in SPACE-TA. Wang et al. (2017a).

ContextAiDe opportunistically discovers suitable candidate devices that improve

the quality of contextual data acquired using context optimization algorithm. In

case of failure of task due to context unavailability, this architecture uses two-stage

stochastic optimization that is useful for two reasons: 1. Proactive offload strategy

that optimally selects devices based on estimated context; 2. A reactive strategy to

handle the unexpected change of device contexts and enables them to continue the

execution of tasks.
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Chapter 3

SYSTEM MODEL AND ASSUMPTIONS

This chapter presents the components of edge architecture and definitions that enable

the design of the MCS application. It presents a formal definition for context con-

cerning the requirements of an MCS application and context available on the devices

that can potentially execute the MCS applications.

3.1 System Model of Edge Architecture

Devices in the edge architecture can be broadly classified into five types, as shown

in Figure 3.1. Sensors and actuators are the device interfaces to the user environment.

Mobile devices are connected to the sensors and have a communication link to the

other layers in the architecture. Fog and MEC servers are processing the analytical

tasks near the edge, while Cloud provides additional resources.

a) Embedded sensors or actuators collect data from the user environment and

perform actuations. These devices are physically installed on users and transfer data

to the nearby device using builtin communication capability. They may also have

limited computing capability.

b) Personal devices are an intermediate data hub for sensor and actuator data or

a computation device. MCS data acquired from the users is either processed locally

on personal mobile devices or sent to other devices. The mobile devices have analyt-

ical processing capability as well as support the offload of the MCS task. However,

inherent mobile nature and personal usage are a challenge in using the edge devices.

c) Fog servers are located near the edge. Fog server enables the computation of MCS

tasks near the data source. They exceed in computational capabilities, and storage
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Figure 3.1: System Model Showing Components of Edge Computing Infrastructure.

capabilities, compared to the personal devices. Fog servers reduce communication

costs supporting real-time applications.

d) Cloudlets are situated between the edge and cloud and provide quick compute

services for MCS tasks. They are a small data center in a box with additional compute

and storage resources.

e) Cloud Radio Access Network (CRAN) enables the mobile data to be pro-

cessed at the edge of the mobile network. MCS application data is processed in CRAN

to address the low latency, interactiveness, and real-time automation needs. CRAN

processes the IoT data, locally and in a private environment near the edge, instead

of sending the data upstream to be processed in the cloud. To support the mobil-

ity of edge users, the CRAN involves virtualization of resources and also network

components. CRAN management is discussed in Chapter 7 and Appendix C.
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f) Cloud has the most computational, communication, and storage capability in the

hierarchy. These cloud services are capable of scaling their resources and can support

multiple numbers of application VMs. The cloud servers are usually associated with

a cost per usage.

Some of these servers may be multicore devices that support the execution of

computationally heavy applications.

3.2 Standard and Protocols

Edge architecture uses IoT standards and protocols to establish communication

and interoperability between the different components. Broadly these protocols are

divided into two main categories: Data Protocols; and Network protocols (see Ap-

pendix A for details). In ContextAiDe, mobile devices and sensors are a part of

IoT. ContextAiDe API has built-in support for some common sensors e.g. GPS for

location data, accelerometer, etc.

ContextAiDe uses the WiFi protocol to communicate between edge devices and

any offload operations. ContextAiDe uses PubNub, a publish-subscribe API and TCP

sockets, based on HTTP network protocol to establish the network of devices.

3.3 Application Requirements

Edge architecture can support the execution of different types of applications.

Geo-distributed sensing involves composing inferences from data acquired in various

locations, e.g., oil plants, real-time traffic management, and smart grids. The spa-

tiotemporal requirements of these applications use location and time context of sensed

data. Real-time applications such as virtual reality, video security are increasingly

complex applications that benefit from the edge architecture. Low latency and ef-

ficient processing enable the real-time response of these applications. Attributes of
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data acquired such as location, time, and size of data are useful to assign computation

on the edge devices. Smart and connected applications such as real-time navigation

and live news reporting, use data acquired from multiple mobile devices. The data

is useful if it can update information along a certain navigation route, or in an area

associated with the news event.

3.4 Definitions for Evaluation of Context

The MCS application requirements indicate specific attributes of the device, useful

for executing the task. In the runtime, the values of device attributes are evaluated

to find a suitable device. The “context” is defined as follows:

Definition 1. Context: Context is a key-value pair {ψ,C} where ψ is an attribute

of the mobile device, and C is a value taken by the attribute ψ on the device.

Context is defined to be exact or preferred. The idea behind using such a proposed

distinction is that some application context requirements may be hard and need to

be matched by the device exactly. Some requirements may be soft and matched by

the device within an acceptable range. The exact context is denoted by {ψχ, Cχ}

while, the preferred context is denoted by {ψp, Cp}. Ω is a set of multiple contexts

associated with a device. Certain contexts in this set Ω may have a regular usage

pattern (Ω′). Others contexts may not exhibit such usage patterns, and be dependent

on factors such as environmental conditions or sudden user activity.

The user visits a certain location in a daily or weekly routine. These visits occur at

a specific time of the day or repeat on certain days of the week. Similarly, the routine

behavior of users can create a pattern in charging and usage of a device. These

different patterns can be learned and utilized in deciding MCS user recruitment.

Context distance is used to evaluate the suitability of a device to execute the MCS
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task.

Definition 2. Context Distance: For a given attribute ψ context distance is the

difference between the context values Cd on the surrogate device and requirement Cr

and is represented using a function δ(., .) that takes the context values as input and

outputs a real number. Context distance for the exact and preferred contexts are given

as follows:

1. δ(Cχ
d , C

χ
r ) = 0 for exact context and

2. 0 ≤ δ(Cp
d , C

p
r ) ≤ ε for preferred context, where ε is an application specific parame-

ter decided for the accurate operation of the application.

The context-matching index normalizes each context and establishes a standard

way to evaluate multiple contexts on a device.

Definition 3. Context Matching Index: Context Matching Index I is a ratio of

context distance of a given preferred context to the acceptable deviation of ε.

I =
δ(Cp

d , C
p
r )

ε
. (3.1)

Context Set Ω represents the set of contexts associated with a device. The

context on the devices consists of resources, usage dependent, physiology, and activity.

Some of these contexts vary according to user behavior patterns, e.g., location and

data usage.

An app may have multiple context requirements. Let the importance of each

requirement is denoted by weight, wk. Context Sense Index is used to compare

contexts on multiple devices as follows:

Definition 4. Context Sense Index: Context Sense Index for a mobile device is

defined as the sum of weighted context matching index for each preferred context Cp
d

19



in Ωd.

Υd =
K∑
k=1

wk.Ik, (3.2)

wk is the weight associated with the context {ψpk, C
p
k} and is used to set priorities

for the preferred context. Sum of the weights for a given context set is 1. The app

developer sets the weight wk for each Cp
k .

The definitions in this chapter enable the selection of a device based on available

context to meet the requirements of the application. However, the mobility and usage

of a device can cause dynamic context changes and interrupt the MCS app execution.

The challenge is to model the human interaction patterns and use them for context

optimized user recruitment. The proactive strategy will ensure the availability of

context during execution.
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Chapter 4

USER RECRUITMENT ARCHITECTURE

MCS utilizes ad-hoc devices to execute MCS tasks, hence the context availability

on the devices is significantly uncertain. Sometimes mobility or personal usage may

cause loss of context required for MCS task execution. Moreover, the context require-

ment of the MCS task may change in real-time. This chapter details the selection of

user devices to reliably execute MCS tasks with the additional overhead of context

changes. It also provides ContextAiDe architecture, consisting of the components

which define contexts, user selection strategies, and middleware components in MCS.

4.1 User Recruitment Algorithm

Mobile devices available to perform the MCS tasks are denoted by N and repre-

sented as Eq. 4.1. A device xi of set N may or may not be selected by the ContextAiDe

based on the availability of the required context.

N = {x1, x2, x3, . . . , xN}| xi ∈ {0, 1}. (4.1)

An MCS application has K context requirements and the context requirement set

Ωr is given by {{ψ1, C1},{ψ2, C2}...{ψK , CK}}. Some of these requirements can be

hard for exact contexts or soft for preferred contexts. Important contributions of

ContextAiDe such as user recruitment is designed based on context availability.

4.1.1 Context Optimization Problem

The objective is to select surrogates with minimal context sensing index within

real-time constraint as well as resource usage limits of devices. In the first step, given
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a request for S surrogates that meet the context requirements ΩR, the surrogate

selection approach first selects a set SH > S surrogates each of which match the

exact context, i.e., δ(Cχ
xi
, Cχ

r ) = 0,∀xi ∈ SH . In the second step, SH is further

refined using two-stage stochastic optimization.

Stage 1: The first stage determines the optimized set of surrogates with minimal

context deviation by using stochastic models of the historical trends for a resource

and operational overheads. The context set ΩR comprises of expected values for some

of the contexts that are dependent on the usage and mobility of the device. Expected

values are computed using several stochastic models discussed in detail in Chapter 5.

These models reduce the failure of execution due to lost contexts, such as mobility,

network connectivity, and battery level on the device.

Optimization algorithm assumes that device selection is associated with a penalty

Pi and is given by Eq. 4.2.

Pi = Υ′i |{ δ(E[mi(ψ
p
i )], C

p
r ) ≤ ε ∀ C in Ω},

= P � 1 Otherwise. (4.2)

Here mi(ψ
p
i ) is the stochastic model of the context {ψpi , C

p
i } in terms of the attributes

based on historical usage or mobility data. E[mi(ψ
p
i )] and Cp

r in Eq. 4.2 are the

expected and required value of context on device i. Υ′i is computed using the expected

values of the preferred contexts, using Equation 3.2 as,

Υ′i =
K∑
k=1

wkI ′k, I ′k =
δ(E[mi(ψ

p
i )], C

p
r )

ε
. (4.3)
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The formulation for context optimized user selection is designed based on penalty:

min
N∑
i=0

xi.Pi, xi ∈ {0, 1} (4.4)

Subject to

N∑
i=0

xi ≥ S

τ si (t) + τ ti (t) < τT

Ri(t)−RΘ
i (t) > RT

i .

where Pi is the penalty associated with the selection of device as given in Eq. 4.2, S

is the number of devices required for assigning the sensing task. τ si (t) is time taken

for data sensing and τ ti (t) is the data transfer time and τT is the execution time

constraint. Both τ si (t) and τ ti (t) represent the time varying operational overheads.

Such overheads also vary for different surrogates and stochastic models have to be

used in order to estimate such details. ContextAiDe uses a data driven approach

towards modeling such delays and is application specific. This aspect is discussed in

further detail in Section 8.1. Ri is the current resource availability and RΘ
i is the

amount of resource usage on the surrogate device. RT
i is the limit set on the resource

usage by the device owner. RΘ
i is obtained from observing the previous usage history

of the person. Stochastic models for RΘ
i is discussed in more detail in Chapter 5.

Stage 2: The second stage refines the optimization decision of stage 1 based on the

actual context values available on the devices for all the context attributes in Ω. The

objective function is the same as Stage 1. However, during this stage, the optimized

set of stage 1 is validated with the current context values on the selected set of devices.

If all the devices in the selected set are within the acceptable context deviation, then

there is no task reassignment to avoid any additional overhead. But if one or more

devices of the optimized set are no longer in the acceptable context deviation range,

then the architecture tries to find the new set of devices within an objective of minimal
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context deviation. The optimization process considers set N ′=N − x′ to obtain the

new devices. The number of devices required in new optimization is S −Σx′. Unlike

stage 1 of optimization, which uses expected values for the context variables, stage 2

uses the actual context values. That is, in stage 2, context distance is calculated as

δ(Cp
i , Cr). This stage selects a newly optimized set of surrogates S ′H from the set SH

using the current values of context for assigning the sensing task.

Algorithm 1 User Recruitment Algorithm

1: procedure RecruitDevices(no, Cr)

2: Discover nearby devices

3: Read Cx . Device x context

4: if δ(Cχ
x , C

χ
r ) = 0 then

5: Add device to SH

6: end if

7: while S∗ ≤ S do . Stage 1

8: Compute Px. . Penalty P using estimated values of Cp
x

9: Minimize Px. . S is requested devices.

10: end while

11: while δ(Cp
x, C

p
r ) ≥ ε do . Stage 2

12: Compute Px. . Using actual values Cp
x

13: Minimize Px. . revise set S

14: end while . repeat until task completes

15: end procedure

The penalty for a device in stage 2 optimization is given by:

Pi = Υi |{ δ(Cp
i , Cr) ≤ ε ∀ C in Ω},

= P � 1 Otherwise. (4.5)
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and the objective function is given by

min
N ′∑
i=0

xi.Pi, | xi ∈ {0, 1} (4.6)

where xi is a device selected for MCS task and Pi is penalty associated with device i.

The process of recruitment can be explained using the Algorithm 1.

User-defined preferences: The ContextAiDe architecture allows a user to set limits

on their device resource that can be used by the MCS task. These preferences can be

bounds, e.g., A user might only want to volunteer their device if the device state of

charge is not reduced by more than 15%, as suggested in recent studies Heng Zhang

(2017).

4.1.2 Complexity of Optimization

The MCS app specifies K contexts required to execute the task on a certain device.

ContextAiDe monitors these contexts on the participating devices. Devices with the

exact context are filtered. For N devices, the complexity of optimization is the sum

of computing the CSI index for each device and sorting the N devices according to

their CSI indexes. The computation complexity is:

O(K) +O(NlogN) (4.7)

4.2 ContextAiDe Architecture

ContextAiDe defines a standard way to build MCS apps. This distributed archi-

tecture allows us to connect, and execute code on user devices, by standardizing the

underlying communication, and execution. ContextAiDe has four components (Refer

Figure C.2):
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4.2.1 Distributed Platform

ContextAiDe provides a distributed execution platform. Pre-decided parts of the

application execute on selected user devices and the edge servers. The MCS applica-

tion task include the task of data acquisition, preprocessing the data and analytical

processing of the data.

4.2.2 Middleware

ContextAiDe Middleware provides implementation of common functionalities re-

quired by most of the MCS apps. These functions are in the form of API, and their

details are described below:

Device discovery: This component connects with all the available devices and

communicates with them. The devices communicate on a publish-subscribe channel.

This module communicates the App requests and codes to selected devices.

User recruitment: It refines and recruits the devices selected by optimizing the

preferred context requirements of the MCS app under the device resource constraints.

Change in the availability of contexts on devices executing the task updates the

recruitment decision.

Continuous context monitoring: It monitors contexts of volunteer devices at the

desired interval and maintains history. During the execution of MCS tasks, it re-

evaluates context availability and initiates the recruitment process if required.

Failure handling: It monitors the connection of participating devices. It also

monitors the status of offloaded tasks. This module notifies the leader if any of the

offload tasks fail or a device disconnects while executing the task.

Communication Management: It is responsible for establishing and maintaining
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Figure 4.1: ContextAiDe Architecture.

the communication link between different user devices, cloud, or the edge devices

through various mechanisms including WiFi, WiFi Direct, Bluetooth, or 4G.

4.2.3 API

ContextAiDe API is a programming interface. A developer can specify MCS

application context requirements both hard (exact) and soft constraints (preferred),

device resource limitations, and parameters of the optimization processes (used in user

recruitment), context prediction and monitoring, real-time MCS application perfor-

mance.

4.2.4 Application

This module defines a way for a developer to write the code for each MCS task.

This code is executed on the user devices running Android OS.
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Chapter 5

HUMAN MOBILE INTERACTION MODELS

Multiple sensors on a mobile device obtain data locally that is used to derive hu-

man interaction models. This data is recorded at regular time intervals on the device

and used to predict the value in the next time interval. This prediction may require

diverse mathematical approaches such as time series prediction, machine learning

techniques, etc.

MCS applications generate traces of data that are usually characterized by some

usage or behavior patterns. Examples of such data can be electricity prices, generation

of solar power w.r.t. smart grid as well as user location or battery usage w.r.t. mobile

applications. Different seasonality or correlation patterns may be exhibited in such

data.

5.1 Time Series based Predictive Modeling

Predictive modeling uses mathematical models and computational methods to

predict the outcome of an event, or a phenomenon. Computational models involve

simulation of the black-box model e.g. neural networks or bagging tree-based models

to predict the credit rating of a borrower.

The simpler mathematical model involves regression or machine learning ap-

proaches to create a prediction model. It involves similar processing steps: clean-

ing data for outliers and missing values, formatting, a subset of data for training,

validation and testing, training model parameters, error measurement of validation

and test sets, calibration, fine-tune model parameters for better accuracy and model

deployment.
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Time Series Model

A stationary time series has no trend and has a constant variance over time. A

most common model to analyze such stationary data with seasonality patterns is the

Time Series Model. The time series model involves Auto-regressive and Moving Av-

erage terms that can describe the seasonality of the data. The AR and MA terms can

be determined by looking at the Autocorrelation (correlation of time series by a lag)

and Partial Autocorrelation plots (correlation results after removing any correlation

due to terms at shorter lag).

Determining AR Terms

ACF plots help to determine the Autoregressive terms. ACF plots are strong up to

lag of k and trails off after subsequent lags after the effect of AR terms diminishes. As

PACF indicates direct relation between k and its lower terms, the PACF plot shows

no values after k terms in AR(k) process.

Determining MA Terms

The ACF plot for the MA(k) process to show a strong correlation up to lag k and

the decline sharply to indicate no correlation while the PACF plot is strong at lag k

and trails onwards from k.

After preprocessing the time series model to make it stationary, any time series

can be modeled in the following form: Forecast for y = constant + weighted sum of

the last p values of y + weighted sum of the last q forecast errors

ŷ = µ+ φ1yt− 1 + . . .+ φpyt−p + θ1et−1 + . . .+ θqet−q (5.1)

where, µ is a constant, φp is the AR coefficient at lag p, θq is the MA coefficient

at lag q, and et−q = ŷt−qyt−q is the forecast error that was made at period t− k.
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Figure 5.1: Hourly Solar and Wind Power Generated in Geo-Distributed Locations.

5.2 Prediction in Geo-Distributed MCS

Solar energy, workload, and electricity price traces were used in the design of an

algorithm for scheduling workloads in geo-distributed data centers. Though the data

vary at different locations, the data samples from the individual sensor exhibit the

pattern.

Time series prediction techniques capture the daily and weakly seasonal pattern in

the workload prediction and solar energy prediction using autoregressive and moving

average models have given an accuracy of 95% to 93% for different workload traces

such as WorldCup and NASA for prediction window of 1 hr. For solar energy trace

for California, Texas, and Illinois Andreas and Stoffel (2017), the pattern is captured

by SARIMA. Trace for February was used to learn the model. The model is fitted by

changing the parameters to minimize the error observed in the residual plots and the

ACF and PACF (Auto Correlation and Partial Auto Correlation) plots. The model is

tested for the month of March. The error for different lags is almost constant starting

with 23% for TX, and up to 25% for GA.

The varying nature of wind energy depends on different factors, such as temper-
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ature, pressure, wind directions. Wind energy is modeled using a moving average

model. However the accuracy of prediction is 30% for a one-hour prediction window,

and it reduces as the prediction window increases.

5.3 Prediction of Mobile Device/Users Contexts

Context such as location, WiFi state and battery level of the users is related to

the behavior of the user. Many of these contexts repeat with daily or weekly patterns.

The prediction scheme on the mobile device explore the correlation of the data and

find patterns in the usage.

Location Prediction:

We design a new model for predicting the next hour location based on the following

assumptions: 1. user’s daily, weekly and hourly schedule creates a pattern of location

changes. 2. common locations are derived from the connected Wi-Fi, data networks

and GPS locations. History of the network and GPS location data is used to derive

a model. The location prediction problem is stated as follows: Given a history of

location data Lhist, predict location for next hour, given by L%(t).

Using the history of a location, a transition matrix of location is developed. Ma-

trix[i,j] each value shows the probability of transition from location[i] in previous time

step to the current location[j]. This matrix is denoted by νhr. In order to capture

the hourly usage patterns, we maintain a transition matrix for each hour of the day

e.g. ν0 . . . ν23. We can also develop a pattern for each day of the week, or maintain

transition matrices for weekend and weekdays separately.

In order to predict a location value for a given hour, νhr and last known location

value is used to determine the most probable location L%(t). .

L%(t) = g(ν, Lhist). (5.2)
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With this prediction model (refer Figure.5.2), for a data of 10 days for a given user,

we achieved an accuracy of 91.6%.

Device Usage Prediction: Device context prediction is the prediction of resource

availability on the device. The resources predicted by this module are battery level

and the type of network connectivity. We use a similar transition matrix for the

battery and network connectivity prediction.

Battery State Prediction: The history of the battery state for a given device

is obtained every 10 minutes. Markov state model shows the transition probability

within different states that are based on the battery level as listed in Table 5.1.

Similar to location transition matrix, hourly and daily transition models %hr and %day

are used.

Soc(t) = G(%hr, %day) (5.3)

Table 5.1: State v.s. Soc levels.

Battery

State

Soc range

S1 Soc > 0&Soc ≤ 20

S2 Soc > 20&Soc ≤ 40

S3 Soc > 40&Soc ≤ 60

S4 Soc > 60&Soc ≤ 80

S5 Soc > 80&Soc ≤ 100

Table 5.2: States of Network Connectiv-
ity.

State Network State

β0 WiFi

β1 3G

β2 No Connectivity

Figure 5.3 shows the battery prediction for next hour battery state for a single

device. For 3 users, accuracy observed for predicted battery state is 80.8%.

Network State Prediction: Network connectivity data is obtained every 10 min-

utes. We consider three states of network connectivity, WiFi, 3G and No Connection

as shown in Table 5.2. History of network connectivity is used to model hourly and

daily patterns. β(t) = G(β) where β = (βhr, βday) and G changes according to
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Figure 5.2: Hourly Location Prediction Results.

Figure 5.3: Predicted and Actual Battery SOC (Hourly).

Figure 5.4: Predicted and Actual Network Type (Every 10 Mins).

changing pattern of the user.

With this prediction model (refer Figure.5.4), for a data of 10 days for 3 users, we

observed the accuracy of 93.73%.
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Chapter 6

OFFLOAD TO HETEROGENEOUS PLATFORMS

Many MCS applications use the monitoring of physiological signals or sensor data.

In some edge applications, the data from the sensor is processed such that the results

are given as feedback to the human user, or actuators. Hence the processing needs

to complete within real-time constraints. Optimization discussed in Chapter 4 uses

the application profile to meet the performance and energy requirements. This chap-

ter characterizes the interference model, which may be used when different types of

application run on a data center server.

Section 6.1 proposes an interference model for the colocation of an application

within a server. The model is used to design a scheme to improve the energy and

performance of data center servers. Section 6.2 mapping scheme of applications on

many-core platforms. Example of Medical control applications that monitor vital

signals of the patient and process it within time constraints.

6.1 Energy Aware Colocation in Data Center

The consolidation of applications increases the energy proportionality, where power

consumption scales with the workload, and the idle power is almost zero. Many data

center research works attempt to achieve such behavior using workload consolidation.

However, consolidation causes degradation in performance due to contention in the

shared resources, e.g., on-chip caches, buses, main memory, CPUs, and network. This

research focuses on characterizing this interference in the colocated applications for

improving the energy and performance of the offloaded application.
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6.1.1 Interference Aware Colocation Policy

The interference effect of collocations on applications’ performance has been stud-

ied using empirical methods in some recent works Mars et al. (2011b,a). The “Bubble-

up” methodology predicts performance degradation due to the colocation of applica-

tions Mars et al. (2011b). It is used to design a colocation policy for delay-sensitive

Google workloads. Authors inMars et al. (2011a) consider the applications’ workload

type as well as the effect of the underlying hardware to avoid performance degradation

caused by collocation. This work addresses energy-efficient colocation of applications

since the performance degradation (e.g., increasing the execution time of applications)

is tightly correlated to the energy consumption.

When applications are run separately, they consume idle energy as well as the

energy that depends on the utilization of the server. Energy consumption that the

colocation incurs is estimated as a sum of utilization energy of individual applications,

the idle energy as well as extra energy consumption due to interference. The approach

is to develop a model to capture interference energy in colocated applications and use

it to design application-aware colocation policy.

Interference Model

ec = eidle + ei + ek + eiefik , (6.1)

where ei and ek denotes the utilization energy consumption of tasks i and k respec-

tively when running on the same system as standalone, eidle denotes the idle energy to

run either of the tasks i and k when running standalone, and eiefik denotes additional

energy consumption due to the colocation interference between tasks i and k which

depends on the workload type of the tasks.
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Figure 6.1: Energy Savings of AACM where (a) α = 0.02 for Applications of
Different Types, and (b) α = 0.02 for Applications of Similar Types, And α = 0.1
for Applications of Different Types over IPR Values.

6.1.2 Energy Aware Colocation Scheme for Server Applications

The models in Eq. 6.1 called the interference model give the interference coeffi-

cient obtained by running a set of applications in a server. This coefficient is used

in a simulation-based evaluation to design a scheduling policy for an energy-aware

colocation scheme.

The energy-aware colocation is formulated to minimize the total energy consump-

tion of collocated sets such that all tasks are serviced and their performance (delay)

requirement is met considering the interference energy. AACM energy efficiency

w.r.t. interference effect Results in Figure 6.1(a) indicates that the energy sav-

ing of Application-Aware Colocation Management (AACM) linearly increases with

increasing interference coefficient. AACM energy efficiency w.r.t. IPR Fig-

ure 6.1(b) shows that AACM saves energy over IPR (idle to peak ratio) value spec-

trum (i.e., 2-4.2% energy saving w.r.t. AOCM and 6-8% energy saving w.r.t. WCM).)

since both idle power and utilization power contribute to interference energy and con-

sequently in an energy saving of AACM.
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6.2 Energy Aware Colocation on Many-Core Platforms

Some of the mobile applications are time-critical and have a low latency or through-

put requirements that need to be addressed. The computational task involved is such

that if it ran locally on the mobile device, the time constraints cannot be met. Hence

such applications need edge processing. Medical Control Applications, real-time au-

tomation applications, real-time monitoring, video game, or perpetrator tracking are

some of the example applications. Such applications leverage a local cloudlet or

MEC server processing to achieve the latency or throughput requirements. Further,

to achieve the desired throughput, the compute resources can involve highly effi-

cient parallel processing architectures of many-core devices. In the case of continuous

monitoring or complete automation, the data center application incurs a lot of energy

consumption. This section explores the mapping of high throughput applications on

different types of many-core devices to minimize the energy print.

6.2.1 Architecture Parallelism

High-performance computing architecture is used to meet the throughput require-

ments of the Edge Applications. In this work, the state of the art many-core devices is

used. These are GPU devices, Intel Xeon Phi and Intel Core i7. While GPU and Intel

Xeon Phi are externally attached and each has 1500 cores and 254 cores respectively.

Intel Core i7, on the other hand, is a host processor and has 8 cores. Details of each

of the architectures are provided in Table B.1. The number of cores and memory of

each core determines the parallel threads that execute on the device and size of data

that can be computed within each core.
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6.2.2 Application Parallelism

The edge applications that execute on parallel architecture vary in the following

ways:

1. Thread Parallelism: Each application can be composed of a code section that

can utilize the threads available on the device. Some code sections can be a

single thread in which case the remaining cores on the device are underutilized.

2. Data Level Parallelism: This involves executing the same computation on all

the data points.

3. Processing Time and Energy: Mapping the application on different architecture

result incur different performance such as throughput, time and energy.

4. In addition to the execution of the code, for GPU and Intel Xeon Phi, the time

is required communication of data with the host device.

In this case, medical control applications are used. These applications have a re-

quirement of high throughput. The results of the model predictive controller in each

application need to be available within a certain time constraint to adjust the level

of drug-infused to the patient. The characteristics of these edge applications used in

the evaluation are a.) The Spatiotemporal model application, which is highly parallel

application and results of every iteration are input to the next iteration. b.) Pharma-

cokinetic Model application is a serial application with limited thread and data-level

parallelism. The code is optimized to execute the application on many-core devices.

6.2.3 Energy-Aware Mapping on Many-Core Devices

The evaluation includes profiling the application for throughput and energy on

all three parallel computing platforms. The environment is set up such that multiple
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applications are running in parallel on the same many-core. Also, the applications

are profiled to execute in combination. Based on the profile, the combination of

application tasks that meet the throughput requirement and incur the lowest energy

is observed to be: MIC executing the spatiotemporal model applications; i7 executing

the pharmacokinetic model application. Details of parallelism of application, mapping

on many-core devices and profiling are available in Appendix B
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Chapter 7

POWER AWARE ELASTIC VM MANAGEMENT

MEC Base Station host multiple VMs to service the applications that are used by

mobile users. As the MEC base station is near the edge of the network, multiple VMs

are hosted to support the peak workloads of mobile users. This chapter proposes

an elastic VM management system that scales the VMs up and down according to

workload changes to save power for MEC base stations. The time-varying nature

of the cloud applications’ workload in LTE Base Station applications, the workload

increases during the peak hours of the day and reduces during the night. The proactive

VM management scheme is designed based on the prediction of the user pattern to

scale the VMs according to the predicted workload. It also consolidates the VMs

by addressing the overload and underload conditions. The evaluation consists of an

OpenStack Cluster running application with real-world Internet traces on Intel travel-

box clusters. The results indicate accuracy (15% prediction error) for the prediction

of resources in the cluster.

7.1 Overview of Heuristic Algorithm

This algorithm executes in discrete time slots such that slot duration is small

enough to capture the workload variabilities, yet long enough to predict the workload

with reasonable accuracy and to avoid VM migration overhead. In each slot, the

boundaries of VM resources are determined based on the prediction of VM work-

load, and estimated resources. These boundaries are used to detect the overload and

underload conditions in each host. The controller then schedules migration of the

VM, optimizing for different goals on VM management such as minimizing migration
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costs, service interruption, power savings, etc.

7.2 Evaluation of VM Management Algorithm on OpenStack

OpenStack platform is Open Source software that enables infrastructure-as-a-

service. It enables the management of virtual resources to build public or private

clouds. The virtualized resources include compute, network, storage, identity, and

images.

The OpenStack extension module is designed in two parts, resource monitoring,

that collects the resource parameters such as CPU utilization of the host VMs, and

dynamic VM management algorithm, which decides on the VM placement policies in

the controller. Nova, OpenStack scheduler, initiates VM migration according to the

decision of the VM management algorithm. Details of this algorithm are presented

in Appendix C. A host monitors the resources of each VM and learns the seasonal

pattern. The overload and underload conditions of each host are determined using

estimated resource values. This information is evaluated in the scheduler which de-

cides VM migration. This algorithm is evaluated on Intel OpenStack Cluster which

services internet workload generated according to patterns of real-world traces. This

algorithm estimates the resources with an accuracy of 85% and resulted in power

savings of 23%.
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Chapter 8

ContextAiDe EVALUATION

ContextAiDe architecture is evaluated using a Perpetrator Tracking Application. This

perpetrator tracking application obtains video and image data from nearby user de-

vices as the perpetrator moves from one location to another. The first part of this

evaluation involves running the application on a set of participating devices, which

includes mobile devices, fog server, and a cloud server available in the Impact lab

at ASU. The second part demonstrates the use of ContextAiDe in the form of sim-

ulation on mobile data traces obtained by monitoring the participants from Yonsei

University (LifeMap data set). This LifeMap dataset consists of timestamped data

from different sensors on the user’s mobile devices.

8.1 Perpetrator Tracking Application

All the mobile devices have ContextAiDe App installed. Perpetrator tracking app

tasks run on the edge devices. The leader device initiates the task requests on the

ContextAiDe publish-subscribe channel. Image capture and face detection are sensing

and processing tasks. The user devices execute the image capture task while fog and

cloud servers execute the face recognition tasks.

This application is useful to track a person by data mining on nearby mobile

devices. The sensing task acquires media such as video or images from multiple

users. The perpetrator app can help the authorities in searching for the perpetrator.

Devices are selected to execute the MCS task based on the availability of context.

Context requirements of the perpetrator tracking app are described in Table 8.1. It

shows the exact and preferred contexts. User devices send the face data images to
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Table 8.1: Context Requirements of Perpetrator Tracking App

Context Value Acceptable

Deviation

Type Details

Location Event Location 0 exact GPS value specify event location

Camera Availability 0 exact Ensures that the camera is available for

use by ContextAiDe

Wifi Availability 0 exact Ensures connectivity to communicate the

MCS data

Accelerometer

Variance (m/s2)

0 2 preferred Reduces movement noise in camera out-

put

location ra-

dius(m)

0 20 preferred defines the search area for locating per-

petrator

Orientation 300 ◦ 20◦ preferred Ensures specific direction of viewing as

requested by the investigator.

a fog or cloud server for face recognition. These results are used to estimate the

perpetrator movement and predict the location in the next time step.

User Device Tasks

Image capture and face detection execute on the user device. Image Capture task

starts the camera on the selected user device and captures images at the specified

rate. Face Detection is called once every minute to process all the images captured

in the previous time step.

Server Tasks

Face recognition executes on the Fog or Cloud server. Face data from mobile users

is processed to recognize the face of the perpetrator. The face recognition app is

designed using an open-source, python-based, face recognition library Ageitgey (2017)

using a deep learning model. This model determines if any of the devices successfully

captured the perpetrator’s image.
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8.2 Developer’s and Volunteer’s perspective

Developer’s Perspective: ContextAiDe is designed to ease the developer from

the burden of offload management of the application tasks. Developer integrates the

MCS app by using the predefined API classes, e.g., the developer extends the Context

class. The location context is defined using API is also shown in Code Listing 8.1.

The listing shows the location context defined as the exact context as well as the

preferred context. The distance function is also defined. The developer can build a

class for any new sensor plugged into the device.

For example, if the developer wants to build a smart home application to op-

timize energy usage in the home, he can build contexts to trace the movement of

different persons by including one or more techniques of indoor location sensing such

as WiFi Triangulation, Bluetooth beacons Nath et al. (2018); Perera et al. (2018).

These contexts can be used to further design optimization objectives such as con-

trolled heating, and lighting by monitoring the location context of each person, and

their movement in different rooms. The optimization algorithm in user recruitment

needs to be defined to support new objectives, e.g., minimizing energy consumption.

Additionally, the developer can also implement predictive schemes for the different

contexts by monitoring user behavior or schedules of each person. In this case, the

developer with use context prediction algorithms or design his own.

Listing 8.1: Definition of Context

public class location_context extends Context{

String context_name;

String context_type; //exact or preferred

double weight ; //[0-1]

datatype [] context_value;

float distance;

}

float[] location_val= new Float{13.065536,40.022937};

44



Context location_cntxt_z = new Context( "location", "exact",location_val, 0);

Context location_cntxt_p = new Context("location", "preferred", 0.7, 0.5);

Perpetrator Tracking
App

Context Manager class battery_level extends 

Context{

} 

class location_context extends 

Context {

// code written by developer

} 

class image_capture

extends CodeExecution{

ExecuteCode()

{    

// code written by   

// developer

}

IntegrateResults()

{

// code written by   

//  developer

} 

}

DEX’ed jar
(byte code)

Data_1
Data_1

Data_1

Context 
Requirements

class ExecuteCode{

startCamera();

ExecuteCode();

IntegrateResults();

}

class Context{

} 

Figure 8.1: Execution Mechanism using DEX for Android.

Further, the architecture provides the developer with automatic offloading of the

application tasks across the pool of devices with predefined classes. Figure 8.1 shows

offload management and execution. OffloadManagement class is used to define the

offloaded task of the application and the application logic. ExecuteCode() method

of this class defines the application logic, and IntegrateResults() method defines logic

for processing the results from multiple devices. The offloaded task, in the form of

DEX code, is sent on the android user device. ExecuteCode() method invokes the

execution of the task on the user device.

Volunteer’s Perspective: The volunteer configures the App to set limits on the

resources to be used by the offloaded tasks. A new offload task is accepted if its

estimated resource usage is within limits, thus protecting the resources for the owner’s
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Table 8.2: Perpetrator Location Tracking Results

Plot(XS,CA) Value Description

(a) tracked Location plot indicates perpetrator tracked within search area with both strategies

(b) 542,221 Radius plot indicates search radius (here mean).

(c) 86%,31.7% Devices Number of devices (here percentage)

(d) 7.5MB,2.8MB Data Average data sent by sensing devices to fog server every minute.

(e) 0.459,0.335 CSI lower CSI indicates better Contextual data acquired.

(f) 59.6J, 22.6J Energy Average Mobile Energy Consumption every minute.

(g) 17.9s, 14.8s Time Average time incurred for processing a request.

use.

8.3 Evaluation Run

This experimental evaluation is done using 14 mobile devices, one notebook, a fog

server, and a cloud server. Specification details of these devices are listed as follows:

1. 6 One Plus One phones, Qualcomm Snapdragon 2.5GHz Quad core CPU, 3GB RAM, 64GB

Storage, Android 5.1.1

2. 4 Nexus 5 phone, Qualcomm Snapdragon 2.3GHz Quad core CPU, 2 GB RAM, 32GB Storage,

Android 5.1.1

3. 2 LG g2 phone, Qualcomm Snapdragon 2.26GHz Quad core CPU, 2 GB RAM, 16GB Storage,

Android 5.1.1

4. 1 Nexus 7 tablet, Qualcomm Snapdragon 1.5GHz CPU, 2 GB RAM, 32GB Storage, Android

5.1.1

5. 1 Moto G5 plus phone, Qualcomm Snapdragon 2.0GHz CPU, 4 GB RAM, 64GB Storage,

Android 7.0

6. Fog Server: Intel i7 Desktop 3.5GHZ Quad core CPU, 16GB RAM

7. Cloud server in GoogleCloud with 8vCPUs and 32 GB memory
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A perpetrator tracking app is used to evaluate ContextAiDe. It tracks the perpe-

trator, as he moves through a series of locations. This evaluation is performed on14

android devices with varying context values. The search begins from the last seen

location of the perpetrator and a fix search radius. At a given location, ContextAiDe

optimally selects user devices to acquire images from a camera. MCS app components

have two processing components, 1. detecting images that contain faces (runs on a

mobile device which captures images.) 2. recognize the face in the images sent (runs

on the Fog server).

The application run is of 30 minutes. There are14 mobile devices, and one note-

book participating in the evaluation. One of the mobile devices acts as leader devices.

The leader device discovers the devices available nearby and recruits some of the de-

vices to execute the MCS task. This evaluation compares ContextAiDe to the existing

user recruitment strategy (XS). The existing strategy uses the exact context of lo-

cation and WiFi availability for optimal selection of users in a fixed search radius.

ContextAiDe strategy involves the optimal selection of devices to adapt to changing

context changes and requirements of the application. Table 8.2 shows the perfor-

mance of ContextAiDe vs. XS in a single request which tracks perpetrator through

location 1 to the 10.

This Figure reffig:loctrac shows the evaluation of ContextAiDe and XS user re-

cruitment. The contexts on the user devices change during the execution. Initial the

Contextual requirements of the Perpetrator tracking app are user orientation of 240◦,

search radius of 10m and images rate of 6 images/min.

8.3.1 ContextAiDe Evaluation with Other Recruitment Strategies

This evaluation is designed using LifeMap Dataset Chon et al. (2012). 10 Per-

petrator tracking app requests that last for an average duration of 30 mins are gen-
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Figure 8.2: Perpetrator Tracking Scenario.

erated. In each request, the perpetrator is tracked as he moves through the campus

area. Evaluation of ContextAiDe user recruitment is shown compared to prior re-

search works. Different aspects of user recruitment strategy such as accuracy, energy

savings, data transfer costs are analyzed.

LifeMap Dataset: Real-life mobile data traces from obtained from free moving

users in Yonsei University are used Chon et al. (2012). These traces consist of users

monitored using multiple sensors over a few months. The trace includes timestamped

data of their GPS location, WiFi and data connectivity, user activity, and battery

level. The data granularity is 2 mins.

8.3.2 Profiling Execution and Communication Time

Profiling File Transfer Time One of the common methods to upload camera

images to the server is saving the file locally on the device and sending it to the

server using multipart file upload. Figure 8.3a shows the time incurred to send the
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original camera images to Cloud as well as the Fog server. Different file sizes are

obtained by using multiple resolution settings of Camera to capture images ranging

from 13M to 1M which are sent using lossless compression. Time is noted on the

Android device when it starts to send data, up to the time the acknowledgment is

received from the server. Another approach is to stream the data from the camera

to the cloud. Figure 8.3b shows the time incurred to stream the image data from the

camera to the server. Streaming methods allow capturing camera data in preview

mode which are smaller files compared to original images that can be saved on the

device. In both methods, at the server end, the PHP code stores image data into a

file before it is used by face recognition application.

Profiling Data Sensing Time The time for sensing is noted on the Android device

from the start of sensing requests received on the device to the time data is available

on the device for transfer. In the perpetrator tracking application, the data sensing

time is noted for the acquisition of image files and the data stream from the camera.

Capturing images of different file sizes, the sensing time was observed to be 2203.9

ms with a standard deviation of 397 ms.
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Figure 8.3: Comparison of File Transfer Time in Fog
vs. Cloud

Profiling Execution Time

of MCS Tasks Execution

of the perpetrator tracking

MCS application involves

running of face detection

application on the mobile

device and face recognition

application on the Fog/Cloud server. The time for running the face detection task is

noted from the start of data available until the results of face detection applications

are available. The average time incurred for varying file sizes is 1161 ms with a stan-
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(a) XS:CATA (b) ContextAiDe

(c) ContextAiDe with Stochastic (d) Ideal

Figure 8.4: Comparison of User Recruitement Strategies.

dard deviation of 331.69 ms while the face recognition application task requires an

average 860 ms with a standard deviation of 101.8 ms.

For evaluation run (§8.3) and the perpetrator tracking app (§8.1), the time is

estimated starting from request for image capture to the time when results of face

recognition are generated as a combined time for sensing and data transfer time for

a single image. The time incurred using the file saving method is estimated to be

8.6s for cloud and 4.71s for Fog server processing (file saving method). The estimated

time for stream processing is around 5s for cloud and 4.414s using the Fog server.

8.3.3 Strategies for User Recruitment

In this section, different user recruitment approaches are described in detail. Fig-

ure 8.4

1. Existing Strategy (XS): This user recruitment scheme is similar to Context-

Aware Task Allocation (CATA) Hassani et al. (2015) where context optimized selec-

tion is performed for each new task request. The next location is given by one of the

devices that recognize the perpetrator while the search radius is fixed as seen in Fig-

ure 8.4a. 2. ContextAiDe’s Current Available Context (CA): This approach employs

a user recruitment scheme discussed in the § 4.1.1. Currently available context on
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the device is used by this approach. Optimization is performed for user recruitment

when the required context becomes suddenly unavailable or context request is initi-

ated. If the perpetrator being tracked is found, the search radius is based on context

availability and projected movement. This can be seen in Figure 8.4b. In case the

person is not found the search radius is increased.

3. ContextAide’s Stochastic(CAS): This approach is similar to the CA approach

but the context used in device selection is the predicted context of the device. Con-

text is predicted using a stochastic approach. Figure 8.4c create focused search to

obtain more relevant data. 4. Ideal (I): This recruitment revises the selection de-

cision by performing optimization at fixed time intervals to select optimally context

matching devices based on actual values each time. In the evaluation presented, the

time interval is set for 2 mins. This recruitment scheme chooses devices with the best

CSI in every time step to provide optimal user selection. Figure 8.4d shows correct

selection devices knowing the future values of context on the devices. 5. Contex-

tAiDe’s Cloud(CAC): This uses user recruitment strategy (§ 4.1.1) but cloud is used

for processing.

ContextAiDe’s user recruitment schemes are designed to adapt to dynamically

changing context requirements, e.g. location or search radius may change based on

the movement of the perpetrator at runtime. New location and search radius are

based on the previous evaluation.

8.3.4 Evaluation using Data Traces.

In this section, ContextAiDe is evaluated for strategies discussed in § 8.3.3. Pa-

rameters are as follows:

(1.) CSI: Lower CSI value indicates data acquired matches the required context.

(2.) Data Usage: This value indicates data transferred between the Edge devices
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Figure 8.5: Performance of ContextAiDe w.r.t. Other Architectures.

when it is transferred to fog/cloud. The amount of data transferred by different

algorithms is compared.

(3.) Energy: The energy is estimated based on data sensing, processing and data

transfer that are executed on the mobile device (§ 8.3) while processing each appli-

cation request.

(4.) Number of Optimizations: In a given sequence of application requests, opti-

mization initiated depends on the user recruitment algorithm used. The number of

optimizations indicates the operational overhead of the algorithm.

(5.) Devices switched: Sum of new devices that were recruited during execution.

(6.) Incomplete requests: Context-aware recruitment of devices causes some of the

requests to be incomplete. A total number of request that remains incomplete over

the sequence of requests.

(7.) Delay: Average time incurred to accomplish the MCS task.

(8.) Accuracy: It shows the distance between the actual and the estimated location

of the perpetrator.

Figure 8.5 shows that CA successfully generates context-relevant data shown by

lower CSI and accuracy plot. Proactive context estimation results in little better

energy and delay performance for CAS. Data used in CAS is 24.8% lesser and energy
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is 37.8% lower than existing strategy (XS) for accurately tracking the perpetrator.

Time incurred is improved by 43%. This is achieved using CSI optimization indicated

by the accuracy plot. Close monitoring of context and the proactive decision based

on expected context values results in savings of data usage energy consumption and

time incurred. However, this comes at the cost of accuracy. The minimum distance

achieved in CA, CAS is a little more than XS and I strategy but the mean value of XS

is much higher than CA/CAS. Alternatively, using the cloud server in CAC strategy

incurs much higher energy (33%) and delay (50%) than CAS.

Figure 8.6: Performance of ContextAiDe in varying Uncertainty Scenarios.

Figure 8.5 shows that CA successfully generates context-relevant data shown by

lower CSI and accuracy plot. CAS uses a proactive context and results in better

energy and delay performance. Data used in CAS is 24.8% lesser, and energy is 37.8%

lower than the existing strategy (XS) for accurately tracking the perpetrator. Time

incurred is improved by 43%. This is achieved using CSI optimization indicated by

the accuracy plot. Monitoring of context and the proactive decision based on expected

context values results in savings of data usage, energy, and time incurred. However,

this comes at the cost of accuracy. The minimum distance achieved in CA and CAS

is a little more than XS and I strategy, but the mean value of XS is much higher

than CA/CAS. Alternatively, using the cloud server in CAC strategy incurs much
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higher energy (33%) and delay (50%) than CAS. CAS strategy is evaluated using a

large scale simulation set up. Variation of the number of mobile users is assumed for

executing the Perpetrator tracking app. The mobility, WiFi, battery, and activity are

modeled according to the LifeMap usage data. The performance of CAS is evaluated

for variation in uncertainty that is associated with Contextual data. Figure 8.6 shows

the variation in accuracy, percentage of incomplete request (due to unavailability of

context), and average CSI, which shows context relevance of data obtained. For lower

uncertainty (< 20%), accuracy is as desired less than 40 m. Percentage of requests

abandoned and CSI of devices selected remain steady for lower uncertainty (< 25%).

But as uncertainty increases, higher values of CSI are noted for high at the cost of

increased incomplete requests and lower accuracy.
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Chapter 9

CONCLUSION AND FUTURE DIRECTIONS

9.1 Discussion of Solutions

ContextAiDe Architecture enables the design of MCS apps, that meets the real-

time requirements of the application. Many components of this architecture indepen-

dently address various problems of execution of crowdsensing on Edge. This section

summarizes various solutions presented in this thesis towards the design of Contex-

tAiDe architecture.

1. Context Optimized User Recruitment MCS requirements are described in

the form of Context and its values that are useful to execute the different MCS

tasks, such as data acquisition, processing data, run analytics. Recruitment

based on meeting the context requirements has two-fold advantages. The data

acquired is relevant to the MCS tasks and selective data can be processed quickly

using the edge devices. MCS application with real-time requirements such as

perpetrator tracking needs video and image data from nearby mobile users. It

needs data from users in a specific location and fast processing of analytical

tasks to recognize the perpetrator. Chapter 3 and Chapter 4 provide details of

context specification and context optimization-based user requirement. Addi-

tionally, to address the uncertainty associated with mobile usage, a stochastic

optimization scheme is designed. Additionally, Chapter 4 describes various

components of ContextAiDe architecture and their functionality. These com-

ponents can be integrated into MCS app through API calls. Developers can

build communication, execution, and context optimized user recruitment for
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their MCS app using ContextAiDe. A detailed example of perpetrator tracking

is explained in Chapter 8 and Pore et al. (2019).

2. Human Device Interaction Models The interaction of humans is captured

on the user devices and mapped to various activities of the day. These contexts

repeat with daily and/or weekly seasonality. Chapter 5 presents a novel algo-

rithm that runs on user devices to characterize human behavior into models.

These models are used to design proactive scheduling strategies and proactive

user recruitment strategies in ContextAiDe applications. User recruitment with

prior knowledge of context information benefits the execution of MCS with min-

imal interruptions.

3. Power-aware Elastic VM Scheduling Algorithm LTE Base Station host

VMs which run services for mobile users. The workload in a given base station

follows daily and weekly usage patterns. Chapter 7 and C presents details

of the VM management algorithm which scales the VM according to workload

thus consolidating VMs during less busy hours. This saves energy for the data

centers.

4. Offloaded applications on many-core devices Some of the MCS applica-

tions have high computational requirements with real-time constraints. Many-

core devices such as GPU, Intel Xeon Phi support highly parallel execution

of applications. Many-core device architecture varies in the number of cores,

computational power, thread availability, and the cache memory structure. The

offloaded applications also vary in the thread and data-level parallelism. High

throughput application, when mapped on many-core exhibits different perfor-

mance, and energy print. This energy-aware mapping of applications on many-

core architectures is used to save energy many-core servers. Chapter 6 explains
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the energy-aware mapping scheme of applications on many-core devices.

5. Colocated VM Scheduling The efficient scheduling of colocated VMs and

data center applications is based on the energy interference model. Colocated

applications that execute on the same server utilize the same set of resources.

This results in contention of resources which is modeled as the interference.

An energy-aware mapping scheme based on this interference model reduces the

energy consumption in the data center. Chapter 6 explains the energy-aware

mapping scheme of colocated applications.

6. Evaluation of ContextAiDe: ContextAiDe architecture is evaluated on a

small scale on Android devices, edge servers, and cloud by distributing the

tasks of a perpetrator tracking app in the edge devices. Large-scale evalua-

tion of ContextAiDe shows savings in energy, latency, and improvement in the

quality of output of the executed app using simulation. It also evaluates the

MCS application for successful tracking of the perpetrator in an uncertain user

environment. All the results are presented in Chapter 8 and Pore et al. (2019).

9.1.1 Future Work

1. ML Models of User Contexts: ContextAiDe evaluation shows the advantage

of using context prediction models in stochastic optimization for recruitement

of MCS users. The user behavior and changes in mobile device contexts can be

shared across multiple users. MEC based architecture can be designed to share

the ML models, store, and use them for participating users. This prediction

model can allow the inclusion of new users with better knowledge about their

contexts.

2. Anticipatory services for MEC: Anticipatory design of services is gaining
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huge attention currently Ntalampiras and Fiore (2018), specifically for MEC.

The Edge applications are either streaming services such as video, live data

streaming or MCS applications that acquire data from a large set of users and

process it in real-time. Important requirements of such applications are low

latency and high bandwidth. In edge application such as video streaming dis-

cussed by Yang et al., MEC implement rate adaptation and video caching for

the mobile user. In such a situation predictive and machine learning models

benefit the service quality of the MEC app. Human interaction models focused

on mobility and human activity can be used extensively to design anticipatory

tasks in MEC. Schemes for preemptive caching of data and stateful VM mi-

grations with checkpoints to support mobility can be designed in future MEC

architectures.
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IOT STANDARD AND PROTOCOLS
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As an emerging field, IoT protocols are evolving to better adapt to the needs of
the industry. Broadly these protocols are divided into two main categories, Data
Protocols, and Network protocols. As the devices and IoT sensors are distributed,
communication and data protocols help to establish and maintain the IoT application.

A.0.2 Network Protocols

1. HyperText Transfer Protocol (HTTP): It is the basic protocol that is used for
communication for large scale IoT framework. For low constraint devices, with
limited battery, data, and resources, this protocol is not preferred.

2. Long Range Wide Area Network (LoRaWAN): It is a long-range wireless con-
nection protocol which is used in either private or global network. It is used on
a large scale where millions of devices may be connected and function with low
power and memory.

3. 6LoWPAN: This protocol uses IPV6 Low Power Wireless Personal Area Net-
work. Data compression and header information allow IPv6 to be used for
communication over a range of networks e.g. Local, Metropolitan and Wide
Area Network.

A.0.3 Physical Layer

1. Near Field Communication (NFC): NFC allows transmission of data between
nearby devices in range on 4cm. The transmission occurs without contact.
Example of NFC is payment systems and keycard.

2. WiFi: This technology connects the devices over wireless connections using
standard IEEE 802.11 standards.

3. RFID: This technology makes use of radiofrequency to communicate. RFID
chips store and maintain inventory.

4. LPWAN: Used for data transmission over long distances with low power.

5. ZigBee: Allows communication between smaller devices with low power and
low data rates within a small distance. Example of ZigBee is smart homes or
electric meter monitoring.

6. Bluetooth: It allows communication with nearby devices in a range of 100cm.
A low energy feature allows us to save battery energy and is useful for wearable
devices.

A.0.4 Data/Application Protocols

1. Message Queuing Telemetry Transport (MQTT) protocol: It works on a publish-
subscribe model to offer low power consumption and minimized packet. It is
particularly used in the industrial domain earlier known as SCADA protocol.
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2. Advanced Message Queuing Protocol (AMQP): This protocol allows message
queuing and routing in a secure and reliable way. Three stages of AMQP are
Message, Queue Exchange and Binding. E.g. in the banking app.

3. Constrained Application Protocol (CoAP): It is specially used for low power and
low memory devices where communication times and resources on the devices
can be optimized. The communication is based on UDP protocol sending binary
data in Efficient XML Interchanges (EXL).
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APPENDIX B

ENERGY AWARE MAPPING ON MANY-CORE DEVICES
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B.1 Approach for Application Colocation Problem

Many-core devices can support applications that require a large number of compu-
tations that may not run on a mobile device. To utilize the many-core platforms for
maximizing the throughput of the applications, the code in the application needs to
execute in parallel. While throughput is a critical requirement for real-time process-
ing, running these applications in data centers incur energy consumption. Mapping
the application on the specific many-core platform can reduce the operational cost
of a data center by energy savings. Given constraints of throughput of certain ap-
plications, this work focuses on improving the performance and energy consumption
by a.) Reducing the interference between colocated applications. b.) Mapping the
parallel applications on architecture.

The approach is to exploit the parallelism of an application at thread-level and
data level and spatial and temporal locality as well as overlapping the computation
by communication time of data while processing on many-core devices. By matching
the architecture and application parallelism this work proposes to extract maximum
throughput from the many-core systems. This study involves the colocation of high
throughput medical applications in a hospital scenario. Two types of model predictive
controllers are considered 1. Pharmacokinetic model controller 2. Spatiotemporal
model controller. The resource requirements of these applications e.g. computational,
memory requirements are different and they form the design parameters for evaluation
of the multi-core platform.

B.2 Exploiting the Architecture for High Throughput Applications

Table B.1: Multiprocessor Platforms for Fast Processing of Medical Applications.
Core Architecture i7 ivybridge GPU XEON
Model No 3770K GTX 680 Phi 3120P

Core Frequency 3.5GHz 1.006GHz 1.1 GHz
Num Cores 4 1536 57
HW-thread/Core 2 512 (max) 4
Total Last Level Cache 8.192 MB 512KB 28.5MB
Main Memory 16.3815GB 2.048 GB 6GB
Total Power (TDP) 77 W 195W 300 W

This table describes the details of the architectural features of multi-core platforms
that are exploited for the fast processing of different types of parallel applications.
Design space is based on the resource constraints of each platform. Table B.1 gives a
summary of the architectural details of the many-core platforms used in this study.

Both the MPC applications are executed in parallel by exploiting the architecture
for thread and data-level parallelism. The simulation of the model generates an
output which is used to change the level of drug-infused. These MPC applications
are run on the different architectures and evaluated for Flops/Joule. This Flops/joule
metric is further used to obtain the most energy-efficient scheduling.
Pharmacokinetic Model Application takes input as a number of patients that
are monitored. The number of threads is generated based on the number of patients.
For each patient, the application predicts the value of the drug level for the next half
hour. Once the predicted value is obtained, the controller compares this value to the
reference drug level and adjusts the signal to the actuator of the infusion pump.
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Spatio-temporal Diffusion Model Application input consists of a number of
patients and the size of the tissue (grid size). The model is computed to predict the
output of drug content in the tissue. Based on this predicted value, the controller
compares it to the reference drug level and outputs the signal to the actuator of the
infusion pump.

B.3 Performance of Energy-Aware Application Mapping Scheme

The spatiotemporal or the Pharmacokinetic application has a different perfor-
mance and energy consumption when running on different multicore platforms. The
results indicate that Pharmacokinetic application will run more efficiently and fast
on i7 while the Spatiotemporal application performs better on the MIC. In the hos-
pital scenario, different patients may be monitored with a different application based
on the criticality and need of the patient. In the case of different applications that
are monitoring multiple patients at a given time, can we utilize the existing hetero-
geneity of platform e.g. i7 with MIC card to gain more energy savings and better
performance?

Consider a scenario, where we have a sample set of 3 patients that are monitored
using the Pharmacokinetic model application and 16 patients are monitored using the
Spatiotemporal diffusion model application. This sample set of applications is running
simultaneously on different platforms. Figure B.1 shows a plot of total execution
time and energy consumption of our sample application set when running on the
platform. Note that the energy consumption shown is inclusive of the idle energy. As
Pharmacokinetic application performs well on i7 and the Spatiotemporal application
performs well on the MIC we use this combination. The last value in Figure B.1,
indicates that MIC-i7 gives better performance and energy savings.

Figure B.1: Sample Run Showing Energy and Performance of 3 Patients Monitored
by Pharmacokinetic Model and 16 Patients Monitored by Spatiotemporal Model Ap-
plication.
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APPENDIX C

ELASTIC VM MANAGEMENT SCHEME
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The dynamic VM management system is an extension to OpenStack, an open-
source cloud platform. In its current offering, OpenStack trades the energy for swift-
ness through static resource assignment to VMs. In the scenario of Intel Base Station
applications that service LTE workloads, a pattern of VM usage is observed. These
VMs are hosted on Cloud Radio Access Network (C-RAN), which provides virtual-
ization of resources and Network Function Virtualization to support the flexibility
and scalability in MEC hosted applications in 5G.

C.1 MEC Infrastructure

MEC architecture is widely being used especially with 5G networks. MEC enables
to deploy apps on the edge of the mobile network. It supports processing edge data
with low latency, real-time processing with privacy: Figure C.1 shows the components
of the server. It includes a virtualization component that supports the virtualization
of the network, resources for MEC apps. The network virtualization provides isola-
tion to MEC apps using Software-defined networking, (SDN) and Network Function
Virtualization (NFV). High-speed networks in 5G and a large number of connected
devices, as well as data obtained, can be supported by a Cloud radio access network
or C-RAN.

Given the time-varying nature of the cloud applications’ workload in Base Sta-
tion Applications, elasticity can be infused into the cloud platform to scale the active
resources according to the VMs’ input workload and save energy by removing unnec-
essary idle power. Proactive VM management solution dynamically decides on the
VM’s resource assignment and consolidates the VMs into a fewer number of hosts
considering the VMs’ future resource requirements and VMs’ migration overhead.
Dynamic VM management is proposed as an optimization problem and a heuristic
solution is proposed to solve it.

Figure C.1: Components of MEC Server.
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The proactive VM management scheme is designed to consolidate VMs by address-
ing the overload and underload conditions on servers based on the predicted workload.
This scheme is evaluated on OpenStack Cluster on real-world Internet traces and In-
tel travel-box clusters. The experimental results show that the VMs’ future resource
requirements can be predicted with reasonable accuracy (15% prediction error) and
that they are successfully utilized to detect underloaded and overloaded hosts.

The challenges in dynamic VM management are as follows:

1. Maintaining the quality of service of VMs

2. Optimal scheduling needs VM prediction with future values known over a long
prediction window.

3. Fine variations in workload can cause performance degradation

4. Consolidation of VMs using the migration of VMs retaining the current state
of VMs i.e. the migration overhead costs.

C.2 Approach

Consider a discrete-time model by dividing the time into equal intervals, called
slots, where the dynamic VM management policies can be updated. The slot duration
has to be short enough to capture the workload variabilities, yet long enough to predict
the workload with reasonable accuracy and to avoid VM migration overhead.

At the beginning of each slot, the dynamic VM management solution determines
VM migration policies by reconciling a number of competing objectives, e.g., increas-
ing the VM consolidation rate and consequently removing unnecessary idle power,
maintaining the quality of service requirements of the VMs’ applications, and reduc-
ing number of VM migrations to avoid VM migration overhead. We consider that
the OpenStack controller node determines the dynamic VM management policies i.e.,
VM migration and that the cloud platform (OpenStack) is capable of dynamic VM
migration.

Given a long period consisting of T slots, a cloud with N nodes each associated
with a limited capacity of Ri and the energy consumption pidle,i + pi , time-varying
number of VMs, M(t), each associated with time-varying resource requirements of
rj(t), and VM migration overhead of qi,j(t) and q′i,j(t), find VM placement policies
over time (which VM to migrate, when to migrate and were to migrate) so that
to minimize power consumption, while maintaining the VMs’ resource requirements.
The assumption is that each VM resource r, as well as VM migration overhead q and
q′, is modeled as a vector of CPU, RAM, Memory and Network resources.

C.2.1 Overview of the Heuristic Solution

The complexity of solving the aforementioned optimization problem is two folds:
(i) characterizing and predicting the parameters over time T (i.e., predicting resource
ri(t), qi,j(t), q

′
i,j,t, and pi over T ) , and (i) finding a computation-efficient solution to

solve the problem over T with near-optimal performance. In particular, developing
a computation efficient solution of the above dynamic VM management problem
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require resource usage profiling and modeling of Internet applications and devise a
heuristic solution to dynamically characterize the parameters and find a dynamic
VM placement policy to reduce power consumption. The heuristic solution instead
of forecasting the exact resource requirements of VMs estimates resource requirement
boundaries to ensure their quality of service. The following describes the basics of
the heuristic solution:

• Given daily basis variation of Internet application, witnessed by several re-
searchers, T is the number of slots for a day.

• To characterize resource requirements of VMs we forecast their average resource
utilization (i.e., CPU utilization, the average number of send/receive packets)
and make use of a performance model that maps the average resource utilization
to their resource requirements such that their quality of service is maintained.

• To estimate the available free capacity of compute nodes, we use performance
models that detect overloading and under-loading conditions of compute nodes.
The overloading hosts need to reduce their number of VMS and the VMs of the
under-loaded host can be consolidated.

• At this stage of the project, we do not exactly characterize VM migration over-
head instead the heuristic solution avoids frequent VM migration and performs
migration when the source and the destination have sufficient free resources
(i.e., they are not in the overloading conditions). In this way, there are enough
resources to address migration overhead without affecting the performance of
the hosted VMs.

• Instead of brute-force search to find the optimal VM assignment policy, we
linearly search through computing nodes over T, detect overloading and under-
loading host and determine the VM migration polices.

C.3 Elastic VM Management Scheme

We implement a software application which can be considered as an extension
to the existing OpenStack framework. As shown in Figure C.2, the application is
compatible with the client-server architecture of OpenStack and consists of several
components that either reside in the controller node or the compute nodes as follows.

The system application is split into two main parts, resource monitoring that col-
lects the resource parameters such as CPU utilization of the host VMs and processes
it in the controller, and dynamic VM management algorithm which decides on the
VM placement policies in the controller. Once the VM is chosen for migration, the
decision is integrated by changing the input of destination hosts in the nova-scheduler.
A detailed explanation of the above components is given in the following subsections.

C.3.1 Resource Monitoring

The resource monitoring tool collects the resource usage over very short intervals
(e.g., seconds) which are used to calculate the statistical information of the VMs’
resource usage over slots. The tool has two components. One component resides in
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Figure C.2: Architecture for Dynamic VM Management Scheme.

each active compute node that collects the resource usage parameters of each VM
including CPU utilization (i.e., number of vCPU, vCPU time), network utilization
(i.e., packed send/receive and bytes sent/received), memory (i.e., memory size and
memory usage) over seconds using libvirt. This information is stored in a database
in the controller. The other component resides in the controller and computes the
statistical parameters of VMs’ resource usage over slots. Such statistical information
which includes mean, standard deviation, minimum and maximum of all resource
parameters are then stored in the database and are used to train and update the
resource prediction model.

C.3.2 Resource Usage Predictor

The Predictor tool is designed by integrating the R statistical tool into python
known as the “rpy” library. Based on prediction results in § 5.2, SARIMA is used to
predict the resource usage of VMs that varies according to the workload. The R statis-
tical library allows automation in building a model based on sufficient training data.
The prediction model uses training data of each VM available in the database and
predicts the resource usage of each VM over a prediction window (e.g., 24 hours). We
use the forecast library from R to build a SARIMA prediction model. The prediction
model is built separately for each resource usage parameters (e.g., CPU utilization
and network utilization). Once the model is built, it can use the trace of resource
utilization up to current time to predict the resources over the prediction window of
24 hours. Further, models are updated periodically (with configurable period length)
to capture the resource usage dynamics.
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C.3.3 Performance Model

The performance model describes the conditions where the resource assignments
of the VMs are sufficient to maintain their quality of service and are used to evaluate
overloading and underloading conditions of a compute node for deciding on the VM
consolidation/dissemination.

VM Application Performance Model

We assume that the quality of service requirement of the VM applications is tied to
the resource utilization of the VMs. In particular, we consider that by imposing a cap
on the CPU utilization level of the VM application,the quality of service degradation
of the application is avoided. This is witnessed by the related work and by our
previous research results.

Compute Node Performance Model

When VMs are running simultaneously, the resource utilization of underneath host
is the cumulative sum of resource utilization incurred by individual VMs (refer § 6.1)
+ interference. VM management decisions are based on the following thresholds.
Upper Threshold, Uth: This value is the maximum value of total resource utiliza-
tion incurred by VMs such that the VM applications’ quality of service is maintained.
If in any slot, the total CPU utilization with a standard deviation of the VMs ex-
ceeds this Uth, the VMs do not have sufficient resources, the host is detected to be
overloaded. Figure C.3 shows that the cumulative CPU utilization exceeds the Uth in
point X.
Lower Threshold, Lth: This is the maximum value of cumulative CPU utilization
such that if the total resource utilization incurred by VMs with their standard devi-
ation is below this value, the host is detected to be underloaded at that time. Lth
is based on the consolidation rate and migration overhead. Lower threshold results
in more consolidation and more migrations. Figure C.4 shows the cumulative CPU
utilization is maintained below Lth, hence the host is detected to be underloaded.

Figure C.3: Overload Host Figure C.4: Underload Host
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C.3.4 Dynamic VM management

The heuristic VM management algorithm that adjusts the active servers according
to the input workload of VMs. Figure. C.5, describes the steps of our algorithm.

In every slot (hourly), the resource usage parameter for each VM is predicted over
T (i.e. next 24 hours for T = 24). The dynamic VM manager uses the predicted
resource usage and the performance model to detect the overload and underload
conditions of each compute node. In case, overload is detected for any node, the most
responsible VM for the overload is chosen to migrate. In case none of the hosts are
overloaded, the underload condition for the host is checked. If a host is underloaded,
all the VMs from that host are migrated to other hosts by choosing a new destination
host. When a VM is chosen for migration, the new host is selected from available
hosts such that considering the new VM, its migration overhead and the existing
VMs, the host does not get overloaded.

The details of this algorithm are discussed below.

Detecting Overload Condition

The overload condition of VM occurs when there are not enough resources on the
host to meet the quality of service requirements of the workload. With the knowledge
of predicted CPU utilization for the next 24 hrs, for each VMs on the host, if the
performance model (refer §C.3.3) detects overload in any of the 24 hours in the future,
the host is detected to be overloaded. We note the time at which maximum overload
occurs. As shown in Figure.C.3, maximum overload is seen to occur in the X slot.

Choosing which VM to Migrate

The slot in which overload is estimated to occur i.e. X slot is is considered while
choosing a VM to migrate. With several VMs running on the host, the VM that
is most likely contribute to overload condition is detected by comparing the CPU
utilization contributed by individual VMs at the X slot in the future. The VM that
has a maximum CPU utilization at the X slot is chosen as a candidate for migration.
As shown in Figure.C.3, vm1 is chosen for migration.

Finding a New Host for the VM

A host is chosen as a candidate for a new VM if, by the addition of a new VM, all the
VMs have enough resources to meet the quality of service of VMs’ application. Using
the predicted data for the new VM and the predicted resource usage of the VMs
already residing on the host, a new host is found such that the performance model
(refer §C.3.3) detects no overload in T slots in the future, see Figure C.4. From the
available hosts, the first host that can accept the new VM is chosen as the destination
host for the selected VM.

When to Migrate the VM

We choose to migrate a VM when predicted VM utilization and the VM migration
overhead does not cause overhead while migrating from the source host to the des-
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tination host. The VM migration overhead is not exactly characterized but it is
ensured that the source and the destination have sufficient free resources (i.e., they
are not in the overloading conditions) by overestimating the VM migration overhead
when migrating a VM. In this way, there are enough resources to address migration
overhead without affecting the performance of the hosted VMs. Starting from the
slot, when the overload occurs (i.e. X slot) towards the current slot, migration slot
is chosen such that the VMs’ predicted utilization and VM migration overhead does
not cause overload on the source and destination hosts.

Detecting the Underload Condition

The underloading condition exists when existing VMs are predicted to have abun-
dantly extra resources than required to meet the quality of service of VMs’ application.
In such a case, it is more efficient to move the VMs to other active hosts and power
of the underloaded host. We estimate the underloading to occur based on VM’s CPU
utilization as an indication of host utilization. With the knowledge of predicted CPU
utilization for next 24 hrs, for each VMs on the host, if the performance model (refer
§C.3.3) detects the host to be underloaded at all the times in the future, all the VMs
are migrated to other hosts by finding a suitable host.

To prevent frequent migrations and reduce the migration overhead, the condition of
overload is evaluated and then checked if underload exists. In some cases, neither
overload or underload may exist as seen in Figure C.4.

C.4 Performance of VM Management Algorithm

The proactive VM management solution is evaluated using realistic traces and
systems. Adapting SARIMA to the online prediction of resource usage gives a pre-
diction accuracy of 15% for the next hour and increases to 32% over the prediction
window of 24 hours. The prediction results are used by our performance models
to detect overload and underload of hosts. The host CPU utilization is used as an
indicator of the VM application’s performance. Considering the internet workload,
the cumulative CPU utilization incurred by individual VMs is related to host CPU
utilization. This can be used to detect the overload and underload condition of the
hosts. The VM migration overhead is also considered as a job to ensure that VM
application performance is maintained during the VM’s migration. The feasibility
of our proactive VM management scheme is based on predicted VM resource usage,
VM migration overhead, and threshold-based VM management algorithm to improve
the consolidation rate of the VMs by extending the existing OpenStack. The power
savings in the cluster were observed to be 23% compared to the original scheduling
algorithm in OpenStack.

78



Figure C.5: Algorithm for Dynamic VM Management.
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