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ABSTRACT  

Component simulation models, such as agent-based models, may depend on spatial 

data associated with geographic locations. Composition of such models can be achieved 

using a Geographic Knowledge Interchange Broker (GeoKIB) enabled with spatial-

temporal data transformation functions, each of which is responsible for a set of 

interactions between two independent models. The use of autonomous interaction models 

allows model composition without alteration of the composed component models. An 

interaction model must handle differences in the spatial resolutions between models, in 

addition to differences in their temporal input/output data types and resolutions. 

A generalized GeoKIB was designed that regulates unidirectional spatially-based 

interactions between composed models. Different input and output data types are used for 

the interaction model, depending on whether data transfer should be passive or active. 

Synchronization of time-tagged input/output values is made possible with the use of 

dependency on a discrete simulation clock. An algorithm supporting spatial conversion is 

developed to transform any two-dimensional geographic data map between different region 

specifications. Maps belonging to the composed models can have different regions, map 

cell sizes, or boundaries. The GeoKIB can be extended based on the model specifications 

to be composed and the target application domain. 

Two separate, simplistic models were created to demonstrate model composition via 

the GeoKIB. An interaction model was created for each of the two directions the composed 

models interact. This exemplar is developed to demonstrate composition and simulation of 

geographic-based component models. 
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CHAPTER 1 

INTRODUCTION 

Simulations of real-world systems require abstractions of those systems. In the 

abstraction process, some system attributes are omitted, but others are delegated to external 

simulations and data. To create models of complex systems, it is often best to 

compartmentalize different aspects of systems as separate, autonomous models. These 

component models are each best specified with a separate set of specifications, operating 

with different rules and scales. Each model could be simulated independently using a 

simulation engine. 

Each model, on which simulations are based, is defined to have a particular input and 

output specification. The input-output format includes more than programming language, 

data type, and value limitations. The frequencies, measurement units, and meanings of the 

variables play a significant role in a model. Some models have other specifications for I/O, 

such as spatial resolution or null value limitations. These unique specifications result in 

difficulty connecting different models, even for models that represent related systems. If 

one model requires vegetation density, in kilograms per square meter, as input, and another 

model outputs vegetation volume in cubic meters, the models could not be coupled directly. 

Reconciliation of variable specifications must be done whenever the expected input of 

a simulation is not provided, with the same format, by the output of another simulation. 

While changing the simulations’ I/O requirements may work in these situations, such 

changes are undesirable. Each simulation should function according to its own 

requirements, and should be tested based on the same requirements, and changing an input 
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or output violates this. Forcing adherence to a common protocol places restrictions on 

component models that are inappropriate to their different scopes of operation. 

Separate components can be used to provide inputs to a simulation given outputs from 

a different simulation. Such interaction components, called Knowledge Interchange 

Brokers or KIBs, are responsible for making conversions of data types, quantity, resolution, 

and frequency, between two models [1]. The KIB has a syntax and semantics that are 

separate from those of the simulations to which it connects. In this project, a design for a 

geographic KIB is developed that receives data from different agent-based and cellular 

automata simulations and provides the related inputs required in their models. A 

geographic KIB performs the basic operations required of interaction models while 

providing functionality that facilitates spatial operations. 

Two different models were composed for a study of the effects of human activities on 

landscapes and vice versa. The vegetation simulation determines the types and density of 

vegetation cover over a given map area. The agent-based model (ABM) consists of farmers 

who decide where they will farm and what types of farms they will establish. The 

Landscape simulation focuses on the land itself, showing effects on the fertility and 

elevation of a landscape over time. The models are composed using separate KIB models 

for the different sets of interactions required. 
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1.1 Thesis Goals 

This thesis project has the goal of creating a generalized design for a knowledge 

interchange broker for geographic models. The design includes Unified Modeling 

Language (UML) specifications and diagrams that show the structure and behavior of the 

KIB. The classes and methods of the KIB were then implemented in the Java 8 

programming language. The generalized design and classes created for this project could 

be extended and applied to other models where interactions based on 2D geographic maps 

are desired. The process developed here to create geographic KIB objects could also be 

used to make other variations of interaction models for other systems. 

To aid the development and testing of the geographic KIB model, exemplar models 

were created and simulated for use in conjunction with the KIB (See Figure 1). These 

geographic versions of predator-prey models are described in the Sample Models section. 

 

Figure 1: Composition of the Exemplar Models: The Fruit Growth and Gatherer Models. 

 

Additionally, the geographic KIB design was to be applied to a set of simulations 

related to vegetation growth, landscape change, human decision-making, and interactions 

among them. While the content of the models is closely related, the simulators were not 
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designed to meet each other’s I/O specifications, so one or more KIB Function units were 

required to allow their simulations to interact correctly. 

 

1.2 Contributions 

Previous KIB models have been created before this thesis. The GeoKIB differs from 

other KIBs in that it manages interactions involving spatial data formatted as cellular 

automata. Cellular automata represent changes to a geographic area over time [2]. For each 

time step, every map cell needs to read its inputs and produce its outputs as its state is 

determined. The updating format often varies greatly between different models. For 

example, one model of settlers may use the discrete-event representation provided by 

DEVS, while another vegetation model uses a strict, discrete-time update protocol. The 

interactions may include primitive data types, such as integer and floating-point values, but 

also includes entire maps of data, with values spread over cells of two-dimensional maps. 

Particular challenges arise when transferring cellular automata data between models, 

especially when the models use grids with different boundaries and cell sizes. The GeoKIB 

converts maps to different region specifications during simulations. 

An important contribution of this thesis is the creation of a KIB design that can be 

modified for application to different sets of models. The design of the GeoKIB allows its 

general structure and functions to be extended for a particular set of interactions. The base 

GeoKIB model cannot be used as-is, but when configured, a GeoKIB models can be used 

for a variety of interactions. In particular, the ports of the GeoKIB can be customized for 
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use with discrete time or discrete event models. The application of the GeoKIB for the 

exemplar models in this thesis show how this can be done. 

Due to the need to compose simulations that do not all use the same simulation engine, 

the design of GeoKIB was made without the use of simulation engines. For this thesis, a 

Java-based implementation was chosen because of Java’s strong object-oriented and strong 

typing capabilities. The design of the GeoKIB can be implemented in other programming 

languages or simulation engines, if necessary. 

The GeoKIB was designed for the purpose of composing simulations that use the 

GRASS GIS system. Because of this, and because the cellular format of data used by the 

GeoKIB is similar to the grid-based format of GIS map data, the GeoKIB was made to be 

compatible with the GRASS functions. Instances of the GeoKIB have used GRASS 

operations for map visualization and data transfer. While the GeoKIB was designed 

specifically for the GRASS GIS, an interface allows a different GIS to be substituted if 

desired. 

This unique set of capabilities and properties made it possible compose the Medland 

Modeling Laboratory (MML) with a separately designed vegetation growth model. These 

models were created by an interdisciplinary group of researchers for the School of Human 

Evolution and Social Change of Arizona State University. MML models the interactions 

of settlers and the landscape of the Iberian Peninsula. The vegetation growth model 

represents the growth of various species of plants native to the Iberian Peninsula. With the 

use of GeoKIB units, the two models were composed into a single model, in which 
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vegetation amounts are provided to the MML model and human influences are provided to 

the vegetation model. 

Use of synchronous reactive components for the models in Chapter 5 is a contribution. 

 

1.3 Thesis Organization 

Chapter 2 gives background information related to modeling, cellular automata, and 

model composition. Examples of prior research related to composition of cellular automata 

are cited. 

Chapter 3 explains the approach used for heterogeneous composition of heterogeneous 

cellular automata for this thesis. Details of design and implementation of the interaction 

model, called the GeoKIB, are given. Chapter 4 gives descriptions of two exemplar models 

created to illustrate the process of model composition. Chapter 5 provides a detailed 

procedure for composing the exemplar models with the use of the GeoKIB. Chapter 6 

concludes the thesis with a discussion of the findings and future work for the GeoKIB. 
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CHAPTER 2 

BACKGROUND 

This thesis was developed for use with simulations of progression over a geographical 

area. In particular, simulations of landscape, human agents, and vegetation needed to be 

composed. These simulations all represent data using cell-based structures for two-

dimensional spatial data, along with GRASS GIS for data storage and visual representation. 

Some background is therefore provided for these simulations, cellular automata, and 

previous approaches used for model composition. 

 

2.1 Medland Modeling Laboratory 

Medland Modeling Laboratory (MML) is a simulator designed to represent the 

interactions between the landscape and humans living in the Iberian Peninsula [3]. The 

humans of a simulation are agents that determine the amount of farming, herding, and 

gathering they will do. Properties of the landscape are represented as geographical maps of 

data. The values stored within maps include village and farm locations, land fertility, and 

vegetation landcover. The GRASS GIS (Geographical Resources Analysis Support System 

Geographical Information System) [4] software suite is used to store and perform 

computations on these maps within the MML simulator. 

A vegetation model was created by Miguel Acevedo of the University of Northern 

Texas which determines the numbers and properties of plants that grow in each area of a 

map for each species [5] [6]. The simulator requires a map of the terrain types of the 

simulated area for its initialization. During each simulation year, the vegetation simulation 



   

8 

can accept a map of fire locations as an input at some time interval. The model gives, as 

outputs, geographic maps of values of properties of the plants. The properties in the output 

maps for each species include number of plants, basal area, and number of plants that died 

during each simulated year. 

 

2.2 Cellular Automata 

A variety of modeling methods have been used to represent spatiotemporal systems. A 

cellular automaton model is a representation of a system based on a tessellation of map 

cells over a rectangular cell space. All cells of the automaton have the same dimensions 

and the same specifications for input and output space, state space, and state transitions. 

State transitions for a single cell of a cellular automaton are dependent on the cell’s inputs, 

the cell’s state, and the state of the cell’s neighbors [2]. The states of all the cells are updated 

with the same discrete-time behavior specification. 

Papers by Meyer and Sarjoughian describes criteria and a specification for separate 

cellular automaton models that could be composed into a single model [7] [8]. The project 

described in this thesis is closely related to the idea of composable cellular automata. This 

project differs in that it emphasizes the process of model composition itself, and that the 

differences between the geographic representations, especially differences in spatial 

resolution, are handled within interaction models. 

A variety of software tools are available for cellular automata models. One of these is 

called MASON (Multi-Agent Simulator of Neighborhoods) [9]. This tool is based on the 

agent-based modeling approach for creating, executing, and visualizing cellular automata 
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models. Mathematica also supports run-time animation of cellular automata states, where 

cell behavior is determined by the mathematical formulas set for the model [10]. 

 

2.3 Related Work 

Prior work has used different approaches for the modelling and composition of cellular 

automaton models. A few of these are presented here, along with a comparison of the 

approach used for this thesis. 

 

2.3.1 Event-based Cellular Automaton Representations 

Traditionally, the state of a cellular automaton is updated at discrete time steps. Some 

representations of cellular automata emphasize temporal changes. Peuquet and Duan 

describe a method of storing spatiotemporal GIS data primarily according to the time of 

change (event), rather than storing the full geographical state at every time interval. This 

organization of geographic data gives computational and conceptual advantages for 

geographic analyses of events, causes, and effects [11]. 

Each of the cells of a cellular automaton can be represented as a DEVS atomic model 

[12]. These atomic cells can be combined using their inputs and outputs with couplings to 

form cellular automata models that can have different topologies such as Von Neumann. 

Each cell can receive inputs from its neighbors, activating the external transition function 

of the cell. Wainer and Giambiasi developed a Timed Cell-DEVS model specification that 

uses DEVS to represent each of the cells of a cellular automaton [13]. This specification 

models the interactions of map cells while providing a mechanism to reduce the required 
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computation for passive cells. The performance of cellular automaton simulations was 

improved in this manner. Compositions of Cell-DEVS models were created, but the 

assumption was made that all components of the compositions adhered to the same spatial 

resolution and timing system [7].  

Parallel DEVS is also used to develop and simulate cellular automata [14]. A 

realization of this approach has been created and introduced to the DEVS-Suite simulator 

[15]. This CA-DEVS simulator, unlike other DEVS-based simulators, supports run-time 

forward and backward animation of cellular automata dynamics with superdense time 

trajectories. 

 

2.3.2 Model Composition 

Sarjoughian describes four approaches to composition of different models. With a 

mono modeling approach, all component models have the same formalism and 

specification [1]. The models can be composed without needing any formalism changes. 

As different systems are best represented by different models, restricting all component 

models to the same formalism can negatively affect the design of the models. For maximum 

modularity, different models should be designed independently of each other, resulting in 

natural differences between the models. 

A super-formalism modeling composition approach involves packaging a model within 

another model with a different formalism [1]. For example, a discrete-time model can be 

encapsulated within a discrete event model. The model would then be seen as a discrete 

event model from an outside viewpoint. Once this approach is used to adapt all component 
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models to one common formalism, that formalism can be used for the composition, as with 

mono-formalism modeling. The use of this approach must make considerations for the 

limitations in which formalisms can be packaged in this way. 

Using the meta modeling approach to composition, a single model contains all the 

component models. The meta model must “interpret” the component models into its 

formalism, which becomes the standard for the composition [1]. This has some similarities 

to the super modeling approach, with the difference that meta modeling is the use of a 

single model to contain, control, and integrate all component models. Since the meta model 

must be designed to handle all of the specific component models, changes or additions to 

the models may be difficult to make, resulting in limitations of scalability. 

The fourth approach to model composition is poly-formalism modeling. This approach 

uses a separate model, called a model interchange broker (KIB), to manage interactions 

between models that have different formalisms [1]. This approach allows interactivity 

between models without changing the component models or their interpretations. A KIB 

must be compatible with all connected models, resulting in some KIB models that do not 

follow the formalisms of any of the component models. As the design of a KIB depends 

on the models that are composed, a separate KIB must be designed for each type of 

interaction for composition. 

Previous work for knowledge interchange broker (KIB) components emphasized the 

use of a KIB to control the interactions of combined models. Mayer and Sarjoughian 

describe the process of using a KIB to separate the agent and landscape operations of a 

simulation [16]. The KIB described here is different from the previous KIB. First, the KIB 
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of this project is made to demonstrate a generalized design for interaction modeling for 

geographic simulations. This project includes designs and software that can be extended 

and applied to other interactions involving geographic maps. Second, the KIB used to 

combine the vegetation and MML simulations were applied to existing simulations, 

whereas previous KIB components were developed together with their simulations. 

Combining software simulations that were not designed to be compatible brings a different 

set of challenges. 

Inokuchi, et al. explain a formulation for composition of cellular automata. 

Composition is defined for a single group (set of cells) in which the transition function for 

the composition of two cellular automata is equivalent to the functional composition of the 

transition functions for the component automata [17]. This type of composition may be 

useful when composing cellular automata that represent layered effects on a set of data. 

However, this definition of composition is not applicable to models that update 

independently on different data sets. In this approach, composition is defined for one 

cellular automata. 

 

2.3.3 Multiresolution Modeling 

Davis and Bigelow explain some advantages of low-resolution models when used in 

conjunction with high-resolution models. Lower-resolution models require fewer 

computational resources and data. Rules that are more understood or well-defined can often 

be applied to low-resolution models, and the results can be easier to comprehend and 

analyze at a higher level. Models for the different resolutions often have different domains 
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of application and can be simulated concurrently, with data exchanged between the models 

[18]. In the case of spatiotemporal models, differences in resolution could refer to varying 

spatial precisions or to the types or numbers of measurements used. An interaction model 

is one approach to managing the interactions between the models without changing the 

resolutions of the models. 

Kiester and Sahr proposed and implemented a methodology for a multi-resolution 

cellular automaton model. Its specification views cells from related models as neighbors in 

a hierarchical adjacency set, regardless of the differing resolutions and cell sizes. The 

implementation of the methodology requires that state transition rules for each cell be 

dependent on the percentage distribution of the states of the neighboring cells, rather than 

the number of neighboring cells that have the state. For example, in the Game of Life model 

[19], the transitions are redefined as dependent on the ratio of neighboring cells that are 

alive [20]. The ratio-based specification allows for interactions among models, with 

automatic adjustments for differing numbers of neighboring cells from other resolutions. 

The approach to interaction shows the assumption that all models use the same category of 

information greatly restricts the use of such an approach with heterogeneous models. In 

addition, working with a hierarchical adjacency set in this manner would most often require 

changing the component models and their transition rules to fit this ratio-based perspective 

of neighboring states. 

Another approach to for multiscale modeling called Complex Automata (CxA) has 

been proposed in [21] and [22].A Complex Automata can be created as a composition of a 

set cellular automata of different spatial and temporal resolutions. Each cellular automaton 
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of the set has a time step (∆t) and cell size (∆x) appropriate for its representation, along 

with temporal and spatial boundaries within the boundaries of the CxA. The CxA acts as a 

whole Cellular Automata that integrates CAs that have different spatial and temporal 

scales.. This is similar in purpose to this thesis, allowing models with different 

specifications and resolutions to be composed. This thesis differs in that the responsibilities 

of managing interactions are assigned to separate, dedicated interchange components. This 

difference in approach was chosen to allow interaction of models that were designed 

separately from the other models of the composition. While a well-designed CxA can allow 

more efficient composition of cellular automata components designed for aggregation, a 

technique was required that allows future models, with different temporal formalisms (such 

as discrete event), to be added to an existing system. Another difference is that in this thesis, 

two composed Cellular Automata models can have the same spatial dimensions. The CxA 

approach neither conceptualizes nor formalizes the Composable Cellular Automata model, 

which provides modularity at the level of individual Cellular Automata models for 

composition with component-based models [7].  
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CHAPTER 3 

INTERACTION MODELING DESIGN 

Object-oriented design principles focus on separating the design of complex systems 

into simpler components. The components can be combined to created the complete 

system. Decomposition facilitates simplicity of design, implementation, and testing, as 

each component holds a small subset of the whole system’s complexity. While integration 

of the components is less difficult than designing the system as one component, integration 

is nonetheless a difficult task. 

The purpose of the geographic knowledge interchange broker (GeoKIB) designed in 

this thesis is the composition of models with cellular spatial models. The GeoKIB is 

designed to allow component models to be combined into a single model when the 

component models have different specifications for input, output, and data structures. This 

design was created to be adaptable to both frequency- and event-based update types. 

 

3.1 A Generalized Knowledge Interchange Broker Design 

In the simplest case, a composition of simulations may consist of only two connected 

simulations. In this case, the function of the KIB can be integrated into the controller for 

the composed simulation. This would allow the same component to be responsible for 

controlling the individual simulations, their interactions, and the timing. However, if a 

composition involves more than two simulations, multiple KIB units may be required. Each 

of the simulations may connect to more than one KIB to regulate its interactions with each 

of the other components. Overlapping concerns prevent the KIB units from assuming 
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responsibility for control of the component simulations and overall timing of the 

composition. 

To prevent an overlap in control responsibilities, this project separates the functionality 

of handling interactions into instances of the KIBFunction class. Each instance of 

KIBFunction has the task of regulating a set of interactions between two simulations, where 

one simulation is designated as the input to the KIBFunction, and the other is the output. 

When two different simulations must communicate in multiple ways, multiple 

KIBFunction instances can be used as brokers between those same two simulations (See 

Figure 2). In particular, when two models must send information to each other, at least one 

KIBFunction instance is needed to regulate the data flow in each direction. 

 

Figure 2: Example of Multiple KIBFunction Objects Used to Compose Two Models. 

 

KIBFunction (shown in Figure 3) is an abstract class that needs to extended before it 

can be instantiated. In particular, the abstract methods state_transition() and 

is_transition_triggered() must be defined for any KIBFunction object. The 

state_transition() method sets the main state transition function of the KIBFunction object, 

including the acts of dequeuing inputs, transforming values, and enqueuing outputs. The 

method is_transition_triggered() returns a Boolean value that demines whether the 

state_transition() method should be called. As an example, is_transition_triggered() may 
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be defined to return true only when a new input is available, indicating that 

state_transition() will not be activated when no input has been received. 

For a KIBFunction object to have the ability to synchronize its timing with other 

components or the composed simulation, it needs the ability to read the time from an 

external source. For this purpose, the KIBFunction class depends on an object of the 

ISimClock interface to obtain the current time. An object that implements ISimClock is 

assigned to a KIBFunction object with the attach_sim_clock() method. KIBFunction then 

uses the method get_current_time() method from the ISimClock interface to obtain the 

current simulation time. Different simulations and KIBFunction objects may use the same 

or different clocks for their timings. 

 

Figure 3: UML Diagram of the Base KIBFunction Class. 
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A KIBFunction object receives inputs from dedicated input ports and sends outputs 

through assigned output ports (shown in Figure 4). Each of the ports is parameterized to 

specify the data type of the values that are sent through the port. In the shown diagrams, 

“ValueType” represents the associated data type. Each of the ports uses a queue to store 

value and retrieve values. Every value added to a port’s queue has an associated simulation 

time. In KIBInput, the class for the input ports, each received value is linked to the time of 

receipt. In an output port, represented by the KIBOutput class, values are associated with 

a scheduled time for the output. 

 

Figure 4: Input and Output Port Classes for the Interaction Model. 

 

For both inputs and outputs, the class Item is used to tag values with a simulation time. 

The data type of Item (see Figure 5) is parameterized in the same way as KIBInput and 

KIBOutput. The types associated with a port object, Item object, and value of the Item are 

all identical. The value and time of an Item object are set by Item’s constructor and cannot 

be altered. Optionally, a duration value can be set for the Item, which determines the length 

of time the value is available at the port. The default duration value of -1 indicates that the 
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value does not have a limited duration and will remain available until replaced. The value, 

time, and duration of an Item may be read at any time with the use of the getter functions. 

 

Figure 5: UML Diagram of the Item Class. This is used to associate input/output values with time and 

duration. 

 

The class for KIBFunction’s input ports, KIBInput (See Figure 6), is an abstract class, 

preventing it from being directly instantiated. This decision was made because the specific 

procedure for collecting inputs depends on whether the port should receive values passively 

or take inputs actively. The DEKIBInput (discrete-event knowledge interchange broker 

input) subclass of KIBInput is designed to accept values via its set_value() methods. In 

addition to enqueuing the given value, the method calls the update_state() method of the 

KIBFunction, which determines whether an action must be performed. The DEKIBInput 

class allows the KIBFunction to use discrete-event inputs, which trigger a reaction in the 

KIBFunction when an input is received. 
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Figure 6: Class Diagram for DEKIBInput. This class receives inputs using a discrete-event format. 

 

The DTKIBInput (discrete-time knowledge interchange broker) class (See Figure 7) 

also inherits from KIBInput. DTKIBInput reads input values from a designated source at 

set time intervals. The source, from which the values are read, must be set using the class’s 

set_source() method. The source must be one that implements the IOutput interface for 

outputs. DTKIBInput calls the get_value() method of the source to take an input value 

whenever the appropriate amount of time has passed. A DTKIBInput port may be useful if 

the KIBFunction needs to sample inputs at a rate different from the output frequency of the 

connected model. 

 

Figure 7: Class Diagram for DTKIBInput. This class receives inputs using a discrete-time format. 
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As with KIBInput, KIBOutput is an abstract class and must be instantiated from a more 

specific subclass. PassiveKIBOutput (See Figure 8) is a subclass of KIBOutput that allows 

its current output to be read at any time. Its get_value() method returns the value in the 

queue with latest scheduled time not later than the current time. If there is no value in the 

queue, or if the duration has expired on the most recent value, null is returned. 

 

Figure 8: Class Diagram for PassiveKIBOutput. This allows outputs to be read by an external model. 

 

ActiveKIBOutput (See Figure 9) is another subclass of KIBOutput that has the purpose 

of delivering values to external elements at scheduled times. This is slightly different from 

PassiveKIBOutput, which does not directly influence objects outside of the KIB.  An 

ActiveKIBOutput object may be assigned any number of destinations to which it will 

deliver its values. The add_destination() method, which sets a destination for the 

ActiveKIBOutput, can be called multiple times to add more than one destination. When 

the simulation time reaches the scheduled output time for a value, that value is sent to every 

assigned destination. Each value is sent only once, so the “duration” of a value has no 

influence for ActiveKIBOutput. Values are sent by calling the set_value() method of each 

destination object, so each destination must implement the IInput interface. 
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Figure 9: Class Diagram for ActiveKIBOutput. The class delivers output values to an external model. 

All components of KIBFunction need access to simulation time and need to be updated. 

For this reason, KIBFunction, KIBInput, and KIBOutput all inherit from the KIBElement 

class (shown in Figure 10), which provides interfaces to set up and update the timing. A 

simulation clock can be attached to a KIBElement by using the attach_sim_clock() method. 

The get_current_time() method of the simulation clock is called to read the time, so the 

simulation clock must realize the ISimClock interface. When a clock is set for 

KIBFunction, the clock is automatically set for all of its current KIBInput and KIBOutput 

objects. There is no requirement for all KIBFunction elements to use the same simulation 

clock. The amount of time that should pass between required updates can be set with the 

set_period() methods. 
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Figure 10: Class Diagram for KIBElement. This superclass of all KIB elements is used for timing and 

synchronization. 

 

The KIBElement method update_state() is used as a “wakeup” function. When the 

method is called, the object checks whether any updates are needed, performs any 

scheduled actions, then updates the attributes accordingly. Calling update_state() more 

than once does not cause any inconsistencies in the KIB’s functionality or state, so the 

method may be called at any time to ensure that the state is current. In the class 

KIBElement, update_state() is an abstract method, meaning that it has no “default” 

implementation and uses polymorphism to provide the implementation appropriate for the 

subclass. 

The implementation of update_state() depends on the class and its specific purposes. 

In KIBFunction, update_state() first calls the update_state() method of every attached 

KIBInput port. Then, if the is_transition_triggered() method returns true, state_transition() 

is called. Finally, update_state() is called for each of the attached KIBOutput objects. To 



   

24 

prevent unnecessary looping, the update_state() methods of KIBInput and KIBOutput do 

not call any object’s update_state() method. 

In DTKIBInput, update_state() uses its stored information about the time of the 

previous update, the current time, the update period, and the scheduled time for the next 

input to determine whether an input should be read at this time. If an input value is read 

and added to the input queue, the timing information of the DTKIBInput is updated to 

prepare for the next input. Using a similar procedure, the update_state() method of 

ActiveKIBOutput manages the times that outputs are sent to its destinations. In 

DEKIBInput, updates are only needed when an inputs are given, so update_state() does 

nothing. In PassiveKIBOutput, update_state() uses the scheduled time and duration of the 

items in the queue to update the value that will be read by the get_value() method. 

 

3.2 Geographic Interaction Model Design 

The design of the KIBFunction is not particular to any particular data type or class for 

inputs and outputs. The input and output ports can be parameterized to operate together 

with any set of models. While this is compatible with geographic models, it is best to extend 

the design of KIBFunction to address issues specific to geographic maps. 

The basic data structure for values spread across a geographic area is a geographic map, 

represented as an array of values associated with map locations. For this project, the 

GeoMap class was created for this representation. GeoMap is closely associated with the 

MapRegion class (See Figure 11), which defines the boundaries and spatial resolutions for 

a set of GeoMaps. The north_bound, south_bound, west_bound, and east_bound attributes 
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of MapRegion are boundary values, which may be latitude and longitude values or any 

relative measurements of location. The num_rows and num_cols values determine the sizes 

of each of the dimensions of the array in associated GeoMap objects. These attribute values 

are set during instantiation of a MapRegion object and cannot be changed afterward. If 

region changes are necessary during a simulation, the change must be represented by the 

creation of a new MapRegion object. The null_value attribute is the value designated with 

a lack of a value at any location. 

Upon instantiation, a GeoMap object is associated with a MapRegion object. The 

MapRegion cannot be removed, switched, or altered during the lifespan of the GeoMap. 

The size of the two-dimensional array of values is based on the numbers of rows and 

columns in the MapRegion. GeoMap has methods to return the value of the cell at a set of 

index values or at a specified geographic location. The set_value() method can set the value 

map value at the specified row and column number. The is_cumulative_value() method 

reveals whether the GeoMap’s values are cumulative values that would be added when 

map cells are aggregated (such as numbers of fruit), or average values that should not be 

collected over areas (such as rainfall density). 
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Figure 11: Diagram of the Classes MapRegion and GeoMap. These are used to represent a distribution 

of values over a geographic area. 

 

The class GeoKibFunction, shown in Figure 12, inherits from the KIBFunction class 

and adds functionality specific to working with geographic transformations between 

models. A GeoKibFunction is assigned a MapRegion object for its inputs and another 

MapRegion for its outputs. The differences between the MapRegion objects is used as the 

basis for the spatial conversions that are performed within the class. As with its parent 

class, GeoKibFunction is an abstract class, meaning that it cannot be directly instantiated. 

The abstract methods from KIBFunction, state_transition() and is_transition_triggered(), 

are not defined in GeoKibFunction and must be defined in a specialized extension of the 

class. 

GeoKibFunction provides a structure for the transformations between two different 

geographic standards. It also provides the spatial_conversion() method, which converts a 

GeoMap from the input region to the output region. The abstract method 

measurement_conversion() is a set of other operations that must be performed in the 

transformation between models. Such operations may be as simple as converting 



   

27 

measurement units or as complex as predicting future values from a collection of relevant 

input values. An object may be attached to allow access to operations from a GIS, such as 

GRASS. 

 

Figure 12: Class Diagram of GeoKibFunction. The class models interactions involving geographic 

maps and regions. 

 

The spatial_conversion() method accepts one GeoMap object as a parameter, which 

must have the same MapRegion object assigned as the source_region attribute of the 

GeoKibFunction. Within spatial_conversion(), a two-dimensional array of values is 

created with the number of row and columns specified in the destination_region attribute 

of GeoKibFunction. Each element of the new array corresponds to a geographical area, 

with values that can be determined for its north, south, west, and east boundaries of a 

destination map cell. These boundaries can then be matched with the original GeoMap to 

find an overlapping area. Because of differences in resolution, the destination cell may not 

align with the boundaries of cells from the source map. The destination cell may overlap 

multiple cells from the source map in different area proportions, as shown in Figure 13. 
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Figure 13: Example of the Conversion to a Region with Differently Aligned Cell Boundaries. 

 

The value of one destination cell in spatial_conversion() is determined by finding an 

average of the values from the corresponding (overlapping) area of the source map, 

weighted based on area sizes. For each of the source map cells, its value is multiplied by 

the size of the area of overlap between the source cell and destination cell. The products 

are added from all the corresponding source cells to create a weighted sum. Similarly, the 

sizes of the overlapping areas are added to find a total area. The weighted sum is divided 

by the total area to find the weighted average value for the destination cell. Finally, if the 

map is designated as having cumulative values, the weighted average value is converted to 

a cumulative value by multiplying by the ratio of the cell areas in the destination and source 

regions. 

When analyzing the complexity of this algorithm, it is important to note that the 

information from the MapRegion can be used to determine the row and column numbers 

for a map. The value of each cell of the destination map must be determined. If the 

destination cell’s boundaries do not align with those of a source cell, the destination cell 
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may overlap some of the area of more than one source cell. Weighted sums must be 

accumulated for all of the areas of overlap, but the computations are not done more than 

once for any area of the source map. If the source map has rs rows and cs columns, and the 

destination map has rd rows and cd columns, the area of overlap will, at most, have rs + rd 

rows and cs + cd columns. Therefore, the computational complexity of the 

spatial_conversion() function is, in the worst case,  𝑂((rs + rd) ∙ (cs + cd)). 
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 CHAPTER 4 

EXEMPLAR MODELS 

Since the purpose of this thesis project is to develop a method for the composition of 

spatiotemporal component models, sample models were required to refine and demonstrate 

the process. Two exemplar models models were created as potentially composable models. 

The first is a fruit growth model that provides the amount of fruit at different location cells 

during each time step. The second exemplar model is an agent-based gatherer model, in 

which the gatherers search an area for food. The exemplar models are separately developed, 

but they are conceptually related, making them good candidates for composition via 

GeoKIB. 

 

4.1 Fruit Growth Model Overview 

The fruit growth model developed for this thesis is a representation of the growth of 

fruit across a geographic area. The area is divided into distinct map cells based on the map 

region settings for the model. For each time step of the discrete-time model, the growth in 

the amount of fruit in a cell is determined as by multiplying a growth factor by the number 

of fruit within a given radius of the center of the cell. The amount of fruit can also be 

influenced by the external influences through an input to the model. The input map 

represents the change in the number of fruit, at each map cell, due to external influences. 
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4.2 Fruit Growth Model Specifications 

The fruit growth model is shown as a synchronous reactive component in Figure 14. 

The influenceradius and growthfactor values are unchanging settings that influence the 

reproduction rate of fruit during each time step. The GrassMap fruitmap is a geographic 

map whose values indicate the amount of fruit across the model area. The fruitmap values 

are updated each time step. The input changemap is a map of values that specify the 

changes in the amount of fruit at each location. The values of changemap can be positive 

or negative, corresponding to fruit that is added or removed by external causes. The output 

GrassMap fruitamounts is made from the state GrassMap fruitmap, so its values are the 

same as the numbers of fruits over the area at the time of the output. 

 

 

Figure 14: Specification for the Fruit Growth Model, Shown as a Reactive Component. 

 

At each time step, the changes from the input changemap are added to the values of the 

fruitmap. After this change, the amount of fruit that grows during the time step at each map 

cell is found by multiplying number of fruit near the cell by the growthfactor value. Only 

fruit with a distance less than influenceradius from the center of the cell of interest are 

considered neighboring fruit, for purposes of finding the amount of new fruit that grows. 
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The amount of new fruit at each cell is added to the values of fruitmap. The fruitamount 

output is a copy of the current fruitmap GrassMap. 

 

4.3 Fruit Growth Model Structure and Algorithms 

The fruit growth model has a structure that allows tracking and manipulation of the 

amount of fruit distributed over the geographic area. The general class structure is shown 

in Figure 15. The GrowthModel class encompasses the overall fruit growth simulation. 

GrowthModel has attributes to track the state of the simulation, including the current 

simulation time, the last received input map, the time associated with the input map, and 

the map of fruit amounts as a GrowthMap object. 

The GrowthModelSettings class contains the settings that can be set for a simulation. 

The settings are set by the class constructor but are not changed after instantiation. The 

other methods of the class only return the values of the settings of the class. 
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Figure 15: Class Diagram of the Implementation of the Fruit Growth Model. 

 

The GrowthMap class inherits from the GeoMap class, which allows interaction with 

GRASS. The class includes, as an attribute, a two dimensional array for the amounts of 

fruit currently at each map cell. Floating-point values are used, instead of integers, for 

storage and computations of fruit amounts within the GrowthMap class to simplify 

computations involving fractional growth factor amounts. Output maps produced by 

GrowthMap are of the integer values that result from truncating the decimal portions of the 
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fruit amounts. No separate class is used for the map cells of GrowhMap because only one 

value is needed for each map cell. 

The advance_time_step() method of GrowthMap is called to progress the state of the 

fruit amounts by one time step. For each map cell, the method calls the 

get_fruit_surrounding_cell() method to find the amount of nearby fruit, then multiplies the 

result by the growth factor to determine the amount of new fruit that grows at the cell. The 

amount of fruit near a given cell is found by incrementing across map cells, adding the 

number of fruit from cells whose distance from the given cell is less than the radius of 

influence. For cases in which the part of a cell is inside the circle of influence, a portion of 

the number of fruit is counted as near the given cell. The ratio of the fruit that is included 

is found as an approximation; the rectangular area that circumscribes the circle of influence 

is counted as the nearby area in any map cell. 

 

4.4 Fruit Growth Simulation Setup and Use 

A group of settings can be customized for a simulation of the fruit growth model. These 

settings include amounts for the simulation’s growth factor, radius of influence, maximum 

fruit per square unit, and amount of time per time step. The map region, which includes the 

boundaries and resolution of the simulated geographic area, must also be set. The GRASS 

mapset can be set for interactivity with GRASS. The initial amounts for the fruit can be set 

as a map of values, or if not set, will be determined randomly over the simulation area. 

To create a simulation of the fruit growth model in Java, the map region must first be 

set as an instance of the MapRegion class, using the following constructor. 

public MapRegion(int rows, int cols, int north, int south, int west, int east) 
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To allow the use of GRASS, an object of the GrassSetup class must be set. In its 

constructor, the names of an existing GRASS mapset and its parent location must be given 

for the values of mapset and location, respectively. For gisdbase, the absolute file path of 

the folder containing the GRASS location must be given. 

public GrassSetup(String gisdbase, String location, String mapset) 

The set_grass_region() method of the GrassSetup object can be used to set the current 

GRASS region. Before the simulation for the fruit growth model can be instantiated, its 

settings must be set by creating an object of the class GrowthModelSettings, using the 

following constructor method. 

public GrowthModelSettings( 

MapRegion map_region, float growth_factor, 

float radius_of_influence, int time_step_size, 

float max_fruit_per_square_unit, 

GeoMap initial_fruit_map, GrassSetup grass_mapset 

) 

If no GeoMap object is to be used for the initial fruit map values, a null value may be 

given for the initial_fruit_map argument. Once the GrowthModelSettings object has been 

initiated, its object can be used as the argument in the GrowthModel constructor, which 

will create and initialize the fruit growth simulation. 

public GrowthModel(GrowthModelSettings settings) 

After the simulation has been instantiated, GrowthModel’s interfaces (shown in Figure 

16) may be used to provide inputs, control the simulation, and obtain outputs. 
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Figure 16: Interfaces Implemented by the GrowthModel Class. 

 

The input_fruit_change_object_map() or input_fruit_change_grass_map() method can 

be used to give an input map of the changes in fruit due to external influences as a GeoMap 

object or as the name of an existing GRASS map, respectively. The values of the input map 

may be positive, negative, or zero-value integers, indicating whether the fruit was added, 

removed, or not changed. Along with the input, the value of the time step during which the 

change is to be applied must be specified. The input map specifies the amount of change 

in the amounts of fruit during the time interval immediately preceding the specified time 

step. 

The advance_time_step() method progresses the simulation by one time step. This 

causes the input map, if provided, to change the values of the amounts of fruit across the 

simulation map. Then, the growth of fruit from reproduction is determined and added to 
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the current fruit amounts. The current simulation time may be obtained by using the 

get_current_time() method. 

A GeoMap object of the amounts of fruit at each map cell can be obtained from the 

simulation with the use of the get_fruit_object_map() method. The 

create_fruit_grass_map() and get_fruit_grass_map() methods can be used to provide the 

same output map to the GRASS mapset. 

 

4.5 Gatherer Model Overview 

The gatherer model represents a set of gatherers that can look for available food across 

a landscape. A gatherer is a person or animal that needs food from the environment but 

does not directly cultivate the food. Time in the model progresses at evenly separated 

discrete steps. Each of the gatherers is associated with a geographic location. Food is 

represented only as the amount available in every location of the represented area. 

During each time step of a simulation, each gatherer chooses an action based on the 

current state. When a gatherer finds an unclaimed area with more food than any other 

visible map cell, the gatherer will settle at the map cell, claiming it as a more permanent 

residence and becoming a settler. Gatherers, when searching for food, will not include 

settled map cells in their searches; they will only search for unclaimed land. Each map cell 

can be claimed by at most one gatherer. Settlers remain at their current location unless the 

amount of food at the cell drops to below a minimum threshold value. If there is insufficient 

food at the settled map cell, the settler will return to a wanderer status and search for an 

available location with more available food. 
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Wanderers, or gatherers that are not settled, move to different locations of the landscape 

depending on which available map cell has the most available food. Gatherers are assigned 

a radius of vision, which also represents the maximum distance a gatherer may travel 

during one time step. If a wanderer sees that an unoccupied map cell has more food than 

the current location, the wanderer will set that map cell as the destination for the next time 

step. The wanderers move to their destinations at the beginning of the next time step. This 

may result in more than one wanderer moving to the same location. If the wanderer does 

not see any available locations with more food than the current position, the wanderer will 

claim the map cell and become a settler. This process eventually separates the gatherers 

that collect at a location. 

Gatherers can die from age or from lack of food. A “life expectancy” is assigned to the 

gatherers, indicating the maximum amount of time each gatherer may live. Any gatherer 

whose age exceeds this amount within a simulation dies automatically. The ages of 

gatherers at the start of a simulation are set randomly. Gatherers also have “appetite” and 

“satisfaction” state variables that indicate the amount of food required by the gatherer and 

the amount of time the gatherer can survive without food, respectively. If, in any time step, 

the amount of available food at a gatherer’s current location is less than the gatherer’s 

appetite, the satisfaction of the gatherer decrements. If the satisfaction value reaches 0, the 

gatherer dies. When a gatherer dies, it is removed from the simulation, and it loses its claim 

to the settled land. 

In this model, reproduction is only done by gatherers that have been settled for a period 

of time. While settled, a gatherer produces new gatherers periodically, at a rate set by the 
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simulation settings. A new gatherer is created as a wanderer at the same map cell as its 

parent with an age of 1. Wanderers do not reproduce before settling. 

 

4.6 Gatherer Model Specifications 

The gatherer model as a whole can be specified as a synchronous reactive component 

(Figure 17), using the notation described by Alur [23]. The model’s state consists of status 

of all the settlers and map cells of the model. During each time step, the gatherer model 

must receive an input map indicating the amount of food available in each of the map cells. 

At any time, an output may be obtained from the gatherer model in the form of a map of 

the number of gatherers across the map. 

 

Figure 17: Specification for the Gatherer Model, Shown as a Reactive Component. 

 

Within the gatherer model, each of the gatherers may be shown as a different 

component, as shown in Figure 18. In this model, no inputs are shown. This should not be 

mistaken to mean that a gatherer is independent of outside influence, because the state of 

the currently occupied and nearby map cells influence the decisions and state of a gatherer. 

The only output of a gatherer is its current location, but the gatherer may directly influence 

the states of map cells. 
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Figure 18: Reactive Component Representation of a Gatherer in the Gatherer Model. 

 

4.7 Gatherer Model Structure and Algorithms 

The implementation of the gatherer model is based on the use of geographic data 

structures for the current simulation state and for the model’s inputs and outputs. The model 

settings, map region, GRASS mapset settings, and current model state are stored as objects 

within the object of GathererModel, which represents the current simulation. The 

GatherMap object is divided into GatherMapCell objects, each of which holds the Gatherer 

objects and information about the current amount of food. The GatherMap class inherits 

from the GeoMap class of the Geographic package, and inputs and outputs of the model 

are also represented as GeoMap objects. Because of this, all of the map objects of 

GathererModel have the ability to import and create GRASS data. The class structure for 

the gatherer model is shown in Figure 19. 
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Figure 19: Overall Class Diagram of the Implementation of the Gatherer Model. 

 

The GathererModel class (See Figure 20) is responsible for tracking the model state, 

accepting inputs, providing outputs, and progressing the simulation. A list of all gatherers 

is stored by GathererModel, allowing signals to progress to be given to the gatherers. 

A cell of the GatherMap class (See Figure 21) stores the list of gatherers at that location, 

the amount of food at the location, and the settler of the location. The GatherMap class 

gives access to information from its cells, as well as providing access to GRASS functions 

through its inheritance of the GeoMap class. 
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Figure 20: UML Diagram of the Main GathererModel Class. 

 

 

Figure 21: Class Diagram of the State Map for the Gatherer Model. 

 

An object of the Gatherer class (See Figure 22) is responsible for maintaining the state 

and parameters for a gatherer during its lifetime. The settings are copied from the model 
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settings, rather than accessed during the gatherer’s lifetime, to allow variation in gatherer 

settings for other variations of this model. 

 

Figure 22: Diagram of the Gatherer Class for the Gatherer Model. 

 

The free_will() method for each of the gatherers in a simulation is called during every 

time step. The method advances the state of the gatherer, then determines what the gatherer 
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chooses to do during the time step. Pseudocode for the method is given below. All values 

refer to the conditions at the gatherer’s current location. 

free_will(): 

age = age + ∆t 

if age > max_age 

 die 

 return 

if food < appetite / num_gatherers 

 satisfaction = satisfaction – 1 

 if satisfaction ≤ 0 

  die 

  return 

else 

 satisfaction = satisfaction + 1 

if settled 

 if food ≥ min_settle_food 

  remain  // Stay at this map cell. 

 else 

  abandon // Give up the claim to this map cell. 

else // If the gatherer is not settled. 

 Move to destination 

 Set destination to best available visible map cell (with the most 



   

45 

food) 

 if current location is not settled and has the most food 

  settle 

 

4.8 Gatherer Simulation Setup and Use 

The gatherer model includes settings that can be changed for different simulations or 

situations. These settings include map boundaries and resolutions, length of a time step, 

and the number of gatherers at the start of the simulation. For the gatherers, settings can be 

changed for the appetite, life expectancy, reproduction period, visual range, maximum 

satisfaction, and minimum fruit required at a map cell before a gatherer will settle there. 

In the Java implementation of this model, an object of a separate class, named 

GathererModelSetting, hold the settings for a simulation. An object of 

GathererModelSetting can be created by using a public constructor. 

public GathererModelSetting( 

int num_rows, int num_cols, 

int north_bound, int south_bound, int west_bound, int east_bound, 

int num_gatherers, int appetite, int reproduction_period, int max_age, 

int min_settle_food, int view_range, int max_satisfaction, 

int time_increment, int end_time, GrassSetup grass_mapset 

) 

The map region, or set of boundaries and spatial resolutions, can be set using a 

constructor of the MapRegion class. 
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public MapRegion(int rows, int cols, int north, int south, int west, int east) 

An object representation for GRASS mapset support can be created by a constructor of 

the GrassSetup class. The gisdbase must be the absolute path of a file directory. The 

location and mapset are a currently existing GRASS location and mapset within the 

gisdbase directory. 

public GrassSetup(String gisdbase, String location, String mapset) 

The GrassSetup object can be used within the simulation to create or import 

information from GRASS rasters, containing spatial data over the simulation area. Once 

all settings have been established for the simulation, the simulation itself can be instantiated 

using the settings. 

public GrowthModel(GrowthModelSettings settings) 

Once the simulation is created, input maps for the amount of food can be given using 

the give_object_food_map() method to give a GeoMap object, or using the 

give_grass_food_map() method to import a map from GRASS. The associated time step 

must be specified with the given input, and the time step should correspond with the next 

time step that will be simulated. The advance_time() method runs one time step of the 

simulation. An output map of the number of gatherers at each map cell can be obtained as 

a GeoMap object with the use of the get_object_gatherers_map() method. The same output 

map can be sent directly to the simulation’s GRASS mapset by using either the 

create_grass_gatherers_map() method. The current simulation time can be obtained by 

calling the get_time() method. Interfaces containing these methods are shown in Figure 23. 
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Figure 23: Interfaces Implemented by the GathererModel Class. 
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CHAPTER 5 

MODEL INTEGRATION 

Creating a composition of models involves defining the characteristics of the 

composition, setting up the component models and interaction models, configuring the 

connections, and synchronizing the execution times. The fruit growth and the gatherer 

exemplar models were created for the purpose of verifying that all of these steps could be 

performed successfully using the interaction model created for this project. Additionally, 

the GRASS GIS is used to show the output maps produced during simulations. While the 

use of GRASS is not required for state transition or model transfer in this composed 

simulation, GRASS allows for complex geographic computations, as well as graphical 

displays of geographic data. 

Composition of the fruit growth model and the gatherer model requires that the 

interaction specifications be defined. The gatherer model requires an input of the amount 

of food available at each location of the map. This input is specified to be the same as the 

number of fruit at the same location, taken from the fruit growth model. The input to the 

fruit growth model is the change, at each location, in the number of fruit due to external 

influences. This is determined by multiplying the number of gatherers at the location by 

the rate of consumption by -1. In the composition, it is assumed that different regions and 

time steps are used by the different models, so these differences must be handled in addition 

to the specified interactions. 

As the exemplar models were defined in separate classes that allow for external control, 

the models can be instantiated and set up together in a function external to both models. 
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The different regions for the models were set using the constructor for MapRegion. The 

constructor for the fruit growth model, GrowthModel, also allows the other configurations 

for the model to be set, including the growth factor, radius of influence, maximum fruit per 

area, and length of the time steps. Settings for the gatherer model can be set in the 

constructor for GathererModel, including the amount eaten per time period, initial number 

of gatherers, maximum age, time required to reproduce, maximum vision and travel 

distance, and length of the time steps. 

For the components that deal with interactions between the fruit growth model and 

gatherer model, extensions of the GeoKibFunction class need to be made. The class 

FoodKibFunction is a subclass of GeoKibFunction that takes a map of the number of fruit 

as input and produces a map of the amount of available food as output. Since these amounts 

are equal, no measurement conversions need to be made within FoodKibFunction, but 

differences in region and time scaling must still be addressed. The fruit growth model 

outputs the current number of fruit, so there is no case in which multiple inputs should be 

combined by addition or any other operations. Therefore, if multiple input maps are 

received before an output map needs to be sent, the output map is processed from only the 

most recently received input. The input map is processed through the spatial_conversion() 

method to adapt the input values to output region. If multiple outputs are needed before 

new inputs are received, the resulting map is output multiple times. 

ConsumptionKibFunction is a class designed to handle the delivery of maps to the fruit 

growth model that tell the net change in the number of fruit caused by external influences. 

This class inputs the number gatherers over the map from the gatherer model. Gatherers 
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that remain in an area for a larger amount of time will consume more fruit from the area, 

so input maps are added over their areas using the GeoKibFunction method map_sum() if 

received before an output must be created. The measurement_conversion() method of 

ConsumptionKibFunction multiplies each of the map’s values by the amount of food eaten 

by a gatherer per simulation cycle, and by -1 (because the fruit change is negative). Using 

these methods, the state_transition() method sums the inputs, performs the 

measurement_conversion(), then uses spatial_conversion() to make adjustments to the 

region. The resulting map is given to the output port. If no inputs are received when an 

output is requested, all the values for the output map are 0. 

Although not necessary for this particular composition, all the different types of port 

objects were used to demonstrate their uses. A DEKIBInput and ActiveKIBOutput were 

attached to the FoodKibFunction, and A DTKIBInput and PassiveKIBOutput were 

attached to the ConsumptionKibFunction. The ActiveKIBOutput and DTKIBInput each 

needed to be connected to the GathererModel class to work correctly. This required the 

implementation of the interfaces IInput and IOutput, the dependencies of ActiveKIBOutput 

and DTKIBInput, respectively. A subclass of GathererModel that implements the 

interfaces was created specifically for this purpose. Another possibility would have been 

to create a separate class that would implement the interfaces for use with GathererModel, 

but this would result in an unnecessary additional object during the program execution. 

The simulation manager for the composed model needed to explicitly give values from the 

GrowthModel to the DEKIBInput, and from the PassiveKIBOutput to the GrowthModel. 
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Exchanges of values to the GathererModel were handled automatically by the port objects 

of the GeoKibFunctions. 

A class for the simulation clock of the composition, named TimeTracker, was created 

for the composed simulation. Both GeoKibFunction objects, as well as the composed 

model, use the TimeTracker object to determine the current time and synchronize 

operations. The clock was attached to the GeoKibFunction objects using their 

attach_sim_clock() methods. References to both GeoKibFunction objects were also given 

to the TimeTracker, allowing it to automatically update the GeoKibFunction objects when 

the simulation time changes.  

During a simulation of the composed models, the simulation manager must determine 

when each of the component simulations must be progressed. Each component simulation 

can be queried for the time step for which it was last run. Information about the time of the 

last step and length of the time steps can be used to determine the time to run the next step 

for each component. The next time step for the composition is the least of the next times 

for the components. At each time step, the simulation manager finds the components whose 

next scheduled time step is equal to the current time, and commands those components to 

progress for one time step. It is important to note that this synchronization protocol is only 

possible for components that can be externally controlled to progress one step at a time. 

The use of GRASS within the simulation was achieved through a few connections that 

allowed GRASS operations to be called within a Java environment. A set of scripts, written 

in Python, are used to access GRASS commands using the GRASS API. The GRASS 

scripts are executed by using statements for the Windows command line. Functions in Java 
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create these statements that direct GRASS to perform specific operations, such as adding 

a map to a GRASS mapset or performing a specific computation over a set of maps. 

GRASS allows visual representations of the geographically distributed values to be 

displayed (See Figure 24). 

 

Figure 24: Example of a Display Produced by the GRASS GIS Software. 



   

53 

CHAPTER 6 

DEMONSTRATION OF INTERACTION MODEL EXECUTION 

A demonstration is shown here of the interactions between the exemplar models via 

the GeoKIB. For this scenario, the growth model and the gatherer model are run in a joint 

simulation. The regions for the two models have same outer boundaries, but different 

resolutions. The simulation takes place in a 30km x 20km area, with west and east 

boundaries labeled 300 and 330, and south and north boundaries labeled 200 and 220. The 

simulation area for the fruit growth model is divided into 24 square cells that each have 

size 5 x 5. The same area in the gatherer model is divided into 6 square cells of size 10 x 

10. Each gatherer eats, when available, four fruit per time step. A gatherer can see cells up 

to two spaces away and can move two spaces within a time step. The initial states of the 

models are shown in Figure 25. 

  

(a) Initial numbers of fruit in the fruit growth 

model. 

(b) Initial numbers of gatherers in the gatherer 

model. 

Figure 25: Initial Values for the Combined Simulation. 

 

The state of the combined simulation is updated at integral time steps. In this 

simulation, the state of the gatherers is updated every time cycle, but the state of the fruit 
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growth is only updated for even numbered time steps. Time 0 is the start time of the 

simulation, and changes to the state occur after, not during, time 0. To avoid cyclic data 

dependencies, data from a component model can only be used by the other component 

model at a time later than the time of data production. That is, the number of fruit at time 

2 influences the gatherer model at times 3 and 4, but not at time 2. This requirement allows 

the results of the simulation to be independent of the order of execution of the component 

models. 

At the beginning of the simulation (time 0), the KIB takes the map information about 

the number of fruit from the fruit growth model. The Food KIB Function uses the data to 

create, as outputs, maps of available food for the gatherer model for times 1 and 2. The 

KIB must convert the spatial resolution to a format appropriate for the gatherer model. The 

food is cumulative data, so the values in the cells of the output maps are obtained from 

sums, not averages, from the corresponding input areas, as shown in Figure 26. Since the 

fruit growth model is not updated before time 2, identical maps are produced by the Food 

KIB Function for times 1 and 2. 

As the fruit growth simulation has a period of 2 time units, its first iteration of execution 

is at time 2. The Consumption KIB Function is responsible for providing data to the fruit 

growth model concerning the changes in the number of fruit due to external influences, 

including the amount eaten by the gatherers. 
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(a) Initial numbers of fruit from the fruit growth 

model at time 0. 

(b) Food maps created by the Food KIB Function 

for times 1 and 2. 

Figure 26: Conversion of Spatial Resolution by the Food KIB Function.  

 

Also at time 0, the KIB receives a map that tells the locations of the gatherers. The 

Consumption KIB Function produces maps that tell external changes to the number of fruit 

at each map cell, where negative values indicate that fruit was removed. The Consumption 

KIB Function has a discrete-time input port (DTKIBInput) connected to the gatherer 

simulation. The output port of the Consumption KIB Function is a passive output port 

(PassiveKIBOutput) connected to the fruit growth simulation. Since the Consumption KIB 

Function receives values more frequently than it sends values, the Consumption KIB 

Function needs to collect multiple inputs maps and assemble them before each of its values 

is sent. 

At time 1, the first time step of the gatherer simulation is executed. During this step, 

the two gatherers examine their surroundings to find the cell with the largest amount of 

food. The cell with 157 food has more food than any other cell, and it is visible to both 

gatherers. The cell becomes the target of both gatherers. They each decide to move to the 
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cell during the following time step. Because they do not move during time 1, the output 

from the gatherer simulation (shown in Figure 27) is the same as the output at time 0. 

 

 

Figure 27: Numbers of Gatherers Output by the Gatherer Simulation at Time 1. 

 

The Consumption KIB takes this map of numbers of gatherers during time step 1. The 

Consumption KIB Function has the inputs it needs to create its output, a map of the changes 

in fruit amounts, for use by the fruit growth simulation at time 2. The Consumption KIB 

Function must complete a few steps to create each of its outputs. 

 

1. Collect and store each output from the gatherer simulation. Each output is a map of 

the numbers of gatherers, using the spatial resolution of the gatherer simulation. 

2. Recognize when the appropriate time has arrived to create an output map. The 

outputs must be created after all relevant inputs (See Figure 28) have been 

collected, and before the fruit growth simulation runs for its next time step. The 

first output of the Consumption KIB Function in this example occurs at the 

beginning of Time 2, before the fruit growth model has run for its first time step. 

2. . 
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(a) Numbers of gatherers at time 0. (b) Numbers of gatherers at time 1. 

Figure 28: Input Maps Processed by the Consumption KIB Function at the Start of Time 2. 

 

3. Recognize when the appropriate time has arrived to create an output map. The 

outputs must be created after all relevant inputs have been collected, and before the 

fruit growth simulation runs for its next time step. The first output of the 

Consumption KIB Function in this example occurs at the beginning of Time 2, 

before the fruit growth model has run for its first time step. 

4. Combine input maps received between outputs by adding the values at 

corresponding locations over each input map. The summation gives the total 

number of gatherer visits per location, in the gatherer simulation’s spatial 

resolution. 

5. Create a map of fruit change by multiplying the gatherer visits by the gatherers’ 

appetite (fruit eaten per time step), multiplied by -1. The map indicates the changes 

in the amounts of fruit between updates in the fruit growth simulation (shown in 
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Figure 29). The values are all negative to indicate that the fruit was removed by the 

gatherers. 

  

(a) Sum of input gatherer maps for times 0 and 1. (b) Change in fruit at time 2, using the spatial 

resolution of the gatherer simulation. 

Figure 29: Creation of the Fruit Change Map by the Consumption KIB Function at the Start of Time 2. 

 

6. Perform a spatial resolution conversion on the fruit change map to convert to 

change its region from that of the gatherer simulation to that of the fruit growth 

simulation (See Figure 30). 

 

Figure 30: Change in Fruit at Time 2, Converted to the Spatial Resolution of the Fruit Growth Simulation.  
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7. Make this output map, of the change in fruit, available at the output port of the 

Consumption KIB Function. This output is ready for use by the fruit growth 

simulation. 

At time 2, the fruit growth simulation can proceed to execute its first simulation step, 

once it receives as input the map of changes in fruit from external influences. During this 

step, the values from the fruit change map are added, and the number of fruit is then updated 

based on an exponential growth model. Within the model, the growth in the number of fruit 

at each cell is influenced by the number of fruit in surrounding cells. The resulting amounts 

from the fruit growth are shown in Figure 31. 

   

(a) Numbers of fruit at time 0. (b) Change in fruit at time 2 

(from external influences). 

(c) Numbers of fruit at time 2, 

after the fruit growth 

simulation time step. 

Figure 31: Time Step of the Fruit Growth Simulation.  

 

The map of numbers of fruit is given as input to the Food KIB Function, which will 

use the input to create food maps for the times 3 and 4 (See Figure 32). 
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(a) Numbers of fruit from the fruit growth model 

at time 2. 

(b) Food maps created by the Food KIB Function 

for times 3 and 4. 

Figure 32: Conversion of Spatial Resolution by the Food KIB Function. 

 

With this process, the fruit growth model and gatherer model interact without changes 

to their individual specifications. With similar procedures, the KIB can run combined 

simulations when the fruit growth simulation runs more frequently than the gatherer 

simulation, or when the spatial resolution of the gatherer simulation is higher than that of 

the fruit growth simulation. The exemplar models are not concerned with the differences 

in resolution or types of values from other models; each model sees inputs and outputs in 

its own resolution. 
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CHAPTER 7 

TESTING AND RESULTS 

The principles of the Geographic Knowledge Interchange Broker (GeoKIB) were 

applied to connect the two exemplar models: the fruit growth and gatherer models. In order 

to verify the GeoKIB’s ability to compose models at different resolutions, a set of different 

simulations using the models was run. The different simulations differ in the relative spatial 

and temporal resolutions of the two exemplar models. Distances within simulations 

represent meters. All simulations of the set use the same set of spatial boundaries, with 

south boundary at a value of 1000, north boundary at 1320, west boundary at 5000, and 

east boundary at 5640. Each simulation time step represents one day. Within the 

simulations of the fruit growth model, the number of fruit at each cell increases by an 

amount determined by multiplying the number of fruit in the surrounding 5 meters by 

0.010. A maximum fruit density of 0.3 fruit per square meter is allowed. Gatherers can live 

for a maximum of 30 days, and the 1000 initial gatherers have an age of 10 days. A gatherer 

can reproduce and create another gatherer after staying settled for 5 days. Each of the 

gatherers needs to consume 4 fruit per day. A gatherer will die if there is not enough 

available food for 3 days. 

Initial values were provided to the exemplar models as maps that indicate the locations 

of fruit and gatherers over the simulated landscape. To remove stochasticity from the 

simulations, the same map of fruit locations and the same map of gatherer locations were 

used to create the initial state for each of the simulations. In cases where a model had a 

different spatial resolution than the map of initial locations, the locations were converted 



   

62 

to create a state most consistent with the given initial locations using the model’s 

resolution. 

The first of these simulations has both models use the same spatial and temporal 

resolutions. Both models use a map resolution of 32 rows and 64 columns, for a total of 

2,048 cells. The models each update once per simulation time step during the 100 total time 

steps. For this simulation, the GeoKIB’s ability to manage resolution differences is not 

necessary, but its ability to translate the differences in the meanings of values is still 

utilized, specifically to convert numbers of gatherers to amounts of fruit eaten. The 

numbers of fruit and gatherers from this simulation are shown in Figure 33. 

 

Figure 33: Results of a Simulation with Equal Spatial and Temporal Resolutions for the Exemplar Models.  

 

Other simulations had varying differences in spatial resolution between the exemplar 

models, while keeping the temporal resolutions equal. In these simulations, one model had 
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the higher resolution with 32 rows and 64 columns, while the other model represented the 

same area with fewer cells. Configurations for these simulations are shown in Table 1. 

 

 

Table 1: Configurations of Simulations with Different Relative Spatial Resolutions. 

 

A few simulations retained the same spatial resolutions for the two models while using 

different time steps between updates for each of the models. In these, the state of one of 

the models was updated during each simulated day, while the other was updated only after 

a given number of days had passed. Configurations for simulations with varied temporal 

resolutions are shown in Table 2.  

 

 

Table 2: Configurations of Simulations with Different Relative Temporal Resolutions. 

 

Finally, some simulations were run in which both spatial and temporal differences 

existed between the two exemplar models. These simulations included all combinations 

Fruit Number of Rows 32 32 32 32 16 8 4

Fruit Number of Columns 64 64 64 64 32 16 8

Gatherer Number of Rows 4 8 16 32 32 32 32

Gatherer Number of Columns 8 16 32 64 64 64 64

1:4 1:16 1:64

Fruit Number of Cells/Gatherer 

Number of Cells Ratio 1:14:116:164:1

Fruit Number of Time Steps/Gatherer 

Number of Time Steps Ratio 10:1 5:1 2:1 1:2 1:5 1:10

Fruit Time Step Size 1 1 1 2 5 10

Gatherer Time Step Size 10 5 2 1 1 1
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with spatial area resolution factors of 4 or 16 and temporal resolution factors of 2, as shown 

in Table 3. 

 

 

Table 3: Configurations for Simulations with Differences in Both Spatial and Temporal Resolutions. 

 

Because the GeoKIB was designed to be flexible regarding the differences in spatial 

and temporal resolutions, all of these simulations could be run without changing 

configurations for the GeoKIB for each simulation. The GeoKIB was able to read the 

region information, including boundaries and cell sizes) from the connected models to 

determine which map cells of the different regions are associated. The GeoKIB needed 

inputs that indicated the sizes of the time steps for each of the models, and the GeoKIB 

automatically determined how to manage the differences in data input and output timings. 

In all of the simulations, the large numbers of gatherers, along with the limited number 

of fruit, resulted in a limit in the growth of the populations. At time 20, the original 

generation of gatherers die, leaving only those “born” during the simulation. As gatherers 

only reproduce after settling, and only one gatherer can settle in one cell, the number of 

surviving gatherers after time 20 is small when compared with the initial population size. 

Additionally, the gatherers quickly consume all of the fruit available wherever they collect. 

Fruit Number of Cells/Gatherer 

Number of Cells Ratio 4:1 4:1 16:1 16:1 1:4 1:4 1:16 1:16

Fruit Number of Time Steps/Gatherer 

Number of Time Steps Ratio 2:1 1:2 2:1 1:2 2:1 1:2 2:1 1:2

Fruit Number of Rows 32 32 32 32 16 16 8 8

Fruit Number of Columns 64 64 64 64 32 32 16 16

Gatherer Number of Rows 16 16 8 8 32 32 32 32

Gatherer Number of Columns 32 32 16 16 64 64 64 64

Fruit Period 1 2 1 2 1 2 1 2

Gatherer Period 2 1 2 1 2 1 2 1
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Once the fruit is gone from an area, the gatherers of the area die if they cannot see another 

source of food. 

Results of interactions between gatherers and fruit are apparent at all resolutions. The 

number of fruit decreases over time wherever gatherers are present, and gatherers tend to 

collect in areas with large numbers of fruit. As all of the interactions are managed by the 

GeoKIB, this shows the success of the GeoKIB in exchanging information between the 

models. Figure 34 shows the effects of changing spatial resolutions on the number of 

gatherers.  

 

 

Figure 34: Number of Gatherers During Simulations with Different Spatial Resolutions for the Gatherer 

and Fruit Growth Models. Both the gatherer and fruit growth models have temporal resolution of 1 update 

per day. The key shows the number of gatherer cells divided by the number of fruit growth cells.   
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The differences in relative spatial resolutions resulted in some differences in results. In 

particular, the behavior of the gatherers was especially sensitive to spatial resolution. At 

lower relative resolutions of the gatherer model, each map cell of the gatherer model 

corresponds to multiple cells of the fruit growth model. This results in more fruit available 

at each of the gatherers’ cells, making each of the cells more sustainable. However, the 

lower number of cells for the gatherers also results in fewer locations to settle and faster 

depletion of food. The gatherers had largest populations when each gatherer cell 

encompassed 16 cells of the fruit growth model. 

A limitation of this approach to multi-resolution modeling became apparent. When 

models rely on other models for data, differences in resolution can result in missing or 

insufficient information for one of the models. For example, differences in temporal 

resolution force one of the models to rely on outdated data from the other model, with the 

GeoKIB forced to extrapolate some results to the current time step. When the gatherer 

model was updated 5 times as often as the fruit growth model, the GeoKIB needed to 

supply information to the gatherer model from as much as 5 days previous to the current 

day. Then, after the fruit growth model was updated, it was impacted by all 5 days of 

influences from the gatherers at once. 

The fruit growth model and gatherer models were created only as samples for use in 

developing and testing the GeoKIB. A study of predator-prey models, population models, 

or vegetation growth models would result in more detailed models. Such models could also 

be composed using the same techniques, depending on the external inputs required by each 

model and the data produced within each model. 
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CHAPTER 8 

CONCLUSION 

One or more interaction models can be used to represent and regulate the interactions 

between models with different configurations. When models communicate via transfer of 

geographic data, the data can be transformed to account for differences in boundaries and 

resolution, as well as the differences in measurements and timing protocols. Although there 

is no one model that is appropriate for the representation of all types of interactions, the 

use of inheritance has proven useful in allowing the reuse of operations for a variety of 

purposes. In particular, algorithms that transform values, whether cumulative or average 

values, to different geographic regions can be applied to different applications with little 

or no alteration. 

While the interaction classes can be extended and applied to other applications, the 

designs could be expanded in future projects. The GeoKibFunction class of this project is 

designed to work with integer values, but configuration options could be added that allow 

different data types for a geographic map. The KIB units have shown to operate well for 

single-threaded systems, but additional work is needed to ensure that model components 

and KIB units could function correctly in multithreaded systems while maintaining data 

integrity and preventing and resolving deadlocks. Constraints and aesthetic improvements 

can be added to aid software and model designers who compose models using the 

GeoKibFunction class. Connections to other GIS systems can be established, similar to the 

connections that allowed the use of GRASS for this project. Such changes would facilitate 
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the application of the principles of a knowledge interchange broker in regulating the 

interactions between many different models that have geographic components.  

Cellular Automata model composability supported with the geo-referenced Knowledge 

Interchange Broker lends itself to be realized in component-based modeling and simulation 

tools such as DEVS-Suite simulator. Geographic-based component simulation modeling is 

an approach that provides greater modularity for application domains involving multiple 

levels of spatiotemporal abstractions. 
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APPENDIX A 

SETUP AND USE OF THE INTERACTION MODEL  
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Using GeoKibFunction 

Application of the GeoFunction to a set of models can be done in a few steps. First, the 

GeoKibFunction must be extended to create a class designed to handle transformations 

between two specific models. The abstract methods, state_transition(), 

is_transition_triggered(), and measurement_conversion(), must be given concrete 

definitions. 

After creating a concrete class for the interaction function, the class must be instantiated 

in a scope that allows access to the models it will connect. GeoFunction is dependent on a 

simulation clock that implements the ISimClock interface, so this should be resolved by 

attaching a clock object. This can be done with the method attach_sim_clock(). For this 

project, a class for a simulation clock was created named TimeTracker. TimeTracker 

automatically updates attached objects as the simulation time changes. The 

FoodKibFunction and TimeTracker objects were attached to each other in this way. 

simTimer = new TimeTracker(0, deltaTGrowth, deltaTGatherer);  

FoodKibFunction foodKib =  

new FoodKibFunction(growthRegion, gatherSimRegion); 

foodKib.attach_sim_clock(simTimer); 

simTimer.add_updatable_object(foodKib); 

The input and output port objects for the GeoKibFunction must be instantiated 

separately. The number and type of port objects to use depend on the models that will be 

connected and the method with which values will be transferred. For input ports, the 

DEKIBInput class is best if inputs will be given to it, and the DTKIBInput class is best for 
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taking inputs directly from another model. For output ports, PassiveKIBOutput allows 

output values to be taken at any time, and ActiveKIBOutput can be used to give values 

directly to another model. The GeoKibFunction object must be specified as an attribute in 

the constructors of the ports, attaching the ports to the GeoKibFunction object. For 

DTKIBInput and ActiveKIBOutput objects, other models need to be attached to allow 

automated communication, and the period of data transfer needs to be set. 

 

DEKIBInput<GeoMap> foodKibInput = new DEKIBInput<GeoMap>( 

foodKib, "fruit_amount" 

); 

ActiveKIBOutput<GeoMap> foodKibOutput =  

new ActiveKIBOutput<GeoMap>(foodKib, "food_amount"); 

foodKibOutput.add_destination(gathererModel); 

foodKibOutput.set_period(deltaTGatherer, 0);  
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Compilers and Execution Environment 

The following software was used as parts of the environment under which the sample 

simulations and interaction software were executed. 

Java 1.8.0_71 

GRASS GIS 7.4.0 

Python 2.7.13 

Windows 10 Home 

The software created in this project is expected to operate correctly when using any 

version of GRASS GIS 7, any version of Python 2.7, and any version of Java 8 (1.8) or 

later. 

 

Software Development Tools 

The following tools were used for the creation of the software and documentation of 

this project. 

IntelliJ IDEA Community 2017.2.5 

JetBrains PyCharm Community Edition 5.0.1 

Astah UML 7.2.0/1ff236 

Eclipse Neon.2 Release (4.6.2)  

Git Version 2.8.2.windows.1 

Github Internet service (https://github.com) 

Microsoft Excel, Word, and PowerPoint 


