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ABSTRACT

Signal compressed using classical compression methods can be acquired using brute

force (i.e. searching for non-zero entries in component-wise). However, sparse so-

lutions require combinatorial searches of high computations. In this thesis, instead,

two Bayesian approaches are considered to recover a sparse vector from underde-

termined noisy measurements. The first is constructed using a Bernoulli-Gaussian

(BG) prior distribution and is assumed to be the true generative model. The sec-

ond is constructed using a Gamma-Normal (GN) prior distribution and is, therefore,

a different (i.e. misspecified) model. To estimate the posterior distribution for the

correctly specified scenario, an algorithm based on generalized approximated mes-

sage passing (GAMP) is constructed, while an algorithm based on sparse Bayesian

learning (SBL) is used for the misspecified scenario. Recovering sparse signal us-

ing Bayesian framework is one class of algorithms to solve the sparse problem. All

classes of algorithms aim to get around the high computations associated with the

combinatorial searches. Compressive sensing (CS) is a widely-used terminology at-

tributed to optimize the sparse problem and its applications. Applications such as

magnetic resonance imaging (MRI), image acquisition in radar imaging, and facial

recognition. In CS literature, the target vector can be recovered either by optimizing

an objective function using point estimation, or recovering a distribution of the sparse

vector using Bayesian estimation. Although Bayesian framework provides an extra

degree of freedom to assume a distribution that is directly applicable to the problem

of interest, it is hard to find a theoretical guarantee of convergence. This limitation

has shifted some of researches to use a non-Bayesian framework. This thesis tries

to close this gab by proposing a Bayesian framework with a suggested theoretical

bound for the assumed, not necessarily correct, distribution. In the simulation study,

a general lower Bayesian Cramér-Rao bound (BCRB) bound is extracted along with
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misspecified Bayesian Cramér-Rao bound (MBCRB) for GN model. Both bounds

are validated using mean square error (MSE) performances of the aforementioned

algorithms. Also, a quantification of the performance in terms of gains versus losses

is introduced as one main finding of this report.
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”You become. It takes a long time. That is why it doesn’t happen often to people who

break easily, or have sharp edges, or who have to be carefully kept. Generally, by the

time you are Real, most of your hair has been loved off, and your eyes drop out and

you get loose in the joints and very shabby. But these things don’t matter at all,

because once you are Real you can’t be ugly, except to people who don’t understand”.

The Velveteen Rabbit
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Chapter 1

INTRODUCTION

1.1 Prologue

A sparse vector recovery problem seeks an approximate solution to an unknown

vector x

Find sparse vector x such that Ax ≈ y (1.1)

where y is the observed vector, and A is a real or complex matrix. A columns have

a unit Euclidean norm:
M∑
i=1

||aij||2 = 1. A is often referred to as a dictionary, and

its columns called subdictionaries. The target vector x is characterized by how many

non zero elements it has. L-sparse vector x has at maximum L non-zero elements.

(i.e. ||x||0 ≤ L). The counting operator || . ||0 (sometimes called l-zero norm ’l0’, or

pseudo-norm) returns the number of nonzero components of the argument. Observed

vector y is interpreted based on the nature of the target vector x. If x represents

Dirac delta functions, then y is seen as sampled vector of the dictionary A. Similarly,

if x represents an indicator function of pixels, then y is an image acquisition of the

dictionary. If x represents sunisoidal signal, then the observed vector y represents

Fourier coefficients [1]. Figure 1.1 shows a visual representation of the aforementioned

applications.
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Figure 1.1: CS Representations Of The Observed Vector y

In CS domain, signals tend to have redundant data (i.e compressible), rather than

sparse. This redundancy can be reduced without loss of information. This reduction

enables us to approximately recover signals sampled below the Nyquist rate. As in

[2], it is often more difficult to identify approximate representations of compressible

signals than of sparse signals. The intuitive solution of the sparse vector recovery

problem is to solve for every possible permutation of the sparse target vector.

arg min
x
||x||0 subject to Ax = y (1.2)
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Obviously, this solution involves a high cost in terms of computational complexity.

This constraint is often relaxed to have some tolerance. Now, the constraint is subject

to the the least square with some error ε

arg min
x
||x||0 subject to ||Ax− y||2 ≤ ε . (1.3)

An alternative constraint can be added on the least square argument depending on

the application, by replacing the error term with the count of non-zero elements L.

arg min
x
||Ax− y||2 subject to||x||0 ≤ L (1.4)

Previous set ups corresponds to known problems in the literature. The goal here is

to reduce the complexity resulting from applying equation (1.3). Brute force method

results in a combinatorial complexity that corresponds to the binomial coefficient.

Assuming that there are N realizations in the sparse vector. Typically, a
(
N
L

)
compu-

tations needed to check every single sparse permutation of the vector x.

1.2 Related Work

To exploit the redundancy of a non-structured dictionary, many classes of algo-

rithms have been created to solve the sparse vector recovery problem. Following is a

summary of the main five classes [2].

1.2.1 Brute Force

At certain situations, it is reasonable to check for sparsity in each single entry and

constraint it with any of the above constraints. However, this approach is not practical

as problem dimensions expands. However, this method will be the used as a reference

to evaluate complexity. This method is guaranteed to reach the exact number of

sparsity in the target vector for the price of having the highest computational cost

[3].
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1.2.2 Greedy Pursuit

Greedy pursuit is an iterative algorithm aims to find a set of weights that achieve

the minimum difference compared to the target signal. A well-known method that

belongs to this class of algorithms is called matching pursuit (MP) [4]. MP is an

algorithm that defines weights (w) successively until it finds the best inner product

that achieves the minimum residual R.

Rτ = f − f̂ τ (1.5)

f =
M∑

i=1

yi , f̂ τ =
N∑

i=1

wτi ai (1.6)

where ai corresponds to the columns of the dictionary matrix A.

1.2.3 Linear Optimization

Linear optimization is a class of optimization problems that deals with linear

objective functions. One of the famous algorithms that fall in this category is basis

pursuit (BP) [5]. BP aims to solve the optimization problem mentioned in equation

(1.2) but with taking l1-norm instead of lo-norm.

arg min
x
||x||1 subject to Ax = y (1.7)

This method does not assume a noisy set up. This makes the constraint centered

around the basis of the dictionary. Hence the name of the algorithm.

1.2.4 Convex Optimization

Convex optimization class of problems, conversely, deals with any non-linear as-

sumed objective function. Adding noise to equation (1.7) and relaxing the constraint
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to the least square objective, changes the problem to be

arg min
x
||x||1 subject to ||Ax− y||2 ≤ ε (1.8)

The above method is known as a basis pursuit denoising (BPDN). It can be thought

of BPDN as BP corrupted with noise.

Another widely-used algorithm on this category is the least absolute shrinkage

and selection operator (LASSO). LASSO has an objective function similar to the one

in equation (1.8) but with a different optimization constraint

arg min
x
||x||1 subject to ||Ax− y||2 ≤ L (1.9)

Identically, LASSO can be represented using a Lagrange multiplier

arg min
x
||Ax− y||2 + λ||x||1 (1.10)

It can be seen from equations (1.8-9) that LASSO and BPDN are equivalent problems

if ε in equation (1.8) was chosen to be the sparsity L.

1.2.5 Bayesian Framework

All the previous classes of algorithms assume a deterministic number of sparsity

L and aim to find a point estimate of the target vector x. However, this class of

algorithms assumes that the target vector originally followed a prior distribution

which favors sparsity. Then, approximate a target vector distributed following a

posterior distribution, that is derived using the Bayesian framework.

As reflected from the title, this report uses Bayesian framework to design a prior

distribution to recover an estimated sparse vector.

1.3 Bayesian Framework Historically

Thomas Bayes was an English Statistician and philosopher who has lived in the

eighteenth century (1701-1761)AD. He first illustrated Bayes theorem in a paper that
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was published in 1764, where he assumed a conditional distribution of a binomial

random variable, let’s say X, conditioned on a parameter θ that was uniformly dis-

tributed. According to [6], Bayes had not reflect on the posterior distribution. Based

on [6] the first scientist who had addressed the wide applicability of the posterior

distribution is the French scholar Pierre-Simon Laplace (1749-1827)AD.

Aiming to introduce the Bayesian framework, assume that there exist a random

variable X that belongs to a parameterized family of distributions and let’s call

its density p(x). Then, a number of realizations of X are gathered in a vector x.

We are interested in some parameter represented by those realizations (i.e. mean,

variance, or standard deviation). Let’s call this parameter of interest θ. θ by itself

belongs to a parameterized family of distributions let’s call its density π(θ). Both of

the marginal distributions and their joint distribution belongs to a sample space Ω.

Then, by definition, a likelihood distribution that summarize the relation between

the realizations x and the parameter θ can be formalized as p(x|θ). Bayes method

states that we can find a posterior distribution for the parameter θ that encapsulates

the information embedded in the realizations x.

p(θ|x) =
p(x|θ)π(θ)

p(x)
(1.11)

Aiming for a relevant inference of the posterior distribution p(θ|x), a proper choice of

the prior distribution must be addressed. The marginal distribution p(x) can be seen

as a mixture of conditional distribution on parameter θ, by the axiom of the total

probability [7]. However, p(x|θ) does not uniquely determine the mixing distribution

p(θ).

p(x) =

∫
p(x|θ)p(θ)dθ (1.12)
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Hence the distribution of the random variable θ must have a well defined range of

values, and must be tractable with the lowest variance possible.

1.4 Motivation

One of the major applications that belong to CS is the MRI imaging. In MRI,

the sensing waveform of the sparse vector are sinusoidal harmonics, and the observed

vector y represents a Fourier coefficients. In this paradigm, data are assumed to be

complex. Originally, MR imaging was not a subject of interest to DSP community

until introducing a technique [8] called (SENSE). It was shown in [8] that there is a

redundancy can be exploited for fast signal acquisition. As in [9] this redundancy of

the data can be processed to reduce the sampling rate. However, MRI related research

have a tendency towards non-Bayesian approaches. This tendency has many justifica-

tions. One is that CS originally started with non Bayesian classes of algorithms [10].

Another is that Bayesian framework has not ensure theoretical guarantees. In [11],

it was clearly stated that the absence of a theoretical bound has made them avoid

using Bayesian framework. Here I quote [11]: ”As the Bayesian method does not of-

fer theoretical guarantees and the brute force method only remains plausible for small

scale problems, we have applied only algorithms belonging to greedy pursuit,convex l1

optimization and non-convex lq optimization in this study”.

Motivated not only by this article that clearly states that the absence of a theoret-

ical guarantee discouraged them from using a Bayesian method, but in the absence of

reliable information, which is the case for many applications in CS, Bayesian method

gives an extra degree of freedom in the design. The idea is that using a reliable prior,

something that is not readily observable nor tractable, can give an insight about the

original data specifications. So, with the help of the CRB lower bound, one can find

a theoretical lower bound on the MSE of the estimate. Thus, and for the afore-

7



mentioned justifications, this attempt can hopefully shows the potential of using the

Bayesian framework as one effective methods in like applications.

The organization of this report is as follows. In chapter 2, an introduction to

parameter estimation and CRB bound is given. In chapter 3, A formalization of

the problem with the prior assumed distribution along with the calculated bounds is

given. In chapter 4, Approximated posterior distribution for two different families of

models. Also, numerical results of the MSE following both Baysian methods, along

with complexity measure trade-off. Finally, chapter 5, is a conclusion with suggestions

for future research.

This thesis aims to find a quantitative criterion to evaluate the goodness of an

algorithm by defining a metric. This metric compute gains in terms of computational

complexity and losses in terms in dBs. Then, it shows a trade-off between gains and

losses for both algorithms used in this research.
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Chapter 2

PARAMETER ESTIMATION AND PARAMETER BOUNDS

Statistics is a discipline where data is collected for the purpose of interpretation and

inference. How the data is collected is not the main concern, rather than drawing

conclusions about the parameters that the collected data represents [12]. Statistical

inference is attributed to the situations assumed about the parameter of interest. A

number of observations x either belongs to a non-parametric family of distributions

and called nonparameteric estimation, or belongs to a parametric family of dis-

tributions and called parametric estimation. Nonparameteric estimation is useful in

the absence of any guidance, constraints, or parameter of interest. A well-known field

that uses nonparameteric estimation is neural networks or supervised learning. On

the other hand, parametric estimation is where those observations x belongs to a

parameter of interest. The parameter of interest θ can be assumed to be determin-

istic or to follow a known family of distributions. The former is often called point

estimation, and aims to find a plausible value of θ. The latter is often referred to as

Bayesian estimation. Bayesian estimation aims to find a distribution of θ, rather

than the value of θ itself. Figure 2.1 shows a diagram of different statistical branches

followed by a well-known optimization disciplines to estimate the desired parameter.
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Low High

Figure 2.1: Branches Of Statistics And Corresponding Optimization Disciplines.

In general, estimation model must have parameter space (Ω) as the domain

of values parameter can have, observation space (X ) as a finite-dimensional space

whose points can be denoted by a random vector X, probabilistic mapping func-

tions from parameter space to observation space (i.e. cumulative distribution func-

tions (CDFs) and there derivatives probability distribution functions (PDFs)), and

finally estimation rule which can be denoted as θ̂(x).

2.1 Estimation Cost and Risk Minimization

After defining a framework of a general estimation model, it is intuitive to search

for a way to measure the quality of an estimation. This performance indicator will

be between the true parameter value θ and the estimated value taken from the ob-

servations θ̂(x). This measure can be defined as θε, which is the difference between

the true and estimated value of the parameter.

θε(x) = θ̂(x)− θ (2.1)

A cost function can be defined as a customized function of the error that measures

user satisfaction adequately and also one that results in a tractable problem. Once
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the cost function is defined, a good estimate can be achieved by minimizing the cost

function.

Some of the widely-known cost functions are the squared error cost function

C(θε) = θε
2 . (2.2)

The absolute value of the error cost function

C(θε) = | θε | . (2.3)

The uniform error cost function

C(θε) =





0, | θε | ≤ ∆
2
,

1, | θε | ≥ ∆
2
.

(2.4)

Risk can be defined as the expected value of any chosen cost function over the

joint probability of the parameter and observation spaces px,θ(x, θ), if the parameter

follows a stochastic assumption, or the likelihood density px|θ(x|θ) ,if the parameter

is under the deterministic assumption. The prior distribution πθ(θ) and θ values are

assumed to be known for each of the two cases. The following risk is for estimation

within Bayesian framework.

R = E{C[θ, θ̂(x)]} =

∫ ∞

-∞

∫ ∞

-∞
C[θ, θ̂(x)] px,θ(x, θ) dx dθ (2.5)

While the risk for non-Bayesian framework is

R = E{C[θ, θ̂(x)]} =

∫ ∞

-∞

∫ ∞

-∞
C[θ, θ̂(x)] px|θ(x|θ) dx dθ (2.6)

This risk concept is applicable for a general model of estimation. Naturally a minimum

value of risk is desired. The following sections will try to optimize risk for Bayesian

and non-Bayesian assumptions.
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2.2 Bayesian Risk Analysis

Now, we try to explore integral in equation (2.4) for the three cost functions (2.1-3)

• The squared error risk optimization:

Rms =

∫ ∞

-∞

∫ ∞

-∞
[θ− θ̂(x)]

2
px,θ(x, θ) dx dθ

Rms =

∫ ∞

-∞
px(x) dx

∫ ∞

-∞
[θ− θ̂(x)]

2
pθ|x(θ|x) dθ .

Since both integrals of the last equation are positive quantities, minimizing the

inner integral minimizes risk. This optimization step is called minimum mean

squared error (MMSE). Let’s define the value achieving the minimum as θ̂(x)ms.

Rms(θ |x) =

∫ ∞

-∞
[θ− θ̂(x)]

2
pθ|x(θ|x) dθ

d

dθ̂
Rms(θ |X) =

d

dθ̂

∫ ∞

-∞
[θ− θ̂(x)]

2
pθ|x(θ|x) dθ

= −2

∫ ∞

-∞
θ pθ|x(θ|x) d θ+2 θ̂(x)

∫ ∞

-∞
pθ|x(θ|x) d θ = 0

⇒ θ̂(x)ms =

∫ ∞

-∞
θ pθ|x(θ|x) d θ = Eθ |X{θ} (2.7)

The term inside the box is called the conditional mean estimator. This method-

ology of evaluating the estimate is used if we have limited information of the

prior distribution, or we have access to the distribution of the parameter. [13].

• The absolute value of the error cost function:

The Bayes estimate of the absolute value cost function can be written as

Rabs =

∫ ∞

-∞

∫ ∞

-∞
| θ− θ̂(x) | px,θ(x, θ) dxdθ

Rabs =

∫ ∞

-∞
px(x) dx

∫ ∞

-∞
| θ− θ̂(x) | pθ|x(θ|x) dθ
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doing the same as we did in the previous case, we minimize the inner integral

Rabs(θ |X) =

∫ ∞

-∞
| θ− θ̂(x) | pθ|x(θ|x) dθ

d

dθ̂
Rabs(θ |X) =

d

dθ̂

∫ ∞

-∞
| θ− θ̂(x) | pθ|x(θ|x) dθ

=

∫ θ̂(θ)abs

−∞
θ pθ|x(θ|x) d θ−

∫ ∞

θ̂(θ)abs

pθ|x(θ|x) d θ = 0

⇒ θ̂(x)abs :

∫ θ̂(θ)abs

−∞
pθ|x(θ|x) d θ =

∫ ∞

θ̂(θ)abs

pθ|x(θ|x) d θ (2.8)

The estimate defined in equation (2.7) is called the median of a posterior density.

This method of risk optimization is often used to find more robust estimates in

asymmetric distributions [14].

• The uniform error cost function :

The risk of the uniform function can be formulated as

Runf =

∫ ∞

-∞
px(x) dx[1−

∫ θ̂(θ)unf + ∆
2

θ̂(θ)unf −
∆
2

pθ|x(θ|x) dθ] (2.9)

To minimize risk in this case, we clearly want to maximize the internal integral

in the local region of the estimate (i.e. having a small value of ∆).

arg max
θ

pθ|x(θ|x) (2.10)

This methodology of minimizing risk is called a maximization of a posteriori

(MAP). This particular method is the most well-known method to find an es-

timate in the Bayesian framework.

2.3 Non-Bayesian Risk Analysis

Obviously, the joint assumption in the above risk analysis does not apply for the

deterministic case, since there is no prior density. Rather, risk defined in equation
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(2.5) is adopted.

Rml =

∫ ∞

-∞
[θ− θ̂(x)]

2
px|θ(x|θ) dx (2.11)

Since the expectation is only over the observations x, a minimization of the risk

hopefully will lead us to

E{θ̂(x)ml} = θ (2.12)

However, this is a very optimistic assumption, and it does not open a possibility for

further analysis. Instead a more robust definition of expectations of the maximum

likelihood expectation (MLE) estimate is defined as follows

E{θ̂(x)ml} =∆
∫ ∞

-∞
θ̂(x) px|θ(x|θ) dX (2.13)

The mean square criteria of a mean square error using the a general estimate can

be decomposed into varaince and bias as follows

Ep(x| θ)[(θ̂ − θ)
2
] = Ep(x| θ)[(θ̂ − E[θ̂] + E[θ̂]− θ)2] (2.14)

= Ep(x| θ) [(θ̂ − E[θ̂])
2
] + (E[θ̂] + θ)

2
(2.15)

= Variance + Bias2 (2.16)

Following the above decomposition of the mean squared error. three situations can

arise depending on values in equation (2.15):

• If E[θ̂(x)] = θ, this is called unbiased estimator.

• If E[θ̂(x)] = θ+B, where B is not a function of θ, which means that this esti-

mator has a known bias.

• If E[θ̂(x)] = θ+B(θ) = µθ, the estimator has an unknown bias that is a function

of the parameter.
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Figure 2.2 shows a contrast between the visual inference of the bias, variance

relations.

Figure 2.2: Bias Variance Visualization

2.4 Parameter Bounds

Statistical bounds are another way of measuring the quality of an estimate. Bounds

derived from the covariance inequality and Ziv-Zakai family bounds are well-known

examples of parameter bounds [14]. A well-known bound on the covariance inequality

is the Cramér-Rao Bound (CRB).

In this report, a Bayesian framework is applied on two models, one is assumed

to be the correct model that data are distributed upon. Hence the name, Correctly

specified model. The other model follows another family of distributions, and assumed

to be a misspesified model. The remaining part of this chapter is meant to derive

CRB type bounds. The deterministic correctly specified bound has been given the

name CRB, the Bayesian correctly specified bound and has been given the name
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BCRB, the deterministic misspecified bound and has been given the name MCRB.

Finally, the Bayesian misspecified bound and has been given the acronym MBCRB.

Before digging deep into the CRB bound, certain assumptions are needed.

2.4.1 Inner Product and Expectated Value

Assume we have two random variables ζ(x) and η(x, θ) that are functions of a

random variable X that is jointly distributed with θ according to joint cumulative

distribution function F (x, θ). The inner product of these two random variables can

be defined as the expectation of their product, sometimes called their correlation:

< ζ(x), η(x, θ) >=∆ E[ζ(x), η(x, θ)] =

∫ ∞

-∞
ζ(x)η(x, θ)dF (x, θ)

where dF (x, θ) = px,θ(x, θ) dxd θ

2.4.2 Inner product and Cosine Between Two Vectors

< ζ, ζ >= ||ζ||2, cos(θ) =
< ζ, η >

||ζ|| ||η||

From the previous two facts, and taking into account the two that ||.||2 is a positive

quantity and cos2(θ) ≤ 1, the covariance inequality(i.e. Cauchy-Schwarz inequality)

can be defined as follows:

E[ζ2] ≥ E2[ζη]

E[η2]

Worth noting from the covariance inequality that the cosine between any two elements

of the inner product space equals unity if and only if ζ ∝ η. In other words, equality

of the covariance inequality can be reached if the two random variable are parallel(i.e.

proportional) to each other.

It is important to say that we are going to use the covariance inequality to establish a
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Cramér-Rao type bound. It can be shown that our choice of score function, along with

some regularity conditions, facilitates this whether the model is correctly specified or

misspecified [15].

2.5 Cramér-Rao Bound For Correctly Specified Models

Cramér-Rao bound is derived from the covariance inequality and gives us the min-

imum variance bound that can be achieved for the risk function. In order to establish

this bound, proper values need to be assigned for ζ and η. Let ζ(θ̂(x), θ) and η(x, θ).

where ζ is related to the variance we want to find its lower bound, and η is the

customized score function chosen to find the tightest bound possible. Before proceed-

ing in the derivation of the Cramér-Rao Bound there are some assumptions must be

taken into account for CRB and BCRB. Those are mentioned in appendix (A.1-2).

Also, the joint probability density px,θ(x, θ) = px|θ(x|θ) πθ(θ) will be naturally used

for the Bayesian case, while the conditional density is used in the derivation of the

deterministic case.

2.5.1 CRB

The parameter value is assumed to be deterministic but unknown. Furthermore,

the estimator is only a function of the observed data θ̂ = θ̂(x) and any observed

data point is taken from the likelihood density given the true value of the parameter:

x ∼ px|θ(x|θ). Also, it is convenient to define a value of the estimator mean to be

µθ =∆ Ex| θ[θ̂]

Now choose the random variables as follows:

ζ = θ̂ − µθ, η =
∂ ln px|θ(x|θ)

∂ θ
.
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Derivation of the bound will be as follows

Ex| θ[(θ̂ − µθ)
2
] ≥

E2
x| θ[(θ̂ − µθ)(

∂ ln px|θ(x|θ)
∂ θ

)]

Ex| θ[(
∂ ln px|θ(x|θ)

∂ θ
)
2
]

=
E2

x| θ[θ̂
∂ ln px|θ(x|θ)

∂ θ
−µθ ∂ ln px|θ(x|θ)

∂ θ
]

Ex| θ[(
∂ ln px|θ(x|θ)

∂ θ
)2]

.

Focusing on the numerator, it is desired to get rid of its dependence on the estimator,

since it is the estimate we want to lower bound:

⇒ Ex| θ[θ̂
∂ ln px|θ(x|θ)

∂ θ
−µθ

∂ ln px|θ(x|θ)
∂ θ

]

=

∫ ∞

-∞
θ̂(x)

∂ ln px|θ(x|θ)
∂ θ

px|θ(x|θ) dx−
∫ ∞

-∞
µθ
∂ ln px|θ(x|θ)

∂ θ
px|θ(x|θ) dx

=

∫ ∞

-∞
θ̂(x)

∂ px|θ(x|θ)
∂ θ

px|θ(x|θ)
px|θ(x|θ)

dx− µθ
∫ ∞

-∞

∂ px|θ(x|θ)
∂ θ

px|θ(x|θ)
px|θ(x|θ)

dx

=
∂

∂ θ

∫ ∞

-∞
θ̂(x) px|θ(x|θ) dx− µθ

∂

∂ θ

∫ ∞

-∞
px|θ(x|θ) dx

=
∂

∂ θ
(µθ)− µθ

∂

∂ θ
(1)

=
∂µθ
∂ θ

.

Hence the CRB bound can be written as follows:

⇒ Ex| θ[(θ̂ − µθ)
2
] ≥ (∂µθ

∂ θ
)
2

Ex| θ[(
∂ ln px|θ(x|θ)

∂ θ
)
2
]


θ=θT

= CRB(θT ) (2.17)

Observe that for an unbiased estimator (µθ = θ), the bound is given by the inverse

Fisher information content and the variance is the MSE.

2.5.2 BCRB

The Bayesian case is slightly different from the previous one in terms of the prior

assumption. Now, there is a prior density πθ(θ), and although the estimator is still a

function of the observed data θ̂ = θ̂(x), the data is distributed according to the joint

probability density x ∼ px,θ(x, θ). The values of random variables and the covariance
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inequality will slightly change. We choose the random variables as follows:

ζ = θ̂ − θ, η =
∂ ln px,θ(x, θ)

∂ θ
.

Then the inequality will look like

Ex,θ[(θ̂ − θ)
2
] ≥ E2

x,θ[(θ̂ − θ)(∂ ln px,θ(x,θ)

∂ θ
)]

Ex,θ[(
∂ ln px,θ(x,θ)

∂ θ
)
2
]

Similarly the derivation will try to get rid of the estimator from the left term of the

bound.

Ex,θ[(θ̂ − θ)
2
] ≥ E2

x,θ[(θ̂ − θ)(∂ ln px,θ(x,θ)

∂ θ
)]

Ex,θ[(
∂ ln px,θ(x,θ)

∂ θ
)
2
]

=
E2

x,θ[θ̂
∂ ln px,θ(x,θ)

∂ θ
− θ ∂ ln px,θ(x,θ)

∂ θ
]

Ex,θ[(
∂ ln px,θ(x,θ)

∂ θ
)2]

As what has been done to CRB we use the assumptions provided in appendix (A.1)

to manipulate the numerator:

⇒ Ex,θ[θ̂
∂ ln px,θ(x, θ)

∂ θ
− θ ∂ ln px,θ(x, θ)

∂ θ
]

= Ex,θ[θ̂
∂ ln px,θ(x, θ)

∂ θ
]− Ex,θ[θ

∂ ln px,θ(x, θ)

∂ θ
]

= EX [θ̂(x)[Eθ |X [
∂ ln px,θ(x, θ)

∂ θ
]]]− Ex,θ[θ

∂ ln px,θ(x, θ)

∂ θ
]

= 0− Ex,θ[θ
∂ ln px,θ(x, θ)

∂ θ
]

The first element is zero because of the fact that the expected value of the score

function for the joint probability density goes to zero (4-A.1)

⇒ −Ex,θ

[
θ
∂ ln px,θ(x, θ)

∂ θ

]
= −

∫ ∞

-∞

∫ ∞

-∞
θ
∂ ln px,θ(x, θ)

∂ θ
px,θ(x, θ) dxd θ

= −
∫ ∞

-∞
px(x) dx

∫ ∞

-∞
θ[
∂ ln pθ|x(θ|x)

∂ θ
+
∂ ln px(x)

∂ θ
] pθ|x(θ|x) d θ

= −
∫ ∞

-∞
px(x) dx

∫ ∞

-∞
θ
∂ pθ|x(θ|x)

∂ θ

pθ|x(θ|x)

pθ|x(θ|x)
d θ

= −
∫ ∞

-∞
px(x) dx

∫ ∞

-∞
θ
∂ pθ|x(θ|x)

∂ θ
d θ
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The inner integral can be evaluated using the integration-by-parts method:

= −
∫ ∞

-∞
px(x) dx

[
θ pθ|x(θ|x)−

∫ ∞

-∞
pθ|x(θ|x) d θ

]

= −
∫ ∞

-∞
px(x) dx

[
0−

∫ ∞

-∞
pθ|x(θ|x) d θ

]

= +

∫ ∞

-∞
px(x) dx

∫ ∞

-∞
pθ|x(θ|x) d θ =

∫ ∞

-∞

∫ ∞

-∞
px,θ(x, θ) dxd θ = 1

Hence the BCRB bound can be written as follows:

Ex,θ[(θ̂ − θ)
2
] ≥ 1

Ex,θ[(
∂ ln px,θ(x,θ)

∂ θ
)
2
]


θ=θT

= BCRB(θT ) (2.18)

2.6 Cramér-Rao Bound For Misspecified Models

Parameter bounds assumed usually a perfect match of the true distribution of the

data. However, this is mostly wrong due to many reasons. In this chapter, we try to

find a theoretical bound for a misspecified model for deterministic and random true

parameter. Hence, there are two distributions that must be taken into consideration

for this part: px,θ(x, θ) as the true data distribution and qx,θ(x, θ) as the assumed

distribution.

qx|θ(x|θ) 6= px|θ(x|θ) is allowed (MCRB)

qx,θ(x, θ) 6= px,θ(x, θ) is allowed (MBCRB)

Note that, the true distribution px|θ(x|θ) is possibly independent of θ and a function

of the data only (i.e. p = px(x)), because the real purpose for this approach is to

allow for the possibility that the model parametrization is incorrect. Also, if the

real distribution actually depends on the parameter θ, then the value θ takes on

will be fixed for our measurement and outside our control. Hence assuming the real

distribution (p) is only a function of observations (x) is sufficient for the purpose of

studying misspecification.
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2.6.1 MCRB

Similar to the case of CRB, θ is a deterministic value, and the estimate is a function

of the data (i.e. θ̂ = θ̂(x)). However, in the misspecified case, x ∼ qx|θ(x|θ) 6= px|θ(x|θ)

is allowed. In addition, a new definition of the mean must be introduced:

µp =∆ Ep(x| θ)[θ̂q(x)] =

∫ ∞

-∞
θ̂q(x) px|θ(x|θ) dx

where Ep(x| θ)[.] means that this expectation is with respect to the true distribution

px|θ(x|θ), and θ̂q(x) has subscript ”q” to indicate that this estimator is based on the

assumed distribution qx|θ(x|θ). The choice of random variables will be:

ζ = θ̂q(x)−µp, η =
∂ ln qx|θ(x|θ)

∂ θ
− Ep(x| θ)[

∂ ln qx|θ(x|θ)
∂ θ

]

Then the inequality will look like

Ep(x,θ)[(θ̂q(x)−µp)
2
] ≥

E2
p(x,θ)[(θ̂q(x)−µp)(

∂ ln qx|θ(x|θ)
∂ θ

− Ep(x| θ)[
∂ ln qx|θ(x|θ)

∂ θ
])]

Ep(x,θ)[(
∂ ln qx|θ(x|θ)

∂ θ
− Ep(x| θ)[

∂ ln qx|θ(x|θ)
∂ θ

])
2
]

(2.19)

using the score function that involves that KL divergence in appendix (A.1-2), the

above inequality can be written as

Ep(x| θT)[(θ̂q(x)−µp)
2
] ≥

E2
p(x| θT)[(θ̂q(x)−µp)(

∂ ln px|θ(x|θ)
∂ θ

+ ∂D
∂ θ

)]

Ep(x| θT)[(
∂ ln px|θ(x|θ)

∂ θ
+ ∂D

∂ θ
)
2
]

(2.20)

Numerator can be simplified to be:

[
Ep(x| θT)[(θ̂q(x)−µp)(

∂ ln px|θ(x|θ)
∂ θ

+ ∂D
∂ θ

)]

]2

=

[
Ep(x| θT)[θ̂q(x)

∂ ln px|θ(x|θ)
∂ θ

] + Ep(x| θT)[θ̂q(x) ∂D
∂ θ

]− Ep(x| θT)[µp
∂ ln px|θ(x|θ)

∂ θ
]− Ep(x| θT)[µp

∂D
∂ θ

]

]2

=

[
Ep(x| θT)[θ̂q(x)

∂ ln px|θ(x|θ)
∂ θ

] + ∂D
∂ θ

Ep(x| θT)[θ̂q(x)]− µp Ep(x| θT)[
∂ ln px|θ(x|θ)

∂ θ
]− µp

∂D
∂ θ

]2

=

[
Ep(x| θT)[θ̂q(x)

∂ ln px|θ(x|θ)
∂ θ

] + µp
∂D
∂ θ

]2
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Denominator can be simplified to be:

Ep(x| θT)

[
(
∂ ln px|θ(x|θ)

∂ θ
+
∂D

∂ θ
)
2]

= Ep(x| θT)[(
∂ ln px|θ(x|θ)

∂ θ
)2] + Ep(x| θT)[2(

∂ ln px|θ(x|θ)
∂ θ

)(
∂D

∂ θ
)] + Ep(x| θT)[(

∂D

∂ θ
)2]

= Ep(x| θT)[(
∂ ln px|θ(x|θ)

∂ θ
)2] + 2

∂D

∂ θ
Ep(x| θT)[(

∂ ln px|θ(x|θ)
∂ θ

)] + Ep(x| θT)[(
∂D

∂ θ
)2]

= Ep(x| θT)[(
∂ ln px|θ(x|θ)

∂ θ
)2] + 2

∂D

∂ θ
(− ∂D

∂ θ
) + (

∂D

∂ θ
)2

= Ep(x| θT)[(
∂ ln px|θ(x|θ)

∂ θ
)2]− (

∂D

∂ θ
)2

Hence, the MCRB bound after simplification will be:

Ep(x| θT)[(θ̂q(x)−µp)
2
] ≥

[
Ep(x| θT)[θ̂q(x)

∂ ln px|θ(x|θ)
∂ θ

] + µp(∂D
∂ θ

)

]2

Ep(x| θT)

[
(
∂ ln px|θ(x|θ)

∂ θ
)2

]
−
[
(∂D
∂ θ

)2

]
 =∆ MCRB(θ, q : p)

(2.21)

Note that if the model is correctly specified (i.e. q = px|θ(x|θ)), then:

µq = µθ,
∂D

∂ θ
= 0, Ep(x| θT)[θ̂q(x)

∂ ln px|θ(x|θ)
∂ θ

] =
∂µθ
∂ θ

→MCRB(θ, q : p) = CRB(θ)

2.6.2 MBCRB

Similar to BCRB, it is more advantageous to work with the MSE instead of the

variance (i.e. pursuing the value of the estimator θ instead of its mean µp, and

introducing the new score function for misspecified models. Thus, random variables

will be as follows:

ζ = θ̂q(x)− θ, η =
∂ ln qx|θ(x|θ)

∂ θ
− Ep(x| θ)[

∂ ln qx|θ(x|θ)
∂ θ

] .
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Then, the inequality becomes

Ep(x,θ)[(θ̂q(x)− θ)2
] ≥

[
Ep(θ)

[
Ep(x| θ)[(θ̂q(x)− θ)(∂ ln qx|θ(x|θ)

∂ θ
− Ep(x| θ)[

∂ ln qx|θ(x|θ)
∂ θ

])]

]]2

Ep(θ)

[
Ep(x| θ)[(

∂ ln qx|θ(x|θ)
∂ θ

− Ep(x| θ)[
∂ ln qx|θ(x|θ)

∂ θ
])

2
]

]

Note that the inner expectation is identical to the MCRB case, which means we can

evaluate the conditional bound then we average out the outer expectation. Hence the

MBCRB bound can be written as follows:

Note that inequalities (10 and 11) involve terms that could be function of the

estimator in their right hand side :

Ep(x| θT)[θ̂q(x)
∂ ln px|θ(x|θ)

∂ θ
] MCRB

Ep(x| θ)[θ̂q(x)
∂ ln px|θ(x|θ)

∂ θ
] MBCRB

Which means by definition that they are not a Cramér-Rao Type inequalities. The

given choice of the appropriate regularity conditions, however, will result in expres-

sions independent of the estimator, and therefore an inequality of the Cramér-Rao

type[16].

Ep(x,θ)[(θ̂q(x)− θ)2
] ≥

[
Ep(θ)

[
Ep(x| θ)[θ̂q(x)

∂ ln px|θ(x|θ)
∂ θ

] + µp(∂D
∂ θ

)

]]2

Ep(θ)

[
Ep(x| θ)

[
(
∂ ln px|θ(x|θ)

∂ θ
)2

]
− (∂D

∂ θ
)2

]
 =∆ MBCRB(θ, p : q)

(2.22)

However, derivations of bounds in this report in vector format, not in scalar one

as shown above. Table 2.1 shows all important terms and a the lower bound on MSE

for all four cases.
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Table 2.1: The CRB Bounds.
Cramer Rao Bound

Type Est error (ζ) Score Function (η) FIM CRLB Type Bound

CRB θ̂p(x)− θt ∂ ln p(x|θ)
∂θ* Ep[(∂ ln p(x|θ)

∂θ* )
2
]

∂µθt
∂θt

(FIM)−1 ∂µθt
∂θt

H

MCRB θ̂q(x)− µp(θ) ∂ ln q(x|θ)
∂θ* -Epx|θ

{∂ ln q(x|θ)
∂θ*

}
J(p:q)(θ) Ξ(p:q)(θ)

H J(p:q)(θ)
−1 Ξ(p:q)(θ)

BCRB θ̂p(x)− θ ∂ ln p(x|θ)
∂θ* Ep[(∂ ln p(x|θ)

∂θ* )
2
] FIM−1

MBCRB θ̂q(x)− µp(θ) ∂ ln q(x|θ)
∂θ* -Epx|θ

{∂ ln q(x|θ)
∂θ*

}
J(p:q)(θ) Epθ[Ξ(p:q)(θ)

H ]E−1
pθ

[J(p:q)(θ)]Epθ
[Ξ(p:q)(θ)]
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Chapter 3

PROBLEM FORMULATION

3.1 Linear System Revisited

Let’s investigate the linear system in equation (1.1)

y = Ax




...

y

...




=




a11 . . . a1n

. . A . .

am1 . . . amn







.

x

.




y ∈ CM×1 a vector of observed responses

A ∈ CM×N a matrix of deterministic and known measurements

x ∈ CN×1 the target sparse vector

The solution of this linear system can have one of the following situations depending

on the rank of A. Assuming a linearly independent A we have the three following

situations:

• Overdetermined linear system (M > N):



...

.

y

.

...




=




a11 . a1n

. . .

. A .

. . .

am1 . amn







.

x

.
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This system has a thin and tall A (i.e. more equations than unknown). In this

situation, the system has no exact solution.

• Perfectly determined linear system (M = N):




...

y

...




=




a11 . a1n

. A .

am1 . amn







.

x

.




This system has a square A. In this situation, the system has a unique solution.

The solution can be found by multiplying both side by the inverse of the A.

• Underdetermined linear system (M < N):

This system has a short and fat A(i.e. fewer equations than unknowns). In this

situation, the system has infinitely many solutions. Classically, an approximate

solution is found by using least square criterion.




...

y

...




=




a11 . . . a1n

. . A . .

am1 . . . amn







...

.

x

.

...




3.1.1 Sparse Vector Recovery For Noisy Undetermined System

The problem of interest is formalized as follows

y = Ax + w (3.1)

where A ∈ CM×N is a matrix of deterministic and known measurements with

(M < N), and x ∈ CN×1 is vector representation of sparse signals, w ∈ CM×1 is
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noise modeled following a circularly symmetric complex Gaussian distribution (i.e.

w ∼ CN (w; 0, INσ
2
wi

)), where CN denotes a complex Gaussian distribution and

y ∈ CM×1 is a vector representation of observed responses.




...

y

...




=




a11 . . . a1n

. . A . .

am1 . . . amn







...

.

x

.

...




+




...

w

...




in this underdetermined assumption A is short and fat and x has independent and

identically distributed (iid) realizations with a known sparsity L. Bayesian framework

is concerned about modeling sparsity in a way that is tractable. The goal here is to

estimate a sparse vector x based on an observation vector y. Let’s assume a general

model of the prior distribution denoted by density p(.) if correctly specified, and q(.)

if not. Figure 3.1 shows the interaction between the aforementioned assumptions of

distributions.

p(x|h) q(x|h)

Correctly-
specified model

Misspecified
model

Figure 3.1: Assumed Distributions To Model Sparsity Promoting Prior
Distribution
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Generally, posterior distribution for both assumptions can be optimized following

p(x|y) ∝ p(y|x)p(x|h)p(h) (3.2)

q(x|y) ∝ q(y|x)q(x|h)q(h) (3.3)

where h represents a vector set of arbitrary hyperparameters (i.e. prior parameters

of the prior distribution).

3.2 Prior Distributions

To enforce sparsity in the Bayesian framework, proper prior distributions must be

assumed. A Bernoulli Gaussian (BG) model is assumed to be the correctly specified

distribution and Gamma Normal (GN) model is assumed to be a misspecified model.

3.2.1 Bernoulli Gaussian Model

The Probability Distribution Function (PDF) of a BG model is given by:

p(x|h) =
N∏

i=1

(1− λi)δ(xi) + (λi)CN (xi; θi,Φi) (3.4)

where h =∆ [λ,θ,Φ]. In our approach we adopt standardized Complex Gaussian

assumption which makes the mean vector θ = [θ1, θ2, . . . , θN ]T = 0, the covariance

matrix Φ = IN , and λ = [λ1, λ2, . . . , λN ]T , the sparsity-promoting random variable

vector following Bernoulli distributed trials, be

λ ∼
N∏

i=1

B(1, λi) (3.5)

where λi =∆ ||x||0
N

= L
N

a deterministic sparsity ratio of the number of non-zero entries

to the full size of x and B denotes a Bernoulli density. Figure 3.2 shows generated

BG distributions with different values of sparsity λ
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Figure 3.2: Identical Gaussian Distribution With Corresponding Sparsity Values.

3.2.2 Gamma Normal Model

The PDF of a Gamma-Normal model is given by:

q(x|h) =
N∏

i=1

CN (xi; θi, α
−1
i ) (3.6)

where h =∆ [θ,α] as in (3.4). We assume zero-mean for all entries, i.e., θ = 0. We

also assume that αi is an independent identically distributed (i.i.d) random variable

that follows Gamma distribution with location and shape parameters, a and b given

by:

α ∼
N∏

i

Gamma(αi; ai, bi) =
N∏

i

baii
Γ(ai)

αai−1
i e−biαi . (3.7)

One of the reasons GN is chosen as a sparsity promoting model is its tractability,

meaning that given hyperparameters a,b of a prior Gamma, q(xi) can be found to be

q(xi) =

∫ ∞

0

q(xi|αi)q(αi)dαi =
ba

πΓ(a)

∫ ∞

0

αa−1+1
i e−αi(|xi|

2+b)dαi
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=
baΓ(a+ 1)

πΓ(a)(b+ |xi|2)
a+1 . (3.8)

Setting a = 1 in equation (3.8) will result a closed form density of q(xi) to be

q(xi) =
bΓ(2)

πΓ(1)(b+ |xi|2)
2 =

b

π(b+ |xi|2)
2 (3.9)

On this Bayesian framework, the setting of hyperparameters is essential to achieve

multiple objectives. First, hyperparameters a and b must be chosen to favor sparsity.

Figure 3.3 shows how the pdf of the Gamma model with different values of hyper-

parameters changes. Second, as shall be seen later on, the derived bound for this

model will still be a function of b. Meaning that there is a trade-off between sparsity

constrain the bound behaviour. A complete analysis and discussion will follow in the

next chapter.

0 2 4 6 8 10

q(
)

a=1 , b=1

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

q(
x|

)

0 2 4 6 8 10

q(
)

a=1 , b = 1e 02

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

q(
x|

)

0 2 4 6 8 10

q(
)

a=1 , b = 1e 04

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x

q(
x|

)

Figure 3.3: Gamma Normal Distribution With Various Values Of Hyperparameters

It can be inferred from Figure 3.3 that X has an assumed mean of zero and an

assumed prior on the variance. Since a is location parameter, it is chosen to be 1

or some value around it as in equation (3.7). The shape parameter b determines
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steepness of the tail. Having a small value of b lower encourages the majority real-

izations α to be around zero, and vice versa. The desired objective here is to have

smooth sparsity with lower losses possible on the bounds of the estimate with fast

and guaranteed convergence of the algorithm used.

3.2.3 Bayesian Cramér-Rao Bound

The development of bounds for both models comes from [17]. Since BG is as-

sumed to be the true generative model, general BCRB bound ideally is the tightest

bound possible. It is important to note that all distributions in this work are in

the complex domain, i.e. the distributions are real valued functions of complex vari-

ables. Therefore, complex gradient methods based on Wirtinger calculus will be used.

Specifically, complex-valued x is treated as a function of x and its conjugate x∗ then

derivative is taken with respect to x∗ as in [18]. Hence, a complex-valued vector x

yields parameters as follows,

θ =

[
xT xH

]T
(3.10)

x and θ are used interchangeably while extracting bounds since they don not change

in the corresponding probability distributions. Worth mentioning that x and θ rep-

resents the sparse vector and not to be confused with the ones in equations(3.4, 3.6).

The non-Bayesian CRB can be written as

Epy|θ{[θ̂p(y)− θ][θ̂p(y)− θ]
H} ≥ J−1

(p)(θ) (3.11)

where

J(p)(θ) =∆ − Epy|θ [
∂2 ln p(y|θ)

∂θ*∂θT
] (3.12)

Then, we obtain the likelihood from (3.1) as:

p(y|θ) = CN (Ax, σ2
wIM), (3.13)
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which gives the following expected value of the second derivative of the log likelihood,

Epy|θ

{( ∂2 ln p(y|θ)

∂θ*∂θT

)}
= − 1

σ2
w




B 0N×N

0N×N BT


 (3.14)

where B = AHA. Hence, BCRB is given by:

Epθ
{
||x− x̂||22

}
≥ σ2

w

tr{B} (3.15)

tr{·} refers to the trace of a matrix.

3.2.4 Misspecified Bayesian Cramér-Rao Bound For GN Model

Obtaining MBCRB for an arbitrary class of distributions requires defining a set

of parameters. The maximum a posteriori (MAP) estimate θ̂q is obtained from the

misspecified density as follows:

θ̂q(y) = arg max
θ

q(y,θ) (3.16)

This estimate has a conditional mean given by:

µp(θ) = Epy|θ
[
θ̂q
]
, (3.17)

Then, a slightly different score function than the one used in BCRB to reflect the

misspecified nature [19] is given by:

η(y,θ) =
∂ ln q(y|θ)

∂θ*
-Epy|θ

{∂ ln q(y|θ)

∂θ*

}
. (3.18)

Finally, the estimation error that is approximated using Taylor series as in [17] is

given by:

ζ(y,θ) ≈ −
(
∂2 ln q(y|θ)

∂θ∗∂θ

T

+
∂2 ln q(θ)

∂θ∗∂θ

T ∣∣∣∣
θ=µp

)−1

×
(
∂ ln q(y|θ)

∂θ∗
+
∂ ln q(θ)

∂θ∗

) ∣∣∣∣
θ=µp

(3.19)
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It is assumed that MAP estimate is in the vicinity of µ =∆ µp(θ). Then, we use the

MBCRB bound derived for the MSE in [20] as follows,

Epy,θ{[θ̂q(y)− µp(θ)][θ̂q(y)− µp(θ)]H} ≥

Epθ [Ξ(p:q)(θ)H ]E−1
pθ

[J(p:q)(θ)]Epθ [Ξ(p:q)(θ)]

(3.20)

where

Epθ
{

Ξ(p:q)(θ)
}

= Epy,θ
{
ζ(y,θ)ηH(y,θ)

}
(3.21)

and,

Epθ
{

J(p:q)(θ)
}

= Epy,θ
{
η(y,θ)ηH(y,θ)

}
(3.22)

Following the detailed derivation for the SBL model in [17], an MBCRB for GN model

is given as follows:

Epθ
{
||x− x̂||22

}
≥ σ2

w tr{HBH} (3.23)

where

H = Epθ
{

(B + σ2
wΣ(x))−1

}
(3.24)

where Σ(x) is the diagonal matrix with the k-th diagonal entry is given by:

[Σ(x)]k =
2b

(|xk|2 + b)2 , k = 1, . . . , N (3.25)

Figure 3.4 shows the general Bayesian CRB in blue, and the MBCRB for GN model

in red for low application SNR range. Figure 3.5 shows same bounds for a higher

range of SNR. The SNR is defined, given an initial vector x, to be SNR =∆ ||x0||2
Mσ2

w
.
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Figure 3.4: BCRB And MBCRB Derived Bounds
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Figure 3.5: BCRB And MBCRB Derived Bounds

The following chapter presents two algorithms to estimate a sparse vector. One is

to estimate a sparse vector assuming BG model. The other estimate it assuming GN

model. It presents their MSE performances and Complexity measures for comparison.
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Chapter 4

METHODOLOGY AND RESULTS

Previously, two models were introduced to favor sparsity on prior distributions p(x)

and q(x). In this chapter, two widely-used algorithms are introduced to estimate

a posterior density. First algorithm is Sparse Bayesian Learning (SBL) [21]. The

way SBL recover x is by applying variational expectation maximization (VEM) in

[22] on GN model. Second algorithm is Generalized Approximate Message Passing

(GAMP) [23]. GAMP is a linear mixing algorithm that has proven to provide a decent

estimation to any general independent identically distributed generative distribution.

4.1 Sparse Bayesian Learning

SBL is a hierarchical Bayesian model (HBM) developed to promote sparsity in

a soft manner. This soft sparsity promotion was originally developed to ensure

tractability compared to BG model that lead to non-informative prior. SBL tech-

nique and GN model constitute a duality that exploits useful conjugation of Gamma

and Normal distributions to optimize posterior density. SBL depends on a widely-

used optimization technique called Expectation maximization (EM).

4.1.1 Expectation Maximization Derivation

Expectation Maximization algorithm is an iterative algorithm to maximize the

log likelihood of the observed data [24]. So assume we have a sequence of random

variable Y and another sequence of a hidden random variable X and we would like to

optimize the likelihood of the observed date as follows
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L(α) =
∑

yi

log p(yi|α) =
∑

yi

log

[∑

xi

p(yi, xi|α)

]
. (4.1)

It is suggested to use an iterative way to go around the fact that the log cannot be

pushed inside the sum

L(α) =
∑

yi

log

[∑

xi

p(yi, xi|α)

]
=
∑

yi

log

[∑

xi

q(xi)
p(yi, xi|α)

q(xi)

]

≥
∑

yi

∑

xi

q(xi) log
p(yi, xi|α)

q(xi)
=∆ Q(α,q) (4.2)

The inequality in(4.2) is an application of Jensen’s inequality which states that the

arithmetic mean is greater than or equal to the geometric mean:

log
n∑

i=1

λixi ≥
n∑

i=1

λi log(xi) . (4.3)

Going back to the defined function Q (i.e. auxiliary function). It can be written in

the following manner [7]

Q(α,q) =
N∑

i=1

Eqi

[
log p(yi, xi|α)

]
+H(qi) (4.4)

where H is the entropy of a distribution that is defined

H(q) = −
∑

xi

q(xi) log q(xi) (4.5)

Now let’s go back to the original upper bound the likelihood of α to define another
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parameter that is useful to understand the algorithm

L(α) =
∑

yi

log

[∑

xi

p(yi, xi|α)

]

=
∑

yi

log

[∑

xi

q(xi)
p(yi, xi|α)

q(xi)

]

=
∑

yi

log

[∑

xi

q(xi)
p(xi|yi,α)p(yi|α)

q(xi)

]

=
∑

yi

log

[
−D(q(xi)||p(xi|yi,α)) +

∑

xi

p(xi)p(yi|α)

]

= −D(q(xi)||p(xi|yi,α)) +
∑

yi

log p(yi|α)

= −D(q||pX|y,α) + L(α) =∆ L(α,q) (4.6)

Now we are ready to form a general lower bound for an arbitrary hidden distri-

bution q(xi) :

L(α,q) ≥ Q(α,q) (4.7)

The iterative choice of α will ensure some kind of convergence but will not guar-

antee a global maxima unless the initial choice was chosen carefully.

EM algorithm always chooses q(xi) to be p(xi|yi,α) because our goal is to maxi-

mize the likelihood.

• E-step

given a choice of αt the expectation step will be a maximization of the lower

bound (i.e. auxiliary function) as follows

arg max
α

Q(αt, px|y,αt) = arg max
α

N∑

i=1

Epx|y,αt

[
log p(yi, xi|αt)

]
(4.8)
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• M-step

We use the result of the optimization with respect to α in the expectation step

to define a new set of α’s by

arg max
α

L(αt+1, px|y,αt) = arg max
α

L(αt) (4.9)

4.1.2 SBL VEM Algorithm

In our analysis, both variables x,α are assumed to be hidden. This case has only

an E-step [22]. Hence, EM algorithm is further approximated to be VEM under some

conditions. According to [22] stationarity and independence allows us to use VEM.

Following VEM, posterior of hidden parameter can be seen as independent marginals.

q(x,α|y) ≈ q(x)q(α) (4.10)

log q(x) ≈ 〈log q(y,x,α)q(α)〉+ constant (4.11)

log q(α) ≈ 〈log q(y,x,α)q(x)〉+ constant (4.12)

where 〈.〉 denotes a varitional expected value for the subscript distribution. From

that a posterior of each marginal can be approximated as follows

q(x) = Nc(µ,Φ) (4.13)

q(α) =
N∏

i=1

Gamma(ãi, b̃i) (4.14)

where the parameters {µ,Φ, ãi, b̃i} are derived using equations (4.10-12)

µ = σ2
wΦAy (4.15)

Φ = [σ2
w B + Σ]

−1
(4.16)

ãi = ai + 1 (4.17)

b̃i = bi + |µi|2 + Φii (4.18)
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Hyperparametes ai,bi is up to the designer belief. Usually they are chosen to avoid

being stuck in a local minima. Also, they are used to characterize the desired appli-

cation. In this step, hyperparameters are chosen to be

ai = 10−6 (4.19)

bi =





10−1 i ∈ S

10−6 i ∈ Sc
(4.20)

where S is a set of non-zero objects of a cardinality |S| = L. Figure 4.1 shows GN

density with particular hyperparameters. They are chosen to promote soft sparsity.
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Figure 4.1: Gamma Normal Distribution With The Specified Hyperparameters

A complete algorithm of SBL-VEM is described below [25]
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Algorithm 1 SBL-VEM

Initialize:

〈α0
i 〉 = ãi/b̃

0
i , Σ0 =∆ diag{αi

0},

i = 1, . . . , N, τ = 0, ε = 10−2

repeat

(1) τ = τ + 1

(2) Φτ = [σ2
wB + Στ−1]

−1

(3) µτ = σ2
wΦτAy

(4) b̃τi = bi + |µτi |2 + Φτ
ii

(5) 〈ατi 〉 = ãi/b̃
τ
i

(6) update Στ = diag{ατi }

until

{
||µτ−µτ−1||2
||µτ ||2

≤ ε

}

output x̂ ∼ Nc(µτ ,Φτ )

4.1.3 SBL VEM With A Prior On Hyperparameter b

Previous set up assumed a deterministic value for the hyperparameter b̃. Another

set up can be tested by adding an extra step on the hierarchical model by assuming

that b̃ is a random variable itself as in [25]. To be consistent, lets call it β where its

distribution

q(β) =
N∏

i=1

q(βi) (4.21)

q(βi) =





Gamma(βi; c, d) i ∈ S

δ(βi − 10−6) i ∈ Sc
(4.22)

Again, hyperparameters are chosen to help achieving a better estimation of pos-
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terior density. In this case there are initialized to be c = d = 10−6.

Consequently, expressions on equations (4.10-12) has changed to

q(x,α|y) ≈ q(x)q(α)q(β) (4.23)

log q(x) ≈ 〈log q(y,x,α,β)q(α),q(β)〉+ constant (4.24)

log q(α) ≈ 〈log q(y,x,α,β)q(x),q(β)〉+ constant (4.25)

log q(β) ≈ 〈log q(y,x,α,β)q(x),q(α)〉+ constant (4.26)

Similarly, a posterior of marginals can be written as

q(x) = CN (µ,Φ) (4.27)

q(α) =
N∏

i=1

Gamma(ãi, b̃i) (4.28)

q(β) =
N∏

i=1

Gamma(c̃i, d̃i) (4.29)

and parameters {ãi, b̃i, c̃i, d̃i} are now defined as

ãi = ai + 1 (4.30)

b̃i =





〈bi〉+ |µi|2 + Φii i ∈ S

bi + |µi|2 + Φii i ∈ Sc
(4.31)

c̃i = ci + 1 (4.32)

d̃i = di + 〈αi〉 (4.33)

where
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ai = 10−6 bi = 10−1 ci = 10−6 di = 10−6 (4.34)

〈bi〉 =
ci + ai

d̃i
(4.35)

〈αi〉 =
ãi

b̃i
(4.36)

The complete algorithm in detail is described below [25]

Algorithm 2 SBL VEM with a prior on b

Initialize:

〈α0
i 〉 = ãi/b̃

0
i , Σ0 =∆ diag{α0

i },

i = 1, . . . , N, τ = 0, ε = 10−2

repeat

(1) τ = τ + 1

(2) Φτ = [σ2
wB + Στ−1]

−1

(3) µτ = σ2
wΦτAy

(4) b̃τi =





〈bτ−1
i 〉+ |µτi |2 + Φτ

ii i ∈ S

bi + |µτi |2 + Φτ
ii i ∈ Sc

(5) 〈ατi 〉 = ãi/b̃
τ
i

(6) d̃τi = di + 〈αi〉

(7) 〈bτ−1
i 〉 = (ci + ai)/d̃

τ
i

(8) update Στ = diag{αi
τ}

until

{
||µτ−µτ−1||22
||µτ ||22

≤ ε

}

output x̂ ∼ Nc(µτ ,Φτ )
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4.2 Generalized Approximated Message Passing

G-AMP is a generalization of AMP algorithm first proposed in [26]. AMP is an

iterative algorithm that leverage central limit theorem (CLT) with a dense measure-

ment matrix A. GAMP is an efficient algorithm when using iid under generalized

linear model.

We assume in this set up that we have the following system.

y = z + w (4.37)

where

z = Ax (4.38)

N∏

i=1

p(xi|hi) zj =

M∑

j=1

aHj x
M∏

i=1

p(yj |zj)
h ∈ HN x ∈ CN z ∈ CM y ∈ CM

System
input
vector

Target
vector

Mixing
vector

System
output
vectorNonlinear

Transitional
PDF

Linear
mixing
channel

Nonlinear
Transitional

PDF

Figure 4.2: A General Estimation Problem With Linear Mixing Channel

Also, lets assume that there is an input vector h that has components hi ∈ H,

where the set H is assumed to be the set of arbitrary hyperparameters that generates

some arbitrary random vector x ∈ CN in component-wise fashion. This can be thought

of as an input non-linear channel. Then vector x is taken to a linear transform matrix

A to generate another random vector z ∈ CM . Finally this unknown vector is the

input of another channel where the system output vector of this channel is the results

vector y ∈ CM . In this linear set up, this linear mixing process aims to estimate two

vectors. First z is estimated. Then, using estimated value of z, x.
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Figure 4.2 shows a diagram describing the previous process. The problem can be

summarized by estimating two vectors x and z, given system input vector h, system

output vector y, system transform matrix A, and transitional probability functions

p(x|h), p(y|z). This algorithm has wide applicability in Bayesian estimation literature

due to its generality and low complexity. For instance, in [27] they claim that this

model fits in set of hyperparameters on target vector x. A complete description of

the procedure and derivations can be found in [23, 27]. However, GAMP algorithm

for BG model is described as follows

4.2.1 BG GAMP Algorithm

Back to BG model in equation (3.2) and Figure 3.1, GAMP can have an arbitrary

relationship between the observation vector y and the noiseless components of vector

z. Meaning that the conditional distribution can be written as

p(yi|zi) = Nc(zi, σ2
w) (4.39)

According to [23], GAMP is fully described by the following four equations

gout(yi, ẑi, µ
z
i ; h) =

yi − ẑi
µzi + σ2

w

(4.40)

−ǵout(yi, ẑi, µ
z
i ; h) =

1

µzi + σ2
w

(4.41)

gin(r̂i, µ
r
i ; h) = π(r̂i, µ

r
i ; h)ν(r̂i, µ

r
i ; h) (4.42)

µri ǵin(r̂i, µ
r
i ; h) = π(r̂i, µ

r
i ; h)

(
ν(r̂i, µ

r
i ; h) + |κ(r̂i, µ

r
i ; h)|2

)
(4.43)

−
(
π(r̂i, µ

r
i ; h)

)2

|κ(r̂i, µ
r
i ; h)|2 (4.44)

where
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π(r̂i, µ
r
i ; h) =∆

1

1 + ( λi
1−λi

N (r̂i;0,vi+µ
r
i

N (r̂i;0,+µ
r
i

)
−1 (4.45)

κ(r̂i, µ
r
i ; h) =∆

r̂i/µ
r
i

1/µri + 1/vi
(4.46)

ν(r̂i, µ
r
i ; h) =∆

1

1/µri + 1/vi
(4.47)

and the marginal posterior can be formalized to be

p(xi|y; h) =
1

Cn
px(xi; h)× Nc(xi; r̂i, µri ) (4.48)

=
1

Cn
(1− λi)δ(xi) + (λi)Nc(xi; 0, vi)×Nc(xi; r̂i, µri ) (4.49)

where

Cn =∆
∫
p(xi; h)Nc(xi; r̂i, µri )dxi (4.50)

Each non zero entry of the sparse vector is distributed as follows

Pr{xi 6= 0|y; h} = π(r̂i, µ
r
i ; h) (4.51)
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4.3 Results

After showing the Bayesian bounds along with the algorithms to estimate a pos-

terior PDF, it is time to see results of estimation. There are two main metrics to

evaluate each method. First metric is called computational gain, which refers to

the number of computations needed to achieve the estimate compared to the basic

method (Brute force). Second is called SNR losses, which refers to the dBs differ-

ence between the minimum bound and the averaged mean square error of a particular

algorithm at the desired value of a signal to noise ratio. Specifically, if a correct model

is assumed, a comparison is initiated between the MSE of an algorithm and BCRB.

Otherwise, the comparison is between the MSE and MBCRB. Furthermore, there is

a theoretical comparison between BCRB and MBCRB, to evaluate the performance

of any algorithm uses that specific family of distributions to the correct family of

distribution.

4.3.1 MSE Results

Recall that bounds calculated in Figure 3.4 was assumed for an application with

low SNR requirement such as MRI imaging acquisition [9]. Figure 4.3 shows the MSE

results along with the derived bounds. It can be seen that SBL VEM β has a better

results than SBL VEM b. However, both of them are above MBCRB bound. Also

Figure 4.3 shows that GAMP which is built on BG model achieved better results

than both algorithms that assumed GN model. Still, GAMP is above BCRB bound.
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Figure 4.3: MSE Results Along With The Bounds For Low SNR Applications

Although, GAMP performs better than any algorithm that uses GN family of

distributions, it is sill within few dBs from the bound. On the other hand, both of

the other two algorithms that uses GN family is above the derived misspecified bound,

as expected. Recall from Figure 4.1 how the hyperparameter b affected the sparsity

level. Figure 4.4 shows the effect of choosing a smaller value of hyperparameter b

(i.e. increasing sparsity L).
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Figure 4.4: MBCRB With Different Choices Of Hyperparameter b

For better appreciation for the derived bounds, an MSE results are calculated for

applications that requires higher SNR. Figure 4.5 shows similar results of Figure 4.3

for higher SNR level and Figure 4.6 show the effect of hyperparameter choice on the

MBCRB.
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Figure 4.5: MSE Results Along With The Bounds For High SNR Applications
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Figure 4.6: MBCRB With Different Choices Of Hyperparameter b

It can be clearly seen from the above results that a bound for both family models

can be derived and validated to quantify which algorithm is better for the problem

of interest.
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To see the MSE results for different dimensions of x, Figures 4.7-12 show the

bounds with MSE results for low SNR. It is, again, validated that all MSE results are

above specific bounds.
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Figure 4.7: MSE Results Along With The Bounds For Vector Size N=10

0 2.5 5 7.5 10 12.5 15 17.5 20

−50

−40

−30

−20

−10

0

10

20

30

(N = 50, M = 25, L = 2)

SNR (dB)

M
S
E

(d
B
)

SBL VEM b
SBL VEM β
MBCRB
BG GAMP
BCRB

Figure 4.8: MSE Results Along With The Bounds For Vector Size N=50
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Figure 4.9: MSE Results Along With The Bounds For Vector Size N=100
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Figure 4.10: MSE Results Along With The Bounds For Vector Size N=200
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Figure 4.11: MSE Results Along With The Bounds For Vector Size N=500
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Figure 4.12: MSE Results Along With The Bounds For Vector Size N=1000

4.3.2 Computational Gain

One of the main objectives of using Bayesian framework to model sparsity is

to reduce the complexity of checking each entry of the target vector. To better
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understand this comparison, this section compares computational complexity of both

algorithms to brute force. SBL VEM complexity is dominated by the update of the

inverted matrix Φ in equation (4.16) which has N dimensions. At worst case scenario

the loop will repeat N times before convergence. Hence complexity of SBL VEM

is O(N3). However, this complexity can be reduced to O(N2M) using the matrix

inversion lemma as in [25]. For GAMP algorithm, [27] indicates a detailed analysis of

the computational complexity that is dominated by the matrix-vector multiplication

of the dictionary A. Hence, the worst case complexity is O(NM).

As seen above, both algorithms are dominated by a dictionary A dimensions.

Table 4.1 shows variations of the dictionary matrix as size expands.

Table 4.1: Computational Complexity Per Size N Of The Three Methods

(N,M,L) Brute force O(NL) SBL VEM O(N2M) GAMP O(NM)

(10, 5, 1) 10 500 50

(50, 25, 2) 2500 62500 1250

(100, 50, 5) 1M 50000 5000

(200, 100, 10) 20010 4M 20000

(500, 250, 25) 50025 62.5M 125000

(1000, 500, 50) 100050 500M 0.5M

To better evaluate the major improvement in complexity, Figure 4.13 shows the

number of computations in log scale with respect to the size N.
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Figure 4.13: Comparative Computational Complexity Per Size N

4.3.3 MSE Accuracy

In chapter 3, a derivation of both models is introduced. Figures 4.15-15 show the

difference in dBs each algorithm and the derived bound for its family of distribution.
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4.3.4 Gain-Loss Metric

One of the main objectives of this thesis is quantifying the losses of using the mis-

specified distribution compared to the correctly specified distribution. It is important

to show what has been sacrificed against what has been achieved Figures 4.16-4.17

shows the gain in computational complexity moving away from brute force to ei-

ther SBL VEM or GAMP versus the Losses occured from moving to the misspecified

bound (i.e. GN model). Gain and loss equations are quantified as follows:

Gain (SBL VEM) =
log(NL)

log(N2M)
(4.52)

Gain (BG GAMP) =
log(NL)

log(NM)
(4.53)

Loss (dBs) (SBL VEM) = SBL VEM− BCRB (4.54)

Loss (dBs) (BG GAMP) = BG GAMP− BCRB (4.55)
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis, a Bayesian framework is adopted to recover a sparse target vector

x with the knowledge of an observed vector y and a Dictionary A. Sparse vector

recovery is a well-known problem in the digital signal processing community. Many

applications are interested in modeling this problem, a well-known application is

CS. Two family of distributions are assumed to estimate the sparse vector, one is

the BG model and assumed to be the correct generative model. The other is the

GN model and assumed to have more biased in modeling the sparse vector. The

aim of using a Bayesian framework other than estimating a posterior density, is to

provide a way to evaluate estimation using a theoretical minimum bound on the MSE.

MSE performances for both algorithms validated both bounds. MSE results using

GN model was above MBCRB, while MSE results of BG model was above BCRB.

Also, this research provided a quantified meteric of gain in terms of computational

complexity and loss in terms of dBs. This research showed that MSE results for both

algorithms are much more efficient than combinatorial searches(i.e. brute force). This

work can be extended to meet any Bayesian framework given that a closed form of

a CRB type equation is derived. Work can be extended to guarantee a theoretical

bound for other families of distribution. Since GAMP is not-model-specific algorithm,

it can be applied to GN model to compare results with SBL VEM. Many algorithms

in literature use Bayesian framework without validating their MSE results rather than

comparing them with other similar results. This work can guide them through the

process to achieve that.
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APPENDIX A

DETAILS ON CRAMÉR-RAO BOUND DERIVATION
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A.1 ASSUMPTIONS USING CORRECTLY SPECIFIED BOUNDS

Before proceeding with the derivation, a general statement must be said about
the two random variables ζ and η. For all the following derivations regarding CRB
bounds, ζ can be seen as the estimated variance between the estimation parameter
and the mean of estimation (or for some other assumptions the value of the true
parameter). While η can be seen as the score function that will be always customized
depending on the desired bound. Score function must be chosen wisely to reach the
tightest bound of the estimated variance (or MSE in the ). In order to do that: score
function shall be chosen to be proportional to the values in the other random variable
ζ. Furthermore, score function shall depend on sufficient statistics and shall have
zero mean with respect to probability density [19].

Giving the above insight about random variables, the following assumptions and
constraints must hold to reach CRB bound:

1. η(x, θ) =
∂ ln px,θ(x,θ)

∂ θ
exists and is absolutely integrable.

2.
∂2 ln px,θ(x,θ)

∂ θ2 exists and is absolutely integrable.

3. Regularity condition:
∫ ∞

-∞

∂ ln px,θ(x, θ)

∂ θ
dx =

∂

∂ θ

∫ ∞

-∞
ln px,θ(x, θ) dx

4. Checking if the chosen score function meet the mentioned two properties:

(a) Sufficiency: If T(x) is a sufficient statistics for estimating θ, then the
density can be factorized such that px|θ(x|θ) = a(X).b[T (x), θ], Thus:

∂ ln px|θ(x|θ)
∂ θ

=
∂ ln b[T (x), θ]

∂ θ

for BCRB:

px,θ(x, θ) = πθ(θ) px|θ(x|θ)

→ ∂ ln px,θ(x, θ)

∂ θ
=
∂ ln px|θ(x|θ)

∂ θ
+
∂ lnπθ(θ)

∂ θ

=
∂ ln b[T (x), θ]

∂ θ
+
∂ ln πθ(θ)

∂ θ

(b) score function has a zero mean:

Ex| θ[η(x, θ)] =

∫ ∞

-∞

∂ ln px|θ(x|θ)
∂ θ

px|θ(x|θ) dx =

∫ ∞

-∞

∂ px|θ(x|θ)
∂ θ

px|θ(x|θ)
px|θ(x|θ)

dx

=
∂

∂ θ

∫ ∞

-∞
px|θ(x|θ) dx =

∂(1)

∂ θ
= 0
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for BCRB:

Ex,θ[η(x, θ)] =

∫ ∞

-∞

∫ ∞

-∞

∂ ln px,θ(x, θ)

∂ θ
px,θ(x, θ) dxd θ

=

∫ ∞

-∞
px(x) dx

∫ ∞

-∞

∂[ln pθ|x(θ|x) + ln px(x)]

∂ θ
pθ|x(θ|x) d θ

=

∫ ∞

-∞
px(x) dx

∫ ∞

-∞

∂ pθ|x(θ|x)

∂ θ

pθ|x(θ|x)

pθ|x(θ|x)
d θ

=
∂

∂ θ

∫ ∞

-∞
px(x) dx

∫ ∞

-∞
pθ|x(θ|x) d θ =

∂(1)

∂ θ
= 0

5. for BCRB, an extra assumption must be made regarding the parameter θ:

lim
θ→±∞

θ pθ|x(θ|x) = 0 ∀x

(The support of θ must be effectively bounded with respect to the a posteriori
density).
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A.2 ASSUMPTIONS USING MISSPECIFIED BOUNDS

Analogous to what has been done to the correctly specified case, some of assump-
tions and constraints must hold to reach the desired bounds: Let X ∼ qx| θT (x| θT )
where θT is fixed and inaccessible; thus, differentiation is restricted to θ in px|θ(x|θ).

1. Exploit Kullback-Leibler measure of divergence:

D(px| θT
(x| θT) // px|θ(x|θ)) =∆

∫ ∞

-∞
px| θT

(x| θT) ln
px| θT

(x| θT)

qx|θ(x|θ)
dx

= Ep(x| θT)[ln px| θT
(x| θT)]− Ep(x| θT)[ln qx|θ(x|θ)]

→ ∂

∂ θ
D(px| θT

(x| θT) // qx|θ(x|θ))

=
∂

∂ θ
Ep(x| θT)[ln px| θT

(x| θT)]− ∂

∂ θ
Ep(x| θT)[ln qx|θ(x|θ)]

= − ∂

∂ θ
Ep(x| θT)[ln qx|θ(x|θ)] = −Ep(x| θT)[

∂ ln qx|θ(x|θ)
∂ θ

]

→ η(X, θ) =
∂ ln qx|θ(x|θ)

∂ θ
+

∂

∂ θ
D(px| θT

(x| θT) // qx|θ(x|θ))

=
∂ ln px|θ(x|θ)

∂ θ
+
∂D

∂ θ

2. From the previous definitions, the following two facts follow:

Ep(x| θT)[µp
∂D

∂ θ
] = µp

∂D

∂ θ
Ep(x| θT)[

∂ ln qx|θ(x|θ)
∂ θ

] = − ∂D

∂ θ
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