
Robust Networks: Neural Networks Robust to Quantization Noise and Analog

Computation Noise Based on Natural Gradient

by

Pradyumna Kadambi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2019 by the
Graduate Supervisory Committee:

Visar Berisha, Chair
Gautam Dasarathy

Jae-Sun Seo
Yu Cao

ARIZONA STATE UNIVERSITY

December 2019

ABSTRACT

Deep neural networks (DNNs) have had tremendous success in a variety of

statistical learning applications due to their vast expressive power. Most

applications run DNNs on the cloud on parallelized architectures. There is a need

for for efficient DNN inference on edge with low precision hardware and analog

accelerators. To make trained models more robust for this setting, quantization and

analog compute noise are modeled as weight space perturbations to DNNs and an

information theoretic regularization scheme is used to penalize the KL-divergence

between perturbed and unperturbed models. This regularizer has similarities to

both natural gradient descent and knowledge distillation, but has the advantage of

explicitly promoting the network to find a broader minimum that is robust to

weight space perturbations. In addition to the proposed regularization,

KL-divergence is directly minimized using knowledge distillation. Initial validation

on FashionMNIST and CIFAR10 shows that the information theoretic regularizer

and knowledge distillation outperform existing quantization schemes based on the

straight through estimator or L2 constrained quantization.

i

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Visar Berisha for his guidance,

knowledge, and patience. His support, feedback, and encouragement have been

indispensable. I am lucky to have had a supervisor who was so invested in helping

me become a better researcher. I am grateful for the opportunity to work on this

research.

I would like to thank the rest of my thesis committee: Dr. Gautam Dasarathy, Dr.

Jae-Sun Seo, and Dr. Yu Cao, for their insightful comments and questions.

I would also like to thank Paul Whatmough and Chu Zhou of ARM Inc for

providing me a summer internship opportunity and Dr. Jae-Sun Seo for

recommending me for the position.

To my labmates, thank you for your friendship, your help and inputs, and the and

for the fun times outside the lab.

I would like to thank my friends and family for their love through the ups and

downs. Finally, I must express my very profound gratitude to my parents and for

providing me with support and continuous encouragement throughout my years of

study. This would not have been possible without them. Thank you.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 4

2.1 Neural Network Quantization and Compression 4

2.2 Analog Accelerators for Neural Networks . 10

2.2.1 In-Memory Analog Computation . 11

2.3 Second Order Optimization for Deep Networks . 14

2.3.1 Natural Gradient Descent . 15

2.3.2 Motivation for This Work: Second Order Information can

be Used to Rank Parameter Importance 17

3 METHODS . 20

3.1 Notation . 20

3.2 Maximum Likelihood Estimation . 21

3.2.1 Fisher Information . 22

3.3 Regularization for Model Robustness . 23

3.3.1 Model Robustness . 23

3.3.2 Fisher Approximation of KL-Divergence 23

3.4 Information Theoretic Regularization of Weight Space Perturba-

tions . 26

3.5 Fisher Information for Linear Regression . 28

3.5.1 Linear Regression Notation . 28

3.5.2 Maximum Likelihood for Linear Regression 29

iii

CHAPTER Page

3.5.3 Fisher Information from Likelihood . 30

3.6 Fisher Information for Softmax Regression . 32

3.6.1 Logistic Regression Notation . 32

3.6.2 Softmax Regression Notation . 32

3.6.3 Fisher Information Matrix from Likelihood (Logistic Re-

gression) . 33

3.6.4 Fisher Information Matrix from Likelihood (Softmax Re-

gression) . 34

3.7 Fisher Information for Neural Networks . 35

3.7.1 Observed Information Matrix . 35

3.7.2 Fisher Computation from Squared Gradient 36

3.7.3 Fisher Regularizer Gradient Update Rule 36

3.8 Direct KL-Divergence Regularization of Weight Perturbations

with Distillation . 41

3.8.1 Distillation as KL-Divergence Minimization 42

3.9 Quantization . 44

3.10 Noise Model for In-Memory Compute . 46

4 RESULTS AND DISCUSSION . 47

4.1 Comparison of Diagonal Approximation and Hessian Vector Prod-

uct for Estimating Fisher . 47

4.2 Fisher Information Can Rank the Sensitivity of Parameters to

Perturbation . 49

4.3 Quantizing Lenet-5 for FashionMNIST . 53

4.4 Quantizing ResNet-18 for CIFAR-10 . 55

iv

CHAPTER Page

4.4.1 Effect of Regularization Methods on Weight Distribution . . . 56

4.4.2 Straight-Through Estimator Limits Accuracy Gains 56

4.5 Effect of Analog Hardware Noise from NVM Accelerator on Lenet-

5 . 63

4.6 Effect of Analog Hardware Noise from NVM Accelerator on ResNet-

18 . 65

5 CONCLUSION . 67

REFERENCES . 70

v

LIST OF TABLES

Table Page

3.1 Toy Example of How Temperature Softmax Used in Distillation Ef-

fects Weights . 42

4.1 Accuracy of Quantized Lenet-5 on FashionMNIST . 53

4.2 Accuracy of Quantized ResNet-18 on CIFAR-10 . 55

4.3 List of Optimization Targets for Each Regularization Scheme 59

4.4 Accuracy of Quantized ResNet-18 on CIFAR-10 for 2-bit Quantizaiton . 61

vi

LIST OF FIGURES

Figure Page

1.1 Deep Neural Network with Perturbation to Parameter Space 2

2.1 Outline of Previous Work . 5

2.2 Quantization Aware Training . 7

2.3 Post Training Quantization . 7

2.4 Example of In-Memory Compute Cell . 12

2.5 High Level Diagram of von-Neumann Architecture 12

2.6 High Level Diagram of non-von Neumann Architecture Using In-

Memory Compute . 13

2.7 Noise from a PCM Device to Programmed Weights 14

2.8 Visualizing Gradient Descent vs. Natural Gradient Descent 18

4.1 Accuracy of a Two Layer MLP on MNIST as a Function of the Size

of Perturbation to Weights . 48

4.2 Accuracy of ResNet-18 on CIFAR-10 as a Function of Average Mag-

nitude of Perturbation to the Weights. Perturbation is a Gaussian

Random Variable with Identity Covariance or Covariance Propor-

tional to Fisher Information . 50

4.3 Histogram of Normalized Fisher Information, Inverse Fisher Informa-

tion . 51

4.4 Assessing the Accuracy of Fisher Approximation to KL-Divergence 52

4.5 Plot of Weight PDF of First Conv Layer of ResNet-18 Under Three

Different Regularization Schemes . 56

4.6 Plot of Weight PDF of Final FC Layer of ResNet-18 Under Three

Different Regularization Schemes . 57

vii

Figure Page

4.7 Visualization of Example Loss Surface Showing how Parameter Space

Based Methods Find the Same Minimum, but Distillation Finds a

Different Minimum . 57

4.8 Plot of MSQE and Fisher Weighted MSQE for All Three Regulariza-

tion Methods . 60

4.9 Plot of Trace of FIM vs. Iteration . 61

4.10 Effect of NVM noise on Lenet-5 Accuracy Under Several Regulariza-

tion Methods . 64

4.11 Plot of Accuracy vs. Noise Level for Resnet-18 . 66

viii

Chapter 1

INTRODUCTION

Deep learning has emerged as a useful tool for solving problems in a variety of

machine learning domains such as computer vision, speech recognition, natural

language processing, recommender systems and anomaly detection. The excellent

performance offered by deep neural networks (DNNs) comes at a high

computational cost since DNNs typically have many layers and can have millions of

parameters. In fact, the increases in the state of the art performance have come

jointly with an increase in the model size. GoogLeNet (Szegedy et al., 2015)

achieved 74.8% Top-1 accuracy on ImageNet with 6 million parameters, while

ResNeXt-101 managed 79.6% Top-1 accuracy with nearly 45 million parameters.

A significant amount of deep learning inference is expected to be performed at the

edge, which is challenging since edge devices are restricted by small power budgets

and have limited computational resources. Applications like health monitoring,

autonomous driving, and smart home devices must also meet real-time constraints

and ensure data privacy. This makes it challenging to always offload inference to

the cloud. Therefore, it is crucial to develop efficient hardware for DNN inference

on mobile devices. Interest in efficient DNN architectures also extends to the

datacenter where power density is anticipated to rise if an increasing share of

workload comes from DNN inference.

Several methods have been proposed for efficient deep learning hardware. Standard

methods improve the efficiency of DNNs by applying quantization, pruning, and

compression techniques to the model with an effort to retain the original model’s

high performance. By reducing the number of bits used to represent each weight,

1

reducing the number of parameters, and even reducing the number of layers, the

memory and power consumption can be reduced, and the latency can be improved.

This efficient model can be further optimized if implemented on custom hardware

such as an ASIC or FPGA. Specifically, analog hardware using non-volatile memory

(NVM) cells for performing DNN inference in-memory are an active area of

research, since they can drastically reduce the energy cost of multiply-accumulate

operations (at the cost of inherently noisy analog computations) which drives deep

learning inference cost.

Figure 1.1: Upon a perturbation to the parameter space (like quantization or ana-
log hardware noise), the output distribution of a DNN model can change signifi-
cantly. Regularizing the KL-divergence between the output of the perturbed model
and original model leaves the output distribution unchanged after perturbation.

Both quantization and analog hardware noise can be considered as a more general

problem: ensuring that a DNN is robust to perturbation of its weights. By

regularizing the KL-divergence of the output of the network against a perturbed

version of the network, the model’s output distribution will not change under

perturbation (Figure 1.1). We develop two methods of regularizing the

KL-divergence. One method approximates the KL-divergence using Fisher

information, a quantity that ranks parameter importance. The connection between

2

this method, second order optimization, and natural gradient descent is explored.

Knowledge distillation is shown as another method that is equivalent to

regularizing the KL-divergence. This regularization approach is applied in the

context of efficient DNN hardware. Quantization of weights and mixed-signal noise

from analog hardware are both treated as weight perturbations, and the network is

regularized for robustness against these perturbations. On a Lenet-5 network

trained on FashionMNIST, and ResNet-18 trained on CIFAR-10, distillation and

Fisher regularization are demonstrated to outperform standard quantization

methods. The efficacy of these methods for providing robustness to mixed-signal

in-memory compute noise is then evaluated.

The document is structured as follows. In Chapter 2, an overview is provided of

related work in quantization of DNNs, analog hardware for DNNs, and second order

optimization methods. In Chapter 3, the Fisher regularizer is derived, knowledge

distillation is introduced, and modifications to SGD and ADAM are outlined that

include the regularization method. Chapter 3 also describes the noise model used

for an NVM accelerator. Chapter 4 covers the experimental validation. Chapter 5

contains concluding remarks and suggestions for future work.

3

Chapter 2

LITERATURE REVIEW

This section explores several avenues of related work. First, we shall develop

background in DNN quantization and compression methods. To complete the

discussion on hardware for neural networks, we cover non-volatile memory based

accelerators for DNNs. To motivate our algorithmic contribution, we will examine

natural gradient descent and second order methods for DNNs.

2.1 Neural Network Quantization and Compression

Prior to the advent of modern deep learning methods, several works studied

quantization of neural networks. Dundar and Rose (1995) build on the work of (Xie

and Jabri, 1992) and evaluate the performance of neural networks used as

analog-to-digital converters (ADCs), sine wave generators, and classifiers. The

networks were directly trained with quantized weights such that after each weight

update, the parameters were quantized. They found that training could often

freeze, since the gradients would not be large enough to change the value of the

weight since the weight would return to its previous value after quantization. They

suggest training based on randomly perturbing the network, or by flipping the bit

of the weights with the largest gradients in the direction of the gradient. Balzer

et al. (1991) apply quantization to Boltzman Machines and study effective

architectures for quantization.

A myriad of quantization methods have been proposed for modern deep learning

systems (Sze et al., 2017). An overview of related work is provided in Figure 2.1.

Methods to quantize neural networks typically employ either quantization-aware

4

DNN
Compression

Post-Training

Quantization

K-means
(Han, 2016)

Quantization
Aware Training

Fisher-based
Quantization

(Tu, 2016)

Straight-Through
Estimator

(Courbariaux, 2015)
(Courbariaux, 2016)

Architecture
Level

Channel,
Synapse

(He, 2017)

Weight Pruning

Magnitude
Based

(Mozer, 1989)

Fisher Based
(Tu, 2016)

Hessian Based
(Le Cun, 1990)
(Hassibi, 1992)

Pruning

Newton Method
For Quantization

(Hou, 2016)
(Hou, 2018)

Squared
Error

Regularized
Quantization
(Choi, 2018)

Hessian
Weighted K-

means
(Choi, 2018)

Figure 2.1: An outline of work in model compression related to our method.

training or post-training quantization. As the name implies, post-training

quantization begins with an already trained 32 bit floating point (FP32) model;

weights and activations of the trained network are then quantized (Fig. 2.3). The

benefit of this approach is that minimal training is required since pre-trained

models are widely available. A small set of calibration data can be used to find the

parameters for the quantizer. At INT8 precision, the accuracy of post-training

quantization can nearly match FP32. However, reducing weights and activations to

4-bits and below with post-training quantization can significantly impact accuracy

(Banner et al., 2018).

In Han et al. (2015), a model compression pipeline known as Deep Compression is

proposed. Initially, weights are pruned based on their magnitude based on a

determined threshold. The network is then retrained to recover the loss in accuracy.

Then k-means is employed for vector quantization of the weights, and each

quantization bin is fine tuned by summing the gradient of all the weights that lie in

5

that bin. This clustering is performed on a layer-by-layer basis. As a final step,

Huffman Coding is performed to further reduce the memory footprint of the

weights.

Quantization-Aware Training

In quantization aware training, the network is trained with quantized weights.

Weights are quantized in the forward pass, but the backward pass is problematic,

since the gradient of the quantization function is zero almost everywhere. In Bengio

et al. (2013) the straight-through estimator(STE) is introduced for backpropogation

through non-differentiable functions (such as the quantization function), and in

Courbariaux et al. (2015) the STE is applied for training quantized networks. As

the name implies, the STE replaces the gradient of the quantizer with identity so

that gradients can flow unimpeded to the weights (Fig. 2.2). The STE is used in a

multitude of training techniques for deep neural networks (Courbariaux et al., 2015;

Mishra et al., 2017; Zhou et al., 2016; Rastegari et al., 2016; Polino et al., 2018).

Some works Courbariaux et al. (2015); Choi et al. (2016) use variants of the STE

that enforce:

∂Q(θ)

∂θ
= 1{|θ| ≤ 1} (2.1)

(i.e. gradients for a parameter are cancelled when the FP32 value of that parameter

has magnitude larger than 1). However, in practice, libraries like Tensorflow

implement quantization-aware training by eschewing the condition (2.1) and

equation simply apply pass through gradients for quantization such that

∂Q(θ)
∂θ

= 1∀θ. Quantization-aware training directly minimizes the loss L(Q(θ)), the

loss with respect to the quantized parameters.

Aggressively quantizing networks to 4-bits and lower is of considerable interest as it

can provide several benefits. Using a binary representation for weights and

6

Weights Quantizer DNN Loss

Forward	Pass	for	Quantization-Aware	Training

Weights Quantizer DNN Loss

Backward	Pass	for	Quantization-Aware	Training

Figure 2.2: Quantization aware training using straight-through estimator. The
quantization function is replaced with identity in the backward pass.

FP32	Model Quantization	
&	Pruning

Retraining	
(Optional)

Target
Device

Post-Training	Quantization

Figure 2.3: Post training quantization pipeline.

activations not only reduces memory footprint significantly, but also has the added

benefit of transforming multiplications into simple XNOR operations. Weight

access energy can also potentially decrease, since memory access cost is

proportional to the size of the memory (Hubara et al., 2017). BNN (Hubara et al.,

2018) introduces binary neural networks and demonstrates a binarized VGG

7

network with minimal loss of accuracy on CIFAR-10. XNOR net (Rastegari et al.,

2016) introduces scaling factors for the binary weights and extended the study of

binary networks to the ILSVRC2012 ImageNet dataset, achieving 56.8% using

AlexNet. Wide reduced precision networks (Mishra et al., 2017) shows that

accuracy can be recovered for low precision networks (4b A 2b W, 2b A 2b W, 1b

A 1b W) by simply increasing the number of feature maps in each layer. ResNet-34

Top-1 accuracy on ImageNet is improved from 60.54% to 72.38% at the cost of

tripling the number of feature maps. Recently, Bi-real (Liu et al., 2018) has

demonstrated 62.2% top-1 accuracy on ImageNet for a binarized ResNet-34.

Loss Aware Quantization

The quantization error criterion, θ −Q(θ)), can also be incorporated into the loss

function or included as an optimization constraint. This method has some

similarities to our approach. In Hou et al. (2016) and Hou and Kwok (2018),

binarization and ternarization of weights are introduced as optimization

constraints. This is then solved via a proximal Newton method where the curvature

matrix is estimated using an adaptive learning rate algorithm. They demonstrate

their method on feedforward networks on CIFAR-10 and CIFAR-100, as well as on

LSTMS on the PennTreebankd dataset. In Choi et al. (2018), quantized networks

are learned via regularizing the mean squared quantization error:

MSQE(θ) =
∑

i ||θi −Q(θi)||22. This results in a Top-1/Top-5 accuracy on

ImageNet for 1b weights and activations of 41.1%/66.6% on AlexNet, and

38.9%/65.4% on ResNet-18.

8

Neural Architecture Search

A notable challenge that complex model compression methods face is that it is

often difficult to use approaches like variable bit width for channels and weights,

Huffman encoding of weights, insufficiently sparse weight representations, etc. in

mobile hardware. Models are often pruned and deployed with INT8 or even FP32

precision to accommodate existing hardware. However, accelerators have been

proposed to solve this issue (Lee et al., 2018). An emerging area of research that

can directly target existing hardware platforms is neural architecture search (NAS)

(Zoph and Le, 2016). In NAS, the optimization algorithm finds not only a set of

optimal weights, but also an optimal architecture. This search can be conducted by

a reinforcement learning (RL) agent modeled as a markov decision process, or by

Bayesian optimization.

To limit the immense computational burden (since the search space can be large,

each candidate network may have to be trained, and the RL agent itself must be

learned), NAS methods often start with a backbone architecture and allow learning

of architecture-level parameters such as bit width, number of channels for a specific

layer, number of layers, filter size, etc. The benefit of this approach is that the RL

agent can find network architectures that are constrained by objectives that

incorporate information about the power, latency, and memory available on the

actual target device (Fedorov et al., 2019). Therefore, device specific architectures

can be learned. MobileNetV3 applies NAS to improve on Top-1 accuracy by 3.2%

and reduce latency on mobile CPU by 20% (Howard et al., 2019).

9

2.2 Analog Accelerators for Neural Networks

Von Neumann computing architectures separate data memory from the processing

elements that perform the computation 2.5 This paradigm is at the heart of most

modern CPUs and GPUs. In the context of neural networks, this requires that

weights and activations for each layer must be read from a memory and fed to the

processing element to produce the output. The most frequent operation in DNN

inference is the multiply-accumulate operation that is executed for computing a

matrix-vector product of a weight matrix by an input vector. For convolutional

layers, an image to column (im2col) operation is applied prior to performing a

matrix multiply. Each each n× n patch of the image - where n is the filter size - is

extracted with appropriate stride, and transformed into a matrix of row vectors.

The filter kernels are transformed into a matrix of column vectors. Thus a

convolution is performed with a general matrix multiply (GEMM) operation which

is itself comprised of many MACs.

MACs comprise an overwhelming majority of DNN energy use (Sze et al., 2017). In

fact, the energy required for each MAC operation is dominated by the cost of

reading weights from memory, while the energy consumed by the processing

element for performing the computation itself is relatively small (Hubara et al.,

2018). Additionally, the energy cost of accessing weight memory increases

significantly as a function of the size of the memory. If the accuracy degradation is

tolerable, this problem can be solved with aggressive quantization. In lieu of

traditional digital hardware, this problem can be solved using a non-von

Neumannn, in-memory. Analog in-memory compute for DNNs use the memory

itself to perform computation (Binas et al., 2016).

10

2.2.1 In-Memory Analog Computation

Consider Fig 2.4. Analog computation for performing MAC operations begins by

first programming each cell in a non-volatile memory (NVM) array with a

resistance value corresponding to weight from a layer. The memory can be resistive

random access memory (ReRAM) (Song et al., 2017), phase change memory (PCM)

(Joshi et al., 2019), or even magnetic random access memory (MRAM) (Patil et al.,

2019).

To feed inputs to the accelerator, the inputs are converted from digital values to

analog voltages by a digital to analog converter. Then the currents that are excited

across the resistances constitute multiplication, and the accumulation operation

sums the currents by simply connecting wires. The output can easily be read by a

analog to digital converter that converts this accumulated current to a voltage.

Memory access cost is nullified. However, since computation is done in analog it is

is prone to several sources of noise. The resistances of the NVM array (weights)

cannot be exactly programmed. When deployed, the weights will be subject to

thermal noise, and drift of weight value. The accuracy drop from this noise can be

significant (10-30%) (Jain et al., 2018). Shafiee et al. (2016) explore the design

space for eDRAM based accelerators. Critically, it is shown that 60%-80% of the

energy cost can come from the ADC/DAC. Also, they specify the control flow

hardware that is needed in addition to the NVM compute cells to be able to realize

a neural network using this type of accelerator.

Noise Model

Many works (Jain et al., 2018; Agarwal et al., 2016) have focused on modeling

device level noise sources in detail such as wire resistance, non-ideal ADC/DAC,

11

W
11

W
12

W
13

W
21

W
22

W
23

DAC

DAC

AD
C

AD
C

AD
C

X0

X1

Y0 Y1 Y2

V0

V1

Figure 2.4: This figure above shows how a memroy array can compute the prod-
uct of a vector X ∈ R2×1 and a weight matrix W ∈ R3x2 in the analog domain to
produce the result Y = WX. Each memory cell has a resistance Ri,j that can be
programmed with the inverse corresponding weight value 1

Wi,j
. The MAC operation

is performed by first converting the input vector is into an analog voltage on the
wires. Multiplication is achieved via Ohm’s law when the voltage is applied across
the resistor to excite a current along the wire. This current is summed by simply
connecting wires at the end of each column of the memory cell; an ADC computes
the result by sensing the current.

Inputs
Control	Logic

PE

Outputs

Von	Neumann	Architecture

Memory

PEPE
PEPEPE

PEPEPE

Figure 2.5: Traditional von-Neumann architecture requires the processing ele-
ments (PE) to query weights from the memory leading to increased latency and
power consumption. GEMM and MAC operation energy cost in neural networks
are dominated by weight access from memory.

current sneak paths, etc., but this is outside the scope of this work. Of more

importance to this thesis are the attempts to model this analog noise as a noise

12

Inputs Outputs

Non-Von	Neumann	Architecture

PE	+	
MemoryPE	+	
MemoryPE	+	
MemoryMemory

PE

PE	+	
MemoryPE	+	
MemoryPE	+	
MemoryMemory

PE

PE	+	
MemoryPE	+	
MemoryPE	+	
MemoryMemory

PE

PE	+	
MemoryPE	+	
MemoryPE	+	
MemoryMemory

PE

Control	
Logic

Figure 2.6: With an in-memory compute approach, the memory itself is the PE.
This avoids costly data transfers. A network of PEs can be connected by the con-
trol logic to implement a desired network architecture.

perturbation to the weights. To this end several lumped models treat analog

compute noise as additive Gaussian to the weights (Rekhi et al., 2019; Joshi et al.,

2019). These approaches usually apply an STE-like proceduce for retraining the

network for noise robustness. The weights are noised in the forward pass, but a

noiseless version of the weights are updated. The noise in the weights is dependent

on the type of memory device used, but it has been shown by Joshi et al. (2019)

that a simple zero-mean additive Gaussian noise model is sufficient. Joshi et al.

(2019) find that retraining with Gaussian noise provides robustness on actual

hardware. For the parameters in a certain layer θ(l) the noise is added layer-wise:

θ
(l)
noisy = θ(l) +N (0, η ∗ |max(θ(l))−min(θ(l))|) (2.2)

Here η is a parameter that is intrinsic to the device that captures the amount of

noise.

13

0.0 0.2 0.4 0.6 0.8 1.0
Example Weight Value

0.0

0.2

0.4

0.6

0.8

De
ns

ity

Resulting Weight Distribution for
Example Set of Weight Values Due to PCM Analog Noise

Figure 2.7: The figure above shows data from (Joshi et al., 2019) on how noise in
a phase change memory (PCM) accelerator affects weights. Despite the fact that
it is clear that the standard deviation of the weights is dependent on the weight
magnitude, a simple additive Gaussian with constant variance (Eq 3.89) can be an
effective model of the noise.

2.3 Second Order Optimization for Deep Networks

First order methods such as stochastic gradient descent (SGD) and its variants

minimize an objective function L(θ) by implicitly applying a local linear

approximation around the current value of θ. Second order methods incorporate

curvature information as well as information about the gradient by using a local

quadratic model. An update ∆θ is computed beginning with a local quadratic

approximation of the loss about θ:

argmin
∆θ

L(θ + ∆θ) +∇L(θ)T∆θ +
λ

2
∆T
θH∆θ (2.3)

Differentiating with respect to ∆θ equating to zero, and solving for ∆θ yields:

∆θ = −1

λ
H−1∇L(θ) (2.4)

where H is the Hessian matrix. The update rule is:

θt = θt−1 + α∆θ (2.5)

14

The Hessian for neural networks is a large n× n matrix where n is the number of

parameters in the network. Computing the Hessian and its inverse is not feasible,

and even computing approximates of the Hessian and its inverse can be

computationally intensive. This problem can be solved by using “Hessian-free”

optimization (Pearlmutter, 1994; Martens, 2010; Martens and Sutskever, 2011),

applying a diagonal approximation on the Hessian (Kingma and Ba, 2014; Duchi

et al., 2011) or block diagonal approximations (Roux et al., 2008; Martens and

Grosse, 2015). In modern automatic differentiation packages (such as those

available in Tensorflow and Pytorch) computing the product of the batch Hessian

and a vector can be performed in the same time as computing the first derivatives,

but these estimates can be noisy.

2.3.1 Natural Gradient Descent

In contrast to updating parameters in the direction of steepest descent of the loss in

parameter space, natural gradient descent (NGD) chooses a descent direction that

minimizes the steepest descent on the manifold of probability distributions (Amari,

1998). NGD suggests choosing updates for model parameters, θ, with an update,

∆θ, such that KL-divergence DKL(p(y|x; θ)||p(y|x; θ + ∆θ)) = c. The model is

updated ensuring that the KL-divergence between steps is constant:

argmin
∆θ

L(θ + ∆θ)

s.t.DKL = (pθ||pθ+∆θ
) = c

(2.6)

The loss can be rewritten using duality:

argmin
∆θ

L(θ + ∆θ) +
λ

2
(DKL(pθ||pθ+∆θ

)− c) (2.7)

As we will see in Section 3.3.2 the KL-divergence can be approximated with a

15

second order Taylor series expansion using the Fisher Information Matrix (FIM),

an information theoretic quantity describing how much information a parameter

carries in modeling the output of the network. It is computed via the expected

value of the Hessian of the loss for neural networks. Applying the FIM

approximation

argmin
∆θ

L(θ + ∆θ) +
λ

2
∆T
θ F∆θ (2.8)

The Fisher is popularly used as a curvature matrix in second order optimization

methods (Pascanu and Bengio, 2013) and has been used for natural policy gradient

in reinforcement learning (Kakade, 2002). Martens (2014) and Martens and Grosse

(2015) outline how many second order methods often calculate estimates of the

Fisher or its inverse due to the connection between the Fisher and the Hessian

(Section 3.3.2).

Differentiating with respect to ∆θ equating to zero, and solving for ∆θ yields:

∆θ = −1

λ
F−1∇L(θ) (2.9)

NGD: Parameter Space versus Distribution Space

For a canonical example that demonstrates how NGD takes descent directions,

consider the task of estimating the mean of two Gaussian random variables y and z

with the same mean µy = µz = 3:

y ∼ N (µy, σ
2
1) (2.10)

z ∼ N (µz, σ
2
2) (2.11)

Assume that we begin with an initial estimate estimate µ1 = 0 for µy. The

Euclidean distance between the true value and the estimated value is ||µ1 − µ||2.

16

Then assume that the estimate µ2 = µ1 for µz, we can see that the KL divergence

measures the overlap of the distributions:

DKL

(
N (µ2, 2σ

2
2)||z

)
< DKL

(
N (µ1, σ

2
1)||y

)
(2.12)

But, the Euclidean metric simply measures difference between the means and is

unable to incorporate the information about the overlap of the estimated and true

distributions:

||µ1 − µy||2 = ||µ2 − µz||2 (2.13)

Figure 2.8 shows how despite the fact that µ1 and µ2 are the same euclidean

distance from the respective true values, in the KL sense, µ1 is a much worse

estimate.

2.3.2 Motivation for This Work: Second Order Information can be Used to Rank

Parameter Importance

Second Order Methods and Network Compression

A central idea to several compression methods is applying some form of relative

ranking of parameter importance. These methods are well established in the

literature with methods such as Optimal Brain Damage (LeCun et al., 1990), and

Optimal Brain Surgeon (Hassibi et al., 1994). Optimal Brain Damage relies on

ranking the parameters in the network based on the diagonal of the Hessian of the

loss function. If the curvature (Hessian) of loss with respect to a specific parameter

is large, it indicates that the network is likely very sensitive to quantization or

removal of that parameter. Inversely, if the curvature of the loss is small with

respect to a parameter, the loss is not likely to change significantly if the parameter

is removed or quantized. Optimal Brain Surgeon expands on this work by iterative

17

2 0 2 4 6
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Distributions with Low Overlap: High KL-divergence

10 5 0 5 10
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Distributions with High Overlap: Low KL-divergence

Figure 2.8: In contrast to simply updating the network based on the distance in
parameter space, NGD can make clever updates by taking into account the differ-
ence in the output distributions of the model (blue) and the target (orange). In
the figure above, both pairs of distributions have the same difference between the
means, ||µ1 − µy||2 = ||µ2 − µz||2 is the same. However, it is clear that in the bot-
tom figure, the two distributions are more similar, and have higher overlap (lower
KL-divergence). NGD could more aggressively update parameter in the top graph.

computation of the full Hessian matrix of the network, but suffers from the

slowdown inherent to computing such a large matrix.

Hou et al. (2016) and Hou and Kwok (2018) use a proximal Newton method based

on the diagonal of the Hessian for binarizing and ternarizing networks. Tu et al.

(2016) rank the parameters of a neural network by their Fisher Information Matrix

diagonal. They propose allocating a larger word length to parameters with high

information and also prune parameters with low information. Beyond model

compression, second order information is useful in transfer learning (Kirkpatrick

18

et al., 2017) and model-agnostic meta learning (Finn et al., 2017).

Perturbation of Parameter Space. A network can be subject to noise such as

quantization, noise from analog non-idealities due to a mixed-signal accelerator,

and even perturbation from model transport in the case of transfer learning. A

robust model will not significantly change its output distribution if the weights are

perturbed.

19

Chapter 3

METHODS

In this section the regularization approach for model robustness is introduced. We

begin by establishing notation and examine maximum likelihood estimation, Fisher

information, and KL divergence. Subsequently, our Fisher Information based

regularization scheme is developed. We demonstrate how Fisher Information can be

computed for linear regression, logistic regression, softmax regression, and finally

for neural networks. We propose modifications to SGD and ADAM that

incorporate perturbation robustness for any arbitrary perturbation. An overview of

the quantization methods and the noise model for analog accelerators is also

provided.

3.1 Notation

To begin this section, we must establish some notation. Consider a model (such as

a linear regression, logistic regression, DNN, etc) in the context of a classification

problem. The output of this model is a distribution p(y|x; θ) where y is a random

variable representing the output of this model, x is a random variable representing

the input, and θ is a vector of the model parameters. Note that here, y itself is a

function of x and θ, so we write y(x, θ). Define d(θ) to be some function or

transformation of the model parameters. The respective output distributions of the

original model and model with parameters modified by d(θ) are: p(y|x; θ) and

p(y|x; d(θ)), respectively. While the choice of d(θ) is arbitrary and depends on the

application, in this work we choose d(θ) as the quantization function: Q(θ), or as a

noising function N(θ) that subjects the parameters to analog mixed-signal noise.

20

3.2 Maximum Likelihood Estimation

In Maximum likelihood estimation (MLE), a given statistical model is assumed to

have generated the observed data. The goal is to then select the parameters of the

model, θ such that the probability of the model having produced the observations is

maximized. Concretely, given a set of n independent, identically distributed (i.i.d.)

observations X1, ..., Xn, we have a likelihood function:

l(x; θ) = P (x1 = X1, ..., xn = Xn)

= p(x1 = X1; θ)p(x2 = X2; θ)...p(xn = Xn; θ)

=
N∏
i=1

p(xi; θ)

(3.1)

We wish find an optimal θ̂ that maximizes l(θ). To transform the product into a

more tractable sum, the logarithm of the likelihood is taken.

L(θ) = log(
N∏
i=1

p(xi; θ)) =
N∑
i=1

log p(xi; θ) (3.2)

This is permissible since log is a monotonic function. Then:

θ̂ = argmax
θ

L(θ)

= argmax
θ

N∑
i=1

log p(xi; θ)

(3.3)

The maximum likelihood estimate θ̂ is found by differentiating the log-likelihood

and equating to zero:

0 =
∂

∂θ

N∑
i=1

log p(xi; θ) (3.4)

The Score Function

The derivative of the likelihood is known as the score. Note that the expected value

of the score function is zero (under certain regularity conditions such as the

21

assumption that the order of integration and differentiation can be reversed):

E
[
∂

∂θ
log p(x; θ)

]
=

∫
p(x; θ)

∂

∂θ
log p(x; θ)dx

=

∫
p(x; θ)

∂p(x; θ)

∂θ

1

p(x; θ)
dx

=
∂

∂θ

∫
p(x; θ)dx = 0

(3.5)

3.2.1 Fisher Information

Given that the maximum likelihood estimate has been found θ̂, what is the

uncertainty about this estimate? What is the variance of θ̂? Fisher Information is a

useful way of answering this question. The Fisher information from random

variable x about the parameter θ is defined as the covariance of the score:

Fθ = Ep(x;θ)

[(
∂

∂θ
log p(x; θ)

)2]
(3.6)

Assuming certain regularity conditions, the Fisher can be rewritten as:

Fθ = −Ep(x;θ)

[
∂2

∂θ2
log p(x; θ)

]
(3.7)

Note that computing the expectation in 3.6 and 3.7 is intractable for most cases.

We see in section (3.6) that even for a simple logistic classifier with Gaussian input

data, computing the expectation in eq. (3.6) for the Fisher Information is not

possible. Therefore, sample versions of the Fisher is used:

F̂ =
1

N

N∑
i=1

∂2

∂θ2
log p(xi; θ) (3.8)

F̂ = − 1

N

N∑
i=1

(
∂

∂θ
log p(xi; θ)

)2

(3.9)

It is known that near a minimum (3.9) approaches (3.6).

22

3.3 Regularization for Model Robustness

3.3.1 Model Robustness

If the parameters of the model, θ, are perturbed by some dθ (this perturbation

could be due to a function such as d(θ)), the output probability density of the

model changes from p(y|x; θ) to p(y|x; θ + dθ). In this section, we equivalently write

pθ and pθ+dθ for convenience.

For some sufficiently small ε, robust model satisfies the property:

DKL(pθ||pθ+dθ) = ε (3.10)

Regularizing the KL divergence between models for conferring robustness has been

studied in the literature. Distillation is one such method that equivalent to

minimizing the KL-divergence between the output PDF of some target model, and

the model that is being trained. Distillation has been used for robustness to

adversarial examples (Papernot et al., 2016), and robustness against noise from

analog computation (Anonymous, 2020). In fact, the standard cross entropy loss for

training a classifier can be seen as roughly equivalent to minimizing the

KL-divergence between model outputs and true labels. For a more in depth look at

this topic refer to Section 3.8.

3.3.2 Fisher Approximation of KL-Divergence

As an alternative to directly applying the KL divergence as a regularizer between

pθ and pθ+dθ, we propose using an approximation of the KL-divergence that has

several interesting properties. We begin by expanding the KL-divergence and then

applying Taylor expansion:

23

DKL(pθ||pθ+dθ) =
∑

pθ log
pθ
pθ+dθ

(3.11)

=
∑

pθ log pθ −
∑

pθ log pθ+dθ (3.12)

(3.13)

In the following derivation kindly note the distinction between the partial

differentiation ∂θ and the perturbation dθ. The second term in the above equation

can be expanded to:

24

DKL(pθ, pθ+dθ) ≈
∑

pθ log pθ −
∑

pθ log pθ+dθ (3.14)

=
∑

pθ log pθ −
[∑

pθ log pθ + dθ
∑ ∂

∂θ
pθ log pθ +

∑
pθ

log pθ
∂θ

+dθ2 ∂
2

∂θ2

∑
pθ log pθ

+H.O.T
]
(3.15)

= dθ

[
∂

∂θ

∑
pθ + dθ2 ∂

2

∂θ2

∑
pθ log pθ

]
(3.16)

= −dθ2
∑ ∂2

∂θ2
pθ log pθ (3.17)

= −dθ2

[∑
pθ

(
1

pθ

∂pθ
∂θ

∂

∂θ

)]
(3.18)

= −dθ2

[∑
pθ

(
1

p2
θ

∂2pθ
∂θ2

+
1

pθ

∂2pθ
∂θ2

)]
(3.19)

= −dθ2

[∑ ∂2pθ
∂θ2

+
∑

pθ

(
1

p2
θ

∂2pθ
∂θ2

)]
(3.20)

= −dθ2

[∑
pθ

(
1

pθ

∂pθ
∂θ

)2]
(3.21)

= −dθ2

[∑
pθ

(
∂

∂θ
log pθ

)2]
(3.22)

= −E
[(

∂

∂θ
log pθ

)2]
dθ2 = Fdθ2

(3.23)

Where we have used that the Fisher Information F , is:

F = −E
[(

∂

∂θ
log pθ

)2]
= −

∑
pθ

(
∂

∂θ
log pθ

)2

(3.24)

Fisher Approximation of KL-divergence. A Fisher Information based

approximation of the KL-divergence directly follows:

DKL(pθ||pθ+dθ) ≈ Fdθ2 (3.25)

25

3.4 Information Theoretic Regularization of Weight Space Perturbations

An Information Theoretic Regularizer

Beginning with the conditional output distribution of a model p(y|x; θ), a

perturbation is applied to the weight space p(y|x; θ + dθ). We attempt to answer

the question: Can we force the output conditional distributions under a to be as

“similar” as possible? A natural choice to measure distances between probability

distributions is the KL-divergence. Therefore, the log-likelihood L(θ) is regularized

with the KL-divergence between the model’s output distribution p(y|x; θ) and the

perturbed version of the mode’s output distribution p(y|x; θ + dθ):

L̃(θ) = L(θ) +
λ

2
DKL

(
p(y|x; θ)||p(y|x; θ + dθ)

)
(3.26)

The multivariate version of the KL-divergence approximation in 3.25 can be used:

DKL

(
p(y|x; θ)||p(y|x; θ + dθ)

)
≈ 1

2
dθTFdθ (3.27)

As we have seen in 3.8 and 3.9 the Fisher can be approximated via the the Hessian

of the loss, or by the square of the gradient. For computational reasons, we take a

diagonal approximation to the Hessian. Therefore, our proposed cost function

becomes:

L̃(θ) = L(θ) +
λ

2
dθTFdθ (3.28)

Connection to Constraint Based Parameter Robustness

Note that under the diagonal Fisher/Hessian approximation (see section 3.7), the

regularized cost becomes:

L̃(θ) = L(θ) +
λ

2

∑
i

Fiidθi
2 = L(θ) +

λ

2

∑
i

Fii(θi −Q(θi))
2 (3.29)

26

This has a rather elegant interpretation when transformed via Lagrangian Duality.

For some constants bi, we can rewrite (5):

argmin
θ

L(θ)

subject to dθi ≤ bi, i = 1, . . . , P.

(3.30)

Starting with an information theoretic approach, we have arrived at a

regularization scheme which constrains the perturbations on the weight space.

27

3.5 Fisher Information for Linear Regression

The following sections show how Fisher information can be computed analytically

for some simple cases (linear regression with Gaussian data), but even a slightly

more complicated case (logistic or softmax regression with Gaussian data) can lead

to intractable computation for the Fisher. Therefore, sample estimates of the Fisher

are discussed.

3.5.1 Linear Regression Notation

Consider the linear model:

t = y(x, θ) + ε (3.31)

where x is a D-dimensional random variable representing the predictors, t is the

observed response variable, θ are regression parameters, ε ∼ N (0, β−1) is additive

noise. Provided N observations Xi (i ∈ [1, ..., n]), the objective is to find a suitable

set of parameters θ̂ for predicting ti from Xi.

We have xn ∈ RD, X ∈ RN×D, and X = {xT1 ; ...;xTN}, Yi ∈ RN×1, and target vector

T ∈ RN×1. X is often referred to as the design matrix or data matrix. The

parameters are θ ∈ RD×1. Let us rewrite the parameter vector and design matrix

such that θ = [θ0, θ1, ..., θD] and let Xi = [1, Xi]
T to simplify the analysis when

including the bias term.

By definition:

E[t] = y(x, θ) (3.32)

Also note that we define the variance of the noise as:

σ2 = β−1 (3.33)

28

3.5.2 Maximum Likelihood for Linear Regression

Assuming i.i.d. training data the goal is finding optimal parameter vector θ̂:

Since ti ∼ N (t|XT
i θ, σ

2).

p(t|X, θ, σ2) =
n∏
i=1

N (ti|Y (Xi, θ), σ
2) (3.34)

θ̂ = argmax
θ

p(T |X, θ, σ) = argmax
θ

n∏
i=1

N (ti|Y (Xi, θ), σ
2) (3.35)

Then from 3.35:

p(T |X, θ, σ) =
n∏
i=1

(2πσ2)−
1

2
exp{− 1

2σ2
(ti − E[ti])

2} (3.36)

The log-likelihood is:

log p(T |X, θ, σ2) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(ti − y(Xi, θ))
2 (3.37)

Since the first term in 3.37 is constant w.r.t. θ, and because E[ti] = XT
i θ see that

Maximum Likelihood is equivalent to Least squares when finding θ̂:

θ̂ = argmax
θ

log p(T |X, θ, σ2) = argmax
θ

− 1

2σ2

n∑
i=1

(ti − y(Xi, θ))
2 (3.38)

Thus:

θ̂ = (XTX)−1(XTT) (3.39)

Similarly:

β̂−1 = σ̂2 =
1

N
(T −Xθ)(T −Xθ) (3.40)

29

3.5.3 Fisher Information from Likelihood

Fisher Information can be written in terms of the Hessian of the log-likelihood

(assuming here that the variance σ2 is known):

Fθ = −Et|X,θ,σ2

[
Hθ(log p(t|X, θ, σ2))

]
(3.41)

Analytical Calculation of Fisher Matrix: Define q, the distribution of the

input xn ∈ RD×1. The FIM is:

Fθ = Exn∼q
[
Et∼p(t|xn,θ,σ2)

[(
∂ log p(tn|xn, θ, σ2)

∂θ

)(
∂ log p(tn|xn, θ, σ2)

∂θ

)T]]
(3.42)

Then:

Fθ =
1

σ2
Ex∼q[xnxTn] (3.43)

If we assume that xn ∼ N (0, I), i.e. q(x) ∼ N (0, I),

Fθ = I (3.44)

Batched Fisher

If using SGD-like algorithms (such as Adam, Adagrad, SGD+momentum, etc), the

algorithm will only have access to data from a specific batch. Therefore, Fisher

information must be computed every batch. The batch estimate is:

F̂θ =
1

nbatch

nbatch∑
i=0

1

σ2
XTX (3.45)

30

When the bias is included in the predictors: Xi = [1, Xi1, Xi2, ..., Xid]. The Hessian

is:

Ĥ = NF̂ =

− 1

σ2

n
∑n

i=1Xi1

∑n
i=1Xi2 ...

∑n
i=1Xid∑n

i=1 Xi1

∑n
i=1X

2
i1

∑n
i=1Xi1Xi2 ...

∑n
i=1Xi1Xid

...∑n
i=1Xid

∑n
i=1XidXi1

∑n
i=1XidXi2 ...

∑n
i=1X

2
id

Hj,k = − 1

σ2

N∑
i=1

XijXik (3.46)

Therefore, the elements of the FIM are:

Fj,k =
1

Nσ2

N∑
i=1

XijXik (3.47)

31

3.6 Fisher Information for Softmax Regression

3.6.1 Logistic Regression Notation

Given a logistic function

y(x, θ) = σ(θTx) (3.48)

Where σ(a) is the sigmoid activation function. The input is a D-dimensional

predictor x ∈ RD×1, and we observe n instances of x: X ∈ RN×D, X = {xT1 ; ...;xTN}.

The parameters are θ ∈ RD×K . The outputs are y ∈ RK×N , and target vectors

T ∈ RK×N . Logistic/softmax regression estimates the class posteriors p(Ck|x, θ).

When k = 2 we have the logistic regression case, where the class posterior

probability is estimated using the sigmoid function:

p(C1|xn) = y1(xn, θ) = σ(θTxn) =
1

1 + e−θT xn
(3.49)

For logistic regression tn ∈ {0, 1}, and p(t|X, θ) = yn represents the probability of

observation xn belonging to class 1. We write the following log-likelihood for

logistic regression:

log p(T |X, θ) = log
N∏
n=1

ytnn (1− yn)1−tn =
N∑
n=1

tn log yn + (1− tn) log(1− yn) (3.50)

3.6.2 Softmax Regression Notation

When considering the more general case of more than 2 classes (k > 2):

p(tnk = 1|xn) = p(Ck|xn) = ynk(xn, θk) =
e−θ

T
k xn∑K

j e
−θTj xn

(3.51)

where θk is the kth column of the parameter vector θ ∈ RD×K . Note that tn,k is still

a one hot vector indicating class membership and yn,k is still interpreted as the

32

probability that observation xn belongs to class k. We write the following

log-likelihood for logistic regression:

log p(T |x, θ) = log
N∏
n=1

K∏
k=1

p(Ck|xn, θ)tnk =
N∑
n=1

K∑
k=1

tnk log ynk(xn, θk) (3.52)

3.6.3 Fisher Information Matrix from Likelihood (Logistic Regression)

Beginning with eq. (3.50), we observe that there is no analytical solution to find θ

that maximizes the expression.

Alternatively, consider the derivative of the log-likelihood:

∂ log p(tn|θ)
∂θ

= (tn − yn)xn (3.53)

Hessian is:

H =
∂2 log p(tn|θ)

∂θ2
= −yn(1− yn)xTnxn (3.54)

Analytical Calculation of Fisher Matrix:

Fθ = Ex∼q
[
Etn∼p(t|x)

[(
∂ log p(tn|θ)

∂θ

)T(
∂ log p(tn|θ)

∂θ

)]]
(3.55)

Fθ = Ex∼q
[(

∂yn
∂θ

)T(
1

yn(1− yn)

)(
∂yn
∂θ

)]
(3.56)

Fθ = Ex∼q
[
− yn(1− yn)xxT

]
(3.57)

Since x ∼ q(x) :

Fθ =

∫ ∞
−∞
−yn(1− yn)xxT q(x)dx (3.58)

Even under the simple assumption about the distribution that generates x, namely

that q(x) ∼ N (0, 1), the integral in eq (3.58) is not tractable (product of Gaussians

and Sigmoids is not tractable). However, we may form a sample FIM from the

observed data.

33

Sample Fisher Information Matrix (Logistic Regression):

Since:

∂2 log p(tn|θ)
∂θ2

= −yn(1− yn)xxT (3.59)

and

Fθ = E
[
− ∂2 log p(T |θ)

∂θ2

]
= E

[
− yn(1− yn)xxT

]
(3.60)

F̂θ = − 1

N

N∑
n=1

yn(1− yn)xxT = − 1

N
XTRX (3.61)

Where R = diag{y1(1− y1), ..., yN(1− yN)} =

diag{σ(θTx1)(1− σ(θTx1)), ..., σ(θTxN)(1− σ(θTxN))}

3.6.4 Fisher Information Matrix from Likelihood (Softmax Regression)

We begin from the likelihood for softmax regression in eq (3.52). The derivative

with respect to a column vector of parameters for a specific class θj is:

∂ log p(tk|x, θ)
∂θj

= (tj − yj)x (3.62)

Each D ×D block of the Hessian is (where Ikj is an element from the identity

matrix).

∂2 log p(tk|xn, θ)
∂θjθk

= −yk(Ikj − ynj)xxT (3.63)

A specific element Hkiiof the Hessian is:

Hkii =
∂2 log p(tk|xn, θ)

∂θjaθkb
= −yk(Ikj − ynj)xaxb (3.64)

The Hessian is a KD ×KD matrix, but we only consider the main diagonal:

Hkii = −yk(1− yk)x2
i (3.65)

where i ranges from 1, 2, ..., D, and k ranges from 1, 2, ..., K.

34

Again, note that similar to eq (3.58) an expectation of the above equation will not

be tractable since the expectation of the product of a sigmoid and Gaussian is not

tractable. Therefore we use the sample Fisher Matrix.

Sample Fisher Information Matrix (Softmax Regression):

The sample FIM, F̂, is a KD ×KD matrix:

F̂kii =
1

N

N∑
n=1

−ynk(1− ynk)x2
ni (3.66)

F̂kii =
1

N

N∑
n=1

−ynk(1− ynk)x2
ni (3.67)

The FIM for softmax regression is made up of K blocks of the form

Fk = XTRkX (3.68)

where Rk = diag{y1k(1− y1k), ..., yNk(1− yNk)}

3.7 Fisher Information for Neural Networks

3.7.1 Observed Information Matrix

For classification problems, neural networks are typically trained with the cross

entropy loss:

L(θ) = E
[

log p(y|x; θ)

]
(3.69)

This expectation is typically computed via a sample estimate over a batch

Lbatch(θ) =
1

N

Nbatch∑
i=1

log p(yi|xi; θ) (3.70)

We can then notice that the expectation in (3.69) is equivalent to the

log-likelihood. Thus, the Fisher information for a neural network can be computed

with (3.7) or (3.9).

35

3.7.2 Fisher Computation from Squared Gradient

A common method of estimating the expected value in (3.6) is to use a method

similar to the ADAM optimization algorithm (Algorithm 1). ADAM keeps

exponentially decaying moving averages of the squared gradient (line 4 of the

algorithm). This means that the expectation calculated by ADAM is calculated

over values of θt. If stochastic gradient descent (SGD) is used instead of ADAM,

the same method can be used for estimating the Fisher information. Thus, we

conveniently obtain the diagonal of Fisher by setting F̂ = vt.

The Empirical Fisher Approximation

It is important to note one caveat - deep learning libraries traditionally provide

batched gradients : 1
N

∑
∂
∂θ

log p(yi|xi; θ). In practice, this Empirical Fisher must be

carefully applied as there can be significant mismatch between the Empirical Fisher

and the proper estimate of the Fisher (Kunstner et al., 2019).

Concretely, to compute the expected value of the squared gradient over a batch

(following Eq. 3.6) we should have:

F̂ =
1

Nbatch

Nbatch∑
i=1

(
∂

∂θ
log p(yi|xi; θ)

)2

(3.71)

but, the Empirical Fisher approximation is:

F̂empirical =

(
1

Nbatch

Nbatch∑
i=1

∂

∂θ
log p(yi|xi; θ)

)2

(3.72)

3.7.3 Fisher Regularizer Gradient Update Rule

In this section, we derive the update rule with the Fisher regularization term and

provide the details of modified versions of SGD and ADAM (Algorithm 3, 2) that

incorporate the regularizer.

36

Algorithm 1 ADAM optimization algorithm, excerpt from (Kingma and Ba, 2014)

Require: step size α, exponential decay rates β1 = .9, β2 = .999, ε = 1E−8

Given initial parameter vector θ0, initial first and second moment vec-

tors m0 ← 0 and v0 ← 0 and initial timestep t = 0

� denotes an element-wise product between two vectors.

While θt not converged do:

1. t← t+ 1

2. gt ← ∇θJt(θt−1) (Get gradients)

3. mt ← β1mt−1 + (1− β1)gt (compute first moment)

4. vt ← β2vt−1 + (1 − β2)gt � gt (compute second moment [Fisher

diagonal])

5. m̂t ←mt/(1− βt1)

6. v̂t ← vt/(1− βt2)

7. θt ← θt−1 − αm̂t/(
√

v̂t + ε)

end while

return θt

The regularized loss is:

L̃(θ) = L(θ) +
λ

2
dθTFdθ (3.73)

with the gradient:

∂L̃(θ)

∂θ
= ∇θL(θ) + λ

∂Tdθ

∂θ
Fdθ (3.74)

We will assume that the Fisher information, F, is a constant with respect to the

parameters. Therefore, there is no need to use the chain rule to compute ∂F
∂θ

. This

assumption is also extended to the derivative of the perturbation, ∂dθ
∂θ

. For our

application, the perturbation is defined with respect to a quantized version of the

37

parameters Q(θ):

dθ = θ −Q(θ) (3.75)

Since the straight-through estimator assumption is ∂Q(θ)
∂θ

= 1, the derivative of the

perturbation (and therefore the regularizer) would become:

∂dθ

∂θ
= 1− ∂Q(θ)

∂θ
= 0 (3.76)

Thus, we take ∂dθ
∂θ

= 1.

Under these assumptions, the gradient of the regularized loss is:

∂L̃(θ)

∂θ
= ∇θL(θ) + λFdθ (3.77)

and the weight update rule becomes:

θt ← θt − α
(
∇θL(θt−1) + λFdθt−1

)
(3.78)

38

R-SGD: Proposed Modified SGD for Training a Robust Neural Network

Algorithm 2 Robust SGD with Momentum

Require: learning rate α, momentum β1 = .9, damping factor η, ex-

ponential averaging parameter β2 = .999, γ a constant controlling the

strength of the regularizer

Given: initial parameter vector θ0, initial first and second moment vec-

tors m0 ← 0 and v0 ← 0 and initial timestep t = 0, η and γ to be set by

the user (η = 0 by default), f a function that perturbs the parameters

While θt not converged do:

1. t← t+ 1

2. gt ← ∇θJt(θt−1) (Get gradients)

3. mt ← β1mt−1 + (1− η)gt (compute momentum)

4. vt ← β2vt−1 + (1− β2)gt � gt (compute Fisher diagonal)

5. pt ← θt − f(θt) (compute perturbation)

7. θt ← θt−1 − α
(
mt + γvt � pt

)
(regularized update)

end while

return θt

39

R-ADAM: Proposed Modified ADAM Training a Robust Neural

Network

Algorithm 3 Robust ADAM with Momentum

Require: learning rate α, momentum β1 = .9, damping factor η, ex-

ponential averaging parameter β2 = .999, γ a constant controlling the

strength of the regularizer

Given: initial parameter vector θ0, initial first and second moment vec-

tors m0 ← 0 and v0 ← 0 and initial timestep t = 0, η and γ to be set by

the user (η = 0 by default), f a function that perturbs the parameters

While θt not converged do:

1. t← t+ 1

2. gt ← ∇θJt(θt−1) (Get gradients)

3. mt ← β1mt−1 + (1− β1)gt (compute first moment)

4. vt ← β2vt−1 + (1 − β2)gt � gt (compute second moment [Fisher

diagonal])

5. m̂t ←mt/(1− βt1)

6. v̂t ← vt/(1− βt2)

7. pt ← θt − f(θt) (compute perturbation)

8. θt ← θt−1 − α
(
m̂t/(

√
v̂t + ε) + γvt � pt

)
(regularized update)

end while

return θt

In accordance with Loshchilov and Hutter (2017), the regularizer and weight decay

(if present) are added directly in the weight update step after computing the

momentum and first/second moments (Step 8) rather than to the gradients, gt,

40

before computing the first and second moments (adding in step 2). This is done for

both R-SGD and R-ADAM. The authors of that work demonstrate the subtle but

important fact that L2 regularization and weight decay are not identical. Namely,

L2 regularization functions by adding the wight decay to the gradients, gt, rather

than directly during the weight update. This is problematic especially for

R-ADAM, because if the Fisher regularizer is added to the gradients in Step 2, it

would subsequently be scaled by the square root of the inverse of the Fisher in Step

8. The update would therefore be incorrect. They also show that show that

hyperparameter tuning is far more forgiving under this modification as the resulting

accuracy is more stable to changes in hyperparameters.

3.8 Direct KL-Divergence Regularization of Weight Perturbations with

Distillation

In Distillation (Hinton et al., 2015), a student model with reduced capacity is

trained using the logits of a teacher model. The teacher is typically a large, high

capacity model that achieves high performance on the target dataset. The student

model typically has reduced capacity which may be due to effects like pruning,

quantization, reduced model size (fewer layers, parameters), noisy weights, or

missing data. Distillation trains the student with the outputs of the teacher using a

temperature softmax:

qti =
exp(zti/T)∑
k exp(ztk/T)

(3.79)

The logits of the teacher zti are input to the temperature softmax and produce, qti ,

the estimated class probabilities. The resultant distribution over the outputs can be

“smoother” (Table 3.8), and can allow the student to learn relationships between

classes from the teacher. The typically used softmax is recovered by setting T = 1.

41

The distillation loss is the cross entropy between the temperature softmax

Class T = 1 T = 2 T = 4 T = 8 T = 12

Pedestrian 0.95 0.76 0.56 0.44 0.41

Biker 0.04 0.16 0.26 0.3 0.31

Dog 0.01 0.08 0.18 0.26 0.28

Table 3.1: Toy example to demonstrate effect of increasing temperature in soft-
max (Eq. 3.79) for a 3 class problem. Increasing the temperature smoothens the
distribution over the logits. Suppose that the training example we are considering
has label “pedestrian”, but also has a bike in the image. When T is correctly cho-
sen this ambiguity is more accurately reflected in the label. Thus, the labels can
provide the student model with more information about the relationship between
classes.

probabilities of the teacher and the student:

Ldist(q
t, qs; θ.T) = H(qt, qs) (3.80)

Therefore, the student tries to match the outputs of the teacher. Ldist can be used

as a regularizer in addition to the typical loss L(θ). Therefore:

L̃dist(θ) = L(θ) + ηLdist(θ, T) (3.81)

3.8.1 Distillation as KL-Divergence Minimization

Minimizing Ldist can be seen as equivalent to minimizing the KL-divergence

between the student and the teacher models:

Ldist(q
t, qs; θ, T) = H(qt, qs)

= H(qt) +DKL(qt||qs)

= H(pt(y|x; θt)) +DKL

(
pt(y|x; θt)||ps(y|x; θs)

) (3.82)

Here we have used that pt and ps are the output distribution of the teacher and

student respectively. Notice that in our case, the teacher is a pre-trained model

42

that is not updated. This means that H(pt(y|x; θt)) = c for some constant c, and is

therefore not targeted by the minimization. When the student model is a quantized

version of the teacher, θs = Q(θt). Also, we can set dθt = θt −Q(θt):

Ldist(q
t, qs; θ, T) = H(pt(y|x; θt)) +DKL

(
pt(y|x; θt)||ps(y|x; θs)

)
= DKL

(
pt(y|x; θt)||ps(y|x; θs)

)
+ c

= DKL

(
pt(y|x; θt)||ps(y|x;Q(θt))

)
+ c

= DKL

(
pθt||pθt+dθ

)
(3.83)

Therefore, if the student and teacher model share the same architecture, but the

student is a quantized or noised version of the student (a version of the teacher

with weights perturbed by dθ), Distillation minimizes the KL-divergence between

the model and the perturbed version of the model.

Distillation in Practice

In practice, the teacher model is an FP32 model and the student model has been

independently trained for quantization using straight-through estimator, so strictly

speaking θs is not perturbed version of θt. However, the DKL(pθt ||pθs) is minimized.

43

3.9 Quantization

Quantization is a nonlinear operation that maps a continuous input to a discrete

set of values. A quantization function q(θ) : R→ Z for a set of levels {L1, ..., LQ}

given a set of thresholds A1, ..., AQ−1 is:

q(θ) =

L1 −∞ < θ ≤ A1

L2 A1 < θ ≤ A2

... ...

LQ AQ−1 < θ ≤ ∞

The levels and thresholds can be selected based on a prior assumption of the weight

distribution (such as Gaussian quantization), selecting levels based on clustering, or

even learning the levels during the training. In this work weights and activations

are quantized using uniform quantization between two levels [−a, b]. Thus, for an

n-bit quantizer, there are k = 2n centroids where

Lk = −a+ k(b−a)
2n

. The k − 1 thresholds are selected uniformly in between the levels.

Quantization of Weights. To determine a and b for weights for n-bit

quantization, we begin with a pretrained network and perform k-means on the

resultant weights with |S| = 2n levels. Subsequently we choose a = min(S) and

b = max(S). This method is used for Lenet-5.

For ResNet-18, we again begin with a pretrained network and select al = min(θ(l))

and bl = max(θ(l)) where θ(l) is the weight of a specific layer. Binary quantization of

ResNet-18 weights is done by selecting [−1, 1] as quantizer levels.

Quantization of activations. To quantize activations X(l), one of two approaches

is used. During training, the minimum and maximum of the activations are learned

with a momentum parameter such that:

44

ãl = (1− α) ∗min(Xl) + α ∗ ãl

b̃l = (1− α) ∗max(Xl) + α ∗ b̃l
(3.84)

during training, and

al = ãl

bl = b̃l

(3.85)

for inference. A value of α = 0.9 is used during training.

Perturbation due to Quantization

The perturbation dθ from quantization is easily calculated as:

dθ(l) = θ(l) −Q(θ(l)) (3.86)

45

3.10 Noise Model for In-Memory Compute

The noise model used is similar to (Joshi et al., 2019). Beginning with the

parameters of a specific layer θ(l),

θ
(l)
noisy = θ(l) +N (0, η ∗ |max(θ(l))−min(θ(l))|) (3.87)

When θ(l) is quantized, this is equivalent to scaling the noise with respect to the

quantization bins if a(l) and b(l) are the learned minimum and maximum value of

the quantization levels respectively:

θ
(l)
noisy = θ(l) +N (0, η ∗ |b(l) − a(l)|) (3.88)

η is a parameter that is dependent on the specific device or memory technology

that is used. This parameter captures the inherent noise of the NVM memory. If

the parameters are quantized, the noise is added on top of the quantized

parameters, not the full precision parameters, since the quantized parmeters would

actually be implemented in the hardware.

Perturbation Due to Mixed-Signal Accelerator Noise

It is obvious that the perturbation term is the additive noise itself:

z(l) ∼ N (0, η ∗ |b(l) − a(l)|) (3.89)

dθ(l) = z(l) (3.90)

46

Chapter 4

RESULTS AND DISCUSSION

4.1 Comparison of Diagonal Approximation and Hessian Vector Product for

Estimating Fisher

Despite the prevalence of using diagonal approximations for the curvature matrix,

it is known that neural network loss landscapes have a significant number of

important off diagonal elements (Martens and Grosse, 2015). So in this section, the

diagonal approximation of the Fisher is compared with using a Hessian-vector

product (HVP). An HVP allows extremely efficient computation of Fdθ, the

gradient of the regularizer, exactly without any approximation. To compare the

HVP and diagonal approximation the following experiment was conducted:

Procedure - Comparison of Regularization with Diagonal Approximation

vs HVP on a Two Layer MLP on MNIST

1. Train multilayer perceptron (MLP) with two hidden layers and ReLU

activations on the MNIST dataset.

(Architecture: 784− 512FC − 512FC − 10)

2. Compute the test accuracy after applying a perturbation to the weights

N (µ, σ2 = .005) (repeating 100 times to ensure enough draws from the noise

distribution).

3. Sweep µ in the range [.01, .1]

47

4. Characterize the test accuracy after regularizing the network with the Fisher

update rule (eq. 3.78) using both the HVP and diagonal approximation.

Figure 4.1: Accuracy of a two layer MLP on MNIST as a function of the mean
of a Gaussian perturbation to the weights, N (µ, 0.005). This plot shows that Reg-
ularizing with either methods of estimating the Fisher provide a benefit over no
regularization. However, the diagonal approximation of the Fisher computed by the
second moment of ADAM is more effective at regularizing a model against this per-
turbation.

In figure 4.1 we find that using the ADAM diagonal approximation to the Fisher

provides more robustness to perturbations than using the HVP. It is reasonable to

expect that since the HVP implicitly computes off diagonal elements of the Fisher

information that ADAM does not, HVP should prove to be a better regularizer.

However, this is likely overshadowed by the fact that the HVP is very noisy and

varies greatly from batch to batch. On the other hand, the ADAM estimate is a

moving average over many batches which leads to a more stable Fisher estimate.

48

The estimate of the Fisher provided by ADAM can be viewed as a high bias

estimate, while the estimate provided by the HVP can be viewed as a high variance

estimate.

4.2 Fisher Information Can Rank the Sensitivity of Parameters to Perturbation

The key foundation of this work is that Fisher information is a useful way of

ranking parameter importance. To test this hypothesis we begin with a simple

experiment. This hypothesis is tested on a v1 ResNet-18 (He et al., 2016) trained

on CIFAR-10.

Procedure - Verify Fisher Information Measures Parameter Importance:

1. Begin with a trained network with weights θ̂.

2. Repeat NMC = 30 times to adequately sample the noise:

(a) Perturb the parameters with noise z ∼ N (0, βI)

(b) Record the average magnitude of the noise.

(c) Record test accuracy with θinference = θ̂ + z

(d) Sweep β.

3. Repeat step (2), but perturb the parameters with noise proportional to the

Fisher z ∼ N (0, F̂)

The purpose of this experiment is to compare the performance degradation of the

network under two cases. We start by considering the performance degradation

under increasing Gaussian noise perturbations where the covariance of the noise is

the identity matrix (i.e. in expectation every parameter is perturbed with the same

magnitude of noise). Then, the network is perturbed such that magnitude of the

49

Gaussian perturbation is proportional to the Fisher information. The results of this

are shown in Figure 4.2. As described in Section 3.7, the Fisher information is

estimated via the main diagonal of the ADAM optimizer.

10 3 10 2

Weight Perturbation Average Magnitude

20

40

60

80

Ac
cu

ra
cy

Perturbation Magnitude vs Accuracy (Resnet18 CIFAR10)

Fisher Perturbation
Uniform Perturbation

Figure 4.2: Accuracy of ResNet-18 on CIFAR-10 as a function of average magni-
tude of perturbation applied to the weights. The perturbations are normally dis-
tributed with identity covariance and covariance equivalent to Fisher information.

As expected, adding perturbations that are proportional to the Fisher information

significantly harms the performance of the network (more so than using an identity

covariance). This is because we are adding high variance noise to the most

important parameters while adding low variance noise to the least important

parameters (red curve in Fig. 4.2). This confirms the hypothesis that the loss

landscape is more curved in the parameters with large Fisher values. These

parameters can be interpreted as being less robust, and perturbations in these

directions will result in a larger change to the loss function.

50

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

105

106

Fisher Histogram

10 19 10 15 10 11 10 7 10 3 101

100

101

102

103

104

Fisher Log Histogram

0.0 0.2 0.4 0.6 0.8 1.0
Magnitude

102

103

104

Fr
eq

ue
nc

y

Inv Fisher Histogram

10 2 10 1 100

100

101

102

103

104

105
Inv Fisher Log Histogram

Figure 4.3: Histogram of the normalized Fisher Information diagonal values and
normalized inverse Fisher (left two plots) for a ResNet-18 model trained on CIFAR-
10. The same two histograms are also plotted with x-axis in log scale (right two
plots).

Mismatch of Fisher Approximation of KL-Divergence

In addition to establishing that Fisher information is useful for ranking parameter

importance, it is important to understand how accurately the KL-divergence is

approximated with the Fisher approximation (Fig. 4.4). It is clear that the

approximation is a good fit near small perturbations: dθ ≈ 3× 10−3. As the

perturbation size increases, the Fisher approximation can significantly deviate from

the KL-divergence. For small dθ there is also a mismatch - the Fisher term is

smaller than DKL, likely due to the fact that
∑

i Fiidθ
2
i will be very small if dθ is

51

small since the perturbations are squared.

10 2

Weight Perturbation Average Magnitude

0

1

2

3

4

5

Ra
tio

 o
f F

ish
er

 L
os

s t
o

KL
 L

os
s

Ratio of Fisher Approximation to KL Loss vs Perturbation Size

Ratio of Fisher Approx to KL_Loss

10 2

10 1

100

101

102
Lo

ss
 V

al
ue

Fisher Approximation and KL Loss vs Perturbation Size
KL-Div Computed Between Output of Noisy and Original Ntwk

Fisher Approx.
KL Div

Figure 4.4: Plot of KL-divergence between the output of the perturbed and orig-
inal network (green line), and the Fisher approximation to the KL divergence(red
line). In blue the ratio of the Fisher approximation to the KL-divergence is plot-
ted.

52

4.3 Quantizing Lenet-5 for FashionMNIST

Lenet Acc (%)

Bits Act/Wt
STE Fisher MSQE Distillation

FP-32 92.84 ± .14 − − −

8/8 92.7 ± .1 92.64± .13 92.54 ± .16 93.09 ± .06

4/4 92.3 ± .13 92.28±.21 92.52± .16 92.8±.06

4/4 92.0 ± .11 92.3± .26 92.25±.21 92.21±.03

2/2 88.0 ± 1.03 89.99±.4 89.95±.36 90.06±.26

32/1 90.8 ± .11 91.6 ± .21 91.27 ± .11 91.32±.36

4/1 90.6 ± .19 91.17 ± .09 91.1 ± .21 91.2± .2

2/1 85.5 ± 0.9 86.92±1.3 86.8±.7 88.19±.094

Table 4.1: Accuracy of Lenet-5 on FashionMNIST for selected regularization
schemes averaged over 5 trials (for each point). The baseline is training with
straight-through estimator (STE). Bold indicates method is the best by a statisti-
cally significant margin, italics indicates method performed best, but not statisti-
cally significant.

We begin practical experiments by evaluating our method with the Lenet5 network

on the FashionMNIST dataset. After training with the straight-through estimator

for T epochs, we obtain a solution θ̂ = θT . Subsequently, the network is trained for

R epochs with regularization. During these R epochs, F̂ (θT) is used for the

updates. Instead of computing the Fisher Information every epoch, we keep the

Fisher information estimate obtained at the maximum likelihood estimate θ̂.

Therefore F̂ (θ̂ = θT). This preserves the convergence property of the empirical

Fisher, namely that it converges to the true Fisher since it is computed at a

minimum (Pascanu and Bengio, 2013). For numerical stability, diagonal loading is

performed such that F̂T = (F̂ (θ̂T) + λI) where λ = .005.

53

Procedure

1. Train quantized network with straight-through estimator for T = 30 epochs to

obtain parameters θ̂. To train this network R-ADAM (Algorithm 3) is used.

2. Compute Fisher Information at θ̂: F̂T = (F̂ (θ̂T) + λI) .

3. Train network for an additional R = 25 epochs using the following

regularization: Fisher, mean squared quantization error, distillation.

4. For distillation, a full precision teacher model is used whose accuracy is

reported in the table. We choose a temperature of 4.

Regularizing Mean Squared Quantization Error(MSQE). The essence of the

Fisher regularization method is that a weighted sum of squared quantization errors

is minimized:
∑
Fi(θi −Q(θi))

2. It is important to compare regularization using

the FIM versus using identity matrix because the identity matrix regularizes the

perturbations for all θ regardless of whether the loss highly curved or flat with

respect to θi. Using an identity matrix is equivalent to minimizing the mean

squared quantization error: MSQE(θ) =
∑

i(θi − θ)2.

Discussion of Results for Lenet5. Distillation often has the highest accuracy.

This is due to two factors. First, distillation is directly minimizing the

KL-divergence between the full precision model and the perturbed quantized

model. Secondly, the teacher model is proving information through its logits about

the relationship between categories that that MSQE, and Fisher methods don’t

have access to (see Sec 3.8). Despite this disadvantage, the Fisher regularization

scheme performs best for 32b activations and 1b weights. But, in most cases the

resultant accuracy of Fisher regularization is similar to the accuracy from using

MSQE.

54

4.4 Quantizing ResNet-18 for CIFAR-10

ResNet-18 Acc (%)

Bits Act/Wt
STE Fisher MSQE Distillation

FP-32 94.4 ± .18 - -

4/1 90.65 ± .38 91.2 ± .19 91.3 ± .28 91.39± .24

4/4 93.44 ± .17 93.4 ± .18 93.4± .17 94.19 ± .14

Table 4.2: Accuracy of Resnet-18 on CIFAR-10 for selected regularization schemes
averaged over 5 trials (for each point). The baseline is training with the straight-
through estimator (STE). Bold indicates method is the best by a statistically signif-
icant margin, italics indicates method performed best, but not necessarily statisti-
cally significant.

A similar trend to the results for Lenet5 on FashionMNIST is observed here, where

distillation provides the highest accuracy. The other three regularization methods

do not perform any better than baseline.

Procedure

1. Train quantized network with straight-through estimator for T = 300 epochs

to obtain parameters θ̂. R-SGD (Algorithm 2) is used to train the network

with γ = 0. for the first T epochs. A cosine learning rate decay is used

starting at a learning rate of α = .1.

2. Compute Fisher Information at θ̂: F̂T = (F̂ (θ̂T) + λI) .

3. Train network for an additional R = 100 epochs using the following

regularization: Fisher, mean squared quantization error, distillation.

4. For distillation, a full precision teacher model is used whose accuracy is

reported in the table. We choose a temperature of 4.

55

4.4.1 Effect of Regularization Methods on Weight Distribution

Figure 4.5 and Figure 4.7 demonstrate how the different regularization schemes

affect the parameter space. The weight PDF is plotted as a function of training

iteration for ResNet-18 under binary quantization of the weights to [−1, 1]. It is

clear that as training iteration increases (back to front), each regularization method

has a drastically different effect on the weight PDFs. MSQE regularization (right

plots, blue) affects the parameter space distribution the most; this is expected since

the MSQE regularizer only has knowledge of the parameter space and aggressively

pushes θ towards the quantized bins of Q(θ). Next, consider the Fisher

regularization (left plots, light orange). It is apparent that while some of the

probability mass is transferred to the quantizer bins, there is still significant

probability mass in between the quantizer levels. This indicates that the Fisher

regularizer has incorporated some information about the statistical manifold of the

model.

Figure 4.5: Weight PDF of first conv layer of ResNet-18 under binary quantiza-
tion [-1, 1] for three different regularization methods (from left to right: Fisher,
Distillation , MSQE) as a function of iteration.

4.4.2 Straight-Through Estimator Limits Accuracy Gains

One reason that there might be no accuracy increase provided by any of the

methods that use a squared error quantization constraint is the use of the

56

Figure 4.6: Weight PDF of last fully connected layer in ResNet-18 under binary
quantization [-1, 1] for three different regularization methods (from left to right:
Fisher, Distillation, MSQE) as a function of iteration.

straight-through estimator. In the forward pass, the weights are already quantized

to the bin that they are closest to. This essentially means that in the forward pass

dθ = 0. If the regularizer pushes the weight towards the quantizer bin that it

already belongs to, there will be no change in the output of the network. This is

regardless of whether uninformative parameters are more harshly regularized.

Figure 4.7: Visualization of an example loss surface in parameter space. When
the straight-through estimator is used in the forward pass, the weights are always
quantized when performing inference. Therefore, when a network’s optimial param-
eters θ̂ (shown in green) are found, during inference Q(θ) (shown in red) is actually
used. Therefore, it makes minimal difference to the output of the network if the dif-
ference between Q(θ) and θ̂ is minimized.

57

Parameter Space versus Probability Space Regularization

Consider the weight distributions under distillation (middle plots, dark orange).

The conv layer weight PDF hardly changes at all and the FC layer’s weight PDF is

only partially pushed towards the quantizer’s bins. Upon examination of the

distillation loss (Table 4.3) notice that it has no explicit dependence on the

parameters. Rather, it is dependent only on the probability that the network

assigns to each class. Distillation directly regularizes the logits of the quantized

student model and matches them to the FP32 teacher’s logits. In contrast, the

parameter space regularization methods hope to indirectly increase the accuracy of

the perturbed network through reducing the size of the perturbation that is applied

to the parameters.

In Figure 4.8 the Fisher regularization term (Fisher-weighted MSQE) and the

MSQE are plotted normalized to their maximum value during the R epochs that

the model is regularized. The MSQE for the three parameter based regularization

approaches decreases. As expected, using Fisher regularization priorities minimizing

the Fisher MSQE the most, but also has an impact on the MSQE.

Counter intuitively, the MSQE increases and Fisher MSQE greatly increases when

regularizing with distillation. It is not surprising given our observations of the

weight PDFs of regularizing with distillation that the MSQE may increase. But,

one might expect that because distillation minimizes the KL-divergence, the Fisher

MSQE should also decrease since the Fisher MSQE is an approximation of the

KL-divergence. A plot of the the trace of the Fisher information (FIM) is provided

in Figure 4.11 and reveals that regularizing with distillation massively increases the

trace of the FIM, while the three parameter space based approaches only slightly

increase the trace or keep it constant. The trace of the FIM is a crude way to

58

measure the curvature of the loss surface since we sum the curvature with respect

to each individual parameter. This suggests that though the solution found by

distillation is at a sharper minimum (higher trace, larger curvature), it still

generalizes better. Regularizing with either of the three parameter space based

approaches

Reglarization Method Minimized Quantity

Fisher
∑

i Fii(θi −Q(θi))
2

MSQE
∑

i(θi −Q(θi))
2

Distillation H(pθ, pQ(θ)) ≡ DKL(pθ||pQ(θ))

Table 4.3: A comparison of the optimization targets for the four regularizers that
are studied.

59

Figure 4.8: Plot of mean squared quantization error,
∑

i(θi − Q(θi))
2, and Fisher

regularizer (Fisher MSQE),
∑

i(Fii + λI)(θi −Q(θi)), normalized to their maximum
value. These two metrics are plotted for each regularization method for a ResNet-
18 trained for 4b/4b quantization on CIFAR-10.

Comparison With State of the Art Methods for Very Low Bit Width

Quantization

In this section, the performance of ResNet-18 under quantization to a very low

number of bits (2 bit activations and weights) is studied. Our methods are

compared with the method proposed by Choi et al. (2019). One challenge with

quantization to below 4-bits in our approach is that the ReLu activation function’s

60

0 5000 10000 15000 20000 25000 30000 35000 40000
Step

100

101

102

No
rm

al
ize

d
Tr

ac
e

FIM Trace vs Iteration
Fisher Regularization
Distillation
MSQE Regularization

Figure 4.9: Plot of trace of FIM versus iteration.

output is unbounded. Therefore choosing the quantizer based on the maximum and

minimum of the activation is no longer feasible for low bit width. Instead, the levels

of the quantizer are set prior to training at [−.25, .25]. Note that Choi et al. (2019)

use their own solution of parameterized activation clipping to overcome this

problem.

ResNet-18

Acc (%)

Bits Act/Wt

STE MSQE
Choi

(2019)
Fisher Distillation

FP-32 94.4 ± .18 - - -

2/2 89.26 ± .15 89.35 ± .15 90.8 89.43± .4 89.89 ± 0.16

32/2 93.52 ± .21 93.61 ± .21 91.6 93.587 ± .23 93.947 ± .25

Table 4.4: Accuracy of Resnet-18 on CIFAR-10 for selected regularization schemes
averaged over 5 trials (for each point). The baseline is training with the straight-
through estimator (STE). A comparison with Choi et al. (2019) is included. Each
point is the average of 5 trials.

61

Notice that when the activation is quantized very aggressively, the accuracy of our

quantization method (learning the minimum and maximum value of the activations

at each layer and using it as a basis for a uniform quantizer) results in significantly

reduced baseline accuracy using straight through estimator. This limits the

performance of MSQE, Fisher, and distillation, and explains why (Choi et al., 2019)

outperforms our method for quantizing both weights and activations to 2 bits.

However, when allowing 32 bit activations, the method used by (Choi et al., 2019)

performs the worst due to their lower baseline.

62

4.5 Effect of Analog Hardware Noise from NVM Accelerator on Lenet-5

Procedure - Regularizing Network from Analog Noise

1. Begin with a pre-trained Lenet5 network.

2. Select a range of noise levels η ∈ [.01, .1].

3. Characterize accuracy of network at various noise levels by sweeping η and

adding noise layer-wise to the weights as described in Sec 3.10:

z(l) ∼ N (0, η|max(θ(l) −min(θ(l))|). Then perform inference with

θ
(l)
noisy = θ(l) + z(l). At every noise level test accuracy is computed 20 times to

adequately draw from noise distribution.

4. Retrain the network with noise injection for 25 epochs. Apply regularization

methods (Fisher, mean squared error, distillation) in conjunction to the noise

injection

5. The perturbation that is regularized is z(l) = (θ(l) − θ(l)
noisy). Train with

regularizer for T = 25 epochs. Use γ = .1, distillation temperature of 4.

6. Characterize test accuracy at each noise level for each regularization method.

The results of regularizing for robustness against noise from our model of an NVM

compute cell are shown in figure 4.10. Distillation provides the most robustness -

for an iso-accuracy of 90%, distillation can tolerate nearly 20% more noise than

other methods. It is interesting to note that the perturbation based regularization

schemes (Fisher, MSE) fare no better than retraining with noise and all perform

very similarly. The perturbation that the network is being regularized against is

simply a zero mean Gaussian random variable (z(l)). This is in contrast to the

63

0.00 0.02 0.04 0.06 0.08 0.10
Eta (Noise Level)

82

84

86

88

90

92

Ac
cu

ra
cy

Lenet5 (8-bit) FashionMNIST: Accuracy vs Added Noise
 Bottom Plot Includes Baseline

Distillation
Fisher
Noise Injection
MSE

0.00 0.02 0.04 0.06 0.08 0.10
Eta (Noise Level)

40

50

60

70

80

90

Ac
cu

ra
cy

Distillation
Fisher
Noise Injection
MSE
Baseline

Figure 4.10: Plot of the effect of NVM accelerator noise on a Lenet-5 network
trained on FashionMNIST. Baseline indicates that the pretrained network was
evaluated without any retraining or regularization. Noise Injection corresponds to
adding noise to weights during training time. Noise was added to weights in addi-
tion to regularization for each of the regularization methods. Refer to Section 3.10
for an overview of the noise model.

previous section where the perturbation was the difference between a weight and its

quantized value.

Regularizer Has No Effect on Gradient When Perturbation is Zero Mean

The expected value of the regularized gradient is simply equal to the original

gradient. Let us examine the expected value of the gradient under Fisher

64

regularization, where we have used that dθ = z.

E[∇L(θ) + γ(F + λI)z] = E[∇L(θ)] + E[γ(F + λI)z]

= E[∇L(θ)] + (F + λI)E[z]

= E[∇L(θ)] + 0

(4.1)

This is in contrast to quantization and the experiment in Section 4.1 since in those

cases, the perturbations do not have zero mean. Therefore, we can conclude that

zero-mean perturbations are not effectively regularized by the Fisher or MSE

method.

4.6 Effect of Analog Hardware Noise from NVM Accelerator on ResNet-18

The experiment for the previous section is repeated on a more challenging dataset

and network. However, we only consider noise injection and distillation, since we

showed that the other regularization methods are ineffective at providing

robustness to zero mean noise. Again, we notice that distillation outperforms noise

injection. For an iso-accuracy of 92%, distillation can tolerate ∼12% more noise.

For iso-accuracy of 91% distillation can tolerate ∼15% more noise. Notice that as

noise level increases distillation outperforms noise injection by an increasing

margin.

65

0.00 0.02 0.04 0.06 0.08 0.10
Eta (Noise Level)

88

89

90

91

92

93

Ac
cu

ra
cy

Resnet18 (8-bit) CIFAR10:
Accuracy vs Added Noise

Distillation
Noise Injection

Figure 4.11: Plot of accuracy versus NVM hardware noise for an 8-bit ResNet-18.

66

Chapter 5

CONCLUSION

In this work, we have evaluated the efficacy of a natural-gradient inspired

regularization scheme that penalizes a deep neural network for sensitivity to

perturbations in its parameter space. The Fisher Information Matrix was used to

approximate the KL-divergence between the perturbed and original model. It was

shown that by using information about the curvature of the loss, the Fisher can

effectively measure the relative importance of a parameter and regularize the model

according to this importance criterion. We also demonstrated knowledge distillation

as way of minimizing the KL-divergence. Despite the fact that the curvature

matrices of neural network loss landscapes are highly non-diagonal, a diagonal

approximation was found to be more effective at regularizing the model from

perturbations than using a Hessian-vector product. This is likely because the

diagonal approximation we used was more stable than using a batched HVP.

Experiments showed that while the Fisher approximation to the KL-divergence was

crude, it was able to regularize networks more intelligently than a simple mean

squared quantization error constraint.

The study of perturbation of deep networks was motivated by the need for efficient,

low power deep learning inference. To this end the perturbations to the network

that we considered were perturbation due to quantization quantization of the

weights and due to noise from mixed-signal analog hardware. A simple layer-wise

additive Gaussian based on the density of the weights was used to model

mixed-signal noise.

Distillation proved to be an extremely powerful method of directly regularizing the

67

output distribution of the model. Comparing a mean squared error constraint,

distillation, and Fisher regularizer we showed that Fisher regularization was be

weakly dependent on the parameterization, but that distillation is largely

independent of the parameterization. Fisher regularization outperformed

distillation and mean squared error constrained quantization on Lenet-5 with

binarized weights. Distillation consistently outperformed all other methods on most

configurations of quantization and provided a 0.75% increase in performance on

ResNet-18 quantized to 4bit activations and binary weights over training with

straight-through estimator. Fisher regularization did not provide additional

robustness to noise from mixed-signal analog hardware than simply training with

noise injection, since regularizing a zero-mean perturbation does not effect the

expected value of the gradient. However, distillation provided 12-20% more

tolerance to analog hardware noise than retraining with noise injection on an 8-bit

ResNet-18.

There are several avenues of future work. It is important to improve the estimation

of the FIM. Many recent Hessian-Free optimization methods such as KFAC

(Martens and Grosse, 2015) have been developed to efficiently calculate the FIM

and its inverse and are directly applicable to this approach. This could improve the

accuracy approximation of the KL-divergence that the Fisher regularizer computes.

The Fisher regularizer may be more suited to post-training quantization of a FP32

network rather than regularization of a network trained for quantization with

straight through estimator, since moving weights towards their quantized bins has

no effect on the output distribution if the network is already quantized in the

forward pass. Another area of focus could be refining the noise model for the

analog hardware. If certain areas of the accelerator are more susceptible to noise, a

reasonable method might assign weights with low saliency weights (as measured by

68

Fisher information) to those high noise sections of the accelerator. It may also be

possible to combine the Fisher regularization with distillation by performing

natural gradient descent on the distillation loss rather than on the cross entropy

loss.

69

REFERENCES

Agarwal, S., S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter, J. A. Cox, C. D.
James and M. J. Marinella, “Resistive memory device requirements for a neural
algorithm accelerator”, in “2016 International Joint Conference on Neural
Networks (IJCNN)”, pp. 929–938 (IEEE, 2016).

Amari, S.-I., “Natural gradient works efficiently in learning”, Neural computation
10, 2, 251–276 (1998).

Anonymous, “Noisy machines: Understanding noisy neural networks and enhancing
robustness to analog hardware errors using distillation”, in “Submitted to
International Conference on Learning Representations”, (2020), URL
https://openreview.net/forum?id=BklxN0NtvB, under review.

Balzer, W., M. Takahashi, J. Ohta and K. Kyuma, “Weight quantization in
boltzmann machines”, Neural Networks 4, 3, 405–409 (1991).

Banner, R., Y. Nahshan, E. Hoffer and D. Soudry, “Aciq: Analytical clipping for
integer quantization of neural networks”, arXiv preprint arXiv:1810.05723 (2018).

Bengio, Y., N. Léonard and A. Courville, “Estimating or propagating gradients
through stochastic neurons for conditional computation”, arXiv preprint
arXiv:1308.3432 (2013).

Binas, J., D. Neil, G. Indiveri, S.-C. Liu and M. Pfeiffer, “Precise deep neural
network computation on imprecise low-power analog hardware”, arXiv preprint
arXiv:1606.07786 (2016).

Choi, J., S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang and
P. Chuang, “Accurate and efficient 2-bit quantized neural networks”, in
“Proceedings of the 2nd SysML Conference”, (2019).

Choi, Y., M. El-Khamy and J. Lee, “Towards the limit of network quantization”,
arXiv preprint arXiv:1612.01543 (2016).

Choi, Y., M. El-Khamy and J. Lee, “Learning low precision deep neural networks
through regularization”, arXiv preprint arXiv:1809.00095 (2018).

Courbariaux, M., Y. Bengio and J.-P. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations”, in “Advances in neural
information processing systems”, pp. 3123–3131 (2015).

Duchi, J., E. Hazan and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization”, Journal of Machine Learning Research 12,
Jul, 2121–2159 (2011).

Dundar, G. and K. Rose, “The effects of quantization on multilayer neural
networks”, IEEE Transactions on Neural Networks 6, 6, 1446–1451 (1995).

70

https://openreview.net/forum?id=BklxN0NtvB

Fedorov, I., R. P. Adams, M. Mattina and P. N. Whatmough, “Sparse: Sparse
architecture search for cnns on resource-constrained microcontrollers”, (2019).

Finn, C., P. Abbeel and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks”, in “Proceedings of the 34th International
Conference on Machine Learning-Volume 70”, pp. 1126–1135 (JMLR. org, 2017).

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”, arXiv preprint
arXiv:1510.00149 (2015).

Hassibi, B., D. G. Stork and G. Wolff, “Optimal brain surgeon: Extensions and
performance comparisons”, in “Advances in neural information processing
systems”, pp. 263–270 (1994).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image
recognition”, in “Proceedings of the IEEE conference on computer vision and
pattern recognition”, pp. 770–778 (2016).

Hinton, G., O. Vinyals and J. Dean, “Distilling the knowledge in a neural network”,
arXiv preprint arXiv:1503.02531 (2015).

Hou, L. and J. T. Kwok, “Loss-aware weight quantization of deep networks”, arXiv
preprint arXiv:1802.08635 (2018).

Hou, L., Q. Yao and J. T. Kwok, “Loss-aware binarization of deep networks”, arXiv
preprint arXiv:1611.01600 (2016).

Howard, A., M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan et al., “Searching for mobilenetv3”, arXiv preprint
arXiv:1905.02244 (2019).

Hubara, I., M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio, “Quantized
neural networks: Training neural networks with low precision weights and
activations”, The Journal of Machine Learning Research 18, 1, 6869–6898 (2017).

Hubara, I., M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio, “Quantized
neural networks: Training neural networks with low precision weights and
activations”, Journal of Machine Learning Research (2018).

Jain, S., A. Sengupta, K. Roy and A. Raghunathan, “Rx-caffe: Framework for
evaluating and training deep neural networks on resistive crossbars”, arXiv
preprint arXiv:1809.00072 (2018).

Joshi, V., M. L. Gallo, I. Boybat, S. Haefeli, C. Piveteau, M. Dazzi, B. Rajendran,
A. Sebastian and E. Eleftheriou, “Accurate deep neural network inference using
computational phase-change memory”, arXiv preprint arXiv:1906.03138 (2019).

Kakade, S. M., “A natural policy gradient”, in “Advances in neural information
processing systems”, pp. 1531–1538 (2002).

71

Kingma, D. P. and J. Ba, “Adam: A method for stochastic optimization”, arXiv
preprint arXiv:1412.6980 (2014).

Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming
catastrophic forgetting in neural networks”, Proceedings of the national academy
of sciences 114, 13, 3521–3526 (2017).

Kunstner, F., L. Balles and P. Hennig, “Limitations of the empirical fisher
approximation”, arXiv preprint arXiv:1905.12558 (2019).

LeCun, Y., J. S. Denker and S. A. Solla, “Optimal brain damage”, in “Advances in
neural information processing systems”, pp. 598–605 (1990).

Lee, J., C. Kim, S. Kang, D. Shin, S. Kim and H.-J. Yoo, “Unpu: An
energy-efficient deep neural network accelerator with fully variable weight bit
precision”, IEEE Journal of Solid-State Circuits 54, 1, 173–185 (2018).

Liu, Z., B. Wu, W. Luo, X. Yang, W. Liu and K.-T. Cheng, “Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm”, in “Proceedings of the European
Conference on Computer Vision (ECCV)”, pp. 722–737 (2018).

Loshchilov, I. and F. Hutter, “Fixing weight decay regularization in adam”, arXiv
preprint arXiv:1711.05101 (2017).

Martens, J., “Deep learning via hessian-free optimization.”, (2010).

Martens, J., “New insights and perspectives on the natural gradient method”,
arXiv preprint arXiv:1412.1193 (2014).

Martens, J. and R. Grosse, “Optimizing neural networks with kronecker-factored
approximate curvature”, in “International conference on machine learning”, pp.
2408–2417 (2015).

Martens, J. and I. Sutskever, “Learning recurrent neural networks with hessian-free
optimization”, in “Proceedings of the 28th International Conference on Machine
Learning (ICML-11)”, pp. 1033–1040 (Citeseer, 2011).

Mishra, A., E. Nurvitadhi, J. J. Cook and D. Marr, “Wrpn: wide reduced-precision
networks”, arXiv preprint arXiv:1709.01134 (2017).

Papernot, N., P. McDaniel, X. Wu, S. Jha and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks”, in “2016 IEEE
Symposium on Security and Privacy (SP)”, pp. 582–597 (IEEE, 2016).

Pascanu, R. and Y. Bengio, “Revisiting natural gradient for deep networks”, arXiv
preprint arXiv:1301.3584 (2013).

72

Patil, A. D., H. Hua, S. Gonugondla, M. Kang and N. R. Shanbhag, “An
mram-based deep in-memory architecture for deep neural networks”, in “2019
IEEE International Symposium on Circuits and Systems (ISCAS)”, pp. 1–5
(IEEE, 2019).

Pearlmutter, B. A., “Fast exact multiplication by the hessian”, Neural computation
6, 1, 147–160 (1994).

Polino, A., R. Pascanu and D. Alistarh, “Model compression via distillation and
quantization”, arXiv preprint arXiv:1802.05668 (2018).

Rastegari, M., V. Ordonez, J. Redmon and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks”, in “European
Conference on Computer Vision”, pp. 525–542 (Springer, 2016).

Rekhi, A. S., B. Zimmer, N. Nedovic, N. Liu, R. Venkatesan, M. Wang,
B. Khailany, W. J. Dally and C. T. Gray, “Analog/mixed-signal hardware error
modeling for deep learning inference”, in “Proceedings of the 56th Annual Design
Automation Conference 2019”, p. 81 (ACM, 2019).

Roux, N. L., P.-A. Manzagol and Y. Bengio, “Topmoumoute online natural
gradient algorithm”, in “Advances in neural information processing systems”, pp.
849–856 (2008).

Shafiee, A., A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams and V. Srikumar, “Isaac: A convolutional neural network
accelerator with in-situ analog arithmetic in crossbars”, ACM SIGARCH
Computer Architecture News 44, 3, 14–26 (2016).

Song, L., X. Qian, H. Li and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning”, in “2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA)”, pp. 541–552 (IEEE, 2017).

Sze, V., Y.-H. Chen, T.-J. Yang and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey”, Proceedings of the IEEE 105, 12,
2295–2329 (2017).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, “Going deeper with convolutions”, in
“Proceedings of the IEEE conference on computer vision and pattern
recognition”, pp. 1–9 (2015).

Tu, M., V. Berisha, Y. Cao and J.-s. Seo, “Reducing the model order of deep neural
networks using information theory”, in “2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI)”, pp. 93–98 (IEEE, 2016).

Xie, Y. and M. A. Jabri, “Analysis of the effects of quantization in multilayer
neural networks using a statistical model”, IEEE Transactions on Neural
Networks 3, 2, 334–338 (1992).

73

Zhou, S., Y. Wu, Z. Ni, X. Zhou, H. Wen and Y. Zou, “Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients”, arXiv
preprint arXiv:1606.06160 (2016).

Zoph, B. and Q. V. Le, “Neural architecture search with reinforcement learning”,
arXiv preprint arXiv:1611.01578 (2016).

74

