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ABSTRACT

As robots become mechanically more capable, they are going to be more and more

integrated into our daily lives. Over time, human’s expectation of what the robot

capabilities are is getting higher. Therefore, it can be conjectured that often robots

will not act as human commanders intended them to do. That is, the users of the

robots may have a different point of view from the one the robots do.

The first part of this dissertation covers methods that resolve some instances of

this mismatch when the mission requirements are expressed in Linear Temporal Logic

(LTL) for handling coverage, sequencing, conditions and avoidance. That is, the

following general questions are addressed:

• What cause of the given mission is unrealizable?

• Is there any other feasible mission that is close to the given one?

In order to answer these questions, the LTL Revision Problem is applied and it

is formulated as a graph search problem. It is shown that in general the problem is

NP-Complete. Hence, it is proved that the heuristic algorihtm has 2-approximation

bound in some cases. This problem, then, is extended to two different versions:

one is for the weighted transition system and another is for the specification under

quantitative preference. Next, a follow up question is addressed:

• How can an LTL specified mission be scaled up to multiple robots operating in

confined environments?

The Cooperative Multi-agent Planning Problem is addressed by borrowing a

technique from cooperative pathfinding problems in discrete grid environments. Since

centralized planning for multi-robot systems is computationally challenging and easily
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results in state space explosion, a distributed planning approach is provided through

agent coupling and de-coupling.

In addition, in order to make such robot missions work in the real world, robots

should take actions in the continuous physical world. Hence, in the second part of this

thesis, the resulting motion planning problems is addressed for non-holonomic robots.

That is, it is devoted to autonomous vehicles’ motion planning in challenging

environments such as rural, semi-structured roads. This planning problem is solved

with an on-the-fly hierarchical approach, using a pre-computed lattice planner. It is

also proved that the proposed algorithm guarantees resolution-completeness in such

demanding environments. Finally, possible extensions are discussed.
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Chapter 1

INTRODUCTION

1.1 Mission Planning

As robots become mechanically more capable, they are going to be more and

more integrated into our daily lives. Non-expert users will have to communicate with

the robots in a natural language setting and request a robot or a team of robots

to accomplish complicated tasks. Therefore, we need methods that can capture the

high-level user requirements, solve the planning problem and map the solution to

low level continuous control actions. In addition, such frameworks must come with

mathematical guarantees of safe and correct operation for the whole system and not

just the high level planning or the low level continuous control.

Linear Temporal Logic (LTL) (see [1]) can provide the mathematical framework

that can bridge the gap between

1. natural language and high-level planning algorithms (e.g., [2, 3]), and

2. high-level planning algorithms and control (e.g., [4–8]).

LTL has been utilized as a specification language in a wide range of robotics

applications. Authors in [9] provide a recent survey and for a good coverage of the

related research directions, the reader is referred to [4–8, 10–16] and the references

therein. For instance, in [4], the authors present a framework for motion planning of a

single mobile robot with second order dynamics. The problem of reactive planning and

distributed controller synthesis for multiple robots is presented in [10] for a fragment

of LTL (Generalized Reactivity 1 (GR1)). The authors in [7] present a method
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for incremental planning when the specifications are provided in the GR1 fragment

of LTL. The papers [11, 13] address the problem of centralized control of multiple

robots where the specifications are provided as LTL formulas. An application of LTL

planning methods to humanoid robot dancing is presented in [15]. In [5], the authors

convert the LTL planning problem into Mixed Integer Linear Programming (MILP) or

Mixed Integer Quadratic Programming (MIQP) problems. The use of sampling-based

methods for solving the LTL motion planning problem is explored in [6]. All the

previous applications assume that the robots are autonomous agents with full control

over their actions. An interesting different approach is taken in [12] where the agents

move uncontrollably in the environment and the controller opens and closes gates in

the environment.

From all the previous methods, we can have two questions. First, what if we relax

the assumption that the LTL planning problem has a feasible solution? In real-life

scenarios, it is to be expected that not all complex task requirements can be realized

by a robot or a team of robots. In such failure cases, the robot needs to provide

feedback to the non-expert user on why the specification failed. Furthermore, it would

be desirable that the robot proposes a number of plans that can be realized by the

robot and which are as “close” as possible to the initial user intent. Then, the user

would be able to understand what are the limitations of the robot and, also, he/she

would be able to choose among a number of possible feasible plans. In [17], the author

made the first steps towards solving the debugging (i.e., why the planning failed) and

revision (i.e., what the robot can actually do) problems for automata theoretic LTL

planning ([18]).

Another important challenge is how to scale LTL mission planning methods to

multiple robots. There is a lot of work discussing multi-agent problems under LTL

mission specifications, e.g., [19–26]. However, if we focus on the number of robots
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in the existing temporal logic planning methods, we can see that they are typically

applicable only to groups of 3 to 5 robots. In order to resolve this scalability issue for

multi-agent LTL planning, we will focus on a specific subproblem not addressed in

the literature. Namely, we will focus on the specific classes of LTL problems where

the missions of each robot can be planned and executed independently. On the other

hand, we will consider some other challenging assumptions like limited communication

range and highly confined environments. Our solution builds upon methods from

Cooperative Pathfinding from [27–29].

1.2 Motion Planning

Motion planning for autonomous vehicles has been actively studied for several

decades now [30–32]. There are, however, still remaining issues in order to truly deploy

autonomous vehicles in the wild. Autonomous vehicles should cooperate with other

human drivers, motorcycles and pedestrians including bike riders and obey different

traffic rules, operating in different road conditions and environments. Among them,

this thesis focuses on vehicles operating in unstructured road environments, i.e., rural

road networks with narrow roads and steep turns (see Fig. 1.1).

A

A B

B

Figure 1.1: Steep turns on rural roads that typically require complex maneuvers. A:

the road width is approximately 1.5 cars; B: the road fits only one vehicle.

Such routes require complex motion planning maneuvers which must be computed

in near real time. Clearly, no human passenger would be willing to use a vehicle that
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stays idle for 4-5 min while computing a feasible motion plan.

In order to archieve this challenging goal, this thesis utilizes a hierarchical approach

for the planning [33–35]. The high level planner finds the path and generates a sequence

of way points on the path. The low level planner generates a motion plan to follow

the way points.

1.3 Literature Review

1.3.1 LTL Revision Problem

A related research problem is query checking [36, 37]. In query checking, given

a model of the system and a temporal logic formula φ, some subformulas in φ are

replaced with placeholders. Then, the problem is to determine a set of Boolean

formulas such that if these formulas are placed into the placeholders, then φ holds

on the model. The problem of revision as defined here is substantially different from

query checking. For one, the user does not know where to position the placeholders in

the formula when the planning fails.

The papers [38, 39] present a related problem. It is the problem of revising a system

model such that it satisfies a temporal logic specification. Along the same lines, one

can study the problem of maximally permissive controllers for automata specification

[40]. Note that in this section, we are trying to solve the opposite problem, i.e., we

are trying to relax the specification such that it can be realized on the system. The

main motivation for our work is that the model of the system, i.e., the environment

and the system dynamics, cannot be modified and, therefore, we need to understand

what can be achieved with the current constraints.

Finding out why a specification is not satisfiable on a model is a problem that is

very related to the problems of vacuity and coverage in model checking [41]. Another
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related problem is the detection of the causes of unrealizability in LTL games. In

this case, a number of heuristics have been developed in order to localize the error

and provide meaningful information to the user for debugging [42, 43]. Along these

lines, LTLMop [44] was developed to debug unrealizable LTL specifications in reactive

planning for robotic applications. In the paper [45], the authors provided an integrated

system for non-expert users to control robots for high-level, reactive tasks through

natural language. This system gives the user natural language feedback when the

original intention is unsatisfiable. Given a unrealizable specification, the paper [46]

characterizes unachievable cores, such as deadlock and livelock, from the specification.

Then, it tries to find minimal cores of the unrealizable specification, providing it to

the designer as a feedback. In [47], the authors investigated situations in which a

planner-based agent cannot find a solution for a given planning task. They provided

a formalization of coming up with “excuses” for not being able to find a plan and

determined the computational complexity of finding excuses. On the practical side,

they presented a method that is able to find good excuses in robotic application

domains.

Over-Subscription Planning (OSP) [48] and Partial Satisfaction Planning (PSP)

[49] are also very related problems. OSP finds an appropriate subset of an over-

subscribed, conjunctive goal to meet the limitation of time and energy consumption.

PSP explains the planning problem where the goal is regarded as soft constraints and

trying to find a good quality plan for a subset of the goals. OSP and PSP have almost

same definition, but there is also a difference. OSP regards the resource limitations

as an important factor of partial goal to be satisfied, while PSP chooses a trade-off

between the total action costs and the goal utilities where handling the plan quality.

Another related problem is the Minimum Constraint Removal problem (MCR)

[50]. MCR concentrates on finding the smallest set of violated geometric constraints
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so that satisfaction in the specification can be achieved.

For the cases when the given specification is not satisfied, the authors in [51]

introduce a non-monotonic temporal logic (N-LTL). This provides ways to elaborate

the given specification for the revision. However, as a prerequisite, it needs the

classifications of weak and strong exceptions for certain parts of the specification. On

the other hand, the approach in this thesis does not require this classification. It

revises an unsatisfiable specification by synthesizing it with the system and searching

the relaxed, product graph in an algorithmic manner. In addition, it can return the

specific atomic propositions which are not satisfiable.

The authors in [52] consider a number of high-level requirements in LTL which not

all can be satisfied on the system. Each formula that is satisfied gains some reward.

The goal of their algorithm is to maximize the rewards and, thus, maximize the

number of requirements that can be satisfied on the system. Our problem definition

is similar in spirit, but the problem goals are substantially different and the two

approaches can be viewed as complementary. In [52], if a whole sub-specification

cannot be realized, then it is aborted. In our case, we try to minimally revise the

sub-specification so that it can be partially satisfied. Another substantial difference is

that our proposed solutions can be incorporated directly within the control synthesis

algorithm. Namely, as the algorithm searches for a satisfiable plan, it also creates the

graph where the search for the revision will take place. In [52], the graph to be used

for the revision must be constructed as a separate step. The problem of LTL planning

with qualitative preferences has been studied in [53, 54] (see also the references therein

for more research in this direction). As opposed to revision problem, planning with

preferences is based on the fact that there are many satisfiable plans and, thus, the

most preferable one should be selected.
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1.3.2 Multi-agent Pathfinding Problem

Cooperative Pathfinding, a problem of computing non-conflicting paths for multiple

mobile robots, can be addressed in one of two ways.

Firstly, in fully coupled approach, there are state-search algorithms such as A∗.

In [55], the authors introduced a technique to reduce the branching factors in order

to resolve performance issue which occurs by its intractable nature. In [56], the

authors provided how to connect the multi-agent planning problem to the network

flow problem. However, this approach is unscalable due to the large state space.

Secondly, in the decoupled approach, [57] introduced the Hierarchical Cooperative

A∗ (HCA∗). This is a prioritized planning approach which applies a reservation table

in order to respect the computed plans for robots of higher priorities. [57] also provided

a Windowed HCA∗ approach (WHCA∗) which limits the influence of the computed

plans based on robots’ current locations and within a fixed window size to access the

reservation table. [58] extended this work, providing conflict-based reservation table

(CO-WHCA∗). All these decoupled approaches can find the solutions, but they are

incomplete. In [28, 29], the authors provided completeness by relaxing optimality.

However, their approaches depend on the availability of global information. For

instance, they assume that each robot can always access individual plans for all robots.

In a distributed system which has limited sensing and communication range, this

information can not be accessed very often by all the other robots.

1.3.3 Motion Planning

For unknown semi-structured environments, [59] shows a robotic vehicle operation.

Focusing on parking lot environments, they first get a solution with hybrid-state A∗,

and then they improve the solution quality through non-linear optimization. Their
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demonstration was conducted in relatively open spaces.

For generating way points, [34, 60] use similar approaches with ours. Authors in

[34] focus on path smoothing before guiding to way points while we focus on sampling

some of way points when we choose the local goals for planning the motion. Authors in

[60] used a combined heuristic cost for their A∗ search in the unstructured environment.

Their cost function combines the kinematic constraints of the vehicle with the Voronoi

graph of the free space. We, on the other hand, use the mid path which is from the

decomposed cells, not from the Voronoi graph.

Our hierarchical framework generates a local motion plan through lattice sets,

following the guide lines of the path. This following method is similar with [34] and

[60]. The method used in [34] adds mid points to the road map data, and then smooths

the line which is a sequence of mid points before following it. The approach used

in [60] is to build a Voronoi graph of the free space. Then, they use the mid points

of the graph as a heuristic cost for their motion planning through A∗ search which

also considers the kinematic constraints of the vehicle. On the other hands, we first

decompose the roads and connects the mid points of the path which is a sequence of

the decomposed road segments. Then, after sampling some of the points to target

them as local goals, we generates motion plans through lattice sets similar to [61, 62].

To enable near real time motion planning for autonomous vehicles, we propose

a hierarchical framework using lattice sets. Our method first decomposes the roads

into segments and then it connects the mid points of each segment to form a road

map. Next, it samples some of the points as local goals and it generates motion plans

through lattice sets similar to [61, 62]. When our hierarchical framework generates

a local motion plan through lattice sets, we compute the motion plan in order to

follow the guide lines of the path. At a high level, our framework partially adapts

techniques from [34, 60]. In detail, [34] adds mid points to the road map data, and
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then smoothens the resulting path, which is a sequence of mid points, before following

it. Similarly, [60] builds a Voronoi graph of the free space. Then, it uses the mid points

of the graph as a heuristic cost for their motion planning through A∗ search which

also considers the kinematic constraints of the vehicle. Our line following method

is similar; however, our end goal is to enable motions that require complex vehicle

maneuvers.

When constructing lattice sets, we primarily follow the results in [61, 62]. The

work in [62] regularly samples lattice sets in order to expand the search space. The

approach is efficient for traveling in relatively open spaces, but it can fail in heavily

constrained environments. In order to plan for steep turns and narrow passages, we

choose densely covered lattice sets. In addition, [62] also proposes to build on-line

the search graph while conducting A∗ search. In this process, a Heuristic Lookup

Table (HLUT) is utilized which was introduced in [61]. However, when planning in a

constraint environment, building the search graph on-line often leads to significant

performance issues due to the frequent collision checks with the environment. Hence,

we choose not to build the search graph on-line, but we search using pre-computed

KD-Trees. In order to reduce planning time, [61, 62] manage the level of fidelity by

varying the resolution of the grid for the lattice set (graduated fidelity). However, this

is also only works for relatively open spaces. When following narrow and stiff curves,

we have to consider the driving speed. Hence, our multi-resolution approach not only

changes the level of fidelity, but also changes the level of velocity. This is close to the

approach in [63] and the Adaptive Dimensionality (AD) in [64].

Among the works which are the closest related to ours are [65] and [66]. In [65], the

authors developed a motion planning approach for narrow environments through the

so-called RTR+TTS planner. Their approach does not consider optimal trajectories,

but focuses on human like driving by reducing the number of cusps. The work in
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[67] developed a similar approach for tight environments such as high density parking

lots. First, they use HCS for the steering function of RRT∗. Then, they tried to

optimize the trajectory. In [66], the authors improved their previous work in [67]

by introducing the maximum curvature, maximum curvature rate and maximum

curvature acceleration. Their approach can generate the path in almost real time,

but it is still needed to be improved. For example, their experiment results show

that there are some failures even though RRT∗ provides probabilistic completeness.

The experimental results in [67] show that their approach can generate paths in

almost real time. However, it also shows that there are some failures. Since they

ran the experiments in high density parking lots, failures may be unavoidable, but

potentially they could avoid the failures if they relaxed the probabilistic completeness

to resolution completeness.

1.4 Summary of Contributions

In this dissertation, we cover two major topics. In the rest of this chapter, a

summary of contributions and publications of these topics are presented along with a

reading guide.

Mission Planning When we specify robot missions, a formally structured

language is required to be used. This language should be logically precise and consider

the time for particular tasks to be done. In this setting, Linear Temporal Logic

(LTL) is a good choice. Even though this logical formula can make the robot missions

succeeded, when human designers use this framework, they can make some mistakes.

Hence, it is necessary to introduce LTL Revision Problems.

• [68] Kangjin Kim, Georgios Fainekos and Sriram Sankaranarayanan, On

the Revision Problem of Specification Automata, IEEE International

Conference on Robotics and Automation, St. Paul, Minnesota, May 2012
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• [69] Kangjin Kim and Georgios Fainekos, Approximate Solutions for

the Minimal Revision Problem of Specification Automata, IEEE/RSJ

International Conference on Intelligent Robots and Systems, Vilamoura Algarve,

Portugal, Oct. 2012

• [70] Kangjin Kim and Georgios Fainekos, Minimal Specification Revi-

sion for Weighted Transition Systems, IEEE International Conference

on Robotics and Automation, Karlsruhe, Germany, May 2013

• [71] Kangjin Kim and Georgios Fainekos, Revision of Specification Au-

tomata under Quantitative Preferences, IEEE International Conference

on Robotics and Automation, Hong-Kong, June 2014

• [72] Kangjin Kim, Georgios Fainekos, and Sriram Sankaranarayanan, On the

Minimal Revision Problem of Specification Automata, International

Journal of Robotics Research (IJRR), 2015

From the above work, parts of unsatisfiable robot missions can be indicated and

corrected, guiding the human designers to fix the issue. In order for many more robots

to be applied in this framework, we first investigated cooperative pathfinding. Along

these lines, we developed the DisCoF framework:

• [27] Yu Zhang, Kangjin Kim and Georgios Fainekos, DisCoF: Cooperative

Pathfinding in Distributed Systems with Limited Sensing and Com-

munication Range, International Symposium on Distributed Autonomous

Robotic Systems, Daejeon, Korea, Nov 2014

• [73] Kangjin Kim, J. Campbell, W. Duong, Yu Zhang, Georgios Fainekos,

DisCoF+: Asynchronous DisCoF with flexible decoupling for coop-

erative pathfinding in distributed systems, IEEE International Conference
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on Automation Science and Engineering (IEEE CASE), Gothenberg, Sweden,

Aug 2015

These works provide distributed framework while computing the path and resolving

any intrinsic conflict among some agents. In a discrete world, such as a grid system,

this approach returns a solution without difficulty.

Motion Planning Unlike the discrete world, the continuous world changes

many things. Time should be considered in a continuous manner. Robots are in

configuration space (a vector position and an orientation). Robots’ rigid body should

be considered. Following work introduces an online motion planner for this type of

robots in somewhat challenging environment.

• [74] Kangjin Kim, Yu Zhang, Georgios Fainekos, Online Motion Planning

for Autonomous Vehicles in Unstructured Road Networks, under re-

view, submitted in Fall 2019

Even though the above approach enables to generate motion maneuver in the given

world, resolving a conflict among agents in this setting is a different story. Utilizing

the technique from [27, 73], a possible extension can be suggested.

Publications which do not appear in this thesis Even though

related to this thesis topic, the following publications are not part of this thesis.

• [75] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos, A

Graphical Language for LTL Motion and Mission Planning, In 2013

IEEE International Conference on Robotics and Biomimetics (ROBIO), pages

704−709, Dec 2013

• [76] Wei Wei, Kangjin Kim, and Georgios Fainekos, Extended LTLvis Mo-

tion Planning Interface, In 2016 IEEE International Conference on Systems,
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Man, and Cybernetics, SMC 2016 - Conference Proceedings, pages 4194−4199,

United States, 2 2017. Institute of Electrical and Electronics Engineers Inc.
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Chapter 2

MISSION PLANNING

2.1 Motivation

Even though the LTL Revision Problem was defined and studied in the past in

various forms [17, 51], one fundamental question remained open: Can we efficiently

compute a specification revision when the robot environment is known? This chapter

develops polynomial time approximations and heuristics to this computationally hard

problem for various versions of the problem: on weighted (Sec. 2.4) and unweighted

transition systems (Sec. 2.3), and on requirements with (Sec. 2.5) and without

preferences (Sec. 2.3). In addition, the chapter develops the theory needed to extend

the specification revision problem to multi-robot systems where the robots have limited

communication and sensing range (Sec. 2.6). This class of problems had not been

considered before in the literature.

In this chapter, necessary background is built, the problems are defined, and

solutions are provided, followed by potential future extensions and conclusions.

2.2 Preliminaries

In this section, we review some basic results on the automata theoretic planning

and the specification revision problem from [4, 17].

Throughout this section, we will use the notation P(A) for representing the

powerset of a set A, i.e., P(A) = {B | B ⊆ A}. We also define a set difference as

A \B = {x ∈ A | x /∈ B}.
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2.2.1 LTL Planning

We assume that the combined actions of the robot/team of robots and their

operating environment can be represented using an FSM. This is for discrete abstraction

of the continuous robotic control system [4]. Each state of the Finite State Machine

(FSM) T is labeled by a number of symbols from a set Π = {π0, π1, . . . , πn} that

represent regions in the configuration space of the robot or, more generally, actions

that can be performed by the robot.

Definition 1 (FSM). A Finite State Machine is a tuple T = (Q,Q0,→T , hT , w,Π)

where: Q is a set of states; Q0 ⊆ Q is the set of possible initial states; →T⊆ Q×Q

is the transition relation; hT : Q → P(Π) maps each state q to the set of atomic

propositions that are true on q; and w :→T→ R≥0 returns the weight of each transition.

We define a path on the FSM to be a sequence of states and a trace to be the

corresponding sequence of sets of propositions. Formally, a path is a function p : N→ Q

such that for each i ∈ N we have p(i)→T p(i+ 1) and the corresponding trace is the

function composition p̄ = hT ◦ p : N→ P(Π). The language L(T ) of T consists of all

possible traces.

Assumption 1. All the states on T are reachable.

As a specification language, we will use LTL. Its syntax and semantics are as

followings.

Definition 2 (LTL Syntax). The set LTL(Π) of all LTL formulas built over a set of

atomic propositions Π is defined recursively as

φ ::= π | ¬φ1 | φ1 ∨ φ2 | Xφ1 | φ1Uφ2
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for π ∈ Π and φ1, φ2 ∈ LTL(Π), where ¬ is negation, ∨ is disjunction, X is “next”,

and U is strong “until”.

From aforementioned operators, we can derive the following operators: ∧ for

conjunction, ⇒ for implication, ⇔ for equivalence, F for “eventually”, G for “always”

and R for weak “until”. In the following, we let (p̄, i) |= φ denote the satisfiability of

an LTL formula φ over a trace p̄ starting at time i ∈ N. We define the language L(φ) to

be the set of all traces that satisfy φ at time 0, i.e., L(φ) = {p̄ ∈ P(Π)ω | (p̄, 0) |= φ}.

Definition 3 (LTL Semantics). The semantics of any LTL formula φ ∈ LTL(Π) is

defined as (for i, j, k ∈ N):

(p̄, i) |= >

(p̄, i) 6|= ⊥

(p̄, i) |= π iff π ∈ p̄(i)

(p̄, i) |= ¬φ1 iff (p̄, i) 6|= φ1

(p̄, i) |= φ1 ∨ φ2 iff (p̄, i) |= φ1 or (p̄, i) |= φ2

(p̄, i) |= Xφ1 iff (p̄, i+ 1) |= φ1

(p̄, i) |= φ1Uφ2 iff ∃k ≥ i s.t. (p̄, k) |= φ2 and ∀i ≤ j ≤ k . (p̄, j) |= φ1

Intuitively, the formula Xφ1 means that φ1 is true in the next time “step” (the

next position in the trace p̄). In addition, the formula φ1Uφ2 means that φ1 is true

until φ2 becomes true.

LTL formulas can be represented in the ω-automata which will impose certain

requirements on the traces of T . ω-automata differ from the classic finite automata in

that they accept infinite strings (traces of T in our case).
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Definition 4. An automaton is a tuple B = (SB, sB0 ,P(Π),→B, FB, θ) where: SB

is a finite set of states; sB0 is the initial state; P(Π) is an input alphabet; →B⊆

SB × P(Π) × SB is a transition relation; FB ⊆ SB is a set of final states; and

θ : Π× S2
B → R≥0 is a preference function.

We also write s
l→B s′ instead of (s, l, s′) ∈→B. A specification automaton is an

automaton with a Büchi acceptance condition where the input alphabet is the powerset

of the set of labels, Π, of the system T . A run r of a specification automaton B is

a sequence of states r : N→ SB that occurs under an input trace p̄ taking values in

P(Π). That is, for i = 0 we have r(0) = sB0 and for all i ≥ 0 we have r(i)
p̄(i)→B r(i+ 1).

Let lim(·) be the function that returns the set of states that are encountered infinitely

often in the run r of B. Then, a run r of an automaton B over an infinite trace p̄ is

accepting if and only if lim(r) ∩ FB 6= ∅. This is called a Büchi acceptance condition.

Finally, we define the language L(B) of B to be the set of all traces p̄ that have a run

that is accepted by B.

In order to simplify the discussion, we will make the following notations and

assumption without loss of generality. We define

• the set EB ⊆ S2
B, such that (s, s′) ∈ EB iff ∃l ∈ P(Π), s

l→B s′; and,

• the function λB : S2
B → P(Π) which maps a pair of states to the label of the

corresponding transition.

That is, if s
l→B s′, then λB(s, s′) = l; and if (s, s′) 6∈ EB, then λ(s, s′) = ∅.

Assumption 2. Between any two states of the specification automaton there exists

at most one transition.

In brief, our goal is to generate paths on T that satisfy the specification Bs. In

automata theoretic terms, we want to find the subset of the language L(T ) which
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also belongs to the language L(Bs). This subset is simply the intersection of the two

languages L(T )∩L(Bs) and it can be constructed by taking the product T ×Bs of the

FSM T and the specification automaton Bs. Informally, the automaton Bs restricts

the behavior of the system T by permitting only certain acceptable transitions. Then,

given an initial state in the FSM T , we can choose a particular trace from L(T )∩L(Bs)

according to a preferred criterion.

Definition 5. The product automaton A = T × Bs is the automaton A = (SA,

sA0 , P(Π), →A, FA) where: SA = Q × SBs; sA0 = {(q0, s
Bs
0 ) | q0 ∈ Q0}; →A⊆

SA × P(Π) × SA s.t. (qi, si)
l→A (qj, sj) iff qi →T qj and si

l→Bs sj with l = hT (qj),

and FA = Q× FB is the set of accepting states.

Note that L(A) = L(T ) ∩ L(Bs). We say that Bs is satisfiable on T if L(A) 6= ∅.

Definition 6. (ultimately periodic) Given a product automaton A = (SA, sA0 , P(Π),

→A, FA) and an infinite path p ∈ L(A), p is ultimately periodic if and only if p = p0

. . . pm . . . pm+n . . . pm+2×n . . . where p0 ∈ sA0 , pm = pm+j×n ∈ FA and m,n, j ∈ N.

Definition 7. (LTL Planning) Given T , Bs, its product automaton A = T × Bs
= (SA, sA0 , P(Π), →A, FA) and L(A) 6= ∅, we define LTL planning as finding an

ultimately periodic path p where p ∈ L(A) if T is a unweighted transition system.

Finding an infinite (satisfiable) path on T × Bs is an easy algorithmic problem

(see [1]). First, we convert automaton T × Bs to a directed graph and, then, we find

the strongly connected components (SCC) in that graph.

If at least one SCC that contains a final state is reachable from an initial state,

then there exist accepting (infinite) runs on T × Bs that have a finite representation.

Each such run consists of two parts: prefix: a part that is executed only once (from

an initial state to a final state) and, lasso: a part that is repeated infinitely (from a

18



final state back to itself). Note that if no final state is reachable from the initial or

if no final state is within an SCC, then the language L(A) is empty and, hence, the

high level synthesis problem does not have a solution. Namely, the synthesis phase

has failed and we cannot find a system behavior that satisfies the specification. For

this case, we shall introduce LTL Revision problem in Section 2.3.

In the next subsection, we will consider the case that T is a weighted transition

system and we have to consider its optimal run.

We remark that the unweighted transition system is a transition system where

every transition between any two states has same weight such as 1. This abstracted

system is useful when we consider a simple environment for pebble motion or sliding

puzzle, or when we only want to check if L(T ×Bs) is empty or not, without considering

its optimal run.

2.2.2 Weighted LTL Planning

In this subsection, we will cover LTL planning under a weighted transition system.

In order to plan on this setting, we convert it to a graph search problem. First, a

product automaton of a system T and a specification Bs can be converted to a directed

graph. Second, finding the solution of the problem can be transfered to finding an

acceptable path on the graph. Third, the cost of the path should be defined. Fourth,

optimal solution can be chosen, comparing the cost of each path. First two steps

are same as LTL planning in the previous section. Here, we will discuss on two cost

functions C1 and C2 and their optimal solution.

Suppose that there are a system T = (Q, Q0,→T , hT , w, Π) and a specification Bφ
= (SB, sB0 , P(Π),→B, FB, θ) where φ = Fπ and π ∈ Π. Formalizing a cross-product A

= (SA, sA0 , →A, w, FA) of T and Bφ as a graph search problem, we can solve the LTL

planning problem. Then, a possible solution can be an infinite path p = v0 . . . vm . . .
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where v0 = sA0 and vm ∈ FA. This is because when we focus on its prefix part, p

eventually visits vm where vm ∈ FA and p̄(m) |= π. Note that if the LTL formula is

more complex, then we have to consider the lasso part.

Suppose that φ = GFπ.

More precisely, given an acceptable path p ∈ L(A), there exist constants m,n ∈ N

s.t. for all k ≥ 0, we have p̄(m+k) = p̄(m+ mod (k, n)), where mod is the modulo

operation. In other words, an ultimately periodic trace consists of a finite (or prefix)

part p̄(0)p̄(1) . . . p̄(m − 1) and a loop (or lasso) part p̄(m)p̄(m + 1) . . . p̄(m + n − 1)

repeated ad infinitum. Based on that observation, we can construct a cost function C1

that will help us compute a plan that satisfies our overall cost bound C:

C1(p) = max

{
m−1∑

i=0

(w(p(i), p(1 + i))),
n−1∑

i=0

(w(p(m+ i), p(m+ i+ 1))

}
.

The first quantity is the cost of the path to get to the state p(m), while the second

is the cost of the steady state.

Based on the previous cost function, it is easy to compute the optimal path on

T that satisfies Bs. We define a weight function wA on the edges of A as follows:

∀ ((qi, si), l, (qj, sj)) ∈→A, wA((qi, si), (qj, sj)) = w(qi, qj). Then we run Dijkstra’s

shortest path algorithm [77] to compute the shortest path from the initial state to

any accepting state in FA. Then, starting from each reachable accepting state, we

compute the shortest path to get back to that state. Finally, we can select a path

that minimizes C1(p).

The procedure described above is meaningful only in certain motion planning

scenarios. For example, such a planning framework can be useful in cases where the

vehicle can continuously recharge, e.g., using solar panels, or regenerate energy while

operating. In these cases, it is desirable that the cost of the periodic part of the
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plan as well as the transient behavior have cost less than cost budget C which could

indicate depleted power sources.

A different LTL optimal planning framework has been developed in [13, 78]. In

[78], the authors solve the optimal planning problem for specifications of the form

φ := ϕ ∧23ψ, (2.1)

where ψ is a Boolean combination of atomic propositions that must be satisfied

infinitely often. For instance, we could set ψ = π? where π? is an atomic proposition

indicating a recharging or time reseting operation in a particular location in the

environment. Then, the optimal control framework attempts to compute paths that

when passing through π? have cost less than C.

In the following, we will assume that ψ is a single atomic proposition, i.e., ψ = π?.

The discussion can be generalized to Boolean combinations of atomic propositions.

Formally, given a path p, the function απ
?

p : N→ N returns the i-th appearance of π?

in p̄. The cost C2(p) of a path is defined as

C2(p) = lim sup
i→+∞

α(i+1)∑

j=α(i)

w(p(j), p(j + 1))

C2(p) is finite only if π? occurs periodically in the trajectory. The main results from

[78] can be summarized as follows.

Theorem 1. There exists p̄ ∈ L(A) s.t. p̄ is ultimately periodic and the corresponding

path p minimizes the cost function C2(p).

The computation of a path that minimizes C2 is similar to the algorithm that

produces plans that minimize C1, but with a major difference. There is a set of nodes

R – potentially different from FA – that are labeled by π? and when visited they reset

the cost of a path. A detailed description of the algorithm appears in [78].
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Figure 2.1: Illustration of the simple road network environment of Example 13. The

robot is required to drive right-side of the road.

The paths computed with the above process are guaranteed to be the minimum

cost paths. In realistic scenarios, it is to be expected to have hard constraints on the

allowable worst case costs. The following example presents such a typical scenario for

motion planing of a mobile robot in a road network inspired from [78].

Example 1. (Robot Motion Planning) We consider a mobile robot which operates in

a road network in Fig. 2.12. Initially, the robot is placed in the intersection labeled

by i3. The robot must accomplish the task: “Periodically visit gather locations g1, g2,

or g3 to gather data, and periodically visit upload locations u1 or u2 to upload the

gathered data.” The goal is to find an optimal path that minimizes the traveling time

from one upload location to another or same upload location, while doing the mission.

This natural language mission can be translated to a LTL formula φ := 23ϕ ∧23π

where ϕ := g1 ∨ g2 ∨ g3 and π := u1 ∨ u2. Given a cost bound C = 13, cost reset nodes

R = {u1, u2} and a specification φ, an optimal run p is i3g3i4g2i3(u2i1i2u1i1g1i3)+. In

this trace, the cost for prefix part i3 ; u2 is 12.8 and the costs for suffix part u2 ; u1

and u1 ; u2 are 7.1 and 11.6, respectively.

In the next section, we will introduce two main problems. First one is about asking
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the case when a user’s original intention is unrealizable on a given environment, and

second one is about a scalability issue of multi-agent LTL planning.

2.3 LTL Revision Problem

Intuitively, a revised specification is one that can be satisfied on the discrete

abstraction of the workspace of the robot. In order to search for a minimal revision,

we need first to define an ordering relation on automata as well as a distance function

between automata. Similar to the case of LTL formulas in [17], we do not want to

consider the “space” of all possible automata, but rather the “space” of specification

automata which are semantically close to the initial specification automaton Bs. The

later will imply that we remain close to the initial intention of the designer. We

propose that this space consists of all the automata that can be derived from Bs by

relaxing the restrictions for transitioning from one state to another. In other words,

we introduce possible transitions between two states of the specification automaton.

Our definition of the ordering relation between automata relies upon the previous

assumptions.

Definition 8 (Relaxation). Let B1 = (SB1, sB10 , P(Π), →B1, FB1, θB1) and B2 = (SB2,

sB20 , P(Π), →B2, FB2, θB2) be two specification automata. Then, we say that B2 is

a relaxation of B1 and we write B1 � B2 if and only if SB1 = SB2 = S, sB10 = sB20 ,

FB1 = FB2, θB1 = θB2 and

1. ∀(s, l, s′) ∈→B1 − →B2 . ∃l′ .

(s, l′, s′) ∈→B2 − →B1 and l′ ⊆ l.

2. ∀(s, l, s′) ∈→B2 − →B1 . ∃l′ .

(s, l′, s′) ∈→B1 − →B2 and l ⊆ l′.
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We remark that � is a partial order over specification automata. Also, if B1 � B2,

then L(B1) ⊆ L(B2) since the relaxed automaton allows more behaviors to occur. It

is possible that two automata B1 and B2 cannot be compared under relation �.

Example 2. Consider the specification automaton Bs and the automata B1-B3 in

Fig. 2.2. Requirements 1 and 2 in Def. 16 specify that the two automata must have

transitions between exactly the same states1 . Moreover, if the label of a transition

between the same pair of states on the two automata differs, then the label on the

relaxed automaton must be a subset of the label of the original automaton. The latter

means that we have relaxed the constraints that permit a transition on the specification

automaton.

We have that Bs � B1, since

→Bs={(0, {π−0 }0), (1, {π−0 }, 1), (2, {π−0 }, 2)

(0, {π−0 , π1}, 1), (1, {π−0 , π2}, 2), (0, {π−0 , π1, π2}, 2)}

→B1={(0, {π−0 }0), (1, ∅, 1), (2, {π−0 }, 2)

(0, {π−0 , π1}, 1), (1, {π−0 , π2}, 2), (0, {π2}, 2)}

→Bs − →B1= {(1, {π−0 }, 1), (0, {π−0 , π1, π2}, 2)}

→B1 − →Bs= {(1, ∅, 1), (0, {π2}, 2)}

and ∅ ⊆ {π−0 }, {π2} ⊆ {π−0 , π1, π2}.

Similarly, we have Bs ‖ B2 since →Bs − →B2= {(0, {π−0 , π1}, 1)} while →B2
− →Bs= ∅, i.e., we have removed a transition between two states. We have Bs ‖ B3

since →Bs − →B3= ∅ while →B3 − →Bs= {(2, {π2}, 0)}, i.e., we have added a

1To keep the presentation simple, we do not extend the definition of the ordering relation to

isomorphic automata. Also, this is not required in our technical results since we are actually going to

construct automata which are relaxations of a specification automaton.
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Figure 1: (Example 2) Bs: the initial specification automaton, here π−0 ≡ ¬π0; Bs � B1;
Bs ‖ B2; Bs ‖ B3.

weighted transition system under some hard cost constraints. One of the fundamental ques-
tions regards the form of the search space of the specifications. Since the initial user specifi-
cation allows only system behaviors with higher cost than the constraint, it is natural to relax
some of the requirements in order to permit more behaviors and, hopefully, find a behavior
with lower cost.

The unconstrained LTL formula search space for a revised specification is

FC
D = {φ ∈ LTL(Π) | ∃p̄.p̄ ∈ L(D × Bφ) ∧ C(p) ≤ C},

where C is C1 or C2. However, as we have demonstrated through examples in [16] for the un-
weighted version of the problem, FC

D also contains specifications that from the user perspective
cannot be considered valid specification revisions. Thus, we must impose some constraints on
the search space. First, we define an ordering relation over the set of LTL formulas.

Definition 7. Let φ, ψ ∈ LTL(Π), then we define φ � ψ if and only if L(φ) ⊆ L(ψ).
We define the set of ultra relaxations as follows.

Definition 8 (Ultra Relaxation). Let φ ∈ LTL(Π), the set UR(φ) of all valid formula relax-
ations of φ can be constructed using the recursive operator rel(φ) as follows:

rel(π) ∈ {π,⊤}, rel(OP1 φ) = OP1 rel(φ),

rel(φ1 OP2 φ2) = rel(φ1) OP2 rel(φ2)

where OP1 is any unary and OP2 is any binary operator.

Informally, a valid formula relaxation is one that recursively relaxes each atomic proposi-
tion π of the initial specification φ.

References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cambridge, Mas-
sachusetts: MIT Press, 1999.
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Figure 2.2: Example 2. Bs: the initial specification automaton, here π−0 ≡ ¬π0;

Bs � B1; Bs ‖ B2; Bs ‖ B3.

transition between two states. Recall that between any two states we may have only

one transition. 4

We can now define the set of automata over which we will search for a revision.

Definition 9. Given a system T and a specification automaton Bs, the set of valid

relaxations of Bs is defined as R(Bs, T ) = {B | Bs � B and L(T × B) 6= ∅}.

We can now search for a solution in the set R(Bs, T ). Different solutions can be

compared from their revision sets.

We can now search for a minimal solution in the set R(Bs, T ). That is, we can

search for some B ∈ R(Bs, T ) such that if for any other B′ ∈ R(Bs, T ), we have

B′ � B, then L(B) = L(B′). However, this does not imply that a minimal solution

semantically is minimal structurally as well. In other words, it could be the case

that B1 and B2 are minimal relaxations of some Bs, but B1 ‖ B2 and, moreover, B1

requires the modification of only one transition while B2 requires the modification

of two transitions. Therefore, we must define a metric on the set R(Bs, T ), which

accounts for the number of changes from the initial specification automaton Bs.

25



Definition 10. Given a system T and a specification automaton Bs, we define the

distance of any B ∈ R(Bs, T ) from Bs to be distBs(B) =
∑

(s,s′)∈EBs |λBs(s, s
′) −

λB(s, s′)| where | · | is the cardinality of the set.

Problem 1 (LTL Revision Problem). Given a system T and a specification automaton

Bs such that L(T × Bs) = ∅, find B ∈ arg min{distBs(B′) | B′ ∈ R(Bs, T )}.

2.3.1 LTL Revision as Graph Search Problems

In this section, we present how Problem 1 can be posed as shortest path problems

on labeled graphs.

Without loss of generality, we will assume that for any given specification φ, each

atomic proposition π in φ appears only once in φ. If this is not the case, then for each

additional occurrence of π in φ, we can replace it with a new atomic proposition, add

the proposition to Π and modify the map hT accordingly. This change is necessary in

order to uniquely identify in φ which propositions need to be replaced by >.

Given a specification φ, we can construct the corresponding specification automaton

Bs. Using the weighted labeled transition system T and the specification automaton

Bs, we can construct a graph GA which corresponds to the product automaton A

while considering the effect of revisions and the weights.

Definition 11. Given a system T and a specification automaton Bs, we define the

graph GA = (V,E, vs, Vf ,W,Λ, R, θ), which corresponds to the product A = T × Bs as

• V = SA is the set of nodes

• E = EA ∪ ED ⊆ SA × SA, where

– EA is the set of edges that correspond to transitions on A, i.e., ((q, s), (q′, s′)) ∈

EA iff ∃l ∈ P(Π) . (q, s)
l→A (q′, s′); and
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– ED is the set of edges that correspond to disabled transitions, i.e., ((q, s), (q′, s′)) ∈

ED iff q →T q′ and s
l→Bs s′ with l ∩ (Π− hT (q′)) 6= ∅.

• vs = sA0 is the source node,

• Vf = FA is the set of sinks,

• W : E → R≥0 assigns a weight to each edge in E. If e = ((q, s), (q′, s′)) ∈ E,

then w(e) = w(q).

• Λ : E → P(Π) maps each edge of the graph to the set of symbols that need

to be removed in order to enable the edge in the product automaton A. If

e = ((q, s), (q′, s′)) ∈ E, then Λ(e) = {〈l, (s, s′)〉 | l = λBs(s, s
′)− hT (q′)}.

• R = {(q, s) ∈ V | π? ∈ hT (q)} is the set of “cost reset” nodes.

• θ : Π→ R≥0 is the preference function of Bs restricted on Π.

We remark that the graph GA is essentially the same graph as the graph of A with

the addition of the disabled edges due to the specification constraints. Therefore, any

path on the graph of A appears as a path on GA.

In Problem 1, we assume that the transition system T is unweighted. Hence,

when we construct the graph GA for Problem 1, we can set the same weight for

every edge. i.e., the weight of every edge e ∈ E of GA is 1. The solution of this

problem is an acceptable path p = v0, v1, . . . , vm, vm+1, . . . , vm+n . . . where v0 = sA0 and

vm = vm+k×n ∈ Vf where m,n, k ∈ N. In the path p, v0v1 . . . vm is the prefix part and

vmvm+1 . . . vm+n is the lasso part. Note that for revision problems, we assume that

L(A) = ∅. Hence L(GA) = ∅ only with edges in EA. In order to have an acceptable

path p ∈ L(GA), we have to add some edges in ED to this path p. The cost function of

this graph GA is related with the set of atomic propositions on this edges and we use
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the function Λ of GA. Before defining the cost funciton, we define | 〈l, (s, s′)〉 | = |l|,

i.e., the size of a tuple 〈l, (s, s′)〉 ∈ Π×E is defined to be the size of the set l. The cost

of the path p is defined as following. Cost(p) = |Λ̃(p)|. Λ̃(p) =
⋃m+n−1
i=0 Λ(vi, vi+1).

Example 3. Suppose that there are two edges (vi, vj) = ((qi, si), (qj, sj)) and (vk, vh) =

((qk, sk), (qh, sh)). The union of Λ(vi, vj) and Λ(vk, vh) is {〈l, (si, sj)〉} ∪ {〈l′, (sk, sh)〉}.

Then, if (si, sj) = (sk, sh), it is {〈l ∪ l′, (si, sj)〉}. Otherwise, it is {〈l, (si, sj)〉, 〈l′, (sk, sh)〉}.

Example 4. Consider the Example in Fig. 2.3. In the figure, we provide a partial

description of an FSM T , a specification automaton Bs and the corresponding product

automaton A. The dashed edges indicate disabled edges which are labeled by the atomic

propositions that must be removed from the specification in order to enable the transition

on the system. In this example, we do not have to add any new nodes since we have

only one conjunctive clause on the transition of the specification automaton. It is

easy to see now that in order to enable the path (q0, s1), (q1, s1), (q3, s1) on the product

automaton, we need to replace π0 and π2 with > in ΦBs(s1, s1) = π0 ∧ π1 ∧ π2 ∧ π3. On

the graph GA, this path corresponds to Λ̃(e1e3) = {〈{π0, π2}, (s1, s1), 0〉}. Similarly, in

order to enable the path (q0, s1), (q1, s1), (q2, s1) on the product automaton, we need to

replace π0, π2 and π3 with > in ΦBs(s1, s1). On the graph GA, this path corresponds

to Λ̃(e1e2) = {〈{π0, π2 π3}, (s1, s1), 0〉}.

Therefore, the path defined by edges e1 and e3 is preferable over the path defined

by edges e1 and e2. In the first case, we have cost C(e1e3) = 2 which corresponds

to relaxing 2 requirements, i.e., π0 and π2, while in the latter case, we have cost

C(e1e2) = 3 which corresponds to relaxing 3 requirements, i.e., π0, π2 and π3. 4

A valid relaxation B should produce a reachable vf ∈ Vf with prefix and lasso

path such that L(T × B) 6= ∅. Optimal solution is the path p such that cost(p) is

minimized. The next section provides an algorithmic solution to this problem.
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Figure 2.3: Example 4. T : part of the system; Bs: part of the specification automaton;

GA: part of the graph that corresponds to the product automaton.

2.3.2 A Heuristic Algorithm for MRP

In this section, we present an approximation algorithm (AAMRP) for the Minimal

Revision Problem (MRP). It is based on Dijkstra’s shortest path algorithm [77]. The

main difference from Dijkstra’s algorithm is that instead of finding the minimum

weight path to reach each node, AAMRP tracks the number of atomic propositions

that must be removed from each edge on the paths of the graph GA.

The pseudocode for the AAMRP is presented in Algorithms 1 and 2. The main

algorithm (Alg. 1) divides the problem into two tasks. First, in Line 4, it finds an

approximation to the minimum number of atomic propositions from Π that must be

removed to have a prefix path to each reachable sink (see Sec. 2.2.1). Then, in Line

9, it repeats the process from each reachable final state to find an approximation to

the minimum number of atomic propositions that must be removed so that a lasso

path is enabled. The combination of prefix/lasso that removes the minimal number

of atomic propositions is returned to the user. We remark that from line 9, a set of

atomic propositions found from prefix part is used when it starts searching for lasso

path of every reachable vf ∈ V ∩ Vf .
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Algorithm 1: AAMRP(GA)

Input: a graph GA = (V,E, vs, Vf ,Π,Λ)
Output: the list L of atomic propositions Π that must be removed from Bs

1 L← Π

2 M[:, :]← (Π,∞)
3 M[vs, :]← (∅, 0) . Initialize the source node

4 〈M,P,V〉 ← FindMinPath(GA,M, 0)
5 Acceptable← False
6 for vf ∈ V ∩ Vf do
7 Lp ← GetAPFromPath(vs, vf ,M,P)

8 M′[:, :]← (Π,∞)
9 M′[vf , :]← (Lp, |Lp|) . Store APs of vs ; vf to M′[vf , :]

10 G′A ← (V,E, vf , {vf},Π,Λ)
11 〈M′,P′,V ′〉 ← FindMinPath(G′A,M′, 1)
12 if vf ∈ V ′ then
13 L′ ← GetAPFromPath(vf , vf ,M′,P′) . Get APs from M′[vf , :]
14 if |L′| ≤ |L| then
15 L← L′

16 Acceptable← True

17 if ¬Acceptable then
18 L← ∅
19 return L

Algorithm 2 follows closely Dijkstra’s shortest path algorithm [77]. It maintains

a list of visited nodes V and a table M indexed by the graph vertices which stores

the set of atomic propositions that must be removed in order to reach a particular

node on the graph. Given a node v, the size of the set |M[v, 1]| is an upper bound on

the minimum number of atomic propositions that must be removed. That is, if we

remove all π ∈ M[v, 1] from Bs, then we enable a simple path (i.e., with no cycles)

from a starting state to the state v. The size of |M[v, 1]| is stored in M[v, 2] which

also indicates that the node v is reachable when M[v, 2] <∞.

The algorithm works by maintaining a queue with the unvisited nodes on the

graph. Each node v in the queue has as key the number of atomic propositions that

must be removed so that v becomes reachable on A. The algorithm proceeds by
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Algorithm 2: FindMinPath(GA,M,lasso)

Input: a graph GA = (V,E, vs, Vf ,Π,Λ), a table M and a flag lasso on
whether this is a lasso path search

Output: the tables M and P and the visited nodes V
Variables: (a queue Q, a set V of visited nodes and a table P indicating the

parent of each node on a path)
1 V ← {vs}
2 P[:]← ∅ . Each entry of P is set to ∅
3 Q ← V − {vs}
4 for v ∈ V such that (vs, v) ∈ E and v 6= vs do
5 〈M,P〉 ← Relax((vs, v),M,P,Λ)

6 if lasso = 1 then
7 if (vs, vs) ∈ E then
8 M[vs, 1]←M[vs, 1] ∪ Λ(vs, vs)
9 M[vs, 2]← |M[vs, 1] ∪ Λ(vs, vs)|

10 P[vs]← vs
11 else
12 M[vs, :]← (Π,∞)

13 while Q 6= ∅ do
14 u← ExtractMIN(Q) . Get node u with minimum M[u, 2]

15 if M[u, 2] <∞ then
16 V ← V ∪ {u}
17 for v ∈ V such that (u, v) ∈ E do
18 〈M,P〉 ← Relax((u, v),M,P,Λ)

19 returnM,P,V

choosing the node with the minimum number of atomic propositions discovered so far

(line 14). Then, this node is used in order to updated the estimates for the minimum

number of atomic propositions needed in order to reach its neighbors (line 18). A

notable difference of Alg. 2 from Dijkstra’s shortest path algorithm is the check for

lasso paths in lines 6-12. After the source node is used for updating the estimates

of its neighbors, its own estimate for the minimum number of atomic propositions

is updated either to the value indicated by the self loop or the maximum possible

number of atomic propositions. This is required in order to compare the different

paths that reach a node from itself.

31



Algorithm 3: Relax((u, v),M,P,Λ)

Input: an edge (u, v), the tables M and P and the edge labeling function Λ
Output: the tables M and P

1 if |M[u, 1] ∪ Λ(u, v)| <M[v, 2] then
2 M[v, 1]←M[u, 1] ∪ Λ(u, v)
3 M[v, 2]← |M[u, 1] ∪ Λ(u, v)|
4 P[v]← u

5 returnM, P
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Fig. 5. The graph of Example 4. The source is denoted by an
Figure 2.4: The graph of Example 5. The source vs = v1 is denoted by an arrow and

the sink v6 by double circle (Vf = {v6}).

The following example demonstrates how the algorithm works and indicates the

structural conditions on the graph that make the algorithm non-optimal.

Example 5. Let us consider the graph in Fig. 2.4. The source node of this graph is

vs = v1 and the set of sink nodes is Vf = {v6}. The Π set of this graph is {π1, . . . , π4}.

Consider the first call of FindMinPath (line 4 of Alg. 1).

• Before the first execution of the while loop (line 13): The queue contains Q =

{v2, . . . , v6}. The tableM has the following entries: M[v1, :] = 〈∅, 0〉,M[v2, :] =

〈{π1}, 1〉, M[v3, :] = 〈{π1, π3}, 2〉, M[v4, :] = . . . =M[v6, :] =
〈
Π,∞

〉
.

• Before the second execution of the while loop (line 13): The node v2 was popped

from the queue since it had M[v2, 2] = 1. The queue now contains Q =

{v3, . . . , v6}. The table M has the following rows: M[v1, :] = 〈∅, 1〉, M[v2, :] =

〈{π1}, 1〉, M[v3, :] = 〈{π1, π3}, 2〉, M[v4] = 〈{π1, π2}, 2〉, M[v5, :] =M[v6, :] =
〈
Π,∞

〉
.
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• At the end of FindMinPath (line 19): The queue now is empty. The table

M has the following rows: M[v1, :] = 〈∅, 0〉, M[v2, :] = 〈{π1}, 1〉, M[v3, :] =

〈{π1, π3}, 2〉, M[v4, :] = 〈{π1, π2}, 2〉, M[v5, :] = 〈{π1, π2, π4}, 3〉, M[v6, :] =
〈
Π, 4

〉
, which corresponds to the path v1, v2, v4, v5, v6.

Note that algorithm returns a set of atomic propositions L′ = Π which is not

optimal |L′| = 4). The path v1, v3, v4, v5, v6 would return L′ = {π1, π3, π4} with |L′|

= 3. 4

Correctness: The correctness of the algorithm AAMRP is based upon the fact

that a node v ∈ V is reachable on GA if and only if M[v, 2] <∞. The argument for

this claim is similar to the proof of correctness of Dijkstra’s shortest path algorithm

in [77]. If this algorithm returns a set of atomic propositions L which removed from

Bs, then the language L(A) is non-empty. This is immediate by the construction of

the graph GA (Def. 19).

We remark that AAMRP does not solve Problem 1 exactly since MRP is NP-

Complete. However, AAMRP guarantees that it returns a valid relaxation B where

Bs � B.

Theorem 2. If a valid relaxation exists, then AAMRP always returns a valid relaxation

B of some initial Bs such that L(T × B) 6= ∅.

Proof. First, we will show that if AAMRP returns ∅, then there is no valid relaxation

of Bs. AAMRP returns ∅ when there is no reachable vf ∈ Vf with prefix and lasso

path or GetAPFromPath returns ∅. If there is no reachable vf , then either the

accepting state is not reachable on Bs or on T . Recall that the Def. 19 constructs

a graph where all the transitions of T and B are possible. If it returns ∅ as a valid
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solution, then there is a path on the graph that does not utilize any labeled edge

by Λ. Thus, L(T × Bs) 6= ∅. Since we assume that Bs is unsatisfiable on T , this is

contradiction.

Second, without loss of generality, suppose that AAMRP returns Λ̃(µ). Using this

Λ̃(µ), we can build a relax specification automaton B. Using each 〈l, (s, s′), k〉 ∈ Λ̃(µ)

and for each π ∈ l, we add the indices of the literal φij in ΦBs(s,s′) that corresponds

to π to the sets D̂ss′ and Ĉi
ss′ . The resulting substitution θ produces a relaxation.

Moreover, it is a valid relaxation, because by removing the atomic propositions in θ

from Bs, we get a path that satisfies the prefix and lasso components on the product

automaton.

Running time: The running time analysis of the AAMRP is similar to that of

Dijkstra’s shortest path algorithm. In the following, we will abuse notation when we

use the O notation and treat each set symbol S as its cardinality |S|.

First, we will consider FindMinPath. The fundamental difference of AAMRP over

Dijkstra’s algorithm is that we have set theoretic operations. We will assume that we

are using a data structure for sets that supports O(1) set cardinality quarries, O(log n)

membership quarries and element insertions (see [77]) and O(n) set up time. Under

the assumption that Q is implemented in such a data structure, each ExtractMIN

takes O(log V ) time. Furthermore, we have O(V ) such operations (actually |V | − 1)

for a total of O(V log V ).

Setting up the data structure for Q will take O(V ) time. Furthermore, in the

worst case, we have a set Λ(e) for each edge e ∈ E with set-up time O(EΠ). Note

that the initialization of M[v, :] to
〈
Π,∞

〉
does not have to be implemented since

we can have indicator variables indicating when a set is supposed to contain all the

(known in advance) elements.
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Assuming that E is stored in an adjacency list, the total number of calls to Relax

at lines 4 and 17 of Alg. 2 will be O(E) times. Each call to Relax will have to

perform a union of two sets (M[u, 1] and Λ(u, v)). Assuming that both sets have in the

worst case |Π| elements, each union will take O(Π log Π) time. Finally, each set size

quarry takes O(1) time and updating the keys in Q takes O(log V ) time. Therefore,

the running time of FindMinPath is O(V + EΠ + V log V + E(Π log Π + log V )).

Note that even if under Assumption 1 all nodes of T are reachable (|V | < |E|), the

same property does not hold for the product automaton. (e.g, think of an environment

T and a specification automaton whose graphs are Directed Acyclic Graphs (DAG).

However, even in this case, we have (|V | < |E|). The running time of FindMinPath

is O(E(Π log Π + log V )). Therefore, we observe that the running time also depends

on the size of the set Π. However, such a bound is very pessimistic since not all the

edges will be disabled on A and, moreover, most edges will not have the whole set Π

as candidates for removal.

Finally, we consider AAMRP. The loop at line 8 is going to be called O(Vf)

times. At each iteration, FindMinPath is called. Furthermore, each call to

GetAPFromPath is going to take O(VΠ log Π) time (in the worst case we are

going to have |V | unions of sets of atomic propositions). Therefore, the running

time of AAMRP is O(Vf (VΠ log Π +E(Π log Π + log V ))) = O(VfE(Π log Π + log V ))

which is polynomial in the size of the input graph.

Approximation bound: AAMRP does not have a constant approximation ratio

on arbitrary graphs.

Example 6 (Unbounded Approximation). The graph in Fig. 2.5 is the product

of a specification automaton with a single state and a self transition with label

{π0, π1, . . . , πm, πF, π♣} and an environment automaton with the same structure as

the graph in Fig. 2.5 but with appropriately defined state labels. In this graph, AAMRP
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similar to the proof of correctness of Dijkstra’s shortest path

algorithm in Cormen et al. 2001. If this algorithm returns a

, then

is non-empty. This is immediate by the

The running time analysis of the AAMRP

is similar to that of Dijkstra’s shortest path algorithm. In the

v1

v′1

v′′1

v2

v′2

v′′2

v3 vf

{π⋆, π♣}

{π1}

{π0}

{π0}

{π⋆, π♣}

{π2}

{π0}

{π0}

{π0}{π⋆, π♣}

{π3}

{π0}

{π0}

Fig. 9. The graph of Example 7. The source is denoted by an arrow
and the sink by double circle ( ).

Figure 2.5: The graph of Example 6. The source vs = v1 is denoted by an arrow and

the sink vf by double circle (Vf = {vf}).

will choose the path v1,v′′1 , v2, v′′2 , v3, . . ., vf . The corresponding revision will be the set

of atomic propositions Lp = {π0, π1, π2, . . . , πm} with |Lp| = m + 1. This is because

in v2, AAMRP will choose the path through v′′1 rather than v′1 since the latter will

produce a revision set of size |{π0, πF, π♣}| = 3 while the former a revision set of

size |{π0, π1}| = 2. Similarly at the next junction node v3, the two candidate revision

sets {π0, π1, πF, π♣} and {π0, π1, π2} have sizes 4 and 3, respectively. Therefore, the

algorithm will always choose the path through the nodes v′′i rather than v′i producing,

thus, a solution of size m + 1. However, in this graph, the optimal revision would

have been Lp = {π0, πF, π♣} with |Lp| = 3. Hence, we can see that in this example

for m > 2 AAMRP returns a solution which is m− 2 times bigger than the optimal

solution. 4

There is also a special case where AAMRP returns a solution whose size is at most

twice the size of the optimal solution.

Theorem 3. AAMRP on planar Directed Acyclic Graphs (DAG) where all the paths

merge on the same node is a 2-approximation algorithm.

The proof is provided in the Appendix B.
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Figure 2.6: Schematic illustration of the simple road network environment of Example

13. The robot is required to drive right-side of the road.

2.3.3 Result

In this section, we present experimental results using our prototype implementation

of AAMRP. The prototype implementation is in Python (see [79]). Therefore, we

expect the running times to substantially improve with a C implementation using

state-of-the-art data structure implementations.

We first present some examples and expand few more example scenarios. With

our prototype implementation, we could expand our experiment to few more example

scenarios introduced in [13, 80].

Example 7 (Single Robot Data Gathering Task). In this example, we use a simplified

road network having three gathering locations and two upload locations with four

intersections of the road. In Fig. 2.12, the data gather locations, which are labeled g1,

g2, and g3, are dark gray, the data upload locations, which are labeled u1 and u2, are

light gray, and the intersections are labeled i1 through i4. In order to gather data and

upload the gather-data persistently, the following LTL formula may be considered: φA

:= GF(ϕg) ∧ GF(π), where ϕg := g1∨ g2∨ g3 and π := u1∨u2. The following formula
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can make the robot move from gather locations to upload locations after gathering data:

φG := G(ϕg → X(¬ϕg Uπ). In order for the robot to move to gather location after

uploading, the following formula is needed: φU := G(π → X(¬π Uϕg).

Let us consider that some parts of road are not recommended to drive from gather

locations, such as from i4 to i2 and from i1 to i2. We can describe those constraints

as following: ψ1 := G(g1 → ¬(i4 ∧ Xi2)Uu1) and ψ2 := G(g2 → ¬(i1 ∧ Xi2)Uu2).

If the gathering task should have an order such as g3, g1, g2, g3, g1, g2, . . ., then the

following formula could be considered: φO := ((¬g1 ∧ ¬g2)Ug3) ∧ G(g3 → X((¬g2

∧ ¬g3)Ug1)) ∧ G(g1 → X((¬g1 ∧ ¬g3)Ug2)) ∧ G(g2 → X((¬g1 ∧ ¬g2)Ug3)). Now,

we can informally describe the mission. The mission is “Always gather data from g3,

g1, g2 in this order and upload the collected data to u1 and u2. Once data gathering is

finished, do not visit gather locations until the data is uploaded. Once uploading is

finished, do not visit upload locations until gathering data. You should always avoid

the road from i4 to i2 when you head to u1 from g1 and the road from i1 to i2 when

you head to u2 from g2”. The following formula represents this mission:

φsingle := φO ∧ φG ∧ φU ∧ ψ1 ∧ ψ2∧ GF(π).

Assume that initially, the robot is in i3 and all nodes are final nodes. When we

made a cross product with the road and the specification, we could get 36824 states,

350114 edges, and 450 final states. Not removing some atomic propositions, the

specification was not satisfiable. AAMRP took 15 min 34.572 seconds, and suggested

removing g3. Since the original specification has many g3 in it, we had to trace which

g3 from the specification should be removed. Hence, we revised the LTL2BA in [81],

indexing each atomic proposition on the transitions and states (see [82]).Two g3 are

mappped to the same transition on the specification automaton in (¬g1 ∧ ¬g2)Ug3 of

φO and in ϕg := g1 ∨ g2 ∨ g3 in φU . 4
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Figure 2.7: Schematic illustration of the simple road network environment of Example

8. The robots can stay upload locations u1 and u2 to recharge the battery.

The last example shows somewhat different missions with multiple robots. If the

robots execute the gather and upload mission, persistently, we could assume that the

battery in the robots should be recharged.

Example 8 (Charging while Uploading). In this exaple, we assume that robots can

recharge their battery in upload locations so that robots are reqired to stay at the upload

locations as much as possible. We also assume that each gathering localtion has a

dedicated upload location such that g1 has u1 as an upload location, and g2 has u2 as

an upload location. For this example, we revised the road network so that we remove

the gather location g3 and the intersection i4 to make the network simpler for this

mission. We also positioned the upload locations next to each other. We assume that

the power source is shared and it has just two charging statations (see in Fig. 12). We

can describe the mission as follows: “Once robot1 finishes gathering data at g1, robot1

should not visit the gather locations until the data is uploaded at u1. Once robot2

fisniehs gathering data at g2, robot2 shoud not visit the gather locations until the data

is uploaded at u2. Once the data is uploaded at u1 or u2, robot1 or robot2 should stay
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there until a gather locaiton is not occupied. Persistently, gather data from g1 and g2,

avoiding the road from g2 to i2.” The following formula represents this mission:

φcharging := G(g11 → X(¬g11 ∧ ¬g21) Uu11) ∧

G(g22 → X(¬g22 ∧ ¬g12) Uu22) ∧

G(u11 → u11 U ¬g22) ∧

G(u22 → u22 U ¬g11) ∧

GFg11 ∧ GFg22 ∧

G¬(g21 ∧ Xi21) ∧

G¬(g22 ∧ Xi22).

Assume that initially, robot1 is in i1, robot2 is in i2, and all nodes are final

nodes. From the cross product with the road and the specification, there was 65966

states, 253882 transitions, and 504 final nodes. For this example, we computed a

synchronized environtment for two robots, and in this environment, atomic propositions

were duplicationed for each robot. For example, a gather location g1 is duplicated to

g11 for robot1 and g12 for robot2. With this synchronized environment, we could avoid

robots to be colliding and to be in the same location at the same time. However, not

removing some atomic propositions, the specification was unsatisfiable. AAMRP took

24 min 22.578 seconds, and suggested removing u22 from robot2. The two occurances

of u22 were in G(g22 → X(¬g22 ∧ ¬g12) Uu22) and in the second u22 of G(u22 →

u22 U ¬g11) as indicated by our modified LTL2BA toolbox. The suggested path from

AAMRP for each robot is as followings:

pathrobot1 = i11i21u11u11i11(i21g21i31g11i11i21u11u11u11u11u11u11u11u11u11i11)+

pathrobot2 = i22u12i12u22u22(u22u22u22u22u22u22u22i32g12i12i22g22i32g12i12u22)+

4
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Nodes BRUTE-FORCE SEARCH AAMRP RATIO

TIMES (SEC) SOLUTIONS (SIZE) TIMES (SEC) SOLUTIONS (SIZE)

min avg max min avg max succ min avg max min avg max succ min avg max

9 0.037 0.104 1.91 1 1.97 5 200/200 0.022 0.061 1.17 1 1.975 5 200/200 1 1.0016 1.333

100 0.069 510.18 20786 1 3.277 13 198/200 0.038 0.076 0.179 1 3.395 15 200/200 1 1.0006 1.125

196 0.066 1025.44 25271 1 3.076 8 171/200 0.007 0.188 0.333 1 4.285 17 200/200 1 1 1

324 0.103 992.68 25437 1 2.379 6 158/200 0.129 0.669 1.591 1 4.155 20 200/200 1 1 1.2

400 0.087 1110.05 17685 1 2.692 6 143/200 0.15 0.669 1.591 1 5 24 200/200 1 1 1

529 0.14 2153.90 26895 1 2.591 5 137/200 0.382 1.88 4.705 1 5.115 30 200/200 1 1 1

Table 2.1: Numerical Experiments: Number of nodes versus the results of brute-force

search and AAMRP. Under the brute-force search and AAMRP columns the numbers

indicate computation times in sec. RATIO indicates the experimentally observed

approximation ratio to the optimal solution.

For the experiments, we utilized the ASU super computing center which consists

of clusters of Dual 4-core processors, 16 GB Intel(R) Xeon(R) CPU X5355 @2.66 Ghz.

Our implementation does not utilize the parallel architecture. The clusters were used

to run the many different test cases in parallel on a single core. The operating system

is CentOS release 5.5.

In order to assess the experimental approximation ratio of AAMRP, we compared

the solutions returned by AAMRP with the brute-force search. The brute-force search

is guaranteed to return a minimal solution to the MRP problem.

We performed a large number of experimental comparisons on random benchmark

instances of various sizes. We used the same instances which were presented in [68, 69].

The first experiment involved randomly generated DAGs. Each test case consisted of

two randomly generated DAGs which represented an environment and a specification.

Both graphs have self-loops on their leaves so that a feasible lasso path can be found.

The number of atomic propositions in each instance was equal to four times the

number of nodes in each acyclic graph. For example, in the benchmark where the
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Nodes AAMRP

TIMES

min avg max succ

1024 0.125 0.23 0.325 9/10

10000 15.723 76.164 128.471 9/10

20164 50.325 570.737 1009.675 8/10

50176 425.362 1993.449 4013.717 3/10

60025 6734.133 6917.094 7100.055 2/10

Table 2.2: Numerical Experiments: Number of nodes versus the results of AAMRP.

Under the TIMES columns the numbers indicate computation times in sec.

graph had 9 nodes, each DAG had 3 nodes, and the number of atomic propositions

was 12. The final nodes are chosen randomly and they represent 5%-40% of the nodes.

The number of edges in most instances were 2-3 times more than the number of nodes.

Table 2.3 compares the results of the brute-force search with the results of AAMRP

on test cases of different sizes (total number of nodes). For each graph size, we

performed 200 tests and we report minimum, average and maximum computation

times in second and minimum, average and maximum numbers of atomic propositions

for each instance solution. AAMRP was able to finish the computation and returned

a minimal revision for all the test cases, but brute-force search was not able to finish

all the computation within a 8 hours window.

Our brute-force search checks all the combinations of atomic propositions. For

example, given n atomic propositions, it checks at most 2n cases. It uses breath first

search to check the reachability for the prefix and the lasso part. If it is reachable

with the chosen atomic propositions, then it is finished. If it is not reachable, then

it chooses another combination until it is reachable. Since brute-force search checks

all the combinations of atomic propositions, the success mostly depends on the time

limit of the test. We remark that the brute-force search was not able to provide
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an answer to all the test cases within a 8 hours window. The comparison for the

approximation ratio was possible only for the test cases where brute-force search

successfully completed the computation. Note that in the case of 529 Nodes, even

though the maximum RATIO is 1, the maximum solution from brute-force does not

match with the maximum solution from AAMRP. One is 5 and another is 30. This is

because the number of success from brute-force search is 137 / 200 and only comparing

this success with the ones from AAMRP, the maximum RATIO is still 1.

An interesting observation is that the maximum approximation ratio is experimen-

tally determined to be less than 2. For the randomly generated graphs that we have

constructed the bound apppears to be 1.333. However, as we showed in the example

6, it is not easy to construct random examples that produce higher approximation

ratios. Such example scenarios must be carefully constructed in advance.

In the second numerical experiment, we attempted to determine the problem sizes

that our prototype implementation of AAMRP in Python can handle. The results are

presented in Table 2.2. We observe that approximately 60,025 nodes would be the

limit of the AAMRP implementation in Python.

2.4 Weighted LTL Revision Problem

The specification revision problem concerns the search for one or more specifications

which are related to the initial user requirement and, which, furthermore, can be

satisfied on the weighted transition system under some hard cost constraints. One of

the fundamental questions regards the form of the search space of the specifications.

Since the initial user specification allows only system behaviors with higher cost than

the constraint, it is natural to relax some of the requirements in order to permit more

behaviors and, hopefully, find a behavior with lower cost.
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The unconstrained LTL formula search space for a revised specification is

FCD = {φ ∈ LTL(Π) | ∃p̄.p̄ ∈ L(D × Bφ) ∧ C(p) ≤ C},

where C is C1 or C2. However, as we have demonstrated through examples in [17] for

the unweighted version of the problem, FCD also contains specifications that from the

user perspective cannot be considered valid specification revisions. Thus, we must

impose some constraints on the search space. First, we define an ordering relation

over the set of LTL formulas.

Definition 12. Let φ, ψ ∈ LTL(Π), then we define φ � ψ if and only if L(φ) ⊆ L(ψ).

We define the set of ultra relaxations as follows.

Definition 13 (Ultra Relaxation). Let φ ∈ LTL(Π), the set UR(φ) of all valid

formula relaxations of φ can be constructed using the recursive operator rel(φ) as

follows:

rel(π) ∈ {π,>}, OP1φ = OP1rel(φ)

rel(φ1 OP2φ2) = rel(φ1) OP2rel(φ2)

where OP1 is any unary and OP2 is any binary operator.

Informally, a valid formula relaxation is one that recursively relaxes each atomic

proposition π of the initial specification φ. Then, the following result is immediate.

Corollary 1. For any φ ∈ LTL(Π) and φ′ ∈ UR(φ), we have φ � φ′.

Problem 2 (Weighted LTL Revision Problem). Given a system T , a specification φ

and a cost C ∈ R≥0 such that φ 6∈ FCD, find ϕ ∈ FCD ∩ UR(φ) such that for any other

ψ ∈ FCD ∩ UR(φ), we have ψ 6� ϕ.
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Obviously, with the aforementioned restrictions the WMRP is decidable. For a

formula φ, there is a finite number of revisions in UR(φ) that we must consider. For

each φ′ ∈ UR(φ), we can solve the optimal path planning problem and, then, choose

the revised specification with the least modifications that produces optimal paths with

cost less than the bound C. Nevertheless, typical examples of LTL specifications can

have 10-30 occurrences of atomic propositions in a formula (see [78] for an interesting

collection). This means that the optimal LTL planning problem (which includes the

Büchi automaton synthesis for each new formula) must be solved anywhere from 1,000

times to 1 billion times. Next, we study the question whether the problem really

requires exploring all the combinations for the optimal solution.

2.4.1 LTL Revision as a Shortest Path Problem

In this section, we present how Problem 2 can be posed as a shortest path problem

on a weighted labeled graph.

Without loss of generality, we will assume that for any given specification φ, each

atomic proposition π in φ appears only once in φ. If this is not the case, then for each

additional occurrence of π in φ, we can replace it with a new atomic proposition, add

the proposition to Π and modify the map hT accordingly. This change is necessary in

order to uniquely identify in φ which propositions need to be replaced by >.

Given a specification φ, we can construct the corresponding specification automaton

Bs. Using the weighted labeled transition system T and the specification automaton

Bs, we can construct a graph GA which corresponds to the product automaton A

while considering the effect of revisions and the weights.

Definition 14. Given a system T and a specification automaton Bs, we define the

graph GA = (V,E, vs, Vf ,W, L,R), which corresponds to the product A = T × Bs as
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• V = SA is the set of nodes

• E = EA ∪ ED ⊆ SA × SA, where

– EA is the set of edges that correspond to transitions on A, i.e., ((q, s), (q′, s′)) ∈

EA iff ∃l ∈ P(Π) . (q, s)
l→A (q′, s′); and

– ED is the set of edges that correspond to disabled transitions, i.e., ((q, s), (q′, s′)) ∈

ED iff q →T q′ and s
l→Bs s′ with l ∩ (Π− hT (q′)) 6= ∅.

• vs = sA0 is the source node,

• Vf = FA is the set of sinks,

• W : E → R≥0 assigns a weight to each edge in E. If e = ((q, s), (q′, s′)) ∈ E,

then w(e) = w(q).

• L : E → P(Π) maps each edge of the graph to the set of symbols that need

to be removed in order to enable the edge in the product automaton A. If

e = ((q, s), (q′, s′)) ∈ E, then L(e) = λBs(s, s
′)− hT (q′).

• R = {(q, s) ∈ V | π? ∈ hT (q)} is the set of “cost reset” nodes.

We remark that the graph GA is essentially the same graph as the graph of A with

the addition of the disabled edges due to the specification constraints. Therefore, any

path on the graph of A appears as a path on GA.

A path η = v0v1v2 . . . vn on GA is a sequence of nodes that start from the source

v0 = vs, follow the edges from E, i.e., for 0 ≤ i < n, (vi, vi+1) ∈ E, and end in one

of the sinks vn ∈ Vf . The cost of the corresponding path is defined as CGA(η) =

〈|L(η)|,W (η)〉. L(η) =
⋃|η|−1
i=0 L(vi, vi+1) is the set of symbols that need to be removed

for the path to become enabled on A. W (η) = maxj=0,1,...,k−1

∑rj+1

i=rj
W (vi, vi+1) is the
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weight of the path after k − 1 cost resets by visiting a node in R. Here, r0r1 . . . rk

with ri ∈ {0, 1, . . . , |η| − 1} is the sequence of indices such that vri ∈ R, r0 = 0 and

rk = |η| − 1. In the special case where there are no cost resets, i.e., k = 1, then

W (η) =
∑|η|−1

i=0 W (vi, vi+1). Then, by construction, Problem 2 is reduced to solving a

number of the following problems.

Problem 3. Given a weighted labeled graph GA as in Def. 19 and a cost bound

K ∈ R≥0, find a path η on the graph such that |L(η)| is minimum over all paths in

GA while W (η) ≤ K.

We refer to the last problem as Constrained Minimally Labeled Path (CMLP). It

is easy to show that the corresponding decision problem is NP-complete.

Theorem 4. Given an instance of the CMLP (GA, K) and a bound Λ, the decision

problem of whether there exists a path η such that |L(η)| ≤ Λ is NP-Complete.

Sketch. Clearly, the problem is in NP since given a sequence of nodes η, we can verify

in polynomial time that η is a path on GA, W (η) ≤ K and |L(η)| ≤ Λ.

The problem is NP-hard since we can easily reduce the unweighed version of the

problem (see Sec. 2.3) to this one by setting the weights of all edges equal to zero and

R = ∅.

In other words, even for this simplified version of the specification revision problem,

it is unlikely that there exists a polynomial time algorithm that can solve the problem.

The best we can hope for is a polynomial time approximation algorithm as the one

that we have presented in Sec. 2.3.2 for the unweighted version of the problem.

2.4.2 Brute-Force Search for WMRP

We first present a Brute-Force Search Algorithm for WMRP. With this algorithm,

we shall compare the result of heuritics in Sec. 2.4.4. The pseudocodes are presented

47



Algorithm 4: Brute-Force(GA, k)

Input: a graph GA =
〈
V,E, vs, Vf , R,W,Λ,Π

〉
, and a cost bound k ∈ R≥0

Output: a set of atomic propositions Π
′ ⊆ Π

1 Result← Reachable(GA,Π, k)
2 if Result then
3 for i = 0 to |Π| − 1 do

4 for Π
′ ⊂ Π such that |Π′| = i do

5 Result← Reachable(GA,Π
′
, k)

6 if Result then

7 return Π
′

8 return Π

in Algorithm 4 and 5.

Given a graph GA and a cost bound k as inputs, the main algorithm (Alg. 4) checks

reachablity with all possible subset of Π, and outputs a set of atomic propositions

Π
′ ⊆ Π. The output Π

′
has three different meaning when it is returned. First, if

Π
′
= ∅, then it means that the original speicification is satisfiable. This is because

there exists a reachable path without any atomic propoisions to be removed. Second,

if Π
′

= Π, then it means that there is no reachable path with all possible atomic

proposition to be removed or all atomic proposions should be removed to make the

specification satisfiable. However, note that the former means that k is not big enough

to reach all the states due to Assumption 1. Also, note that the latter means that

there remains nothing in the specification φ if removing all atomic propositions. Third,

if 0 < |Π′| < |Π|, then it means that there exists a reachable path when a proper

subset of Π is given.

The sub algorithm (Alg. 5) mainly uses Bellman-Ford’s shortest path algorithm

[77]. Each Bellman-Ford outputs a tuple of 〈D,P 〉: D is a distance table or matrix

and P is a predecessor table or matrix. For each vertex v, v′ ∈ V , D[v] has the shortest

distance to reach the vertex from vs and D[v, v′] has the shortest distance from v to
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Algorithm 5: Reachable((GA,Π
′
, k)

Input: a graph GA = (V,E, vs, Vf , R,W,Λ,Π), a set of atomic propositions

Π
′
, and a cost bound k

Output: a boolean {True, False}
1 Define a graph G with V and E ′ = {e ∈ E|Λ(e) ⊆ Π

′}
2 Compute shortest paths for {vs} × V :

〈Dsr, Psr〉 ← Ballman-Ford(G,Dsr, {vs}).
3 Compute shortest paths for R× V :

〈Drv, Prv〉 ← Ballman-Ford(G,Drv, R).
4 Compute shortest paths for Vf × V :

〈Dfv, Pfv〉 ← Ballman-Ford(G,Dfv, Vf ), and
set Drv[v, v] = 0 and Dfv[v, v] = 0 for all v ∈ R ∩ Vf .

5 For each triple (r1, f, r2) ∈ R× Vf ×R, let C(r1, f, r2)
be max(Drv[r1, f ], Dfv[f, r2], Drv[r2, r1], Dsr[r1]), if r1 6= r2 6= f ∧ f ∈ R,
be max(Drv[r1, f ], Dfv[f, r2], Drv[r2, r1], Dsr[r2]), if r1 = r2 6= f ∧ f ∈ R,
be max(Drv[r1, f ] + Dfv[f, r2], Dsr[r1]), if r1 = r2 ∧ f /∈ R, and
be max(Drv[r1, f ] + Dfv[f, r2], Drv[r2, r1], Dsr[r1]), otherwise.

6 Find the triple (r∗1, f
∗, r∗2) that minimizes C(r1, f, r2)

7 If minimum cost is less than or equal to k, then output True which means
”reachable”. Otherwise, output False which means ”not reachable”.

v′. However, for unreachable path from vs to v or v to v′, the entry of distance table

or matrix has ∞. In step 2, it computes shortest paths for {vs} × V , and gets the

adjacency list Dsr and the predecessor list Psr. Then, in step 3 it computes shortest

paths for R × V , and in step 4 for Vf × V . In step 4, setting Drv(v, v) = 0 and

Dfv(v, v) = 0 for all v ∈ R ∩ Vf makes the cases when r1 = f or f = r2 simple. In

step 6, it finds a triple (r∗1, f
∗, r∗2) in R × Vf × R such that from r∗1 to f ∗ and from

f ∗ to r∗2 and from r∗2 to r∗1, all cumulative weight of each path should be less than or

equal to k, which means reachable. It would return True if found one. Otherwise, it

would return False.

We remark that in order to use Bellman-Ford search with the set of cost reset

vertices R, the original Relax function should be redefined as following: given an
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edge (u, v), two tables D, P , a set of cost reset vertices R, and a weight function w,

〈D[v], P [v]〉 :=





〈D[u] + w(u, v), u〉 if u /∈ R ∧ D[v] > D[u] + w(u, v),

〈w(u, v), u〉 if u ∈ R ∧ D[v] > w(u, v),

〈D[v], P [v]〉 otherwise.

Instead of using Bellman-Ford search, Dijkstra’s Shortest-Path algorithm can be used.

However, we carefully redefine each graph, and use single pair shortest path search.

We shall use Dijkstra’s algorithm for heuristics in Sec., 2.4.3.

Correctness: In each step of Alg. 5, the correctness of Bellman-Ford’s shortest

path algorithm has proven in [77]. Hence, in step 6, if minimum cost of a triple

(r∗1, f
∗, r∗2) is less than or equal to k, then the cumulative weights of each path from

r∗1 to f ∗, from f ∗ to r∗2, and from r∗2 to r∗1 are less than or equal to k so that there

exists a reachable path with the cost bound k. In addition, the reachable path having

the triple (r∗1, f
∗, r∗2) always visits vr ∈ R and vf ∈ Vf . In Alg. 4, if there is a set of

optimal solutions, it would always return one of the solutions. The algorithm checks

all possible subset of Π and it starts from ∅ and increases the size by 1 only if there is

no reachable path with every subset having the same size. Hence, it guarrantees that

if found a subset Π
′

which has a reachable path, then there is no solution which is less

than |Π′|.

Running time: Algorithm 5 runs in polynomial time. Step 1 takes O(EΠ).

Step 2 runs Bellman-Ford’s algorithm one time, so it takes O(EV ) (actually, |E ′| not

|E|, but |E ′| varies, depending on Π
′
, and |E ′| ≤ |E|). Step 3 runs Bellman-Ford’s

algorithm |R| times, taking O(REV ), and step 4 takes (VfEV ). Step 5 and 6 take

O(VfR
2). Since |E| ≤ |V |2 and |R|2 � |V |2, the run time of Alg. 5 is given by

O((Vf +R)EV + EΠ). In Alg. 4, Reachable is executed 2|Π| times at line 1 and 5.

Therefore, the run time is O(2|Π|((Vf + R)EV + EΠ)), which is exponential in the
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size of the input graph.

2.4.3 Two heuristics for WMRP

In this section, we present two heuristics for the Weighted Minimal Revision

Problem (WMRP). It is based on Dijkstra’s shortest path algorithm [77]. Before

introducing heuristics, we give definitions of a single pair graph G from GA and the

cost bound table C on the graph G which are used in all the heuristics. Single pair

graph is a graph which has one source node and one sink node. Since the original

graph GA has a set of cost reset nodes R, in order to compute the cumulative weight

on a path, we have to reset the weight when the path visits one of the reset nodes.

Hence, in the original graph GA, it is necessary to compute the weight of paths from

a node in R to another node in R. We define the reduced graph G from GA and its

cost bound table C on G to resolve this issue.

Given a graph GA = (V,E, vs, Vf ,W, L,R), for a tuple (vs, vr) ∈ {vs} × R, let

V ′ = (V − R) ∪ {vs, vr}, E ′ = {(u, v) ∈ E|u, v ∈ V ′}, and G = (V ′, E ′, vs, vr,W ). A

path ηu,v = (v0v1 . . . vn) on G is a sequence of nodes that start from a node v0 = u ∈ V ′,

follow the edges in E ′, i.e., for 0 ≤ i < n, (vi, vi+1) ∈ E ′, and end to a node vn = v ∈ V ′.

A cumulative weight of the path ηu,v is w(ηu,v) =
∑n−1

i=0 W (vi, vi+1), where v0 = u,

and vn = v. Pu,v is a set of all paths that start from u ∈ V ′, follow the edges in E ′,

and end to v ∈ V ′. From a node u ∈ V ′ to a node v ∈ V ′, an optimal path is η∗u,v such

that w(η∗u,v) ≤ w(η′u,v) for any η′u,v ∈ Pu,v − {η∗u,v}. (In the case when u = v ∈ V ′, η∗u,v
is 0.) Now, it is ready to define the cost bound table C.

Definition 15. Given a graph G = (V ′, E ′, vs, vr,W ), a cost bound k, a matrix η∗

of optimal paths for V ′ × {vr}, a cost bound table C on G is as following. For any
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v ∈ V ′,

C(v) :=





0 if v = vs 6= vr ∧ w(η∗vs,vr) ≤ k,

k − w(η∗v,vr) otherwise.

The cost bound table C has an interesting property when we check if a path is

reachable under the cost bound k.

Proposition 1. Given a graph G = (V ′, E ′, u, v,W ), a cost bound k, and a cost bound

table C on G, there exists a path ηu,v = v0v1 . . . vn where v0 = u and vn = v which has

a cumulative weight under the cost bound k if and only if for every vertex h on ηu,v,

the entry of the cost bound table C has nonnegative value.

Proof. (→) Suppose that there is a vertex u′ on the path ηu,v and C(u′) < 0. Then,

η∗u′,v > k since k − η∗u′,v < 0. Hence, ηu,v > k which is contradiction. Therefore, for

every vertex h on ηu,v, the entry of the cost bound table C has nonnegative value.

(←) Suppose that there is no ηu,v under the cost bound k. However, since C(u) ≥ 0,

η∗u,v ≤ k. Hence, η∗u,v = ηu,v. Therefore, there exists a path ηu,v under the cost bound

k.

Heuristic1 for WMRP

Here, we present the first heuristic. The pseudocode of Heuristic1 is presented in

Algorithms 6 to 9.

Given a graph GA and a cost bound k as inputs, the main algorithm (Alg. 6) finds

reachable paths for {vs} × R and R × R, and outputs a set of atomic propositions

Π
′ ⊆ Π from the paths, which has less number of elements than the other subsets. In

step 1, it initializes distance tables Ds, Dr, Drr, Dsr. All entries of the tables, except

for each entry for source vertices, set to∞, and entries for source vertices set to 0. Step
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Algorithm 6: Heuristic1(GA, k)

Input: a graph GA = (V,E, vs, Vf , R,W,Λ,Π), and a cost bound k.

Output: a set of atomic propositions Π
′

1 Initialize all entries of Ds, Dr, Drr, Dsr

2 Compute paths from vs to each vr ∈ R :
〈Ds,Ms, Rs, Fs〉 ← FindPath(GA, Ds, {vs}, R, k)

3 Compute paths between vertices in R:
〈Dr,Mr, Rr, Fr〉 ← FindPath(GA, Dr, R,R, k).

4 Define GR with R and adjacency matrix Dr,Mr,Rr,Fr.
5 Compute paths between vertices in R:

〈Drr,Mrr, Rrr, Frr〉 ← FindAPPath(GR, Drr, R,R).
6 Define GS with R ∪ {vs} and adjacency list Ds, Ms, Rs, Fs and adjacency

matrix Drr, Mrr, Rrr, Frr.
7 Compute paths from vs to each vr ∈ R :

〈Dsr,Msr, , 〉 ← FindAPPath(GS, Dsr, {vs}, R).
8 For each tuple (r1, r2) ∈ R×R,

Fl ← Frr[r1, r2] ∪ Frr[r2, r1],
Rl ← Rrr[r1, r2] ∪Rrr[r2, r1],
Ml ←Mrr[r1, r2][1] ∪Mrr[r2, r1][1],
Ml∪p ← GetMinAP(Ml, Rl, Dsr,Msr),
Dl∪p ← GetMaxDistance(r1, r2, Drr, Dsr),

L(r1, r2) :=

{Ml∪p if Dl∪p <∞∧ |Fl| > 0,

Π otherwise.

9 Find the tuple (r∗1, r
∗
2) that minimizes |L(r1, r2)|, and set Π

′
= L(r∗1, r

∗
2).

10 return Π
′

2 finds minimum paths for {vs}×R, and gets a distance list Ds, an atomic propoistion

list Ms, two subsets Rs, Fs of R, Vf , respectively. Step 3 finds minimum paths for

R×R, and gets Dr,Mr, Rr, Fr. In step 2 and 3, FindPath (Alg. 7) uses single pair

shortest path algorithm, redefining the graph Gs and Gw with V ′ = (V −R)∪{vA, vB}

and E ′ and E ′← for each pair of vertices for a source vA and a sink vB. This prevents

that each path from vA to vB has any vertex in R − {vA, vB}. Hence, in step 4 of

Alg. 6, in order to traverse all paths between vertices in R, it defines graph GR with

R and adjacency matrix tables Dr,Mr, Rr, Fr, and computes shortest paths of the

graph in step 5. Likewise, in step 6, it defines a graph GS with R ∪ {vs}, adjacency

matrix tables Ds,Ms, Rs, Fs for {vs}×R and adjacency matrix tables Dr,Mr, Rr, Fr
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for R×R, and computes shortest paths of the graph in step 7. In step 8, for paths

r1 ; r2 and r2 ; r1 of each tuple (r1, r2) ∈ R × R, it gets Fl ⊆ Vf , Rl ⊆ R, and

Ml ⊆ Π. Then, it getsMl∪p from GetMinAP. GetMinAP finds minimum number

of atomic propositions inMl∪Msr[vs, ri][1] for each ri ∈ Rl such that Dsr[vs, ri] <∞.

Dl∪p has maximum distance among Drr[r1, r2], Drr[r2, r1], and Dsr[vs, r1]. Then, it

assigns L(r1, r2) to Ml∪p if the maximum distance is less than ∞ so that paths exist

and either the path r1 ; r2 or the path r2 ; r1 visits at least one vertex in Vf , and

to Π otherewise. Finally, it finds L(r∗1, r
∗
2) which minimizes |L(r1, r2)|, and returns it.

We remark that we omit the pseudocode of FindAPPath because it is simular

with Alg. 7 and Alg. 8. In order to relax the atomic proposition matrixM, the Relax

for FindAPPath checks the following condition: given a source vertex vA ∈ VA, an

edge (u, v) and two atomic proposition matrix M and M′,

M[vA, v][2] > |M[vA, u][1] ∪M′[u, v][1]| (2.2)

We note that each entry of M[v, v′] where v 6= v′ consists of
〈

Π
′
, |Π′|

〉
such that

Π
′ ⊆ Π and |Π′| is the number of elements in Π

′
. Hence, M[v, v′][1] indicates Π

′
and

M[v, v′][2] indicates |Π′|. The Eq. (2.2) is to check if the currently computed number of

atomic propositions from vA to v inM is bigger then the number of atomic propositions

computed from vA to u in M and from u to v in M′. If this condition is hold, we

relax the current M[vA, v][:] to the atomic propositions computed from vA to u in M

and from u to v in M′. Likewise, if the condition is hold, we also relax the current

D[vA, v], R[vA, v], F [vA, v] to D[vA, u] + D′[u, v], R[vA, u] ∪ R[u, v], F [vA, u] ∪ F ′[u, v],

respectively.

We also remark that from FindPath, each entry of Ds and Dr has the range from

0 to k if there exists a reachable path under the cost bound k, and have ∞ otherwise.

From FindAPPath, each entry of Drr and Dsr has the range from 0 to ∞ so that
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Algorithm 7: FindPath(GA, D,A,B, k)

Input: a graph GA = (V,E, vs, Vf , R,W,Λ,Π), and a table D, two sets of
vertices A, B, and a cost bound k.

Output: four tables DAB,MAB, RAB, FAB
1 M′[:, :]←

〈
Π,∞

〉

2 R′[:, :]← ∅; F ′[:, :]← ∅
3 for (vA, vB) ∈ A×B do
4 V ′ ← (V −R) ∪ {vA, vB}
5 E ′ ← {(u, v) ∈ E | u, v ∈ V ′}
6 E ′← ← {(v, u) | (u, v) ∈ E ′}
7 W ′

← ← AssignWeight(E ′←, E
′,W )

8 Gw ← 〈V ′, E ′←,W ′
←〉

9 Gs ←
〈
V ′, E ′, vA, vB, R,W,Λ,Π

〉

10 D[:]←∞; D[vB]← 0
11 〈D,P 〉 ← ShortestPath(Gw, D, {vB}, {vA})
12 For each v ∈ V ′,

C[v] :=

{
0 if v = vA 6= vB ∧D[v] ≤ k,

k −D[v] otherwise.
13 〈M, D′, R′, F ′〉 ← FindMinPath(Gs, C, Vf )
14 DAB[vA, vB]← D′

15 MAB[vA, vB]←M
16 RAB[vA, vB]← R′

17 FAB[vA, vB]← F ′

18 return 〈DAB,MAB, RAB, FAB〉

only if the entry has the value less than ∞, there is a reachable path.

Algorithm 7 has a graph GA, a distance table D, two sets of vertices A, B

and the cost bound k as inputs. It finds single pair shortest paths for each tuple

(vA, vB) ∈ A × B. It first finds the shortest distance from vB to vA, and finds the

minimum number of atomic propositions from vA to vB. After finding every pair of

shortest paths, it outputs a tuple of DAB, MAB, RAB, FAB.

Proposition 2. Shortest-Path(G,D, {vB}, {vA}) returns a shortest distance table

D and the predecessor table P on the paths if there exist reachable paths.

Proof. It is already proved in [77] through optimal substructure property. In short,

optimal substructure property is a property that a shortest path between two vertices
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Algorithm 8: FindMinPath(Gs, C, F )

Input: a graph Gs = (V,E, vs, vf , R,W,Λ,Π), a table C and a set of vertices
F

Output: a tuple M, a distance D′ ∈ R≥0 and two sets of vertices R′, F ′

1 M[:, :]←
〈
Π,∞,∞

〉
; M[vs, :]← 〈∅,∞, 0〉

2 Q ← V − {vs}; P [:]← ∅; R′ ← ∅; F ′ ← ∅; V ← ∅
3 for v ∈ V such that (vs, v) ∈ E do
4 〈M, P 〉 ← RelaxAP((vs, v),M, C, P,W,Λ)

5 V ← V ∪ {vs}
6 while Q 6= ∅ do
7 u← ExtractMin(Q)
8 if M[u, 2] <∞ then
9 V ← V ∪ {u}

10 for v ∈ V such that (u, v) ∈ E do
11 〈M, P 〉 ← RelaxAP((u, v),M, C, P,W,Λ)

12 if vs = vf ∧M[vf , 2] =∞ then
13 M′ ←

〈
Π,∞

〉
; D′ ←∞

14 else
15 M′ ← 〈M[vf , 1],M[vf , 2]〉; D′ ←M[vf , 3]

16 R′ ← ExtractSetR(P,R, vf , vs)
17 F ′ ← ExtractSetF(P, F, vf , vs)
18 return 〈M′, D′, R′, F ′〉

contains other shortest paths within it.

Proposition 3. Given each pair (vA, vB) ∈ A × B, two graphs Gw and Gs, two

distance tables D and D′, for each v ∈ V ′, D′[v] has an individual cost bound kv where

kv ≤ k for the path from vA to v.

Proof. We know from Proposition 2, for each v ∈ V ′, D[v] has the shortest distance

on the path from vB to v. Suppose there exists a reachable path vB ; v ; vA under

the cost bound k. Due to Subpath-Optimal property, w(pvB;v) ≤ w(pvB;v;vA) ≤ k.

Let w(pvB;v) be kvB;v. Since w(pvB;v;vA) = w(pvB;v) + w(pv;vA) ≤ k, kvB;v +

w(pv;vA) ≤ k. Then, the entry of D[v] has kvB;v.

Proposition 4. Given a graph Gs = (V ′,E ′,vA,vB,R,W ,Λ,Π), a cost bound table
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Algorithm 9: RelaxAP((u, v),M, C, P,W,Λ)

Input: an edge (u, v), three tables M, C, P , and two functions W,Λ
Output: a table M and P

1 if |M[u, 1] ∪ Λ((u, v))| <M[v, 2] and C[v]− (M[u, 3] +W ((u, v))) ≥ 0 then
2 M[v, 1]←M[u, 1] ∪ Λ((u, v))
3 M[v, 2]← |M[u, 1] ∪ Λ((u, v))|
4 M[v, 3]←M[u, 3] +W ((u, v))
5 P [v]← u

6 return 〈M, P 〉

D′, and a distance table D from Shortest-Path, any reachable path for vA to each

v ∈ V ′ under the cost bound k has an individual cost bound.

Proof. We know from Proposition 2, for each v ∈ V ′, D[v] has the shortest distance

on the path from vB to v. Suppose that there is a reachable path v0, v1, v2, . . . , vi−1, vi

where v ∈ {v0, . . . , vi}, v0 = vB, and vi = vA under the cost bound k. Then,

0 = D[v0] ≤ D[v1] ≤ · · · ≤ D[vi−1] ≤ D[vi] ≤ k. If vA = vB, then D[vA] = 0 since

D[vB] = 0. If vA 6= vB, then 0 ≤ D[vA] ≤ k. In step 12 of Alg. 7, D′[vA] is assigned to

k if vA = vB since k −D[vA] = k. If vA 6= vB and D[vA] ≤ k, then D′[vA] is assigned

to 0. Hence, 0 = D′[vi] ≤ D′[vi−1] ≤ · · · ≤ D′[v1] ≤ D′[v0] = k.

Proposition 5. Given a graph Gs = (V ′,E ′,vA,vB,R,W ,Λ,Π), a cost bound table D′,

and a distance table D from Shortest-Path, for any path for vA to each v ∈ V ′−{vA}

over the cost bound k, the entry of D′[v] has the value less than 0.

Proof. Suppose that there is a path v0, v1, . . . , vj, . . . , vi−1, vi where v ∈ {vj+1, . . . , vi−1},

v0 = vB, and vi = vA over the cost bound k. Then, 0 ≤ D[v0] ≤ · · · ≤ D[vj] ≤ k <

D[vj+1] ≤ · · · ≤ D[vi]. If vA = vB, then D′[vA] = k. In step 12 of Alg. 7, D′[vA] is

assigned to k. However, D′[v] > k, so in step 12, D′[v] is assigned to k −D′[v] < 0.

Hence, D′[vi−1] ≤ · · · ≤ D′[vj+1] < 0. If vA 6= vB, then D[vB] = 0, so D′[vB] = 0 and,

D[vA] ≥ D[v] > k, so D′[vA] ≤ D′[v] < 0. Hence, D′[vA] ≤ · · · ≤ D′[vj+1] < 0, and

0 = D′[v0] ≤ D′[v1] ≤ · · · ≤ D′[vj] ≤ k.
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Remark 1. We remark that if vA = v and there exists a path from vA to v over the

cost bound k, it would be a self edge or a cycle. In this case, D′[v] does not have

the value less than 0 (the value is k). However, since the path is over the bound

k, W ((vA, v)) > k or w(pvA;v) > k. Both are over the individual cost bound D′[v].

Therefore, it is not reachable with the cost bound table D′.

Algorithm 8 has a graph Gs = (V,E, vs, vf , R,W,Λ,Π), a cost bound table C, and

a set of vertices F as inputs. It is similar with Dijkstra’s shortest path algorithm and

AAMRP in Sec. 2.3.2, but instead of finding shortest path, it finds minimum number

of atomic propositions on the path from vs to vf while checking the cost bound table

C. Then, it outputs the distance from vs to vf , a set of atomic propositions, a set of

vertices R′ ⊆ R visited on the path, and a set of vertices F ′ ⊆ F .

Algorithm 9 has an edge (u, v), three tables M, C, P , and two functions W,Λ as

inputs. It compares the number of atomic propositions on the path over the edge

(u, v) with the number of atomic propositions on the previous path to v. If the new

path has less number of atomic propositions and the cumulative weight is less than

the cost bound C[v], it relaxes the entries of two tables M and P , and outputs those

tables.

Proposition 6. For each pair (vA, vB) ∈ A×B, FindMinPath searches all reachable

paths from vA to vB under the cost bound k.

Proof. From Proposition 4 and 5, the cost bound table D′ has individual cost bound.

RelaxAP does not check if the edge (u, v) has shorter distance than before, but

check if the cumulative weight with the edge (u, v) is over than the inidividual cost

bound. Therefore, all reachable paths under the cost bound are considered to be

relaxed.
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v1

v2

v3

v4

v5 v6

2 : {π1}

4 : {π3}

5 : {}

3 : {π2, π4}

4 : {π2, π4}

4 : {π2, π4}

7 : {π3}

3 : {π2, π4}

Fig. 2. The graph of Example??. The sourcevs = v1 is denoted by an
arrow, the sinkv5 by double circle (Vf = {v5}), and the reset node isv6
(R = {v6}).

vs vr v1 vf
2 : {}

7 : {π1}

7 : {}

4 : {π2}

4 : {}

Fig. 3. The graph of Example??. The sourcevs is denoted by an arrow, the
sink vf by double circle (Vf = {vf }), and the reset node isvr (R = {vr}).
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Figure 2.8: The graph of Example 9. The source vs = v1 is denoted by an arrow, the

sink v5 by double circle (Vf = {v5}), and the cost reset vertex is v6 (R = {v6}).

Example 9. Let us consider the graph in Fig. 2.8. The source vertex of this graph

is vs = v1, the set of sink vertices is Vf = {v5}, and the set of cost reset vertices is

R = {v6}. The Π set is {π1, π2, π3, π4}, and the cost bound is k = 15. Consider the

first iteration of the loop at line 11 of Alg. 7.

• Before the execution of ShortestPath, the distance table is initialized: D[:] =

∞ and D[v6] = 0.

• After the ShortestPath, the distance table has the following entries: D[v1] =

12, D[v2] = 10, D[v3] = 11, D[v4] = 11, D[v5] = 7, D[v6] = 0.

• After the step 12, the cost bound table Chas the following entries: C[v1] =

0, C[v2] = 5, C[v3] = 4, C[v4] = 4, C[v5] = 8, C[v6] = 15.

• After the FindMinPath at line 13, the set of atomic propositions returned

would be M′ = 〈{π1, π2, π3, π4}, 4〉, which corresponds to the path v1, v2, v5, v6.

This is because at the vertex v5 both path from v2 and from v3 have same number

of atomic propositions: {π1, π2, π4}, {π2, π3, π4}, respectively.

Note that this heuristic returns a set of atomic propositions Π which is not optimal.

The path v1, v3, v5, v6 would return {π2, π3, π4}. In addition, the path v1, v4, v5, v6
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Fig. 2. The graph of Example??. The sourcevs = v1 is denoted by an
arrow, the sinkv5 by double circle (Vf = {v5}), and the reset node isv6
(R = {v6}).
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Fig. 3. The graph of Example??. The sourcevs is denoted by an arrow, the
sink vf by double circle (Vf = {vf }), and the reset node isvr (R = {vr}).
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Figure 2.9: The graph of Example 10. The source vs is denoted by an arrow, the sink

vf by double circle (Vf = {vf}), and the cost reset vertex is vr (R = {vr}).

cannot be chosen because the cumulative weight of the path is 16 which is greater than

the cost bound.

Example 10. Let us consider the graph in Fig. 2.9. The source vertex of this graph

is vs, the set of sink is Vf = {vf}, and the set of cost reset vertices is R = {vr}. The

Π set is {π1, π2}, and the cost bound is k = 25. Consider the first iteration of the loop

at line 13 of Alg. 7.

• Before the first execution of the for loop, the table FAB is initialized: FAB[:] = ∅.

• After the FindMinPath at line 13, the visited set of final vertices is empty:

F ′ = ∅. Hence, each entry of FAB is still ∅.

Note that in this example, the heuristic cannot return proper sets F ′ = {vf}. This

is because FindPath in the step 3 of Alg. 6 tries to find the path having minimum

number of atomic propositions between two vertices in R. Hence, after starting from

vr, when it is in v1, it chooses the edge (v1, vr), not choosing the edge (v1, vf ).

We shall see how Heuristic 2 has resolved the issue in Example 10.

Correctness: We already show that Heuristic1 does not return optimal solution

from Example 10. This is because Heuristic1 does not find every path for R× Vf
and VF ×R. However, we showed that Heuristic1 checks all reachable paths under

the cost bound k for R × R, and finds minimum number of atomic propositions on

the path r1 ; r2 ; r1 for each tuple (r1, r2) ∈ R×R.
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Running time: The running time analysis of Alg. 8 is similar to that of Dijkstra’s

shortest path algorithm and AAMRP in Sec. 2.3.2. We assume that we are using a data

structure for sets that supports O(1) set cardinality quarries, O(log n) membership

quarries and element insertions (see [77]) and O(n) set up time. Under the assumption

that Q is implemented in such a data structure, each ExtractMin takes O(log V )

time. Furthermore, we have O(V ) such operations (actually |V | − 1) for a total of

O(V log V ).

Setting up the data structure for Q will take O(V ) time. Furthermore, in the

worst case, we have a set Λ(e) for each edge e ∈ E with set-up time O(EΠ). Note

that the initialization of M[v, :] to
〈
Π,∞,∞

〉
does not have to be implemented since

we can have indicator variables indicating when a set is supposed to contain all the

(known in advance) elements.

Assuming that E is stored in an adjacency list, the total number of calls to

RelaxAP at lines 4 and 11 of Alg. 8 will be O(E) times. Each call to RelaxAP

will have to perform a union of two sets (M[u, 1] and Λ(u, v)). Assuming that

both sets have in the worst case |Π| elements, each union will take O(Π log Π) time.

Each set size quarry takes O(1) time and updating the keys in Q takes O(log V )

time. ExtractSetR checks the path from vf to vs through the predecessor table

P and extracts each vertex on the path if the vertex is in the set R. Hence, it takes

O(V logR). Likewise, ExtractSetF takes O(V log Vf ). Therefore, the running time

of FindMinPath is O(V +EΠ + V log V +E(Π log Π + log V ) + V logR+ V log Vf ).

Note that under Assumption 1 all nodes of T are reachable (|V | < |E|), the same

property does not hold for the product automaton. (e.g, think of an environment

T and a specification automaton whose graphs are Directed Acyclic Graphs (DAG).

However, even in this case, we have (|V | < |E|). The running time of FindMinPath

is O(E(Π log Π + log V )). Therefore, we observe that the running time also depends
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on the size of the set Π. However, such a bound is very pessimistic since not all the

edges will be disabled on A and, moreover, most edges will not have the whole set Π

as candidates for removal.

Running time of Alg. 7 is as following. Step 1 takes O(AB) times, and step 2

takes O(AB) times. In each iteration of the for loop, making the set V ′ requires one

subtraction (V −R) and one union operation (V −R)∪{vA, vB}. However, we can move

the subtraction before the for loop so that each iteration can do one union operation.

The subtraction takes O(R log V ), and the union takes O(log V ′). Making the set of

edges E ′ takes O(E log V ′). Making the set E ′← takes O(E ′). Assigning the functon

W ′
← takes O(E ′). Initializing the distance table D takes O(V ′). ShortestPath takes

O(V ′ log V ′ + E ′). Setting up the cost bound table C takes O(V ′). FindMinPath

takes O(E ′(Π log Π + log V ′)). Since, O(E ′(Π log Π + log V ′)) dominates others in

the iteration, the running time of total for loop is O(ABE ′(Π log Π + log V ′)). Since

|E ′| ≤ |V ′|2 = |V − R|2, O(AB(V − R)2) also dominates O(AB) and O(R log V ).

Therefore, the running time of Alg. 7 is O(AB(V −R)2(Π log Π + log(V −R)).

Running time of Alg. 6 is as following. Initializing distance table Drr takes O(R2).

Computing paths from vs to each vr ∈ R takes O(R(V −R)2(Π log Π + log(V −R)).

Computing paths between vertices in R takes O(R2(V − R)2(Π log Π + log(V −

R)). FindAPPath for paths between vertices in R takes O(R4(Π log Π + logR)).

FindAPPath for paths from vs to each vertex in R takes O(R3(Π log Π + logR)).

Each iteration of the for loop needs O(Vf log Vf ) for union of two sets of Frr, O(R logR)

for union of two sets of Rrr, O(Π log Π) for union of two sets of Mrr, O(R(Π log Π))

for GetMinAP, and O(1) for GetMaxDistance. Since O(R(Π log Π)) dominates

others in the iteration, the total for loop takes O(R3(Π log Π)). To find the tuple (r∗1, r
∗
2)

takes O(R2). However, O(R2(V −R)2(Π log Π+log(V −R)) dominates O(R4(Π log Π+

logR). Therefore, the running time of Alg. 6 is O(R2(V −R)2(Π log Π + log(V −R)).
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Algorithm 10: Heuristic2(GA, k)

Input: a graph GA = (V,E, vs, Vf , R,W,Λ,Π), and a cost bound k.

Output: a set of atomic propositions Π
′

1 Same codes from step 1 to step 7 of Heuristic1
2 Initialize all entries of Dfr, Drfr.
3 Compute paths from each vf ∈ Vf to each vr ∈ R :

〈Dfr,Mfr, Rfr, Ffr〉 ← FindPath(GA, Dfr, Vf , R, k).
4 Compute paths from each vr ∈ R to each vf ∈ Vf :

〈Drfr,Mrfr, Rrfr, Frfr〉 ← Find-RF-Path(GA, Drfr, R, Vf , k,Dfr)
5 For each triple (r1, f, r2) ∈ R× Vf ×R,

Dl ←MaxDistFromRFR(r1, f, r2, Drfr, Dfr, Drr),
Rl ← GetRFromRFR(r1, f, r2, Rrfr, Rfr, Rrr),
Ml ← GetAPFromRFR(r1, f, r2,Mrfr,Mfr,Mrr),
Ml∪p ← GetMinAP(Ml, Rl, Dsr,Msr),
Dl∪p ← max(Dl, Dsr[vs, r1]),

L(r1, f, r2) :=

{Ml∪p if Dl∪p <∞,

Π otherwise.
6 Find the tuple (r∗1, f

∗, r∗2) that minimizes |L(r1, f, r2)|, and a set

Π
′
= L(r∗1, f

∗, r∗2).

7 return Π
′

Heuristic2 for WMRP

The second heuristic has more steps after the first heuristic. The pseudocode of

Heuristic2 is presented in Alg. 10 and 11. The algorithm has seven steps. Step 1

is same as the Heuristic1. Step 2 initializes all entries of Dfr, Drfr. In step 3, it

computes path for Vf ×R. In step 4, it computes path for R× Vf with the distance

table Dfr computed from step 3. In step 5, for paths r1 ; f ; r2 ; r1 of each triple

(r1, f, r2) ∈ R × Vf × R, it gets the distance Dl, a set of cost reset vertices Rl ⊆ R,

and atomic propositions Ml ⊆ Π. Then, it gets Ml∪p from GetMinAP, and Dl∪p.

Then, it assigns L(r1, f, r2) to Ml∪p if the maximum distance is less than ∞ so that

there exist the paths r1 ; f ; r2 ; r1 and vs ; r1, and to Π otherewise. Finally, it

finds the minimum number of atomic propositions, and returns them.

Algorithm 11 is similar with Alg. 7, except for the step 11 to the step 12. Instead
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Algorithm 11: Find-RF-Path(GA, Drfr, R, Vf , k,Dfr)

Input: a graph GA = (V,E, vs, Vf , R,W,Λ,Π), two sets of vertices R, Vf , a
cost bound k, and two tables Drfr, Dfr

Output: two tables D′,M′ and two sets of vertices R′, F ′

1 M′[:, :, :]←
〈
Π,∞

〉
; D′[:, :, :]←∞

2 R′[:, :, :]← ∅; F ′[:, :, :]← ∅
3 for (ri, f, rj) ∈ R× Vf ×R do
4 V ′ ← (V −R) ∪ {ri, f}
5 E ′ ← {(u, v) ∈ E|u, v ∈ V ′}
6 E ′← ← {(v, u)|(u, v) ∈ E ′}
7 W ′

← ← AssignWeight(E ′←, E
′,W )

8 Gw ← 〈V ′, E ′←,W ′
←〉

9 Gs ←
〈
V ′, E ′, ri, {f}, R,W,Λ,Π

〉

10 D[:]←∞
11 if 0 ≤ Dfr[f, rj] ≤ k then
12 D[f ]← −(Dfr[f, rj]− k)

13 〈D,P 〉 ← ShortestPath(Gw, D, {f}, {ri})
14 For each v ∈ V ′,

C[v] :=

{
0 if v = ri 6= f ∧D[v] ≤ k,

k −D[v] otherwise.
15 〈M, D′′, R′′, F ′′〉 ← FindMinPath(Gs, C, Vf )
16 M′[ri, f, rj]← 〈M[f, 1],M[f, 2]〉
17 D′[ri, f, rj]← D′′

18 R′[ri, f, rj]← R′′

19 F ′[ri, f, rj]← F ′′

20 return 〈D′,M′, R′, F ′〉

of initializing D[f ] to 0, it uses the distance of Dfr. After the for loop, it returns a

tuple of D′,M′, R′, F ′.

Proposition 7. Heuristic2 checks every path for R × Vf , Vf × R, and R × R if

there exists a reachable path under cost bound k.

Proof. In step 3 and 5 of Alg. 6, checks every path for R× R, and it is in step 1 of

Alg. 10. In step 3 of Alg. 10, it checks every path for Vf × R, and step 4 checks

every path for R× Vf . In order to keep the cost bound each path from r1 ; f ; r2,

Find-RF-Path uses distance table Dfr. Hence, it checks all reachable path from

r1 ; f ; r2 under the cost bound k.
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Example 11. We revisit the Example 10. Since the fifth step computes the shortest

path for Vf ×R, in the graph in Fig. 2.9, the path vf , v1, vr is returned from the step.

In sixth step, the path vr, v1, vf is returned.

Note that hueristic2 resolves the issue of Example 10. From this example, we can

see that the lasso part is somewhat complicated. Since v1 is visited twice, it is not a

cycle, which is trail path.

Correctness: Even though Heuristic2 resolves the issue in Example 10, it

returns same solution as Heuristic1 does for Example 9. However, we showed that

heuristic2 checks all reachable paths under the cost bound k for R× Vf , Vf ×R, and

R × R, and finds minimum number of atomic propositions on the path r1 ; f ;

r2 ; r1 for each triple (r1, f, r2) ∈ R× Vf ×R.

Running time: The running time analysis of Alg. 11 is similar to that of Alg. 7.

Only difference is that the for loop is for each triple in R× Vf ×R. Hence, running

time of Alg. 11 is O(R2Vf (V −R)2(Π log Π + log(V −R))).

The running time of Alg. 10 is as following. Since the first step has same codes

from Alg. 6, it takes O(R2(V −R)2(Π log Π + log(V −R)). Initializing the distance

table Drfr takes O(R2Vf). Computing paths from each vf ∈ Vf to each vr ∈ R

takes O(VfR(V − R)2(Π log Π + log(V − R)). Find-RF-Path for each vr ∈ R to

each vf ∈ Vf takes O(R2Vf(V − R)2(Π log Π + log(V − R))). Each iteration of the

for loop needs O(1) for MaxDistFromRFR, O(R logR) for union of three sets of

Rrfr, Rfr, Rrr, O(Π log Π) for union of three sets ofMrfr,Mfr,Mrr, O(RΠ log Π) for

GetMinAP, O(1) for max operation and for seting up L(r1, f, r2). Since O(R logR)

and O(RΠ log Π) dominates others, the total for loop takes O(R3Vf (logR+ Π log Π)).

Finding the triple (L∗1, f
∗, L∗2) takes O(R2Vf). However, O(R2Vf(V − R)2(Π log Π +

log(V − R))) dominates O(R3Vf(logR + Π log Π)). Therefore, the running time of

Alg. 10 is O(R2Vf (V −R)2(Π log Π + log(V −R))).
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2.4.4 Result

In this section, we present experimental result using our propotype implementation

of heuristics and brute-force search. The propotype implementation is written in

Python. Therefore, we expect the running times to substantially improve with a C

implementation using state-of-the-art data structure implementations.

For the experiments, we utilized the ASU super computing center which consists

of clusters of Dual 4-core processors, 16 GB Intel(R) Xeon(R) CPU X5355 @2.66 Ghz.

Our implementation does not utilize the parallel architecture. The clusters were used

to run the many different test cases in parallel on a single core. The operating system

is CentOS release 5.9.

In order to assess the experimental approximation ratio of two heuristics, we

compared the solutions returned by heuristics with the Brute-force search. The

Brute-force search is guaranteed to return a minimal solution to the WMRP problem.

We performed a large number of experimental comparisons on random benchmark

instances of various sizes. Each test case consisted of two randomly generated DAGs

which represented an environment and a specification. Both graphs have self-loops

on their leaves so that a feasible lasso path can be found. The number of atomic

propositions in each instance was equal to four times the number of nodes in each

acyclic graph. For example, in the benchmark where the graph had 9 nodes, each

DAG had 3 nodes, and the number of atomic propositions was 12. The final nodes

are chosen randomly and they represent 5%-40% of the nodes. The number of edges

in most instances were 2-3 times more than the number of nodes.

Table 2.3 compares the results of the Brute-force search with the results of two

heuristics on test cases of different sizes (total number of nodes). For each graph size,

we performed 200 tests and we report minimum, average and maximum computation
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times in sec and minimum, average and maximum ratio for two heuristics comparing

with the result of Brute-force search.

As shown in Alg. 4, our Brute-force search starts choosing atomic propositions

to be removed from small number, and checks if it is reachable so that there exists a

lasso and prefix path. We remark that even though each instance was tested for 8

hours window, the Brute-force search was not able to provide an answer to all the test

cases within the time limit. The numbers under the column of succ for Brute-force

search show that as the number of nodes increases the number of success decreases.

The comparison for the approximation ratio was possible only for the test cases

where Brute-force search successfully completed the computation.

There are few interesting observations. First, the maximum approximation ratio for

both Heuristic1 and Heustic2 is experimentally determined to be 2. For the randomly

generated graphs that we have constructed the bound appears to be 2. However, it

is not easy to construct random examples that produce higher approximation ratios.

Such example scenarios must be carefully constructed in advance. Second, the ratio

was same between Heuristic1 and Heuristic2 for the 529 nodes’ test even though

Heuristic2 took almost 12 times longer than Heuristic1 for the average time.

2.5 LTL Revision Problem under Preferences

When choosing an alternative plan, each user can have different preferences.

Suppose that users can assign some preference level to each proposition labeling the

specification automaton through the preference function θ. When preference level is

0, it is least preferred, and the greater preference level is, the more preferred it is.

However, preference level cannot be ∞. We remark that each occurrence of an atomic

proposition over different transitions can have different preference levels. Therefore,

taking transitions on the cross-product automaton A, we can get as a reward preference
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BRUTER-FORCE SEARCH HEURISTIC1 HEURISTIC2

TIME TIME RATIO TIME RATIO

Nodes min avg max succ min avg max min avg max succ min avg max min avg max succ

9 0.079 0.266 1.561 182 0.047 0.292 5.58 1 1 1 182 0.041 0.114 1.529 1 1.005 2 182

100 0.903 12.95 326.7 198 1.095 1.825 4.66 1 1.002 1.5 198 1.846 6.751 18.03 1 1.002 1.5 198

196 3.271 856.5 25935 199 5.367 8.412 23.7 1 1.012 2 199 8.9 40.03 135.3 1 1.001 1.166 199

324 12.33 1574 27170 174 17.27 27.52 87.32 1 1.002 1.5 199 19.92 215.3 844.9 1 1.002 1.5 199

400 16.53 2612 26947 165 25.03 46.31 193.2 1 1.012 2 200 36.15 451.3 1498 1 1.014 2 200

529 33.56 3154 25265 125 60.8 101.9 142.4 1 1.0036 1.25 200 118.4 1231 5074 1 1.0036 1.25 198

Table 2.3: Numerical Experiments: Number of nodes versus the results of Brute-

force search and Heuristic1 and Heuristic2. The numbers under the TIME columns

indicate computation times in sec. RATIO indicates the experimentally observed

approximation ratio to the optimal solution. The numbers under the succ columns

indicates the number of success results among 200 instances.

levels of elements in Π on the transitions.

A revised specification is one that can be satisfied on the discrete abstraction of

the workspace or the configuration space of the robot. In order to search for a minimal

revision, we need first to define an ordering relation on automata as well as a distance

function between automata. We do not want to consider the “space” of all possible

automata, but rather the “space” of specification automata which are semantically

close to the initial specification automaton Bs. The later will imply that we remain

close to the initial intention of the designer. We propose that this space consists of all

the automata that can be derived from Bs by removing symbols from the transitions.

Our definition of the ordering relation between automata relies upon the previous

assumption.

Definition 16 (Relaxation). Let B1 = (SB1, sB10 , P(Π), →B1, FB1, θB1) and B2 =

(SB2 , s
B2
0 ,P(Π),→B2 , FB2 , θB2) be two specification automata having the same preference

levels for P(Π). Then, we say that B2 is a relaxation of B1 and we write B1 � B2 if
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and only if SB1 = SB2 = S, sB10 = sB20 , FB1 = FB2, θB1 = θB2 and

1. ∀(s, l, s′) ∈→B1 − →B2 . ∃l′ .

(s, l′, s′) ∈→B2 − →B1 and l′ ⊆ l.

2. ∀(s, l, s′) ∈→B2 − →B1 . ∃l′ .

(s, l′, s′) ∈→B1 − →B2 and l ⊆ l′.

We remark that if B1 � B2, then L(B1) ⊆ L(B2) since the relaxed automaton

allows more behaviors to occur.

We can now define the set of automata over which we will search for a revision.

Definition 17. Given a system T and and a specification automaton Bs, the set of

valid relaxations of Bs is defined as R(Bs, T ) = {B | Bs � B and L(T × B) 6= ∅}.

We can now search for a solution in the set R(Bs, T ). Different solutions can be

compared from their revision sets.

Definition 18 (Revision Set). Given a specification automaton Bs and a B ∈ R(Bs, T ),

the revision set is defined as R(Bs,B) = {(π, s, s′) | π ∈ (λBs(s, s
′)− λB(s, s′))}.

We define two different revision problems.

Problem 4 (Min-Sum Revision). Given a system T and a specification automaton

Bs, if the specification Bs is not satisfiable on T , then find a revision set R such that

∑
ρ∈R θ(ρ) is minimized.

Problem 5 (Min-Max Revision). Given a system T and a specification automaton

Bs, if the specification Bs is not satisfiable on T , then find a revision set R such that

maxρ∈R θ(ρ) is minimized.
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The edges of GA are labeled by the set of symbols which if removed from the

corresponding transition on Bs, they will enable the transition on A. The overall

problem then becomes one of finding the least number of symbols to be removed in

order for the product graph to have an accepting run.

Definition 19. Given a system T and a specification automaton Bs, we define the

graph GA = (V,E, vs, Vf ,Π,Λ, p), which corresponds to the product A = T × Bs as

follows

• V = S is the set of nodes

• E = EA∪ED ⊆ S×S, where EA is the set of edges that correspond to transitions

on A, i.e., ((q, s), (q′, s′)) ∈ EA iff ∃l ∈ P(Π) . (q, s)
l→A (q′, s′); and ED is the

set of edges that correspond to disabled transitions, i.e., ((q, s), (q′, s′)) ∈ ED iff

q →T q′ and s
l→Bs s′ with l ∩ (Π− hT (q′)) 6= ∅

• vs = sA0 is the source node

• Vf = FA is the set of sinks

• Π = {〈π, (s, s′)〉 | π ∈ Π, (s, s′) ∈ EBs}

• Λ : E → P(Π) is the edge labeling function such that if e = ((q, s), (q′, s′)), then

Λ(e) = {〈π, (s, s′)〉 | π ∈ (λBs(s, s
′)− hT (q′))}.

• θ : Π→ R≥0 is the preference function of Bs restricted on Π.

If Λ(e) 6= ∅, then it specifies those atomic propositions in λBs(s, s
′) that need to be

removed in order to enable the edge in A. Again, note that the labels of the edges of

GA are subsets of Π rather than Π. This is due to the fact that we are looking into
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Figure 2.10: The system T and the specification Bs of Example 12. The LTL formula

of Bs is GF (a ∧ Fb).

t0, s0 t1, s0 t2, s0
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t0, s3 t1, s3 t2, s3

{b}
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{a, b}
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{a, b}

{a} {a}
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{a}{b} {a}{b} {a}
{a, b}

{b}

{b}

{a, b}

Figure 2.11: The cross-product automaton T × Bs with relaxations. Solid transition

are for valid transitions and dotted transitions are for relaxed transitions.

removing an atomic proposition π from a specific transition (s, l, s′) of Bs rather than

all occurrences of π in Bs.

Consider now a path that reaches an accept state and then can loop back to the

same accept state. The set of labels of the path is a revision set R that corresponds

to some B ∈ R(Bs, T ). This is immediate by the definition of the graph GA. Thus,

our goal is to solve the Min-Sum and Min-Max revision problems on this graph.

Example 12. Let us consider the system T in Fig 2.10. The LTL formula of

the specification Bs in Fig. 2.10 is GF (a ∧ Fb)2. Informally, the specification is

‘Infinitely often visit a and then visit b’. Fig. 2.11 is the cross-product automaton

2For LTL semantics, see Def. 3 in Sec. 2.2.1.
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T ×Bs. The initial state of the cross-product automaton is (t0, s0). The final states are

(t0, s0), (t1, s0), (t2, s0), (t0, s3), (t1, s3), (t2, s3). Bs is not satisfiable on T so that there

is no reachable path from the state (t0, s0) to one of the finals and from one of the final

states to back to itself. In this example, the set of atomic propositions is Π = {a, b, c}.

Suppose that the preference levels of the atomic propositions are θ((si, sj), {a}) = 3,

θ((si, sj), {b}) = 5, θ((si, sj), {c}) = 4 where ∀si, sj ∈ SB. Then from valid relaxations

of Bs, we can find acceptable paths as follows: p1 = 〈((t0, s0), {b}, (t0, s0)) ((t0, s0),

{b}, (t0, s0)) . . .〉, p2 = 〈((t0, s0), ∅, (t0, s1)) ((t0, s1), {b}, (t0, s0)) ((t0, s0), ∅, (t0, s1))

. . .〉, p3 = 〈((t0, s0), {a}, (t1, s0)) ((t1, s0), {a}, (t1, s0)) ((t1, s0), {a}, (t1, s0)) . . .〉,

p4 = 〈((t0, s0), {a}, (t1, s0)) ((t1, s0), {a}, (t1, s0)) ((t1, s0), {a, b}, (t2, s0)) ((t2, s0),

{a, b}, (t2, s0)) . . .〉, etc. The sum of preference levels of each path are 5, 5, 3, 8,

respectively. The max of preference levels of each path are 5, 5, 3, 5. Therefore,

among the above paths, the path having atomic propositions that minimize the sum of

preference levels is p3. It has only {a} on the transitions, so the sum of preference

level of the path is 3 and the max of preference level of the path is also 3. 4

First, we study the computational complexity of the two problems by restricting

the search problem only to paths from source (initial state) to sink (accept state). Let

Paths(GA) denote all such paths on GA. We indicate that the graph search equivalent

problem of Problem 5 is in P. Given a path p = vsv1v2 . . . vf on GA with vf ∈ Vf , we

define the max-preference level of the path to be:

θmax(p) = max
(vi,vi+1)∈p

θ(Λ(vi, vi+1))

Note that this is the same as the original cost function in Problem 5 since clearly

max(vi,vi+1)∈p θ(Λ(vi, vi+1)) = maxρ∈R θ(ρ) where R = ∪(vi,vi+1)∈pΛ(vi, vi+1). Thus,

Problem 5 is converted into the following optimization problem:

p∗ = arg min
p∈Paths(GA)

θ(p) (2.3)
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And, thus, the revision will be R = ∪(vi,vi+1)∈p∗Λ(vi, vi+1). Now, we recall the weak

optimality principle [83].

Definition 20 (Weak optimality principle). There is an optimal path formed by

optimal subpaths.

Proposition 8. The graph search equivalent of Problem 5 satisfies the weak optimality

principle.

Proof. Let p∗ be an optimal path under the cost function θmax, that is, for any other

path p, we have θmax(p) ≥ θmax(p∗). We assume that p∗ is a loopless path. Notice if

a loop exists, then it can be removed without affecting the cost of the path. Let p∗

have a subpath ps = v1v2 . . . vi−1vi which is not optimal, that is p∗ = p1 ◦ ps ◦ p2. We

use here the notation p1 ◦ p2 to indicate that the last vertex of p1 and the first vertex

of p2 are the same and are going to be merged. Now assume that there is another

subpath p′s = v1v
′
2 . . . v

′
j−1vi such that θmax(ps) > θmax(p′s). Note that θmax(ps) ≤

θmax(p1) and θmax(ps) ≤ θmax(p2) otherwise p∗ would not be optimal. We have

θmax(ps) = max(θmax(p1), θmax(ps), θmax(p2)) = max(θmax(p1), θmax(p′s), θmax(p2)) =

θmax(p1 ◦p′s ◦p2). Hence, the path p1 ◦p′s ◦p2 is also optimal. If this process is repeated,

we can construct an optimal path p∗∗ that contains only optimal subpaths.

The importance of the weak optimality principle being satisfied is that label

correcting and label setting algorithms can be applied to such problems [83]. Dijkstra’s

algorithm is such an algorithm [84] and, thus, it can provide an exact solution to the

problem.

Now, we proceed to the Min-Sum preference problem. Given a path p = vsv1v2 . . . vf

on GA with vf ∈ Vf , we define the sum-preference level of the path to be:

θ+(p) =
∑
{θ(ρ) | ρ ∈ ∪(vi,vi+1)∈pΛ(vi, vi+1)}
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and if we are directly provided with a revision set R, then

θ+(R) =
∑

ρ∈R
θ(ρ)

Problem 6. Labeled Path under Additive Preferences (LPAP).

• Inputs: A graph GA = (V,E, vs, Vf ,Π,Λ, θ), and a preference bound K ∈ N.

• Output: a set R ⊆ Π such that removing all elements in R from edges in E

enables a path from vs to some final vertex vf ∈ Vf and θ+(R) ≤ K.

We can show that the corresponding decision problem is NP-Complete.

Theorem 5. Given an instance of the LPAP (GA, K), the decision problem of whether

there exists a path p such that θ+(p) ≤ K is NP-Complete.

Proof (Sketch): Clearly, the problem is in NP since given a sequence of nodes p, we

can verify in polynomial time that p is a path on GA and θ+(p) ≤ K.

The problem is NP-hard since we can easily reduce the revision problem without

preferences (see Sec. 2.3) to this one by setting the preference levels of all atomic

propositions equal to 1. Then, since all atomic propositions have the same preference

level which is 1, it becomes the problem to find the minimal number of atomic

propositions of the graph.

2.5.1 Algorithms for the Revision Problem with Preferences

In this section, we present Algorithms for the Revision Problem with Preferences

(ARPP). It is based on the Approximation Algorithm of the Minimal Revision Problem

(AAMRP) in Sec. 2.3.2 which is in turn based on Dijkstra’s shortest path algorithm

[84]. The main difference from AAMRP is that instead of finding the minimum number

of atomic propositions that must be removed from each edge on the paths of the graph
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GA, ARPP tracks paths having atomic propositions that minimize the preference level

from each edge on the paths of the graph GA.

Here, we present the pseudocode for ARPP. ARPP is similar to AAMRP in Sec.

2.3.2. The difference is that AARP uses Pref function instead of using cardinality of

the set. For Min-Sum Revision, the function Pref: Π→ R≥0 is defined as following:

given a set of label R ⊆ Π and the preference function θ+ : Π→ R≥0,

Pref(R) = θ+(R).

The Min-Sum ARPP is denoted by ARPP+.

For Min-Max Revision, the function Pref: Π→ R≥0 is defined as following: given

a set of label R ⊆ Π and the preference function θ : Π→ R≥0,

Pref(R) = max
ρ∈R

θ(ρ).

The Min-Max ARPP is denoted by ARPPmax.

The main algorithm (Alg. 12) divides the problem into two tasks. First, in line 4,

it finds an approximation to the minimum preference level of atomic propositions from

Π that must be removed to have a prefix path to each reachable sink (see Def. 6 and 7

in Sec. 2.2.1). Then, in line 9, it repeats the process from each reachable final state to

find an approximation to the minimum preference level of atomic propositions from Π

that must be removed so that a lasso path is enabled. The combination of prefix/lasso

that removes the least preferable atomic propositions is returned to the user.

Algorithm 13 follows closely Dijkstra’s shortest path algorithm [77]. It maintains

a list of visited nodes V and a table M indexed by the graph vertices which stores

the set of atomic propositions that must be removed in order to reach a particular

node on the graph. Given a node v, the preference level of the setM[v, 1] is an upper

bound on the minimum preference level of atomic propositions that must be removed.
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Algorithm 12: ARPP(GA)

Input: a graph gA = (v, e, vs, vf , π, λ, p).
Output: the list L of symboles from Π that must be removed from Bs.

1 L← Π

2 M[:, :]← (Π,∞) . Each row is set to (Π,∞)

3 M[vs, :]← (∅, 0) . Initialize the source node

4 〈M,P,V〉 ← FindMinPath(GA,M, 0)
5 if V ∩ Vf = ∅ then
6 L← ∅
7 else
8 for vf ∈ V ∩ Vf do
9 Lp ← GetAPFromPath(vs, vf ,M,P)

10 M′[:, :]← (Π,∞)
11 M′[vf , :]←M[vf , :]

12 G′A ← (V,E, vf , {vf},Π, L)
13 〈M′,P′,V ′〉 ← FindMinPath(G′A,M′, 1)
14 if vf ∈ V ′ then
15 Ll ← GetAPFromPath(vf , vf ,M′,P′)
16 if Pref(Lp ∪ Ll) ≤ Pref(L) then
17 L← Lp ∪ Ll

18 return L

The function GetAPFromPath((vs, vf ,M,P)) returns the atomic propositions that must

be removed from Bs in order to enable a path on A from a starting state vs to a final state

vf given the tables M and P.

That is, if we remove all π ∈M[v, 1] from Bs, then we enable a simple path (i.e., with

no cycles) from a starting state to the state v. The preference level of |M[v, 1]| is

stored inM[v, 2] which also indicates that the node v is reachable whenM[v, 2] <∞.

The algorithm works by maintaining a queue with the unvisited nodes on the

graph. Each node v in the queue has as key the summed preference level of atomic

propositions that must be removed so that v becomes reachable on A. The algorithm

proceeds by choosing the node with the minimally summed preference level of atomic

propositions discovered so far (line 14). Then, this node is used in order to updated

the estimates for the minimum preference level of atomic propositions needed in order

to reach its neighbors (line 18). A notable difference of Alg. 13 from Dijkstra’s shortest
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Algorithm 13: FindMinPath(GA,M,lasso)

Input: a graph GA = (V,E, vs, Vf ,Π,Λ, p), a table M and a flag lasso on
whether this is a lasso path search.

Output: the tables M and P and the visited nodes V
Variables: (a queue Q, a set V of visited nodes and a table P indicating the

parent of each node on a path.)
1 V ← {vs}
2 P[:]← ∅ . Each entry of P is set to ∅
3 Q ← V − {vs}
4 for v ∈ V such that (vs, v) ∈ E and v 6= vs do
5 〈M,P〉 ← Relax((vs, v),M,P,Λ)

6 if lasso = 1 then
7 if (vs, vs) ∈ E then
8 M[vs, 1]←M[vs, 1] ∪ Λ(vs, vs)
9 M[vs, 2]← Pref(M[vs, 1] ∪ Λ(vs, vs))

10 P[vs]← vs
11 else
12 M[vs, :]← (Π,∞)

13 while Q 6= ∅ do
14 u← ExtractMIN(Q) . Get node u with minimum M[u, 2]

15 if M[u, 2] <∞ then
16 V ← V ∪ {u}
17 for v ∈ V such that (u, v) ∈ E do
18 〈M,P〉 ← Relax((u, v),M,P,Λ)

19 returnM, P, V

path algorithm is the check for lasso paths in lines 6-12. After the source node is

used for updating the estimates of its neighbors, its own estimate for the minimum

preference level of atomic propositions is updated either to the value indicated by the

self loop or the maximum possible preference level of atomic propositions. This is

required in order to compare the different paths that reach a node from itself.

Correctness: The correctness of the algorithm ARPP is based upon the fact that

a node v ∈ V is reachable on GA if and only if M[v, 2] <∞. The argument for this

claim is similar to the proof of correctness of Dijkstra’s shortest path algorithm in

[77]. If this algorithm returns a set of atomic propositions L which removed from Bs,
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Algorithm 14: Relax((u, v),M,P,Λ)

Input: an edge (u, v), the tables M and P and the edge labeling function Λ
Output: the tables M and P

1 if Pref(M[u, 1] ∪ Λ(u, v)) <M[v, 2] then
2 M[v, 1]←M[u, 1] ∪ Λ(u, v)
3 M[v, 2]← Pref(M[u, 1] ∪ Λ(u, v))
4 P[v]← u

5 returnM, P

then the language L(A) is non-empty. This is immediate by the construction of the

graph GA (Def. 19).

Running time: The analysis of the algorithm ARPP follows closely the analysis

of AAMRP in Sec. 2.3.2. The only difference in the time complexity is that ARPP

uses Pref function in order to compute preference levels of all elements in Π. Both

Min-Sum Revision and Min-Max Revision take O(Π) since at most they compute

preference levels of all elements in Π. Hence, the running time of FindMinPath is

O(E(Π
2

log Π + log V )). Therefore, the running time of ARPP is O(Vf(VΠ log Π +

E(Π
2

log Π + log V ))) = O(VfE(Π
2

log Π + log V )) which is polynomial in the size of

the input graph.

2.5.2 Result

In this section, we present an example scenario and experimental results using our

prototype implementation of algorithms and brute-force search.

In the following example, we will be using LTL as a specification language. We

remark that the results presented here can be easily extended to LTL formulas by

renaming repeated occurrences of atomic propositions in the specification and adding

them on the transition system (for details, see [82]).

The following example scenario was inspired by [13, 80], and we will be using LTL

as a specification language.
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is such an algorithm [23] and, thus, it can provide an exact

solution to the problem.

Now, we proceed to the Min-Sum preference problem.

Given a path p = vsv1v2 . . . vf on GA with vf ∈ Vf , we

define the sum-preference level of the path to be:

θ+(p) =
∑

{θ(ρ) | ρ ∈ ∪(vi,vi+1)∈pΛ(vi, vi+1)}

and if we are directly provided with a revision set R, then

θ+(R) =
∑

ρ∈R

θ(ρ)

Problem 3: Labeled Path under Additive Preferences

(LPAP). INPUTS: A graph GA = (V,E, vs, Vf ,Π,Λ, θ), and

a preference bound K ∈ N. OUTPUT: a set R ⊆ Π such that

removing all elements in R from edges in E enables a path

from vs to some final vertex vf ∈ Vf and θ+(R) ≤ K .

We can show that the corresponding decision problem is

NP-Complete.

Theorem 1: Given an instance of the LPAP (GA,K), the

decision problem of whether there exists a path p such that

θ+(p) ≤ K is NP-Complete.

Proof: [Sketch] Clearly, the problem is in NP since

given a sequence of nodes p, we can verify in polynomial

time that p is a path on GA and θ+(p) ≤ K .

The problem is NP-hard since we can easily reduce the

revision problem without preferences (see [6]) to this one

by setting the preference levels of all atomic propositions

equal to 1. Then, since all atomic propositions have the same

preference level which is 1, it becomes the problem to find

the minimal number of atomic propositions of the graph.

IV. ALGORITHMS FOR THE REVISION PROBLEM WITH

PREFERENCES

In this section, we present Algorithms for the Revision

Problem with Preference (ARPP). It is based on the Ap-

proximation Algorithm of the Minimal Revision Problem

(AAMRP) [7] which is in turn based on Dijkstra’s shortest

path algorithm [24]. The main difference from AAMRP

is that instead of finding the minimum number of atomic

propositions that must be removed from each edge on the

paths of the graph GA, ARPP tracks paths having atomic

propositions that minimize the preferable level from each

edge on the paths of the graph GA.

Here, we present the Pseudocode for ARPP. ARPP is

similar to AAMRP in [7]. The only differences from [7] are

in the line 17 of Algorithm 1, in the line 10 of Algorithm

2, and in line 4 of Algorithm 3 of [7]. AARP uses PREF

function instead of using cardinality of the set.

For Min-Sum Revision, the function PREF: Π → R≥0 is

defined as following: given a set of label R ⊆ Π and the

preference function θ+ : Π → R≥0,

PREF(R) = θ+(R).

The Min-Sum ARPP is denoted by ARPP+.

u1

u2

i1

i2

i3

i4

g1

g2 g3

Fig. 3. Road network envirionment of Example 2.

For Min-Max Revision, the function PREF: Π → R≥0 is

defined as following: given a set of label R ⊆ Π and the

preference function θ : Π → R≥0,

PREF(R) = max
ρ∈R

θ(ρ).

The Min-Max ARPP is denoted by ARPPmax.

The main algorithm (Alg. ??) divides the problem into

two tasks. First, in line ??, it finds an approximation to the

minimum preference level of atomic propositions from Π
that must be removed to have a prefix path to each reachable

sink (see Section II). Then, in line ??, it repeats the process

from each reachable final state to find an approximation to

the minimum preference level of atomic propositions from

Π that must be removed so that a lasso path is enabled. The

combination of prefix/lasso that removes the least preferable

atomic propositions is returned to the user.

Due to page constraint, we omit Algorithm 2

FINDMINPATH and Algorithm 3 RELAX, but these

algorithms are similar to the ones presented in [7].

The analysis of the algorithm ARPP follows closely

the analysis of AAMRP in [7]. The only difference in

the time complexity is that ARPP uses PREF function

in order to compute preference levels of all elements in

Π. Both Min-Sum Revision and Min-Max Revision take

O(Π) since at most they compute preference levels of all

elements in Π. Hence, the running time of FINDMINPATH

is O(E(Π
2
logΠ + logV )). Therefore, the running time

of ARPP is O(Vf (VΠ logΠ + E(Π
2
logΠ + logV ))) =

O(VfE(Π
2
logΠ + logV )) which is polynomial in the size

of the input graph.

V. EXPERIMENTS

In this section, we present experimental results using

our prototype implementation of algorithms and brute-force

search.

In the following example, we will be using LTL as a

specification language. We remark that the results presented

here can be easily extended to LTL formulas by renaming re-

peated occurrences of atomic propositions in the specification

and adding them on the transition system. In the future, we

will modify algorithms that translate LTL to Büchi automata

(e.g., [25]) so that they return the unique place of an atomic

proposition in the formula.

The following example scenario was inspired by [19], [26].

Example 2 (Single Robot Data Gathering Task): In this

example, we use a simplified road network having three

u1

g1

g2

g3

u2

i1

i2 i4

i3

Figure 2.12: Illustration of the simple road network environment of Example 13. The

robot is required to drive right-side of the road.

Example 13 (Single Robot Data Gathering Task). In this example, we use a simplified

road network having three gathering locations and two upload locations with four

intersections of the road. In Fig. 2.12, the data gather locations, which are labeled g1,

g2, and g3, are dark gray, the data upload locations, which are labeled u1 and u2, are

light gray, and the intersections are labeled i1 through i4. In order to gather data and

upload the gather-data persistently, the following LTL formula may be considered: φA

:= GF(ϕ) ∧ GF(π), where ϕ := g1 ∨ g2 ∨ g3 and π := u1 ∨ u2. The following formula

can make the robot move from gather locations to upload locations after gathering data:

φG := G(ϕ → X(¬ϕUπ)). In order for the robot to move to gather location after

uploading, the following formula is needed: φU := G(π → X(¬π Uϕ)).

Let us consider that some parts of road are not recommended to drive from gather

locations, such as from i4 to i2 and from i1 to i2. We can describe those constraints

as follows: ψ1 := G(g1 → ¬(i4 ∧ Xi2)Uu1) and ψ2 := G(g2 → ¬(i1 ∧ Xi2)Uu2). If

the gathering task should have an order such as g3, g1, g2, g3, g1, g2, . . ., then the

following formula could be considered: φO := ((¬g1 ∧ ¬g2)Ug3) ∧ G(g3 → X((¬g2

∧ ¬g3)Ug1)) ∧ G(g1 → X((¬g1 ∧ ¬g3)Ug2)) ∧ G(g2 → X((¬g1 ∧ ¬g2)Ug3)). Now,
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we can informally describe the mission. The mission is “Always gather data from g3,

g1, g2 in this order and upload the collected data to u1 and u2. Once data gathering is

finished, do not visit gather locations until the data is uploaded. Once uploading is

finished, do not visit upload locations until gathering data. You should always avoid

the road from i4 to i2 when you head to u1 from g1 and from i1 to i2 when you head to

u2 from g2”. The following formula represents this mission:

φsingle := φO ∧ φG ∧ φU ∧ ψ1 ∧ ψ2∧ GF(π).

Assume that initially, the robot is in i3 and final nodes are u1 and u2. When we

made a cross product with the road and the specification, we could get 36824 states,

350114 transitions and 100 final states. Not removing some atomic propositions, the

specification was not satisfiable.

We tested two different preference levels. For clarity in presentation, we omit for

presenting preference levels on each transition since we set for all the occurances of the

same symbols the same preference level, we abuse notation and write θ(π) instead of

θ(π, (si, sj)). However, the revision is for specification transitions. First, the preference

level of the symbols are as follows: for g1, g2, g3, u1, u2, i1, i2, i3, i4, the preference

levels are 3, 4, 5, 20, 20, 1, 1, 1, 1, respectively, and for ¬g1, ¬g2, ¬g3, ¬u1, ¬u2, ¬i1,

¬i2, ¬i3, ¬i4, the preference levels are 3, 4, 5, 20, 20, 1, 1, 1, 1, respectively. ARPP

for Min-Sum Revision took 210.979 seconds, and suggested removing ¬g1 and ¬i4.

The total returned preference was 4 since θ(¬g1) = 3 and θ(¬i4) = 1. The sequence of

the locations suggested by ARPP is i3g3i2u1(i1g1i3u2i1i2i4g2i3u2i1g1i3g3i4i2u1)
+. We

can check that ¬g1 is from G(g2 → X((¬g1 ∧ ¬g2)Ug3)) of the formula φO and

from ¬ϕ = ¬(g1 ∨ g2 ∨ g3) of the formula φG = G(ϕ → (¬ϕUπ)), and ¬i4 is from

G(g1 → ¬(i4 ∧Xi2)Uu1) of the formula ψ1. AARP for Min-Max Revision took 239

seconds, and returned g1, ¬g1, ¬i1, and ¬i4. The maximum returned preference was 3
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Nodes Brute-Force Min-Sum Revision RATIO

min avg max succ min avg max succ min avg max

9 0.033 0.0921 0.945 200/200 0.019 0.183 0.874 200/200 1 1 1

100 0.065 0.3707 3.997 200/200 0.065 0.1598 2.66 200/200 1 1.003 1.619

196 0.278 303.55 11974 199/200 0.137 0.4927 12.057 200/200 1 1.0014 1.1475

Table 2.4: Numerical Experiments: Number of nodes versus the results of Brute-Force

Search Algorithm and ARPP for Min-Sum Revision. Under the Brute-Force and

Min-Sum Revision columns the numbers indicate computation times in sec. RATIO

indicates the experimentally observed approximation ratio to the optimal solution.

since θ(g1) = 3 and θ(¬g1) = 3.

In the second case, the preference level of the positive atomic propositions are

same as the first test, and the preference level of the negative atomic propositions

are as follow: for ¬g1, ¬g2, ¬g3, ¬u1, ¬u2, ¬i1, ¬i2, ¬i3, ¬i4, the preference levels

are 3, 4, 5, 20, 20, 10, 10, 10, 10, respectively. In this case, ARPP for Min-

Sum Revision took 207.885 seconds, and suggested removing g3. The total returned

preference was 5 since θ(g3) = 5. The sequence of the locations suggested by ARPP is

i3g3i4i2u1(i1g1i3u2i1i2i4g2i3u2i1i2u1)+. We can check that g3 is from G(g3 → X((¬g2∧

¬g3)Ug1)) of the formula φO and from ϕ = (g1 ∨ g2 ∨ g3) of the formula φU = G(φ→

X(¬φUϕ). ARPP for Min-Max Revision took 214.322 seconds, and returned g1 and

¬g1. The maximum preference was 3 since θ(g1) = 3 and θ(¬g1) = 3. 4

Now, we present some experimental results. The propotype implementation is

written in Python. For the experiments, we utilized the ASU super computing center

which consists of clusters of Dual 4-core processors, 16 GB Intel(R) Xeon(R) CPU

X5355 @2.66 Ghz. Our implementation does not utilize the parallel architecture. The

clusters were used to run the many different test cases in parallel on a single core.
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Nodes Min-Sum Revision (ARPP+) Min-Max Revision (ARPPmax) RATIO1 RATIO2

min avg max succ min avg max succ min avg max min avg max

9 0.019 0.183 0.874 200/200 0.02 0.0508 0.66 200/200 1 1.2677 3.4 1 1.0007 1.1428

100 0.065 0.1598 2.66 200/200 0.061 0.1258 0.471 200/200 1 1.441 5.97 1 1.0264 1.3928

196 0.137 0.4927 12.057 200/200 0.139 0.29824 0.74 200/200 1 1.4876 5.634 1 1.0389 2.1904

Table 2.5: Numerical Experiments: For each graph GA, Number of nodes

versus the results of ARPP for Min-Sum Revision (ARPP+) and ARPP

for Min-Max Revision (ARPPmax). Under the Min-Sum Revision and Min-

Max Revision columns the numbers indicate computation times in sec. RA-

TIO1 indicates
∑

(θ(ARRPmax(GA)))/
∑

(θ(ARPP+(GA))). RATIO2 indicates

max(θ(ARRP+(GA))/max(θ(ARPPmax(GA))).

The operating system is CentOS release 5.9.

In order to assess the experimental approximation ratio of the heuristic (Min-Sum

Revision), we compared the solutions returned by the heuristic with Brute-force search

algorithm. The Brute-force search is guaranteed to return a minimal solution to the

Min-Sum Revision problem.

We performed a large number of experimental comparisons on random benchmark

instances of various sizes. Each test case consisted of two randomly generated DAGs

which represented an environment and a specification. Both graphs have self-loops

on their leaf nodes so that a feasible lasso path can be found. The number of atomic

propositions in each instance was equal to four times the number of nodes in each

acyclic graph. For example, in the benchmark where the graph had 9 nodes, each

DAG had 3 nodes, and the number of atomic propositions was 12. The final nodes

are chosen randomly and they represent 5%-40% of the nodes. The number of edges

in most instances were 2-3 times more than the number of nodes.

Table 2.4 compares the results of the Brute-Force Search Algorithm with the
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results of ARPP for Min-Sum Revision on test cases of different sizes (total number of

nodes). For each graph size, we performed 200 tests and we report minimum, average,

and maximum computation times in sec. Both algorithms were able to finish the

computation and return a minimal revision for instances having 9 nodes and 100

nodes. However, for instances having 196 nodes, the Brute-Force Search Algorithm

had one failed instance which exceeded the 2 hrs window limit. In the large problem

instances, ARPP for Min-Sum Revision achieved a 600 time speed-up on the average

running time.

In Table 2.5, we present two ratios. RATIO1 captures the ratios between the

sum of preference levels of the set returned by ARPPmax over the sum of preference

levels of the set returned by ARPP+. On the other hand, RATIO2 captures the

ratios between the max of preference levels of the set returned by ARPP+ over the

max of preference levels of the set returned by ARPPmax. If the ARPP+ was always

returning the optimal solution, then RATIO1 should always be greater than 1. We

observe on the random graph instances that the result also holds for this particular

class of random graphs. Moreover, there were graph instances where ARPP+ returned

much smaller total preference sum then ARPPmax. Importantly, when received the

results for RATIO2, we observe that there exist graph instances where ARPPmax

returned a revision set with maximum much less then the maximum preference in

the set returned by ARPP+. Thus, depending on the user application it could be

desirable to utilize either revision criterion.

Table 2.6 shows the comparison between the number of atomic propositions of the

set returned from ARPP for Min-Sum Revision (ARPP+) and the number of atomic

propositions of the set returned from ARPP for Min-Max Revision (ARPPmax). The

columns under the avg columns of Min-Sum and Min-Max indicate the average number

of atomic propositions of the set returned from ARPP+ and ARPPmax for graph
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Nodes Min-Sum Min-Max RATIO

avg avg min avg max

9 1.305 1.785 0.66 1.423 5

100 1.95 3.215 1 1.8056 6

196 2.305 3.84 1 1.7793 8

Table 2.6: Numerical Experiments: Number of nodes versus the results of ARPP for

Min-Sum Revision (ARPP+) and ARPP for Min-Max Revision (ARPPmax).

instances having 9 nodes, 100 nodes, and 196 nodes. The RATIO captures the ratios

between the number of atomic propositions of the set returned by ARPPmax over the

number of atomic propositions of the set returned by ARPP+. Even though Min-Sum

Revision and Min-Max Revision do not count the number of atomic propositions

while relaxing, this result shows readers how many atomic propositions each algorithm

returns. From the fact that the avg of the RATIO for all random graph instances is

greater than 1, we observe that the set returned from Min-Max Revision in general has

more number of atomic propositions than the set returned from Min-Sum Revision.

2.6 Multi-agent LTL Planning Problem

In this section, we will introduce Multi-agent LTL Planning Problem. Throughout

this section, we define the following:

Definition 21. (Multi-agent LTL Planning)

• Given that there are h robots, R = {1, 2, . . . , h} ⊂ N is a set of indices for h

robots.

• For each robot i ∈ R, Bi = (SBi , s
Bi
0 ,P(Π),→Bi , FBi) is the corresponding

specification automaton.

• A system T = (Q,Q0,→T , hT ,Π) (as defined in Def. 1).
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• For each robot i ∈ R, given T and Bi, Ai = T ×Bi = (SAi
, sAi

0 ,P(Π),→Ai
, FAi

)

is a product automaton (as defined in Def. 5).

• For each robot i ∈ R, given Ai, an non-empty accepting path p[i] can be computed

where p[i] ∈ L(Ai) is ultimately periodic (as defined in Def. 6).

We remark that a system T is the original environment.

We also remark that a robot’s path can be indexed by its time step. For example,

for a robot i ∈ R and a time step k, pk[i] indicates a state on the path p[i] at the time

step k. In addition, pk,j[i] indicates a set of states on the path p[i] from the step k to

the step j.

Given a path p[i] ∈ L(Ai) for some robot i ∈ R, the path p[i] = p0, p1, . . . is a

sequence of states in Ai. Since Ai = T × Bi, this path also can be represented by a

corresponding sequence of states in Q of T . Now, we can define a function to show

the progression of robots in states of its system T .

Definition 22. Given i ∈ R, T , Ai, a path p[i] ∈ L(Ai) and a time step k ∈ N, we

define the location function Sk : R → Q.

We remark that since p[i] is ultimately periodic, every k ∈ N can be mapped to

some pk[i] and for this pk[i] there exist corresponding states in both T and Bi. In

addition, each robot has a planner that can compute a shortest path, P (u, v) that

moves a robot from vertex u to v. The length of P (u, v) is denoted as C(u, v), i.e.,

C(u, v) = |P (u, v)|. We have the following assumptions:

Assumption 3. (Assumptions of Cooperative pathfinding robots)

• Robots are homogeneous and have the same sensing and communication range.

• Robots are equipped with a communication protocol that allows them to efficiently

relay messages.
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• Time steps are synchronized.

• Each robot has full knowledge of the environment, i.e. T = (Q,Q0,→T , hT ,Π).

• Each robot has a different start location and a different goal location.

We also assume that each robot mission is independent. Hence, there is no

cooperative task between any robots.3

A conflict happens at time step k, if two robots are in the same location, or their

locations at k − 1 are exchanged.

Formally,

Sk[i] = Sk[j] ∨ (Sk[i] = Sk−1[j] ∧ Sk−1[i] = Sk[j]) (2.4)

where i, j ∈ R, i 6= j and k ∈ N. Then, given a time step k and two different robots

i, j ∈ R, Conflict function can be defined as following:

Conflict(k, i, j) :=




> if Eq. (2.4) is true

⊥ otherwise.

Example 14 (Possible Conflict). Consider a set of robots r1, . . . , r4 in Fig. 2.13

which is represented to R = {1, 2, 3, 4}. Suppose that now there are at the time step

k− 1, and they are following their own path pk−1,k[i] where i ∈ {1, 2, 3, 4}. Then, robot

r3 and robot r4 have a conflict plan at the next time step which is time step k. This is

because Sk[3] = Sk[4]. Then, Conflict(k, 3, 4) = >.

Problem 7. Given a system T , a set of robots R, for each robot i ∈ R, its corre-

sponding specification automaton Bi and a product automaton Ai = T × Bi, find a set

of paths p such that

3We explain how each agent coordinates collaboratively in this environment later in this section

while covering pessimistic decoupling (Sec. 2.6.1).
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r2,r3 r3,r4

r3,r4 r3,r4 r4 r4

r1

r2

r3

r4

Figure 2.13: This shows a possible conflict between robot r3 and r4 at the next time

step. Black arrows represent each robot’s plan. The ri in gray cells represents the

communication and sensing range of each robot ri. This limited range makes r2, r3

and r4 being separated with r1. Hence, these two groups cannot recognize each other

group.

• ∀i ∈ R,∃p[i] ∈ L(Ai) s.t. p[i] is ultimately perodic, and

• ∀i, j ∈ R where i 6= j, ∀k ∈ N, ¬Conflict(k, i, j).

If we consider a centralized approach in order to solve Problem 7 and we utilize

the same approach for the LTL planning as we covered in Sec. 2.2.1, we have to have

a combined T and a carefully designed LTL formula for each robot. For the 4 robots

in Fig. 2.13, the combined T can be constructed by Tr1 × Tr2 × Tr3 × Tr4 . With LTL

formulas for these robots, there should be additional constraints to avoid a possible

collision among these robots. Getting more robots in the system T , the planning

is computationally difficult. In general, for multi-robots planning, the complexity is

PSPACE-hard even for relatively simple settings [85]. Therefore, a decentralized and

on-line approach should be considered.
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2.6.1 DisCoF

We introduce a window-based approach, called DisCoF, for cooperative pathfinding

in distributed systems with limited sensing and communication range. In DisCoF, the

window size corresponds to the sensing range of the robots. Robots can commmunicate

with each other either directly if in range or indirectly if out of range. In the latter

case, it is still possible to communicate indirectly through other robots using a

communication relay protocol. This allows for coordination beyond a single robot’s

sensor range. To ensure completeness, DisCoF uses a flexible approach to decoupling

robots such that they can transition from optimistic to pessimistic decoupling when

necessary.

Optimistic Decoupling

In order to reduce communication overhead, a robot is only allowed to communicate

with other robots when it can sense them. However, robots that cannot sense each

other can communicate using the message relay protocol through other robots. A

closure of the set of robots that can communicate (directly or via message relay) in

order to coordinate is called an outer closure (OC). In an OC, there can be multiple

predictable conflicts. A closure that contains agents with potential conflicts is the

inner closure (IC) of the OC. Figure 2.13 shows an example of OC and IC.

In DisCoF, decoupling is optimistic initially, and gradually becomes more pes-

simistic when necessary. Given an OC with predicted conflicts, in optimistic decoupling

DisCoF updates the individual plans of robots to proactively resolve these conflicts,

while avoiding introducing new conflicts within a finite horizon (which is specified

by a parameter in DisCoF). Therefore, this “optimistic” decoupling allows to have

another recurring conflict with the robots once they progress over the horizon. This
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finite horizon, however, is key to efficiency since the resolution for conflicts in the far

future is likely to waste computation efforts given the incomplete information (e.g.,

the positions of other robots in the environment). Note that the window size, i.e.,

sensing range, in DisCoF represents a horizon for detecting conflicts.

To ensure that robots are jointly making progress towards their goals, DisCoF uses

the notion of contribution value. In order to resolve conflicts, plans are updated in a

process known as conflict resolution. In this process, each robot is associated with

a contribution value when using optimistic decoupling. If this process is successful,

robots continue as fully decoupled. The contribution value is also used to determine

cases when optimistic decoupling is insufficient. That is, when the resolution process

would fail due to potential live-locks. When there are no potential live-locks, it is

shown that optimistic decoupling is sufficient for robots to converge to their goals.

Otherwise, robots within the OC use the following pessimistic decoupling process.

Pessimistic Decoupling

In DisCoF, when there are potential live-locks, robots within an OC transition to

pessimistic decoupling by remaining within each other’s communication range (whether

direct or indirect). These robots are referred to as a coupling group. This coupling

group moves as a group until all the members finally reach their goal location,

decoupling each member at its own goal location. In this way, the coupling group

is “pessimistically” decoupled. In order for the coupling group to move in a group,

it executes a process known as push and pull4. This process allows it to merge with

other groups and robots. Thus, the level of coupling gradually increases. In this way,

DisCoF can naturally transition robots to be fully coupled when necessary.

In push and pull, robots move to goals one at a time according to the priorities

4For this process, there are more details with figures later in this section.
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of subproblems (first introduced in [28]). However, due to the incompleteness of

information in distributed systems, the priorities will not be fully known. As a result,

DisCoF employs the following process. At time step k, for each coupling group that

has been formed, DisCoF will:

1. Maintain robots in the group within each other’s communication range.

2. Move robots to goals one at a time based on a relaxed version of the priority

ordering which is consistent to that in [28].

3. Add other robots or merge with other groups that introduce potential conflicts

with robots in the current group as they move to their goals.

Unless there are potential conflicts, each coupling group progresses independently

of other robots and coupling groups. These processes are described in Alg. 15:

Algorithm 15: PessimisticDecoupling(G := (V,E, ω,S,G), k,P)

Input: a coupling group ω, the current time step k ∈ N, the environment
G := (V,E, ω,S,G) and a set of initial plans P for ω

Output: a set of conflict free plans P
1 r ← ⊥ . Initialize the leader robot r

2 while ∃i ∈ ω s.t. Sk[i] 6= G[i] do
3 〈ψ, φ〉 ← SenseConflict(P , ω,S, k,W)
4 if ψ = ∅ then
5 k ← k + 1 . Increase the time step by 1

6 G′ ← (V,E, ω, S,G)
7 〈S,P ,W〉 ← ProceedOneStep(G′,P , k)
8 else
9 ω ← ω ∪ ψ . Merge conflict robots with ω

10 〈f,D〉 ← AssignAgentsToSubP(G,ω,S,G)
11 H ← ComputePriority(G,ω, f,D,S,G)
12 r ← ⊥
13 if r = ⊥ ∨ Sk[r] = G[r] then
14 r ← RemoveFromQueue(H)

15 G′ ← (V,E, ω,S,G)
16 P ′ ← PushAndPull(G′, r)
17 P ← P [0 : k] + P ′[:] . Update a set of plans for ω
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Alg. 15 continues until all members in a coupling group ω reach their final goals.

The termination condition is checked in line 2. As long as there exists a robot that

has not reached its goal, the algorithm will continue with push and pull. In Alg. 15, r

represents the leader of the group ω. We remark that there can be cases in which a

robot that has already reached its goal may block the path of the leader r. In this

case, push and pull will swap or rotate (similar to the operators in [28]) robots that

have not reached their goals with this blocking robot in order to progress. Push and

pull also ensures that this blocking robot moves back to its goal afterwards.

We remark that the graph G in Alg. 15 is a common graph space for the coupling

group ω. Recall from Def. 21, Def. 22 and Assumption 3 that each robot i ∈ ω can

have the product automaton Ai = T × Bi = (SAi
, sAi

0 ,P(Π),→Ai
, FAi

). In order to

cooperatively find the path, we define that the common graph space G for the coupling

group ω is as following:

• V :=
⋂
i∈ω ProjNodes(Ai, T )

• E :=
⋂
i∈ω ProjEdges(Ai, V )

Here, ProjNodes represents a set of observed nodes of Q in T for a specific

state s ∈ SAi
for each robot i and ProjEdges represents a set of observed edges in

V × V . The resulting graph G = (V,E) is the maximally common local environment

graph for all the robots which will be used for local planning while still the robots are

guaranteed to satisfy their individual requirements.

The combination of optimistic and pessimistic decoupling in DisCoF guarantees

completeness.5

5 DisCoF is complete for the class of cooperative pathfinding problems in which there are two or

more unoccupied vertices in each connected component. Later in this section, we show the proof of
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It assumes that an initial plan for each robot is given. This initial plan is computed

only for each robot. At this time, all the robots are fully decoupled. This individually

computed plan, however, does not consider other robots’ plans. Thus, while the

robots are progressing through the plan, they may encounter possible collisions. If a

predictable conflict is sensed by a group of robots that are near (more precisely within

the communication or sensing range), then they try to resolve the conflict by coupling

together.

Example 15. Fig. 2.13 shows that robot r3 and r4 have a predictable conflict at

the next time step. Robot r2 is also a neighbor, but it is not directly related with the

conflict. When robot r3 and r4 are re-planning, r2 can be also involved if two of them

cannot have a proper new plan due to r2. Robot r1 is not sensible by r2, r3 and r4 due

to its limited sensing range.

We call this stage of resolving procedure Convergence stage. In this stage,

related robots or near robots are coupled together in order to re-plan together. Once

they can have a new plan to avoid this collision, they are decoupled. However, due to

the huge number of robots involved in the collision or its complicated environment, it

may be impossible to resolve its conflict in a given time. In this case, it regards this

conflict as a livelock.

In order to resolve this livelock situation, the group of robots follows a pre-defined

rule based operations. We call this PushAndPull. PushAndPull is a sequence

of rule based conflict resolution process among a group of conflicted robots. It, first,

elects a leader of the group. Then, all the other members in the group respect the

leader’s moves to its goal. In this cooperative moves, the leader seems to ‘push’ the

members blocking its way, but this is the members’ moves prior to the leader’s moves

the PushAndPull part which is an extension of results in [28].
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(a) Swap operation

r s

(b) Unswappable case

s r

(c) Simple rotate operation

Figure 2.14: (a) shows a sequence of steps how the agent r and the agent s exchange

their position through the swap operation. (b) is the case when two agents r and s

cannot exchange their position through the swap operation. (c) shows that a simple

rotate operation can exchange their position.

in order to make the way clean. Due to the limited sensing and communication range,

the other members should follow the leader once it finishes moving. This also seems

for the leader to ‘pull’ the other members, but again this is the members’ moves

after the leader’s moves. In some case, this push operation is not feasible due to the

environment condition, such as dead-end or lack of unoccupied further vertices. Then,

the leader swaps the vertices with the member that blocks its way (see Fig. 2.14(a)).

This raises more numbers of cooperative actions among the members. In some more

special situation, this swap operation is also infeasible (see Fig. 2.14(b)). In that case,

rotate operation is executed among the members (see Fig. 2.14(c) and Fig. 2.15).

Example 16. Fig. 2.16 shows an overall picture how the PushAndPull operation
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Figure 2.15: Even in the case when the cycle is fully occupied, it can exchange the

position of the agent r and the agent s through rotate and swap operations if this

cycle has at least one vertex v′ having degree ≥ 3 and the component including the

cycle and other part of the graph which is connected by v′ has two or more unoccupied

vertices. 94



Figure 2.16: This shows how Pull operation works. Robot r2 is a planning robot, so it

moves to its goal. Robot r3, r4 and r1 are being pulled. In the left figure, robot r2

will move to its one cell right, r3 will be pulled to its one cell up and r4 will move to

its one cell left. The right figure shows the robots’ movements at the one step later.

resolves a livelock. In this scenario, robot r2 is moving to its goal and robot r3, r4 and

r1 are being pulled.

This livelock resolution process makes the involved robots being coupled until all

they reach their goal. We call this being partially coupled. This is because robots

that are not related in this livelock still remain decoupled. In this way, this approach

provides an interesting property to move fully coupled planning to partially (or fully

depending on its problem instance) coupled planning.

In the next section, we extend the above approach. First, we relax the synchronous

time assumption. Thus, for Fig. 2.13, the extended approach regards that the first

group of robots r2, r3, r4 and the second group of robot r1 act independently and

asynchronously. Second, we introduce a decoupling strategy. In the previous approach,

members of a coupling group can be decoupled only if they reached their goals. On

the other hand, in the extended approach, each member checks whether it can be

decoupled while executing PushAndPull.

95



r2

g1

g2

r3 I1I2 r1
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Figure 2.17: Yellow circles are robots and red circles are their goal locations. Blue

dashed square represents a coupling group of robot r1 and r3. This group meets another

robot r2 moving in the opposite direction. Gray cells represent the intersections of

corridors.

Example 17. In Fig. 2.17, a group of robots r1, r2, r3 moves to the intersection I1

together. Then, robot r1 is decoupled from robots r2 and r3, heading to g1. Robots r2

and r3 are still remained in the coupling group until they reach the intersection I2.

Theorem 6. PushAndPull is complete for the class of Multi-agent Pathfinding

problems with at least two empty vertices.

Proof (Sketch): In this proof, we focus on pull operation. The completeness of push

and rotate (including swap) is already proved by [86]. The pull operation is an

additional post process after each push & rotate operation. Hence, it does not

influence the other operations. Besides, this operation sequence such as push & rotate

then pull continues until the leader of a group reaches its goal. Then, the next leader

follows the same operation sequences. In this way, eventually all the members in the

group reach their goal. That is, the conflict is resolved.
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2.6.2 Asynchronous DisCoF

In this section, we discuss the extensions to DisCoF that are made in the new

approach named DisCoF+. First, we relax the assumption that robots synchronize at

every time step (or plan step). Note that even though robots in different OCs cannot

communicate in DisCoF, it is assumed that robots act in synchronized time steps.

That is, robots are given a fixed amount of time to finish planning and execute a

single action at every time step. The relaxation of this synchronization is necessary

for implementation in a real distributed system because we cannot always assume the

existence of a global clock and a fixed amount of time for each time step (e.g., the

time required for planning for each robot may be arbitrarily different).

We remark that each robot can still access the entire map. We can assume that

this information is static such that it is initially given and does not change.6 However,

each robot cannot recognize where other robots are if they are out of (indirect)

communication and sensing range. This information is dynamic such that it changes

arbitrarily.

Furthermore, we introduce a new decoupling strategy such that robots are also

allowed to decouple after they form a coupling group (i.e., executing push and pull);

thus, transitioning back to optimistic decoupling from pessimistic decoupling. This

strategy makes DisCoF+ more computationally efficient while achieving higher quality

plans that require fewer steps.7

6 Our replanning framework can be extended to partially known environments with unknown

static obstacles.
7 How efficient this strategy is depends on the problem instance. Robots in a denser environment

may need frequent coupling and decoupling, thus increasing the computation overhead. This is

discussed in Sec. 2.6.3 through simulation experiments.
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Asynchronous Time Steps

Unlike DisCoF, DisCoF+ allows robots in different OCs to proceed independently

and asynchronously. However, robots within the same OC are assumed to still

have synchronized plan steps. This is a reasonable assumption because these robots

communicate to coordinate with each other. As a result of this assumption, robots

who finish their current plan step must wait until all others in the OC also finish

theirs. Afterwards, all members of the group start the next plan step at the same time

in order to avoid unnecessary conflicts. We remark that since we assume homogeneous

robots, the waiting time at each time step is not significant.8

We now explain Alg. 16. First, all variables including a set of current locations S

and a set of current local window W are initialized and updated until line 6. Then,

while progressing its own plan P, it senses a conflict at line 8. If a conflict is not

detected, then it progresses the next step at line 11. If a conflict is detected, then it

resolves the conflict and updates the current plan P with the new plan P ′ from line

15 to line 25. If a conflict is detected such that the IC ψ is not empty, robot i tries to

resolve the conflict after checking if it is already involved in any conflicts at line 15.

If ω is not empty at line 15, it means that from the previous iterations, ω has been

already assigned. Then, at the current iteration, another conflict is detected. That is,

a coupling group meets another coupling group while resolving its conflict. Then, it

merges the ω with an current OC φ and begins PushAndPull in order to resolve it

through pessimistic decoupling process.9 If ω is empty, then it means that it hasn’t

8 Heterogeneous robots may have different speed, sensing & communication range, size and etc.

Considering these issues and resolving them are beyond the scope of this thesis topic.
9 We remark that our description of PushAndPull in Alg. 16 is simplified to show the overall

process. Once PushAndPull returns a new plan P ′ in Alg. 16, it contains the individual plans for

the coupling group ω to move from their locations at the time step k to their goals.
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Algorithm 16: DisCoF+(G := (V,E, ω,S,G),P , γ)

Input: an asynchronous time step k for a robot i ∈ R, given environment
G := (V,E, ω, I[i],G[i]), its initial location I[i], final destination G[i]
and initial plan P [i] from I[i] to G[i]

Output: a set of updated plans P for the coupling group ω
Variables: (a local window W, a group ω and a contribution value γ ∈ N≥0)

1 〈ψ, φ, ω,S[:],W , γ[:], k〉 ← 〈∅, ∅, ∅, ∅, ∅, 0, 0〉
2 S[i]← I[i] . Update the current location to I[i]

3 G[: i− 1] ∪ G[i+ 1 :]← ∅ . Initialize goals for others

4 P [: i− 1] ∪ P [i+ 1 :]← ∅ . Initialize plans for others

5 G′ ← (V,E, ∅,S,G)
6 〈S,W〉 ← ProceedOneStep(G′,P , i, k)
7 while True do
8 〈ψ, φ〉 ← SenseConflict(P , i,S, k,W)
9 if ψ = ∅ then

10 k ← k + 1; G′ ← (V,E, ω,S,G) . Increase the time step k by 1

11 〈S,W〉 ← ProceedOneStep(G′,P , i, k)
12 G′ ← (V,E, ω,S,G) . Update G′ with new S
13 〈γ, ω,P〉 ← RecomputeCont(G′,P , i, k, γ)
14 else
15 if ω 6= ∅ then . It meets another group

16 ω ← ω ∪ φ; G′ ← (V,E, ω,S,G) . Merge ω with OC φ

17 P ′ ← PushAndPull(G′, i, γ)
18 else
19 ω ← ψ; G′ ← (V,E, ω,S,G) . Set ω to IC ψ

20 P ′ ← Convergence(G′, i, k, φ,P ,W , γ)
21 if |P ′| = 0 then
22 ω ← φ; G′ ← (V,E, ω,S,G) . Set ω to OC φ

23 P ′ ← PushAndPull(G′, i, γ)

24 if P ′ = ∅ then return False
25 P [ω]← P1,k[ω] + P ′[ω]

26 return True

involved any conflict yet. That is, robot i ∈ R was executing its plan independently.

Then, it forms a local coupling ω. It first tries to decouple optimistically through

Convergence. If it cannot find a plan P ′, then it decouples pessimistically through

PushAndPull. After finding a plan P ′, it continues to the next iteration to sense if

there are new conflicts. In this way, the above process continues until it reaches its
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goal.10

We need to explain some codes and procedures in details. First, in order to simplify

each procedure, at line 5, 10, 12, 16, 19 and 22, we use G′ as a tuple of V , E, ω, S

and G. Here, V and E are from the workspace G = (V,E) , ω is a set of robots which

represents a coupling group, S is a set of current locations, and G is a set of goal

locations. Second, given a tuple G′, a set of plans P , a robot i ∈ R, and i’s local time

step k, ProceedOneStep returns a set of current locations S and a current location

window W. We remark that ProceedOneStep does not increase the time step

variable k. If k is not increased before calling ProceedOneStep, like line 6, then it

does not update the current locations S with the set of plan P . However, it is required

to be called because the current local window W should be updated before sensing a

predictable conflict at line 8. Third, given a set of plans P , a robot i ∈ R, a current set

of locations S, i’s local time step k and the current local windowW , SenseConflict

returns a tuple of an IC ψ and an OC φ. If no conflict is detected, the IC ψ is empty.

Regardless of the existence of conflicts, SenseConflict also returns an OC φ. This

may require to communicate with other agents (we will explain in the next subsection).

Fourth, the contribution value γ is used in RecomputeCont, Convergence and

Convergence. In the next subsection, we will explain the details about how to

update the contribution value γ and how the contribution value γ affects the set of

plans P .

Correctness: For Alg. 16, we need to show two conditions. First, if a given

problem instance is valid (solvable), robot i ∈ R eventually reaches its goal location.

10 Due to lack of global communication and coordination, our algorithm (running on each robot)

would not be able to determine whether all other robots have reached their goals, thus we cannot

compute a termination condition. In our simulation, we stop the programs (on all robots) when they

have reached their goals.
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If there is no conflict from the initial location I[i] to its goal location G[i], it can

progress through its plan while sensing conflicts at line 8 and proceeding one step

at line 11 until it reaches its goal. Whenever there is a conflict, it always computes

a valid plan. At line 15, robot i checks if it is already involved in a conflict (with

ω). If ω 6= ∅ (i.e., it is already involved in a conflict), it merges the OC (i.e., φ in

Alg. 16) with ω, and then call PushAndPull for i. In line 21, if P ′ is not empty, it

means that Convergence returns a new plan P ′. If P ′ is empty, then robot i calls

PushAndPull. In both cases, the returned plan P ′ is either from Convergence

or PushAndPull. We have shown that Convergence or PushAndPull always

returns a valid plan in [27] if a valid solution exists.

Second, if a given problem instance is invalid (unsolvable), Alg. 16 returns False.

In order to resolve a conflict, Alg. 16 first calls Convergence at line 20 which is

for optimistic decoupling in DisCoF. Then, if it cannot compute its new plan, it calls

PushAndPull at line 23 which is for pessimistic decoupling. In [27], we showed

DisCoF guarantees the completeness, and DisCoF uses these two conflict resolution

processes in order to resolve its conflict. Hence, if a solution exists, the combination

of these two processes returns a solution. However, if a solution does not exists, it

returns False. At line 24, it can check whether it returns a solution or not. If not, it

returns false.

We remark that ProceedOneStep in line 11 always results in the robot proceed-

ing one step forward in its plan. If robot i has already reached its final goal (while

there are robots that still need to reach their goals), proceeding one step in this case

simply adds a step for robot i to stay.
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Communication and Leader Selection

There are two major cases in which robots communicate with each other in DisCoF+.

The first case is to detect predictable conflicts. For detecting conflicts, given a robot

i ∈ R, SenseConflict requires the following steps:

1. Check nearby environment (i.e., W) through a sensor for other robots (e.g., a

laser sensor).

2. Compute the OC φ of robot i.

3. Communicate with robots in φ to obtain their plans, then check if predictable

conflicts exist among them.

In the above process, the first step does not require any communication between

robots; it only depends on sensors. Since robots know the environment (i.e., G), they

can easily detect when there are moving robots nearby using range sensors.

The second step requires the use of a message relay protocol to compute the OC φ.

This is because OC φ includes robots which cannot directly communicate with the

robot i which originally tried to determine its OC φ. Even though it computed an OC

φ in its previous time step, the OC φ can be changed whenever SenseConflict is

called. This is because each robot in the OC has its own asynchronous time if it is not

involved in any conflicts and it can update its OC without considering other members.

In this way, if one of the members in the OC moves out of its neighbors’ sensing range

before communicating with its neighbors, other members cannot update their own

OC. In addition, if each member in an OC is involved in a conflict, all the members

have a synchronized time step until reaching their local goals. In this case, computing

a new OC is still required because each member of the OC can meet another group

and each member can update their own OC propagating new information to each
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other. Hence, whenever each agent calls SenseConflict, it should communicate

with others so that it can update its OC.

In the third step, once robot i obtains all the plans of the robots in φ, it can check

these plans against its own plan for predictable conflicts (from its current time step

to the next β steps [27]). In this case, after electing a leader of the IC ψ, the leader

computes the new plan for the IC ψ and communicates the new plan back to the

others in the IC.11 In order to compute a new plan, the leader tries Convergence. If

Convergence returns a valid set of plans P ′, then the leader can pass P ′ to others.

If not, the leader begins PushAndPull. However, in PushAndPull a new leader

is selected which is based on the priorities of subproblems. Then, the new leader will

send the new plan P ′ (which is computed from PushAndPull) back to others in the

OC φ.

Example 18 (Sensing Conflicts). Consider the scenario in Fig. 2.13. In this scenario,

assume that robot r4 is robot i in the above procedure, so r4 tries to sense a predictable

conflict. r4 first senses its nearby environment for other robots. In Fig. 2.13, the

local window or the sensing range of r4 (denoted by W) is shown as the gray region

marked with r4, and r4 will detect r3. r4 then computes the OC φ as {r4, r3, r2}. Since

r2 is not r4’s local window, r3 will relay the communication between r2 and r4. Once

r4 obtains both r2 and r3’s plans, it will check their plans against its owns plan for

predictable conflicts. In this scenario, r4 will recognize a predictable conflict with r3

which can be addressed using Convergence. 4

The second case in which robots communicate is to synchronize planning and

execution among robots in an OC. Note that robots in different OCs proceed inde-

pendently and asynchronously. Since planning and plan execution are synchronized

11 The simplest voting mechanism is to elect the robot with the smallest ID in the group.
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within an OC, it is guaranteed that no collision can occur among robots in the OC. In

ProceedOneStep, each robot in the OC executes a single plan step, communicates

this to the rest of the robots in the OC (through broadcasting to the local network),

and then it halts. Only after all robots in the OC have completed a plan step are they

free to execute another, thus achieving synchronization.12 However, when robots move

out of the communication range, they do not synchronize their plan steps anymore.

Flexible Decoupling

Flexible decoupling is achieved with the help of contribution values. Contribution

values are assigned in DisCoF to each robot in the Convergence process (in

optimistic decoupling) in which the robots must compute an update to the current

plan to avoid potential conflicts. Contribution values are introduced in DisCoF to

ensure that robots are jointly making progress to their goals. In DisCoF, when the

Convergence process fails, robots are in a coupling group, running on the plan

computed by PushAndPull until they reach their goals. In DisCoF+, however,

robots that are executing PushAndPull can also decouple by checking whether

certain conditions involving the contribution values hold.

Next, we discuss the new decoupling strategy in DisCoF+ which is illustrated in the

following example. Suppose that a conflict is predicted between two robots. Then, an

IC ψ (initially including only the two robots) is formed and there is an associated OC

φ for ψ. When the leader of ψ makes a new plan in the Convergence process, if the

leader cannot find a new plan that avoids the conflict with the current set of conflicting

robots ψ, then the set of conflicting robots gradually expends (until becoming φ).

When a new plan is found, DisCoF+ associates each robot with a contribution value γ

12 We assume that in a fixed amount time, each robot can complete its own movement and within

the communication range there is no problem to communicate with each other.
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which captures the individual contribution of the robot to the summation of shortest

distances from all robots’ current locations to their goal locations.

For the remaining part of this section, we will use the cost relation C : V × V → N.

For example, C(v1, v2) is the distance of the shortest path from node v1 to node v2.

At the very beginning of a problem instance, the contribution value γ is initialized

to be 0 for all robots. Given a predictable conflict at time step k, a set of conflicting

robots φ, the set of current locations Sk for φ and the set of goal locations G, the new

plan Q (where |Q| < β ∈ N)13 must avoid collisions and satisfy the following:

∑

i∈φ
C(Sk[i],G[i]) + γ−k [i] >

∑

i∈φ
C(Sk[i](Q[i]),G[i]) (2.5)

where γ−k [i] is the contribution value that is associated with robot i at the time step k

and Sk[i](Q[i]) is a local goal for each i ∈ φ, i.e., the position reached by each robot i

after executing plan Q[i].

We remark that while k in Eq. (2.5) is a constant in DisCoF, in DisCoF+, k

represents the synchronized current time step for the group of robots within φ which

may differ between OCs.

An interesting point of Eq. (2.5) is that the new plan Q may not satisfy Eq. (2.5)

during the execution of Q, as long as Eq. (2.5) is satisfied after Q has completed.

After executing the new local plan Q, each agent reaches its local goal. In this way,

they avoid the predicted conflict. Then, each robot i ∈ φ can decouple, following

its individual plan from the local goal Sk[i](Q[i]) to its goal G[i]. Given a predicted

conflict at the current time step and a computed Q, the contribution value γ while

13 We assume that the length of the plan Q is bigger than β. If the length of some agent i’s plan

Q[i] has shorter than β, then the last state Sk[i](Q[i]) should be appended at the end of Q[i] until

|Q[i]| ≥ β.
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executing the actions in Q is updated for robot i in φ as follows:

γk+δ[i] = C(Sk[i](Q[i]),G[i])− C(Sk+δ[i],G[i]) (2.6)

where 0 ≤ δ ≤ |Q| and Sk+δ[i] = Sk[i](Q1,1+δ[i]). We remark that δ is a relative time

step after the robots have formed an OC. For all robots in a group, δ is the same.

This update continues until the robot become involved in other conflicts or the value

becomes 0.

In DisCoF [27], the contribution value γ is only used for the Convergence

process, and robots do not update their contribution values when a coupling group

is formed and robots start PushAndPull. This can lead to inefficient behaviors,

e.g., when the leader’s goal location is located opposite to where the others’ goals are

located.

This situation is illustrated in the following example.

Example 19 (Narrow Corridor). Figure 2.17 shows an example of robot r2 in a

narrow corridor meeting with a coupling group {r1, r3} (executing PushAndPull)

moving in the opposite direction. The coupling group {r1, r3} started in the middle

corridor, and then r1 became the leader. While r1 pushes r3 to clear away of its path

to its goal location g1, it meets r2. In this case, they will be merged together. Suppose

that r1 is chosen to be the leader of the new group {r1, r2, r3}. Until r1 reaches its

goal location g1, r2 and r3 will be pushed to the end of the middle corridor and then

they will be pulled after the intersection i1. 4

In DisCoF, the only way to reduce the size of a coupling group is to have the

current leader reach its goal. Then, a new leader will be selected and the remaining

robots will follow the new leader to its goal. This is clearly an inefficient solution. In

DisCoF+, we use the contribution values γ also in PushAndPull, such that robots

can decouple even before the leader reaches its goal.
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Next, we discuss how the contribution values can be used in the PushAndPull

process. More specifically, we provide a decoupling condition for a coupling group to

check which determines when the robots in the group can decouple while executing

the PushAndPull process. Suppose that there is a coupling group ω. After ω

computes a new plan P ′ (in PushAndPull), each robot in ω will progress using the

plan. During this execution, robots continue recomputing their contribution values γ

as in Eq. (2.6). At any step, if the following condition holds, then the group can be

decoupled:
∑

i∈ω
C(Sk[i],G[i]) + γ−k [i] >

∑

i∈ω
C(Sk+δ[i],G[i]) (2.7)

where k is the time step when PushAndPull starts planning and k+ δ is the current

time step such that 0 < δ ∈ N. γ−k [i] is the contribution value that robot i ∈ ω had

before the PushAndPull returned its plan.

Intuitively, Eq. (2.7) is the condition when the summation of the length of the

shortest-path from robots’ current locations to their goal locations is less than the

summation of the length of the shortest-path from their original coupling locations

to their goal locations plus their contribution values just before forming the coupling

group.

In Alg. 16, Eq. (2.7) is checked inside of RecomputeCont at line 13. Given a

set of current locations S, a set of goal locations G, and contribution values γ, if the

condition holds, then RecomputeCont returns an updated plan P (i.e., the shortest-

path plan from S[i] to G[i]) with an empty coupling group ω. Then, the coupling

group ω becomes decoupled and each robot follows their individual plan. Otherwise,

RecomputeCont returns the current plan P without changing the coupling group

ω. Then, the coupling group ω follows the current plan P which was computed from

PushAndPull.
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Example 20 (Decoupling). In Fig. 2.17, when the coupling group {r1, r3} is merged

with r2, then conflict locations for {r1, r2, r3} and the contribution values (i.e., γ) are

saved. For a simple illustration, assume that γ = 0. Then, whenever the merged

group of robots {r1, r2, r3} proceed one time step in their plan (which is returned by

PushAndPull), they also check the decoupling condition in Eq.(2.7) in Recom-

puteCont. However, until the leader r1 reaches its goal location g1, they cannot be

decoupled. This is because the summation of the distance between robots’ locations

to their goal locations keeps increasing. When r1 reaches its goal location g1, r1 is

removed from the group. Assume that r2 is elected as a new leader of the group. Then,

r3 will be pulled until they reach the conflict location where they met previously. (See

the place where they are placed in the Fig. 2.17) After passing the conflict location, r3

and r2 can be decoupled since Eq. (2.7) holds. Consequently, from the intersection I2,

r2 and r3 can move independently to their goal locations. 4

When a coupling group is decoupled and it immediately predicts a conflict in the

next iteration, it uses the conflict resolution process through Convergence, just

as when fully decoupled robots have predicted conflicts. Even though we discussed

the correctness of DisCoF+ (Alg. 16), we also need to show that this new decoupling

strategy is not subject to live-locks (i.e., robots are always making joint progress to

the goals).

Theorem 7. The decoupling condition in Eq.(2.7) ensures that robots in the group

gradually progress to their final goals.

Proof. From Eq. (2.5) and Eq. (2.6), we know that each robot in the group gradually

moves towards its final goal. Here, we show that Eq. (2.7) does not prevent any

group member from reaching its goal. Given that we use the contribution value γk−

when a coupling group is formed, in order to satisfy Eq. (2.5) when decoupling, either
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robots can all execute their original plans or Convergence must return a new plan

which progresses robots to their local goals. First, their original plans definitely make

progress. Second, consider the case when it takes the new plan from Convergence.

After progressing through the new plan, all the robots in the group will reach their

local goals. Then, the summation of the distance from their current locations (which

are their local goals) to their final goals is smaller than the summation of the distance

from their locations (where they predicted the conflicts) to their final goals plus their

contribution values γ before forming the coupling group. Hence, we can conclude

that robots would be making joint progress to their goals. Hence, the decoupling

condition Eq. (2.7) does not prevent the group members from progressing to their

final goals.

2.6.3 Results

In this section, we present some experimental results. First, we will show a

simulation result on a physics based simulator. Second, we will provide results from

numerical experiments on artificial benchmarks.

Simulation in Webots

The simulation shown in Fig. 2.18 was created using Webots 7.3.0 and the included

iRobot Create models. A grid environment was modeled which contained 30 iRobots

and 40 obstacles placed at random locations. This instance is solvable, i.e., each robot

can reach its goal position. Each iRobot was running with a controller which imple-

mented DisCoF+. However, one exception was made: rather than being completely

distributed and simulating ad hoc networks and localization, the robots communicated

with a central supervisor which provided this information as well as synchronization

for robots involved in a conflict, i.e., in the same OC. Robots in different outer
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closures acted completely asynchronously, but robots in the same outer closure were

synchronized if a conflict was detected between any of the member robots.

The target computer for the simulation was a MacBook Pro running Mac OS

X 10.10.2 with a 2.3GHz i7 and 16GB of RAM. The simulation was run two times:

once with decoupling enabled and once with decoupling disabled. Decoupling enabled

yielded a total simulation duration of 3 minutes and 23 seconds. Out of all robots,

the maximum number of steps required to reach their destination was 40. When

decoupling was disabled, it yielded a total simulation duration of 5 minutes and 1

second. Out of all robots, the maximum number of steps required to reach their

destination was 54.

These results are interesting in two aspects: the total running time and the number

of maximum steps. First, in terms of the total running time, enabling decoupling

performs significantly better than without decoupling. The simulation took only 67%

of the time that the other did. Second, in terms of the maximum steps, enabling

decoupling took only 74% of the steps than without decoupling. The reason for this

discrepancy is that with decoupling enabled there are more stay actions in which a

robot’s action is to stay where it is. Since robots are asynchronous except for when

they are in a conflict, this means robots will take less time to complete a plan with

stay actions compared to one that doesn’t. It is expected that environments which

remains more complex plans will benefit from this fact even more.

We provide the demo video for this simulation. In addition, you may refer to

the videos at the following URL: https://www.assembla.com/spaces/discof/wiki/

DisCoF_Plus.
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Figure 2.18: A simulation environment in Webots modeling a 20× 20 grid world with

a 10% wooden boxes as obstacles. In this environment, there are 30 iRobot Create

finding their path to their goal positions.

DisCoF DisCoF+ (DisCoF+/DisCoF)

COMP. TIME STEPS APPROX. RUN TIME COMP. TIME STEPS APPROX. RUN TIME

OBSTACLES AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

5% 10.064 8.405 352.35 356.207 1771.815 1788.861 10.733 (1.0086) 22.068 (0.931) 63.95 (0.4266) 80.632 (0.356) 330.483 (0.43) 423.885 (0.3555)

10% 13.19 10.372 521.1 521.24 2618.69 2615.82 14.37 (1.061) 36.52 (1.538) 73.51 (0.344) 108.93 (0.346) 381.92 (0.348) 579.065 (0.348)

15% 17.6318 13.296 653.67 580.01 3285.982 2911.463 23.92 (1.217) 49.768 (1.3) 99.18 (0.294) 157.356 (0.312) 519.82 (0.3) 831.07 (0.314)

20% 26.39 14.009 954.46 620.08 4798.691 3111.208 52.391 (1.942) 75.8 (2.3989) 175.9192 (0.2427) 218.859 (0.3132) 931.987 (0.2535) 1161.61 (0.3242)

Table 2.7: Simulation Experiments: Comp. Time represents the total computation

time in sec, Steps represents concurrent time steps for entire robots’ plan, and Approx.

Run Time represents approximate running time in sec. AVG stands for average and

STD for standard deviation. The ratio inside the parenthesis is DisCoF+/DisCoF.

Simulation Experiments on benchmarks

In order to evaluate the improvement of DisCoF+ over DisCoF, we execute a number of

numerical experiments. For these experiments, we used a 3.2GHz i7 and 8GB of RAM

in Cygwin environment which runs on Windows 8.1. Our prototype implementation

is written in Python 2.7.2.

Since we only want to get the total number of concurrent steps and the computation

time for these experiments, instead of using the Webots simulator, we used a simple
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discrete time simulator which does not simulate the physics of the robots. In addition,

we have not computed the overhead of any communication between the robots. Hence,

we are comparing the total number of steps and the computation times between

DisCoF and DisCoF+.

As a result of this implementation, an approximate running time is calculated for

each problem instance by summing the computation time and the movement time,

where the movement time is the amount of time required to execute all steps assuming

5 seconds per step.

In order to perform the experimental analysis, instead of scaling up the number of

robots, we increase the density of the environment. That is, we increase obstacle rates

in the environment. The experiment was performed on a 20× 20 grid environment

with 30 robots. Obstacles were randomly generated according to their rate which is

defined as the percentage of the grid environment that is considered to be an obstacle.

Table 2.7 shows the results for 100 instances of DisCoF and DisCoF+ as the obstacle

rate was varied from 5% to 20%.

In all cases, DisCoF+ needed 24% to 42% less steps than DisCoF’s result and

DisCoF+ took 25% to 43% less than DisCoF’s approximate run time.

The time ratio in Table 2.7 indicates that if the environment is less populated,

then decoupling makes better quality plans in terms of the total number of concurrent

steps and the total computation time of plans.

Despite the fact that DisCoF+ consistently outperforms DisCoF in the approximate

run time, it is important to comment on the computation time. When the environment

is dense, it takes more computation time. This is because in dense environments

groups that decouple may have to re-couple with a higher frequency. That is, when it

recouples, a group should make a new plan which requires extra computation time.
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2.7 Conclusions and Future Directions

In this chapter, we covered mission planning at various levels. We introduced LTL

Revision Problems for a simple transition system and a weighted transition system.

Then, we moved to a problem for a specification having quantitative preferences. In

addition, we introduced a multi-agent LTL planning problem.

For the LTL Revision problem, we have following possible directions.

1. Online LTL Revision for dynamic environments The current approach

does not consider that a given system (environment) can be changed. This

assumption should be relaxed if we consider verifying a specification while

running the framework in the real world. This is because the environment can

be updated unexpectedly. In this case, a concept of local and global specification

or local and global atomic proposition should be introduced.

2. Resolving uncertainties through learning theory For this chapter, we

assume that the environment is fully known and we do not consider any noise

while sensing it. In order to resolve uncertainty issues, instead of transition

system T , Markov Decision Process (MDPs) can be utilized [22, 87–93]. Along

this direction, [94–100] focus on learning for control synthesis for a given LTL

specification. Mostly the above works are for learning the environment or for

learning the given mission. However, if we extend this to the users’ perspec-

tive, we also can help them to reduce their mistakes by suggesting satisfiable,

alternative missions.

3. Behavioral Study for updating the specifications Consider a problem

for a specification which has quantitative preferences. The decision process

of choosing a minimal subset of these atomic propositions to be removed may
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cause setting up different preference levels later. In this way, updating the

preference of each atomic proposition can avoid having the same un-realizable

specification. While analyzing which atomic propositions’ preferences are revised

in a particular system, we can learn about the designer and then can estimate

his/her expected behavior.

For the Multi-agent LTL Planning problem, we have the following possible direc-

tions.

1. Partially observable environment Consider that each agent can sense only

nearby environment and the initially given setting can be updated later. In this

case, when a conflict is detected between some agents, they have to share each

other’s map data. This uncertainty may cause to start the resolution process

again when another agent is joined in the coupling group with new information

about the environment.

2. Heterogeneous agents Relaxing the assumption that every agent has the

same size may cause changing the order of reaching their goal position. In

addition, this heterogeneous characteristic may interrupt some agent moving

into particular cells. For this issue, we also discuss in some future directions in

the next chapter.

3. Dynamic obstacles Unexpected moving obstacles, such as humans, or un-

communicable vehicles driven by humans are common in the real world. Partic-

ularly, autonomous vehicles in a city cannot avoid this situation. Resolving a

conflict with these objects can be a challenging and important future direction.
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Chapter 3

MOTION PLANNING

3.1 Motivation

When moving from a grid or graph world abstraction to the real world, we need

to consider the motion planning problem for mobile robots (and not only the path

planning problem on graphs). As we discussed in Sec. 1.3.3, or motion planning,

there are offline planning algorithms like Lattice Planner [61, 62], RTR+TTS [65] and

RRT*(G3) [66, 67]. In general, offline algorithms can provide an optimal solution,

but they are slow and the planning is limited to relatively shorter distances. On the

other hand, online planners like Hybrid-A* [35] and RRT* [88] can avoid this planning

horizon issue. However, if we apply these planners for challenging, unstructured

environments, it is not easy to get the solution within a short time. In addition, if

we add dynamics to the motion model, it is much more difficult for these planners to

get a solution. Hence, we want to enable long horizon planning, to get a motion plan

considering the vehicle dynamics within a given time in the rural, unstructured road

networks. In other words, the contribution of this chapter is the derivation of motion

planning algorithms for higher order dynamical systems which need to compute a path

in confined environments within wait times imposed by the patience of the human

users (typically, vehicle passengers).

In this section, once we cover the background knowledge, the problem is stated

and a multi-resolution online lattice planner is proposed as a solution. Then, potential
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future extensions and conclusions are followed.

3.2 Preliminaries

We assume a bidirectional dynamic vehicle motion model for driving:

d

dt




x

y

θ

v

δ




=




v cos(θ)

v sin(θ)

v
L

tan(δ)

a×D

ζ




= f(q, u,D). (3.1)

Here, q = [x, y, θ, v, ζ]T ∈ Q is the state vector (configuration) where (x, y) ∈ R2,

θ ∈ R, v ∈ R and ζ ∈ R are the vehicle’s planar coordinates, orientation, velocity,

and steering angle, respectively. The control input is u = [a, ζ]T ∈ U ⊆ R× R where

a ∈ R and ζ ∈ R are the vehicle’s acceleration and steering angle speed, respectively.

The desired driving direction is D ∈ {−1, 1} such that D = 1 is for forward driving

(v ≥ 0) and D = −1 is for reverse driving (v ≤ 0). The parameter L ∈ R>0 refers to

the wheelbase.

Given two configurations qi, qj ∈ q, a motion plan p between them is a sequence

of tuples: (qi, ai, qi+1), (qi+1, ai+1, qi+2), . . ., (qj−1, aj−1, qj) where qi+1, . . ., qj−1 are

configurations and each ai = (a, ζ, τ) is a control input for the vehicle’s acceleration,

steering angle speed and duration.

We assume that the environment is unstructured. Hence, there is no traffic rule

such as restricted driving directions and priorities at intersections. However, we assume

that the environment is known and decomposed into convex cells (road segments) – see

Fig. 3.2(a) for an example. Hence, the road segments and their adjacency relation form

a sparse strongly connected graph R = (R, S) where R is the set of road segments and

S ⊆ R2 is the set of connections of the road segments. Given a sequence of adjacent
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road segments r, we denote by b(r) the corresponding line connecting the middle

points of the shared boundaries of the road segments (piecewise-linear path).

h : q → R3 is an observation (location) function. Similarly, hc(r) denotes the

sequence of road segment centroids c ∈ R2. We also define a labeling function

L : R2 → R that maps each point of the workspace to a road segment (we assume that

the boundary between two road segments belongs only to one road segment). With a

slight abuse of notation, we extend the labeling function L to also map configurations

of the vehicle to road segments through the vehicle’s planar coordinates in the obvious

way. We also let Lh = L ◦ hc and hr = hc ◦ Lh.1

For an edge s = (ri, rj) ∈ S between two different road segments ri and rj, we

define a weight function W : S → R≥0 as W (s) = ‖hc(ri) − hc(rj)‖2 where ‖ · ‖2

is the Euclidean norm. A path ph from rs to rg is a sequence of connections of

road segments s0, s1, ..., sn where si = (ri, ri+1) with ri, ri+1 ∈ R and i ∈ N≥0. Here,

s0 = (rs, r0) and sn = (rn−1, rg). The total cost of a path ph is Σ
|ph|
i=0W (ph(i)). The

shortest path p∗h from rs to rg can be computed by argminph∈Pathrs,rg Σ
|ph|
i=0W (ph(i))

where Pathrs,rg is the entire path set from rs to rg. For convenience, we also define

a function W ∗ that returns the optimal path cost between any two road segments

W ∗(rs, rg) = Σ
|p∗h|
i=0W (p∗h(i)).

We denote by W∗ the free workspace of the robot for a specific road network.

Moreover, given a sequence r of consecutive road segments, we denote by W(r) ⊆ R≥0

the (static) free workspace that corresponds to the road segments in r. That is,

W(r) = {(x, y) | ∃ri ∈ r,L(x, y) = ri}. In order to sense the free workspace at a

current location (x, y) with a sensing range σ ∈ R≥0, we define a function O : R3 → 2R
2

as O(x, y, σ) = W∗ ∩ Bσ(x, y) where Bσ(x, y) denotes a Euclidean ball of radius σ

1We remark that the hc and Lh are two mapping functions. hc is to get the centroid c when a

road segment r is given and Lh is to get the road segment r when a centroid c is given.
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centered at (x, y). With a slight abuse of notation, we let Oh(x, y, σ) = O ◦ L ◦ hc

denote the set of centroids of the road segments observable from location (x, y).

Now, we can define the vehicle model as a tuple V = (f, q, u, h,Oh) and the

workspace model as a tuple T = (R, S,L,W,W).

3.3 Online Motion Planning Problem

This thesis considers the problem of path and motion planning in unstructured

rural road networks. Such road networks typically exhibit steep turns and narrow

passages as in Fig. 1.1. An autonomous vehicle would have to resolve such motion

planning issues in almost real time2. Due to the complexity of the problem, it is

expected that first a path would be computed over the graph representing the road

network and, then, the complex motion planning problem has to be solved. The former

problem (path planning) can be solved with different graph search algorithms such as

Dijkstra’s shortest path algorithm [31]. This thesis focuses on the latter problem.

Problem 8. Given a vehicle model V = (f, q, u, h,Oh), a workspace model T =

(R, S,L,W,W), an initial configuration qs and a final configuration qg, compute the

motion plan p in a on-the-fly manner.

Overview of Solution: We will use a hierarchical approach as shown in Fig. 3.1.

First, we decompose the workspace into convex cells [30, 31]. Then, we will construct

lattice sets and introduce a multi-resolution motion planner. Lastly, we will explain

how we utilized an exhaustive search planner ([101], [30]) in the case when the above

planner cannot find a feasible motion. Combining these two planners, we provide a

resolution-complete algorithm.

2In this work, we do not quantify what “almost real time” means since even humans in certain

driving scenarios would have to pause before deciding the best driving maneuver.
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Hierarchical Approach

Decomposing the Workspace

Finding a High Level Path

Multi-Resolution Motion Planner

𝓜0 𝓜1 𝓜⋯ 𝓜𝜚

Figure 3.1: Hierarchical Approach

3.3.1 Multi-resolution Motion Planner

For the high level path finding, we search the road network from the road segment

containing the source configuration to the road segment containing the goal configura-

tion. The shortest distance path can be easily computed through a single destination

shortest path algorithm. In the following, given a source state qs and the destination

state qg, the high level path is denoted by p∗h = (r0, r1), (r1, r2), . . ., (rn−1, rn) where

r0 = Lh(qs) and rn = Lh(qg).

When a high level path p∗h is given, we can connect the centroids of the corresponding

road segments in order to form a continuous path to be tracked. Typically, such a path

may need to be smoothened (we use a Gaussian filter). We call this smoothed line

spine. A spine is a sequence of states, l0, l1, . . . , ln, where l0 is from qs, ln is from qg

and l1, . . . , ln−1 are smoothed states on the path. Each state li consists of (x, y, θ, D̃),

where (x, y) is the 2 dimensional coordinates, θ is the orientation3 of the state and D̃

is the guided direction to drive the path.

Once a path is smoothened, then it can be easier for a vehicle to follow the path.

In order to closely follow the spine, we have to control the vehicles’ motion. Given a

3It can be computed through an arctangent with its next (or previous) state’s 2 dimensional

coordinates.
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Figure 3.2: Vehicle trajectories and lattice sets

configuration qs, we can sample a configuration lg along or near the spine at a pre-

defined farther distance while considering the orientations of qs and lg. We call this lg

a local goal. Given qs and lg, the low level plan p consists of a sequence of tuples: ρ0,

ρ1, . . ., ρn. Each tuple ρi consists of (qi, ui, qi+1) where qi and qi+1 are configurations

with q0 = qs and L(qn+1) = L(lg), and ui = (ai, ζi, τi) is an input (ai, ζi) for a duration

τi. Figure 3.2(a) shows an example of the hierarchical approach . Each triangle is

a decomposed cell of the workspace and a vehicle trajectory is generated by the low

level plan p by following the spine of p∗h.

State Lattice

Although our lattice planner has some similarities with others [61, 62], our objective

is a resolution-complete motion planner. In addition, our motion planner has different

aspects from others [61, 62]. First, we do not construct a search space (a tree based

graph) while searching for a local goal. Second, we do not regularly distribute the

search (with respect to the 2D workspace) in order to expand our search area while

finding the local goal. In this way, we can save construction time while generating the

motion in the restricted environment. This has an advantage particularly when we
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compute the motion through a densely covered lattice set.

Next, we will design motion primitives. Since constructing a plan while considering

differential constraints requires more computation time, we compute the motion

primitives offline. Note that for the configuration states in Q̃s the position and

orientation are set to zero, i.e., (x, y, θ) = (0, 0, 0). With a constrained control input

set Ũi and a pre-defined duration κi, the motion primitives can be computed. We

denote by A(Q̃s, Ũi, κi) the reachable set from Q̃s under possible inputs Ũi after

duration κi. For q̃s ∈ Q̃s,∀ql ∈ A({q̃s}, Ũi, κi),∃ul ∈ Ũi such that q̃s reaches ql after

duration κi. We denote this control input ul by u(q̃s, ql).

Now, we can construct a lattice set. First, given q̃s and a resolution level i, we

exhaustively construct trees where the root nodes are q̃s and its children nodes are

A(q̃s, Ũi, κi) (see Fig. 3.2(b)). Second, we create 2 dimensional KD-Trees based on

AJ with the (x̃, ỹ) cell size. Note that we can also construct this lattice set for the

past time with A(q̃s, Ũi,−κi) until the depth reaches J .

Now, consider lg as a local goal located at a pre-defined distance from q′. Using

the KD-Tree in Mq′ , we can find a fixed number of neighboring states N to lg based

on their distance from lg.
4 If for all the states in N we cannot find any η which is

collision free, then we return failure.

In order to provide multi-resolutional lattice sets, we create two types of lattice

sets: consistent and shifting. For example, in Fig. 3.3,M0, . . . ,Mn are the consistent

lattice sets and M0,1,M1,0, . . . ,Mn−1,n,Mn,n−1 are the shifting lattice sets.

4[102] uses Hash maps to search in a local grid. This search is for one key, value pair, taking a

constant access time. However, we consider that the key may not exist and that we may have to

find not only the one key, value pair, but also β number of keys, value pairs which are nearby and

ordered by distance. In this case, using KD-Tree is much more efficient.
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M0,1

M1,0
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M3,2

Mn−1,n

Mn,n−1

Figure 3.3: Consistent and Shifting lattice sets for multi-resolution

% a velocity level index for a lattice set M
M a lattice set
p∗h a high level shortest path
p, p′, p′′ a low level plan
A a set of connections of road segments to be avoided
qs, qg, qc, . . . configurations consisting of (x, y, θ, v, δ)
κ a pre-defined duration for the given control inputs
α α ∈ N≥2 for the number of local goals
p∗h.Spine a smoothed path of p∗h
lgs a sequence of local goals chosen from p∗h.Spine
γ, γg, γlg pre-defined distances γi := (γxyi , γ

θ
i ) for Euclidean and heading

σlp, σsensor, σ σlp, σsensor, σ ∈ R>0: for pre-defined distances
η, ηi, ηj local coordinates consisting of (x, y, θ, v, δ)
qηii a transformed global coordinates from qi with ηi
q
ηi·ηj
i a transformed global coordinates from qηii with ηj
M% M% ∈M where it has a velocity level %
M%

qi
[ηi] a low level plan from qi to qηii

β β ∈ N>0: for sampling the neighbors in local coordinates

Table 3.1: List of Symbols

Multi-resolutional Online Motion Planner

Now, we are ready to present the planning algorithm, which consists of three parts:

HierachicalPlanner, LocalPlanner and GetLocalPlan. A summary list of

symbols and functions are presented in Table 3.1 and 3.2.

Algorithm 17 is the high level planner. This gets the initial coordinates qs and

the goal coordinates qg. With qs and qg, it computes the high level plan p∗h which

is a sequence of road segments to reach qg. Then, until the current configuration qc

reaches near qg, it continues computing low level plans p′ and updating qc in a receding
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horizon manner [33]. Once it reaches near qg, it can return the entire low level plan p.

Algorithm 17: HierarchicalPlanner(qs, qg, %,V ,M, T )

Input: an Initial conf. qs, a goal conf. qg, a velocity level index %, a vehicle V ,
a lattice set M and a workspace T

Output: a low level plan p or Failure
1 p[:]← ∅; p′[:]← ∅; A ← ∅; qc ← qs
2 p∗h ← GetHighLevelPath(qc, qg,A, T )
3 while ¬(d3(qc, qg) ≤ γ) do
4 〈p′, %〉 ← LocalPlanner(p∗h, p

′, qc, %,V ,M, T )
5 if |p′| = 0 then
6 A ← A∪ {(Lh(qc), p∗h.Next(Lh(qc)))}
7 p∗h ← GetHighLevelPath(qc, qg,A, T )
8 if p∗h = ∅ then return Failure
9 else

10 qc ← p′.Next(qc, κ)
11 p← p+ p′.Copy<(qc); p

′.Trim<(qc)

12 return p

For Alg. 17 to 19, instead of computing a plan to connect two configurations exactly

(TPBV), we frequently check if a configuration is close to another configuration within

some pre-defined distance γ. We evaluate whether two configurations’ Euclidean

distance and their heading difference are within the desired tolerance. Hence, γ :=

(γxy, γθ) consists of two parts: γxy ∈ R≥0 and γθ ∈ [0, π]. Consider two configurations

qi, qj and a desired tolerance γ = (γxy, γθ). We denote the Euclidean distance between

the planar coordinates of the configurations qi and qj by dxy(qi, qj) and the heading

distance by dθ(qi, qj). For brevity, we write d3(qi, qj) ≤ γ as a shorthand for the check

dxy(qi, qj) ≤ γxy ∧ dθ(qi, qj) ≤ γθ.

Algorithm 18 is the low level planner. This algorithm takes as input qc and p∗h and

returns an updated low level plan p′ based on the pre-computed lookup table M with

the current velocity level index %.

Algorithm 19 finds the plan for multiple local goals lgs (which is similar with [35])

from qc through M%.
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Algorithm 18: LocalPlanner(p∗h, p
′, qc, %,V ,M, T )

Input: a high path p∗h, a given low plan p′, a current coord. qc, a velocity
level index %, a vehicle V , a lattice set M and a workspace T

Output: a tuple of a low plan p′ and a velocity level index %
1 VM ← 〈V ,M, %〉
2 qn ← p′.Next(p′.Last(),−κ); p′.Trim≥(qn)
3 while

∑
(qi,ui,qj)∈p′ dxy(qi, qj) < σlp do

4 lgs← SetupLocalGoals(p∗h.Spine, qn, %, κ, α)
5 p′′ ← GetLocalPlan(lgs, qn,VM, T )
6 if |p′′| = 0 then
7 if % = 0 then return 〈∅, %〉
8 VM ← 〈V ,M, %.Decrement〉
9 else

10 p′ ← p′ + p′′; ql ← p′.Last()
11 if % = 0 then
12 VM ← 〈V ,M, %.Increment〉; qn ← ql
13 else
14 if d3(ql, lgs[−1]) ≤ γ then break

15 qn ← p′.Next(ql,−κ); p′.Trim≥(qn)

16 if ¬Stiff(p∗h.Spine, p̃′.Last(), %, σlp) then %.Increment
17 return 〈p′, %〉

Bi-directional Search for narrow and stiff curves

When Alg. 19 returns an empty plan p′′, the % is decremented. Then, Alg. 19 is called

again. This process makes the velocity slower and the steering range wider while

switching from M% to M%−1. Finally, when it becomes M0, plans from q̃s ∈ Q̃s to

some q′ ∈ Q̃ may include back-and-forth movements. This is for the cases when we

cannot find any feasible motion plan until the velocity is decreased as slow as possible

and the steering range is increased to the maximum.

Car Grid Search (e.g., [101], [30]) can resolve this issue. This planner utilizes 6 differ-

ent actions: Left+, Right+, GoStraight+, Left-, Right-, and GoStraight-.

The first three actions are for the forward driving and the next three actions are for

the reverse driving direction. We take the similar approach. First, we pre-compute 6

motion primitives. Then, we construct the lattice setM0 with the computed primitive

124



set.

Constructing Bi-directional lattice set

That is, we compute 6 actions:

• TurnLeft(+1), TurnRight(+1), GoStraight(+1)

• TurnLeft(−1), TurnRight(−1), GoStraight(−1)

We remark that above (+1) and (−1) are the driving direction D for the primitive

function f . Each action continues for a pre-defined duration. In addition, before

starting each action and after the action, velocity and steering are 0, 0, respectively.

We take q̃s = (0, 0, 0, 0, 0) as an initial state and we create a tree rooted at q̃s.

We run a Best First Search Algorithm exhaustively from q̃s, connecting with the

6 configurations which are computed with the 6 actions. While expanding each

configuration, the algorithm checks:

• if its Euclidean distance to q̃s exceeds a pre-defined radius.

• if it is in an already occupied cell in a pre-defined grid.

If one of the above conditions holds, the chosen configuration is discarded. Other-

wise, we add this configuration to the cell and expand to its following 6 configurations.

While expanding a configuration to its children, we also connect it to its parent node

in the tree. We add each configuration in the occupied cell to Q̃. We note that if the

cell of the grid is too fine, expanding some coordinates will take exceptionally long.

However, within the pre-defined radius, the set of reachable cells from q̃s in the state

space is finite.
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Algorithm 19: GetLocalPlan(lgs, qn,VM, T )

Input: local goals lgs, a current coord. qn, a vehicle with a lattice set VM
and a workspace T

Output: a low level plan p′′

1

〈
(
←→
f , q, u, h,Oh),M, %

〉
← VM

2 Q← PriorityQueue()
3 Found← ⊥; p′′[:]← ∅
4 for η ∈ SearchNeighbors(qn, lgs[1],M%, β) do
5 Q.Push(〈GetCost(qηn, lgs[1]), [〈qn, η, 1〉]〉)
6 while ¬Found ∧ |Q| > 0 do
7

〈
costi, p

l
i

〉
← Q.Pop()

8 〈qi, ηi, i〉 ← pli[−1]
9 pi ←M%

qi
[ηi]

10 if IsCollided(pi, O
h(qi, σsensor)) then continue

11 if i = |lgs| then
12 if d3(qηii , lgs[i]) ≤ γlg then Found← >
13 continue

14 for ηj ∈ SearchNeighbors(qηii , lgs[i+ 1],M%, β) do
15 costj ← GetCost(q

ηi·ηj
i , lgs[i+ 1])

16 Q.Push(
〈
costi + costj, p

l
i + [〈qηii , ηj, i+ 1〉]

〉
)

17 if Found then
18 for j = 1 to |pli| do
19 〈qi, ηi, i〉 ← pli[j]
20 p′′ ← p′′ +M%

qi
[ηi]

21 return p′′

Querying a state

Like for otherM%, we build a KD-Tree with Q̃ inM0. Then, given a current coordinate

qc and its local goal lg, lg’s neighbor states can be searched from M0
qc through the

KD-Tree. We note that the resolution of the KD-Tree is equal to the pre-defined grid.

Finally, we set the bound of lg’s coverage of M0 as follows: κ ≤ lg’s coverage of M0

< a pre-defined radius.
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• p∗h.Next(ri) : returns ri’s next road segment from p∗h
• p.Next(qi, κ) : returns qi’s next coordinates on p, coming after κ duration.

If κ < 0, it returns qi’s previous coordinates on p, coming before κ
duration.

• p.Trim<(qn) : trims all the elements coming before qn on p

• p.Trim≥(qn) : trims all the elements from qn to the end on p

• p.Copy<(qn) : copies all the element coming before qn on p

• %.Decrement : decreases the index by 1

• %.Increment : increases the index by 1

• p.Last() : returns the last coordinates on p

• PriorityQueue() : returns an emptied priority queue

• Q.Pop() : takes an element from Q having the minimum cost

• Q.Push() : adds an element to Q

• GetHighLevelPath(qc, qg,A, T ) : returns a high level shortest path
from qc to qs, avoiding A
• SetupLocalGoals(p∗h.Spine, qn, %, κ, α) : gets α local goals from qn.

Each one takes at most κ duration for traveling, considering the velocity
level index %

• Stiff(p∗h.Spine, p.Last(), %, σlp) : returns > only if p∗h.Spine’s curve from
p’s last coordinates is stiff for the next σlp distance, given the velocity
level index %

• SearchNeighbors(qn, lgs[i],M%, β) : returns β local coordinates which
are near in lgs[i] when they are transformed with the global coordinates
qn

• GetCost(qi, lgs[i]) : computes the cost between qi and lgs[i]:
dxy(qi, lgs[i])× gain1 + dθ(qi, lgs[i])× gain2 where gain1, gain2 ∈ R≥0

• IsCollided(p,Oh(qi, σsensor)) : checks if the rigid bodies in qi for the
low level plan p exceed free workspace, considering the sensing range
σsensor

Table 3.2: List of Functions
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3.3.2 Theoretical Analysis

The running for constructing the Consistent and Shifting lattice sets is O(|Q̃| ·

|Q̃s| · |A(Q̃s, Ũ , κ)|) and O(|v′|! · ∑q̃s∈Q̃s

∏J
j=1 |A({q̃s}, Ũ , κ)|j).

Algorithm 19 consists of SearchNeighbors(), IsCollided() and the while loop.

SearchNeighbors() takes O(2 ·
√
N) where N is the number of nodes (coordinates)

in the KD-Tree of each M%. Checking 2D rectangular polygon takes constant time

K. Finding road segments within the radius ς from qc takes O(2
√
|R|). Then,

IsCollided() takes O(K · |Oh(qc, ς)| + 2
√
|R|). Removing all constants, Alg. 19

takes O(
√
N +

√
|R|).

Algorithm 18 consists of SetupLocalGoals(), GetLocalPlan(), the while

loop and Stiff(). SetupLocalGoals() takes O(α(log |p∗h.Spine|+G)) where G is a

constant time for checking the distance between qn and a way point. GetLocalPlan()

takes O(
√
N+

√
|R|) and the while loop takes O(α(α(log |p∗h.Spine|+G)+

√
N+

√
|R|)).

Stiff() takes O(log |p∗h.Spine|+F ) where F is a constant time for getting a cumulative

heading difference in order to check the stiffness of the spine. Removing all constants,

Alg. 18 takes O(log |p∗h.Spine|+
√
N +

√
|R|).

Algorithm 17 consists of GetHighPath(), LocalPlanner() and the while loop.

GetHighPath() takes O(|S|+ |R| · log |R|) where |S| is the number of connections

of road segments and |R| is the number of road segments. LocalPlanner() takes

O(log |p∗h.Spine|+
√
N +

√
|R|). The while loop takes O(|S| · (log |p∗h.Spine|+

√
N +

√
|R|+|S|+|R|·log |R|)). Then, Alg. 17 takes O(|S|+|R|·log |R|+|S|·(log |p∗h.Spine|+
√
N +

√
|R|+ |S|+ |R| · log |R|)).

We will show the proofs on our approach in Appendix C (see Sec. C.1 and C.2).

Theorem 8 (Resolution Complete). If Prob. 8 has a motion plan p which can be

represented in some resolution of the workspace, then Alg. 17 to 19 can find one
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with the decomposition of the workspace in multi-resolution and pre-computed & pre-

constructed lattice sets. It indicates failure otherwise. In both cases, it finishes within

a finite time.

Theorem 9 (Correctness). Algorithm 17 to 19 solve Prob. 8.

You may find the proposed framework including videos at the following URL:

https://cpslab.assembla.com/spaces/multi-robot-planning/.

3.3.3 Numerical Experiments

We compared our deterministic planning approach (based on lattices) against a

well-established probabilistic planning approach (RRT [30, 31]). We refer to the RRT

planner as the baseline method. We implemented an online version of RRT and tried

to make it close to ours in order to test it in the given settings.

We sampled the acceleration and steering value from their maximum range. For a

given local goal lg, we tried to build the tree for 5 times with cutoff at 500 iterations.

The RRT used is adapted from [103], and changed for our dynamic model. Then, we

used an informed RRT with 0.005 chance to choose lg as some random coordinates.

Since lg is given, we narrowed the sampling area from the current coordinates qc

to lg with some additional boundary areas. Once the RRT failed to return a motion

plan, then we switch to bi-directional5 RRT. We here choose two different driving

velocities: one for a forward and another for a reverse direction. We implemented a

simple shooting method for steering.

In order to evaluate our approach, we created an unstructured road environment

and we considered the three scenarios of Fig. 3.4. The first scenario (S.I) has moderate

5This lets RRT work as our M0,M0,1 and M1,0 do for multi-resolution. Hence, Bi-directional

means here that a tree started from qc can be grown with nodes having either forward driving

direction or reverse driving direction, rather than growing two trees from qc and lg.
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Time [s] (mean ± std) For Number (mean ± std) Of Length Succ.

Total ¬Stiff Stiff ¬Stiff Stiff Reversals [m] [%]

S.I
M 9.0 ± 1.6 0.3 ± 0.8 0.0 ± 0.0 15.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 73.6 ± 0.0 100

B 243.2 ± 84.9 12.2 ± 4.1 138.3 ± 75.7 15.9 ± 0.9 0.2 ± 0.5 0.0 ± 0.0 72.5 ± 0.7 30

S.II
M 18.4 ± 2.8 0.9 ± 2.1 4.4 ± 3.4 8.0 ± 0.0 2.0 ± 0.0 9.0 ± 0.0 63.6 ± 0.0 100

B 259.7 ± 127.3 11.2 ± 4.3 131.0 ± 131.0 9.0 ± 0.5 1.0 ± 0.0 0.0 ± 0.0 41.2 ± 0.9 8

S.III
M 13.1 ± 0.5 0.6 ± 1.6 2.2 ± 0.2 13.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 67.7 ± 0.0 100

B N/A N/A N/A N/A N/A N/A N/A 0

Table 3.3: Numerical Experiment result for three scenarios (S.I, S.II and S.III). M stands

for Multi-resolutional Online Lattice Planner and B stands for Baseline Approach (RRT).

 S. I 

 S. II 

 S. III 

Figure 3.4: Three Scenarios: S.I, S.II and S.III

curves while the others (S.II and S.III) have stiff curves. We ran these scenarios 100

times for each approach. Table 3.3 presents the results. We remark that our approach

for each run produced identical path lengths and number of velocity reversals (since it

is deterministic). On the other hand, the baseline approach produced the resulting

path on S.II very differently, returning many failures. We also remark that the vehicle

size in this experiment is 2 M width and 4.8 M length. Even though RRT is known

to be probabilistically complete, in restricted environments like in Fig. 3.4, it seems

to have some difficulty to compute plans within time bounds tolerable to the human

passengers of autonomous vehicles.

It is worth noting that we also tried RRT∗ [88]. However, the results were not
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promising due to the narrow and stiff curves and the approximate steering method

that we utilized. A potential solution in improving the RRT∗ performance would be

to utilize exact steering functions as in [66]. This will be a topic of future work.

We also tested our work against Hybrid-A*. We implemented multi-resolutional

Hybrid-A∗. Figure 3.5 shows their trajectories. Since Hybrid-A∗ [35] requires to

manage already visited states, we created grid cells in 3D with the size of (x̃, ỹ, θ̃).

Here we changed the θ̃ from 3.5◦ to 30◦, keeping the size of x̃ and ỹ same. It took

597.3 sec, 267.4 sec, 122.7 sec, respectively. On the other hand, our approach took

6.6 sec. As you can see from Fig. 3.5(a) - (c), while increasing θ̃, the trajectory

generated has bigger turns. However, due to the coarser cell, it could return the

trajectory relatively faster. We ran 30 times to confirm repeatability in terms of

execution times. In addition, Fig. 3.6 shows the trajectories for S.I and S.III. For

S.III, θ̃ : 3.5◦ and θ̃ : 10◦ exceeded the time limit. We remark that we tested this

offline. We also tried an online version of Hybrid-A* (which is adapted from the

extended version of [35]) in order to make the setup exactly the same as our proposed

work. However, the result was not promising. While passing through the restricted

environment, reaching each local goal took more than the expected time (10 min).

It is worth analyzing what makes the online Hybrid-A* fail. Consider that we

finished an iteration of the online version of Hybrid-A* after reaching the chosen local

goals. After following the motion from the recent iteration, proceeding to the next

iteration sometimes leads to difficult configurations. Since this plan is computed for

a local optimal configuration, it can be different from the global optimal plan. In

this case, the planner can get stuck or can take much more time to resolve this issue

while computing a much longer distance path. In the worst case, the planning can be

expanded over the whole local space. Post processing [59] can be helpful. In addition,

choosing a proper resolution and a control duration for a specific road segment in
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(a) θ̃ : 3.5◦ (b) θ̃ : 10◦ (c) θ̃ : 30◦ (d) θ̃ : N/A

Figure 3.5: Trajectories comparison of S.II between Hybrid-A∗ (a) - (c) and

our proposed approach (d). Green vehicle poses in (a) - (c) and white vehicle

poses in (d) represnt driving in a forward direction. Pink vehicle poses in (a)

- (d) represent driving in a reverse direction.

advance is difficult in general, and choosing proper local goals would be another future

research topic [104].

We note that we did not compare our approach with RTR+TTS [65] because it

does not generate a motion plan p as we do. However, it would be yet another future

direction to combine their approach.

3.4 Experiments with a Physics-based Simulator

In this section, we introduce two possible extensions. First extension is for

simulating our proposed approach through a 3D (Webots) simulator [105, 106]. Figure

3.7 shows an autonomous vehicle on a stiff curve in a rural road. This curve requires for

the vehicle to move back and forth in order to pass through. The proposed approach

was fast enough to generate the motion in on-the-fly manner.

We used the model f in Eq. (3.1) in order to compute the lattice sets with the

wheelbase and the steering limit of the vehicle we chose. We captured the road
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(a) θ̃ : 3.5◦

(b) θ̃ : 10◦

(c) θ̃ : 30◦

(d) θ̃ : N/A

(e) θ̃ : 30◦

(f) θ̃ : N/A

Figure 3.6: Trajectories of S.I and S.III between Hybrid-A∗ (a) - (c), (e) and our

proposed approach (d), (f). Green vehicle poses in (a) - (c) and (e) and white vehicle

poses in (d) and (f) represnt driving in a forward direction. Pink vehicle poses in (a) -

(c), (e) and (f) represent driving in a reverse direction.

from a map in OpenStreetMap and then, we imported it through Webots. Next, we

decomposed the road into cells, constructing a road network. After choosing a source

and target position, we could generate a motion plan.

The second extension is for multiple vehicles. When a vehicle meets another vehicle

in the single lane road, one of the vehicles should go back in order for the other vehicle

to pass through. For this extension, we considered two different types of vehicles in

order to relax the assumption for the homogeneous robots (Sec. 2.6). Hence, these

two vehicles have different wheelbase. However, for simplicity, we regarded that their
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(a) Overview of the stiff curve.

(b) (c) (d) (e) (f) (g)

Figure 3.7: Single vehicle in a rural road. This is a 3D (Webots) simulation. (b) to (g)

represent the vehicle’s sequence of movements. (c) and (e) show driving in a reverse

direction.

sensing and communication range is same. Due to the difference of the wheelbase and

the size of each vehicle, we computed two different lattice sets. For the cooperative

pathfinding, we utilized the technique mentioned in Sec. 2.6. Instead of having 2

D grid cells, we regarded the decomposed road segments and their connections as a

graph. We computed the high level path with this graph, and we followed the path,

generating the motion plan. For more about heterogeneous agents, refer the future
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direction in Sec. 3.5.

(a) Two vehicles are met at a road. (b) Yellow vehicle moved back.

(c) Red vehicle moved forward. (d) Both vehicles finally drive their way.

Figure 3.8: Multiful vehicles in a rural road. This is a 3D (Webots) simulation. (a) to

(d) represent two vehicles’ sequence of movements.

3.5 Conclusions and Future Directions

In this chapter, we introduced an online motion planner for autonomous vehicles in

unstrucutured road networks. Then, we demonstrated this approach as a 3D simulator

for a multi vehicle scenario.

Potential future directions are as follows:

1. Generalized framework for challenging motions When we choose a mo-

tion primitive fromM0, the pre-defined radius and the pre-defined travel distance

from the initial state strictly limit possible motions. For example, in some cases

more than three point turns can be required. If so, this turning motions will

increase the travel distance even if the last state of the motion is still within the
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pre-defined radius. Hence, while manipulating, some guidance will be helpful.

In this direction, techniques from [66] and [65] can be utilized.

2. Utilizing an occupancy grid instead of rigid body detection When our

motion planning framework is adapted in an existing car platform, we have

to use the data from sensors. Particularly, point clouds from LiDAR and also

from other proximity sensors can be utilized. In this case, motion trajectories

should be represented on an the occupancy grid. Then, while selecting a motion

primitive from the lattice sets, an efficient method to prune unsafe motion

primitives is necessary to be devised.

3. Detecting a stiff curve before exploring local goals Given a current

state q′ and local goals li, li+1,i+2, the current approach is to find a sequence

of motion primitives from the lattice sets while changing the velocity until it

reaches the last local goal li+2. This process eventually switches the lattice set

to M0. However, it takes time to reach to M0. If we can detect the stiffness of

the particular road, considering the current velocity and the steering, we can

avoid searching and then switching to M0.

4. Re-decomposition of the road network For multiple vehicles and particu-

larly heterogeneous agents, decompositions may be not sufficient to generate a

motion plan. This is because while decomposing the road, we do not consider

whether computing a trajectory on the cells is feasible or not. If it fails to pass

through due to this issue, we can re-decompose the environment, changing the

resolution of the cells. However, this can be repeated many times. Hence, a new

classification for decomposing the environment while considering the motion

primitives is necessary.

136



5. Human-driven-AV interaction Consider a real world situation when human

drivers meet autonomous vehicles. Since we cannot communicate and deliver

the new plan to human drivers as we discussed so far, there should be a new

framework to resolve this situation. In order to deliver a new plan to human

drivers, we have to interact with them in different ways: through head up or LCD

displays, head lights, sounds, radio communications and mobile applications.

We also have to know what they understood. It can be recognized through their

motion (utilizing computer vision or accessing their vehicle control information

and sensors), gesture and voice. In a demanding environment, knowing the

human’s driving skill is also important. Based on their skill level, different

information can be provided. Another challenge could be uncooperative human

drivers who do not follow the new plan as suggested by an autonomous vehicle.

A simple solution could be to give them social penalties or rewards.
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NP-COMPLETENESS OF THE MINIMAL CONNECTING EDGE PROBLEM

147



We will prove the Minimal Connecting Edge (MCE) problem is NP-Complete.
MCE is a slightly simpler version of the Minimal Accepting Path (MAP) problem
and, thus, MAP is NP-Complete as well.

In MCE, we consider a directed graph G = (E, V ) with a source s and a sink t

where there is no path from s to t. We also have a set of candidate edges Ê to be
added to E such that the graph becomes connected and there is a path from s to t.
Note that if the edges in Ê have no dependencies between them, then there exists an
algorithm that can solve the problem in polynomial time. For instance, Dijkstra’s
algorithm [77] applied on the weighted directed graph G = (V,E ∪ Ê, w) where the

edges in Ê are assigned weight 1 and the edges in E are assigned weight 0 solves the
problem efficiently.

However, in MCE, the set Ê is partitioned in a number of classes Ê1, ..., Ên such
that if an edge ei is added from Êi, then all the other edges in Êi are added as well
to G. This corresponds to the fact that if we remove a predicate from a transition
in Bs, then a number of transitions on GA are affected. Let us consider the GA in
Fig. 2.3 as an example. Here, e0, e2 and e4 correspond to y((s1, s1), π0), e1 and e5 to

y((s1, s1), π2) and e3 to y((s1, s1), π3). Thus, {e0, e1, e2, e3, e4, e5} ∈ Ê and there exist

three classes Êi, Êj and Êj in the partition such that {e0, e2, e4} ⊆ Êi, {e1, e5} ⊆ Êj
and e3 ∈ Êk. { } ⊆ ∈

q0, s1 q1, s1 q2, s1

q3, s1

e0 e1 e2 e3

e4

e5

Fig. 7. The MCE instance that corresponds to from Fig. IV-A. The

Figure A.1: The MCE instance that corresponds to GA from Fig. 2.3. The dashed
edges denote candidate edges in Ê.

Problem 9 (Minimal Connecting Edge (MCE)). Input: Let G = (V,E) be a directed
graph with a source s and a distinguished sink node t. We assume that there is no
path in G from s to t. Let Ê ⊆ V × V be a set such that Ê ∩ E = ∅. We partition Ê
into E = {Ê1, . . . , Êm}. Each edge e ∈ Ê has a weight W (e) ≥ 0.

Output: Given a weight limit W , determine if there is a selection of edges R ⊆ Ê
such that

1. there is a path from s to t in the graph with all edges E ∪R,

2.
∑

e∈∪RW (e) ≤ W and

3. For each Êi ∈ E, if Êi ∩R 6= ∅ then Êi ⊆ R.

Theorem 10. MCE is NP-complete.
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Proof. The problem is trivially in NP. Given a selection of edges from Ê, we can
indeed verify that the source and sinks are connected, the weight limit is respected
and that the selection is made up of a union of sets from the partition.

We now claim that the problem is NP-Complete. We will reduce from 3-CNF-SAT.
Consider an instance of 3-CNF-SAT with variables X = {x1, . . . , xn} and clauses
C1, . . . , Cm. Each clause is a disjunction of three literals. We will construct graph
G and family of edges E . The graph G has edges E made up of variable and clause
“gadgets”.

Variable Gadgets For each variable xi, we create 6 nodes ui, u
t
i, v

t
i , u

f
i , vfi , and vi.

The gadget is shown in Fig. A.2. The node ui is called the entrance to the gadget and
vi is called the exit. The idea is that if the variable is assigned true, we will take the
path

ui → uti → vti → vi

to traverse through the gadget from its entrance to exit. The missing edge uti → vti
will be supplied by one of the edge sets. If we assign the variable to false, we will
instead traverse

ui → ufi → vfi → vi

Variable gadgets are connected to each other in G by adding edges from v1 to u2,
v2 to u3 and so on until vn−1 → un. The node u1 is the source node.

ui

ut
i

uf
i

vti

vfi

vi

∈ Pi

∈ Ni

Fig. 8. A single variable gadget. Solid edges are present in the original

Figure A.2: A single variable gadget. Solid edges are present in the original graph G
that will be constructed. Dashed edges (uti, v

t
i) or between (ufi , v

f
i ) will be supplied by

one of the edge sets in Ê.

Clause Gadgets For each clause Cj of the form (`j1 ∨ `j2 ∨ `j3), we add a clause
gadget consisting of eight nodes: entry node aj , exit node bj and nodes aj1, bj1, aj2, bj2
and aj3, bj3 corresponding to each of the three literals in the clause. The idea is that a
path from the entry node aj to exit node bj will exist if the clause Cj will be satisfied.
Figure A.3 shows how the nodes in a clause gadget are connected.

Structure We connect vn the exit of the last variable gadget for variable xn to a1,
the entrance for first clause gadget. The sink node is bm, the exit for the last clause
gadget. Figure A.4 shows the overall high level structure of the graph G with variable
and clause gadgets.
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aj

a1j

a2j

a3j

b1j

b2j

b3j

bj

∈ P1

∈ N2

∈ N3

Fig. 9. The clause gadget for a clause with three literals. The clause shown

Figure A.3: The clause gadget for a clause with three literals. The clause shown
here is (x1 ∨ x2 ∨ x3). The corresponding missing edges will be added to the set
P1, N2, N3, respectively, as shown in figure.

to traverse through the gadget from its entrance to exit.

x1 xn C1 Cm

Fig. 10. Connection between gadgets for variables and clauses.Figure A.4: Connection between gadgets for variables and clauses.

Edge Sets We design a family E = {P1, . . . , Pn, N1, . . . , Nn}. The set Pi will
correspond to a truth assignment of true to variable xi and Ni correspond to a truth
assignment of false to xi.

Pi has the edge (uti, v
t
i) of weight 1 and for each clause Cj containing the literal xi,

we add the missing edge (aij, b
i
j) corresponding to this literal in the clause gadget for

Cj to the set Pi with weight 0.

Similarly, Ni has the edge from (ufi , v
f
i ) of weight 1 and for each clause Cj containing

the literal xi it has the missing edge in the clause gadget for Cj with weight 0. We
ask if there is a way to connect the source u1 with the sink bm with weight limit ≤ n,
where n is the number of variables.

We verify that the sets P1, . . . , Pn, N1, . . . , Nn partition the set of missing edges.

Claim 1. If there is a satisfying solution to the problem, then u1 can be connected to
bm by a choice of edge sets with total edge weight ≤ n.

Proof. Take a satisfying solution. If it assigns true to xi, then choose all edges in
Pi else choose all edges Ni if it assigns false. We claim that this will connect u1 to
bm. First it is clear that since all variables are assigned, it will connect u1 to vn by
connecting one of the two missing links in each variable gadget. Corresponding to
each clause, Cj there will be a path from aj to bj in the clause gadget for Cj. This is
because, at least one of the literals in the clause is satisfied and the corresponding set
Pi or Ni will supply the missing edge. Furthermore, the weight of the selection will be
precisely n, since we add exactly one edge in each variable gadget.

Claim 2. If there is a way to connect source to sink with weight ≤ n then a satisfying
assignment exists.

Proof. First of all, the total weight for any edge connection from source to sink is ≥ n
since we need to connect u1 to vn there are n edges missing in any shortest path. The
edges that will connect have weight 1, each. Therefore, if there is a way to connect
source to sink with weight ≤ n, the total weight must in fact be n. This allows us to
conclude that for every variable gadget precisely one of the missing edges is present.
As a result, we can now form a truth assignment setting xi to true if Pi is chosen and
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false if Ni is. Therefore, the truth assignment will assign either true to xi or false and
not both thanks to the weight limit of n.

Next, we prove that each aj will be connected to bj in each clause gadget corr.
to clause Cj. Let us assume that this was using the edge (aij, b

i
j) ∈ Ni. Then, by

construction have that xi was in the clause Cj which is now satisfied since Ni is chosen,
assigning xi to false. Similar reasoning can be used if (aj, bj) ∈ Pi. Combining, we
conclude that all clauses are satisfied by our truth assignment.
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APPENDIX B

UPPER BOUND OF THE APPROXIMATION RATIO OF AAMRP
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We shall show the upper bound of the approximation algorithm (AAMRP) for a
special case.

Theorem 11. AAMRP on planar Directed Acyclic Graphs (DAG) where all the
paths merge on the same node is a polynomial-time 2-approximation algorithm for the
Minimal Revision Problem (MRP).

Proof. We have already seen that the AAMRP runs in polynomial time.
Let Y = {y1, . . . , ym} be a set of Boolean variables and G : (V,E) be a graph with

a labeling function L : E → P(Y ), wherein each edge e ∈ E is labeled with a set of
Boolean variables L(e) ⊆ Y . The label on an edge indicates that the edge is enabled
iff all the Boolean variables on the edge are set to true. Let v0 ∈ V be a marked initial
state and F ⊆ V be a set of marked final vertices.

Consider two functions w′ : E∗ → P(Y ), and w : E∗ → N where E∗ represents
the set of all finite sequences of edges of the graph G. Hence, w′(P ) for a path
P = 〈v0, . . . , vk〉 is a set of boolean variables of its constituent edges which makes
them enabled on the path P :

w′(P ) =
k⋃

i=1

L(vi−1, vi)

while w(P ) is the number of the boolean variables of

w(P ) =
∣∣∣
k⋃

i=1

L(vi−1, vi)
∣∣∣ =

∣∣∣w′(P )
∣∣∣

Given a initial vertex v0, two vertices vi, vj, and a final vertex vk, let Popt denote
the path that produces an optimal revision for the given graph. Let Pa denote a
general revision by AAMRP. Suppose that Popt consists of subpaths P0i, Pij, Pjk,
and Pa consists of subpaths P0i, P

′
ij, Pjk.

We will discuss the cases when P0i and Pjk are empty later. The former case can
occur when Popt and Pa do not have any common edges from v0 to vi in the sense that
each path takes a different neighbor out of v0. This case can also occur when 0 < i if
from v0 to vi there is no boolean variables to be enabled to make the path activated.
Likewise, the latter case can occur when i < j < k or when i ≤ j = k. We do not take
i = j unless j = k. Considering both cases together, we can get the possibility that
Popt and Pa are entirely different from v0 to vk.

In vj, the AAMRP should relax the weight of the path from v0 to vj, comparing
between two paths Pij and P ′ij. Thus, we can denote:

w′(Pm) = w′(P0i) ∪ w′(P ′ij) ∪ w′(Pjk),

w′(P ∗) = w′(P0i) ∪ w′(Pij) ∪ w′(Pjk).
Let w′(P0i) ∪ w′(P ′ij) = Λa, w

′(P0i) ∪ w′(Pij) = Λopt, and w′(Pjk) = Λ. Then, we
can denote:

w′(Pa) = Λa ∪ Λ,
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w′(Popt) = Λopt ∪ Λ.

Recall that
w(Pa) = |Λa ∪ Λ|,
w(Popt) = |Λopt ∪ Λ|.

We will show that w(Pa) ≤ 2w(Popt).
Note that w(Popt) ≥ 1, so that |Λopt ∪ Λ| ≥ 1. This is because if w(Popt) = 0, then

it is reachable from v0 to vf without enabling any boolean variables which are atomic
propositions of the specification.

Remark 2. |Λopt ∪ Λ| ≥ 1.

Note that |Λa| ≤ |Λopt|. This is because the AAMRP only relaxes the path when
it has less number of boolean variables.

Remark 3. |Λa| ≤ |Λopt|.
Note that if |Λa| = 0, then |Λopt∪Λ| = |Λa∪Λ| ≤ 2|Λopt∪Λ|. In this case, Λa is the

optimal path if Λa = 0 since Λ is common for the two paths. I.e., w(Pa) ≤ 2w(Popt).
Consider the case |Λa| ≥ 1. We will prove the claim by contradiction. Assume

that 2w(Popt) < w(Pa) so that 2|Λopt ∪ Λ| < |Λa ∪ Λ|. Let |Λa| = µ, |Λopt| = η and
|Λ| = τ . There are four cases.

Case 1: if Λopt ∩ Λ = ∅ and Λa ∩ Λ = ∅, then

2|Λopt ∪ Λ| < |Λa ∪ Λ| ⇒ 2(η + τ) < µ+ τ

2η + 2τ < µ+ τ ⇒ 2η + τ < µ

However, µ ≤ η by Remark 3. Thus, η+ τ < 0 which is not possible and it contradicts
our assumption.

Case 2: if Λopt ∩ Λ 6= ∅ and Λa ∩ Λ = ∅, then let |Λopt ∩ Λ| = ζ, where 1 ≤ ζ ≤
min(η, τ).

2|Λopt ∪ Λ| < |Λa ∪ Λ| ⇒ 2(η + τ − ζ) < µ+ τ

2η + 2τ − 2ζ < µ+ τ ⇒ 2η − 2ζ + τ < µ

If η ≤ τ , then ζ ≤ η and η = ζ + α, for some α ≥ 0.

2(ζ + α)− 2ζ + τ < µ⇒ 2α + τ < µ

However, η ≤ τ and µ ≤ η by Remark 3. Thus, 2α < 0 which is not possible and
it contradicts our assumption.

If η > τ and η = τ + β, for some β > 0, then ζ ≤ τ and τ = ζ +α, for some α ≥ 0.

2(τ + β)− 2ζ + τ < µ⇒ 2τ − 2ζ + 2β + τ < µ

2(ζ + α)− 2ζ + 2β + τ < µ⇒ 2ζ + 2α− 2ζ + 2β + τ < µ

2α + 2β + τ < µ⇒ 2α + 2β + η − β < µ

2α + β + η < µ
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However, µ ≤ η by Remark 3. Thus, 2α + β < 0 which is not possible and it
contradicts our assumption.

Case 3: if Λopt ∩Λ = ∅, Λa ∩Λ 6= ∅, then let |Λa ∩Λ| = θ, where 1 ≤ θ ≤ min(µ, τ).

2|Λopt ∪ Λ| < |Λa ∪ Λ| ⇒ 2(η + τ) < µ+ τ − θ

2η + τ < µ− θ ⇒ 2η + τ < µ

However, µ ≤ η by Remark 3. Thus, η + τ < 0 which is not possible and it
contradicts our assumption.

Finally the last case: if Λopt ∩ Λ 6= ∅, Λa ∩ Λ 6= ∅, then let |Λopt ∩ Λ| = ζ, where
1 ≤ ζ ≤ min(η, τ), and |Λa ∩ Λ| = θ, where 1 ≤ θ ≤ min(µ, τ).

2|Λopt ∪ Λ| < |Λ ∪ Λ| ⇒ 2(η + τ − ζ) < µ+ τ − θ

2η + 2τ − 2ζ < µ+ τ − θ ⇒ 2η + τ − 2ζ < µ− θ < µ

If η ≤ τ , ζ ≤ η and η = ζ + α, for some α ≥ 0, then

2(ζ + α) + τ − 2ζ < µ⇒ 2α + τ < µ

However, µ ≤ η and η ≤ τ by Remark 3. Thus, 2α < 0 which is not possible and
it contradicts our assumption.

If η > τ , η = τ + β, for some β > 0, ζ ≤ τ and τ = ζ + α, for some α ≥ 0, then

2η + τ − 2ζ < µ⇒ η + (τ + β) + τ − 2ζ < µ

η + (ζ + α) + β + (ζ + β)− 2ζ < µ⇒ η + 2ζ + α + 2β − 2ζ < µ

η + α + 2β < µ

However, µ ≤ η by Remark 3. Thus, α + 2β < 0 which is not possible and it
contradicts our assumption.

Therefore, |Λa ∪ Λ| ≤ 2|Λopt ∪ Λ|, and we can conclude that w(Pa) ≤ 2w(Popt).
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The next proof is mostly based on [107] and [101]. First, from [107], we borrowed
the technique to show how a feasible motion plan can be established through a system
and its input. Second, we used the same method in [101] to resolve the boundary
condition. Authors in [101] introduced Car Grid Search and addressed that it is
resolution complete. Since each turn action in their planner is based on left most turn
or right most turn, they used the following proposition: if a feasible free path between
two given configurations exists, then there also exists a feasible free path between
these configurations that are only controlled with the left most and the right most
turn. They use Car Grid Search to find the goal and stop searching it if the expanding
tree exceeded the pre-defined configuration space while we use Car Grid Search for
pre-computing the tree expanding up to the pre-defined space limit and then search a
near node of the goal from the tree.

C.1 Resolution Complete of Multi-resolution Motion Planner

Theorem 12 (Resolution Complete). If Prob. 8 has a motion plan p which can be
represented in some resolution of the workspace, then Alg. 17 to 19 can find one
with the decomposition of the workspace in multi-resolution and pre-computed & pre-
constructed lattice sets. It indicates failure otherwise. In both cases, it returns an
answer in a finite time.

Proof. First, we will show how a feasible motion plan can be found, given that a
solution exists. For this, we will consider two cases: a case for finding a motion plan
with M1 and the case for finding a motion plan with M0.

Since a motion plan exists, we safely assume that there is a high level path p∗h and
its smoothed path p∗h.Spine. This p∗h.Spine is a sequence of coordinates from qs to
qg. Consider these coordinates as strings. Given the current coordinates qc, a local
goal lg from these coordinates can be transformed to the local coordinates where
each coordinates is originated from its qc. Then, we can use this sequence of local
coordinates as input strings and consider each local coordinates as an alphabet of Σ.
Let’s consider M1 as a system T ; since M1 is the superset of all M% where % ≥ 1,
we will here simply consider M1 and its set of states η1. Now, we will show how the
system T and the input Σ can produce a motion plan p. Consider that qs is the initial
state of T . Take this qs as the current state qc. Given a string σi in Σ, we can pick a
η in η1. This η is within the boundary γlg. It means d3(η, σi) ≤ γlg. Depending on the
size of each cell (x̃, ỹ) in M1, there can be more than one η within γlg. Hence, when
we make the cell finer, more η can be within γlg. Next, the motion plan p′ from q̃s
to η can be found from AJ of M1 after transforming back to the global coordinates
where they are originated from the qc. Then, we can check the collision with the qc’s
near obstacles. If it is collided, then we can pick the next η from η1 which is within
γlg, repeating the above steps. Otherwise, we can continue for the next string σj
in Σ, progressing the current coordinates qc. Concatenating all this plan p′, we can
construct a feasible motion plan p from qs to qg.

Consider the case whenM0 is chosen because no η left inM1. While we produced
the motion plan withM1 as the system, we only considered one way driving direction.
Then, failures can happen if all η within γlg are collided with the obstacles or there
is no η within γlg due to the environment and the fixed driving direction. Then, we
can switch the system from M1 to M0. M0 is computed with motion primitives
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which enable to progress in a bi-directional way. In addition, since Alg. 18 always
switches back to M1 once it produces a nonempty motion plan through M0, we here
will focus on finding a motion plan from the current coordinates qc to the local goal lg.
In particular, we will show how the qc can be connected to a coordinates near by lg
within γlg through a sequence of feasible motion plans.

We discretized the configuration space into an array of cells. Each cell in this grid
is 3 dimensional. Given a coordinates (x, y, θ, v, ζ) = q′ ∈ Q, the corresponding cell

has a key-value pair. The key consists of (x̃, ỹ, θ̃) and the value consists of (x, y, θ, v, ζ)

such that |x̃ − x| ≤ ∆x, |ỹ − y| ≤ ∆y, |θ̃ − θ| ≤ ∆θ where ∆· is a cell size for each

dimension. We denote the key (x̃, ỹ, θ̃) of q′ as q̂′. Then, d3(q
′, q̂′) ≤ γ̂ such that

dxy(q
′, q̂′) ≤ γ̂xy and dθ(q

′, q̂′) ≤ γ̂θ. We choose sufficiently small values for this γ̂.
We also discretize the workspace into an array of 2D cells. This is for checking if an

obstacle in the workspace is occupied in some particular cell. With this decomposition,
we assume that if a cell is occupied, it is >. Otherwise, it is ⊥. Let denote the cell
size γ̂o = (γ̂xyo , 2 · γ̂θ) where γ̂xyo is the Euclidean distance of each cell in 2D.

Proposition 9. Each cell of the grid in configuration space and each cell of the grid
in workspace are fine enough such that γ̂ < γ̂o and 2 · γ̂ ≤ γlg

In M0, each q′ ∈ Q̃ can have at most 6 successors qi = (xi, yi, θi, 0, 0) where
i ∈ {1, . . . , 6}. We can represent the distance from q′ to each qi as d3(q

′, qi). When
this distance is bigger than the cell size, we can make the successors being progressed
from q′. In addition, in order to safely reach lg, it should be less than the boundary
for the local goal γlg.

Proposition 10. ∀q′ ∈ Q̃ in M0,∀successor qi of q′, γ̂ . d3(q
′, qi) and d3(q

′, qi) <
min{2 · γ̂, γ̂o, γlg}

Here, d3(q′, qi) . γ denotes that only one of the conditions for d3 is satisfied.
When we choose a local goal lg through p∗h.Spine, the lg should be always within

the coverage of M0.

Proposition 11. ∀qc ∈ q,∀lg of qc, dxy(qc, lg) < local goal coverage of M0

Even we choose the lg under the coverage of M0, we have not considered the
environment including the obstacles near in. If it is not feasible to take any motion due
to this limitation, Alg. 19 and Alg. 18 return an empty plan. Then, Alg. 17 can get
an alternative path, repeating the early described procedure again. If no alternative
path is found, Alg. 17 returns failure. However, this contradicts our assumption.
Hence, we assume that a feasible motion plan exists within M0’s coverage.

Since in M0, the resolution of the KD-Tree is equal to the pre-defined grid, each
q′ ∈ Q̃ in M0 can be searched by KD-Tree. In addition, for each q′, there is a way to
get a sequence of nodes from the root node q̃s of the tree AJ to q′.

Proposition 12. ∀η ∈M0, a motion plan p :=M0[η] exists from q̃s to η

Given above considerations, when we take qc as q̃s of M0, we can find cells closer
to the lg within γlg radius.

Proposition 13. Prop. 9, 10, 11 =⇒ ∃η ∈M0
qc s.t. d3(qηc , lg) ≤ γlg
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We can retrieve a sequence of nodes from these cells to its root node qc. Once we
simulate this sequence of nodes, checking whether it is collided with the obstacles, we
can get a feasible motion plan.

Proposition 14. Prop. 12, 13 =⇒ a motion plan pqc :=M0
qc [η] exists

Second, we will show how it is guaranteed to terminate within a finite time for the
following three cases.

Case 1 In Alg. 17, the while loop is continued until the current coordinates qc
reaches near by the goal coordinates qg. While progressing to qg, it calls Alg. 18 to
get the motion plan. When it gets the plan, it follows the plan for the duration κ.
This process gradually makes the distance from qc to qg closer. Hence, assuming that
the motion plan exists and the distance to qg is finite, the while loop is finished in a
finite time.

Case 2 Now, we consider the case when it failed to get the motion plan for some
part of the path. In this case, this part of the path is added to the block set, and
an alternative path is computed. Then, the process to get the motion plan will be
repeated. This will lead the while loop is terminated too.

Case 3 Lastly, when it cannot compute an alternative path, considering the block set,
it returns failure. This also makes the algorithm being terminated immediately.

C.2 Correctness of Multi-resolution Motion Planner

Theorem 13 (Correctness). Algorithm 17 to 19 solve Prob. 8.

Proof. In Alg. 17, we can progress to the given goal qg. The while loop is continued
until the current coordinates qc reaches near by qg. In each iteration, it calls Alg.
18 in order to get the local plan, and then it updates qc, progressing as long as the
duration κ. In Alg. 18, it sets up the local goals from qc for the duration κ. Then,
it calls Alg. 19 in order to get the motion plan. In Alg. 19, it finds a motion plan,
checking the collision with the near obstacles.

From the above procedure, if a feasible motion plan exists, it can find the plan
from qs to near qg, progressing to qg.
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