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ABSTRACT

Transportation plays a significant role in every human's life. Numerous factors, such

as cost of living, available amenities, work style, to name a few, play a vital role in de-

termining the amount of travel time. Such factors, among others, led in part to an in-

creased need for private transportation and, consequently, leading to an increase in

the purchase of private cars. Also, road safety was impacted by numerous factors such

as Driving Under Influence (DUI), driver’s distraction due to the increase in the use of

mobile devices while driving. These factors led to an increasing need for an Advanced

Driver Assistance System (ADAS) to help the driver stay aware of the environment and

to improve road safety.

EcoCAR3 is one of the Advanced Vehicle Technology Competitions, sponsored by

theUnited StatesDepartment of Energy (DoE) andmanagedbyArgonneNational Lab-

oratory in partnership with the North American automotive industry. Students are

challenged beyond traditional classroom environment in these competitions, where

they redesign a donated production vehicle to meet emission standards and improve

energy efficiency while maintaining the features that are attractive to the customer,

including but not limited to performance, consumer acceptability, safety, and cost.

This thesis presents a driver assistance system interface that was implemented as

part of EcoCAR3, including the adopted sensors, hardware and software components,

system implementation, validation, and testing. The implemented driver assistance

system uses a combination of range measurement sensors to determine the distance,

relative location, & the relative velocity of obstacles and surrounding objects together

with a computer vision algorithm for obstacle detection and classification. The sensor

system and vision systemwere tested individually and then combinedwithin the over-

all system. Also, a visual and audio feedback systemwas designed and implemented to
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provide timely feedback for the driver as an attempt to enhance situational awareness

and improve safety.

Since the driver assistance system was designed and developed as part of a DoE

sponsored competition, the system needed to satisfy competition requirements and

rules. This work attempted to optimize the system in terms of performance, robust-

ness, and cost while satisfying these constraints.
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Chapter 1

INTRODUCTION

This chapter presents the motivations behind the work in this thesis and briefly de-

scribes the contributions and summarizes the organization of the thesis.

1.1 Motivation

One of the integral parts of today's lifestyle, transportation has taken many forms,

such as public transportation, private transportation, pooling, etc. Cars play a signifi-

cant role in transportation. Focusing on the USmarket, according to [1], 276.1 million

cars and light trucks are registered and declared as Vehicle in Operation (VIO) in the

year 2018. This number has seen a steady increase over the last few years. With such an

increase in vehicles, safety issues have also increased. Situations such as vehicle acci-

dents have led to severe injury, or permanent impairment, or fatality. According to [2],

37,133 deaths have occurred in the year 2017 due to motor vehicles, which is majorly

due to distraction while driving. The National Highway Transportation Safety Admin-

istration (NHTSA) defines distracted driving as any activity that diverts attention from

driving. The activities include talking or texting on the phone, eating or drinking, talk-

ing to people in the vehicle, accessing the infotainment system, or anything that takes

the driver's attention away from the task of safe driving [3]. To avoid the increasing toll

of fatalities caused due to road accidents and improve the safety of transportation, the

automotive industry is investingmainly inAdvancedDriverAssistanceSystems (ADAS)

and vehicle autonomy. This includes connected vehicles and semi-autonomous drive

modes. The target is to implement full freedomwithout the need for a human driver's

intervention. In today's cars, many systems such as lane departure warning, collision

1



avoidance, automated brake assist, to name a few, are implemented. These are safety

systems that perform the control action based on the situation to avoid an accident.

ADAS and autonomous vehicle research have been increasing exponentially in the

past few years. This has increased the need for engineers in the industry to develop,

test, and deploy these systems inmanufactured vehicles. As an effort to offer hands-on

training to students and make them industry-ready, the Department of Energy (DoE),

in collaboration with GeneralMotors and ArgonneNational Laboratories, designed an

Advanced Vehicle Technology Competition (AVTC) called EcoCAR3 [4]. In EcoCAR3,

studentsmust convert a Chevrolet Camaro car into a hybrid vehicle to improve the en-

ergy efficiency, while maintaining the features that make it attractive to the customer:

performance, consumer acceptability, safety, and cost. This included powertrain de-

sign, mechanical fabrication, control algorithm development, and Advanced Driver

Assistance System (ADAS) development.

1.2 Contributions

This thesis presents adriver assistance system thatwas implementedaspart of Eco-

CAR3, including the adopted sensors, hardware and software components, developed

algorithms and system implementation, validation, and testing. The implemented

driver assistance system uses a combination of range measurement sensors to deter-

mine the range, relative location, and the range rate of obstacles, together with a com-

puter vision algorithm for obstacle detection and classification. In this work, cars are

the only obstacles to be detected. The sensor system and vision system were tested

individually and then combined within the overall system. Also, a visual and audio

feedback system was designed and implemented to provide a front collision warning

to the driver, based on the obtained data about the target vehicles, as an attempt to

enhance situational awareness and safety.
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1.3 Thesis Organization

The organization of this thesis is as follows. Chapter 2 presents background rele-

vant to ADAS with a brief history of ADAS, SAE definitions of different levels of auton-

omy, color spaces used, a background on object localization, performance evaluation

metrics, and communication protocols. Chapter 3 describes the overall implemented

ADAS interface, including requirements, sensor selectionprocess, and ablock diagram

of the developed system. Chapter 4 describes the vehicle detection algorithm and the

algorithm for sensor data acquisition and processing. Chapter 5 presents the details

of how the system was developed and tested in stages. Chapter 6 concludes the the-

sis by summarizing the contributions of this work as well as proposing possible future

directions of research.
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Chapter 2

HISTORY AND BACKGROUND

This chapter presents background information relevant to this work. Section 2.1 pro-

vides a history (in the order of occurrence) of crucial developments in ADAS. Section

2.2 describes the different levels of Autonomy as defined by the Society of Automotive

Engineers (SAE). Section2.3brieflyexplains the color spacesused in this thesis. Section

2.4 introduces to the concept of localization, and its importance. Section 2.5 explains

about ground-truth and how ground-truth data was developed for this thesis. Section

2.6 describes the performance metrics used to evaluate the performance of the object

detection algorithm. Section 2.7 introduces the Controller Area Network protocol and

parts of themessage frame. Section2.8presents Serializer andDe-serializer pair and its

advantages in transmitting image data. Section 2.9 describes Low-Voltage Differential

Signaling. Lastly, Section 2.10 briefly describes the Image Signal Processing pipeline

that converts raw image sensor data to a perceivable image.

2.1 History of Advanced Driver Assistance System

Research on ADAS has existed since the 1950s. Cadillac developed forward colli-

sion warning [5] in the late 1950s. It was implemented in Cadillac Cyclone, a prototype

vehicle that used RadioDetection and Ranging (RADAR) technology to identify the ob-

stacles ahead. The idea was viewed to be costly for mass production. Major safety

systems such as Anti-Lock Braking System (ABS) [6], Electronic Stability Control were

developed in the 1970s and early 1980s. In 1995, a team of scientists and engineers at

Hughes Research Laboratories in Malibu, California, demonstrated the first modern,

forward collision avoidance system. The technology was marketed as Forewarn [7], a
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system based on RADARwas readily available at Hughes Electronics, but not commer-

cially elsewhere. Research in ADAS increased exponentially over the years. It led to the

introduction of advanced systems such as the Traction Control System [8], Adaptive

Cruise Control [9], andmany other active safety systems in the vehiclesmanufactured.

Forward collision assist, automatic parking, adaptive front light, which partially con-

trolled the vehicle or functionality, were introduced in between 2000-2014 [10]. Some

of these systems are mandated in the vehicle models nowadays.

With the exponential rise of research in the field of ADAS, many ideas and algo-

rithms were proposed to make the ADAS computationally less intense and bringing

the response time of the system to as low as possible. For instance, a lane departure

identification system was proposed by Vijay Gaikwad and Shashikant Lokhande [11],

in which a Piece-wise Linear Stretching Function (PLSF) is used to improve the con-

trast level of the Region Of Interest (ROI). The ROI is split into two sub-regions, and

lanemarkers are detected by applying theHough transform [12] in each sub-region in-

dependently. This segmentation approach improves the computational time required

for lane detection. A distance-based departure measure is computed at each frame

and compared with a threshold. A warning is sent to the driver when the departure

measure exceeds the threshold. This algorithm identifies lane departure only using

three lane-related parameters based on the Euclidean distance transform to estimate

the departure measure. The use of the Euclidean distance transform, in combination

with the PLSF, keeps the false alarm around 3% and the lane detection rate above 97%

under various lighting conditions.

Traffic sign recognition was an essential part of ADAS. This system comes handy

when the driver is unable to notice the correct traffic sign due to movement. This pro-

posed system for traffic sign recognition [13] has two steps: detection and recognition.

The color features of the pixels in the detection step are used to detect candidate re-
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gions. Next, the cascaded Feedforward Neural Networks with Random Weights (FN-

NRW) [14] classifiers are utilized for shape and content recognition. This system has

an accuracy of 91% with a running time of 40ms.

To study driver’s behavior to an incident, an instrumented vehicle, the Japan Auto-

mobileResearch Institute-AugmentedRealityVehicle (JARI-ARV),wasdeveloped to re-

produce realistic traffic accident and conflict scenarioswithout endangering the driver

[15]. JARI-ARV was used to study the driver’s response to a situation that was encoun-

tered, to study the human factors and response.

Another important system that helps drivers park in different situations and check

for obstacles close to the vehicle is the 3-Dimensional surround view system [16]. This

system uses four fisheye lens [17] cameras to capture images. The captured images are

used to generate a 3-D surround view of the driving environment according to the pat-

tern of image acquisition, camera calibration, image stitching, and scene generation.

Original EquipmentManufacturers (OEM) suchasGeneralMotors andMazdahave

introduced augmented reality windshields that display vital information such as traf-

fic signs and vehicle speed. Jaguar Land Rover has introduced a concept windshield

that displays active road region for drivers to avoid lane departure, distance to a target

object.

Hybrid vehicle architecture and Electric vehicle architecture then entered the au-

tomotivemarket, and there was a transition towards autonomous driving. Many auto-

motive manufacturers such as Tesla, Inc., Faraday Future, BMW, Mercedes Benz, and

others are currently working towards advanced systems and driverless transportation.

Tesla Autopilot [18] is a well-known example that shows research done in this field.

Also, ride-share companies such as Uber Technologies Inc., Lyft, and tech companies

such as Google LLC, Intel Corporation, and Apple Inc., have entered this market and

are ruling with cutting edge technology.
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2.2 Society of Automotive Engineers Levels of Autonomy

Society of Automotive Engineers (SAE) is a U.S.-based association and standards
developing organization for engineering professionals, with emphasis on transport in-
dustries such as automotive, aerospace, and commercial vehicles [19]. SAEdetermines
the intelligence level and automation capabilities of the vehicle by categorizing in one
of the levels from 0 to 5, as shown in Table 2.1. SAE's level of driver automation in-
dicates the minimum capability for each level. Here, the system refers to the driver
assistance system or a combination of driver assistance systems or automated driving
systems [20].

Table 2.1: Level of Automation [20] as Defined by the SAE

SAE

Level

SAE Name SAE Definition Steering,

accelera-

tion, de-

celeration

control

Monitoring

of driving

environ-

ment

System

Capabil-

ity

0 No Automa-

tion

The full-time performance by the human

driver of all aspects of the dynamic driv-

ing task, even when "enhanced by warn-

ing or intervention systems".

Human

driver

Human

driver

Not Ap-

plicable

1 Driver

Assistance

The drivingmode-specific execution by a

driver assistance system of "either steer-

ing or acceleration/deceleration".

Human

driver and

system

Human

driver

Some

driving

modes

2 Partial

Automation

The driving mode-specific execu-

tion by one or more driver assistance

systems of both steering and accelera-

tion/deceleration.

System Human

driver

Some

Driving

Modes
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3 Conditi-

onal Au-

tomation

The driving modespecific performance

by an automated driving system of all as-

pects of the dynamic driving taskwith the

expectation that a human driver will re-

spond appropriately to a request to inter-

vene.

System System Some

Driving

Modes

4 High Au-

tomation

The driving mode-specific performance

by an automated driving system of all as-

pects of the dynamic driving task without

the expectation that a human driver will

respond appropriately to a request to in-

tervene.

System System Many

Driving

Modes

5 Full Au-

tomation

The full-time performance by an auto-

mated driving system of all aspects of the

dynamic driving task under all roadway

and environmental conditions that can

be managed by human driver.

System System All Driv-

ing

Modes

2.3 Color Spaces

A color space is a geometrical representation of colors in a space that allows the

specification of colors as a tuple of three or four numerical values called color compo-

nents. The various color spaces are mainly divided into the following groups [21]:

1. Primary spaces

Composed of three primary colors and assumes that it is possible to match any

color by mixing appropriate amount of the three primary colors.

2. Luminance-chrominance spaces

Composed of one luminance component and two chromaticity.

8



3. Perceptual spaces

Quantifies human color perception by utilizing intensity, hue, & saturation com-

ponents.

4. Independent axis spaces

This group is obtained from different statistical methods.

In this section we will discuss about two color planes used in this thesis, (R, G, B)

and (L*, u*, v*) defined by Commission Internationale de l'Eclairage (CIE) and (Y', Cb',

Cr').

Figure 2.1: RGB Color Cube.
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2.3.1 CIE (R, G, B) Color Space

CIE (R, G, B) is a color space composed of three primary colors Red, Green, and

Blue. This color space falls under the Primary spaces category, which assumes that any

color canbe representedas a combinationof theprimary colors. CIE (R,G,B) is derived

from color-matching experiments that used red, green, and blue with wavelengths of

700.0nm, 546.1nm, and 435.8nm, respectively [21].

Figure 2.1 shows RGB color cube with Red, Green, Blue, White, Black, and combi-

nations of two primary colors. The origin point is black color where Rc=Gc=Bc=0 and

reference point is white where Rc=Gc=Bc=1. Here Rc, Gc, and Bc are the coordinates.

Achromatic axis is the line segment joining the Black and White points. The inter-

section of the color cube and the plane represented by the equation Rc+Gc+Bc=1 is an

equilateral triangle known as the Maxwell triangle [21]. The primary colors are given

by (1,0,0), (0,1,0) and (0,0,1) for Red, Green and Blue respectively.

2.3.2 (L*, u*, v*) of CIELUV Color Space

The (R, G, B) color spaces present somemajor drawbacks [21]:

1. The tristimulus values and chromaticity coordinates can be negative as it is not

possible to match all the colors by additive mixture with a real primary space.

2. There is a large number of (R, G, B) color spaces with different characteristics as

they are device dependent.

3. The tristimulus values depend on the luminance, which is a linear transforma-

tion of the primary color components.

Hence, CIE defines CIE (X, Y, Z), a color space with the imaginary primary colors

(virtual or artificial) to overcome the problems of the primary spaces. However, the Eu-
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clideandistances evaluated in the (R,G, B) or (X, Y, Z) color spaces donot correspond to

the color differences that are perceived by a human observer [21]. CIELUV color space

was developed to overcome this situation. CIELUV is a perceptually uniform color

space where L represents the lightness or luminance, and u* and v* are chromatic-

ity coordinates. This color space falls under the category of Luminance-chrominance

spaces. The luminance and chrominance components of CIELUV are represented in

(X, Y, Z) by the below equations.

L∗ =


(116× 3

√
Y

Y w )−16 if Y
Y w > 0.008856

903.3× Y
Y w if Y

Y w ≤ 0.008856

(2.1)

Where X W , Y W and Z W are the tristimulus values of the reference white.

u∗ = 13×L∗× (u
′ −u

′W ) (2.2)

v∗ = 13×L∗× (v
′ − v

′W ) (2.3)

u
′ = 4X

X+15Y +3Z , v
′ = 9X

X+15Y +3Z , u
′W and v

′W are chrominance components of u
′ and v

′

for the reference white respectively.

The reverse transformation is represented by equations

Y =


Yn .L∗( 3

29 )3 if L∗ ≤ 8

Yn .( L∗+16
116 )3 if L∗ > 8

(2.4)

X = Y × 9u
′

4v ′ (2.5)

Z = Y × 12−3u
′ −20v

′

4v ′ (2.6)

2.3.3 (Y’, C ′
b ,C ′

r ) Color Space

(Y ′,C ′
b ,C ′

r ) is an international standard for digital video and image coding. Y ′ is the

luminance component, andC ′
b andC ′

r are the chrominance components. The chromi-
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nance components are defined by the equations

C∗
b = a1 × (R −Y )+b1 × (B −Y ) (2.7)

C∗
r = a2 × (R −Y )+b2 × (B −Y ) (2.8)

Where a1, a2, b1 and b2 are coefficients specific to the norms used, standards, or com-

missions.

The luminance Y' is represented by equation

Y
′ = (0.299×R ′)+ (0.587×G ′)+ (0.114×B ′) (2.9)

International Telecommunication Union (ITU) recommends the use of (Y', Cb', Cr'),

as color space independent of the primaries and the reference white and is also used

by video and image compression schemes such asMPEG and JPEGwith the coefficient

values a1 = 0, a2 = 0.713, b1 = 0.564 and b2 = 0 according to ITU-R BT.601-7, 2007 [22].

According to ITU-R BT.709-5, 2002 [23] (Y', Cb', Cr') is used for digital coding of high-

definition television with coefficients a1 = 0, a2 = 0.635,b1 = 0.534 and b2 = 0.

2.4 Object Localization

Object localization is a technique of locating the detected object in a frame. The

location of the object is obtained in the form of a bounding box around it. The usual

parameters for theboundingboxareonevertex,width, andheight of thebox. Figure 2.2

illustrates object localization. It is important to localize the detected object to know its

exact location in the frame, and this information can be further used to fuse the range

estimation sensor data. Object localization depends on object detectors, which detect

features in a frame. A feature is a piece of information such as shapes, edges, points,

or objects in a frame, which is relevant for solving the computational task related to a

particular application. Themost common reason to choose features over a pixel-based
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Figure 2.2: Object Localization With Bounding Box.

system is that features can act to encode ad-hoc domain knowledge, which is difficult

to learn using a finite quantity of training data and operates much faster than a pixel-

based system [24].

Features can be obtained by detector algorithms such as Haar-like features, a cas-

cade of classifiers. Localization can be achieved usingmany techniques such as a slid-

ing window or sliding window combined with Adaboost [25]. This section elaborates

on some localization techniques.

A primary approach to object detection and localization is a sliding window is a

rectangular region that “slides” across an image. The window is designed with a fixed

width and height based on the application. Usually, the window region is taken, and

an image classifier is applied to determine if the window has an object of interest. This

method is computationally costly as object classifier computes feature in one region to
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determine the presence of the object and moves to another region to follow the same

process.

Another visual object detection framework was developed by Paul Viola &Michael

Jones [24]. This framework uses:

1. Integral images, which is obtained by summing the pixels above and to the left of

a particular pixel. This image type accelerates the process of rectangular feature

computation.

2. AdaBoost, which allows the selection of a small number of important features for

classification. This avoids a large number of unwanted features and focuses on

critical features by constraining the weak learner so that each weak classifier re-

turned can depend on only a single feature. This results in each stage of boosting

to select a weak classifier.

3. A combination of complex classifiers in a cascade structure that focuses on im-

portant regions of interest, increasing the speed of detection drastically.

2.5 Ground Truth

Ground truth is the accuracyof the training set’s classification in a supervised learn-

ing technique. Ground truth information is the information about the target to be de-

tected for comparison with the actual detection to evaluate the performance of the

detector.

In images, ground truth labeling is, marking the target object in the image frame.

The simplest way tomark the target is to draw a rectangular box around the target. The

information stored as ground truth is the location of the target object in a particular

frame. The localization data determined by an object detector is compared with the

ground truth data, to evaluate the performance.
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Theprimary tool utilized to label ground truth is theMATLABGroundTruthLabeler

App. The Ground Truth Labeler app can be used to label ground truth data in a video

or a sequence of images. Rectangular ROIs can be labeled in a sequence of images or

video, frame-by-frame. The application also offers automation of the labeling process,

where different algorithms can be used to obtain the rectangular ROIs automatically,

and the user can accept the obtained result. The ROI labels are used to define locations

of objects, such as cars, pedestrians, and lane markers in an image frame. The scene

labels are used to define the entire image frame’s condition, such as sunny or cloudy,

or to mark events such as intersections.

To label ground truth, the below steps have to be performed:

1. A new labeling session is created and an image sequence or video is imported.

2. A Region Of Interest (ROI) label, and a scene label (if needed) is created. This

Label has a unique name, which can be used to label a particular target.

3. ROI label is drawn around the target of interest. Automation of labeling the car

can also be done, using the algorithms available in the ground truth labeler app,

includingbutnot restricted to, Point Tracker. Labeling canalsobedonemanually

frame-by-frame by navigating through the frames.

4. After labeling the video or image sequence partially or fully, the labels can be

imported to workspace or stored in a file. This would be an object with all the

ROI and scene labels as a timetable.

2.6 Performance Evaluation Metrics

Performance evaluation is the process of evaluating the performance of a super-

vised learning technique by comparing the output of the systemwith ground truth in-
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formation. Multiple quantitative metrics are available to quantify the performance of

a detection model.

2.6.1 Intersection over Union (IoU)

IntersectionoverUnion (IoU), also knownas Jaccard Index [26] or JaccardSimilarity

Coefficient, is a comparison between the similarity and diversity of the sample. As the

name suggests, it is the ratio of the intersection of two samples over the union of the

same samples.

To evaluate the performance of an object detector that localizes the target, IoU can

be computedusing the bounding box obtainedby ground-truth labeling andpredicted

bounding box using the below equation.

I oU = Boxg Tr uth ∩Boxpr edi cted

Boxg Tr uth ∪Boxpr edi cted
(2.10)

Here Boxg Tr uth is the bounding box obtained by labeling the ground truth, and

Boxpr edi cted is the bounding box output from the object detector.

IoU is a value between 0 and 1, both included, and an IoU close to 1 indicates bet-

ter object detection and localization. To evaluate the performance of a detection algo-

rithm, usually an IoU of 0.5 or higher is considered, and this value is called threshold.

2.6.2 Detection Conditions

Detection condition depends on the class of the target being detected. In this work,

the target is cars present in the image frame, so there is only one class of targets. Con-

sidering car as the target object, detection conditions can be classified into four cate-

gories defined as follows:
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1. TruePositive (TP):Whena car is present anddetected, the detection is called true

positive. Bounding box obtained from detection, with an IoU above threshold, is

considered TP.

2. False Positive (FP):When a car is not present but detected, the detection is called

false positive. Bounding box obtained from detection, with an IoU below thresh-

old, is considered FP.

3. True Negative (TN): When a target that does not belong to the class of cars is

present and detected, the detection is called the true negative. This is not appli-

cable in this work as there is only one target class.

4. False Negative (FN): When a car is present but not detected, then this is called

false negative. In this case there is no bounding box obtained from detection.

2.6.3 Precision

Precision measures how accurate the predictions of the object detection model is.

It is the ratio of true object detection to the total number of objects detected. Below

equation shows the computation of Precision:

Precision = True Positives
True Positives + False Positives (2.11)

Higher precision score indicates more likelihood of the detected targets being correct.

2.6.4 Recall

Recall, also known as Detection Rate is a measure to qualify the object as detected.

Recall is computed as follows:

Detection Rate= True Positives
Total number of ground truths (2.12)
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To compute the recall at a given IoU value for the entire dataset, the recall of individual

sample is computed and averaged.

2.7 Controller Area Network

The Controller Area Network (CAN) is a communication protocol that allows Elec-

tronic Controller Units and Sensors to communicate with each other in automotive

applications. It is a low cost, robust communication created by Robert Bosch in the

year 1986. History of CAN development can be found in [27].

Every ECU connected to the network is known as a node & each node requires a

1. Host processor, which decrypts the receivedmessage and decides whatmessage

should be transmitted.

2. CANController, usually part of themicrocontroller, that stores the received serial

bits from the start, until entire message is received.

3. Transceiver that converts the bitstream from CAN bus level used by CAN con-

troller and vice versa.

Sincemany nodes are connected to the bus at the same time, not all nodes transmit

data at once. The process of a particular node occupying the bus is called arbitration.

A bit-wise arbitration takes place which determines the priority of the node that has

to occupy the bus. Bit value 0 is dominant, and bit value 1 is recessive. Arbitration is

nondestructive, meaning the node that wins the priority continues to transmit, while

the node that transmitted recessive bit and failed to occupy the bus waits for its turn

to transmit the data. A dominant bit always overwrites a recessive bit on a CAN bus.

Figure 2.3 shows two nodes connected to the bus with the architecture of each node.

A CAN message frame (2.0A format), as shown in Figure 2.4 has 9 parts explained

below
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Figure 2.3: CAN Bus Nodes and Its Internal Architecture.

Figure 2.4: CANMessage Frame (CAN 2.0A).

1. SOF: Start Of Frame (SOF) is 1-bit information that marks the start of a message.

A dominant 0 informs the arrival of a message to other nodes.

2. CAN ID: The Standard CAN 11-bit identifier establishes the priority of the mes-

sage. The lower the binary value, the higher its priority.

3. RTR: Remote Transmission Request (RTR) bit indicates a request of information

from other nodes.

4. r0: Reserved bit (for possible use by future standard amendment).

5. DLC:The4-bit data length code (DLC) contains thenumberof bytes of databeing

transmitted.
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6. Data: Up to 64 bits of application data may be transmitted.

7. CRC: The 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC) checks

data integrity.

8. ACK: Acknowledgement from every node receiving an accuratemessage. A node

receiving an accurate message overwrites this recessive bit in the original mes-

sage with a dominant bit. ACK is 2 bits, one is the acknowledgment bit, and the

second is a delimiter.

9. EOF: This End Of Frame (EOF), 7-bit field marks the end of a CAN frame.

Although the CANmessage frame has nine parts, themost important parts that are

logged and shown to users are CAN ID, DLC, and Data. Another CANmessage format,

also known as 2.0B, supports both 11 bit (standard) and 29 bit (extended) identifiers.

CAN Flexible Data-Rate (CAN FD) released in early 2012, is an extended version

of CAN, in which each message frame can hold up to 64 bytes of information, unlike

classic CANmessage that holds up to 8 bytes of information.

The Socket CAN [28] package is an implementation of CAN protocols for Linux.

CAN is a networking technology that has widespread use in automation, embedded

devices, and automotive fields. The CAN socket API has been designed as similar as

possible to the TCP/IP protocols to allow programmers, familiar with network pro-

gramming, to learn how to use CAN sockets easily.

ReceivedCANmessages canbefilteredbasedon themessage IDusing the following

syntax

struct can_filter {

canid_t can_id;

canid_t can_mask;};
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where can_id is the message ID and can_mask is the mask A filter matches, when

< r ecei ved_can_i d > &mask == can_i d&mask

which is analogous to known CAN controllers hardware filter semantics. 0 to n receive

filters for each open socket can be set separately as:

struct can_filter rfilter[2];

rfilter[0].can_id = 0x123;

rfilter[0].can_mask = CAN_SFF_MASK;

setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, &rfilter, sizeof(rfilter));

CAN_SFF_MASKmeans the mask of a Standard Frame Format (11 bit message ID)

should be set. If the message IDmatches with the filter can_id, those messages will be

received andmessages with other message ID will be discarded.

2.8 Serializer : De-Serializer Pair (SerDes)

Serializer and De-serializer pair (also known as SerDes [29]) is used to serialize the

data from the image sensor for serial transmission and de-serialise the data at receiver

end. The principle is shown in Figure 2.5.

Figure 2.5: SerDes Principle.
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The setup typically consists of a Parallel Input, Serial Output block that has a par-

allel clock input, a set of data input lines, and input data latches, and a Serial Input,

Parallel Output block typically has a receive clock output, a set of data output lines

and output data latches. The co-axial (COAX) cable that connects the serializer and

de-serializer is a differential pair cable, and bitstream is transmitted by Low-Voltage

Differential Signaling (explained in Section 2.9).

The input latch and clock in the serializer are used to synchronize the parallel bit-

stream to serial bitstream. At the receiver, the same clock is used to identify the serial

bit stream and convert it to a parallel bit stream. The latch in the de-serializer is to

create an appropriate delay to reconstruct the parallel bitstream.

Thepurpose of this setup is to reduce thenumber of input/output pins between the

sensor and the processor/receiver. Serial data transmission also has the advantage of

higher signal to noise ratio and less reconstruction errorwith long-range transmission.

2.9 Low-Voltage Differential Signaling

Low-VoltageDifferential Signaling (LVDS) is an efficient way of transmitting bit val-

ues. Figure 2.6 shows the LVDS setup. At the transmitter side, there are four transistors

A, B, C, and D driven by a current source I A. At the receiver side, the voltage VO is the

received signal. R is the impedance resistor used to obtain the differential voltage.

Table 2.2: LVDS Truth Table.

Bit value A B C D VO

1 1 0 0 1 +0.35V

0 0 1 1 0 −0.35V

Table 2.2 shows the excitation of the transistors to transmit bit 0 and 1. When bit

value 1 needs to be transmitted, transistor A and D need to be closed, so the current
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Figure 2.6: LVDS Setup.

goes through A-R-D-GND, where GND is ground. When bit value 0 needs to be trans-

mitted, transistor B and C need to be closed, so the current goes through C-R-B-GND.

At the receiver, +0.35V or -0.35V is received when bit 1 and 0 are transmitted, respec-

tively.

Since the signal is a differential voltage, transmission noise will not affect the data.

This is because bit 1 and 0 are distinguished based on the voltage polarity in the re-

ceiver. This makes LVDS effective for long-range transmission.

2.10 Image Signal Processing

Image Signal Processing (ISP) is an important component in camera data acquisi-

tion and processing. ISP is used to obtain human perceivable images from raw data

obtained from an image sensor.
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Thephotodiodes in an image sensor havedifferent color filters: red, green, andblue

(RGB) in a pattern called Bayer filter (shown in Figure 2.7). As each photodiode records

the color information for exactly one pixel of the image, without an image processor,

there would be two green pixels next to each red and blue pixel.

Figure 2.7: Top View of 8x8 RGBG Bayer Pattern.

To obtain a human perceivable image, the raw image data goes through a process

[30]. Raw image data from an image sensor is converted to digital format at the sensor

level, and the digital version of raw data is transmitted to the processing unit. At the

processing unit, the raw data undergoes white balancing. White balancing removes

unrealistic color casts so that white objects are rendered white in the image. Then De-

mosaicing is performed. Demosaicing is the process of interpolating the raw informa-

tion to estimate the color intensity in each pixel. For instance, in a Green pixel of Bayer

filter, the information about Red and Blue is obtained by using the information from

neighboring Red and Blue pixels. Demosaicing is performed in by various methods

such as simple interpolation or pixel correlation with an image [31] [32] [33]. Further,

to obtain a better image quality, noise in the image data is reduced, and the image is

sharpened by detecting the edges and reproducing them smoothly. Finally, color space

conversion is performed to obtain a YUV image.

Figure 2.8 shows the general process required to obtain an RGB image from raw

image sensor data.
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Figure 2.8: ISP Pipeline.
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Chapter 3

SYSTEMOVERVIEW

This chapter provides an overview of the designed and implemented advanced driver

assistance system. Section 3.1 lists the requirements of the driver assistance system

(the data that the systemmust be capable of determining, for a target vehicle). Section

3.2 outlines the various factors that impacted the rangemeasurement sensor selection,

and provides a specification table that lists all the sensors considered as part of the

selection process. Section 3.3 presents information about the hardware and interface

that are used to implement the ADAS, along with a top level description of the system,

block diagram of the components and Field of View (FoV) diagram.

3.1 Requirements

In this section, the term “ego vehicle” refers to the considered vehicle with ADAS.

Any other vehicle is referred to as the “target vehicle”. The lane inwhich the ego vehicle

is driven is known as the “host lane”. The lanes that are adjacent to the host lane are

referred to as the “right lane” or “left lane”. A target vehicle can be in an adjacent lane

or in the host lane.

Target vehiclesmust bedetectedusing imageprocessing and the followingdata [34]

about any vehicle ahead of the ego car must be determined:

1. LongitudinalRange: distancebetween the linespassing laterally through thecen-

ters of target & ego vehicle (measured as A in Figure 3.1).

2. LateralRange: distancebetween the linespassing longitudinally through thecen-

ters of target & ego vehicle (measured as B in Figure 3.1).
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Figure 3.1: Top View Representation of the Requirements. A: Longitudinal Distance, B:

Lateral Distance and C: Azimuth Angle of Target 1 With Respect to Ego Vehicle.

3. Azimuth angle: angle atwhich the target is locatedwith respect to the ego vehicle

(measured as C in Figure 3.1).

4. Lane Position: the lane within which the target vehicle is with respect to the ego

vehicle. The lane position of the target is the host lane if the target is in the same

lane as that of the ego vehicle or left/right lane if the target is in adjacent lanes.

5. Range Rate: velocity of the target vehicle with respect to the ego vehicle.

The above data corresponding to a given target vehicle must be transmitted to the

vehicle's Controller Area Network (CAN) so that the test vehicle is aware of the de-

tected obstacle and its dynamic properties. A top view illustration of the requirements

is shown in Figure 3.1, where A is the longitudinal distance, B is the lateral distance,

C is the Azimuth angle of Target 1 with respect to the Ego Car. 1 and 2 refer to the left
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lane and host lane, respectively. Lane position, Range and Range rate estimation will

be discussed in Chapter 4.

3.2 Sensor Selection

Selecting a sensor for range measurement was a major part of this work as multi-

ple technical and logistical factors affected the selection process. The selected sensor

must not only be capable of delivering the required performance, but also should be

compatible with the rest of the hardware and interface. Also, the sensor selection in-

volved the consultation ofmechanical engineers to analyzemechanical and structural

compatibility.

Factors that influenced sensor selection are discussed below.

3.2.1 Sensor Capability

Various properties such as Field of View (FoV), communication interface, andother

physical attributes of sensors were studied carefully to evaluate the performance and

usability of the sensors. The FoV refers to the region of the scene that can be “seen” by

the sensor.

Table 3.1 shows various sensors and key properties that were analyzed as part of

the sensor selection process. Sensors with an adequate detection range, Field of View

(FoV), light weight, smaller form factor, multiple communication interfaces and lower

cost were favored for the proposed ADAS implementation.
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Table 3.1: Sensor Specifications.

Sensor

(Sensor Type)

Manufacturer

Cost

Range

Data Refresh

Field of View

(FoV)

Physical Size

Weight

Recommended

placement

Communi

-cation

Interface

Environments

Physical qualities

1 HDL-64E [35]

(LIDAR)

Velodyne Lidar

$75,000

120m/

Rotation Rate:

5 Hz-20 Hz/

3600 x 26.90

283 x 203 x 180

mm/

12.7 Kg/

Roof

100 Mbps

Ethernet

Lighting matters for

detection.

Rotating scanner.

2 HDL-32E [36]

(LIDAR)

Velodyne Lidar

$10,000

80-100m/

Rotation Rate:

5-20 Hz/

3600 x 41.30

85 mmD x 144

mmH/

1.0kg/

Roof

100 Mbps

Ethernet

Lighting matters for

detection.

Rotating scanner.

3 VLP-16 [37]

LiDAR Puck

(LIDAR)

Velodyne Lidar

$8,000

100m/

Rotation Rate:

5âĂŞ20 Hz/

3600 x 300

103 mmD x 72

mmH/

830g/

Roof

100 Mbps

Ethernet

Lighting matters for

detection.

Rotating scanner.

4 UXM-30LX-EW [38]

(LIDAR)

Hokuyo Automatic

Co., Ltd.

$5,165

30m/

Rotation Rate:

20 Hz/

1900

124 x 126 x 150

mm/

800g/

Roof

Ethernet

100BASE-TX

Lighting matters for

detection.

Rotating scanner.

5 UST 10LX [39]

(LIDAR)

Hokuyo Automatic

Co., Ltd.

$1700

30m/

Rotation Rate:

40 Hz/

2700

50 x 50 x 70 mm/

130g/

Roof

Ethernet

100BASE-TX

Lighting matters for

detection.

Rotating scanner.
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6 ARS441 [40]

76/77 GHz

Wavelength

(RADAR)

Continental

$3400

250m, 70m,

20m/

16.7Hz/

180,900,1500

137 x 91 x 31 mm/

295g/

Grille or Front

fasica

CAN Immune to ambient

light.

No moving parts.

7 Leddar Evaluation

Kit [41]

(LEDDAR)

LEDDAR TECH

$300

50m/

100Hz/

450 x 7.50

114 x 76 x 46 mm/

265g/

Grille or Front

fasica

RS-45 and CAN

bus interfaces

Immune to ambient

light.

No moving parts.

8 Leddar One [42]

(LEDDAR)

LEDDAR TECH

$115

40m/

140Hz/

30 beam

3 x 50.8 mmD/

14g/

Grille or Front

fasica

3.3 V UART or

RS-485

Immune to ambient

light.

No moving parts.

9 Leddar Vu8 [43]

(LEDDAR)

LEDDAR TECH

$690

100m/

100Hz/

horizontal:200

vertical:0.30

70 x 35.2 x 67.5

mm/

110g/

Grille or Front

fasica

USB, CAN,

serial

Immune to ambient

light.

No moving parts.

10 Leddar Vu8 [43]

(LEDDAR)

LEDDAR TECH

$690

40m/

100Hz/

horizontal:1000

vertical:0.30

73 x 35.2 x 62.3

mm/

128.5g/

Grille or Front

fasica

USB, CAN,

serial

(UART/RS-

485)

Immune to ambient

light.

No moving parts.

11 OV10635 [44]

(CAMERA)

NXP

Semiconductors

$300

15 - 30

frames/second

600 x 400

25 x 25 x 31 mm/

128.5g/

Front windshield

Serial over

COAX

Poor performance

in bad weather.

No moving parts.
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3.2.2 Structural Modifications of Vehicle

According to [45], the following structural modifications were prohibited or restricted:

1. cutting any structural part of the vehicle body structure;

2. making modifications to vehicle chassis structure that may affect safety or vehi-

cle dynamics;

3. implementing a new vehicle structure that could affect safety or vehicle dynam-

ics;

4. implementing a structural design that violates any competition rule.

Structural modifications were restricted at the roof top. Although mounting sen-

sors on the vehicle's roof was not completely restricted, heavy sensors might lead to

undesirable long-term structuralmodifications. For this reason, heavy sensors that re-

quired roof top mounting were avoided.

3.2.3 Logistical Factors

Many factors such as cost of the sensor, wait time for sensor shipment, technical

support from themanufacturer also affected the selection of range estimating sensors.
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Figure 3.2: Top View of Sensors' Field of View.

3.3 System Hardware Description

To meet the requirements mentioned in Section 3.1, range measurement sensors

were used along with camera to detect vehicles. Figure 3.2 illustrates the field of view

(FoV) of all sensors used to implement the ADAS. Two Leddar Vu8 sensors (Row Items

9 and 10 in Table 3.1) with different range and FoV configurations are used to cover the

front region. An OmniVision OV10635 camera (Row Item 11 in Table 3.1) is used for

obstacle detection using image processing. The FoV cones originate from the location

where the corresponding sensor is mounted.

The block diagram of the implemented system is shown in Figure 3.3. The system

consists of four major blocks as follows:
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Figure 3.3: Block Diagram of the System.

3.3.1 Sensors

Sensors include anOmnivision OV10635 camera for object detection & two Leddar

Vu8 for range measurement. The OV10635 camera has aMAX96705 [46] serializer that

serializes the data and is connected to the processing unit through a coaxial cable with

FAKRA connector [47] and a Maxim MAX9286 Deserializer. Section 2.8 explains the

process of data serialization & de-serialization. FAKRA (also known as Fachkreis Auto-

mobil, a German standard) connectors are SubMiniature version B (SMB) [48] based

automotive-grade connectors. Figure 3.4 shows the components in the camera (image

sensor, de-serializer and connector).

Leddar Vu8 sensors are connected to the processing unit through the Controller

Area Network (CAN) ports using twisted pair.
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Figure 3.4: Components of the Camera.

3.3.2 Processing Unit

The processing unit is the NXP S32V234 (Treerunner), a vision processormanufac-

tured by NXP Semiconductors. Treerunner is equipped with an ARMÂő CortexÂő-A53

quadcore, 64-bit CPU, and an ARM Cortex-M4, 32-bit CPU. It supports various com-

munication protocols such as Universal Asynchronous Receiver Transmitter (UART),

Inter IntegratedCircuit (I2C), Ethernet, FlexibleData rateControllerAreaNetwork (FD-

CAN), FlexRay and Local Interconnect Network (LIN). It also has an Image Signal Pro-

cessing (ISP, purpose explained in Section 2.10) that supports 2x1 or 1x2 MegaPixel at

30 frames/sec and two APEX2-CL Image cognition processor, each of which comprises

two Array Processing Unit (APU) cores [49]. A MAX9286 Gigabit multimedia serial link

(GMSL) deserializer, which supports up to four cameras connected through 50Ω resis-

tance COAX connection, was used to de-serialize the image information received from

the camera for the serial output interface.
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Figure 3.5: Front View of NXP S32V234 (Treerunner), With Labels of All the Ports Used.

Picture TakenWhile Designing Enclosure.

As shown in Figure 3.5, Treerunner contains 2 CAN ports one of which is used to

communicate with two Leddar Vu8 sensors and the other port is used to transmit the

information to the vehicle CAN bus. Appendix B provides more details about the CAN

message fromVu8sensors. MAX9286hasaMobile IndustryProcessor Interface-Camera

Serial Interface (MIPI-CSI) connector, throughwhich it is connected toTreerunnerâĂŹs

MIPI-CSI port.

Figure 3.7 shows how the camera is connected to Treerunner through the Maxim

De-serializer The power requirements of Treerunner is 12Vwith amaximumof 4A cur-

rent while functioning at full capacity. The data transmitted from Treerunner to the

vehicle CAN is received by the ETAS ES910, hybrid controller, which is used to synchro-

nize and control the combustion engine and electricmotor. This unit also controls the

driver feedback interface.
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Figure 3.6: Maxim IntegratedMAX9286 De-Serializer That Expands the Camera Inputs

to Treerunner. Picture TakenWhile Designing Enclosure.

3.3.3 Driver Feedback Interface

Thedesigneddriver feedback interfaceuses LEDs andaBuzzer, and is controlledby

ETAS ES910, which generates a control signal based on the transmitted ego-to-target

distance data, to provide visual and audio warning to the driver when the distance be-

tween theegovehicle and the target vehicle in thehost lane is belowacritical threshold.

3.3.4 Power Electronics

Componentsused to control thepower to all the sensors, processingunits and feed-

back interface elements fall under this block. These components were used to ensure

the safe and proper functionality of all the power sensitive hardware.
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Figure 3.7: Picture of Setup Showing Camera Connected to Treerunner Through the

MAX9286 De-Serializer.
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Chapter 4

ALGORITHMS AND SOFTWARE FOR OBSTACLE DETECTION

This chapter presents the algorithms and software implementation of the two consid-

eredADAS tasks: 1) Vehicle detectionusing camera feed, and2) Sensordata acquisition

and processing using NXP S32V234. Section 4.1 covers the details of the vehicle detec-

tion algorithm and implementation. Section 4.2 describes the CAN data frame includ-

ing the request transmitted from the host and the response from the sensor, decoding

of CAN data bytes and computation of dynamic data such as range, azimuth and lane

position. Section 4.3 describes the data transmission from the NXP Treerunner board

to the vehicle CAN bus.

4.1 Vehicle Detection

Vehicle detection is one of the main requirements of an ADAS system. One aim of

obstacle detection is to categorize the localized obstacle. In this work, the only targets

to be identified are vehicles. This task is achieved using an algorithm called Aggregated

Channel Feature (ACF) [50].

A block of the ACF detection framework is shown in Figure 4.2. The ACF detection

framework has five major steps including pre-processing, channel feature computa-

tion, feature aggregation, flattening and boosting. In the pre-processing step, the in-

put image I (Figure 4.2(a)) of widthW and height H is smoothed (Figure 4.2(b)) using a

low pass filter ([1,2,1]/4). Smoothing is needed to suppress irrelevant fine scale details

and image noise [51]. It also determines the scale of subsequently computed gradients

[52]. This is followed by a feature extraction step (Figure 4.2(c)), in which several types

of features are extracted from the smoothed image; each feature type is referred to as a
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channel [52]. Ten feature channels are computed, including normalized gradientmag-

nitude, histogram of oriented gradients (6 channels in total, each channel represents

one of the six gradient orientation bins), and LUV color channels. The ACFmethod ex-

tracts features at several scales by forming a feature pyramid for the considered image.

A feature pyramid is a multi-scale representation of an image wherein features (i.e.,

channels) are computed at various scales. A higher scale corresponds to lower spatial

resolution. Scales are sampled evenly in log-space, starting at s = 1, corresponding to

the original input image spatial resolution, with typically 4 to 12 scales per octave. An

octave is the interval between one scale and another with half or double its value. In

the ACFmethod, a fast feature pyramid computation method is adopted.

The computed channel features are then aggregated by first dividing the channels

into 4 x 4 blocks and pixels in each block are summed and smoothed to obtain lower

resolution channels (Figure 4.2(d)). The feature channels computed in all scales, are

then vectorized and provided to decision trees. Finally boosting is used to train and

combine decision trees over these features to distinguish object from background and

amulti-scale sliding-windowapproach is employed. Non-maximal suppression (NMS)

[53] is used to remove multiple bounding boxes for the same object and obtain a final

bounding box that represents a target.
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Figure 4.1: Standard Approach vs Fast Feature Approach of Feature Computation. Top:

For Each Scale s, Input Image I Is Re-Sampled at Scale s to Produce Is and Its Feature

Channel(s) Cs Is (Are) Computed. Bottom: The Feature Channel(s) C of an Input Im-

age I Is (Are) Computed at Scale s=1, and Feature Channels Cs at Other Scales, Is (Are)

Produced Through Scaling and Transformation of C to ApproximateCs .
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Figure 4.2: Illustration of the Main Steps of ACF. (a) Input Image. (b) Smoothed Image.

(c) Computed Channels (Normalized Gradient Magnitude Channel Not Shown). (d)

Aggregated Low Resolution Channels. (e) Flattening. (f) Boosted Tree.
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Figure 4.3: Output Frame With the Detected Bounding Box Plotted Around the Target

Vehicle (Same Sample Image as Shown in Figure 4.2).

Figure 4.1 illustrates the fast feature pyramid computation approach through fast

feature scaling, where the feature channels are computed at the lowest scale (s=1) and

then these features are scaled to produce feature channels at various scales in the oc-

tave, without the need to extract features at each scale. Such approach offers a good

trade-off between speed and accuracy.

The output obtained after all the computation is a list of bounding box coordinates

with corresponding confidence scores. The obtained bounding box is of the format [x,

y, width, height], where x and y are the coordinates of the top left vertex of the bound-

ing box in the image coordinate system. This bounding box information canbeutilized

to plot a graphical box on the image frame to visually observe the location and the over-

lap of detection. Another use of this bounding box is to evaluate the performance of

the object detection algorithm, by computing performancemetrics such as IoU as dis-

cussed in Section 2.6.1, and categorizing the detection as true positive or false positive.

Figure 4.3 shows a sample image with the computed bounding box plotted around the

target.
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4.2 Sensor Data Acquisition and Processing

The Leddar Vu8 sensor's field of view (FoV) is split into 8 segments as shown in Fig-

ure 4.4. Communication between the Leddar Vu8 and the Treerunner was established

using CAN. Consider an obstacle to be present in segment 0. The sensor senses the

obstacle and reports the distance D value as shown in Figure 4.4 and the segment in

which the obstacle is present, which in this case is segment 0. Thismessage is received

as a CANmessage as further discussed below. A request message is sent via CAN to the

Leddar Vu8 and the sensor responds with the data acquired at that instance.

Figure 4.4: Top View of the Leddar Vu8 FoV Segments and How the Sensor Returns the

Distance of an Obstacle Found in a Segment (e.g., Segment 0).
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Table 4.1: Default CAN IDs for Request Messages (Rx) to and Response Messages (Tx)

From the Leddar Vu8.

Sensor Message ID

(Hex)

Message ID

(Decimal)

Direction Data Type

Leddar

Vu8 Long

Range

(S1)

0x740 1856 Rx Request from a host

0x750 1872 Tx Answer to a host request

0x751 1873 Tx Number of detection

messages

0x752 & over 1874 and

above

Tx Detection messages

Leddar

Vu8 Short

Range

(S2)

0x780 1920 Rx Request from a host

0x790 1936 Tx Answer to a host request

0x791 1937 Tx Number of detection

messages

0x792 & over 1938 and

above

Tx Detection messages

For the long-range Leddar Vu8 sensor (S1 in Table 4.1), the CAN bus interface uses

two default message IDs: 1856 (0x740) and 1872 (0x750) [54] for request message from

the Leddar Vu8 and response message from the host, respectively. These message IDs

can be modified using the Leddar Configurator (Appendix C). If multiple Leddar Vu8

sensors are connected to a single host computer, over the same CAN bus, the mes-

sage IDs for both sensors must be configured to a different value for each sensor. This

prevents the CAN bus data of a sensor from being overwritten by another sensor and

also helps in distinguishing the sensor data. Table 4.1 shows the IDs of request and

response messages used for both the long-range and short-range Leddar Vu8 sensors.

For the ease of implementation, default CAN IDs were used for the long-range Leddar

Vu8 sensor, and message IDs for the short-range Leddar Vu8 sensor were configured
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using the Leddar Configurator. Setting uniquemessage IDs to each sensor also helped

to implement CAN filters based on message IDs. These filters help in extracting the

requiredmessages based on their IDs. Themessage frame follows the little-endian for-

mat where the message interpretation must be done from Byte 7 to Byte 0. For conve-

nience the bytes of each message will be numbered from 0, i.e., Byte 0 is first and least

significant byte, and Byte 7 is the eighth and most significant byte of a message. A re-

questmessage from the host to the sensor and a streamof responsemessages from the

sensor to the host are shown below. This data was logged while the sensor was pointed

towards a retro reflective board located 14m from the sensor.

Request from the host to the sensor:

0x740 : 02, 01, 00, 00, 00, 00, 00, 00

Response message stream from the sensor to the host:

0x750 : 02, 01, 00, 00, 00, 00, 00, 00

0x751 : 08, 64, 00, 00, 41, 8D, 26, 00

0x752 : 79, 05, 8F, 00, 01, 00, 07, 00 : detection of channel #7

0x753 : 77, 05, D3, 00, 01, 00, 06, 00 : detection of channel #6

0x754 : 77, 05, EC, 00, 01, 00, 05, 00 : detection of channel #5

0x755 : 76, 05, F9, 00, 01, 00, 04, 00 : detection of channel #4

0x756 : 77, 05, F2, 00, 01, 00, 03, 00 : detection of channel #3

0x757 : 77, 05, ED, 00, 01, 00, 02, 00 : detection of channel #2

0x758 : 77, 05, B9, 00, 01, 00, 01, 00 : detection of channel #1

0x759 : 78, 05, 9F, 00, 01, 00, 00, 00 : detection of channel #0

More details about the request and response message are provided below.

Request message from host to the sensor

A request message is sent from the host to the sensor to initiate or terminate response
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messages from the sensor. 0x740 (in hexadecimal) or 1856 (in decimal) is the message

ID. The first byte (Byte 0) describes themain function and the rest of themessage bytes

are used as arguments. The byteswill be described using the aforementioned example.

Byte 0: the value is 0x02. In this case, the request type is to send the detection once,

meaning one detection frame (data from all 8 segments) will be sent by the sensor to

thehost. Byte 0 valuesused inour applicationare 0x01 (stop sendingdetection tohost),

0x02 (send one frame of detection to host) and 0x03(send detection continuously, until

host requests to stop). For other byte values and corresponding function refer to Ap-

pendix B.

Byte 1: the value is 0x01. This is to request the response in amultiple-messages format,

meaning the detection in each channel of the sensor will be sent by a message with a

unique message ID (e.g., 0x759, 0x758 or 0x757). If the value of Byte 1 is set to 0x00,

then all the segment data messages from the sensor will have the same address (i.e.,

0x753, 0x754 ... 0x758, 0x759 will be replaced by 0x752).

Byte 2 toByte 7: the value is 0x00. These bytes donot take any other value in the request

message.

Response message stream from the sensor to the host

The response message from the sensor to the host is a message stream with response

to host's request followed by detection messages. The first message with message ID

0x750 (1872) is the response to the host's request (0x740). If the request was successful,

the response message (0x750) is an echo of the request message (0x740).

The next message with message ID 0x751 (1873) specifies the number of detections,

LED power in percentage and the time stamp. Values from the aforementioned exam-

ple will be used for illustration.

Byte 0: indicates the number of detections. In the considered example, it is 08 which

means there are 8 detections. This number represents the total of number of objects
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detected per segment in that frame.

Byte 1: indicates the LED power in percentage. In this example, 64 in decimal converts

to 100%, meaning the LED transmit power is set to 100%.

Byte 2 and 3: These are reserved bytes with value 0x00 (hex).

Byte 7- Byte 4: indicate a time stamp. The time stamp is expressed as the number of

milliseconds since the module was started. In the above example, 0x00268D41 in dec-

imal converts to 2,526,529ms.

Messages after the sensor message with ID 0x751, i.e., messages with ID 0x752 (1874)

and above, correspond to the detections of the sensor. Each 8 byte message corre-

sponds to a detection in a particular segment. Each of these messages have the in-

formation arranged as follows:

Byte 7 and 6: the segment in which the sensor has detection.

Byte 5 and 4: is the flag information. Flag 0x01means themeasurements are valid. Flag

0x09 means the received signal is above saturation level. The measurements are valid

but have lower accuracy and precision.

Byte 3 and 2: indicate the amplitude of light received by the sensor from obstacle.

Byte 1 and 0: indicate the distance of the obstacle from the sensor.

For the message with ID 0x752 the values are shown in Table 4.2.

The rest of the messages can be decoded similar to the message with ID 0x752.

From the obtained sensor data, the following computations can be done (Figure

4.4):

• Lateral range L1: D*sin(θ)

• Longitudinal range L2: D*cos(θ)
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Table 4.2: Hex Values Obtained FromOneCANResponseMessage Frame 0x752 and Its

Corresponding Byte Location and Decimal Values.

Byte Location Byte Value

(Hex)

Byte Value

(Decimal)

Description

Byte 7 and 6 00 07 7 Seventh segment of the

sensor’s horizontal FoV

Byte 5 and 4 00 01 1 Valid detection

Byte 3 and Byte

2

00 8F 143 Amplitude of light from

obstacle

Byte 1 and Byte

0

05 77 1399 Distance in centimeters.

• Range Rate: (L2, f 2−L2, f 1)*f, where L2, f 2 is the longitudinal range in frame 2, L2, f 1

longitudinal range in frame 1, f is the frame rate, and frame 1 and frame 2 are two

consecutive frames.

The azimuth angle and lane position (left, center or right) of the obstacle depends

on factors such as location of the sensor and the segment in which the obstacle is lo-

cated. For this reason, the sensor is placed in the center of the egocar. The laneposition

of the vehicle is determined by the sensor FoV and the longitudinal distance (L2). The

long range Leddar Vu8with 200 is used to identify farther obstacles. Figures 4.5 and 4.6

illustrate how the lane position of an obstacle vehicle is determined using the Leddar

Vu8 sensor with 1000 and 200 FoV, respectively. The segments shown in Figures 4.5 and

4.6 are based on trigonometric computation. Tables 4.3 and 4.4 list how the lane po-

sition of a vehicle is determined based on the segment and longitudinal distance (L2)

detected by the sensor. If the obstacle is in segment 0, and is detected by Vu8with 1000

horizontal FoV, then the azimuth angle of that obstacle is 43.750 to the left of the ego

vehicle.
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The longitudinal distance (L2) computed for all segments, in a frame, is used to

determine if an object has occupied multiple segments. When the detection frame is

obtained (example shown above as response message stream from the sensor to the

host), distances in all the segments are decoded. The adjacent segments are grouped

according to Tables 4.3 and 4.4. For instance, if an object is detected in segments 3 and

4 of the long range Vu8 sensor, and is at 40m longitudinal distance (L2 obtained from

segments 3 and 4) from the ego vehicle, the object is classified as single object which

has occupied host lane and is at 40m longitudinal distance (L2) from ego vehicle. In

suchcases the azimuthangle of thedetectedobjectwith respect to egovehicle, is half of

the difference between the azimuth angle of the left segment and the azimuth angle of

the right segment. For the above example, the azimuth angle will be (2.50−2.50)/2 = 00.

The short range Vu8 sensor is majorly used to identify objects at closer range, in

the left and right lane, as shown in Table 4.3. The long range Vu8 sensor is used to

detect objects in the host lane as well as objects in the left and right lane above 20m

longitudinal distance (L2), as shown in Table 4.4.

Figure 4.5: FoV of Leddar Vu8 1000 Sensor.
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Table 4.3: Data Utilization From Leddar Vu8 1000 Sensor.

Longitudinal

distance (L2) (m)

Left Lane Host Lane Right Lane

0-10 Segments 0 and 1 Segments 3 and 4 Segments 6 and 7

10-20 Segment 2 - Segment 5

Table 4.4: Data Utilization From Leddar Vu8 200 Sensor.

Longitudinal

distance (L2) (m)

Left Lane Host Lane Right Lane

0-10 - Segments 3 and 4 -

10-20 - Segments 3 and 4 -

20-30 Segments 0 and 1 Segments 3 and 4 Segments 6 and 7

30-40 Segments 0, 1 and 2 Segments 3 and 4 Segments 5, 6 and 7

40-50 Segments 1 and 2 Segments 3 and 4 Segments 5 and 6

50-60 Segment 2 Segments 3 and 4 Segment 5

60-70 - Segments 3 and 4 -

4.3 Data Transmission From Treerunner to Vehicle CAN

The computed target distance both lateral (L1) and longitudinal (L2), lane position

andazimuthangle are transmitted to the vehicleCANbus from theTreerunner through

CAN. CAN messages with ID 0x441, 0x442 and 0x443 are generated and transmitted

throughCANchannel 2 of theTreerunner (CANchannel 1 is used to communicatewith

the Leddar Vu8 sensors), to the ETAS module, which is the hybrid vehicle controller

that controls the driver feedback indicators (Section 3.3.2). Message IDs 0x441, 0x442

and 0x443 represent information of the targets present in left, host and right lanes as

determined by the Leddar Vu8 sensors, respectively.

The message is of length 8 bytes and the data organization is shown in Figure 4.7
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Figure 4.6: FoV of Leddar Vu8 200 Sensor.

In Figure 4.7, each color code represents the length in bits of each data value and

also shows the location of corresponding Most Significant Bit (MSB) and Least Signif-

icant Bit (LSB). For instance, the Lateral Range data value occupies 10 bits of the mes-

sage and its LSB is at bit 30of the 64bitmessagewhile itsMSB is at bit 23of themessage.

This message also follows the little endian byte order.
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Figure 4.7: CAN Message Format Used to Transmit Data From Treerunner to Vehicle

CAN.
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Chapter 5

IMPLEMENTATION AND RESULTS

This chapter presents details about the initial prototyping of the object detection sys-

tem using the Aggregated Channel Feature algorithm [50] [55], sensor integration, and

the software development and test conducted to analyze the performance of the de-

veloped system. Section 5.1 describes the implementation of the object detection al-

gorithm using MATLAB. Section 5.2 presents details about the enclosure design and

integration of hardware. Section 5.3 describes the implementation of the overall algo-

rithm in Treerunner, as well as the testing strategy and achieved output.

5.1 Initial Prototyping and Sensor Testing

In this section, details about the initial implementation of the object detection al-

gorithmand about the initial testing of the Leddar Vu8 sensor are discussed. The initial

testing helped in configuring many algorithm-related parameters in order to improve

the performance and accuracy of the overall system.

5.1.1 Object Detection Prototyping

As a proof of concept, the Aggregated Channel Feature detector was tested using

MATLAB and the Piotr’s Computer Vision toolbox [55]. OV10635 camera wasmounted

under the rear view mirror of a test car (âĂŸ96 Honda Accord) and was connected to

the NXP S32V234 (Treerunner) board, as shown in Figure 5.1. Using this OV10635 and

Treerunner setup, a dynamic test video was recorded such that, in each video frame,

there was at least one target vehicle being followed. Figures 5.2 and 5.3 show sample

frames from the recorded test video.
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Figure 5.1: Test Setup to Capture Video Data.

Attributes of the recorded video and number of targets in each frame are shown in

Table 5.1. The number of video frames in total is 900, corresponding to a duration of 30

seconds, where 353 frames have two targets in each frame and 547 frames have three

targets in each frame. This gives a total of 2347 targets in the recorded 30-second video.
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Figure 5.2: Ground-Truth Annotated Frame From the Recorded Test Video. This Frame

Has Two Targets Ahead.

Figure 5.3: Ground-Truth Annotated Frame From the Recorded Test Video. This Frame

Has Three Targets Ahead.
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The recorded video was used to label the ground-truth using MATLAB's Ground

Truth Labeler as explained in Section 2.5, and a videowith all the labeled ground-truth

information was stored. Here, the ground-truth information represents the Region of

Interest in the image, that is occupied by the target to be detected, vehicles in this case.

For instance, if there are two vehicles present in an image of the video sequence, the

ground-truth information is the manually plotted bounding box that encloses the re-

gion of the image containing the vehicle that needs to be detected.

Table 5.1: Description of the Data Collected Using OV10635 and Treerunner.

Attributes Values

Ego vehicle used Honda Accord 1996

Duration 30 seconds

Time of capture 3 pm to 4 pm

Weather condition Clear sunny

Total Frames 900

Total number of targets 2347

Minimum number of targets in a frame 2

Number of frames with 2 targets 353

Number of frames with 3 targets 547
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Figure 5.4: Target Vehicles With Bounding Boxes Detected by the Trained Detector.

A MATLAB script was written to apply the ACF detector, whose implementation is

provided by the Piotr’s Computer Vision Toolbox, to each frame of the video and to

store the resulting bounding box with corresponding confidence score for each detec-

tion. Figure 5.4 shows how the bounding box is plotted around the corresponding tar-

get. The bounding box for "car 2" is bigger than the actual vehicle. This is because the

algorithm combines multiple overlapping bounding boxes to get one output box for a

particular object.

57



Table 5.2: ACF Object Detection Performance Metrics Computed on the Video Data

Recorded Using the OV10635 and Treerunner Setup.

Metrics Detector Comment

True Positive (TP) 1564 of 2347 1564 targets were detected successfully out of

the 2347 total targets

False Positive (FP) 247 False detections that do not correspond to true

targets.

True Negative (TN) N/A Not applicable as non-vehicle objects are not

labelled

False Negative (FN) 783 of 2347 783 targets were not detected out of the 2347

total targets

Precision 86.3611% TP/(TP+FP)

True Positive Rate (Recall) 66.6383 % TP/(TP+FN)

False Negative Rate 35.1% FN/(TP+FN)

False Discovery Rate 13.5% FP/(TP+FP)

True Negative Rate N/A Can be computed only when True Negative is

available

To evaluate the performance of ACF for object detection, each detected bounding

box was compared with the ground-truth bounding boxes for the recorded video, to

compute the IoU (as explained in Section 2.6) with a 50% threshold. The resulting clas-

sification statistics are shown in Table 5.2. The True Positives (TP) and False Negative

(FN) add up to the total number of ground-truth targets in the dataset.
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5.1.2 Initial Testing of the Leddar Vu8

The Leddar Vu8 sensor was initially tested separately using a target retro reflective

board as demonstrated in Figure 5.5. Thiswas done to configure the sensor parameters

(Appendix A) using the Leddar Configurator (Appendix C), to fit the system require-

ments (Section 3.1). To test themaximumdistance up to which the sensor detected an

obstacle, the sensor was kept stationary and the target was moved away from the sen-

sor along a straight line. To test the functionality of various segments of the sensors'

FoV, the target was moved along the horizontal FoV of the sensor. This helped iden-

tify the right values for sensor parameters such as Accumulation, Oversampling, and

Points of the Vu8.

Figure 5.5: Leddar Vu8 Test Setup. Retro Reflective Board Used as Target to Test the

Range of the Leddar Vu8 Sensor.
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Accumulation or signal accumulation is the process of accumulating the reflected

light beam to increase the signal intensity.

Oversampling is the process of sampling a signal above theNyquist rate, to improve

resolution and reduce reconstruction error.

Points is the number of base sample points. Points determine themaximumdetec-

tion range. Higher points improves the detection range of the sensor.

5.2 Hardware Integration

Integrating the ADAS hardware involved three major steps, which were selecting

mounting locations, enclosure design and electrical integration.

5.2.1 Selecting Hardware Location

Selecting the location for mounting the hardware, involved several factors such as

the physical properties and capabilities of the hardware. Locations for sensors were

selected to maximize the sensing performance.

TheOV10635OmniVision camera, whose video output was used as input to the ve-

hicle detection algorithm,wasmountedbehind the rear viewmirror as shown inFigure

5.6. Since the camerawasmounted inside the vehicle, the enclosure that was designed

to protect the camera did not need to be designed to provide Ingress Protection (IP)

[56].

Two Leddar Vu8 sensors were mounted in the front grille as shown in Figure 5.7.

This helped avoid any physical obstruction for the LED beam propagation and pro-

vided effective use of the sensors' field of view.

TheNXP S32V234 (Treerunner board) wasmounted in the trunk of the car in a cus-

tomdesigned case. The design included slots on the sides that allowed proper connec-
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Figure 5.6: OV10635 Mounted on the Test Vehicle.

tion of wires from sensors and power source to corresponding ports. Figure 5.8 shows

the Computer Aided Design of the NXP S32V234 case.

5.2.2 Enclosure Design

The enclosures for the NXP S32V234 board, OmniVision camera and Vu8 sensors

were custom made by the mechanical engineers, who were involved in the EcoCAR3

project, and the designs were completed using Computer Aided Design (CAD). An ini-

tial version of the enclosure was 3D printed for each hardware, so that modifications

could bemade to the design to converge to a final design. After finalizing all themodi-

fications on the enclosure, such as slots for cable pass through andmounting features,

the final enclosure was 3D printed. The structural properties of the enclosures are pre-

sented in Table 5.3, while CAD renderings of the final design for the S32 board enclo-

sure, camera housing and Vu8 sensor enclosure are shown in Figure 5.8, Figure 5.9 and

Figure 5.10, respectively. The enclosure for Treerunner holds the de-serializer board

(Section 3.3) in it. The sidewalls of the enclosure canbemodifiedbased on the require-
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Figure 5.7: Leddar Vu8Mounted on the Test Vehicle.

Table 5.3: Detailed Characteristics of the Custom Designed Hardware Enclosures. L, B

and H Stands for Length, Breadth and Height, Respectively.

Hardware Housing Dimension(inch) Housing Material

NXP S32V234 L- 10.5; B- 10.5 H- 1.5 Acrylic for the face of the board

PLA Plastic for the sides

Omnivision

OV10635

L- 2; B- 2; H- 2 PLA Plastic

Leddar Vu8 L- 2.9; B- 1.6; H- 2.5 (Vu8 1000)

L- 2.8; B- 1.4; H- 2.7 (Vu8 200)

PLA Plastic

ment of ports to be accessed in the S32V234 board. The camera enclosure is designed

to enclose all the sides of the camera leaving the lens unobstructed and the design fur-

ther accounts for the camera connector.

The enclosure design for the Vu8 sensors was critical as the horizontal field of view

playedamajor role in thedesign. Toavoidobstruction in the transmit pathof light from
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Figure 5.8: Treerunner's Enclosure.

Figure 5.9: OV10635 Camera's Enclosure.
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Figure 5.10: Leddar Vu8 Sensor's Enclosure.

sensor, the enclosurewas designed to closely fit the sensor as shown in Figure 5.10with

a clear plastic cover on the front side, to protect the sensor from external contact.

5.2.3 Electrical Integration

All the sensors and Treerunner were connected to the low voltage battery of the

vehicle through proper voltage regulation circuitry. This was to ensure all the compo-

nents were supplied with the required voltage and no component gets damaged due

to high voltage spikes.

5.3 Software Development and Testing

Software was developed in modules and were integrated together to obtain the fi-

nal package. The firstmodule (Algorithm 1)was the implementation of the Aggregated

Channel Feature framework for the object detection task, and the second module (Al-

gorithm 2) implemented the Leddar Vu8 data acquisition and processing using CAN.
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Algorithm 1: ACF-based detection pseudo-code.
1 Input image (frame size 1280x800) is transformed from YUV (YCbCr) format to

RGB format and resized to half the size of the original image.;
2 Resized image is converted from 24 bits per pixel to 32 bits per pixel, by adding

an alpha channel [57] and is converted to LUV format.;
3 The channel pyramid (as explained in Section 4.1) of the LUV image is

computed. The detector is applied to the computed feature pyramids, to obtain
bounding boxes and associated confidence score.;

4 Obtained bounding boxes are plotted on the input image and displayed.;

Algorithm 2:Data Acquisition from the Leddar Vu8 sensor and Processing.
1 Open raw CAN socket and declare filters (explained below) based onmessage ID

to receive messages from one sensor at a time.
2 Request message (message IDs shown in Figure 5.11) is sent to the sensors

whenever a measurement is needed and the response messages (described in
Section 4.2) from the sensors are read from Channel 1. To read one sensor at a
time, filters (described in previous step) are set. Themessages from each sensor
are acknowledgement to the request message from host (message ID 0x750 for
long range and 0x790 for short range Vu8), number of detection (message ID
0x751 for long range and 0x791 for short range Vu8) and detection messages
(message ID 0x752 for long range and 0x792 for short range Vu8).

3 Response messages from each sensor are stored separately and converted from
received hexadecimal values to decimal values (described in Section 4.2) to
calculate lateral, longitudinal distance and azimuth angle of detected target.

4 Data from different segments of the Vu8 sensors are combined according to
Tables 4.3 and 4.4 to obtain target lane position.

5 CANmessage frame with transmit message IDs 0x441, 0x442 and 0x443, shown
in Figure 5.12 is generated using the processed data and is transmitted from the
NXP S32V234 to the ETAS ES910 (hybrid controller) for the distance estimation
to reach vehicle CAN bus. Message IDs 0x441, 0x442 and 0x443 represents
target information corresponding to left, host and right lane, respectively.
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More details about the filters (Step 1 of Algorithm 2) are provided below.

For the short range Leddar Vu8, the AC K _I D_SHORT is 0x790, RESP_I D_SHORT is

0x791, andDET _I D_SHORT is 0x792. The detection data is requested in a singlemes-

sage format. In thisway, all the detectionmessageswill have themessage ID 0x792. For

this case, the filters are declared as follows:

r f i l ter 1[0].can_i d = AC K _I D_SHORT ;

r f i l ter 1[0].can_mask =C AN_SF F_M ASK ;

r f i l ter 1[1].can_i d = RESP_I D_SHORT ;

r f i l ter 1[1].can_mask =C AN_SF F_M ASK ;

r f i l ter 1[2].can_i d = DET _I D_SHORT ;

r f i l ter 1[2].can_mask =C AN_SF F_M ASK ;

For the long rangeLeddarVu8, the AC K _I D_LONG is 0x750,RESP_I D_LONG is 0x751,

and DET _I D_LONG is 0x752. The detection data is requested in a single message for-

mat. In this way, all the detection messages will have the message ID 0x752. For this

case, the filters are declared as follows:

r f i l ter 2[0].can_i d = AC K _I D_LONG ;

r f i l ter 2[0].can_mask =C AN_SF F_M ASK ;

r f i l ter 2[1].can_i d = RESP_I D_LONG ;

r f i l ter 2[1].can_mask =C AN_SF F_M ASK ;

r f i l ter 2[2].can_i d = DET _I D_LONG ;

r f i l ter 2[2].can_mask =C AN_SF F_M ASK ;

To improve the execution speed and accuracy, a region of interest was specified in

the input frame. This region of interest was obtained by cropping out the top 200 rows

of the image to ignore the sky region in the image. This avoided feature computation in

areas where vehicles could not be found. Multiple bounding boxes for a single target

were grouped to form a single bounding box using an OpenCV function groupRect-
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angles()[58] with an overlap threshold of 80%. This function takes as input rectangles

that need to be grouped together, a group threshold representing theminimum possi-

ble number of rectanglesminus 1 (if a cluster consists of rectangles less than the group

threshold, that cluster is rejected), an overlap threshold that is used to group two or

more rectangles if these overlap by more than the specified overlap threshold (set to

80% in this implementation).

To communicate with the Leddar Vu8 sensors, both sensors were connected to the

Treerunner board through CAN Channel 1, as shown in Figure 5.11, and CAN Channel

1 was configured to a baud rate of 115200 bits per second. To transmit the data to the

vehicle bus, the Treerunner board was connected to the ETAS module through CAN

Channel 2, as shown in Figure 5.12, and CAN Channel 2 was configured to a baud rate

of 115200 bits per second.

Since both the Leddar Vu8 sensors were connected to the Treerunner board using

the the same CAN bus, rfilter1 and rfilter2 (see Algorithm 2) are filters that were imple-

mented to filter CAN messages based on CAN ID and to differentiate data from short

range and long rangeVu8 sensors. More details about how thefilterswork canbe found

in Section 2.7.
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Figure 5.11: Leddar Vu8 Sensors Connected to Treerunner.

Figure 5.12: Treerunner Connected to ETAS to Transmit the Detection Data to the Ve-

hicle CAN Bus.

To check the data acquisition and processing from the Leddar Vu8 sensors using

CAN, a test procedure was performed as described in Section 5.1.2. The retro reflective

board was used as a target. A request message from Treerunner was transmitted to the

Vu8 sensors and the response was read. The response from the sensor was processed
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to obtain the distance to the retro reflective target that was detected by the sensor, and

the obtained distance was compared with the actual distance.

Each time an input image is captured, a request message is sent from Treerunner

to Vu8 through CAN and the response is read. Both the image frame and sensor data

are processed in parallel. The camera and Vu8 sensors weremounted along the center

axis of the vehicle. This was useful to calibrate the camera and get a correspondence

of the horizontal field of view of the camera and the FoVs of the Vu8 sensors.

To fuse the processed data including the Vu8 sensor data together with the vehicle

detection results using the camera, the horizontal FOV of the camera was split uni-

formly into three bins, each representing left, host and right lanes. The coordinates of

each detected vehicle's bounding box were utilized to identify the lane in which the

considered bounding box was located, and the processed sensor data corresponding

to those lanes was mapped to the detection. A sample annotated frame is shown in

Figure 5.13, in which the target is present in the host lane and the target's distance in-

formation is displayed near the top of the image frame.
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Figure 5.13: Sample Annotated Frame Showing Bounding Box Obtained From Camera

Data and Distance Estimation in Meters, Computed From Leddar Vu8 Sensor Data.

The ETAS ES910, which receives the CAN message from the NXP S32V234 board,

processes the data to identify the distance between the ego vehicle and the target in the

host lane. This is done to generate a pulsated signal that controls the driver feedback

LED and buzzer. To simplify the design, only the target present in the host lane is con-

sidered to avoid potential rear end collision. The blinking frequency of the LED varies

based on the distance between the target and ego vehicle. The LED starts blinking

slowly with a farther distance and the blinking frequency is increased as the distance

decreases. The same frequency pattern is applied to the buzzer. Figure 5.14 shows the

prototype version of the LED indicator used as feedback to the driver.
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Figure 5.14: Driver Feedback LEDPrototype. In This Setup, a Single LED IsUsed to Test

the Functionality.
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Chapter 6

CONCLUSION

This thesis implements a driver assistance system using real-time sensor data acqui-

sition and processing. This chapter summarizes the contributions of this thesis and

proposes several directions for future research.

6.1 Contribution

In this thesis, a driver assistance system was developed that detects vehicles and

estimates the distance between detected vehicles and ego vehicle to provide feedback

to the driver. The contributions of the thesis can be summarized as follows:

• Hardware selection for range estimation, by analyzing the hardware capabilities,

logistics and, mechanical and interface compatibility.

• Hardware integration by strategically identifying suitable locations and working

with mechanical engineers to develop enclosure for the proper fixture.

• Implementation of data acquisition and processing from range estimation sen-

sor throughController AreaNetwork, to estimate the lateral and longitudinal dis-

tance between the target and ego vehicle.

• Adaptation of Aggregated Channel Feature object detection, to detect vehicles.

• Implementation of a front collision system based on range measurement data

obtained from range estimation sensors, irrespective of the type of obstacle.
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6.2 Future Research Direction

Possible enhancements and future directions for the proposed framework are as

follows:

• Implementation of blind-spot detection and side distance warning will enhance

the safety of the vehicle. This implementation can be achieved using short-range

ultrasonic sensors or short-range RADAR. Along with blind-spot detection, the

implementationof a camera-based side viewon the right sidewill enhance safety

while performing a right turn, as the right-side view is maximally obstructed in

left-hand drive.

• Use of data processor with higher computation capacity for faster data process-

ing to ramp up the processing rate up to 40 frames per second.

• Establishing effective communication between ADAS and vehicle to ensure the

ADAS is aware of details such as acceleration, current velocity, steering angle, fuel

consumption, and other factors that could affect the performance of ADAS.

• Implementation of haptic feedback such as steering vibration, along with visual

and audio feedback, can be provided. This implementation ensures to capture

the attention of the driver even if he or she misses the other types of feedback.

• Implementation of an ADAS based electronic braking system to improve the fuel

efficiency of the vehicle. This could be automated based on the ADASdetections,

or it could be controlled by the user, based on the ADAS feedback to the driver.

In a user-controlled scenario, a button on the steering wheel, or an extra shaft

next to the hand brake lever, can be used by the driver to brake the vehicle based

on the ADAS feedback. This would improve not only the safety but also the fuel

efficiency and power regeneration in hybrid vehicles.
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Table A.1: Leddar Vu8 Parameters and Corresponding Effects [43].
Parameter Description Effect
Accumulation Number of ac-

cumulations
Higher values enhance the range and reduce the
measurement rate and noise.

Oversampling Number of
oversampling
cycles

Higher values enhance the accu-
racy/precision/resolution and reduce the mea-
surement rate.

Points Number of
base sample
points

Determines the maximum detection range.

Threshold Off-
set

Modification to
the amplitude
threshold

Higher values decrease the sensitivity and reduce
the range.

Smoothing Object
smoothing
algorithm

Smoothes the Leddar Vu8 module measurements.
The behavior of the smoothing algorithmcanbe ad-
justed by a value ranging from -16 to 16. Higher val-
ues enhance the module precision but reduce the
module reactivity. The smoothing algorithm can
be deactivated by clearing the Enable check box.
Higher positive values improve precision for slow
moving object detection & lower negative values for
fast moving objects.

Light Source
Control

Light source
power control
options

Selects between manual and automatic power con-
trol. In automatic mode, light source power is ad-
justed according to incoming detection amplitudes.
The current LED power level is visible in the Device
State window.

Change Delay Minimum
delay between
power changes

Smaller numbers speed up the response time of the
light source power adjustment.

Object de-
merging

Discrimination
of objects close
to each other

Eases the discrimination of multiple objects in the
same segment. Object demerging is only available
formeasurement rates under 5.0Hz. The number of
merged pulses that can be processed in each frame
is also limited. A statusfield is available in thedevice
state window indicating if the sensor processes all
merged pulses.

Crosstalk
Removal

Inter-segment
interference
noise removal

Crosstalk is a phenomenon inherent to all multiple
segments time-of-flight sensors. It causes a degra-
dation of the distance measurement accuracy of
an object when one or more objects with signifi-
cantly higher reflectivity are detected in other seg-
ments at a similar distance. This option enables
an algorithm to compensate the degradation due to
crosstalk but increases computational load of the
Leddar Vumodule microcontroller.
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Table B.1: CAN Bus Request Message Byte 0 and Byte 1 Functionality [43].

Function
Request
(Byte 0)

Function Request De-
scription

Function Arguments (Byte 1)

1 Stop sending detections
continuously

2 Send detection once Bit field of operation mode
Bit-0:
0 = Return detection in singlemes-
sage mode
1 = Return detection in multiple
message mode

3 Start sending detections
continuously (that is,
the module will send a
new set of detections
each time they are ready
without waiting for a
request).

Bit field of operation mode
Bit-0:
0 = Return detection in singlemes-
sage mode
1 = Return detection in multiple
message mode

4 Get input data (read only) Table B.2
5 Get holding data Table B.3
7 Set base address Table B.4
8 Read module data Table B.5

Table B.2: BYTE 1 Values for “Get Input Data” Request [43].
Input Data Type (Byte1) Input Data Description
0 Number of segments
1 Device identification and op-

tion
2 and 3 Firmware version
4 and 5 Bootloader version
6 FPGA version
7 through 12 Serial number
13 through 18 Device name
19 through 24 Hardware part number
25 through 30 Software part number

82



Table B.3: BYTE 1 Values for “Get Holding Data” Request [43].
Holding Data Type (Byte 1) Holding Data Description
0 Acquisition configuration
1 Smoothing and detection

threshold
2 Light source power manage-

ment
3 Distance resolution and acqui-

sition options
4 CAN port configuration 1
5 CAN port configuration 2
6 CAN port configuration 3
7 Reserved
8 Segment enabled

In Tables B.1, B.2, B.3, the first column refers to the value of the 0th byte, 1st byte
when 0th byte value is 4, and 1st byte when 0th byte value is 5, respectively.

Table B.4: Setting Base Address Request [43].
Data Description Argument Argument Description
Base address Bytes 4 through 7 Base address to access (from 0x00000000

to 0x00FFFFFF)

Table B.5: Reading Module Data Request [43].
Data Description Argument Argument Description
Read module data Byte 1 Data length (1, 2, or 4)
Read module data Bytes 2 and 3 Offset from 0x0000 to 0xFFFF (final ad-

dress to access is the result of the base ad-
dress plus this offset).
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Piotr’s Computer Vision Toolbox

Piotr’s Computer Vision Toolbox, implemented by Piotr Dollár, is a MATLAB tool-
box inwhich Aggregate Channel Features (ACF) object detection code is implemented.
This toolbox contains code implementation for all the stages of the algorithm such as
computing of channels, feature pyramid, implementation of boosting trees, detector
training and color plane conversion and extraction is implemented in MATLAB code.
It requiresMATLAB Image Processing Toolbox to be installed. More information about
the toolbox can be found in [55].

Leddar Configurator

Leddar Configurator is a user interface designed by Leddar Tech to alter the con-
figurations of Vu8 sensors. It can also be used to log data, view raw detections (shown
in Figure C.1) and view graphical representation of data from the Vu8 sensors. This is
achieved by connecting the sensor to the computer, on which Leddar Configurator is
installed, using a serial port. The configurator was extensively used for the following
tasks:

1. Check the correctness of the sensor's detection.

2. Configure properties such as

(a) CAN baud rate.
(b) CAN request and response message ID (explained in Section 4.2).
(c) Measurement units (meters or centimeters).
(d) Acquisition settings such as accumulation, oversampling and points.
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Figure C.1: Leddar Configurator [43].
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